1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Checkers/Taint.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 65 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 66 #include "clang/StaticAnalyzer/Core/Checker.h" 67 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 79 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 80 #include "llvm/ADT/STLExtras.h" 81 #include "llvm/ADT/SetOperations.h" 82 #include "llvm/ADT/SmallString.h" 83 #include "llvm/ADT/StringExtras.h" 84 #include "llvm/Support/Casting.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include <climits> 89 #include <functional> 90 #include <optional> 91 #include <utility> 92 93 using namespace clang; 94 using namespace ento; 95 using namespace std::placeholders; 96 97 //===----------------------------------------------------------------------===// 98 // The types of allocation we're modeling. This is used to check whether a 99 // dynamically allocated object is deallocated with the correct function, like 100 // not using operator delete on an object created by malloc(), or alloca regions 101 // aren't ever deallocated manually. 102 //===----------------------------------------------------------------------===// 103 104 namespace { 105 106 // Used to check correspondence between allocators and deallocators. 107 enum AllocationFamily { 108 AF_None, 109 AF_Malloc, 110 AF_CXXNew, 111 AF_CXXNewArray, 112 AF_IfNameIndex, 113 AF_Alloca, 114 AF_InnerBuffer 115 }; 116 117 } // end of anonymous namespace 118 119 /// Print names of allocators and deallocators. 120 /// 121 /// \returns true on success. 122 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 123 124 /// Print expected name of an allocator based on the deallocator's family 125 /// derived from the DeallocExpr. 126 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 127 128 /// Print expected name of a deallocator based on the allocator's 129 /// family. 130 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 131 132 //===----------------------------------------------------------------------===// 133 // The state of a symbol, in terms of memory management. 134 //===----------------------------------------------------------------------===// 135 136 namespace { 137 138 class RefState { 139 enum Kind { 140 // Reference to allocated memory. 141 Allocated, 142 // Reference to zero-allocated memory. 143 AllocatedOfSizeZero, 144 // Reference to released/freed memory. 145 Released, 146 // The responsibility for freeing resources has transferred from 147 // this reference. A relinquished symbol should not be freed. 148 Relinquished, 149 // We are no longer guaranteed to have observed all manipulations 150 // of this pointer/memory. For example, it could have been 151 // passed as a parameter to an opaque function. 152 Escaped 153 }; 154 155 const Stmt *S; 156 157 Kind K; 158 AllocationFamily Family; 159 160 RefState(Kind k, const Stmt *s, AllocationFamily family) 161 : S(s), K(k), Family(family) { 162 assert(family != AF_None); 163 } 164 165 public: 166 bool isAllocated() const { return K == Allocated; } 167 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 168 bool isReleased() const { return K == Released; } 169 bool isRelinquished() const { return K == Relinquished; } 170 bool isEscaped() const { return K == Escaped; } 171 AllocationFamily getAllocationFamily() const { return Family; } 172 const Stmt *getStmt() const { return S; } 173 174 bool operator==(const RefState &X) const { 175 return K == X.K && S == X.S && Family == X.Family; 176 } 177 178 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 179 return RefState(Allocated, s, family); 180 } 181 static RefState getAllocatedOfSizeZero(const RefState *RS) { 182 return RefState(AllocatedOfSizeZero, RS->getStmt(), 183 RS->getAllocationFamily()); 184 } 185 static RefState getReleased(AllocationFamily family, const Stmt *s) { 186 return RefState(Released, s, family); 187 } 188 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 189 return RefState(Relinquished, s, family); 190 } 191 static RefState getEscaped(const RefState *RS) { 192 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 193 } 194 195 void Profile(llvm::FoldingSetNodeID &ID) const { 196 ID.AddInteger(K); 197 ID.AddPointer(S); 198 ID.AddInteger(Family); 199 } 200 201 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 202 switch (K) { 203 #define CASE(ID) case ID: OS << #ID; break; 204 CASE(Allocated) 205 CASE(AllocatedOfSizeZero) 206 CASE(Released) 207 CASE(Relinquished) 208 CASE(Escaped) 209 } 210 } 211 212 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 213 }; 214 215 } // end of anonymous namespace 216 217 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 218 219 /// Check if the memory associated with this symbol was released. 220 static bool isReleased(SymbolRef Sym, CheckerContext &C); 221 222 /// Update the RefState to reflect the new memory allocation. 223 /// The optional \p RetVal parameter specifies the newly allocated pointer 224 /// value; if unspecified, the value of expression \p E is used. 225 static ProgramStateRef 226 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 227 AllocationFamily Family, 228 std::optional<SVal> RetVal = std::nullopt); 229 230 //===----------------------------------------------------------------------===// 231 // The modeling of memory reallocation. 232 // 233 // The terminology 'toPtr' and 'fromPtr' will be used: 234 // toPtr = realloc(fromPtr, 20); 235 //===----------------------------------------------------------------------===// 236 237 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 238 239 namespace { 240 241 /// The state of 'fromPtr' after reallocation is known to have failed. 242 enum OwnershipAfterReallocKind { 243 // The symbol needs to be freed (e.g.: realloc) 244 OAR_ToBeFreedAfterFailure, 245 // The symbol has been freed (e.g.: reallocf) 246 OAR_FreeOnFailure, 247 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 248 // 'fromPtr' was allocated: 249 // void Haha(int *ptr) { 250 // ptr = realloc(ptr, 67); 251 // // ... 252 // } 253 // ). 254 OAR_DoNotTrackAfterFailure 255 }; 256 257 /// Stores information about the 'fromPtr' symbol after reallocation. 258 /// 259 /// This is important because realloc may fail, and that needs special modeling. 260 /// Whether reallocation failed or not will not be known until later, so we'll 261 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 262 /// later, etc. 263 struct ReallocPair { 264 265 // The 'fromPtr'. 266 SymbolRef ReallocatedSym; 267 OwnershipAfterReallocKind Kind; 268 269 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 270 : ReallocatedSym(S), Kind(K) {} 271 void Profile(llvm::FoldingSetNodeID &ID) const { 272 ID.AddInteger(Kind); 273 ID.AddPointer(ReallocatedSym); 274 } 275 bool operator==(const ReallocPair &X) const { 276 return ReallocatedSym == X.ReallocatedSym && 277 Kind == X.Kind; 278 } 279 }; 280 281 } // end of anonymous namespace 282 283 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 284 285 /// Tells if the callee is one of the builtin new/delete operators, including 286 /// placement operators and other standard overloads. 287 static bool isStandardNewDelete(const FunctionDecl *FD); 288 static bool isStandardNewDelete(const CallEvent &Call) { 289 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 290 return false; 291 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 292 } 293 294 //===----------------------------------------------------------------------===// 295 // Definition of the MallocChecker class. 296 //===----------------------------------------------------------------------===// 297 298 namespace { 299 300 class MallocChecker 301 : public Checker<check::DeadSymbols, check::PointerEscape, 302 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 303 check::EndFunction, check::PreCall, check::PostCall, 304 check::NewAllocator, check::PostStmt<BlockExpr>, 305 check::PostObjCMessage, check::Location, eval::Assume> { 306 public: 307 /// In pessimistic mode, the checker assumes that it does not know which 308 /// functions might free the memory. 309 /// In optimistic mode, the checker assumes that all user-defined functions 310 /// which might free a pointer are annotated. 311 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 312 313 bool ShouldRegisterNoOwnershipChangeVisitor = false; 314 315 /// Many checkers are essentially built into this one, so enabling them will 316 /// make MallocChecker perform additional modeling and reporting. 317 enum CheckKind { 318 /// When a subchecker is enabled but MallocChecker isn't, model memory 319 /// management but do not emit warnings emitted with MallocChecker only 320 /// enabled. 321 CK_MallocChecker, 322 CK_NewDeleteChecker, 323 CK_NewDeleteLeaksChecker, 324 CK_MismatchedDeallocatorChecker, 325 CK_InnerPointerChecker, 326 CK_TaintedAllocChecker, 327 CK_NumCheckKinds 328 }; 329 330 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 331 332 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 333 CheckerNameRef CheckNames[CK_NumCheckKinds]; 334 335 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 336 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 337 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 338 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 339 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 340 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 341 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 342 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 343 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 344 bool Assumption) const; 345 void checkLocation(SVal l, bool isLoad, const Stmt *S, 346 CheckerContext &C) const; 347 348 ProgramStateRef checkPointerEscape(ProgramStateRef State, 349 const InvalidatedSymbols &Escaped, 350 const CallEvent *Call, 351 PointerEscapeKind Kind) const; 352 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 353 const InvalidatedSymbols &Escaped, 354 const CallEvent *Call, 355 PointerEscapeKind Kind) const; 356 357 void printState(raw_ostream &Out, ProgramStateRef State, 358 const char *NL, const char *Sep) const override; 359 360 private: 361 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_DoubleDelete; 363 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 365 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 366 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 367 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 368 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 369 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 370 mutable std::unique_ptr<BugType> BT_TaintedAlloc; 371 372 #define CHECK_FN(NAME) \ 373 void NAME(const CallEvent &Call, CheckerContext &C) const; 374 375 CHECK_FN(checkFree) 376 CHECK_FN(checkIfNameIndex) 377 CHECK_FN(checkBasicAlloc) 378 CHECK_FN(checkKernelMalloc) 379 CHECK_FN(checkCalloc) 380 CHECK_FN(checkAlloca) 381 CHECK_FN(checkStrdup) 382 CHECK_FN(checkIfFreeNameIndex) 383 CHECK_FN(checkCXXNewOrCXXDelete) 384 CHECK_FN(checkGMalloc0) 385 CHECK_FN(checkGMemdup) 386 CHECK_FN(checkGMallocN) 387 CHECK_FN(checkGMallocN0) 388 CHECK_FN(preGetdelim) 389 CHECK_FN(checkGetdelim) 390 CHECK_FN(checkReallocN) 391 CHECK_FN(checkOwnershipAttr) 392 393 void checkRealloc(const CallEvent &Call, CheckerContext &C, 394 bool ShouldFreeOnFail) const; 395 396 using CheckFn = std::function<void(const MallocChecker *, 397 const CallEvent &Call, CheckerContext &C)>; 398 399 const CallDescriptionMap<CheckFn> PreFnMap{ 400 // NOTE: the following CallDescription also matches the C++ standard 401 // library function std::getline(); the callback will filter it out. 402 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::preGetdelim}, 403 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::preGetdelim}, 404 }; 405 406 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 407 {{CDM::CLibrary, {"free"}, 1}, &MallocChecker::checkFree}, 408 {{CDM::CLibrary, {"if_freenameindex"}, 1}, 409 &MallocChecker::checkIfFreeNameIndex}, 410 {{CDM::CLibrary, {"kfree"}, 1}, &MallocChecker::checkFree}, 411 {{CDM::CLibrary, {"g_free"}, 1}, &MallocChecker::checkFree}, 412 }; 413 414 bool isFreeingCall(const CallEvent &Call) const; 415 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 416 417 friend class NoOwnershipChangeVisitor; 418 419 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 420 {{CDM::CLibrary, {"alloca"}, 1}, &MallocChecker::checkAlloca}, 421 {{CDM::CLibrary, {"_alloca"}, 1}, &MallocChecker::checkAlloca}, 422 // The line for "alloca" also covers "__builtin_alloca", but the 423 // _with_align variant must be listed separately because it takes an 424 // extra argument: 425 {{CDM::CLibrary, {"__builtin_alloca_with_align"}, 2}, 426 &MallocChecker::checkAlloca}, 427 {{CDM::CLibrary, {"malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 428 {{CDM::CLibrary, {"malloc"}, 3}, &MallocChecker::checkKernelMalloc}, 429 {{CDM::CLibrary, {"calloc"}, 2}, &MallocChecker::checkCalloc}, 430 {{CDM::CLibrary, {"valloc"}, 1}, &MallocChecker::checkBasicAlloc}, 431 {{CDM::CLibrary, {"strndup"}, 2}, &MallocChecker::checkStrdup}, 432 {{CDM::CLibrary, {"strdup"}, 1}, &MallocChecker::checkStrdup}, 433 {{CDM::CLibrary, {"_strdup"}, 1}, &MallocChecker::checkStrdup}, 434 {{CDM::CLibrary, {"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc}, 435 {{CDM::CLibrary, {"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex}, 436 {{CDM::CLibrary, {"wcsdup"}, 1}, &MallocChecker::checkStrdup}, 437 {{CDM::CLibrary, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup}, 438 {{CDM::CLibrary, {"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 439 {{CDM::CLibrary, {"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 440 {{CDM::CLibrary, {"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 441 {{CDM::CLibrary, {"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 442 {{CDM::CLibrary, {"g_memdup"}, 2}, &MallocChecker::checkGMemdup}, 443 {{CDM::CLibrary, {"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 444 {{CDM::CLibrary, {"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 445 {{CDM::CLibrary, {"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 446 {{CDM::CLibrary, {"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 447 }; 448 449 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 450 {{CDM::CLibrary, {"realloc"}, 2}, 451 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 452 {{CDM::CLibrary, {"reallocf"}, 2}, 453 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 454 {{CDM::CLibrary, {"g_realloc"}, 2}, 455 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 456 {{CDM::CLibrary, {"g_try_realloc"}, 2}, 457 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 458 {{CDM::CLibrary, {"g_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 459 {{CDM::CLibrary, {"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 460 461 // NOTE: the following CallDescription also matches the C++ standard 462 // library function std::getline(); the callback will filter it out. 463 {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::checkGetdelim}, 464 {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::checkGetdelim}, 465 }; 466 467 bool isMemCall(const CallEvent &Call) const; 468 void reportTaintBug(StringRef Msg, ProgramStateRef State, CheckerContext &C, 469 llvm::ArrayRef<SymbolRef> TaintedSyms, 470 AllocationFamily Family) const; 471 472 void checkTaintedness(CheckerContext &C, const CallEvent &Call, 473 const SVal SizeSVal, ProgramStateRef State, 474 AllocationFamily Family) const; 475 476 // TODO: Remove mutable by moving the initializtaion to the registry function. 477 mutable std::optional<uint64_t> KernelZeroFlagVal; 478 479 using KernelZeroSizePtrValueTy = std::optional<int>; 480 /// Store the value of macro called `ZERO_SIZE_PTR`. 481 /// The value is initialized at first use, before first use the outer 482 /// Optional is empty, afterwards it contains another Optional that indicates 483 /// if the macro value could be determined, and if yes the value itself. 484 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 485 486 /// Process C++ operator new()'s allocation, which is the part of C++ 487 /// new-expression that goes before the constructor. 488 [[nodiscard]] ProgramStateRef 489 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 490 AllocationFamily Family) const; 491 492 /// Perform a zero-allocation check. 493 /// 494 /// \param [in] Call The expression that allocates memory. 495 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 496 /// of the memory that needs to be allocated. E.g. for malloc, this would be 497 /// 0. 498 /// \param [in] RetVal Specifies the newly allocated pointer value; 499 /// if unspecified, the value of expression \p E is used. 500 [[nodiscard]] static ProgramStateRef 501 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 502 ProgramStateRef State, 503 std::optional<SVal> RetVal = std::nullopt); 504 505 /// Model functions with the ownership_returns attribute. 506 /// 507 /// User-defined function may have the ownership_returns attribute, which 508 /// annotates that the function returns with an object that was allocated on 509 /// the heap, and passes the ownertship to the callee. 510 /// 511 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 512 /// 513 /// It has two parameters: 514 /// - first: name of the resource (e.g. 'malloc') 515 /// - (OPTIONAL) second: size of the allocated region 516 /// 517 /// \param [in] Call The expression that allocates memory. 518 /// \param [in] Att The ownership_returns attribute. 519 /// \param [in] State The \c ProgramState right before allocation. 520 /// \returns The ProgramState right after allocation. 521 [[nodiscard]] ProgramStateRef 522 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 523 const OwnershipAttr *Att, ProgramStateRef State) const; 524 525 /// Models memory allocation. 526 /// 527 /// \param [in] Call The expression that allocates memory. 528 /// \param [in] SizeEx Size of the memory that needs to be allocated. 529 /// \param [in] Init The value the allocated memory needs to be initialized. 530 /// with. For example, \c calloc initializes the allocated memory to 0, 531 /// malloc leaves it undefined. 532 /// \param [in] State The \c ProgramState right before allocation. 533 /// \returns The ProgramState right after allocation. 534 [[nodiscard]] ProgramStateRef 535 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 536 SVal Init, ProgramStateRef State, AllocationFamily Family) const; 537 538 /// Models memory allocation. 539 /// 540 /// \param [in] Call The expression that allocates memory. 541 /// \param [in] Size Size of the memory that needs to be allocated. 542 /// \param [in] Init The value the allocated memory needs to be initialized. 543 /// with. For example, \c calloc initializes the allocated memory to 0, 544 /// malloc leaves it undefined. 545 /// \param [in] State The \c ProgramState right before allocation. 546 /// \returns The ProgramState right after allocation. 547 [[nodiscard]] ProgramStateRef MallocMemAux(CheckerContext &C, 548 const CallEvent &Call, SVal Size, 549 SVal Init, ProgramStateRef State, 550 AllocationFamily Family) const; 551 552 // Check if this malloc() for special flags. At present that means M_ZERO or 553 // __GFP_ZERO (in which case, treat it like calloc). 554 [[nodiscard]] std::optional<ProgramStateRef> 555 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 556 const ProgramStateRef &State) const; 557 558 /// Model functions with the ownership_takes and ownership_holds attributes. 559 /// 560 /// User-defined function may have the ownership_takes and/or ownership_holds 561 /// attributes, which annotates that the function frees the memory passed as a 562 /// parameter. 563 /// 564 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 565 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 566 /// 567 /// They have two parameters: 568 /// - first: name of the resource (e.g. 'malloc') 569 /// - second: index of the parameter the attribute applies to 570 /// 571 /// \param [in] Call The expression that frees memory. 572 /// \param [in] Att The ownership_takes or ownership_holds attribute. 573 /// \param [in] State The \c ProgramState right before allocation. 574 /// \returns The ProgramState right after deallocation. 575 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 576 const CallEvent &Call, 577 const OwnershipAttr *Att, 578 ProgramStateRef State) const; 579 580 /// Models memory deallocation. 581 /// 582 /// \param [in] Call The expression that frees memory. 583 /// \param [in] State The \c ProgramState right before allocation. 584 /// \param [in] Num Index of the argument that needs to be freed. This is 585 /// normally 0, but for custom free functions it may be different. 586 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 587 /// attribute. 588 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 589 /// to have been allocated, or in other words, the symbol to be freed was 590 /// registered as allocated by this checker. In the following case, \c ptr 591 /// isn't known to be allocated. 592 /// void Haha(int *ptr) { 593 /// ptr = realloc(ptr, 67); 594 /// // ... 595 /// } 596 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 597 /// we're modeling returns with Null on failure. 598 /// \returns The ProgramState right after deallocation. 599 [[nodiscard]] ProgramStateRef 600 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 601 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 602 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 603 604 /// Models memory deallocation. 605 /// 606 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 607 /// \param [in] Call The expression that frees the memory. 608 /// \param [in] State The \c ProgramState right before allocation. 609 /// normally 0, but for custom free functions it may be different. 610 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 611 /// attribute. 612 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 613 /// to have been allocated, or in other words, the symbol to be freed was 614 /// registered as allocated by this checker. In the following case, \c ptr 615 /// isn't known to be allocated. 616 /// void Haha(int *ptr) { 617 /// ptr = realloc(ptr, 67); 618 /// // ... 619 /// } 620 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 621 /// we're modeling returns with Null on failure. 622 /// \param [in] ArgValOpt Optional value to use for the argument instead of 623 /// the one obtained from ArgExpr. 624 /// \returns The ProgramState right after deallocation. 625 [[nodiscard]] ProgramStateRef 626 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 627 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 628 AllocationFamily Family, bool ReturnsNullOnFailure = false, 629 std::optional<SVal> ArgValOpt = {}) const; 630 631 // TODO: Needs some refactoring, as all other deallocation modeling 632 // functions are suffering from out parameters and messy code due to how 633 // realloc is handled. 634 // 635 /// Models memory reallocation. 636 /// 637 /// \param [in] Call The expression that reallocated memory 638 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 639 /// memory should be freed. 640 /// \param [in] State The \c ProgramState right before reallocation. 641 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 642 /// has an '_n' suffix, such as g_realloc_n. 643 /// \returns The ProgramState right after reallocation. 644 [[nodiscard]] ProgramStateRef 645 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 646 ProgramStateRef State, AllocationFamily Family, 647 bool SuffixWithN = false) const; 648 649 /// Evaluates the buffer size that needs to be allocated. 650 /// 651 /// \param [in] Blocks The amount of blocks that needs to be allocated. 652 /// \param [in] BlockBytes The size of a block. 653 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 654 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 655 const Expr *Blocks, 656 const Expr *BlockBytes); 657 658 /// Models zero initialized array allocation. 659 /// 660 /// \param [in] Call The expression that reallocated memory 661 /// \param [in] State The \c ProgramState right before reallocation. 662 /// \returns The ProgramState right after allocation. 663 [[nodiscard]] ProgramStateRef CallocMem(CheckerContext &C, 664 const CallEvent &Call, 665 ProgramStateRef State) const; 666 667 /// See if deallocation happens in a suspicious context. If so, escape the 668 /// pointers that otherwise would have been deallocated and return true. 669 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 670 CheckerContext &C) const; 671 672 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 673 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 674 675 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 676 /// sized memory region. 677 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 678 const Stmt *S) const; 679 680 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 681 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 682 683 /// Check if the function is known to free memory, or if it is 684 /// "interesting" and should be modeled explicitly. 685 /// 686 /// \param [out] EscapingSymbol A function might not free memory in general, 687 /// but could be known to free a particular symbol. In this case, false is 688 /// returned and the single escaping symbol is returned through the out 689 /// parameter. 690 /// 691 /// We assume that pointers do not escape through calls to system functions 692 /// not handled by this checker. 693 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 694 ProgramStateRef State, 695 SymbolRef &EscapingSymbol) const; 696 697 /// Implementation of the checkPointerEscape callbacks. 698 [[nodiscard]] ProgramStateRef 699 checkPointerEscapeAux(ProgramStateRef State, 700 const InvalidatedSymbols &Escaped, 701 const CallEvent *Call, PointerEscapeKind Kind, 702 bool IsConstPointerEscape) const; 703 704 // Implementation of the checkPreStmt and checkEndFunction callbacks. 705 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 706 707 ///@{ 708 /// Tells if a given family/call/symbol is tracked by the current checker. 709 /// Sets CheckKind to the kind of the checker responsible for this 710 /// family/call/symbol. 711 std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 712 bool IsALeakCheck = false) const; 713 714 std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 715 bool IsALeakCheck = false) const; 716 ///@} 717 static bool SummarizeValue(raw_ostream &os, SVal V); 718 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 719 720 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 721 const Expr *DeallocExpr, 722 AllocationFamily Family) const; 723 724 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 725 SourceRange Range) const; 726 727 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 728 const Expr *DeallocExpr, const RefState *RS, 729 SymbolRef Sym, bool OwnershipTransferred) const; 730 731 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 732 const Expr *DeallocExpr, AllocationFamily Family, 733 const Expr *AllocExpr = nullptr) const; 734 735 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 736 SymbolRef Sym) const; 737 738 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 739 SymbolRef Sym, SymbolRef PrevSym) const; 740 741 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 742 743 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 744 SymbolRef Sym) const; 745 746 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 747 const Expr *FreeExpr, 748 AllocationFamily Family) const; 749 750 /// Find the location of the allocation for Sym on the path leading to the 751 /// exploded node N. 752 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 753 CheckerContext &C); 754 755 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 756 757 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 758 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 759 SVal ArgVal) const; 760 }; 761 } // end anonymous namespace 762 763 //===----------------------------------------------------------------------===// 764 // Definition of NoOwnershipChangeVisitor. 765 //===----------------------------------------------------------------------===// 766 767 namespace { 768 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 769 // The symbol whose (lack of) ownership change we are interested in. 770 SymbolRef Sym; 771 const MallocChecker &Checker; 772 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 773 774 // Collect which entities point to the allocated memory, and could be 775 // responsible for deallocating it. 776 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 777 SymbolRef Sym; 778 OwnerSet &Owners; 779 780 public: 781 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 782 : Sym(Sym), Owners(Owners) {} 783 784 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 785 SVal Val) override { 786 if (Val.getAsSymbol() == Sym) 787 Owners.insert(Region); 788 return true; 789 } 790 791 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 792 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 793 out << "Owners: {\n"; 794 for (const MemRegion *Owner : Owners) { 795 out << " "; 796 Owner->dumpToStream(out); 797 out << ",\n"; 798 } 799 out << "}\n"; 800 } 801 }; 802 803 protected: 804 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 805 OwnerSet Ret; 806 807 ProgramStateRef State = N->getState(); 808 OwnershipBindingsHandler Handler{Sym, Ret}; 809 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 810 Handler); 811 return Ret; 812 } 813 814 LLVM_DUMP_METHOD static std::string 815 getFunctionName(const ExplodedNode *CallEnterN) { 816 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 817 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 818 if (const FunctionDecl *FD = CE->getDirectCallee()) 819 return FD->getQualifiedNameAsString(); 820 return ""; 821 } 822 823 /// Syntactically checks whether the callee is a deallocating function. Since 824 /// we have no path-sensitive information on this call (we would need a 825 /// CallEvent instead of a CallExpr for that), its possible that a 826 /// deallocation function was called indirectly through a function pointer, 827 /// but we are not able to tell, so this is a best effort analysis. 828 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 829 /// clang/test/Analysis/NewDeleteLeaks.cpp. 830 bool isFreeingCallAsWritten(const CallExpr &Call) const { 831 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 832 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 833 return true; 834 835 if (const auto *Func = 836 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 837 return MallocChecker::isFreeingOwnershipAttrCall(Func); 838 839 return false; 840 } 841 842 /// Heuristically guess whether the callee intended to free memory. This is 843 /// done syntactically, because we are trying to argue about alternative 844 /// paths of execution, and as a consequence we don't have path-sensitive 845 /// information. 846 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 847 using namespace clang::ast_matchers; 848 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 849 850 // Given that the stack frame was entered, the body should always be 851 // theoretically obtainable. In case of body farms, the synthesized body 852 // is not attached to declaration, thus triggering the '!FD->hasBody()' 853 // branch. That said, would a synthesized body ever intend to handle 854 // ownership? As of today they don't. And if they did, how would we 855 // put notes inside it, given that it doesn't match any source locations? 856 if (!FD || !FD->hasBody()) 857 return false; 858 859 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 860 callExpr().bind("call")))), 861 *FD->getBody(), ACtx); 862 for (BoundNodes Match : Matches) { 863 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 864 return true; 865 866 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 867 if (isFreeingCallAsWritten(*Call)) 868 return true; 869 } 870 // TODO: Ownership might change with an attempt to store the allocated 871 // memory, not only through deallocation. Check for attempted stores as 872 // well. 873 return false; 874 } 875 876 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 877 const ExplodedNode *CallExitEndN) override { 878 if (!doesFnIntendToHandleOwnership( 879 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 880 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 881 return true; 882 883 if (CallEnterN->getState()->get<RegionState>(Sym) != 884 CallExitEndN->getState()->get<RegionState>(Sym)) 885 return true; 886 887 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 888 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 889 890 // Owners in the current set may be purged from the analyzer later on. 891 // If a variable is dead (is not referenced directly or indirectly after 892 // some point), it will be removed from the Store before the end of its 893 // actual lifetime. 894 // This means that if the ownership status didn't change, CurrOwners 895 // must be a superset of, but not necessarily equal to ExitOwners. 896 return !llvm::set_is_subset(ExitOwners, CurrOwners); 897 } 898 899 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 900 PathDiagnosticLocation L = PathDiagnosticLocation::create( 901 N->getLocation(), 902 N->getState()->getStateManager().getContext().getSourceManager()); 903 return std::make_shared<PathDiagnosticEventPiece>( 904 L, "Returning without deallocating memory or storing the pointer for " 905 "later deallocation"); 906 } 907 908 PathDiagnosticPieceRef 909 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 910 const ObjCMethodCall &Call, 911 const ExplodedNode *N) override { 912 // TODO: Implement. 913 return nullptr; 914 } 915 916 PathDiagnosticPieceRef 917 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 918 const CXXConstructorCall &Call, 919 const ExplodedNode *N) override { 920 // TODO: Implement. 921 return nullptr; 922 } 923 924 PathDiagnosticPieceRef 925 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 926 const ExplodedNode *N) override { 927 // TODO: Factor the logic of "what constitutes as an entity being passed 928 // into a function call" out by reusing the code in 929 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 930 // the printing technology in UninitializedObject's FieldChainInfo. 931 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 932 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 933 SVal V = Call.getArgSVal(I); 934 if (V.getAsSymbol() == Sym) 935 return emitNote(N); 936 } 937 return nullptr; 938 } 939 940 public: 941 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 942 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 943 Checker(*Checker) {} 944 945 void Profile(llvm::FoldingSetNodeID &ID) const override { 946 static int Tag = 0; 947 ID.AddPointer(&Tag); 948 ID.AddPointer(Sym); 949 } 950 }; 951 952 } // end anonymous namespace 953 954 //===----------------------------------------------------------------------===// 955 // Definition of MallocBugVisitor. 956 //===----------------------------------------------------------------------===// 957 958 namespace { 959 /// The bug visitor which allows us to print extra diagnostics along the 960 /// BugReport path. For example, showing the allocation site of the leaked 961 /// region. 962 class MallocBugVisitor final : public BugReporterVisitor { 963 protected: 964 enum NotificationMode { Normal, ReallocationFailed }; 965 966 // The allocated region symbol tracked by the main analysis. 967 SymbolRef Sym; 968 969 // The mode we are in, i.e. what kind of diagnostics will be emitted. 970 NotificationMode Mode; 971 972 // A symbol from when the primary region should have been reallocated. 973 SymbolRef FailedReallocSymbol; 974 975 // A C++ destructor stack frame in which memory was released. Used for 976 // miscellaneous false positive suppression. 977 const StackFrameContext *ReleaseDestructorLC; 978 979 bool IsLeak; 980 981 public: 982 MallocBugVisitor(SymbolRef S, bool isLeak = false) 983 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 984 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 985 986 static void *getTag() { 987 static int Tag = 0; 988 return &Tag; 989 } 990 991 void Profile(llvm::FoldingSetNodeID &ID) const override { 992 ID.AddPointer(getTag()); 993 ID.AddPointer(Sym); 994 } 995 996 /// Did not track -> allocated. Other state (released) -> allocated. 997 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 998 const Stmt *Stmt) { 999 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 1000 (RSCurr && 1001 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1002 (!RSPrev || 1003 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1004 } 1005 1006 /// Did not track -> released. Other state (allocated) -> released. 1007 /// The statement associated with the release might be missing. 1008 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 1009 const Stmt *Stmt) { 1010 bool IsReleased = 1011 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 1012 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 1013 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 1014 return IsReleased; 1015 } 1016 1017 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 1018 static inline bool isRelinquished(const RefState *RSCurr, 1019 const RefState *RSPrev, const Stmt *Stmt) { 1020 return ( 1021 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 1022 (RSCurr && RSCurr->isRelinquished()) && 1023 (!RSPrev || !RSPrev->isRelinquished())); 1024 } 1025 1026 /// If the expression is not a call, and the state change is 1027 /// released -> allocated, it must be the realloc return value 1028 /// check. If we have to handle more cases here, it might be cleaner just 1029 /// to track this extra bit in the state itself. 1030 static inline bool hasReallocFailed(const RefState *RSCurr, 1031 const RefState *RSPrev, 1032 const Stmt *Stmt) { 1033 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 1034 (RSCurr && 1035 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1036 (RSPrev && 1037 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1038 } 1039 1040 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1041 BugReporterContext &BRC, 1042 PathSensitiveBugReport &BR) override; 1043 1044 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1045 const ExplodedNode *EndPathNode, 1046 PathSensitiveBugReport &BR) override { 1047 if (!IsLeak) 1048 return nullptr; 1049 1050 PathDiagnosticLocation L = BR.getLocation(); 1051 // Do not add the statement itself as a range in case of leak. 1052 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1053 false); 1054 } 1055 1056 private: 1057 class StackHintGeneratorForReallocationFailed 1058 : public StackHintGeneratorForSymbol { 1059 public: 1060 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1061 : StackHintGeneratorForSymbol(S, M) {} 1062 1063 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1064 // Printed parameters start at 1, not 0. 1065 ++ArgIndex; 1066 1067 SmallString<200> buf; 1068 llvm::raw_svector_ostream os(buf); 1069 1070 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1071 << " parameter failed"; 1072 1073 return std::string(os.str()); 1074 } 1075 1076 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1077 return "Reallocation of returned value failed"; 1078 } 1079 }; 1080 }; 1081 } // end anonymous namespace 1082 1083 // A map from the freed symbol to the symbol representing the return value of 1084 // the free function. 1085 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1086 1087 namespace { 1088 class StopTrackingCallback final : public SymbolVisitor { 1089 ProgramStateRef state; 1090 1091 public: 1092 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1093 ProgramStateRef getState() const { return state; } 1094 1095 bool VisitSymbol(SymbolRef sym) override { 1096 state = state->remove<RegionState>(sym); 1097 return true; 1098 } 1099 }; 1100 } // end anonymous namespace 1101 1102 static bool isStandardNewDelete(const FunctionDecl *FD) { 1103 if (!FD) 1104 return false; 1105 1106 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1107 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1108 Kind != OO_Array_Delete) 1109 return false; 1110 1111 // This is standard if and only if it's not defined in a user file. 1112 SourceLocation L = FD->getLocation(); 1113 // If the header for operator delete is not included, it's still defined 1114 // in an invalid source location. Check to make sure we don't crash. 1115 return !L.isValid() || 1116 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1117 } 1118 1119 //===----------------------------------------------------------------------===// 1120 // Methods of MallocChecker and MallocBugVisitor. 1121 //===----------------------------------------------------------------------===// 1122 1123 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1124 if (Func->hasAttrs()) { 1125 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1126 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1127 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1128 return true; 1129 } 1130 } 1131 return false; 1132 } 1133 1134 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1135 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1136 return true; 1137 1138 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1139 return isFreeingOwnershipAttrCall(Func); 1140 1141 return false; 1142 } 1143 1144 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1145 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1146 ReallocatingMemFnMap.lookup(Call)) 1147 return true; 1148 1149 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1150 return false; 1151 1152 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1153 return Func && Func->hasAttr<OwnershipAttr>(); 1154 } 1155 1156 std::optional<ProgramStateRef> 1157 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1158 const ProgramStateRef &State) const { 1159 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1160 // 1161 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1162 // 1163 // One of the possible flags is M_ZERO, which means 'give me back an 1164 // allocation which is already zeroed', like calloc. 1165 1166 // 2-argument kmalloc(), as used in the Linux kernel: 1167 // 1168 // void *kmalloc(size_t size, gfp_t flags); 1169 // 1170 // Has the similar flag value __GFP_ZERO. 1171 1172 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1173 // code could be shared. 1174 1175 ASTContext &Ctx = C.getASTContext(); 1176 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1177 1178 if (!KernelZeroFlagVal) { 1179 switch (OS) { 1180 case llvm::Triple::FreeBSD: 1181 KernelZeroFlagVal = 0x0100; 1182 break; 1183 case llvm::Triple::NetBSD: 1184 KernelZeroFlagVal = 0x0002; 1185 break; 1186 case llvm::Triple::OpenBSD: 1187 KernelZeroFlagVal = 0x0008; 1188 break; 1189 case llvm::Triple::Linux: 1190 // __GFP_ZERO 1191 KernelZeroFlagVal = 0x8000; 1192 break; 1193 default: 1194 // FIXME: We need a more general way of getting the M_ZERO value. 1195 // See also: O_CREAT in UnixAPIChecker.cpp. 1196 1197 // Fall back to normal malloc behavior on platforms where we don't 1198 // know M_ZERO. 1199 return std::nullopt; 1200 } 1201 } 1202 1203 // We treat the last argument as the flags argument, and callers fall-back to 1204 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1205 // as well as Linux kmalloc. 1206 if (Call.getNumArgs() < 2) 1207 return std::nullopt; 1208 1209 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1210 const SVal V = C.getSVal(FlagsEx); 1211 if (!isa<NonLoc>(V)) { 1212 // The case where 'V' can be a location can only be due to a bad header, 1213 // so in this case bail out. 1214 return std::nullopt; 1215 } 1216 1217 NonLoc Flags = V.castAs<NonLoc>(); 1218 NonLoc ZeroFlag = C.getSValBuilder() 1219 .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType()) 1220 .castAs<NonLoc>(); 1221 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1222 Flags, ZeroFlag, 1223 FlagsEx->getType()); 1224 if (MaskedFlagsUC.isUnknownOrUndef()) 1225 return std::nullopt; 1226 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1227 1228 // Check if maskedFlags is non-zero. 1229 ProgramStateRef TrueState, FalseState; 1230 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1231 1232 // If M_ZERO is set, treat this like calloc (initialized). 1233 if (TrueState && !FalseState) { 1234 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1235 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1236 AF_Malloc); 1237 } 1238 1239 return std::nullopt; 1240 } 1241 1242 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1243 const Expr *BlockBytes) { 1244 SValBuilder &SB = C.getSValBuilder(); 1245 SVal BlocksVal = C.getSVal(Blocks); 1246 SVal BlockBytesVal = C.getSVal(BlockBytes); 1247 ProgramStateRef State = C.getState(); 1248 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1249 SB.getContext().getSizeType()); 1250 return TotalSize; 1251 } 1252 1253 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1254 CheckerContext &C) const { 1255 ProgramStateRef State = C.getState(); 1256 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1257 AF_Malloc); 1258 State = ProcessZeroAllocCheck(Call, 0, State); 1259 C.addTransition(State); 1260 } 1261 1262 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1263 CheckerContext &C) const { 1264 ProgramStateRef State = C.getState(); 1265 std::optional<ProgramStateRef> MaybeState = 1266 performKernelMalloc(Call, C, State); 1267 if (MaybeState) 1268 State = *MaybeState; 1269 else 1270 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1271 AF_Malloc); 1272 C.addTransition(State); 1273 } 1274 1275 static bool isStandardRealloc(const CallEvent &Call) { 1276 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1277 assert(FD); 1278 ASTContext &AC = FD->getASTContext(); 1279 1280 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1281 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1282 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1283 AC.getSizeType(); 1284 } 1285 1286 static bool isGRealloc(const CallEvent &Call) { 1287 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1288 assert(FD); 1289 ASTContext &AC = FD->getASTContext(); 1290 1291 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1292 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1293 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1294 AC.UnsignedLongTy; 1295 } 1296 1297 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1298 bool ShouldFreeOnFail) const { 1299 // Ignore calls to functions whose type does not match the expected type of 1300 // either the standard realloc or g_realloc from GLib. 1301 // FIXME: Should we perform this kind of checking consistently for each 1302 // function? If yes, then perhaps extend the `CallDescription` interface to 1303 // handle this. 1304 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1305 return; 1306 1307 ProgramStateRef State = C.getState(); 1308 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1309 State = ProcessZeroAllocCheck(Call, 1, State); 1310 C.addTransition(State); 1311 } 1312 1313 void MallocChecker::checkCalloc(const CallEvent &Call, 1314 CheckerContext &C) const { 1315 ProgramStateRef State = C.getState(); 1316 State = CallocMem(C, Call, State); 1317 State = ProcessZeroAllocCheck(Call, 0, State); 1318 State = ProcessZeroAllocCheck(Call, 1, State); 1319 C.addTransition(State); 1320 } 1321 1322 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1323 ProgramStateRef State = C.getState(); 1324 bool IsKnownToBeAllocatedMemory = false; 1325 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1326 return; 1327 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1328 AF_Malloc); 1329 C.addTransition(State); 1330 } 1331 1332 void MallocChecker::checkAlloca(const CallEvent &Call, 1333 CheckerContext &C) const { 1334 ProgramStateRef State = C.getState(); 1335 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1336 AF_Alloca); 1337 State = ProcessZeroAllocCheck(Call, 0, State); 1338 C.addTransition(State); 1339 } 1340 1341 void MallocChecker::checkStrdup(const CallEvent &Call, 1342 CheckerContext &C) const { 1343 ProgramStateRef State = C.getState(); 1344 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1345 if (!CE) 1346 return; 1347 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1348 1349 C.addTransition(State); 1350 } 1351 1352 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1353 CheckerContext &C) const { 1354 ProgramStateRef State = C.getState(); 1355 // Should we model this differently? We can allocate a fixed number of 1356 // elements with zeros in the last one. 1357 State = 1358 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1359 1360 C.addTransition(State); 1361 } 1362 1363 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1364 CheckerContext &C) const { 1365 ProgramStateRef State = C.getState(); 1366 bool IsKnownToBeAllocatedMemory = false; 1367 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1368 AF_IfNameIndex); 1369 C.addTransition(State); 1370 } 1371 1372 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1373 CheckerContext &C) const { 1374 ProgramStateRef State = C.getState(); 1375 bool IsKnownToBeAllocatedMemory = false; 1376 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1377 if (!CE) 1378 return; 1379 1380 assert(isStandardNewDelete(Call)); 1381 1382 // Process direct calls to operator new/new[]/delete/delete[] functions 1383 // as distinct from new/new[]/delete/delete[] expressions that are 1384 // processed by the checkPostStmt callbacks for CXXNewExpr and 1385 // CXXDeleteExpr. 1386 const FunctionDecl *FD = C.getCalleeDecl(CE); 1387 switch (FD->getOverloadedOperator()) { 1388 case OO_New: 1389 State = 1390 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1391 State = ProcessZeroAllocCheck(Call, 0, State); 1392 break; 1393 case OO_Array_New: 1394 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1395 AF_CXXNewArray); 1396 State = ProcessZeroAllocCheck(Call, 0, State); 1397 break; 1398 case OO_Delete: 1399 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1400 AF_CXXNew); 1401 break; 1402 case OO_Array_Delete: 1403 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1404 AF_CXXNewArray); 1405 break; 1406 default: 1407 llvm_unreachable("not a new/delete operator"); 1408 } 1409 1410 C.addTransition(State); 1411 } 1412 1413 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1414 CheckerContext &C) const { 1415 ProgramStateRef State = C.getState(); 1416 SValBuilder &svalBuilder = C.getSValBuilder(); 1417 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1418 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1419 State = ProcessZeroAllocCheck(Call, 0, State); 1420 C.addTransition(State); 1421 } 1422 1423 void MallocChecker::checkGMemdup(const CallEvent &Call, 1424 CheckerContext &C) const { 1425 ProgramStateRef State = C.getState(); 1426 State = 1427 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1428 State = ProcessZeroAllocCheck(Call, 1, State); 1429 C.addTransition(State); 1430 } 1431 1432 void MallocChecker::checkGMallocN(const CallEvent &Call, 1433 CheckerContext &C) const { 1434 ProgramStateRef State = C.getState(); 1435 SVal Init = UndefinedVal(); 1436 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1437 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1438 State = ProcessZeroAllocCheck(Call, 0, State); 1439 State = ProcessZeroAllocCheck(Call, 1, State); 1440 C.addTransition(State); 1441 } 1442 1443 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1444 CheckerContext &C) const { 1445 ProgramStateRef State = C.getState(); 1446 SValBuilder &SB = C.getSValBuilder(); 1447 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1448 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1449 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1450 State = ProcessZeroAllocCheck(Call, 0, State); 1451 State = ProcessZeroAllocCheck(Call, 1, State); 1452 C.addTransition(State); 1453 } 1454 1455 static bool isFromStdNamespace(const CallEvent &Call) { 1456 const Decl *FD = Call.getDecl(); 1457 assert(FD && "a CallDescription cannot match a call without a Decl"); 1458 return FD->isInStdNamespace(); 1459 } 1460 1461 void MallocChecker::preGetdelim(const CallEvent &Call, 1462 CheckerContext &C) const { 1463 // Discard calls to the C++ standard library function std::getline(), which 1464 // is completely unrelated to the POSIX getline() that we're checking. 1465 if (isFromStdNamespace(Call)) 1466 return; 1467 1468 ProgramStateRef State = C.getState(); 1469 const auto LinePtr = getPointeeVal(Call.getArgSVal(0), State); 1470 if (!LinePtr) 1471 return; 1472 1473 // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will 1474 // be true after the call if the symbol was registered by this checker. 1475 // We do not need this value here, as FreeMemAux will take care 1476 // of reporting any violation of the preconditions. 1477 bool IsKnownToBeAllocated = false; 1478 State = FreeMemAux(C, Call.getArgExpr(0), Call, State, false, 1479 IsKnownToBeAllocated, AF_Malloc, false, LinePtr); 1480 if (State) 1481 C.addTransition(State); 1482 } 1483 1484 void MallocChecker::checkGetdelim(const CallEvent &Call, 1485 CheckerContext &C) const { 1486 // Discard calls to the C++ standard library function std::getline(), which 1487 // is completely unrelated to the POSIX getline() that we're checking. 1488 if (isFromStdNamespace(Call)) 1489 return; 1490 1491 ProgramStateRef State = C.getState(); 1492 // Handle the post-conditions of getline and getdelim: 1493 // Register the new conjured value as an allocated buffer. 1494 const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1495 if (!CE) 1496 return; 1497 1498 SValBuilder &SVB = C.getSValBuilder(); 1499 1500 const auto LinePtr = 1501 getPointeeVal(Call.getArgSVal(0), State)->getAs<DefinedSVal>(); 1502 const auto Size = 1503 getPointeeVal(Call.getArgSVal(1), State)->getAs<DefinedSVal>(); 1504 if (!LinePtr || !Size || !LinePtr->getAsRegion()) 1505 return; 1506 1507 State = setDynamicExtent(State, LinePtr->getAsRegion(), *Size, SVB); 1508 C.addTransition(MallocUpdateRefState(C, CE, State, AF_Malloc, *LinePtr)); 1509 } 1510 1511 void MallocChecker::checkReallocN(const CallEvent &Call, 1512 CheckerContext &C) const { 1513 ProgramStateRef State = C.getState(); 1514 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1515 /*SuffixWithN=*/true); 1516 State = ProcessZeroAllocCheck(Call, 1, State); 1517 State = ProcessZeroAllocCheck(Call, 2, State); 1518 C.addTransition(State); 1519 } 1520 1521 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1522 CheckerContext &C) const { 1523 ProgramStateRef State = C.getState(); 1524 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1525 if (!CE) 1526 return; 1527 const FunctionDecl *FD = C.getCalleeDecl(CE); 1528 if (!FD) 1529 return; 1530 if (ShouldIncludeOwnershipAnnotatedFunctions || 1531 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1532 // Check all the attributes, if there are any. 1533 // There can be multiple of these attributes. 1534 if (FD->hasAttrs()) 1535 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1536 switch (I->getOwnKind()) { 1537 case OwnershipAttr::Returns: 1538 State = MallocMemReturnsAttr(C, Call, I, State); 1539 break; 1540 case OwnershipAttr::Takes: 1541 case OwnershipAttr::Holds: 1542 State = FreeMemAttr(C, Call, I, State); 1543 break; 1544 } 1545 } 1546 } 1547 C.addTransition(State); 1548 } 1549 1550 void MallocChecker::checkPostCall(const CallEvent &Call, 1551 CheckerContext &C) const { 1552 if (C.wasInlined) 1553 return; 1554 if (!Call.getOriginExpr()) 1555 return; 1556 1557 ProgramStateRef State = C.getState(); 1558 1559 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1560 (*Callback)(this, Call, C); 1561 return; 1562 } 1563 1564 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1565 (*Callback)(this, Call, C); 1566 return; 1567 } 1568 1569 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1570 (*Callback)(this, Call, C); 1571 return; 1572 } 1573 1574 if (isStandardNewDelete(Call)) { 1575 checkCXXNewOrCXXDelete(Call, C); 1576 return; 1577 } 1578 1579 checkOwnershipAttr(Call, C); 1580 } 1581 1582 // Performs a 0-sized allocations check. 1583 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1584 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1585 std::optional<SVal> RetVal) { 1586 if (!State) 1587 return nullptr; 1588 1589 if (!RetVal) 1590 RetVal = Call.getReturnValue(); 1591 1592 const Expr *Arg = nullptr; 1593 1594 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1595 Arg = CE->getArg(IndexOfSizeArg); 1596 } else if (const CXXNewExpr *NE = 1597 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1598 if (NE->isArray()) { 1599 Arg = *NE->getArraySize(); 1600 } else { 1601 return State; 1602 } 1603 } else 1604 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1605 1606 assert(Arg); 1607 1608 auto DefArgVal = 1609 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1610 1611 if (!DefArgVal) 1612 return State; 1613 1614 // Check if the allocation size is 0. 1615 ProgramStateRef TrueState, FalseState; 1616 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1617 DefinedSVal Zero = 1618 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1619 1620 std::tie(TrueState, FalseState) = 1621 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1622 1623 if (TrueState && !FalseState) { 1624 SymbolRef Sym = RetVal->getAsLocSymbol(); 1625 if (!Sym) 1626 return State; 1627 1628 const RefState *RS = State->get<RegionState>(Sym); 1629 if (RS) { 1630 if (RS->isAllocated()) 1631 return TrueState->set<RegionState>(Sym, 1632 RefState::getAllocatedOfSizeZero(RS)); 1633 else 1634 return State; 1635 } else { 1636 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1637 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1638 // tracked. Add zero-reallocated Sym to the state to catch references 1639 // to zero-allocated memory. 1640 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1641 } 1642 } 1643 1644 // Assume the value is non-zero going forward. 1645 assert(FalseState); 1646 return FalseState; 1647 } 1648 1649 static QualType getDeepPointeeType(QualType T) { 1650 QualType Result = T, PointeeType = T->getPointeeType(); 1651 while (!PointeeType.isNull()) { 1652 Result = PointeeType; 1653 PointeeType = PointeeType->getPointeeType(); 1654 } 1655 return Result; 1656 } 1657 1658 /// \returns true if the constructor invoked by \p NE has an argument of a 1659 /// pointer/reference to a record type. 1660 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1661 1662 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1663 if (!ConstructE) 1664 return false; 1665 1666 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1667 return false; 1668 1669 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1670 1671 // Iterate over the constructor parameters. 1672 for (const auto *CtorParam : CtorD->parameters()) { 1673 1674 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1675 if (CtorParamPointeeT.isNull()) 1676 continue; 1677 1678 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1679 1680 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1681 return true; 1682 } 1683 1684 return false; 1685 } 1686 1687 ProgramStateRef 1688 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1689 CheckerContext &C, 1690 AllocationFamily Family) const { 1691 if (!isStandardNewDelete(Call)) 1692 return nullptr; 1693 1694 const CXXNewExpr *NE = Call.getOriginExpr(); 1695 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1696 ProgramStateRef State = C.getState(); 1697 1698 // Non-trivial constructors have a chance to escape 'this', but marking all 1699 // invocations of trivial constructors as escaped would cause too great of 1700 // reduction of true positives, so let's just do that for constructors that 1701 // have an argument of a pointer-to-record type. 1702 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1703 return State; 1704 1705 // The return value from operator new is bound to a specified initialization 1706 // value (if any) and we don't want to loose this value. So we call 1707 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1708 // existing binding. 1709 SVal Target = Call.getObjectUnderConstruction(); 1710 if (Call.getOriginExpr()->isArray()) { 1711 if (auto SizeEx = NE->getArraySize()) 1712 checkTaintedness(C, Call, C.getSVal(*SizeEx), State, AF_CXXNewArray); 1713 } 1714 1715 State = MallocUpdateRefState(C, NE, State, Family, Target); 1716 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1717 return State; 1718 } 1719 1720 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1721 CheckerContext &C) const { 1722 if (!C.wasInlined) { 1723 ProgramStateRef State = processNewAllocation( 1724 Call, C, 1725 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1726 C.addTransition(State); 1727 } 1728 } 1729 1730 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1731 // If the first selector piece is one of the names below, assume that the 1732 // object takes ownership of the memory, promising to eventually deallocate it 1733 // with free(). 1734 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1735 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1736 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1737 return FirstSlot == "dataWithBytesNoCopy" || 1738 FirstSlot == "initWithBytesNoCopy" || 1739 FirstSlot == "initWithCharactersNoCopy"; 1740 } 1741 1742 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1743 Selector S = Call.getSelector(); 1744 1745 // FIXME: We should not rely on fully-constrained symbols being folded. 1746 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1747 if (S.getNameForSlot(i) == "freeWhenDone") 1748 return !Call.getArgSVal(i).isZeroConstant(); 1749 1750 return std::nullopt; 1751 } 1752 1753 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1754 CheckerContext &C) const { 1755 if (C.wasInlined) 1756 return; 1757 1758 if (!isKnownDeallocObjCMethodName(Call)) 1759 return; 1760 1761 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1762 if (!*FreeWhenDone) 1763 return; 1764 1765 if (Call.hasNonZeroCallbackArg()) 1766 return; 1767 1768 bool IsKnownToBeAllocatedMemory; 1769 ProgramStateRef State = 1770 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1771 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1772 /*ReturnsNullOnFailure=*/true); 1773 1774 C.addTransition(State); 1775 } 1776 1777 ProgramStateRef 1778 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1779 const OwnershipAttr *Att, 1780 ProgramStateRef State) const { 1781 if (!State) 1782 return nullptr; 1783 1784 if (Att->getModule()->getName() != "malloc") 1785 return nullptr; 1786 1787 if (!Att->args().empty()) { 1788 return MallocMemAux(C, Call, 1789 Call.getArgExpr(Att->args_begin()->getASTIndex()), 1790 UndefinedVal(), State, AF_Malloc); 1791 } 1792 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1793 } 1794 1795 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1796 const CallEvent &Call, 1797 const Expr *SizeEx, SVal Init, 1798 ProgramStateRef State, 1799 AllocationFamily Family) const { 1800 if (!State) 1801 return nullptr; 1802 1803 assert(SizeEx); 1804 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1805 } 1806 1807 void MallocChecker::reportTaintBug(StringRef Msg, ProgramStateRef State, 1808 CheckerContext &C, 1809 llvm::ArrayRef<SymbolRef> TaintedSyms, 1810 AllocationFamily Family) const { 1811 if (ExplodedNode *N = C.generateNonFatalErrorNode(State, this)) { 1812 if (!BT_TaintedAlloc) 1813 BT_TaintedAlloc.reset(new BugType(CheckNames[CK_TaintedAllocChecker], 1814 "Tainted Memory Allocation", 1815 categories::TaintedData)); 1816 auto R = std::make_unique<PathSensitiveBugReport>(*BT_TaintedAlloc, Msg, N); 1817 for (auto TaintedSym : TaintedSyms) { 1818 R->markInteresting(TaintedSym); 1819 } 1820 C.emitReport(std::move(R)); 1821 } 1822 } 1823 1824 void MallocChecker::checkTaintedness(CheckerContext &C, const CallEvent &Call, 1825 const SVal SizeSVal, ProgramStateRef State, 1826 AllocationFamily Family) const { 1827 if (!ChecksEnabled[CK_TaintedAllocChecker]) 1828 return; 1829 std::vector<SymbolRef> TaintedSyms = 1830 taint::getTaintedSymbols(State, SizeSVal); 1831 if (TaintedSyms.empty()) 1832 return; 1833 1834 SValBuilder &SVB = C.getSValBuilder(); 1835 QualType SizeTy = SVB.getContext().getSizeType(); 1836 QualType CmpTy = SVB.getConditionType(); 1837 // In case the symbol is tainted, we give a warning if the 1838 // size is larger than SIZE_MAX/4 1839 BasicValueFactory &BVF = SVB.getBasicValueFactory(); 1840 const llvm::APSInt MaxValInt = BVF.getMaxValue(SizeTy); 1841 NonLoc MaxLength = 1842 SVB.makeIntVal(MaxValInt / APSIntType(MaxValInt).getValue(4)); 1843 std::optional<NonLoc> SizeNL = SizeSVal.getAs<NonLoc>(); 1844 auto Cmp = SVB.evalBinOpNN(State, BO_GE, *SizeNL, MaxLength, CmpTy) 1845 .getAs<DefinedOrUnknownSVal>(); 1846 if (!Cmp) 1847 return; 1848 auto [StateTooLarge, StateNotTooLarge] = State->assume(*Cmp); 1849 if (!StateTooLarge && StateNotTooLarge) { 1850 // We can prove that size is not too large so there is no issue. 1851 return; 1852 } 1853 1854 std::string Callee = "Memory allocation function"; 1855 if (Call.getCalleeIdentifier()) 1856 Callee = Call.getCalleeIdentifier()->getName().str(); 1857 reportTaintBug( 1858 Callee + " is called with a tainted (potentially attacker controlled) " 1859 "value. Make sure the value is bound checked.", 1860 State, C, TaintedSyms, Family); 1861 } 1862 1863 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1864 const CallEvent &Call, SVal Size, 1865 SVal Init, ProgramStateRef State, 1866 AllocationFamily Family) const { 1867 if (!State) 1868 return nullptr; 1869 1870 const Expr *CE = Call.getOriginExpr(); 1871 1872 // We expect the malloc functions to return a pointer. 1873 if (!Loc::isLocType(CE->getType())) 1874 return nullptr; 1875 1876 // Bind the return value to the symbolic value from the heap region. 1877 // TODO: move use of this functions to an EvalCall callback, becasue 1878 // BindExpr() should'nt be used elsewhere. 1879 unsigned Count = C.blockCount(); 1880 SValBuilder &SVB = C.getSValBuilder(); 1881 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1882 DefinedSVal RetVal = 1883 ((Family == AF_Alloca) ? SVB.getAllocaRegionVal(CE, LCtx, Count) 1884 : SVB.getConjuredHeapSymbolVal(CE, LCtx, Count) 1885 .castAs<DefinedSVal>()); 1886 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1887 1888 // Fill the region with the initialization value. 1889 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1890 1891 // If Size is somehow undefined at this point, this line prevents a crash. 1892 if (Size.isUndef()) 1893 Size = UnknownVal(); 1894 1895 checkTaintedness(C, Call, Size, State, AF_Malloc); 1896 1897 // Set the region's extent. 1898 State = setDynamicExtent(State, RetVal.getAsRegion(), 1899 Size.castAs<DefinedOrUnknownSVal>(), SVB); 1900 1901 return MallocUpdateRefState(C, CE, State, Family); 1902 } 1903 1904 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1905 ProgramStateRef State, 1906 AllocationFamily Family, 1907 std::optional<SVal> RetVal) { 1908 if (!State) 1909 return nullptr; 1910 1911 // Get the return value. 1912 if (!RetVal) 1913 RetVal = C.getSVal(E); 1914 1915 // We expect the malloc functions to return a pointer. 1916 if (!RetVal->getAs<Loc>()) 1917 return nullptr; 1918 1919 SymbolRef Sym = RetVal->getAsLocSymbol(); 1920 1921 // This is a return value of a function that was not inlined, such as malloc() 1922 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1923 assert(Sym); 1924 // FIXME: In theory this assertion should fail for `alloca()` calls (because 1925 // `AllocaRegion`s are not symbolic); but in practice this does not happen. 1926 // As the current code appears to work correctly, I'm not touching this issue 1927 // now, but it would be good to investigate and clarify this. 1928 // Also note that perhaps the special `AllocaRegion` should be replaced by 1929 // `SymbolicRegion` (or turned into a subclass of `SymbolicRegion`) to enable 1930 // proper tracking of memory allocated by `alloca()` -- and after that change 1931 // this assertion would become valid again. 1932 1933 // Set the symbol's state to Allocated. 1934 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1935 } 1936 1937 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1938 const CallEvent &Call, 1939 const OwnershipAttr *Att, 1940 ProgramStateRef State) const { 1941 if (!State) 1942 return nullptr; 1943 1944 if (Att->getModule()->getName() != "malloc") 1945 return nullptr; 1946 1947 bool IsKnownToBeAllocated = false; 1948 1949 for (const auto &Arg : Att->args()) { 1950 ProgramStateRef StateI = 1951 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1952 Att->getOwnKind() == OwnershipAttr::Holds, 1953 IsKnownToBeAllocated, AF_Malloc); 1954 if (StateI) 1955 State = StateI; 1956 } 1957 return State; 1958 } 1959 1960 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1961 const CallEvent &Call, 1962 ProgramStateRef State, unsigned Num, 1963 bool Hold, bool &IsKnownToBeAllocated, 1964 AllocationFamily Family, 1965 bool ReturnsNullOnFailure) const { 1966 if (!State) 1967 return nullptr; 1968 1969 if (Call.getNumArgs() < (Num + 1)) 1970 return nullptr; 1971 1972 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1973 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1974 } 1975 1976 /// Checks if the previous call to free on the given symbol failed - if free 1977 /// failed, returns true. Also, returns the corresponding return value symbol. 1978 static bool didPreviousFreeFail(ProgramStateRef State, 1979 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1980 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1981 if (Ret) { 1982 assert(*Ret && "We should not store the null return symbol"); 1983 ConstraintManager &CMgr = State->getConstraintManager(); 1984 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1985 RetStatusSymbol = *Ret; 1986 return FreeFailed.isConstrainedTrue(); 1987 } 1988 return false; 1989 } 1990 1991 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1992 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1993 // FIXME: This doesn't handle indirect calls. 1994 const FunctionDecl *FD = CE->getDirectCallee(); 1995 if (!FD) 1996 return false; 1997 1998 os << *FD; 1999 if (!FD->isOverloadedOperator()) 2000 os << "()"; 2001 return true; 2002 } 2003 2004 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 2005 if (Msg->isInstanceMessage()) 2006 os << "-"; 2007 else 2008 os << "+"; 2009 Msg->getSelector().print(os); 2010 return true; 2011 } 2012 2013 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 2014 os << "'" 2015 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 2016 << "'"; 2017 return true; 2018 } 2019 2020 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 2021 os << "'" 2022 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 2023 << "'"; 2024 return true; 2025 } 2026 2027 return false; 2028 } 2029 2030 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 2031 2032 switch(Family) { 2033 case AF_Malloc: os << "malloc()"; return; 2034 case AF_CXXNew: os << "'new'"; return; 2035 case AF_CXXNewArray: os << "'new[]'"; return; 2036 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 2037 case AF_InnerBuffer: os << "container-specific allocator"; return; 2038 case AF_Alloca: 2039 case AF_None: llvm_unreachable("not a deallocation expression"); 2040 } 2041 } 2042 2043 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 2044 switch(Family) { 2045 case AF_Malloc: os << "free()"; return; 2046 case AF_CXXNew: os << "'delete'"; return; 2047 case AF_CXXNewArray: os << "'delete[]'"; return; 2048 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 2049 case AF_InnerBuffer: os << "container-specific deallocator"; return; 2050 case AF_Alloca: 2051 case AF_None: llvm_unreachable("suspicious argument"); 2052 } 2053 } 2054 2055 ProgramStateRef 2056 MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 2057 const CallEvent &Call, ProgramStateRef State, 2058 bool Hold, bool &IsKnownToBeAllocated, 2059 AllocationFamily Family, bool ReturnsNullOnFailure, 2060 std::optional<SVal> ArgValOpt) const { 2061 2062 if (!State) 2063 return nullptr; 2064 2065 SVal ArgVal = ArgValOpt.value_or(C.getSVal(ArgExpr)); 2066 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 2067 return nullptr; 2068 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 2069 2070 // Check for null dereferences. 2071 if (!isa<Loc>(location)) 2072 return nullptr; 2073 2074 // The explicit NULL case, no operation is performed. 2075 ProgramStateRef notNullState, nullState; 2076 std::tie(notNullState, nullState) = State->assume(location); 2077 if (nullState && !notNullState) 2078 return nullptr; 2079 2080 // Unknown values could easily be okay 2081 // Undefined values are handled elsewhere 2082 if (ArgVal.isUnknownOrUndef()) 2083 return nullptr; 2084 2085 const MemRegion *R = ArgVal.getAsRegion(); 2086 const Expr *ParentExpr = Call.getOriginExpr(); 2087 2088 // NOTE: We detected a bug, but the checker under whose name we would emit the 2089 // error could be disabled. Generally speaking, the MallocChecker family is an 2090 // integral part of the Static Analyzer, and disabling any part of it should 2091 // only be done under exceptional circumstances, such as frequent false 2092 // positives. If this is the case, we can reasonably believe that there are 2093 // serious faults in our understanding of the source code, and even if we 2094 // don't emit an warning, we should terminate further analysis with a sink 2095 // node. 2096 2097 // Nonlocs can't be freed, of course. 2098 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 2099 if (!R) { 2100 // Exception: 2101 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 2102 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 2103 // zero-sized memory block which is allowed to be freed, despite not being a 2104 // null pointer. 2105 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 2106 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2107 Family); 2108 return nullptr; 2109 } 2110 2111 R = R->StripCasts(); 2112 2113 // Blocks might show up as heap data, but should not be free()d 2114 if (isa<BlockDataRegion>(R)) { 2115 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2116 Family); 2117 return nullptr; 2118 } 2119 2120 const MemSpaceRegion *MS = R->getMemorySpace(); 2121 2122 // Parameters, locals, statics, globals, and memory returned by 2123 // __builtin_alloca() shouldn't be freed. 2124 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 2125 // Regions returned by malloc() are represented by SymbolicRegion objects 2126 // within HeapSpaceRegion. Of course, free() can work on memory allocated 2127 // outside the current function, so UnknownSpaceRegion is also a 2128 // possibility here. 2129 2130 if (isa<AllocaRegion>(R)) 2131 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2132 else 2133 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2134 Family); 2135 2136 return nullptr; 2137 } 2138 2139 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 2140 // Various cases could lead to non-symbol values here. 2141 // For now, ignore them. 2142 if (!SrBase) 2143 return nullptr; 2144 2145 SymbolRef SymBase = SrBase->getSymbol(); 2146 const RefState *RsBase = State->get<RegionState>(SymBase); 2147 SymbolRef PreviousRetStatusSymbol = nullptr; 2148 2149 IsKnownToBeAllocated = 2150 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 2151 2152 if (RsBase) { 2153 2154 // Memory returned by alloca() shouldn't be freed. 2155 if (RsBase->getAllocationFamily() == AF_Alloca) { 2156 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 2157 return nullptr; 2158 } 2159 2160 // Check for double free first. 2161 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2162 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2163 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2164 SymBase, PreviousRetStatusSymbol); 2165 return nullptr; 2166 2167 // If the pointer is allocated or escaped, but we are now trying to free it, 2168 // check that the call to free is proper. 2169 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2170 RsBase->isEscaped()) { 2171 2172 // Check if an expected deallocation function matches the real one. 2173 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2174 if (!DeallocMatchesAlloc) { 2175 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2176 RsBase, SymBase, Hold); 2177 return nullptr; 2178 } 2179 2180 // Check if the memory location being freed is the actual location 2181 // allocated, or an offset. 2182 RegionOffset Offset = R->getAsOffset(); 2183 if (Offset.isValid() && 2184 !Offset.hasSymbolicOffset() && 2185 Offset.getOffset() != 0) { 2186 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2187 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2188 Family, AllocExpr); 2189 return nullptr; 2190 } 2191 } 2192 } 2193 2194 if (SymBase->getType()->isFunctionPointerType()) { 2195 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2196 Family); 2197 return nullptr; 2198 } 2199 2200 // Clean out the info on previous call to free return info. 2201 State = State->remove<FreeReturnValue>(SymBase); 2202 2203 // Keep track of the return value. If it is NULL, we will know that free 2204 // failed. 2205 if (ReturnsNullOnFailure) { 2206 SVal RetVal = C.getSVal(ParentExpr); 2207 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2208 if (RetStatusSymbol) { 2209 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2210 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2211 } 2212 } 2213 2214 // If we don't know anything about this symbol, a free on it may be totally 2215 // valid. If this is the case, lets assume that the allocation family of the 2216 // freeing function is the same as the symbols allocation family, and go with 2217 // that. 2218 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2219 2220 // Normal free. 2221 if (Hold) 2222 return State->set<RegionState>(SymBase, 2223 RefState::getRelinquished(Family, 2224 ParentExpr)); 2225 2226 return State->set<RegionState>(SymBase, 2227 RefState::getReleased(Family, ParentExpr)); 2228 } 2229 2230 std::optional<MallocChecker::CheckKind> 2231 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2232 bool IsALeakCheck) const { 2233 switch (Family) { 2234 case AF_Malloc: 2235 case AF_Alloca: 2236 case AF_IfNameIndex: { 2237 if (ChecksEnabled[CK_MallocChecker]) 2238 return CK_MallocChecker; 2239 return std::nullopt; 2240 } 2241 case AF_CXXNew: 2242 case AF_CXXNewArray: { 2243 if (IsALeakCheck) { 2244 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2245 return CK_NewDeleteLeaksChecker; 2246 } 2247 else { 2248 if (ChecksEnabled[CK_NewDeleteChecker]) 2249 return CK_NewDeleteChecker; 2250 } 2251 return std::nullopt; 2252 } 2253 case AF_InnerBuffer: { 2254 if (ChecksEnabled[CK_InnerPointerChecker]) 2255 return CK_InnerPointerChecker; 2256 return std::nullopt; 2257 } 2258 case AF_None: { 2259 llvm_unreachable("no family"); 2260 } 2261 } 2262 llvm_unreachable("unhandled family"); 2263 } 2264 2265 std::optional<MallocChecker::CheckKind> 2266 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2267 bool IsALeakCheck) const { 2268 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2269 return CK_MallocChecker; 2270 2271 const RefState *RS = C.getState()->get<RegionState>(Sym); 2272 assert(RS); 2273 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2274 } 2275 2276 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2277 if (std::optional<nonloc::ConcreteInt> IntVal = 2278 V.getAs<nonloc::ConcreteInt>()) 2279 os << "an integer (" << IntVal->getValue() << ")"; 2280 else if (std::optional<loc::ConcreteInt> ConstAddr = 2281 V.getAs<loc::ConcreteInt>()) 2282 os << "a constant address (" << ConstAddr->getValue() << ")"; 2283 else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2284 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2285 else 2286 return false; 2287 2288 return true; 2289 } 2290 2291 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2292 const MemRegion *MR) { 2293 switch (MR->getKind()) { 2294 case MemRegion::FunctionCodeRegionKind: { 2295 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2296 if (FD) 2297 os << "the address of the function '" << *FD << '\''; 2298 else 2299 os << "the address of a function"; 2300 return true; 2301 } 2302 case MemRegion::BlockCodeRegionKind: 2303 os << "block text"; 2304 return true; 2305 case MemRegion::BlockDataRegionKind: 2306 // FIXME: where the block came from? 2307 os << "a block"; 2308 return true; 2309 default: { 2310 const MemSpaceRegion *MS = MR->getMemorySpace(); 2311 2312 if (isa<StackLocalsSpaceRegion>(MS)) { 2313 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2314 const VarDecl *VD; 2315 if (VR) 2316 VD = VR->getDecl(); 2317 else 2318 VD = nullptr; 2319 2320 if (VD) 2321 os << "the address of the local variable '" << VD->getName() << "'"; 2322 else 2323 os << "the address of a local stack variable"; 2324 return true; 2325 } 2326 2327 if (isa<StackArgumentsSpaceRegion>(MS)) { 2328 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2329 const VarDecl *VD; 2330 if (VR) 2331 VD = VR->getDecl(); 2332 else 2333 VD = nullptr; 2334 2335 if (VD) 2336 os << "the address of the parameter '" << VD->getName() << "'"; 2337 else 2338 os << "the address of a parameter"; 2339 return true; 2340 } 2341 2342 if (isa<GlobalsSpaceRegion>(MS)) { 2343 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2344 const VarDecl *VD; 2345 if (VR) 2346 VD = VR->getDecl(); 2347 else 2348 VD = nullptr; 2349 2350 if (VD) { 2351 if (VD->isStaticLocal()) 2352 os << "the address of the static variable '" << VD->getName() << "'"; 2353 else 2354 os << "the address of the global variable '" << VD->getName() << "'"; 2355 } else 2356 os << "the address of a global variable"; 2357 return true; 2358 } 2359 2360 return false; 2361 } 2362 } 2363 } 2364 2365 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2366 SourceRange Range, 2367 const Expr *DeallocExpr, 2368 AllocationFamily Family) const { 2369 2370 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2371 C.addSink(); 2372 return; 2373 } 2374 2375 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2376 if (!CheckKind) 2377 return; 2378 2379 if (ExplodedNode *N = C.generateErrorNode()) { 2380 if (!BT_BadFree[*CheckKind]) 2381 BT_BadFree[*CheckKind].reset(new BugType( 2382 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2383 2384 SmallString<100> buf; 2385 llvm::raw_svector_ostream os(buf); 2386 2387 const MemRegion *MR = ArgVal.getAsRegion(); 2388 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2389 MR = ER->getSuperRegion(); 2390 2391 os << "Argument to "; 2392 if (!printMemFnName(os, C, DeallocExpr)) 2393 os << "deallocator"; 2394 2395 os << " is "; 2396 bool Summarized = MR ? SummarizeRegion(os, MR) 2397 : SummarizeValue(os, ArgVal); 2398 if (Summarized) 2399 os << ", which is not memory allocated by "; 2400 else 2401 os << "not memory allocated by "; 2402 2403 printExpectedAllocName(os, Family); 2404 2405 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2406 os.str(), N); 2407 R->markInteresting(MR); 2408 R->addRange(Range); 2409 C.emitReport(std::move(R)); 2410 } 2411 } 2412 2413 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2414 SourceRange Range) const { 2415 2416 std::optional<MallocChecker::CheckKind> CheckKind; 2417 2418 if (ChecksEnabled[CK_MallocChecker]) 2419 CheckKind = CK_MallocChecker; 2420 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2421 CheckKind = CK_MismatchedDeallocatorChecker; 2422 else { 2423 C.addSink(); 2424 return; 2425 } 2426 2427 if (ExplodedNode *N = C.generateErrorNode()) { 2428 if (!BT_FreeAlloca[*CheckKind]) 2429 BT_FreeAlloca[*CheckKind].reset(new BugType( 2430 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2431 2432 auto R = std::make_unique<PathSensitiveBugReport>( 2433 *BT_FreeAlloca[*CheckKind], 2434 "Memory allocated by alloca() should not be deallocated", N); 2435 R->markInteresting(ArgVal.getAsRegion()); 2436 R->addRange(Range); 2437 C.emitReport(std::move(R)); 2438 } 2439 } 2440 2441 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2442 SourceRange Range, 2443 const Expr *DeallocExpr, 2444 const RefState *RS, SymbolRef Sym, 2445 bool OwnershipTransferred) const { 2446 2447 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2448 C.addSink(); 2449 return; 2450 } 2451 2452 if (ExplodedNode *N = C.generateErrorNode()) { 2453 if (!BT_MismatchedDealloc) 2454 BT_MismatchedDealloc.reset( 2455 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2456 "Bad deallocator", categories::MemoryError)); 2457 2458 SmallString<100> buf; 2459 llvm::raw_svector_ostream os(buf); 2460 2461 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2462 SmallString<20> AllocBuf; 2463 llvm::raw_svector_ostream AllocOs(AllocBuf); 2464 SmallString<20> DeallocBuf; 2465 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2466 2467 if (OwnershipTransferred) { 2468 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2469 os << DeallocOs.str() << " cannot"; 2470 else 2471 os << "Cannot"; 2472 2473 os << " take ownership of memory"; 2474 2475 if (printMemFnName(AllocOs, C, AllocExpr)) 2476 os << " allocated by " << AllocOs.str(); 2477 } else { 2478 os << "Memory"; 2479 if (printMemFnName(AllocOs, C, AllocExpr)) 2480 os << " allocated by " << AllocOs.str(); 2481 2482 os << " should be deallocated by "; 2483 printExpectedDeallocName(os, RS->getAllocationFamily()); 2484 2485 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2486 os << ", not " << DeallocOs.str(); 2487 } 2488 2489 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2490 os.str(), N); 2491 R->markInteresting(Sym); 2492 R->addRange(Range); 2493 R->addVisitor<MallocBugVisitor>(Sym); 2494 C.emitReport(std::move(R)); 2495 } 2496 } 2497 2498 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2499 SourceRange Range, const Expr *DeallocExpr, 2500 AllocationFamily Family, 2501 const Expr *AllocExpr) const { 2502 2503 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2504 C.addSink(); 2505 return; 2506 } 2507 2508 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2509 if (!CheckKind) 2510 return; 2511 2512 ExplodedNode *N = C.generateErrorNode(); 2513 if (!N) 2514 return; 2515 2516 if (!BT_OffsetFree[*CheckKind]) 2517 BT_OffsetFree[*CheckKind].reset(new BugType( 2518 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2519 2520 SmallString<100> buf; 2521 llvm::raw_svector_ostream os(buf); 2522 SmallString<20> AllocNameBuf; 2523 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2524 2525 const MemRegion *MR = ArgVal.getAsRegion(); 2526 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2527 2528 RegionOffset Offset = MR->getAsOffset(); 2529 assert((Offset.isValid() && 2530 !Offset.hasSymbolicOffset() && 2531 Offset.getOffset() != 0) && 2532 "Only symbols with a valid offset can have offset free errors"); 2533 2534 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2535 2536 os << "Argument to "; 2537 if (!printMemFnName(os, C, DeallocExpr)) 2538 os << "deallocator"; 2539 os << " is offset by " 2540 << offsetBytes 2541 << " " 2542 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2543 << " from the start of "; 2544 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2545 os << "memory allocated by " << AllocNameOs.str(); 2546 else 2547 os << "allocated memory"; 2548 2549 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2550 os.str(), N); 2551 R->markInteresting(MR->getBaseRegion()); 2552 R->addRange(Range); 2553 C.emitReport(std::move(R)); 2554 } 2555 2556 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2557 SymbolRef Sym) const { 2558 2559 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2560 !ChecksEnabled[CK_InnerPointerChecker]) { 2561 C.addSink(); 2562 return; 2563 } 2564 2565 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2566 if (!CheckKind) 2567 return; 2568 2569 if (ExplodedNode *N = C.generateErrorNode()) { 2570 if (!BT_UseFree[*CheckKind]) 2571 BT_UseFree[*CheckKind].reset(new BugType( 2572 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2573 2574 AllocationFamily AF = 2575 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2576 2577 auto R = std::make_unique<PathSensitiveBugReport>( 2578 *BT_UseFree[*CheckKind], 2579 AF == AF_InnerBuffer 2580 ? "Inner pointer of container used after re/deallocation" 2581 : "Use of memory after it is freed", 2582 N); 2583 2584 R->markInteresting(Sym); 2585 R->addRange(Range); 2586 R->addVisitor<MallocBugVisitor>(Sym); 2587 2588 if (AF == AF_InnerBuffer) 2589 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2590 2591 C.emitReport(std::move(R)); 2592 } 2593 } 2594 2595 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2596 bool Released, SymbolRef Sym, 2597 SymbolRef PrevSym) const { 2598 2599 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2600 C.addSink(); 2601 return; 2602 } 2603 2604 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2605 if (!CheckKind) 2606 return; 2607 2608 if (ExplodedNode *N = C.generateErrorNode()) { 2609 if (!BT_DoubleFree[*CheckKind]) 2610 BT_DoubleFree[*CheckKind].reset(new BugType( 2611 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2612 2613 auto R = std::make_unique<PathSensitiveBugReport>( 2614 *BT_DoubleFree[*CheckKind], 2615 (Released ? "Attempt to free released memory" 2616 : "Attempt to free non-owned memory"), 2617 N); 2618 R->addRange(Range); 2619 R->markInteresting(Sym); 2620 if (PrevSym) 2621 R->markInteresting(PrevSym); 2622 R->addVisitor<MallocBugVisitor>(Sym); 2623 C.emitReport(std::move(R)); 2624 } 2625 } 2626 2627 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2628 2629 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2630 C.addSink(); 2631 return; 2632 } 2633 2634 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2635 if (!CheckKind) 2636 return; 2637 2638 if (ExplodedNode *N = C.generateErrorNode()) { 2639 if (!BT_DoubleDelete) 2640 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2641 "Double delete", 2642 categories::MemoryError)); 2643 2644 auto R = std::make_unique<PathSensitiveBugReport>( 2645 *BT_DoubleDelete, "Attempt to delete released memory", N); 2646 2647 R->markInteresting(Sym); 2648 R->addVisitor<MallocBugVisitor>(Sym); 2649 C.emitReport(std::move(R)); 2650 } 2651 } 2652 2653 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2654 SymbolRef Sym) const { 2655 2656 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2657 C.addSink(); 2658 return; 2659 } 2660 2661 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2662 2663 if (!CheckKind) 2664 return; 2665 2666 if (ExplodedNode *N = C.generateErrorNode()) { 2667 if (!BT_UseZerroAllocated[*CheckKind]) 2668 BT_UseZerroAllocated[*CheckKind].reset( 2669 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2670 categories::MemoryError)); 2671 2672 auto R = std::make_unique<PathSensitiveBugReport>( 2673 *BT_UseZerroAllocated[*CheckKind], 2674 "Use of memory allocated with size zero", N); 2675 2676 R->addRange(Range); 2677 if (Sym) { 2678 R->markInteresting(Sym); 2679 R->addVisitor<MallocBugVisitor>(Sym); 2680 } 2681 C.emitReport(std::move(R)); 2682 } 2683 } 2684 2685 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2686 SourceRange Range, 2687 const Expr *FreeExpr, 2688 AllocationFamily Family) const { 2689 if (!ChecksEnabled[CK_MallocChecker]) { 2690 C.addSink(); 2691 return; 2692 } 2693 2694 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2695 if (!CheckKind) 2696 return; 2697 2698 if (ExplodedNode *N = C.generateErrorNode()) { 2699 if (!BT_BadFree[*CheckKind]) 2700 BT_BadFree[*CheckKind].reset(new BugType( 2701 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2702 2703 SmallString<100> Buf; 2704 llvm::raw_svector_ostream Os(Buf); 2705 2706 const MemRegion *MR = ArgVal.getAsRegion(); 2707 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2708 MR = ER->getSuperRegion(); 2709 2710 Os << "Argument to "; 2711 if (!printMemFnName(Os, C, FreeExpr)) 2712 Os << "deallocator"; 2713 2714 Os << " is a function pointer"; 2715 2716 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2717 Os.str(), N); 2718 R->markInteresting(MR); 2719 R->addRange(Range); 2720 C.emitReport(std::move(R)); 2721 } 2722 } 2723 2724 ProgramStateRef 2725 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2726 bool ShouldFreeOnFail, ProgramStateRef State, 2727 AllocationFamily Family, bool SuffixWithN) const { 2728 if (!State) 2729 return nullptr; 2730 2731 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2732 2733 if (SuffixWithN && CE->getNumArgs() < 3) 2734 return nullptr; 2735 else if (CE->getNumArgs() < 2) 2736 return nullptr; 2737 2738 const Expr *arg0Expr = CE->getArg(0); 2739 SVal Arg0Val = C.getSVal(arg0Expr); 2740 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2741 return nullptr; 2742 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2743 2744 SValBuilder &svalBuilder = C.getSValBuilder(); 2745 2746 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2747 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2748 2749 // Get the size argument. 2750 const Expr *Arg1 = CE->getArg(1); 2751 2752 // Get the value of the size argument. 2753 SVal TotalSize = C.getSVal(Arg1); 2754 if (SuffixWithN) 2755 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2756 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2757 return nullptr; 2758 2759 // Compare the size argument to 0. 2760 DefinedOrUnknownSVal SizeZero = 2761 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2762 svalBuilder.makeIntValWithWidth( 2763 svalBuilder.getContext().getSizeType(), 0)); 2764 2765 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2766 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2767 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2768 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2769 // We only assume exceptional states if they are definitely true; if the 2770 // state is under-constrained, assume regular realloc behavior. 2771 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2772 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2773 2774 // If the ptr is NULL and the size is not 0, the call is equivalent to 2775 // malloc(size). 2776 if (PrtIsNull && !SizeIsZero) { 2777 ProgramStateRef stateMalloc = MallocMemAux( 2778 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2779 return stateMalloc; 2780 } 2781 2782 if (PrtIsNull && SizeIsZero) 2783 return State; 2784 2785 assert(!PrtIsNull); 2786 2787 bool IsKnownToBeAllocated = false; 2788 2789 // If the size is 0, free the memory. 2790 if (SizeIsZero) 2791 // The semantics of the return value are: 2792 // If size was equal to 0, either NULL or a pointer suitable to be passed 2793 // to free() is returned. We just free the input pointer and do not add 2794 // any constrains on the output pointer. 2795 if (ProgramStateRef stateFree = FreeMemAux( 2796 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2797 return stateFree; 2798 2799 // Default behavior. 2800 if (ProgramStateRef stateFree = 2801 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2802 2803 ProgramStateRef stateRealloc = 2804 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2805 if (!stateRealloc) 2806 return nullptr; 2807 2808 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2809 if (ShouldFreeOnFail) 2810 Kind = OAR_FreeOnFailure; 2811 else if (!IsKnownToBeAllocated) 2812 Kind = OAR_DoNotTrackAfterFailure; 2813 2814 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2815 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2816 SVal RetVal = C.getSVal(CE); 2817 SymbolRef ToPtr = RetVal.getAsSymbol(); 2818 assert(FromPtr && ToPtr && 2819 "By this point, FreeMemAux and MallocMemAux should have checked " 2820 "whether the argument or the return value is symbolic!"); 2821 2822 // Record the info about the reallocated symbol so that we could properly 2823 // process failed reallocation. 2824 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2825 ReallocPair(FromPtr, Kind)); 2826 // The reallocated symbol should stay alive for as long as the new symbol. 2827 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2828 return stateRealloc; 2829 } 2830 return nullptr; 2831 } 2832 2833 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2834 const CallEvent &Call, 2835 ProgramStateRef State) const { 2836 if (!State) 2837 return nullptr; 2838 2839 if (Call.getNumArgs() < 2) 2840 return nullptr; 2841 2842 SValBuilder &svalBuilder = C.getSValBuilder(); 2843 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2844 SVal TotalSize = 2845 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2846 2847 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2848 } 2849 2850 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2851 SymbolRef Sym, 2852 CheckerContext &C) { 2853 const LocationContext *LeakContext = N->getLocationContext(); 2854 // Walk the ExplodedGraph backwards and find the first node that referred to 2855 // the tracked symbol. 2856 const ExplodedNode *AllocNode = N; 2857 const MemRegion *ReferenceRegion = nullptr; 2858 2859 while (N) { 2860 ProgramStateRef State = N->getState(); 2861 if (!State->get<RegionState>(Sym)) 2862 break; 2863 2864 // Find the most recent expression bound to the symbol in the current 2865 // context. 2866 if (!ReferenceRegion) { 2867 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2868 SVal Val = State->getSVal(MR); 2869 if (Val.getAsLocSymbol() == Sym) { 2870 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2871 // Do not show local variables belonging to a function other than 2872 // where the error is reported. 2873 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2874 ReferenceRegion = MR; 2875 } 2876 } 2877 } 2878 2879 // Allocation node, is the last node in the current or parent context in 2880 // which the symbol was tracked. 2881 const LocationContext *NContext = N->getLocationContext(); 2882 if (NContext == LeakContext || 2883 NContext->isParentOf(LeakContext)) 2884 AllocNode = N; 2885 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2886 } 2887 2888 return LeakInfo(AllocNode, ReferenceRegion); 2889 } 2890 2891 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2892 CheckerContext &C) const { 2893 2894 if (!ChecksEnabled[CK_MallocChecker] && 2895 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2896 return; 2897 2898 const RefState *RS = C.getState()->get<RegionState>(Sym); 2899 assert(RS && "cannot leak an untracked symbol"); 2900 AllocationFamily Family = RS->getAllocationFamily(); 2901 2902 if (Family == AF_Alloca) 2903 return; 2904 2905 std::optional<MallocChecker::CheckKind> CheckKind = 2906 getCheckIfTracked(Family, true); 2907 2908 if (!CheckKind) 2909 return; 2910 2911 assert(N); 2912 if (!BT_Leak[*CheckKind]) { 2913 // Leaks should not be reported if they are post-dominated by a sink: 2914 // (1) Sinks are higher importance bugs. 2915 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2916 // with __noreturn functions such as assert() or exit(). We choose not 2917 // to report leaks on such paths. 2918 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2919 categories::MemoryError, 2920 /*SuppressOnSink=*/true)); 2921 } 2922 2923 // Most bug reports are cached at the location where they occurred. 2924 // With leaks, we want to unique them by the location where they were 2925 // allocated, and only report a single path. 2926 PathDiagnosticLocation LocUsedForUniqueing; 2927 const ExplodedNode *AllocNode = nullptr; 2928 const MemRegion *Region = nullptr; 2929 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2930 2931 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2932 if (AllocationStmt) 2933 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2934 C.getSourceManager(), 2935 AllocNode->getLocationContext()); 2936 2937 SmallString<200> buf; 2938 llvm::raw_svector_ostream os(buf); 2939 if (Region && Region->canPrintPretty()) { 2940 os << "Potential leak of memory pointed to by "; 2941 Region->printPretty(os); 2942 } else { 2943 os << "Potential memory leak"; 2944 } 2945 2946 auto R = std::make_unique<PathSensitiveBugReport>( 2947 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2948 AllocNode->getLocationContext()->getDecl()); 2949 R->markInteresting(Sym); 2950 R->addVisitor<MallocBugVisitor>(Sym, true); 2951 if (ShouldRegisterNoOwnershipChangeVisitor) 2952 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2953 C.emitReport(std::move(R)); 2954 } 2955 2956 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2957 CheckerContext &C) const 2958 { 2959 ProgramStateRef state = C.getState(); 2960 RegionStateTy OldRS = state->get<RegionState>(); 2961 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2962 2963 RegionStateTy RS = OldRS; 2964 SmallVector<SymbolRef, 2> Errors; 2965 for (auto [Sym, State] : RS) { 2966 if (SymReaper.isDead(Sym)) { 2967 if (State.isAllocated() || State.isAllocatedOfSizeZero()) 2968 Errors.push_back(Sym); 2969 // Remove the dead symbol from the map. 2970 RS = F.remove(RS, Sym); 2971 } 2972 } 2973 2974 if (RS == OldRS) { 2975 // We shouldn't have touched other maps yet. 2976 assert(state->get<ReallocPairs>() == 2977 C.getState()->get<ReallocPairs>()); 2978 assert(state->get<FreeReturnValue>() == 2979 C.getState()->get<FreeReturnValue>()); 2980 return; 2981 } 2982 2983 // Cleanup the Realloc Pairs Map. 2984 ReallocPairsTy RP = state->get<ReallocPairs>(); 2985 for (auto [Sym, ReallocPair] : RP) { 2986 if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) { 2987 state = state->remove<ReallocPairs>(Sym); 2988 } 2989 } 2990 2991 // Cleanup the FreeReturnValue Map. 2992 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2993 for (auto [Sym, RetSym] : FR) { 2994 if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) { 2995 state = state->remove<FreeReturnValue>(Sym); 2996 } 2997 } 2998 2999 // Generate leak node. 3000 ExplodedNode *N = C.getPredecessor(); 3001 if (!Errors.empty()) { 3002 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 3003 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 3004 if (N) { 3005 for (SymbolRef Sym : Errors) { 3006 HandleLeak(Sym, N, C); 3007 } 3008 } 3009 } 3010 3011 C.addTransition(state->set<RegionState>(RS), N); 3012 } 3013 3014 void MallocChecker::checkPreCall(const CallEvent &Call, 3015 CheckerContext &C) const { 3016 3017 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 3018 const CXXDeleteExpr *DE = DC->getOriginExpr(); 3019 3020 if (!ChecksEnabled[CK_NewDeleteChecker]) 3021 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 3022 checkUseAfterFree(Sym, C, DE->getArgument()); 3023 3024 if (!isStandardNewDelete(DC->getDecl())) 3025 return; 3026 3027 ProgramStateRef State = C.getState(); 3028 bool IsKnownToBeAllocated; 3029 State = FreeMemAux(C, DE->getArgument(), Call, State, 3030 /*Hold*/ false, IsKnownToBeAllocated, 3031 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 3032 3033 C.addTransition(State); 3034 return; 3035 } 3036 3037 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 3038 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 3039 if (!Sym || checkDoubleDelete(Sym, C)) 3040 return; 3041 } 3042 3043 // We need to handle getline pre-conditions here before the pointed region 3044 // gets invalidated by StreamChecker 3045 if (const auto *PreFN = PreFnMap.lookup(Call)) { 3046 (*PreFN)(this, Call, C); 3047 return; 3048 } 3049 3050 // We will check for double free in the post visit. 3051 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 3052 const FunctionDecl *FD = FC->getDecl(); 3053 if (!FD) 3054 return; 3055 3056 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 3057 return; 3058 } 3059 3060 // Check if the callee of a method is deleted. 3061 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 3062 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 3063 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 3064 return; 3065 } 3066 3067 // Check arguments for being used after free. 3068 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 3069 SVal ArgSVal = Call.getArgSVal(I); 3070 if (isa<Loc>(ArgSVal)) { 3071 SymbolRef Sym = ArgSVal.getAsSymbol(); 3072 if (!Sym) 3073 continue; 3074 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 3075 return; 3076 } 3077 } 3078 } 3079 3080 void MallocChecker::checkPreStmt(const ReturnStmt *S, 3081 CheckerContext &C) const { 3082 checkEscapeOnReturn(S, C); 3083 } 3084 3085 // In the CFG, automatic destructors come after the return statement. 3086 // This callback checks for returning memory that is freed by automatic 3087 // destructors, as those cannot be reached in checkPreStmt(). 3088 void MallocChecker::checkEndFunction(const ReturnStmt *S, 3089 CheckerContext &C) const { 3090 checkEscapeOnReturn(S, C); 3091 } 3092 3093 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 3094 CheckerContext &C) const { 3095 if (!S) 3096 return; 3097 3098 const Expr *E = S->getRetValue(); 3099 if (!E) 3100 return; 3101 3102 // Check if we are returning a symbol. 3103 ProgramStateRef State = C.getState(); 3104 SVal RetVal = C.getSVal(E); 3105 SymbolRef Sym = RetVal.getAsSymbol(); 3106 if (!Sym) 3107 // If we are returning a field of the allocated struct or an array element, 3108 // the callee could still free the memory. 3109 // TODO: This logic should be a part of generic symbol escape callback. 3110 if (const MemRegion *MR = RetVal.getAsRegion()) 3111 if (isa<FieldRegion, ElementRegion>(MR)) 3112 if (const SymbolicRegion *BMR = 3113 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 3114 Sym = BMR->getSymbol(); 3115 3116 // Check if we are returning freed memory. 3117 if (Sym) 3118 checkUseAfterFree(Sym, C, E); 3119 } 3120 3121 // TODO: Blocks should be either inlined or should call invalidate regions 3122 // upon invocation. After that's in place, special casing here will not be 3123 // needed. 3124 void MallocChecker::checkPostStmt(const BlockExpr *BE, 3125 CheckerContext &C) const { 3126 3127 // Scan the BlockDecRefExprs for any object the retain count checker 3128 // may be tracking. 3129 if (!BE->getBlockDecl()->hasCaptures()) 3130 return; 3131 3132 ProgramStateRef state = C.getState(); 3133 const BlockDataRegion *R = 3134 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 3135 3136 auto ReferencedVars = R->referenced_vars(); 3137 if (ReferencedVars.empty()) 3138 return; 3139 3140 SmallVector<const MemRegion*, 10> Regions; 3141 const LocationContext *LC = C.getLocationContext(); 3142 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 3143 3144 for (const auto &Var : ReferencedVars) { 3145 const VarRegion *VR = Var.getCapturedRegion(); 3146 if (VR->getSuperRegion() == R) { 3147 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 3148 } 3149 Regions.push_back(VR); 3150 } 3151 3152 state = 3153 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 3154 C.addTransition(state); 3155 } 3156 3157 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 3158 assert(Sym); 3159 const RefState *RS = C.getState()->get<RegionState>(Sym); 3160 return (RS && RS->isReleased()); 3161 } 3162 3163 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 3164 const CallEvent &Call, CheckerContext &C) const { 3165 if (Call.getNumArgs() == 0) 3166 return false; 3167 3168 StringRef FunctionStr = ""; 3169 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3170 if (const Stmt *Body = FD->getBody()) 3171 if (Body->getBeginLoc().isValid()) 3172 FunctionStr = 3173 Lexer::getSourceText(CharSourceRange::getTokenRange( 3174 {FD->getBeginLoc(), Body->getBeginLoc()}), 3175 C.getSourceManager(), C.getLangOpts()); 3176 3177 // We do not model the Integer Set Library's retain-count based allocation. 3178 if (!FunctionStr.contains("__isl_")) 3179 return false; 3180 3181 ProgramStateRef State = C.getState(); 3182 3183 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3184 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3185 if (const RefState *RS = State->get<RegionState>(Sym)) 3186 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3187 3188 C.addTransition(State); 3189 return true; 3190 } 3191 3192 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3193 const Stmt *S) const { 3194 3195 if (isReleased(Sym, C)) { 3196 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3197 return true; 3198 } 3199 3200 return false; 3201 } 3202 3203 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3204 const Stmt *S) const { 3205 assert(Sym); 3206 3207 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3208 if (RS->isAllocatedOfSizeZero()) 3209 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3210 } 3211 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3212 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3213 } 3214 } 3215 3216 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3217 3218 if (isReleased(Sym, C)) { 3219 HandleDoubleDelete(C, Sym); 3220 return true; 3221 } 3222 return false; 3223 } 3224 3225 // Check if the location is a freed symbolic region. 3226 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3227 CheckerContext &C) const { 3228 SymbolRef Sym = l.getLocSymbolInBase(); 3229 if (Sym) { 3230 checkUseAfterFree(Sym, C, S); 3231 checkUseZeroAllocated(Sym, C, S); 3232 } 3233 } 3234 3235 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3236 // it - assuming that allocation failed on this path. 3237 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3238 SVal Cond, 3239 bool Assumption) const { 3240 RegionStateTy RS = state->get<RegionState>(); 3241 for (SymbolRef Sym : llvm::make_first_range(RS)) { 3242 // If the symbol is assumed to be NULL, remove it from consideration. 3243 ConstraintManager &CMgr = state->getConstraintManager(); 3244 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3245 if (AllocFailed.isConstrainedTrue()) 3246 state = state->remove<RegionState>(Sym); 3247 } 3248 3249 // Realloc returns 0 when reallocation fails, which means that we should 3250 // restore the state of the pointer being reallocated. 3251 ReallocPairsTy RP = state->get<ReallocPairs>(); 3252 for (auto [Sym, ReallocPair] : RP) { 3253 // If the symbol is assumed to be NULL, remove it from consideration. 3254 ConstraintManager &CMgr = state->getConstraintManager(); 3255 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3256 if (!AllocFailed.isConstrainedTrue()) 3257 continue; 3258 3259 SymbolRef ReallocSym = ReallocPair.ReallocatedSym; 3260 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3261 if (RS->isReleased()) { 3262 switch (ReallocPair.Kind) { 3263 case OAR_ToBeFreedAfterFailure: 3264 state = state->set<RegionState>(ReallocSym, 3265 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3266 break; 3267 case OAR_DoNotTrackAfterFailure: 3268 state = state->remove<RegionState>(ReallocSym); 3269 break; 3270 default: 3271 assert(ReallocPair.Kind == OAR_FreeOnFailure); 3272 } 3273 } 3274 } 3275 state = state->remove<ReallocPairs>(Sym); 3276 } 3277 3278 return state; 3279 } 3280 3281 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3282 const CallEvent *Call, 3283 ProgramStateRef State, 3284 SymbolRef &EscapingSymbol) const { 3285 assert(Call); 3286 EscapingSymbol = nullptr; 3287 3288 // For now, assume that any C++ or block call can free memory. 3289 // TODO: If we want to be more optimistic here, we'll need to make sure that 3290 // regions escape to C++ containers. They seem to do that even now, but for 3291 // mysterious reasons. 3292 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3293 return true; 3294 3295 // Check Objective-C messages by selector name. 3296 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3297 // If it's not a framework call, or if it takes a callback, assume it 3298 // can free memory. 3299 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3300 return true; 3301 3302 // If it's a method we know about, handle it explicitly post-call. 3303 // This should happen before the "freeWhenDone" check below. 3304 if (isKnownDeallocObjCMethodName(*Msg)) 3305 return false; 3306 3307 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3308 // about, we can't be sure that the object will use free() to deallocate the 3309 // memory, so we can't model it explicitly. The best we can do is use it to 3310 // decide whether the pointer escapes. 3311 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3312 return *FreeWhenDone; 3313 3314 // If the first selector piece ends with "NoCopy", and there is no 3315 // "freeWhenDone" parameter set to zero, we know ownership is being 3316 // transferred. Again, though, we can't be sure that the object will use 3317 // free() to deallocate the memory, so we can't model it explicitly. 3318 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3319 if (FirstSlot.ends_with("NoCopy")) 3320 return true; 3321 3322 // If the first selector starts with addPointer, insertPointer, 3323 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3324 // This is similar to C++ containers (vector); we still might want to check 3325 // that the pointers get freed by following the container itself. 3326 if (FirstSlot.starts_with("addPointer") || 3327 FirstSlot.starts_with("insertPointer") || 3328 FirstSlot.starts_with("replacePointer") || 3329 FirstSlot == "valueWithPointer") { 3330 return true; 3331 } 3332 3333 // We should escape receiver on call to 'init'. This is especially relevant 3334 // to the receiver, as the corresponding symbol is usually not referenced 3335 // after the call. 3336 if (Msg->getMethodFamily() == OMF_init) { 3337 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3338 return true; 3339 } 3340 3341 // Otherwise, assume that the method does not free memory. 3342 // Most framework methods do not free memory. 3343 return false; 3344 } 3345 3346 // At this point the only thing left to handle is straight function calls. 3347 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3348 if (!FD) 3349 return true; 3350 3351 // If it's one of the allocation functions we can reason about, we model 3352 // its behavior explicitly. 3353 if (isMemCall(*Call)) 3354 return false; 3355 3356 // If it's not a system call, assume it frees memory. 3357 if (!Call->isInSystemHeader()) 3358 return true; 3359 3360 // White list the system functions whose arguments escape. 3361 const IdentifierInfo *II = FD->getIdentifier(); 3362 if (!II) 3363 return true; 3364 StringRef FName = II->getName(); 3365 3366 // White list the 'XXXNoCopy' CoreFoundation functions. 3367 // We specifically check these before 3368 if (FName.ends_with("NoCopy")) { 3369 // Look for the deallocator argument. We know that the memory ownership 3370 // is not transferred only if the deallocator argument is 3371 // 'kCFAllocatorNull'. 3372 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3373 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3374 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3375 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3376 if (DeallocatorName == "kCFAllocatorNull") 3377 return false; 3378 } 3379 } 3380 return true; 3381 } 3382 3383 // Associating streams with malloced buffers. The pointer can escape if 3384 // 'closefn' is specified (and if that function does free memory), 3385 // but it will not if closefn is not specified. 3386 // Currently, we do not inspect the 'closefn' function (PR12101). 3387 if (FName == "funopen") 3388 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3389 return false; 3390 3391 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3392 // these leaks might be intentional when setting the buffer for stdio. 3393 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3394 if (FName == "setbuf" || FName =="setbuffer" || 3395 FName == "setlinebuf" || FName == "setvbuf") { 3396 if (Call->getNumArgs() >= 1) { 3397 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3398 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3399 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3400 if (D->getCanonicalDecl()->getName().contains("std")) 3401 return true; 3402 } 3403 } 3404 3405 // A bunch of other functions which either take ownership of a pointer or 3406 // wrap the result up in a struct or object, meaning it can be freed later. 3407 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3408 // but the Malloc checker cannot differentiate between them. The right way 3409 // of doing this would be to implement a pointer escapes callback. 3410 if (FName == "CGBitmapContextCreate" || 3411 FName == "CGBitmapContextCreateWithData" || 3412 FName == "CVPixelBufferCreateWithBytes" || 3413 FName == "CVPixelBufferCreateWithPlanarBytes" || 3414 FName == "OSAtomicEnqueue") { 3415 return true; 3416 } 3417 3418 if (FName == "postEvent" && 3419 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3420 return true; 3421 } 3422 3423 if (FName == "connectImpl" && 3424 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3425 return true; 3426 } 3427 3428 if (FName == "singleShotImpl" && 3429 FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") { 3430 return true; 3431 } 3432 3433 // Handle cases where we know a buffer's /address/ can escape. 3434 // Note that the above checks handle some special cases where we know that 3435 // even though the address escapes, it's still our responsibility to free the 3436 // buffer. 3437 if (Call->argumentsMayEscape()) 3438 return true; 3439 3440 // Otherwise, assume that the function does not free memory. 3441 // Most system calls do not free the memory. 3442 return false; 3443 } 3444 3445 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3446 const InvalidatedSymbols &Escaped, 3447 const CallEvent *Call, 3448 PointerEscapeKind Kind) const { 3449 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3450 /*IsConstPointerEscape*/ false); 3451 } 3452 3453 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3454 const InvalidatedSymbols &Escaped, 3455 const CallEvent *Call, 3456 PointerEscapeKind Kind) const { 3457 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3458 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3459 /*IsConstPointerEscape*/ true); 3460 } 3461 3462 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3463 return (RS->getAllocationFamily() == AF_CXXNewArray || 3464 RS->getAllocationFamily() == AF_CXXNew); 3465 } 3466 3467 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3468 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3469 const CallEvent *Call, PointerEscapeKind Kind, 3470 bool IsConstPointerEscape) const { 3471 // If we know that the call does not free memory, or we want to process the 3472 // call later, keep tracking the top level arguments. 3473 SymbolRef EscapingSymbol = nullptr; 3474 if (Kind == PSK_DirectEscapeOnCall && 3475 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3476 EscapingSymbol) && 3477 !EscapingSymbol) { 3478 return State; 3479 } 3480 3481 for (SymbolRef sym : Escaped) { 3482 if (EscapingSymbol && EscapingSymbol != sym) 3483 continue; 3484 3485 if (const RefState *RS = State->get<RegionState>(sym)) 3486 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3487 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3488 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3489 } 3490 return State; 3491 } 3492 3493 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3494 SVal ArgVal) const { 3495 if (!KernelZeroSizePtrValue) 3496 KernelZeroSizePtrValue = 3497 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3498 3499 const llvm::APSInt *ArgValKnown = 3500 C.getSValBuilder().getKnownValue(State, ArgVal); 3501 return ArgValKnown && *KernelZeroSizePtrValue && 3502 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3503 } 3504 3505 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3506 ProgramStateRef prevState) { 3507 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3508 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3509 3510 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3511 SymbolRef sym = Pair.first; 3512 if (!currMap.lookup(sym)) 3513 return sym; 3514 } 3515 3516 return nullptr; 3517 } 3518 3519 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3520 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3521 StringRef N = II->getName(); 3522 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3523 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3524 N.contains_insensitive("intrusive") || 3525 N.contains_insensitive("shared") || N.ends_with_insensitive("rc")) { 3526 return true; 3527 } 3528 } 3529 } 3530 return false; 3531 } 3532 3533 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3534 BugReporterContext &BRC, 3535 PathSensitiveBugReport &BR) { 3536 ProgramStateRef state = N->getState(); 3537 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3538 3539 const RefState *RSCurr = state->get<RegionState>(Sym); 3540 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3541 3542 const Stmt *S = N->getStmtForDiagnostics(); 3543 // When dealing with containers, we sometimes want to give a note 3544 // even if the statement is missing. 3545 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3546 return nullptr; 3547 3548 const LocationContext *CurrentLC = N->getLocationContext(); 3549 3550 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3551 // the pointer was released (before the release), this is likely a destructor 3552 // of a shared pointer. 3553 // Because we don't model atomics, and also because we don't know that the 3554 // original reference count is positive, we should not report use-after-frees 3555 // on objects deleted in such destructors. This can probably be improved 3556 // through better shared pointer modeling. 3557 if (ReleaseDestructorLC && (ReleaseDestructorLC == CurrentLC || 3558 ReleaseDestructorLC->isParentOf(CurrentLC))) { 3559 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3560 // Check for manual use of atomic builtins. 3561 AtomicExpr::AtomicOp Op = AE->getOp(); 3562 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3563 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3564 BR.markInvalid(getTag(), S); 3565 } 3566 } else if (const auto *CE = dyn_cast<CallExpr>(S)) { 3567 // Check for `std::atomic` and such. This covers both regular method calls 3568 // and operator calls. 3569 if (const auto *MD = 3570 dyn_cast_or_null<CXXMethodDecl>(CE->getDirectCallee())) { 3571 const CXXRecordDecl *RD = MD->getParent(); 3572 // A bit wobbly with ".contains()" because it may be like 3573 // "__atomic_base" or something. 3574 if (StringRef(RD->getNameAsString()).contains("atomic")) { 3575 BR.markInvalid(getTag(), S); 3576 } 3577 } 3578 } 3579 } 3580 3581 // FIXME: We will eventually need to handle non-statement-based events 3582 // (__attribute__((cleanup))). 3583 3584 // Find out if this is an interesting point and what is the kind. 3585 StringRef Msg; 3586 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3587 SmallString<256> Buf; 3588 llvm::raw_svector_ostream OS(Buf); 3589 3590 if (Mode == Normal) { 3591 if (isAllocated(RSCurr, RSPrev, S)) { 3592 Msg = "Memory is allocated"; 3593 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3594 Sym, "Returned allocated memory"); 3595 } else if (isReleased(RSCurr, RSPrev, S)) { 3596 const auto Family = RSCurr->getAllocationFamily(); 3597 switch (Family) { 3598 case AF_Alloca: 3599 case AF_Malloc: 3600 case AF_CXXNew: 3601 case AF_CXXNewArray: 3602 case AF_IfNameIndex: 3603 Msg = "Memory is released"; 3604 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3605 Sym, "Returning; memory was released"); 3606 break; 3607 case AF_InnerBuffer: { 3608 const MemRegion *ObjRegion = 3609 allocation_state::getContainerObjRegion(statePrev, Sym); 3610 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3611 QualType ObjTy = TypedRegion->getValueType(); 3612 OS << "Inner buffer of '" << ObjTy << "' "; 3613 3614 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3615 OS << "deallocated by call to destructor"; 3616 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3617 Sym, "Returning; inner buffer was deallocated"); 3618 } else { 3619 OS << "reallocated by call to '"; 3620 const Stmt *S = RSCurr->getStmt(); 3621 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3622 OS << MemCallE->getMethodDecl()->getDeclName(); 3623 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3624 OS << OpCallE->getDirectCallee()->getDeclName(); 3625 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3626 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3627 CallEventRef<> Call = 3628 CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0}); 3629 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3630 OS << D->getDeclName(); 3631 else 3632 OS << "unknown"; 3633 } 3634 OS << "'"; 3635 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3636 Sym, "Returning; inner buffer was reallocated"); 3637 } 3638 Msg = OS.str(); 3639 break; 3640 } 3641 case AF_None: 3642 llvm_unreachable("Unhandled allocation family!"); 3643 } 3644 3645 // See if we're releasing memory while inlining a destructor 3646 // (or one of its callees). This turns on various common 3647 // false positive suppressions. 3648 bool FoundAnyDestructor = false; 3649 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3650 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3651 if (isReferenceCountingPointerDestructor(DD)) { 3652 // This immediately looks like a reference-counting destructor. 3653 // We're bad at guessing the original reference count of the object, 3654 // so suppress the report for now. 3655 BR.markInvalid(getTag(), DD); 3656 } else if (!FoundAnyDestructor) { 3657 assert(!ReleaseDestructorLC && 3658 "There can be only one release point!"); 3659 // Suspect that it's a reference counting pointer destructor. 3660 // On one of the next nodes might find out that it has atomic 3661 // reference counting operations within it (see the code above), 3662 // and if so, we'd conclude that it likely is a reference counting 3663 // pointer destructor. 3664 ReleaseDestructorLC = LC->getStackFrame(); 3665 // It is unlikely that releasing memory is delegated to a destructor 3666 // inside a destructor of a shared pointer, because it's fairly hard 3667 // to pass the information that the pointer indeed needs to be 3668 // released into it. So we're only interested in the innermost 3669 // destructor. 3670 FoundAnyDestructor = true; 3671 } 3672 } 3673 } 3674 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3675 Msg = "Memory ownership is transferred"; 3676 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3677 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3678 Mode = ReallocationFailed; 3679 Msg = "Reallocation failed"; 3680 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3681 Sym, "Reallocation failed"); 3682 3683 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3684 // Is it possible to fail two reallocs WITHOUT testing in between? 3685 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3686 "We only support one failed realloc at a time."); 3687 BR.markInteresting(sym); 3688 FailedReallocSymbol = sym; 3689 } 3690 } 3691 3692 // We are in a special mode if a reallocation failed later in the path. 3693 } else if (Mode == ReallocationFailed) { 3694 assert(FailedReallocSymbol && "No symbol to look for."); 3695 3696 // Is this is the first appearance of the reallocated symbol? 3697 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3698 // We're at the reallocation point. 3699 Msg = "Attempt to reallocate memory"; 3700 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3701 Sym, "Returned reallocated memory"); 3702 FailedReallocSymbol = nullptr; 3703 Mode = Normal; 3704 } 3705 } 3706 3707 if (Msg.empty()) { 3708 assert(!StackHint); 3709 return nullptr; 3710 } 3711 3712 assert(StackHint); 3713 3714 // Generate the extra diagnostic. 3715 PathDiagnosticLocation Pos; 3716 if (!S) { 3717 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3718 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3719 if (!PostImplCall) 3720 return nullptr; 3721 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3722 BRC.getSourceManager()); 3723 } else { 3724 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3725 N->getLocationContext()); 3726 } 3727 3728 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3729 BR.addCallStackHint(P, std::move(StackHint)); 3730 return P; 3731 } 3732 3733 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3734 const char *NL, const char *Sep) const { 3735 3736 RegionStateTy RS = State->get<RegionState>(); 3737 3738 if (!RS.isEmpty()) { 3739 Out << Sep << "MallocChecker :" << NL; 3740 for (auto [Sym, Data] : RS) { 3741 const RefState *RefS = State->get<RegionState>(Sym); 3742 AllocationFamily Family = RefS->getAllocationFamily(); 3743 std::optional<MallocChecker::CheckKind> CheckKind = 3744 getCheckIfTracked(Family); 3745 if (!CheckKind) 3746 CheckKind = getCheckIfTracked(Family, true); 3747 3748 Sym->dumpToStream(Out); 3749 Out << " : "; 3750 Data.dump(Out); 3751 if (CheckKind) 3752 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3753 Out << NL; 3754 } 3755 } 3756 } 3757 3758 namespace clang { 3759 namespace ento { 3760 namespace allocation_state { 3761 3762 ProgramStateRef 3763 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3764 AllocationFamily Family = AF_InnerBuffer; 3765 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3766 } 3767 3768 } // end namespace allocation_state 3769 } // end namespace ento 3770 } // end namespace clang 3771 3772 // Intended to be used in InnerPointerChecker to register the part of 3773 // MallocChecker connected to it. 3774 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3775 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3776 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3777 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3778 mgr.getCurrentCheckerName(); 3779 } 3780 3781 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3782 auto *checker = mgr.registerChecker<MallocChecker>(); 3783 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3784 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3785 checker->ShouldRegisterNoOwnershipChangeVisitor = 3786 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3787 checker, "AddNoOwnershipChangeNotes"); 3788 } 3789 3790 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3791 return true; 3792 } 3793 3794 #define REGISTER_CHECKER(name) \ 3795 void ento::register##name(CheckerManager &mgr) { \ 3796 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3797 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3798 checker->CheckNames[MallocChecker::CK_##name] = \ 3799 mgr.getCurrentCheckerName(); \ 3800 } \ 3801 \ 3802 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3803 3804 REGISTER_CHECKER(MallocChecker) 3805 REGISTER_CHECKER(NewDeleteChecker) 3806 REGISTER_CHECKER(NewDeleteLeaksChecker) 3807 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3808 REGISTER_CHECKER(TaintedAllocChecker) 3809