1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 78 #include "llvm/ADT/STLExtras.h" 79 #include "llvm/ADT/SetOperations.h" 80 #include "llvm/ADT/SmallString.h" 81 #include "llvm/ADT/StringExtras.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include <climits> 87 #include <functional> 88 #include <utility> 89 90 using namespace clang; 91 using namespace ento; 92 using namespace std::placeholders; 93 94 //===----------------------------------------------------------------------===// 95 // The types of allocation we're modeling. This is used to check whether a 96 // dynamically allocated object is deallocated with the correct function, like 97 // not using operator delete on an object created by malloc(), or alloca regions 98 // aren't ever deallocated manually. 99 //===----------------------------------------------------------------------===// 100 101 namespace { 102 103 // Used to check correspondence between allocators and deallocators. 104 enum AllocationFamily { 105 AF_None, 106 AF_Malloc, 107 AF_CXXNew, 108 AF_CXXNewArray, 109 AF_IfNameIndex, 110 AF_Alloca, 111 AF_InnerBuffer 112 }; 113 114 } // end of anonymous namespace 115 116 /// Print names of allocators and deallocators. 117 /// 118 /// \returns true on success. 119 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 120 121 /// Print expected name of an allocator based on the deallocator's family 122 /// derived from the DeallocExpr. 123 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 124 125 /// Print expected name of a deallocator based on the allocator's 126 /// family. 127 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 128 129 //===----------------------------------------------------------------------===// 130 // The state of a symbol, in terms of memory management. 131 //===----------------------------------------------------------------------===// 132 133 namespace { 134 135 class RefState { 136 enum Kind { 137 // Reference to allocated memory. 138 Allocated, 139 // Reference to zero-allocated memory. 140 AllocatedOfSizeZero, 141 // Reference to released/freed memory. 142 Released, 143 // The responsibility for freeing resources has transferred from 144 // this reference. A relinquished symbol should not be freed. 145 Relinquished, 146 // We are no longer guaranteed to have observed all manipulations 147 // of this pointer/memory. For example, it could have been 148 // passed as a parameter to an opaque function. 149 Escaped 150 }; 151 152 const Stmt *S; 153 154 Kind K; 155 AllocationFamily Family; 156 157 RefState(Kind k, const Stmt *s, AllocationFamily family) 158 : S(s), K(k), Family(family) { 159 assert(family != AF_None); 160 } 161 162 public: 163 bool isAllocated() const { return K == Allocated; } 164 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 165 bool isReleased() const { return K == Released; } 166 bool isRelinquished() const { return K == Relinquished; } 167 bool isEscaped() const { return K == Escaped; } 168 AllocationFamily getAllocationFamily() const { return Family; } 169 const Stmt *getStmt() const { return S; } 170 171 bool operator==(const RefState &X) const { 172 return K == X.K && S == X.S && Family == X.Family; 173 } 174 175 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 176 return RefState(Allocated, s, family); 177 } 178 static RefState getAllocatedOfSizeZero(const RefState *RS) { 179 return RefState(AllocatedOfSizeZero, RS->getStmt(), 180 RS->getAllocationFamily()); 181 } 182 static RefState getReleased(AllocationFamily family, const Stmt *s) { 183 return RefState(Released, s, family); 184 } 185 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 186 return RefState(Relinquished, s, family); 187 } 188 static RefState getEscaped(const RefState *RS) { 189 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 190 } 191 192 void Profile(llvm::FoldingSetNodeID &ID) const { 193 ID.AddInteger(K); 194 ID.AddPointer(S); 195 ID.AddInteger(Family); 196 } 197 198 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 199 switch (K) { 200 #define CASE(ID) case ID: OS << #ID; break; 201 CASE(Allocated) 202 CASE(AllocatedOfSizeZero) 203 CASE(Released) 204 CASE(Relinquished) 205 CASE(Escaped) 206 } 207 } 208 209 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 210 }; 211 212 } // end of anonymous namespace 213 214 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 215 216 /// Check if the memory associated with this symbol was released. 217 static bool isReleased(SymbolRef Sym, CheckerContext &C); 218 219 /// Update the RefState to reflect the new memory allocation. 220 /// The optional \p RetVal parameter specifies the newly allocated pointer 221 /// value; if unspecified, the value of expression \p E is used. 222 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 223 ProgramStateRef State, 224 AllocationFamily Family, 225 Optional<SVal> RetVal = None); 226 227 //===----------------------------------------------------------------------===// 228 // The modeling of memory reallocation. 229 // 230 // The terminology 'toPtr' and 'fromPtr' will be used: 231 // toPtr = realloc(fromPtr, 20); 232 //===----------------------------------------------------------------------===// 233 234 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 235 236 namespace { 237 238 /// The state of 'fromPtr' after reallocation is known to have failed. 239 enum OwnershipAfterReallocKind { 240 // The symbol needs to be freed (e.g.: realloc) 241 OAR_ToBeFreedAfterFailure, 242 // The symbol has been freed (e.g.: reallocf) 243 OAR_FreeOnFailure, 244 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 245 // 'fromPtr' was allocated: 246 // void Haha(int *ptr) { 247 // ptr = realloc(ptr, 67); 248 // // ... 249 // } 250 // ). 251 OAR_DoNotTrackAfterFailure 252 }; 253 254 /// Stores information about the 'fromPtr' symbol after reallocation. 255 /// 256 /// This is important because realloc may fail, and that needs special modeling. 257 /// Whether reallocation failed or not will not be known until later, so we'll 258 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 259 /// later, etc. 260 struct ReallocPair { 261 262 // The 'fromPtr'. 263 SymbolRef ReallocatedSym; 264 OwnershipAfterReallocKind Kind; 265 266 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 267 : ReallocatedSym(S), Kind(K) {} 268 void Profile(llvm::FoldingSetNodeID &ID) const { 269 ID.AddInteger(Kind); 270 ID.AddPointer(ReallocatedSym); 271 } 272 bool operator==(const ReallocPair &X) const { 273 return ReallocatedSym == X.ReallocatedSym && 274 Kind == X.Kind; 275 } 276 }; 277 278 } // end of anonymous namespace 279 280 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 281 282 /// Tells if the callee is one of the builtin new/delete operators, including 283 /// placement operators and other standard overloads. 284 static bool isStandardNewDelete(const FunctionDecl *FD); 285 static bool isStandardNewDelete(const CallEvent &Call) { 286 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 287 return false; 288 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 289 } 290 291 //===----------------------------------------------------------------------===// 292 // Definition of the MallocChecker class. 293 //===----------------------------------------------------------------------===// 294 295 namespace { 296 297 class MallocChecker 298 : public Checker<check::DeadSymbols, check::PointerEscape, 299 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 300 check::EndFunction, check::PreCall, check::PostCall, 301 check::NewAllocator, check::PostStmt<BlockExpr>, 302 check::PostObjCMessage, check::Location, eval::Assume> { 303 public: 304 /// In pessimistic mode, the checker assumes that it does not know which 305 /// functions might free the memory. 306 /// In optimistic mode, the checker assumes that all user-defined functions 307 /// which might free a pointer are annotated. 308 DefaultBool ShouldIncludeOwnershipAnnotatedFunctions; 309 310 DefaultBool ShouldRegisterNoOwnershipChangeVisitor; 311 312 /// Many checkers are essentially built into this one, so enabling them will 313 /// make MallocChecker perform additional modeling and reporting. 314 enum CheckKind { 315 /// When a subchecker is enabled but MallocChecker isn't, model memory 316 /// management but do not emit warnings emitted with MallocChecker only 317 /// enabled. 318 CK_MallocChecker, 319 CK_NewDeleteChecker, 320 CK_NewDeleteLeaksChecker, 321 CK_MismatchedDeallocatorChecker, 322 CK_InnerPointerChecker, 323 CK_NumCheckKinds 324 }; 325 326 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 327 328 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 329 CheckerNameRef CheckNames[CK_NumCheckKinds]; 330 331 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 332 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 333 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 334 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 335 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 336 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 337 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 338 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 339 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 340 bool Assumption) const; 341 void checkLocation(SVal l, bool isLoad, const Stmt *S, 342 CheckerContext &C) const; 343 344 ProgramStateRef checkPointerEscape(ProgramStateRef State, 345 const InvalidatedSymbols &Escaped, 346 const CallEvent *Call, 347 PointerEscapeKind Kind) const; 348 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 349 const InvalidatedSymbols &Escaped, 350 const CallEvent *Call, 351 PointerEscapeKind Kind) const; 352 353 void printState(raw_ostream &Out, ProgramStateRef State, 354 const char *NL, const char *Sep) const override; 355 356 private: 357 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 358 mutable std::unique_ptr<BugType> BT_DoubleDelete; 359 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 360 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 361 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 364 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 365 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 366 367 #define CHECK_FN(NAME) \ 368 void NAME(const CallEvent &Call, CheckerContext &C) const; 369 370 CHECK_FN(checkFree) 371 CHECK_FN(checkIfNameIndex) 372 CHECK_FN(checkBasicAlloc) 373 CHECK_FN(checkKernelMalloc) 374 CHECK_FN(checkCalloc) 375 CHECK_FN(checkAlloca) 376 CHECK_FN(checkStrdup) 377 CHECK_FN(checkIfFreeNameIndex) 378 CHECK_FN(checkCXXNewOrCXXDelete) 379 CHECK_FN(checkGMalloc0) 380 CHECK_FN(checkGMemdup) 381 CHECK_FN(checkGMallocN) 382 CHECK_FN(checkGMallocN0) 383 CHECK_FN(checkReallocN) 384 CHECK_FN(checkOwnershipAttr) 385 386 void checkRealloc(const CallEvent &Call, CheckerContext &C, 387 bool ShouldFreeOnFail) const; 388 389 using CheckFn = std::function<void(const MallocChecker *, 390 const CallEvent &Call, CheckerContext &C)>; 391 392 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 393 {{"free", 1}, &MallocChecker::checkFree}, 394 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 395 {{"kfree", 1}, &MallocChecker::checkFree}, 396 {{"g_free", 1}, &MallocChecker::checkFree}, 397 }; 398 399 bool isFreeingCall(const CallEvent &Call) const; 400 401 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 402 {{"alloca", 1}, &MallocChecker::checkAlloca}, 403 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 404 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 405 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 406 {{"calloc", 2}, &MallocChecker::checkCalloc}, 407 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 408 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 409 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 410 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 411 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 412 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 413 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 414 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 415 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 416 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 417 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 418 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 419 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 420 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 421 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 422 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 423 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 424 }; 425 426 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 427 {{"realloc", 2}, 428 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 429 {{"reallocf", 2}, 430 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 431 {{"g_realloc", 2}, 432 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 433 {{"g_try_realloc", 2}, 434 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 435 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 436 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 437 }; 438 439 bool isMemCall(const CallEvent &Call) const; 440 441 // TODO: Remove mutable by moving the initializtaion to the registry function. 442 mutable Optional<uint64_t> KernelZeroFlagVal; 443 444 using KernelZeroSizePtrValueTy = Optional<int>; 445 /// Store the value of macro called `ZERO_SIZE_PTR`. 446 /// The value is initialized at first use, before first use the outer 447 /// Optional is empty, afterwards it contains another Optional that indicates 448 /// if the macro value could be determined, and if yes the value itself. 449 mutable Optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 450 451 /// Process C++ operator new()'s allocation, which is the part of C++ 452 /// new-expression that goes before the constructor. 453 LLVM_NODISCARD 454 ProgramStateRef processNewAllocation(const CXXAllocatorCall &Call, 455 CheckerContext &C, 456 AllocationFamily Family) const; 457 458 /// Perform a zero-allocation check. 459 /// 460 /// \param [in] Call The expression that allocates memory. 461 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 462 /// of the memory that needs to be allocated. E.g. for malloc, this would be 463 /// 0. 464 /// \param [in] RetVal Specifies the newly allocated pointer value; 465 /// if unspecified, the value of expression \p E is used. 466 LLVM_NODISCARD 467 static ProgramStateRef ProcessZeroAllocCheck(const CallEvent &Call, 468 const unsigned IndexOfSizeArg, 469 ProgramStateRef State, 470 Optional<SVal> RetVal = None); 471 472 /// Model functions with the ownership_returns attribute. 473 /// 474 /// User-defined function may have the ownership_returns attribute, which 475 /// annotates that the function returns with an object that was allocated on 476 /// the heap, and passes the ownertship to the callee. 477 /// 478 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 479 /// 480 /// It has two parameters: 481 /// - first: name of the resource (e.g. 'malloc') 482 /// - (OPTIONAL) second: size of the allocated region 483 /// 484 /// \param [in] Call The expression that allocates memory. 485 /// \param [in] Att The ownership_returns attribute. 486 /// \param [in] State The \c ProgramState right before allocation. 487 /// \returns The ProgramState right after allocation. 488 LLVM_NODISCARD 489 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 490 const OwnershipAttr *Att, 491 ProgramStateRef State) const; 492 493 /// Models memory allocation. 494 /// 495 /// \param [in] Call The expression that allocates memory. 496 /// \param [in] SizeEx Size of the memory that needs to be allocated. 497 /// \param [in] Init The value the allocated memory needs to be initialized. 498 /// with. For example, \c calloc initializes the allocated memory to 0, 499 /// malloc leaves it undefined. 500 /// \param [in] State The \c ProgramState right before allocation. 501 /// \returns The ProgramState right after allocation. 502 LLVM_NODISCARD 503 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 504 const Expr *SizeEx, SVal Init, 505 ProgramStateRef State, 506 AllocationFamily Family); 507 508 /// Models memory allocation. 509 /// 510 /// \param [in] Call The expression that allocates memory. 511 /// \param [in] Size Size of the memory that needs to be allocated. 512 /// \param [in] Init The value the allocated memory needs to be initialized. 513 /// with. For example, \c calloc initializes the allocated memory to 0, 514 /// malloc leaves it undefined. 515 /// \param [in] State The \c ProgramState right before allocation. 516 /// \returns The ProgramState right after allocation. 517 LLVM_NODISCARD 518 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallEvent &Call, 519 SVal Size, SVal Init, 520 ProgramStateRef State, 521 AllocationFamily Family); 522 523 // Check if this malloc() for special flags. At present that means M_ZERO or 524 // __GFP_ZERO (in which case, treat it like calloc). 525 LLVM_NODISCARD 526 llvm::Optional<ProgramStateRef> 527 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 528 const ProgramStateRef &State) const; 529 530 /// Model functions with the ownership_takes and ownership_holds attributes. 531 /// 532 /// User-defined function may have the ownership_takes and/or ownership_holds 533 /// attributes, which annotates that the function frees the memory passed as a 534 /// parameter. 535 /// 536 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 537 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 538 /// 539 /// They have two parameters: 540 /// - first: name of the resource (e.g. 'malloc') 541 /// - second: index of the parameter the attribute applies to 542 /// 543 /// \param [in] Call The expression that frees memory. 544 /// \param [in] Att The ownership_takes or ownership_holds attribute. 545 /// \param [in] State The \c ProgramState right before allocation. 546 /// \returns The ProgramState right after deallocation. 547 LLVM_NODISCARD 548 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallEvent &Call, 549 const OwnershipAttr *Att, 550 ProgramStateRef State) const; 551 552 /// Models memory deallocation. 553 /// 554 /// \param [in] Call The expression that frees memory. 555 /// \param [in] State The \c ProgramState right before allocation. 556 /// \param [in] Num Index of the argument that needs to be freed. This is 557 /// normally 0, but for custom free functions it may be different. 558 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 559 /// attribute. 560 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 561 /// to have been allocated, or in other words, the symbol to be freed was 562 /// registered as allocated by this checker. In the following case, \c ptr 563 /// isn't known to be allocated. 564 /// void Haha(int *ptr) { 565 /// ptr = realloc(ptr, 67); 566 /// // ... 567 /// } 568 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 569 /// we're modeling returns with Null on failure. 570 /// \returns The ProgramState right after deallocation. 571 LLVM_NODISCARD 572 ProgramStateRef FreeMemAux(CheckerContext &C, const CallEvent &Call, 573 ProgramStateRef State, unsigned Num, bool Hold, 574 bool &IsKnownToBeAllocated, 575 AllocationFamily Family, 576 bool ReturnsNullOnFailure = false) const; 577 578 /// Models memory deallocation. 579 /// 580 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 581 /// \param [in] Call The expression that frees the memory. 582 /// \param [in] State The \c ProgramState right before allocation. 583 /// normally 0, but for custom free functions it may be different. 584 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 585 /// attribute. 586 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 587 /// to have been allocated, or in other words, the symbol to be freed was 588 /// registered as allocated by this checker. In the following case, \c ptr 589 /// isn't known to be allocated. 590 /// void Haha(int *ptr) { 591 /// ptr = realloc(ptr, 67); 592 /// // ... 593 /// } 594 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 595 /// we're modeling returns with Null on failure. 596 /// \returns The ProgramState right after deallocation. 597 LLVM_NODISCARD 598 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *ArgExpr, 599 const CallEvent &Call, ProgramStateRef State, 600 bool Hold, bool &IsKnownToBeAllocated, 601 AllocationFamily Family, 602 bool ReturnsNullOnFailure = false) const; 603 604 // TODO: Needs some refactoring, as all other deallocation modeling 605 // functions are suffering from out parameters and messy code due to how 606 // realloc is handled. 607 // 608 /// Models memory reallocation. 609 /// 610 /// \param [in] Call The expression that reallocated memory 611 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 612 /// memory should be freed. 613 /// \param [in] State The \c ProgramState right before reallocation. 614 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 615 /// has an '_n' suffix, such as g_realloc_n. 616 /// \returns The ProgramState right after reallocation. 617 LLVM_NODISCARD 618 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallEvent &Call, 619 bool ShouldFreeOnFail, ProgramStateRef State, 620 AllocationFamily Family, 621 bool SuffixWithN = false) const; 622 623 /// Evaluates the buffer size that needs to be allocated. 624 /// 625 /// \param [in] Blocks The amount of blocks that needs to be allocated. 626 /// \param [in] BlockBytes The size of a block. 627 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 628 LLVM_NODISCARD 629 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 630 const Expr *BlockBytes); 631 632 /// Models zero initialized array allocation. 633 /// 634 /// \param [in] Call The expression that reallocated memory 635 /// \param [in] State The \c ProgramState right before reallocation. 636 /// \returns The ProgramState right after allocation. 637 LLVM_NODISCARD 638 static ProgramStateRef CallocMem(CheckerContext &C, const CallEvent &Call, 639 ProgramStateRef State); 640 641 /// See if deallocation happens in a suspicious context. If so, escape the 642 /// pointers that otherwise would have been deallocated and return true. 643 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 644 CheckerContext &C) const; 645 646 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 647 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 648 649 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 650 /// sized memory region. 651 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 652 const Stmt *S) const; 653 654 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 655 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 656 657 /// Check if the function is known to free memory, or if it is 658 /// "interesting" and should be modeled explicitly. 659 /// 660 /// \param [out] EscapingSymbol A function might not free memory in general, 661 /// but could be known to free a particular symbol. In this case, false is 662 /// returned and the single escaping symbol is returned through the out 663 /// parameter. 664 /// 665 /// We assume that pointers do not escape through calls to system functions 666 /// not handled by this checker. 667 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 668 ProgramStateRef State, 669 SymbolRef &EscapingSymbol) const; 670 671 /// Implementation of the checkPointerEscape callbacks. 672 LLVM_NODISCARD 673 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 674 const InvalidatedSymbols &Escaped, 675 const CallEvent *Call, 676 PointerEscapeKind Kind, 677 bool IsConstPointerEscape) const; 678 679 // Implementation of the checkPreStmt and checkEndFunction callbacks. 680 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 681 682 ///@{ 683 /// Tells if a given family/call/symbol is tracked by the current checker. 684 /// Sets CheckKind to the kind of the checker responsible for this 685 /// family/call/symbol. 686 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 687 bool IsALeakCheck = false) const; 688 689 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 690 bool IsALeakCheck = false) const; 691 ///@} 692 static bool SummarizeValue(raw_ostream &os, SVal V); 693 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 694 695 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 696 const Expr *DeallocExpr, 697 AllocationFamily Family) const; 698 699 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 700 SourceRange Range) const; 701 702 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 703 const Expr *DeallocExpr, const RefState *RS, 704 SymbolRef Sym, bool OwnershipTransferred) const; 705 706 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 707 const Expr *DeallocExpr, AllocationFamily Family, 708 const Expr *AllocExpr = nullptr) const; 709 710 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 711 SymbolRef Sym) const; 712 713 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 714 SymbolRef Sym, SymbolRef PrevSym) const; 715 716 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 717 718 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 719 SymbolRef Sym) const; 720 721 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 722 const Expr *FreeExpr, 723 AllocationFamily Family) const; 724 725 /// Find the location of the allocation for Sym on the path leading to the 726 /// exploded node N. 727 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 728 CheckerContext &C); 729 730 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 731 732 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 733 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 734 SVal ArgVal) const; 735 }; 736 } // end anonymous namespace 737 738 //===----------------------------------------------------------------------===// 739 // Definition of NoOwnershipChangeVisitor. 740 //===----------------------------------------------------------------------===// 741 742 namespace { 743 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 744 SymbolRef Sym; 745 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 746 747 // Collect which entities point to the allocated memory, and could be 748 // responsible for deallocating it. 749 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 750 SymbolRef Sym; 751 OwnerSet &Owners; 752 753 public: 754 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 755 : Sym(Sym), Owners(Owners) {} 756 757 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 758 SVal Val) override { 759 if (Val.getAsSymbol() == Sym) 760 Owners.insert(Region); 761 return true; 762 } 763 764 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 765 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 766 out << "Owners: {\n"; 767 for (const MemRegion *Owner : Owners) { 768 out << " "; 769 Owner->dumpToStream(out); 770 out << ",\n"; 771 } 772 out << "}\n"; 773 } 774 }; 775 776 protected: 777 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 778 OwnerSet Ret; 779 780 ProgramStateRef State = N->getState(); 781 OwnershipBindingsHandler Handler{Sym, Ret}; 782 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 783 Handler); 784 return Ret; 785 } 786 787 LLVM_DUMP_METHOD static std::string 788 getFunctionName(const ExplodedNode *CallEnterN) { 789 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 790 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 791 if (const FunctionDecl *FD = CE->getDirectCallee()) 792 return FD->getQualifiedNameAsString(); 793 return ""; 794 } 795 796 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 797 using namespace clang::ast_matchers; 798 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 799 if (!FD) 800 return false; 801 // TODO: Operator delete is hardly the only deallocator -- Can we reuse 802 // isFreeingCall() or something thats already here? 803 auto Deallocations = match( 804 stmt(hasDescendant(cxxDeleteExpr().bind("delete")) 805 ), *FD->getBody(), ACtx); 806 // TODO: Ownership my change with an attempt to store the allocated memory. 807 return !Deallocations.empty(); 808 } 809 810 virtual bool 811 wasModifiedInFunction(const ExplodedNode *CallEnterN, 812 const ExplodedNode *CallExitEndN) override { 813 if (!doesFnIntendToHandleOwnership( 814 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 815 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 816 return true; 817 818 if (CallEnterN->getState()->get<RegionState>(Sym) != 819 CallExitEndN->getState()->get<RegionState>(Sym)) 820 return true; 821 822 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 823 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 824 825 // Owners in the current set may be purged from the analyzer later on. 826 // If a variable is dead (is not referenced directly or indirectly after 827 // some point), it will be removed from the Store before the end of its 828 // actual lifetime. 829 // This means that that if the ownership status didn't change, CurrOwners 830 // must be a superset of, but not necessarily equal to ExitOwners. 831 return !llvm::set_is_subset(ExitOwners, CurrOwners); 832 } 833 834 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 835 PathDiagnosticLocation L = PathDiagnosticLocation::create( 836 N->getLocation(), 837 N->getState()->getStateManager().getContext().getSourceManager()); 838 return std::make_shared<PathDiagnosticEventPiece>( 839 L, "Returning without deallocating memory or storing the pointer for " 840 "later deallocation"); 841 } 842 843 virtual PathDiagnosticPieceRef 844 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 845 const ObjCMethodCall &Call, 846 const ExplodedNode *N) override { 847 // TODO: Implement. 848 return nullptr; 849 } 850 851 virtual PathDiagnosticPieceRef 852 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 853 const CXXConstructorCall &Call, 854 const ExplodedNode *N) override { 855 // TODO: Implement. 856 return nullptr; 857 } 858 859 virtual PathDiagnosticPieceRef 860 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 861 const ExplodedNode *N) override { 862 // TODO: Factor the logic of "what constitutes as an entity being passed 863 // into a function call" out by reusing the code in 864 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 865 // the printing technology in UninitializedObject's FieldChainInfo. 866 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 867 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 868 SVal V = Call.getArgSVal(I); 869 if (V.getAsSymbol() == Sym) 870 return emitNote(N); 871 } 872 return nullptr; 873 } 874 875 public: 876 NoOwnershipChangeVisitor(SymbolRef Sym) 877 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), 878 Sym(Sym) {} 879 880 void Profile(llvm::FoldingSetNodeID &ID) const override { 881 static int Tag = 0; 882 ID.AddPointer(&Tag); 883 ID.AddPointer(Sym); 884 } 885 886 void *getTag() const { 887 static int Tag = 0; 888 return static_cast<void *>(&Tag); 889 } 890 }; 891 892 } // end anonymous namespace 893 894 //===----------------------------------------------------------------------===// 895 // Definition of MallocBugVisitor. 896 //===----------------------------------------------------------------------===// 897 898 namespace { 899 /// The bug visitor which allows us to print extra diagnostics along the 900 /// BugReport path. For example, showing the allocation site of the leaked 901 /// region. 902 class MallocBugVisitor final : public BugReporterVisitor { 903 protected: 904 enum NotificationMode { Normal, ReallocationFailed }; 905 906 // The allocated region symbol tracked by the main analysis. 907 SymbolRef Sym; 908 909 // The mode we are in, i.e. what kind of diagnostics will be emitted. 910 NotificationMode Mode; 911 912 // A symbol from when the primary region should have been reallocated. 913 SymbolRef FailedReallocSymbol; 914 915 // A C++ destructor stack frame in which memory was released. Used for 916 // miscellaneous false positive suppression. 917 const StackFrameContext *ReleaseDestructorLC; 918 919 bool IsLeak; 920 921 public: 922 MallocBugVisitor(SymbolRef S, bool isLeak = false) 923 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 924 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 925 926 static void *getTag() { 927 static int Tag = 0; 928 return &Tag; 929 } 930 931 void Profile(llvm::FoldingSetNodeID &ID) const override { 932 ID.AddPointer(getTag()); 933 ID.AddPointer(Sym); 934 } 935 936 /// Did not track -> allocated. Other state (released) -> allocated. 937 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 938 const Stmt *Stmt) { 939 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 940 (RSCurr && 941 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 942 (!RSPrev || 943 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 944 } 945 946 /// Did not track -> released. Other state (allocated) -> released. 947 /// The statement associated with the release might be missing. 948 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 949 const Stmt *Stmt) { 950 bool IsReleased = 951 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 952 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 953 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 954 return IsReleased; 955 } 956 957 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 958 static inline bool isRelinquished(const RefState *RSCurr, 959 const RefState *RSPrev, const Stmt *Stmt) { 960 return ( 961 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 962 (RSCurr && RSCurr->isRelinquished()) && 963 (!RSPrev || !RSPrev->isRelinquished())); 964 } 965 966 /// If the expression is not a call, and the state change is 967 /// released -> allocated, it must be the realloc return value 968 /// check. If we have to handle more cases here, it might be cleaner just 969 /// to track this extra bit in the state itself. 970 static inline bool hasReallocFailed(const RefState *RSCurr, 971 const RefState *RSPrev, 972 const Stmt *Stmt) { 973 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 974 (RSCurr && 975 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 976 (RSPrev && 977 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 978 } 979 980 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 981 BugReporterContext &BRC, 982 PathSensitiveBugReport &BR) override; 983 984 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 985 const ExplodedNode *EndPathNode, 986 PathSensitiveBugReport &BR) override { 987 if (!IsLeak) 988 return nullptr; 989 990 PathDiagnosticLocation L = BR.getLocation(); 991 // Do not add the statement itself as a range in case of leak. 992 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 993 false); 994 } 995 996 private: 997 class StackHintGeneratorForReallocationFailed 998 : public StackHintGeneratorForSymbol { 999 public: 1000 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1001 : StackHintGeneratorForSymbol(S, M) {} 1002 1003 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1004 // Printed parameters start at 1, not 0. 1005 ++ArgIndex; 1006 1007 SmallString<200> buf; 1008 llvm::raw_svector_ostream os(buf); 1009 1010 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1011 << " parameter failed"; 1012 1013 return std::string(os.str()); 1014 } 1015 1016 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1017 return "Reallocation of returned value failed"; 1018 } 1019 }; 1020 }; 1021 } // end anonymous namespace 1022 1023 // A map from the freed symbol to the symbol representing the return value of 1024 // the free function. 1025 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1026 1027 namespace { 1028 class StopTrackingCallback final : public SymbolVisitor { 1029 ProgramStateRef state; 1030 1031 public: 1032 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1033 ProgramStateRef getState() const { return state; } 1034 1035 bool VisitSymbol(SymbolRef sym) override { 1036 state = state->remove<RegionState>(sym); 1037 return true; 1038 } 1039 }; 1040 } // end anonymous namespace 1041 1042 static bool isStandardNewDelete(const FunctionDecl *FD) { 1043 if (!FD) 1044 return false; 1045 1046 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1047 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1048 Kind != OO_Array_Delete) 1049 return false; 1050 1051 // This is standard if and only if it's not defined in a user file. 1052 SourceLocation L = FD->getLocation(); 1053 // If the header for operator delete is not included, it's still defined 1054 // in an invalid source location. Check to make sure we don't crash. 1055 return !L.isValid() || 1056 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1057 } 1058 1059 //===----------------------------------------------------------------------===// 1060 // Methods of MallocChecker and MallocBugVisitor. 1061 //===----------------------------------------------------------------------===// 1062 1063 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1064 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1065 return true; 1066 1067 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1068 if (Func && Func->hasAttrs()) { 1069 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1070 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1071 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1072 return true; 1073 } 1074 } 1075 return false; 1076 } 1077 1078 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1079 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1080 ReallocatingMemFnMap.lookup(Call)) 1081 return true; 1082 1083 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1084 return false; 1085 1086 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1087 return Func && Func->hasAttr<OwnershipAttr>(); 1088 } 1089 1090 llvm::Optional<ProgramStateRef> 1091 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1092 const ProgramStateRef &State) const { 1093 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1094 // 1095 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1096 // 1097 // One of the possible flags is M_ZERO, which means 'give me back an 1098 // allocation which is already zeroed', like calloc. 1099 1100 // 2-argument kmalloc(), as used in the Linux kernel: 1101 // 1102 // void *kmalloc(size_t size, gfp_t flags); 1103 // 1104 // Has the similar flag value __GFP_ZERO. 1105 1106 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1107 // code could be shared. 1108 1109 ASTContext &Ctx = C.getASTContext(); 1110 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1111 1112 if (!KernelZeroFlagVal.hasValue()) { 1113 if (OS == llvm::Triple::FreeBSD) 1114 KernelZeroFlagVal = 0x0100; 1115 else if (OS == llvm::Triple::NetBSD) 1116 KernelZeroFlagVal = 0x0002; 1117 else if (OS == llvm::Triple::OpenBSD) 1118 KernelZeroFlagVal = 0x0008; 1119 else if (OS == llvm::Triple::Linux) 1120 // __GFP_ZERO 1121 KernelZeroFlagVal = 0x8000; 1122 else 1123 // FIXME: We need a more general way of getting the M_ZERO value. 1124 // See also: O_CREAT in UnixAPIChecker.cpp. 1125 1126 // Fall back to normal malloc behavior on platforms where we don't 1127 // know M_ZERO. 1128 return None; 1129 } 1130 1131 // We treat the last argument as the flags argument, and callers fall-back to 1132 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1133 // as well as Linux kmalloc. 1134 if (Call.getNumArgs() < 2) 1135 return None; 1136 1137 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1138 const SVal V = C.getSVal(FlagsEx); 1139 if (!V.getAs<NonLoc>()) { 1140 // The case where 'V' can be a location can only be due to a bad header, 1141 // so in this case bail out. 1142 return None; 1143 } 1144 1145 NonLoc Flags = V.castAs<NonLoc>(); 1146 NonLoc ZeroFlag = C.getSValBuilder() 1147 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 1148 .castAs<NonLoc>(); 1149 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1150 Flags, ZeroFlag, 1151 FlagsEx->getType()); 1152 if (MaskedFlagsUC.isUnknownOrUndef()) 1153 return None; 1154 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1155 1156 // Check if maskedFlags is non-zero. 1157 ProgramStateRef TrueState, FalseState; 1158 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1159 1160 // If M_ZERO is set, treat this like calloc (initialized). 1161 if (TrueState && !FalseState) { 1162 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1163 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1164 AF_Malloc); 1165 } 1166 1167 return None; 1168 } 1169 1170 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1171 const Expr *BlockBytes) { 1172 SValBuilder &SB = C.getSValBuilder(); 1173 SVal BlocksVal = C.getSVal(Blocks); 1174 SVal BlockBytesVal = C.getSVal(BlockBytes); 1175 ProgramStateRef State = C.getState(); 1176 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1177 SB.getContext().getSizeType()); 1178 return TotalSize; 1179 } 1180 1181 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1182 CheckerContext &C) const { 1183 ProgramStateRef State = C.getState(); 1184 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1185 AF_Malloc); 1186 State = ProcessZeroAllocCheck(Call, 0, State); 1187 C.addTransition(State); 1188 } 1189 1190 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1191 CheckerContext &C) const { 1192 ProgramStateRef State = C.getState(); 1193 llvm::Optional<ProgramStateRef> MaybeState = 1194 performKernelMalloc(Call, C, State); 1195 if (MaybeState.hasValue()) 1196 State = MaybeState.getValue(); 1197 else 1198 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1199 AF_Malloc); 1200 C.addTransition(State); 1201 } 1202 1203 static bool isStandardRealloc(const CallEvent &Call) { 1204 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1205 assert(FD); 1206 ASTContext &AC = FD->getASTContext(); 1207 1208 if (isa<CXXMethodDecl>(FD)) 1209 return false; 1210 1211 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1212 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1213 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1214 AC.getSizeType(); 1215 } 1216 1217 static bool isGRealloc(const CallEvent &Call) { 1218 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1219 assert(FD); 1220 ASTContext &AC = FD->getASTContext(); 1221 1222 if (isa<CXXMethodDecl>(FD)) 1223 return false; 1224 1225 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1226 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1227 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1228 AC.UnsignedLongTy; 1229 } 1230 1231 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1232 bool ShouldFreeOnFail) const { 1233 // HACK: CallDescription currently recognizes non-standard realloc functions 1234 // as standard because it doesn't check the type, or wether its a non-method 1235 // function. This should be solved by making CallDescription smarter. 1236 // Mind that this came from a bug report, and all other functions suffer from 1237 // this. 1238 // https://bugs.llvm.org/show_bug.cgi?id=46253 1239 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1240 return; 1241 ProgramStateRef State = C.getState(); 1242 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1243 State = ProcessZeroAllocCheck(Call, 1, State); 1244 C.addTransition(State); 1245 } 1246 1247 void MallocChecker::checkCalloc(const CallEvent &Call, 1248 CheckerContext &C) const { 1249 ProgramStateRef State = C.getState(); 1250 State = CallocMem(C, Call, State); 1251 State = ProcessZeroAllocCheck(Call, 0, State); 1252 State = ProcessZeroAllocCheck(Call, 1, State); 1253 C.addTransition(State); 1254 } 1255 1256 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1257 ProgramStateRef State = C.getState(); 1258 bool IsKnownToBeAllocatedMemory = false; 1259 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1260 return; 1261 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1262 AF_Malloc); 1263 C.addTransition(State); 1264 } 1265 1266 void MallocChecker::checkAlloca(const CallEvent &Call, 1267 CheckerContext &C) const { 1268 ProgramStateRef State = C.getState(); 1269 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1270 AF_Alloca); 1271 State = ProcessZeroAllocCheck(Call, 0, State); 1272 C.addTransition(State); 1273 } 1274 1275 void MallocChecker::checkStrdup(const CallEvent &Call, 1276 CheckerContext &C) const { 1277 ProgramStateRef State = C.getState(); 1278 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1279 if (!CE) 1280 return; 1281 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1282 1283 C.addTransition(State); 1284 } 1285 1286 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1287 CheckerContext &C) const { 1288 ProgramStateRef State = C.getState(); 1289 // Should we model this differently? We can allocate a fixed number of 1290 // elements with zeros in the last one. 1291 State = 1292 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1293 1294 C.addTransition(State); 1295 } 1296 1297 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1298 CheckerContext &C) const { 1299 ProgramStateRef State = C.getState(); 1300 bool IsKnownToBeAllocatedMemory = false; 1301 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1302 AF_IfNameIndex); 1303 C.addTransition(State); 1304 } 1305 1306 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1307 CheckerContext &C) const { 1308 ProgramStateRef State = C.getState(); 1309 bool IsKnownToBeAllocatedMemory = false; 1310 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1311 if (!CE) 1312 return; 1313 1314 assert(isStandardNewDelete(Call)); 1315 1316 // Process direct calls to operator new/new[]/delete/delete[] functions 1317 // as distinct from new/new[]/delete/delete[] expressions that are 1318 // processed by the checkPostStmt callbacks for CXXNewExpr and 1319 // CXXDeleteExpr. 1320 const FunctionDecl *FD = C.getCalleeDecl(CE); 1321 switch (FD->getOverloadedOperator()) { 1322 case OO_New: 1323 State = 1324 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1325 State = ProcessZeroAllocCheck(Call, 0, State); 1326 break; 1327 case OO_Array_New: 1328 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1329 AF_CXXNewArray); 1330 State = ProcessZeroAllocCheck(Call, 0, State); 1331 break; 1332 case OO_Delete: 1333 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1334 AF_CXXNew); 1335 break; 1336 case OO_Array_Delete: 1337 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1338 AF_CXXNewArray); 1339 break; 1340 default: 1341 llvm_unreachable("not a new/delete operator"); 1342 } 1343 1344 C.addTransition(State); 1345 } 1346 1347 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1348 CheckerContext &C) const { 1349 ProgramStateRef State = C.getState(); 1350 SValBuilder &svalBuilder = C.getSValBuilder(); 1351 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1352 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1353 State = ProcessZeroAllocCheck(Call, 0, State); 1354 C.addTransition(State); 1355 } 1356 1357 void MallocChecker::checkGMemdup(const CallEvent &Call, 1358 CheckerContext &C) const { 1359 ProgramStateRef State = C.getState(); 1360 State = MallocMemAux(C, Call, Call.getArgExpr(1), UndefinedVal(), State, 1361 AF_Malloc); 1362 State = ProcessZeroAllocCheck(Call, 1, State); 1363 C.addTransition(State); 1364 } 1365 1366 void MallocChecker::checkGMallocN(const CallEvent &Call, 1367 CheckerContext &C) const { 1368 ProgramStateRef State = C.getState(); 1369 SVal Init = UndefinedVal(); 1370 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1371 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1372 State = ProcessZeroAllocCheck(Call, 0, State); 1373 State = ProcessZeroAllocCheck(Call, 1, State); 1374 C.addTransition(State); 1375 } 1376 1377 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1378 CheckerContext &C) const { 1379 ProgramStateRef State = C.getState(); 1380 SValBuilder &SB = C.getSValBuilder(); 1381 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1382 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1383 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1384 State = ProcessZeroAllocCheck(Call, 0, State); 1385 State = ProcessZeroAllocCheck(Call, 1, State); 1386 C.addTransition(State); 1387 } 1388 1389 void MallocChecker::checkReallocN(const CallEvent &Call, 1390 CheckerContext &C) const { 1391 ProgramStateRef State = C.getState(); 1392 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1393 /*SuffixWithN=*/true); 1394 State = ProcessZeroAllocCheck(Call, 1, State); 1395 State = ProcessZeroAllocCheck(Call, 2, State); 1396 C.addTransition(State); 1397 } 1398 1399 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1400 CheckerContext &C) const { 1401 ProgramStateRef State = C.getState(); 1402 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1403 if (!CE) 1404 return; 1405 const FunctionDecl *FD = C.getCalleeDecl(CE); 1406 if (!FD) 1407 return; 1408 if (ShouldIncludeOwnershipAnnotatedFunctions || 1409 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1410 // Check all the attributes, if there are any. 1411 // There can be multiple of these attributes. 1412 if (FD->hasAttrs()) 1413 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1414 switch (I->getOwnKind()) { 1415 case OwnershipAttr::Returns: 1416 State = MallocMemReturnsAttr(C, Call, I, State); 1417 break; 1418 case OwnershipAttr::Takes: 1419 case OwnershipAttr::Holds: 1420 State = FreeMemAttr(C, Call, I, State); 1421 break; 1422 } 1423 } 1424 } 1425 C.addTransition(State); 1426 } 1427 1428 void MallocChecker::checkPostCall(const CallEvent &Call, 1429 CheckerContext &C) const { 1430 if (C.wasInlined) 1431 return; 1432 if (!Call.getOriginExpr()) 1433 return; 1434 1435 ProgramStateRef State = C.getState(); 1436 1437 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1438 (*Callback)(this, Call, C); 1439 return; 1440 } 1441 1442 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1443 (*Callback)(this, Call, C); 1444 return; 1445 } 1446 1447 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1448 (*Callback)(this, Call, C); 1449 return; 1450 } 1451 1452 if (isStandardNewDelete(Call)) { 1453 checkCXXNewOrCXXDelete(Call, C); 1454 return; 1455 } 1456 1457 checkOwnershipAttr(Call, C); 1458 } 1459 1460 // Performs a 0-sized allocations check. 1461 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1462 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1463 Optional<SVal> RetVal) { 1464 if (!State) 1465 return nullptr; 1466 1467 if (!RetVal) 1468 RetVal = Call.getReturnValue(); 1469 1470 const Expr *Arg = nullptr; 1471 1472 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1473 Arg = CE->getArg(IndexOfSizeArg); 1474 } else if (const CXXNewExpr *NE = 1475 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1476 if (NE->isArray()) { 1477 Arg = *NE->getArraySize(); 1478 } else { 1479 return State; 1480 } 1481 } else 1482 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1483 1484 assert(Arg); 1485 1486 auto DefArgVal = 1487 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1488 1489 if (!DefArgVal) 1490 return State; 1491 1492 // Check if the allocation size is 0. 1493 ProgramStateRef TrueState, FalseState; 1494 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1495 DefinedSVal Zero = 1496 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1497 1498 std::tie(TrueState, FalseState) = 1499 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1500 1501 if (TrueState && !FalseState) { 1502 SymbolRef Sym = RetVal->getAsLocSymbol(); 1503 if (!Sym) 1504 return State; 1505 1506 const RefState *RS = State->get<RegionState>(Sym); 1507 if (RS) { 1508 if (RS->isAllocated()) 1509 return TrueState->set<RegionState>(Sym, 1510 RefState::getAllocatedOfSizeZero(RS)); 1511 else 1512 return State; 1513 } else { 1514 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1515 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1516 // tracked. Add zero-reallocated Sym to the state to catch references 1517 // to zero-allocated memory. 1518 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1519 } 1520 } 1521 1522 // Assume the value is non-zero going forward. 1523 assert(FalseState); 1524 return FalseState; 1525 } 1526 1527 static QualType getDeepPointeeType(QualType T) { 1528 QualType Result = T, PointeeType = T->getPointeeType(); 1529 while (!PointeeType.isNull()) { 1530 Result = PointeeType; 1531 PointeeType = PointeeType->getPointeeType(); 1532 } 1533 return Result; 1534 } 1535 1536 /// \returns true if the constructor invoked by \p NE has an argument of a 1537 /// pointer/reference to a record type. 1538 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1539 1540 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1541 if (!ConstructE) 1542 return false; 1543 1544 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1545 return false; 1546 1547 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1548 1549 // Iterate over the constructor parameters. 1550 for (const auto *CtorParam : CtorD->parameters()) { 1551 1552 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1553 if (CtorParamPointeeT.isNull()) 1554 continue; 1555 1556 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1557 1558 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1559 return true; 1560 } 1561 1562 return false; 1563 } 1564 1565 ProgramStateRef 1566 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1567 CheckerContext &C, 1568 AllocationFamily Family) const { 1569 if (!isStandardNewDelete(Call)) 1570 return nullptr; 1571 1572 const CXXNewExpr *NE = Call.getOriginExpr(); 1573 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1574 ProgramStateRef State = C.getState(); 1575 1576 // Non-trivial constructors have a chance to escape 'this', but marking all 1577 // invocations of trivial constructors as escaped would cause too great of 1578 // reduction of true positives, so let's just do that for constructors that 1579 // have an argument of a pointer-to-record type. 1580 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1581 return State; 1582 1583 // The return value from operator new is bound to a specified initialization 1584 // value (if any) and we don't want to loose this value. So we call 1585 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1586 // existing binding. 1587 SVal Target = Call.getObjectUnderConstruction(); 1588 State = MallocUpdateRefState(C, NE, State, Family, Target); 1589 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1590 return State; 1591 } 1592 1593 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1594 CheckerContext &C) const { 1595 if (!C.wasInlined) { 1596 ProgramStateRef State = processNewAllocation( 1597 Call, C, 1598 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1599 C.addTransition(State); 1600 } 1601 } 1602 1603 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1604 // If the first selector piece is one of the names below, assume that the 1605 // object takes ownership of the memory, promising to eventually deallocate it 1606 // with free(). 1607 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1608 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1609 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1610 return FirstSlot == "dataWithBytesNoCopy" || 1611 FirstSlot == "initWithBytesNoCopy" || 1612 FirstSlot == "initWithCharactersNoCopy"; 1613 } 1614 1615 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1616 Selector S = Call.getSelector(); 1617 1618 // FIXME: We should not rely on fully-constrained symbols being folded. 1619 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1620 if (S.getNameForSlot(i).equals("freeWhenDone")) 1621 return !Call.getArgSVal(i).isZeroConstant(); 1622 1623 return None; 1624 } 1625 1626 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1627 CheckerContext &C) const { 1628 if (C.wasInlined) 1629 return; 1630 1631 if (!isKnownDeallocObjCMethodName(Call)) 1632 return; 1633 1634 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1635 if (!*FreeWhenDone) 1636 return; 1637 1638 if (Call.hasNonZeroCallbackArg()) 1639 return; 1640 1641 bool IsKnownToBeAllocatedMemory; 1642 ProgramStateRef State = 1643 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1644 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1645 /*RetNullOnFailure=*/true); 1646 1647 C.addTransition(State); 1648 } 1649 1650 ProgramStateRef 1651 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1652 const OwnershipAttr *Att, 1653 ProgramStateRef State) const { 1654 if (!State) 1655 return nullptr; 1656 1657 if (Att->getModule()->getName() != "malloc") 1658 return nullptr; 1659 1660 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1661 if (I != E) { 1662 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1663 UndefinedVal(), State, AF_Malloc); 1664 } 1665 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1666 } 1667 1668 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1669 const CallEvent &Call, 1670 const Expr *SizeEx, SVal Init, 1671 ProgramStateRef State, 1672 AllocationFamily Family) { 1673 if (!State) 1674 return nullptr; 1675 1676 assert(SizeEx); 1677 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1678 } 1679 1680 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1681 const CallEvent &Call, SVal Size, 1682 SVal Init, ProgramStateRef State, 1683 AllocationFamily Family) { 1684 if (!State) 1685 return nullptr; 1686 1687 const Expr *CE = Call.getOriginExpr(); 1688 1689 // We expect the malloc functions to return a pointer. 1690 if (!Loc::isLocType(CE->getType())) 1691 return nullptr; 1692 1693 // Bind the return value to the symbolic value from the heap region. 1694 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1695 // side effects other than what we model here. 1696 unsigned Count = C.blockCount(); 1697 SValBuilder &svalBuilder = C.getSValBuilder(); 1698 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1699 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1700 .castAs<DefinedSVal>(); 1701 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1702 1703 // Fill the region with the initialization value. 1704 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1705 1706 // Set the region's extent. 1707 State = setDynamicExtent(State, RetVal.getAsRegion(), 1708 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1709 1710 return MallocUpdateRefState(C, CE, State, Family); 1711 } 1712 1713 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1714 ProgramStateRef State, 1715 AllocationFamily Family, 1716 Optional<SVal> RetVal) { 1717 if (!State) 1718 return nullptr; 1719 1720 // Get the return value. 1721 if (!RetVal) 1722 RetVal = C.getSVal(E); 1723 1724 // We expect the malloc functions to return a pointer. 1725 if (!RetVal->getAs<Loc>()) 1726 return nullptr; 1727 1728 SymbolRef Sym = RetVal->getAsLocSymbol(); 1729 // This is a return value of a function that was not inlined, such as malloc() 1730 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1731 assert(Sym); 1732 1733 // Set the symbol's state to Allocated. 1734 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1735 } 1736 1737 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1738 const CallEvent &Call, 1739 const OwnershipAttr *Att, 1740 ProgramStateRef State) const { 1741 if (!State) 1742 return nullptr; 1743 1744 if (Att->getModule()->getName() != "malloc") 1745 return nullptr; 1746 1747 bool IsKnownToBeAllocated = false; 1748 1749 for (const auto &Arg : Att->args()) { 1750 ProgramStateRef StateI = 1751 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1752 Att->getOwnKind() == OwnershipAttr::Holds, 1753 IsKnownToBeAllocated, AF_Malloc); 1754 if (StateI) 1755 State = StateI; 1756 } 1757 return State; 1758 } 1759 1760 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1761 const CallEvent &Call, 1762 ProgramStateRef State, unsigned Num, 1763 bool Hold, bool &IsKnownToBeAllocated, 1764 AllocationFamily Family, 1765 bool ReturnsNullOnFailure) const { 1766 if (!State) 1767 return nullptr; 1768 1769 if (Call.getNumArgs() < (Num + 1)) 1770 return nullptr; 1771 1772 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1773 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1774 } 1775 1776 /// Checks if the previous call to free on the given symbol failed - if free 1777 /// failed, returns true. Also, returns the corresponding return value symbol. 1778 static bool didPreviousFreeFail(ProgramStateRef State, 1779 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1780 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1781 if (Ret) { 1782 assert(*Ret && "We should not store the null return symbol"); 1783 ConstraintManager &CMgr = State->getConstraintManager(); 1784 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1785 RetStatusSymbol = *Ret; 1786 return FreeFailed.isConstrainedTrue(); 1787 } 1788 return false; 1789 } 1790 1791 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1792 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1793 // FIXME: This doesn't handle indirect calls. 1794 const FunctionDecl *FD = CE->getDirectCallee(); 1795 if (!FD) 1796 return false; 1797 1798 os << *FD; 1799 if (!FD->isOverloadedOperator()) 1800 os << "()"; 1801 return true; 1802 } 1803 1804 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1805 if (Msg->isInstanceMessage()) 1806 os << "-"; 1807 else 1808 os << "+"; 1809 Msg->getSelector().print(os); 1810 return true; 1811 } 1812 1813 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1814 os << "'" 1815 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1816 << "'"; 1817 return true; 1818 } 1819 1820 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1821 os << "'" 1822 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1823 << "'"; 1824 return true; 1825 } 1826 1827 return false; 1828 } 1829 1830 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1831 1832 switch(Family) { 1833 case AF_Malloc: os << "malloc()"; return; 1834 case AF_CXXNew: os << "'new'"; return; 1835 case AF_CXXNewArray: os << "'new[]'"; return; 1836 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1837 case AF_InnerBuffer: os << "container-specific allocator"; return; 1838 case AF_Alloca: 1839 case AF_None: llvm_unreachable("not a deallocation expression"); 1840 } 1841 } 1842 1843 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1844 switch(Family) { 1845 case AF_Malloc: os << "free()"; return; 1846 case AF_CXXNew: os << "'delete'"; return; 1847 case AF_CXXNewArray: os << "'delete[]'"; return; 1848 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1849 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1850 case AF_Alloca: 1851 case AF_None: llvm_unreachable("suspicious argument"); 1852 } 1853 } 1854 1855 ProgramStateRef MallocChecker::FreeMemAux( 1856 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1857 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1858 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1859 1860 if (!State) 1861 return nullptr; 1862 1863 SVal ArgVal = C.getSVal(ArgExpr); 1864 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1865 return nullptr; 1866 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1867 1868 // Check for null dereferences. 1869 if (!location.getAs<Loc>()) 1870 return nullptr; 1871 1872 // The explicit NULL case, no operation is performed. 1873 ProgramStateRef notNullState, nullState; 1874 std::tie(notNullState, nullState) = State->assume(location); 1875 if (nullState && !notNullState) 1876 return nullptr; 1877 1878 // Unknown values could easily be okay 1879 // Undefined values are handled elsewhere 1880 if (ArgVal.isUnknownOrUndef()) 1881 return nullptr; 1882 1883 const MemRegion *R = ArgVal.getAsRegion(); 1884 const Expr *ParentExpr = Call.getOriginExpr(); 1885 1886 // NOTE: We detected a bug, but the checker under whose name we would emit the 1887 // error could be disabled. Generally speaking, the MallocChecker family is an 1888 // integral part of the Static Analyzer, and disabling any part of it should 1889 // only be done under exceptional circumstances, such as frequent false 1890 // positives. If this is the case, we can reasonably believe that there are 1891 // serious faults in our understanding of the source code, and even if we 1892 // don't emit an warning, we should terminate further analysis with a sink 1893 // node. 1894 1895 // Nonlocs can't be freed, of course. 1896 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1897 if (!R) { 1898 // Exception: 1899 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1900 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1901 // zero-sized memory block which is allowed to be freed, despite not being a 1902 // null pointer. 1903 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1904 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1905 Family); 1906 return nullptr; 1907 } 1908 1909 R = R->StripCasts(); 1910 1911 // Blocks might show up as heap data, but should not be free()d 1912 if (isa<BlockDataRegion>(R)) { 1913 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1914 Family); 1915 return nullptr; 1916 } 1917 1918 const MemSpaceRegion *MS = R->getMemorySpace(); 1919 1920 // Parameters, locals, statics, globals, and memory returned by 1921 // __builtin_alloca() shouldn't be freed. 1922 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1923 // FIXME: at the time this code was written, malloc() regions were 1924 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1925 // This means that there isn't actually anything from HeapSpaceRegion 1926 // that should be freed, even though we allow it here. 1927 // Of course, free() can work on memory allocated outside the current 1928 // function, so UnknownSpaceRegion is always a possibility. 1929 // False negatives are better than false positives. 1930 1931 if (isa<AllocaRegion>(R)) 1932 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1933 else 1934 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1935 Family); 1936 1937 return nullptr; 1938 } 1939 1940 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1941 // Various cases could lead to non-symbol values here. 1942 // For now, ignore them. 1943 if (!SrBase) 1944 return nullptr; 1945 1946 SymbolRef SymBase = SrBase->getSymbol(); 1947 const RefState *RsBase = State->get<RegionState>(SymBase); 1948 SymbolRef PreviousRetStatusSymbol = nullptr; 1949 1950 IsKnownToBeAllocated = 1951 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1952 1953 if (RsBase) { 1954 1955 // Memory returned by alloca() shouldn't be freed. 1956 if (RsBase->getAllocationFamily() == AF_Alloca) { 1957 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1958 return nullptr; 1959 } 1960 1961 // Check for double free first. 1962 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1963 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1964 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1965 SymBase, PreviousRetStatusSymbol); 1966 return nullptr; 1967 1968 // If the pointer is allocated or escaped, but we are now trying to free it, 1969 // check that the call to free is proper. 1970 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1971 RsBase->isEscaped()) { 1972 1973 // Check if an expected deallocation function matches the real one. 1974 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 1975 if (!DeallocMatchesAlloc) { 1976 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 1977 RsBase, SymBase, Hold); 1978 return nullptr; 1979 } 1980 1981 // Check if the memory location being freed is the actual location 1982 // allocated, or an offset. 1983 RegionOffset Offset = R->getAsOffset(); 1984 if (Offset.isValid() && 1985 !Offset.hasSymbolicOffset() && 1986 Offset.getOffset() != 0) { 1987 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1988 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1989 Family, AllocExpr); 1990 return nullptr; 1991 } 1992 } 1993 } 1994 1995 if (SymBase->getType()->isFunctionPointerType()) { 1996 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1997 Family); 1998 return nullptr; 1999 } 2000 2001 // Clean out the info on previous call to free return info. 2002 State = State->remove<FreeReturnValue>(SymBase); 2003 2004 // Keep track of the return value. If it is NULL, we will know that free 2005 // failed. 2006 if (ReturnsNullOnFailure) { 2007 SVal RetVal = C.getSVal(ParentExpr); 2008 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2009 if (RetStatusSymbol) { 2010 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2011 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2012 } 2013 } 2014 2015 // If we don't know anything about this symbol, a free on it may be totally 2016 // valid. If this is the case, lets assume that the allocation family of the 2017 // freeing function is the same as the symbols allocation family, and go with 2018 // that. 2019 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2020 2021 // Normal free. 2022 if (Hold) 2023 return State->set<RegionState>(SymBase, 2024 RefState::getRelinquished(Family, 2025 ParentExpr)); 2026 2027 return State->set<RegionState>(SymBase, 2028 RefState::getReleased(Family, ParentExpr)); 2029 } 2030 2031 Optional<MallocChecker::CheckKind> 2032 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2033 bool IsALeakCheck) const { 2034 switch (Family) { 2035 case AF_Malloc: 2036 case AF_Alloca: 2037 case AF_IfNameIndex: { 2038 if (ChecksEnabled[CK_MallocChecker]) 2039 return CK_MallocChecker; 2040 return None; 2041 } 2042 case AF_CXXNew: 2043 case AF_CXXNewArray: { 2044 if (IsALeakCheck) { 2045 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2046 return CK_NewDeleteLeaksChecker; 2047 } 2048 else { 2049 if (ChecksEnabled[CK_NewDeleteChecker]) 2050 return CK_NewDeleteChecker; 2051 } 2052 return None; 2053 } 2054 case AF_InnerBuffer: { 2055 if (ChecksEnabled[CK_InnerPointerChecker]) 2056 return CK_InnerPointerChecker; 2057 return None; 2058 } 2059 case AF_None: { 2060 llvm_unreachable("no family"); 2061 } 2062 } 2063 llvm_unreachable("unhandled family"); 2064 } 2065 2066 Optional<MallocChecker::CheckKind> 2067 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2068 bool IsALeakCheck) const { 2069 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2070 return CK_MallocChecker; 2071 2072 const RefState *RS = C.getState()->get<RegionState>(Sym); 2073 assert(RS); 2074 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2075 } 2076 2077 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2078 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2079 os << "an integer (" << IntVal->getValue() << ")"; 2080 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2081 os << "a constant address (" << ConstAddr->getValue() << ")"; 2082 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2083 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2084 else 2085 return false; 2086 2087 return true; 2088 } 2089 2090 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2091 const MemRegion *MR) { 2092 switch (MR->getKind()) { 2093 case MemRegion::FunctionCodeRegionKind: { 2094 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2095 if (FD) 2096 os << "the address of the function '" << *FD << '\''; 2097 else 2098 os << "the address of a function"; 2099 return true; 2100 } 2101 case MemRegion::BlockCodeRegionKind: 2102 os << "block text"; 2103 return true; 2104 case MemRegion::BlockDataRegionKind: 2105 // FIXME: where the block came from? 2106 os << "a block"; 2107 return true; 2108 default: { 2109 const MemSpaceRegion *MS = MR->getMemorySpace(); 2110 2111 if (isa<StackLocalsSpaceRegion>(MS)) { 2112 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2113 const VarDecl *VD; 2114 if (VR) 2115 VD = VR->getDecl(); 2116 else 2117 VD = nullptr; 2118 2119 if (VD) 2120 os << "the address of the local variable '" << VD->getName() << "'"; 2121 else 2122 os << "the address of a local stack variable"; 2123 return true; 2124 } 2125 2126 if (isa<StackArgumentsSpaceRegion>(MS)) { 2127 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2128 const VarDecl *VD; 2129 if (VR) 2130 VD = VR->getDecl(); 2131 else 2132 VD = nullptr; 2133 2134 if (VD) 2135 os << "the address of the parameter '" << VD->getName() << "'"; 2136 else 2137 os << "the address of a parameter"; 2138 return true; 2139 } 2140 2141 if (isa<GlobalsSpaceRegion>(MS)) { 2142 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2143 const VarDecl *VD; 2144 if (VR) 2145 VD = VR->getDecl(); 2146 else 2147 VD = nullptr; 2148 2149 if (VD) { 2150 if (VD->isStaticLocal()) 2151 os << "the address of the static variable '" << VD->getName() << "'"; 2152 else 2153 os << "the address of the global variable '" << VD->getName() << "'"; 2154 } else 2155 os << "the address of a global variable"; 2156 return true; 2157 } 2158 2159 return false; 2160 } 2161 } 2162 } 2163 2164 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2165 SourceRange Range, 2166 const Expr *DeallocExpr, 2167 AllocationFamily Family) const { 2168 2169 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2170 C.addSink(); 2171 return; 2172 } 2173 2174 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2175 if (!CheckKind.hasValue()) 2176 return; 2177 2178 if (ExplodedNode *N = C.generateErrorNode()) { 2179 if (!BT_BadFree[*CheckKind]) 2180 BT_BadFree[*CheckKind].reset(new BugType( 2181 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2182 2183 SmallString<100> buf; 2184 llvm::raw_svector_ostream os(buf); 2185 2186 const MemRegion *MR = ArgVal.getAsRegion(); 2187 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2188 MR = ER->getSuperRegion(); 2189 2190 os << "Argument to "; 2191 if (!printMemFnName(os, C, DeallocExpr)) 2192 os << "deallocator"; 2193 2194 os << " is "; 2195 bool Summarized = MR ? SummarizeRegion(os, MR) 2196 : SummarizeValue(os, ArgVal); 2197 if (Summarized) 2198 os << ", which is not memory allocated by "; 2199 else 2200 os << "not memory allocated by "; 2201 2202 printExpectedAllocName(os, Family); 2203 2204 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2205 os.str(), N); 2206 R->markInteresting(MR); 2207 R->addRange(Range); 2208 C.emitReport(std::move(R)); 2209 } 2210 } 2211 2212 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2213 SourceRange Range) const { 2214 2215 Optional<MallocChecker::CheckKind> CheckKind; 2216 2217 if (ChecksEnabled[CK_MallocChecker]) 2218 CheckKind = CK_MallocChecker; 2219 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2220 CheckKind = CK_MismatchedDeallocatorChecker; 2221 else { 2222 C.addSink(); 2223 return; 2224 } 2225 2226 if (ExplodedNode *N = C.generateErrorNode()) { 2227 if (!BT_FreeAlloca[*CheckKind]) 2228 BT_FreeAlloca[*CheckKind].reset(new BugType( 2229 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2230 2231 auto R = std::make_unique<PathSensitiveBugReport>( 2232 *BT_FreeAlloca[*CheckKind], 2233 "Memory allocated by alloca() should not be deallocated", N); 2234 R->markInteresting(ArgVal.getAsRegion()); 2235 R->addRange(Range); 2236 C.emitReport(std::move(R)); 2237 } 2238 } 2239 2240 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2241 SourceRange Range, 2242 const Expr *DeallocExpr, 2243 const RefState *RS, SymbolRef Sym, 2244 bool OwnershipTransferred) const { 2245 2246 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2247 C.addSink(); 2248 return; 2249 } 2250 2251 if (ExplodedNode *N = C.generateErrorNode()) { 2252 if (!BT_MismatchedDealloc) 2253 BT_MismatchedDealloc.reset( 2254 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2255 "Bad deallocator", categories::MemoryError)); 2256 2257 SmallString<100> buf; 2258 llvm::raw_svector_ostream os(buf); 2259 2260 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2261 SmallString<20> AllocBuf; 2262 llvm::raw_svector_ostream AllocOs(AllocBuf); 2263 SmallString<20> DeallocBuf; 2264 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2265 2266 if (OwnershipTransferred) { 2267 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2268 os << DeallocOs.str() << " cannot"; 2269 else 2270 os << "Cannot"; 2271 2272 os << " take ownership of memory"; 2273 2274 if (printMemFnName(AllocOs, C, AllocExpr)) 2275 os << " allocated by " << AllocOs.str(); 2276 } else { 2277 os << "Memory"; 2278 if (printMemFnName(AllocOs, C, AllocExpr)) 2279 os << " allocated by " << AllocOs.str(); 2280 2281 os << " should be deallocated by "; 2282 printExpectedDeallocName(os, RS->getAllocationFamily()); 2283 2284 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2285 os << ", not " << DeallocOs.str(); 2286 } 2287 2288 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2289 os.str(), N); 2290 R->markInteresting(Sym); 2291 R->addRange(Range); 2292 R->addVisitor<MallocBugVisitor>(Sym); 2293 C.emitReport(std::move(R)); 2294 } 2295 } 2296 2297 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2298 SourceRange Range, const Expr *DeallocExpr, 2299 AllocationFamily Family, 2300 const Expr *AllocExpr) const { 2301 2302 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2303 C.addSink(); 2304 return; 2305 } 2306 2307 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2308 if (!CheckKind.hasValue()) 2309 return; 2310 2311 ExplodedNode *N = C.generateErrorNode(); 2312 if (!N) 2313 return; 2314 2315 if (!BT_OffsetFree[*CheckKind]) 2316 BT_OffsetFree[*CheckKind].reset(new BugType( 2317 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2318 2319 SmallString<100> buf; 2320 llvm::raw_svector_ostream os(buf); 2321 SmallString<20> AllocNameBuf; 2322 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2323 2324 const MemRegion *MR = ArgVal.getAsRegion(); 2325 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2326 2327 RegionOffset Offset = MR->getAsOffset(); 2328 assert((Offset.isValid() && 2329 !Offset.hasSymbolicOffset() && 2330 Offset.getOffset() != 0) && 2331 "Only symbols with a valid offset can have offset free errors"); 2332 2333 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2334 2335 os << "Argument to "; 2336 if (!printMemFnName(os, C, DeallocExpr)) 2337 os << "deallocator"; 2338 os << " is offset by " 2339 << offsetBytes 2340 << " " 2341 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2342 << " from the start of "; 2343 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2344 os << "memory allocated by " << AllocNameOs.str(); 2345 else 2346 os << "allocated memory"; 2347 2348 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2349 os.str(), N); 2350 R->markInteresting(MR->getBaseRegion()); 2351 R->addRange(Range); 2352 C.emitReport(std::move(R)); 2353 } 2354 2355 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2356 SymbolRef Sym) const { 2357 2358 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2359 !ChecksEnabled[CK_InnerPointerChecker]) { 2360 C.addSink(); 2361 return; 2362 } 2363 2364 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2365 if (!CheckKind.hasValue()) 2366 return; 2367 2368 if (ExplodedNode *N = C.generateErrorNode()) { 2369 if (!BT_UseFree[*CheckKind]) 2370 BT_UseFree[*CheckKind].reset(new BugType( 2371 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2372 2373 AllocationFamily AF = 2374 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2375 2376 auto R = std::make_unique<PathSensitiveBugReport>( 2377 *BT_UseFree[*CheckKind], 2378 AF == AF_InnerBuffer 2379 ? "Inner pointer of container used after re/deallocation" 2380 : "Use of memory after it is freed", 2381 N); 2382 2383 R->markInteresting(Sym); 2384 R->addRange(Range); 2385 R->addVisitor<MallocBugVisitor>(Sym); 2386 2387 if (AF == AF_InnerBuffer) 2388 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2389 2390 C.emitReport(std::move(R)); 2391 } 2392 } 2393 2394 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2395 bool Released, SymbolRef Sym, 2396 SymbolRef PrevSym) const { 2397 2398 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2399 C.addSink(); 2400 return; 2401 } 2402 2403 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2404 if (!CheckKind.hasValue()) 2405 return; 2406 2407 if (ExplodedNode *N = C.generateErrorNode()) { 2408 if (!BT_DoubleFree[*CheckKind]) 2409 BT_DoubleFree[*CheckKind].reset(new BugType( 2410 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2411 2412 auto R = std::make_unique<PathSensitiveBugReport>( 2413 *BT_DoubleFree[*CheckKind], 2414 (Released ? "Attempt to free released memory" 2415 : "Attempt to free non-owned memory"), 2416 N); 2417 R->addRange(Range); 2418 R->markInteresting(Sym); 2419 if (PrevSym) 2420 R->markInteresting(PrevSym); 2421 R->addVisitor<MallocBugVisitor>(Sym); 2422 C.emitReport(std::move(R)); 2423 } 2424 } 2425 2426 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2427 2428 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2429 C.addSink(); 2430 return; 2431 } 2432 2433 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2434 if (!CheckKind.hasValue()) 2435 return; 2436 2437 if (ExplodedNode *N = C.generateErrorNode()) { 2438 if (!BT_DoubleDelete) 2439 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2440 "Double delete", 2441 categories::MemoryError)); 2442 2443 auto R = std::make_unique<PathSensitiveBugReport>( 2444 *BT_DoubleDelete, "Attempt to delete released memory", N); 2445 2446 R->markInteresting(Sym); 2447 R->addVisitor<MallocBugVisitor>(Sym); 2448 C.emitReport(std::move(R)); 2449 } 2450 } 2451 2452 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2453 SymbolRef Sym) const { 2454 2455 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2456 C.addSink(); 2457 return; 2458 } 2459 2460 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2461 2462 if (!CheckKind.hasValue()) 2463 return; 2464 2465 if (ExplodedNode *N = C.generateErrorNode()) { 2466 if (!BT_UseZerroAllocated[*CheckKind]) 2467 BT_UseZerroAllocated[*CheckKind].reset( 2468 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2469 categories::MemoryError)); 2470 2471 auto R = std::make_unique<PathSensitiveBugReport>( 2472 *BT_UseZerroAllocated[*CheckKind], 2473 "Use of memory allocated with size zero", N); 2474 2475 R->addRange(Range); 2476 if (Sym) { 2477 R->markInteresting(Sym); 2478 R->addVisitor<MallocBugVisitor>(Sym); 2479 } 2480 C.emitReport(std::move(R)); 2481 } 2482 } 2483 2484 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2485 SourceRange Range, 2486 const Expr *FreeExpr, 2487 AllocationFamily Family) const { 2488 if (!ChecksEnabled[CK_MallocChecker]) { 2489 C.addSink(); 2490 return; 2491 } 2492 2493 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2494 if (!CheckKind.hasValue()) 2495 return; 2496 2497 if (ExplodedNode *N = C.generateErrorNode()) { 2498 if (!BT_BadFree[*CheckKind]) 2499 BT_BadFree[*CheckKind].reset(new BugType( 2500 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2501 2502 SmallString<100> Buf; 2503 llvm::raw_svector_ostream Os(Buf); 2504 2505 const MemRegion *MR = ArgVal.getAsRegion(); 2506 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2507 MR = ER->getSuperRegion(); 2508 2509 Os << "Argument to "; 2510 if (!printMemFnName(Os, C, FreeExpr)) 2511 Os << "deallocator"; 2512 2513 Os << " is a function pointer"; 2514 2515 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2516 Os.str(), N); 2517 R->markInteresting(MR); 2518 R->addRange(Range); 2519 C.emitReport(std::move(R)); 2520 } 2521 } 2522 2523 ProgramStateRef 2524 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2525 bool ShouldFreeOnFail, ProgramStateRef State, 2526 AllocationFamily Family, bool SuffixWithN) const { 2527 if (!State) 2528 return nullptr; 2529 2530 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2531 2532 if (SuffixWithN && CE->getNumArgs() < 3) 2533 return nullptr; 2534 else if (CE->getNumArgs() < 2) 2535 return nullptr; 2536 2537 const Expr *arg0Expr = CE->getArg(0); 2538 SVal Arg0Val = C.getSVal(arg0Expr); 2539 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2540 return nullptr; 2541 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2542 2543 SValBuilder &svalBuilder = C.getSValBuilder(); 2544 2545 DefinedOrUnknownSVal PtrEQ = 2546 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2547 2548 // Get the size argument. 2549 const Expr *Arg1 = CE->getArg(1); 2550 2551 // Get the value of the size argument. 2552 SVal TotalSize = C.getSVal(Arg1); 2553 if (SuffixWithN) 2554 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2555 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2556 return nullptr; 2557 2558 // Compare the size argument to 0. 2559 DefinedOrUnknownSVal SizeZero = 2560 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2561 svalBuilder.makeIntValWithPtrWidth(0, false)); 2562 2563 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2564 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2565 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2566 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2567 // We only assume exceptional states if they are definitely true; if the 2568 // state is under-constrained, assume regular realloc behavior. 2569 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2570 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2571 2572 // If the ptr is NULL and the size is not 0, the call is equivalent to 2573 // malloc(size). 2574 if (PrtIsNull && !SizeIsZero) { 2575 ProgramStateRef stateMalloc = MallocMemAux( 2576 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2577 return stateMalloc; 2578 } 2579 2580 if (PrtIsNull && SizeIsZero) 2581 return State; 2582 2583 assert(!PrtIsNull); 2584 2585 bool IsKnownToBeAllocated = false; 2586 2587 // If the size is 0, free the memory. 2588 if (SizeIsZero) 2589 // The semantics of the return value are: 2590 // If size was equal to 0, either NULL or a pointer suitable to be passed 2591 // to free() is returned. We just free the input pointer and do not add 2592 // any constrains on the output pointer. 2593 if (ProgramStateRef stateFree = FreeMemAux( 2594 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2595 return stateFree; 2596 2597 // Default behavior. 2598 if (ProgramStateRef stateFree = 2599 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2600 2601 ProgramStateRef stateRealloc = 2602 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2603 if (!stateRealloc) 2604 return nullptr; 2605 2606 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2607 if (ShouldFreeOnFail) 2608 Kind = OAR_FreeOnFailure; 2609 else if (!IsKnownToBeAllocated) 2610 Kind = OAR_DoNotTrackAfterFailure; 2611 2612 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2613 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2614 SVal RetVal = C.getSVal(CE); 2615 SymbolRef ToPtr = RetVal.getAsSymbol(); 2616 assert(FromPtr && ToPtr && 2617 "By this point, FreeMemAux and MallocMemAux should have checked " 2618 "whether the argument or the return value is symbolic!"); 2619 2620 // Record the info about the reallocated symbol so that we could properly 2621 // process failed reallocation. 2622 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2623 ReallocPair(FromPtr, Kind)); 2624 // The reallocated symbol should stay alive for as long as the new symbol. 2625 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2626 return stateRealloc; 2627 } 2628 return nullptr; 2629 } 2630 2631 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2632 const CallEvent &Call, 2633 ProgramStateRef State) { 2634 if (!State) 2635 return nullptr; 2636 2637 if (Call.getNumArgs() < 2) 2638 return nullptr; 2639 2640 SValBuilder &svalBuilder = C.getSValBuilder(); 2641 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2642 SVal TotalSize = 2643 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2644 2645 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2646 } 2647 2648 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2649 SymbolRef Sym, 2650 CheckerContext &C) { 2651 const LocationContext *LeakContext = N->getLocationContext(); 2652 // Walk the ExplodedGraph backwards and find the first node that referred to 2653 // the tracked symbol. 2654 const ExplodedNode *AllocNode = N; 2655 const MemRegion *ReferenceRegion = nullptr; 2656 2657 while (N) { 2658 ProgramStateRef State = N->getState(); 2659 if (!State->get<RegionState>(Sym)) 2660 break; 2661 2662 // Find the most recent expression bound to the symbol in the current 2663 // context. 2664 if (!ReferenceRegion) { 2665 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2666 SVal Val = State->getSVal(MR); 2667 if (Val.getAsLocSymbol() == Sym) { 2668 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2669 // Do not show local variables belonging to a function other than 2670 // where the error is reported. 2671 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2672 ReferenceRegion = MR; 2673 } 2674 } 2675 } 2676 2677 // Allocation node, is the last node in the current or parent context in 2678 // which the symbol was tracked. 2679 const LocationContext *NContext = N->getLocationContext(); 2680 if (NContext == LeakContext || 2681 NContext->isParentOf(LeakContext)) 2682 AllocNode = N; 2683 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2684 } 2685 2686 return LeakInfo(AllocNode, ReferenceRegion); 2687 } 2688 2689 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2690 CheckerContext &C) const { 2691 2692 if (!ChecksEnabled[CK_MallocChecker] && 2693 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2694 return; 2695 2696 const RefState *RS = C.getState()->get<RegionState>(Sym); 2697 assert(RS && "cannot leak an untracked symbol"); 2698 AllocationFamily Family = RS->getAllocationFamily(); 2699 2700 if (Family == AF_Alloca) 2701 return; 2702 2703 Optional<MallocChecker::CheckKind> 2704 CheckKind = getCheckIfTracked(Family, true); 2705 2706 if (!CheckKind.hasValue()) 2707 return; 2708 2709 assert(N); 2710 if (!BT_Leak[*CheckKind]) { 2711 // Leaks should not be reported if they are post-dominated by a sink: 2712 // (1) Sinks are higher importance bugs. 2713 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2714 // with __noreturn functions such as assert() or exit(). We choose not 2715 // to report leaks on such paths. 2716 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2717 categories::MemoryError, 2718 /*SuppressOnSink=*/true)); 2719 } 2720 2721 // Most bug reports are cached at the location where they occurred. 2722 // With leaks, we want to unique them by the location where they were 2723 // allocated, and only report a single path. 2724 PathDiagnosticLocation LocUsedForUniqueing; 2725 const ExplodedNode *AllocNode = nullptr; 2726 const MemRegion *Region = nullptr; 2727 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2728 2729 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2730 if (AllocationStmt) 2731 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2732 C.getSourceManager(), 2733 AllocNode->getLocationContext()); 2734 2735 SmallString<200> buf; 2736 llvm::raw_svector_ostream os(buf); 2737 if (Region && Region->canPrintPretty()) { 2738 os << "Potential leak of memory pointed to by "; 2739 Region->printPretty(os); 2740 } else { 2741 os << "Potential memory leak"; 2742 } 2743 2744 auto R = std::make_unique<PathSensitiveBugReport>( 2745 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2746 AllocNode->getLocationContext()->getDecl()); 2747 R->markInteresting(Sym); 2748 R->addVisitor<MallocBugVisitor>(Sym, true); 2749 if (ShouldRegisterNoOwnershipChangeVisitor) 2750 R->addVisitor<NoOwnershipChangeVisitor>(Sym); 2751 C.emitReport(std::move(R)); 2752 } 2753 2754 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2755 CheckerContext &C) const 2756 { 2757 ProgramStateRef state = C.getState(); 2758 RegionStateTy OldRS = state->get<RegionState>(); 2759 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2760 2761 RegionStateTy RS = OldRS; 2762 SmallVector<SymbolRef, 2> Errors; 2763 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2764 if (SymReaper.isDead(I->first)) { 2765 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2766 Errors.push_back(I->first); 2767 // Remove the dead symbol from the map. 2768 RS = F.remove(RS, I->first); 2769 } 2770 } 2771 2772 if (RS == OldRS) { 2773 // We shouldn't have touched other maps yet. 2774 assert(state->get<ReallocPairs>() == 2775 C.getState()->get<ReallocPairs>()); 2776 assert(state->get<FreeReturnValue>() == 2777 C.getState()->get<FreeReturnValue>()); 2778 return; 2779 } 2780 2781 // Cleanup the Realloc Pairs Map. 2782 ReallocPairsTy RP = state->get<ReallocPairs>(); 2783 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2784 if (SymReaper.isDead(I->first) || 2785 SymReaper.isDead(I->second.ReallocatedSym)) { 2786 state = state->remove<ReallocPairs>(I->first); 2787 } 2788 } 2789 2790 // Cleanup the FreeReturnValue Map. 2791 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2792 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2793 if (SymReaper.isDead(I->first) || 2794 SymReaper.isDead(I->second)) { 2795 state = state->remove<FreeReturnValue>(I->first); 2796 } 2797 } 2798 2799 // Generate leak node. 2800 ExplodedNode *N = C.getPredecessor(); 2801 if (!Errors.empty()) { 2802 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2803 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2804 if (N) { 2805 for (SmallVectorImpl<SymbolRef>::iterator 2806 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2807 HandleLeak(*I, N, C); 2808 } 2809 } 2810 } 2811 2812 C.addTransition(state->set<RegionState>(RS), N); 2813 } 2814 2815 void MallocChecker::checkPreCall(const CallEvent &Call, 2816 CheckerContext &C) const { 2817 2818 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2819 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2820 2821 if (!ChecksEnabled[CK_NewDeleteChecker]) 2822 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2823 checkUseAfterFree(Sym, C, DE->getArgument()); 2824 2825 if (!isStandardNewDelete(DC->getDecl())) 2826 return; 2827 2828 ProgramStateRef State = C.getState(); 2829 bool IsKnownToBeAllocated; 2830 State = FreeMemAux(C, DE->getArgument(), Call, State, 2831 /*Hold*/ false, IsKnownToBeAllocated, 2832 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2833 2834 C.addTransition(State); 2835 return; 2836 } 2837 2838 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2839 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2840 if (!Sym || checkDoubleDelete(Sym, C)) 2841 return; 2842 } 2843 2844 // We will check for double free in the post visit. 2845 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2846 const FunctionDecl *FD = FC->getDecl(); 2847 if (!FD) 2848 return; 2849 2850 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2851 return; 2852 } 2853 2854 // Check if the callee of a method is deleted. 2855 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2856 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2857 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2858 return; 2859 } 2860 2861 // Check arguments for being used after free. 2862 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2863 SVal ArgSVal = Call.getArgSVal(I); 2864 if (ArgSVal.getAs<Loc>()) { 2865 SymbolRef Sym = ArgSVal.getAsSymbol(); 2866 if (!Sym) 2867 continue; 2868 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2869 return; 2870 } 2871 } 2872 } 2873 2874 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2875 CheckerContext &C) const { 2876 checkEscapeOnReturn(S, C); 2877 } 2878 2879 // In the CFG, automatic destructors come after the return statement. 2880 // This callback checks for returning memory that is freed by automatic 2881 // destructors, as those cannot be reached in checkPreStmt(). 2882 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2883 CheckerContext &C) const { 2884 checkEscapeOnReturn(S, C); 2885 } 2886 2887 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2888 CheckerContext &C) const { 2889 if (!S) 2890 return; 2891 2892 const Expr *E = S->getRetValue(); 2893 if (!E) 2894 return; 2895 2896 // Check if we are returning a symbol. 2897 ProgramStateRef State = C.getState(); 2898 SVal RetVal = C.getSVal(E); 2899 SymbolRef Sym = RetVal.getAsSymbol(); 2900 if (!Sym) 2901 // If we are returning a field of the allocated struct or an array element, 2902 // the callee could still free the memory. 2903 // TODO: This logic should be a part of generic symbol escape callback. 2904 if (const MemRegion *MR = RetVal.getAsRegion()) 2905 if (isa<FieldRegion, ElementRegion>(MR)) 2906 if (const SymbolicRegion *BMR = 2907 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2908 Sym = BMR->getSymbol(); 2909 2910 // Check if we are returning freed memory. 2911 if (Sym) 2912 checkUseAfterFree(Sym, C, E); 2913 } 2914 2915 // TODO: Blocks should be either inlined or should call invalidate regions 2916 // upon invocation. After that's in place, special casing here will not be 2917 // needed. 2918 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2919 CheckerContext &C) const { 2920 2921 // Scan the BlockDecRefExprs for any object the retain count checker 2922 // may be tracking. 2923 if (!BE->getBlockDecl()->hasCaptures()) 2924 return; 2925 2926 ProgramStateRef state = C.getState(); 2927 const BlockDataRegion *R = 2928 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2929 2930 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2931 E = R->referenced_vars_end(); 2932 2933 if (I == E) 2934 return; 2935 2936 SmallVector<const MemRegion*, 10> Regions; 2937 const LocationContext *LC = C.getLocationContext(); 2938 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2939 2940 for ( ; I != E; ++I) { 2941 const VarRegion *VR = I.getCapturedRegion(); 2942 if (VR->getSuperRegion() == R) { 2943 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2944 } 2945 Regions.push_back(VR); 2946 } 2947 2948 state = 2949 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2950 C.addTransition(state); 2951 } 2952 2953 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2954 assert(Sym); 2955 const RefState *RS = C.getState()->get<RegionState>(Sym); 2956 return (RS && RS->isReleased()); 2957 } 2958 2959 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2960 const CallEvent &Call, CheckerContext &C) const { 2961 if (Call.getNumArgs() == 0) 2962 return false; 2963 2964 StringRef FunctionStr = ""; 2965 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 2966 if (const Stmt *Body = FD->getBody()) 2967 if (Body->getBeginLoc().isValid()) 2968 FunctionStr = 2969 Lexer::getSourceText(CharSourceRange::getTokenRange( 2970 {FD->getBeginLoc(), Body->getBeginLoc()}), 2971 C.getSourceManager(), C.getLangOpts()); 2972 2973 // We do not model the Integer Set Library's retain-count based allocation. 2974 if (!FunctionStr.contains("__isl_")) 2975 return false; 2976 2977 ProgramStateRef State = C.getState(); 2978 2979 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 2980 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 2981 if (const RefState *RS = State->get<RegionState>(Sym)) 2982 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 2983 2984 C.addTransition(State); 2985 return true; 2986 } 2987 2988 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2989 const Stmt *S) const { 2990 2991 if (isReleased(Sym, C)) { 2992 HandleUseAfterFree(C, S->getSourceRange(), Sym); 2993 return true; 2994 } 2995 2996 return false; 2997 } 2998 2999 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3000 const Stmt *S) const { 3001 assert(Sym); 3002 3003 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3004 if (RS->isAllocatedOfSizeZero()) 3005 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3006 } 3007 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3008 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3009 } 3010 } 3011 3012 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3013 3014 if (isReleased(Sym, C)) { 3015 HandleDoubleDelete(C, Sym); 3016 return true; 3017 } 3018 return false; 3019 } 3020 3021 // Check if the location is a freed symbolic region. 3022 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3023 CheckerContext &C) const { 3024 SymbolRef Sym = l.getLocSymbolInBase(); 3025 if (Sym) { 3026 checkUseAfterFree(Sym, C, S); 3027 checkUseZeroAllocated(Sym, C, S); 3028 } 3029 } 3030 3031 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3032 // it - assuming that allocation failed on this path. 3033 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3034 SVal Cond, 3035 bool Assumption) const { 3036 RegionStateTy RS = state->get<RegionState>(); 3037 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3038 // If the symbol is assumed to be NULL, remove it from consideration. 3039 ConstraintManager &CMgr = state->getConstraintManager(); 3040 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3041 if (AllocFailed.isConstrainedTrue()) 3042 state = state->remove<RegionState>(I.getKey()); 3043 } 3044 3045 // Realloc returns 0 when reallocation fails, which means that we should 3046 // restore the state of the pointer being reallocated. 3047 ReallocPairsTy RP = state->get<ReallocPairs>(); 3048 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3049 // If the symbol is assumed to be NULL, remove it from consideration. 3050 ConstraintManager &CMgr = state->getConstraintManager(); 3051 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3052 if (!AllocFailed.isConstrainedTrue()) 3053 continue; 3054 3055 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3056 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3057 if (RS->isReleased()) { 3058 switch (I.getData().Kind) { 3059 case OAR_ToBeFreedAfterFailure: 3060 state = state->set<RegionState>(ReallocSym, 3061 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3062 break; 3063 case OAR_DoNotTrackAfterFailure: 3064 state = state->remove<RegionState>(ReallocSym); 3065 break; 3066 default: 3067 assert(I.getData().Kind == OAR_FreeOnFailure); 3068 } 3069 } 3070 } 3071 state = state->remove<ReallocPairs>(I.getKey()); 3072 } 3073 3074 return state; 3075 } 3076 3077 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3078 const CallEvent *Call, 3079 ProgramStateRef State, 3080 SymbolRef &EscapingSymbol) const { 3081 assert(Call); 3082 EscapingSymbol = nullptr; 3083 3084 // For now, assume that any C++ or block call can free memory. 3085 // TODO: If we want to be more optimistic here, we'll need to make sure that 3086 // regions escape to C++ containers. They seem to do that even now, but for 3087 // mysterious reasons. 3088 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3089 return true; 3090 3091 // Check Objective-C messages by selector name. 3092 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3093 // If it's not a framework call, or if it takes a callback, assume it 3094 // can free memory. 3095 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3096 return true; 3097 3098 // If it's a method we know about, handle it explicitly post-call. 3099 // This should happen before the "freeWhenDone" check below. 3100 if (isKnownDeallocObjCMethodName(*Msg)) 3101 return false; 3102 3103 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3104 // about, we can't be sure that the object will use free() to deallocate the 3105 // memory, so we can't model it explicitly. The best we can do is use it to 3106 // decide whether the pointer escapes. 3107 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3108 return *FreeWhenDone; 3109 3110 // If the first selector piece ends with "NoCopy", and there is no 3111 // "freeWhenDone" parameter set to zero, we know ownership is being 3112 // transferred. Again, though, we can't be sure that the object will use 3113 // free() to deallocate the memory, so we can't model it explicitly. 3114 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3115 if (FirstSlot.endswith("NoCopy")) 3116 return true; 3117 3118 // If the first selector starts with addPointer, insertPointer, 3119 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3120 // This is similar to C++ containers (vector); we still might want to check 3121 // that the pointers get freed by following the container itself. 3122 if (FirstSlot.startswith("addPointer") || 3123 FirstSlot.startswith("insertPointer") || 3124 FirstSlot.startswith("replacePointer") || 3125 FirstSlot.equals("valueWithPointer")) { 3126 return true; 3127 } 3128 3129 // We should escape receiver on call to 'init'. This is especially relevant 3130 // to the receiver, as the corresponding symbol is usually not referenced 3131 // after the call. 3132 if (Msg->getMethodFamily() == OMF_init) { 3133 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3134 return true; 3135 } 3136 3137 // Otherwise, assume that the method does not free memory. 3138 // Most framework methods do not free memory. 3139 return false; 3140 } 3141 3142 // At this point the only thing left to handle is straight function calls. 3143 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3144 if (!FD) 3145 return true; 3146 3147 // If it's one of the allocation functions we can reason about, we model 3148 // its behavior explicitly. 3149 if (isMemCall(*Call)) 3150 return false; 3151 3152 // If it's not a system call, assume it frees memory. 3153 if (!Call->isInSystemHeader()) 3154 return true; 3155 3156 // White list the system functions whose arguments escape. 3157 const IdentifierInfo *II = FD->getIdentifier(); 3158 if (!II) 3159 return true; 3160 StringRef FName = II->getName(); 3161 3162 // White list the 'XXXNoCopy' CoreFoundation functions. 3163 // We specifically check these before 3164 if (FName.endswith("NoCopy")) { 3165 // Look for the deallocator argument. We know that the memory ownership 3166 // is not transferred only if the deallocator argument is 3167 // 'kCFAllocatorNull'. 3168 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3169 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3170 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3171 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3172 if (DeallocatorName == "kCFAllocatorNull") 3173 return false; 3174 } 3175 } 3176 return true; 3177 } 3178 3179 // Associating streams with malloced buffers. The pointer can escape if 3180 // 'closefn' is specified (and if that function does free memory), 3181 // but it will not if closefn is not specified. 3182 // Currently, we do not inspect the 'closefn' function (PR12101). 3183 if (FName == "funopen") 3184 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3185 return false; 3186 3187 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3188 // these leaks might be intentional when setting the buffer for stdio. 3189 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3190 if (FName == "setbuf" || FName =="setbuffer" || 3191 FName == "setlinebuf" || FName == "setvbuf") { 3192 if (Call->getNumArgs() >= 1) { 3193 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3194 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3195 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3196 if (D->getCanonicalDecl()->getName().contains("std")) 3197 return true; 3198 } 3199 } 3200 3201 // A bunch of other functions which either take ownership of a pointer or 3202 // wrap the result up in a struct or object, meaning it can be freed later. 3203 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3204 // but the Malloc checker cannot differentiate between them. The right way 3205 // of doing this would be to implement a pointer escapes callback. 3206 if (FName == "CGBitmapContextCreate" || 3207 FName == "CGBitmapContextCreateWithData" || 3208 FName == "CVPixelBufferCreateWithBytes" || 3209 FName == "CVPixelBufferCreateWithPlanarBytes" || 3210 FName == "OSAtomicEnqueue") { 3211 return true; 3212 } 3213 3214 if (FName == "postEvent" && 3215 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3216 return true; 3217 } 3218 3219 if (FName == "connectImpl" && 3220 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3221 return true; 3222 } 3223 3224 // Handle cases where we know a buffer's /address/ can escape. 3225 // Note that the above checks handle some special cases where we know that 3226 // even though the address escapes, it's still our responsibility to free the 3227 // buffer. 3228 if (Call->argumentsMayEscape()) 3229 return true; 3230 3231 // Otherwise, assume that the function does not free memory. 3232 // Most system calls do not free the memory. 3233 return false; 3234 } 3235 3236 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3237 const InvalidatedSymbols &Escaped, 3238 const CallEvent *Call, 3239 PointerEscapeKind Kind) const { 3240 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3241 /*IsConstPointerEscape*/ false); 3242 } 3243 3244 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3245 const InvalidatedSymbols &Escaped, 3246 const CallEvent *Call, 3247 PointerEscapeKind Kind) const { 3248 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3249 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3250 /*IsConstPointerEscape*/ true); 3251 } 3252 3253 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3254 return (RS->getAllocationFamily() == AF_CXXNewArray || 3255 RS->getAllocationFamily() == AF_CXXNew); 3256 } 3257 3258 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3259 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3260 const CallEvent *Call, PointerEscapeKind Kind, 3261 bool IsConstPointerEscape) const { 3262 // If we know that the call does not free memory, or we want to process the 3263 // call later, keep tracking the top level arguments. 3264 SymbolRef EscapingSymbol = nullptr; 3265 if (Kind == PSK_DirectEscapeOnCall && 3266 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3267 EscapingSymbol) && 3268 !EscapingSymbol) { 3269 return State; 3270 } 3271 3272 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3273 E = Escaped.end(); 3274 I != E; ++I) { 3275 SymbolRef sym = *I; 3276 3277 if (EscapingSymbol && EscapingSymbol != sym) 3278 continue; 3279 3280 if (const RefState *RS = State->get<RegionState>(sym)) 3281 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3282 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3283 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3284 } 3285 return State; 3286 } 3287 3288 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3289 SVal ArgVal) const { 3290 if (!KernelZeroSizePtrValue) 3291 KernelZeroSizePtrValue = 3292 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3293 3294 const llvm::APSInt *ArgValKnown = 3295 C.getSValBuilder().getKnownValue(State, ArgVal); 3296 return ArgValKnown && *KernelZeroSizePtrValue && 3297 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3298 } 3299 3300 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3301 ProgramStateRef prevState) { 3302 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3303 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3304 3305 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3306 SymbolRef sym = Pair.first; 3307 if (!currMap.lookup(sym)) 3308 return sym; 3309 } 3310 3311 return nullptr; 3312 } 3313 3314 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3315 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3316 StringRef N = II->getName(); 3317 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3318 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3319 N.contains_insensitive("intrusive") || 3320 N.contains_insensitive("shared")) { 3321 return true; 3322 } 3323 } 3324 } 3325 return false; 3326 } 3327 3328 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3329 BugReporterContext &BRC, 3330 PathSensitiveBugReport &BR) { 3331 ProgramStateRef state = N->getState(); 3332 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3333 3334 const RefState *RSCurr = state->get<RegionState>(Sym); 3335 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3336 3337 const Stmt *S = N->getStmtForDiagnostics(); 3338 // When dealing with containers, we sometimes want to give a note 3339 // even if the statement is missing. 3340 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3341 return nullptr; 3342 3343 const LocationContext *CurrentLC = N->getLocationContext(); 3344 3345 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3346 // the pointer was released (before the release), this is likely a destructor 3347 // of a shared pointer. 3348 // Because we don't model atomics, and also because we don't know that the 3349 // original reference count is positive, we should not report use-after-frees 3350 // on objects deleted in such destructors. This can probably be improved 3351 // through better shared pointer modeling. 3352 if (ReleaseDestructorLC) { 3353 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3354 AtomicExpr::AtomicOp Op = AE->getOp(); 3355 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3356 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3357 if (ReleaseDestructorLC == CurrentLC || 3358 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3359 BR.markInvalid(getTag(), S); 3360 } 3361 } 3362 } 3363 } 3364 3365 // FIXME: We will eventually need to handle non-statement-based events 3366 // (__attribute__((cleanup))). 3367 3368 // Find out if this is an interesting point and what is the kind. 3369 StringRef Msg; 3370 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3371 SmallString<256> Buf; 3372 llvm::raw_svector_ostream OS(Buf); 3373 3374 if (Mode == Normal) { 3375 if (isAllocated(RSCurr, RSPrev, S)) { 3376 Msg = "Memory is allocated"; 3377 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3378 Sym, "Returned allocated memory"); 3379 } else if (isReleased(RSCurr, RSPrev, S)) { 3380 const auto Family = RSCurr->getAllocationFamily(); 3381 switch (Family) { 3382 case AF_Alloca: 3383 case AF_Malloc: 3384 case AF_CXXNew: 3385 case AF_CXXNewArray: 3386 case AF_IfNameIndex: 3387 Msg = "Memory is released"; 3388 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3389 Sym, "Returning; memory was released"); 3390 break; 3391 case AF_InnerBuffer: { 3392 const MemRegion *ObjRegion = 3393 allocation_state::getContainerObjRegion(statePrev, Sym); 3394 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3395 QualType ObjTy = TypedRegion->getValueType(); 3396 OS << "Inner buffer of '" << ObjTy.getAsString() << "' "; 3397 3398 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3399 OS << "deallocated by call to destructor"; 3400 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3401 Sym, "Returning; inner buffer was deallocated"); 3402 } else { 3403 OS << "reallocated by call to '"; 3404 const Stmt *S = RSCurr->getStmt(); 3405 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3406 OS << MemCallE->getMethodDecl()->getDeclName(); 3407 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3408 OS << OpCallE->getDirectCallee()->getDeclName(); 3409 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3410 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3411 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3412 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3413 OS << D->getDeclName(); 3414 else 3415 OS << "unknown"; 3416 } 3417 OS << "'"; 3418 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3419 Sym, "Returning; inner buffer was reallocated"); 3420 } 3421 Msg = OS.str(); 3422 break; 3423 } 3424 case AF_None: 3425 llvm_unreachable("Unhandled allocation family!"); 3426 } 3427 3428 // See if we're releasing memory while inlining a destructor 3429 // (or one of its callees). This turns on various common 3430 // false positive suppressions. 3431 bool FoundAnyDestructor = false; 3432 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3433 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3434 if (isReferenceCountingPointerDestructor(DD)) { 3435 // This immediately looks like a reference-counting destructor. 3436 // We're bad at guessing the original reference count of the object, 3437 // so suppress the report for now. 3438 BR.markInvalid(getTag(), DD); 3439 } else if (!FoundAnyDestructor) { 3440 assert(!ReleaseDestructorLC && 3441 "There can be only one release point!"); 3442 // Suspect that it's a reference counting pointer destructor. 3443 // On one of the next nodes might find out that it has atomic 3444 // reference counting operations within it (see the code above), 3445 // and if so, we'd conclude that it likely is a reference counting 3446 // pointer destructor. 3447 ReleaseDestructorLC = LC->getStackFrame(); 3448 // It is unlikely that releasing memory is delegated to a destructor 3449 // inside a destructor of a shared pointer, because it's fairly hard 3450 // to pass the information that the pointer indeed needs to be 3451 // released into it. So we're only interested in the innermost 3452 // destructor. 3453 FoundAnyDestructor = true; 3454 } 3455 } 3456 } 3457 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3458 Msg = "Memory ownership is transferred"; 3459 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3460 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3461 Mode = ReallocationFailed; 3462 Msg = "Reallocation failed"; 3463 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3464 Sym, "Reallocation failed"); 3465 3466 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3467 // Is it possible to fail two reallocs WITHOUT testing in between? 3468 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3469 "We only support one failed realloc at a time."); 3470 BR.markInteresting(sym); 3471 FailedReallocSymbol = sym; 3472 } 3473 } 3474 3475 // We are in a special mode if a reallocation failed later in the path. 3476 } else if (Mode == ReallocationFailed) { 3477 assert(FailedReallocSymbol && "No symbol to look for."); 3478 3479 // Is this is the first appearance of the reallocated symbol? 3480 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3481 // We're at the reallocation point. 3482 Msg = "Attempt to reallocate memory"; 3483 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3484 Sym, "Returned reallocated memory"); 3485 FailedReallocSymbol = nullptr; 3486 Mode = Normal; 3487 } 3488 } 3489 3490 if (Msg.empty()) { 3491 assert(!StackHint); 3492 return nullptr; 3493 } 3494 3495 assert(StackHint); 3496 3497 // Generate the extra diagnostic. 3498 PathDiagnosticLocation Pos; 3499 if (!S) { 3500 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3501 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3502 if (!PostImplCall) 3503 return nullptr; 3504 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3505 BRC.getSourceManager()); 3506 } else { 3507 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3508 N->getLocationContext()); 3509 } 3510 3511 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3512 BR.addCallStackHint(P, std::move(StackHint)); 3513 return P; 3514 } 3515 3516 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3517 const char *NL, const char *Sep) const { 3518 3519 RegionStateTy RS = State->get<RegionState>(); 3520 3521 if (!RS.isEmpty()) { 3522 Out << Sep << "MallocChecker :" << NL; 3523 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3524 const RefState *RefS = State->get<RegionState>(I.getKey()); 3525 AllocationFamily Family = RefS->getAllocationFamily(); 3526 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3527 if (!CheckKind.hasValue()) 3528 CheckKind = getCheckIfTracked(Family, true); 3529 3530 I.getKey()->dumpToStream(Out); 3531 Out << " : "; 3532 I.getData().dump(Out); 3533 if (CheckKind.hasValue()) 3534 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3535 Out << NL; 3536 } 3537 } 3538 } 3539 3540 namespace clang { 3541 namespace ento { 3542 namespace allocation_state { 3543 3544 ProgramStateRef 3545 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3546 AllocationFamily Family = AF_InnerBuffer; 3547 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3548 } 3549 3550 } // end namespace allocation_state 3551 } // end namespace ento 3552 } // end namespace clang 3553 3554 // Intended to be used in InnerPointerChecker to register the part of 3555 // MallocChecker connected to it. 3556 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3557 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3558 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3559 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3560 mgr.getCurrentCheckerName(); 3561 } 3562 3563 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3564 auto *checker = mgr.registerChecker<MallocChecker>(); 3565 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3566 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3567 checker->ShouldRegisterNoOwnershipChangeVisitor = 3568 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3569 checker, "AddNoOwnershipChangeNotes"); 3570 } 3571 3572 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3573 return true; 3574 } 3575 3576 #define REGISTER_CHECKER(name) \ 3577 void ento::register##name(CheckerManager &mgr) { \ 3578 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3579 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3580 checker->CheckNames[MallocChecker::CK_##name] = \ 3581 mgr.getCurrentCheckerName(); \ 3582 } \ 3583 \ 3584 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3585 3586 REGISTER_CHECKER(MallocChecker) 3587 REGISTER_CHECKER(NewDeleteChecker) 3588 REGISTER_CHECKER(NewDeleteLeaksChecker) 3589 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3590