1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 23 #include "clang/StaticAnalyzer/Core/Checker.h" 24 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 29 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "AllocationState.h" 34 #include <climits> 35 #include <utility> 36 37 using namespace clang; 38 using namespace ento; 39 40 namespace { 41 42 // Used to check correspondence between allocators and deallocators. 43 enum AllocationFamily { 44 AF_None, 45 AF_Malloc, 46 AF_CXXNew, 47 AF_CXXNewArray, 48 AF_IfNameIndex, 49 AF_Alloca, 50 AF_InnerBuffer 51 }; 52 53 class RefState { 54 enum Kind { // Reference to allocated memory. 55 Allocated, 56 // Reference to zero-allocated memory. 57 AllocatedOfSizeZero, 58 // Reference to released/freed memory. 59 Released, 60 // The responsibility for freeing resources has transferred from 61 // this reference. A relinquished symbol should not be freed. 62 Relinquished, 63 // We are no longer guaranteed to have observed all manipulations 64 // of this pointer/memory. For example, it could have been 65 // passed as a parameter to an opaque function. 66 Escaped 67 }; 68 69 const Stmt *S; 70 unsigned K : 3; // Kind enum, but stored as a bitfield. 71 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 72 // family. 73 74 RefState(Kind k, const Stmt *s, unsigned family) 75 : S(s), K(k), Family(family) { 76 assert(family != AF_None); 77 } 78 public: 79 bool isAllocated() const { return K == Allocated; } 80 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 81 bool isReleased() const { return K == Released; } 82 bool isRelinquished() const { return K == Relinquished; } 83 bool isEscaped() const { return K == Escaped; } 84 AllocationFamily getAllocationFamily() const { 85 return (AllocationFamily)Family; 86 } 87 const Stmt *getStmt() const { return S; } 88 89 bool operator==(const RefState &X) const { 90 return K == X.K && S == X.S && Family == X.Family; 91 } 92 93 static RefState getAllocated(unsigned family, const Stmt *s) { 94 return RefState(Allocated, s, family); 95 } 96 static RefState getAllocatedOfSizeZero(const RefState *RS) { 97 return RefState(AllocatedOfSizeZero, RS->getStmt(), 98 RS->getAllocationFamily()); 99 } 100 static RefState getReleased(unsigned family, const Stmt *s) { 101 return RefState(Released, s, family); 102 } 103 static RefState getRelinquished(unsigned family, const Stmt *s) { 104 return RefState(Relinquished, s, family); 105 } 106 static RefState getEscaped(const RefState *RS) { 107 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 108 } 109 110 void Profile(llvm::FoldingSetNodeID &ID) const { 111 ID.AddInteger(K); 112 ID.AddPointer(S); 113 ID.AddInteger(Family); 114 } 115 116 void dump(raw_ostream &OS) const { 117 switch (static_cast<Kind>(K)) { 118 #define CASE(ID) case ID: OS << #ID; break; 119 CASE(Allocated) 120 CASE(AllocatedOfSizeZero) 121 CASE(Released) 122 CASE(Relinquished) 123 CASE(Escaped) 124 } 125 } 126 127 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 128 }; 129 130 enum ReallocPairKind { 131 RPToBeFreedAfterFailure, 132 // The symbol has been freed when reallocation failed. 133 RPIsFreeOnFailure, 134 // The symbol does not need to be freed after reallocation fails. 135 RPDoNotTrackAfterFailure 136 }; 137 138 /// \class ReallocPair 139 /// Stores information about the symbol being reallocated by a call to 140 /// 'realloc' to allow modeling failed reallocation later in the path. 141 struct ReallocPair { 142 // The symbol which realloc reallocated. 143 SymbolRef ReallocatedSym; 144 ReallocPairKind Kind; 145 146 ReallocPair(SymbolRef S, ReallocPairKind K) : 147 ReallocatedSym(S), Kind(K) {} 148 void Profile(llvm::FoldingSetNodeID &ID) const { 149 ID.AddInteger(Kind); 150 ID.AddPointer(ReallocatedSym); 151 } 152 bool operator==(const ReallocPair &X) const { 153 return ReallocatedSym == X.ReallocatedSym && 154 Kind == X.Kind; 155 } 156 }; 157 158 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 159 160 class MallocChecker : public Checker<check::DeadSymbols, 161 check::PointerEscape, 162 check::ConstPointerEscape, 163 check::PreStmt<ReturnStmt>, 164 check::EndFunction, 165 check::PreCall, 166 check::PostStmt<CallExpr>, 167 check::PostStmt<CXXNewExpr>, 168 check::NewAllocator, 169 check::PreStmt<CXXDeleteExpr>, 170 check::PostStmt<BlockExpr>, 171 check::PostObjCMessage, 172 check::Location, 173 eval::Assume> 174 { 175 public: 176 MallocChecker() 177 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 178 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 179 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 180 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 181 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 182 II_wcsdup(nullptr), II_win_wcsdup(nullptr), II_g_malloc(nullptr), 183 II_g_malloc0(nullptr), II_g_realloc(nullptr), II_g_try_malloc(nullptr), 184 II_g_try_malloc0(nullptr), II_g_try_realloc(nullptr), 185 II_g_free(nullptr), II_g_memdup(nullptr), II_g_malloc_n(nullptr), 186 II_g_malloc0_n(nullptr), II_g_realloc_n(nullptr), 187 II_g_try_malloc_n(nullptr), II_g_try_malloc0_n(nullptr), 188 II_g_try_realloc_n(nullptr) {} 189 190 /// In pessimistic mode, the checker assumes that it does not know which 191 /// functions might free the memory. 192 enum CheckKind { 193 CK_MallocChecker, 194 CK_NewDeleteChecker, 195 CK_NewDeleteLeaksChecker, 196 CK_MismatchedDeallocatorChecker, 197 CK_NumCheckKinds 198 }; 199 200 enum class MemoryOperationKind { 201 MOK_Allocate, 202 MOK_Free, 203 MOK_Any 204 }; 205 206 DefaultBool IsOptimistic; 207 208 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 209 CheckName CheckNames[CK_NumCheckKinds]; 210 211 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 212 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 213 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 214 void checkNewAllocator(const CXXNewExpr *NE, SVal Target, 215 CheckerContext &C) const; 216 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 217 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 218 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 219 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 220 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 221 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 222 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 223 bool Assumption) const; 224 void checkLocation(SVal l, bool isLoad, const Stmt *S, 225 CheckerContext &C) const; 226 227 ProgramStateRef checkPointerEscape(ProgramStateRef State, 228 const InvalidatedSymbols &Escaped, 229 const CallEvent *Call, 230 PointerEscapeKind Kind) const; 231 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 232 const InvalidatedSymbols &Escaped, 233 const CallEvent *Call, 234 PointerEscapeKind Kind) const; 235 236 void printState(raw_ostream &Out, ProgramStateRef State, 237 const char *NL, const char *Sep) const override; 238 239 private: 240 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 241 mutable std::unique_ptr<BugType> BT_DoubleDelete; 242 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 243 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 244 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 245 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 246 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 247 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 248 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 249 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 250 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 251 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 252 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 253 *II_win_wcsdup, *II_g_malloc, *II_g_malloc0, 254 *II_g_realloc, *II_g_try_malloc, *II_g_try_malloc0, 255 *II_g_try_realloc, *II_g_free, *II_g_memdup, 256 *II_g_malloc_n, *II_g_malloc0_n, *II_g_realloc_n, 257 *II_g_try_malloc_n, *II_g_try_malloc0_n, 258 *II_g_try_realloc_n; 259 mutable Optional<uint64_t> KernelZeroFlagVal; 260 261 void initIdentifierInfo(ASTContext &C) const; 262 263 /// Determine family of a deallocation expression. 264 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 265 266 /// Print names of allocators and deallocators. 267 /// 268 /// \returns true on success. 269 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 270 const Expr *E) const; 271 272 /// Print expected name of an allocator based on the deallocator's 273 /// family derived from the DeallocExpr. 274 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 275 const Expr *DeallocExpr) const; 276 /// Print expected name of a deallocator based on the allocator's 277 /// family. 278 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 279 280 ///@{ 281 /// Check if this is one of the functions which can allocate/reallocate memory 282 /// pointed to by one of its arguments. 283 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 284 bool isCMemFunction(const FunctionDecl *FD, 285 ASTContext &C, 286 AllocationFamily Family, 287 MemoryOperationKind MemKind) const; 288 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 289 ///@} 290 291 /// Process C++ operator new()'s allocation, which is the part of C++ 292 /// new-expression that goes before the constructor. 293 void processNewAllocation(const CXXNewExpr *NE, CheckerContext &C, 294 SVal Target) const; 295 296 /// Perform a zero-allocation check. 297 /// The optional \p RetVal parameter specifies the newly allocated pointer 298 /// value; if unspecified, the value of expression \p E is used. 299 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 300 const unsigned AllocationSizeArg, 301 ProgramStateRef State, 302 Optional<SVal> RetVal = None) const; 303 304 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 305 const CallExpr *CE, 306 const OwnershipAttr* Att, 307 ProgramStateRef State) const; 308 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 309 const Expr *SizeEx, SVal Init, 310 ProgramStateRef State, 311 AllocationFamily Family = AF_Malloc); 312 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 313 SVal SizeEx, SVal Init, 314 ProgramStateRef State, 315 AllocationFamily Family = AF_Malloc); 316 317 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 318 ProgramStateRef State, SVal Target); 319 320 // Check if this malloc() for special flags. At present that means M_ZERO or 321 // __GFP_ZERO (in which case, treat it like calloc). 322 llvm::Optional<ProgramStateRef> 323 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 324 const ProgramStateRef &State) const; 325 326 /// Update the RefState to reflect the new memory allocation. 327 /// The optional \p RetVal parameter specifies the newly allocated pointer 328 /// value; if unspecified, the value of expression \p E is used. 329 static ProgramStateRef 330 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 331 AllocationFamily Family = AF_Malloc, 332 Optional<SVal> RetVal = None); 333 334 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 335 const OwnershipAttr* Att, 336 ProgramStateRef State) const; 337 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 338 ProgramStateRef state, unsigned Num, 339 bool Hold, 340 bool &ReleasedAllocated, 341 bool ReturnsNullOnFailure = false) const; 342 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 343 const Expr *ParentExpr, 344 ProgramStateRef State, 345 bool Hold, 346 bool &ReleasedAllocated, 347 bool ReturnsNullOnFailure = false) const; 348 349 ProgramStateRef ReallocMemAux(CheckerContext &C, const CallExpr *CE, 350 bool FreesMemOnFailure, 351 ProgramStateRef State, 352 bool SuffixWithN = false) const; 353 static SVal evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 354 const Expr *BlockBytes); 355 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 356 ProgramStateRef State); 357 358 /// Check if the memory associated with this symbol was released. 359 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 360 361 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 362 363 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 364 const Stmt *S) const; 365 366 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 367 368 /// Check if the function is known free memory, or if it is 369 /// "interesting" and should be modeled explicitly. 370 /// 371 /// \param [out] EscapingSymbol A function might not free memory in general, 372 /// but could be known to free a particular symbol. In this case, false is 373 /// returned and the single escaping symbol is returned through the out 374 /// parameter. 375 /// 376 /// We assume that pointers do not escape through calls to system functions 377 /// not handled by this checker. 378 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 379 ProgramStateRef State, 380 SymbolRef &EscapingSymbol) const; 381 382 // Implementation of the checkPointerEscape callbacks. 383 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 384 const InvalidatedSymbols &Escaped, 385 const CallEvent *Call, 386 PointerEscapeKind Kind, 387 bool(*CheckRefState)(const RefState*)) const; 388 389 // Implementation of the checkPreStmt and checkEndFunction callbacks. 390 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 391 392 ///@{ 393 /// Tells if a given family/call/symbol is tracked by the current checker. 394 /// Sets CheckKind to the kind of the checker responsible for this 395 /// family/call/symbol. 396 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 397 bool IsALeakCheck = false) const; 398 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 399 const Stmt *AllocDeallocStmt, 400 bool IsALeakCheck = false) const; 401 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 402 bool IsALeakCheck = false) const; 403 ///@} 404 static bool SummarizeValue(raw_ostream &os, SVal V); 405 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 406 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 407 const Expr *DeallocExpr) const; 408 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 409 SourceRange Range) const; 410 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 411 const Expr *DeallocExpr, const RefState *RS, 412 SymbolRef Sym, bool OwnershipTransferred) const; 413 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 414 const Expr *DeallocExpr, 415 const Expr *AllocExpr = nullptr) const; 416 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 417 SymbolRef Sym) const; 418 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 419 SymbolRef Sym, SymbolRef PrevSym) const; 420 421 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 422 423 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 424 SymbolRef Sym) const; 425 426 void ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 427 SourceRange Range, const Expr *FreeExpr) const; 428 429 /// Find the location of the allocation for Sym on the path leading to the 430 /// exploded node N. 431 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 432 CheckerContext &C) const; 433 434 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 435 436 /// The bug visitor which allows us to print extra diagnostics along the 437 /// BugReport path. For example, showing the allocation site of the leaked 438 /// region. 439 class MallocBugVisitor final : public BugReporterVisitor { 440 protected: 441 enum NotificationMode { 442 Normal, 443 ReallocationFailed 444 }; 445 446 // The allocated region symbol tracked by the main analysis. 447 SymbolRef Sym; 448 449 // The mode we are in, i.e. what kind of diagnostics will be emitted. 450 NotificationMode Mode; 451 452 // A symbol from when the primary region should have been reallocated. 453 SymbolRef FailedReallocSymbol; 454 455 // A C++ destructor stack frame in which memory was released. Used for 456 // miscellaneous false positive suppression. 457 const StackFrameContext *ReleaseDestructorLC; 458 459 bool IsLeak; 460 461 public: 462 MallocBugVisitor(SymbolRef S, bool isLeak = false) 463 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 464 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 465 466 static void *getTag() { 467 static int Tag = 0; 468 return &Tag; 469 } 470 471 void Profile(llvm::FoldingSetNodeID &ID) const override { 472 ID.AddPointer(getTag()); 473 ID.AddPointer(Sym); 474 } 475 476 inline bool isAllocated(const RefState *S, const RefState *SPrev, 477 const Stmt *Stmt) { 478 // Did not track -> allocated. Other state (released) -> allocated. 479 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 480 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 481 (!SPrev || !(SPrev->isAllocated() || 482 SPrev->isAllocatedOfSizeZero()))); 483 } 484 485 inline bool isReleased(const RefState *S, const RefState *SPrev, 486 const Stmt *Stmt) { 487 // Did not track -> released. Other state (allocated) -> released. 488 // The statement associated with the release might be missing. 489 bool IsReleased = (S && S->isReleased()) && 490 (!SPrev || !SPrev->isReleased()); 491 assert(!IsReleased || 492 (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt))) || 493 (!Stmt && S->getAllocationFamily() == AF_InnerBuffer)); 494 return IsReleased; 495 } 496 497 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 498 const Stmt *Stmt) { 499 // Did not track -> relinquished. Other state (allocated) -> relinquished. 500 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 501 isa<ObjCPropertyRefExpr>(Stmt)) && 502 (S && S->isRelinquished()) && 503 (!SPrev || !SPrev->isRelinquished())); 504 } 505 506 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 507 const Stmt *Stmt) { 508 // If the expression is not a call, and the state change is 509 // released -> allocated, it must be the realloc return value 510 // check. If we have to handle more cases here, it might be cleaner just 511 // to track this extra bit in the state itself. 512 return ((!Stmt || !isa<CallExpr>(Stmt)) && 513 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 514 (SPrev && !(SPrev->isAllocated() || 515 SPrev->isAllocatedOfSizeZero()))); 516 } 517 518 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 519 const ExplodedNode *PrevN, 520 BugReporterContext &BRC, 521 BugReport &BR) override; 522 523 std::shared_ptr<PathDiagnosticPiece> 524 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 525 BugReport &BR) override { 526 if (!IsLeak) 527 return nullptr; 528 529 PathDiagnosticLocation L = 530 PathDiagnosticLocation::createEndOfPath(EndPathNode, 531 BRC.getSourceManager()); 532 // Do not add the statement itself as a range in case of leak. 533 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 534 false); 535 } 536 537 private: 538 class StackHintGeneratorForReallocationFailed 539 : public StackHintGeneratorForSymbol { 540 public: 541 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 542 : StackHintGeneratorForSymbol(S, M) {} 543 544 std::string getMessageForArg(const Expr *ArgE, 545 unsigned ArgIndex) override { 546 // Printed parameters start at 1, not 0. 547 ++ArgIndex; 548 549 SmallString<200> buf; 550 llvm::raw_svector_ostream os(buf); 551 552 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 553 << " parameter failed"; 554 555 return os.str(); 556 } 557 558 std::string getMessageForReturn(const CallExpr *CallExpr) override { 559 return "Reallocation of returned value failed"; 560 } 561 }; 562 }; 563 }; 564 } // end anonymous namespace 565 566 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 567 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 568 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 569 570 // A map from the freed symbol to the symbol representing the return value of 571 // the free function. 572 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 573 574 namespace { 575 class StopTrackingCallback final : public SymbolVisitor { 576 ProgramStateRef state; 577 public: 578 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 579 ProgramStateRef getState() const { return state; } 580 581 bool VisitSymbol(SymbolRef sym) override { 582 state = state->remove<RegionState>(sym); 583 return true; 584 } 585 }; 586 } // end anonymous namespace 587 588 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 589 if (II_malloc) 590 return; 591 II_alloca = &Ctx.Idents.get("alloca"); 592 II_malloc = &Ctx.Idents.get("malloc"); 593 II_free = &Ctx.Idents.get("free"); 594 II_realloc = &Ctx.Idents.get("realloc"); 595 II_reallocf = &Ctx.Idents.get("reallocf"); 596 II_calloc = &Ctx.Idents.get("calloc"); 597 II_valloc = &Ctx.Idents.get("valloc"); 598 II_strdup = &Ctx.Idents.get("strdup"); 599 II_strndup = &Ctx.Idents.get("strndup"); 600 II_wcsdup = &Ctx.Idents.get("wcsdup"); 601 II_kmalloc = &Ctx.Idents.get("kmalloc"); 602 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 603 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 604 605 //MSVC uses `_`-prefixed instead, so we check for them too. 606 II_win_strdup = &Ctx.Idents.get("_strdup"); 607 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 608 II_win_alloca = &Ctx.Idents.get("_alloca"); 609 610 // Glib 611 II_g_malloc = &Ctx.Idents.get("g_malloc"); 612 II_g_malloc0 = &Ctx.Idents.get("g_malloc0"); 613 II_g_realloc = &Ctx.Idents.get("g_realloc"); 614 II_g_try_malloc = &Ctx.Idents.get("g_try_malloc"); 615 II_g_try_malloc0 = &Ctx.Idents.get("g_try_malloc0"); 616 II_g_try_realloc = &Ctx.Idents.get("g_try_realloc"); 617 II_g_free = &Ctx.Idents.get("g_free"); 618 II_g_memdup = &Ctx.Idents.get("g_memdup"); 619 II_g_malloc_n = &Ctx.Idents.get("g_malloc_n"); 620 II_g_malloc0_n = &Ctx.Idents.get("g_malloc0_n"); 621 II_g_realloc_n = &Ctx.Idents.get("g_realloc_n"); 622 II_g_try_malloc_n = &Ctx.Idents.get("g_try_malloc_n"); 623 II_g_try_malloc0_n = &Ctx.Idents.get("g_try_malloc0_n"); 624 II_g_try_realloc_n = &Ctx.Idents.get("g_try_realloc_n"); 625 } 626 627 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 628 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 629 return true; 630 631 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 632 return true; 633 634 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 635 return true; 636 637 if (isStandardNewDelete(FD, C)) 638 return true; 639 640 return false; 641 } 642 643 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 644 ASTContext &C, 645 AllocationFamily Family, 646 MemoryOperationKind MemKind) const { 647 if (!FD) 648 return false; 649 650 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 651 MemKind == MemoryOperationKind::MOK_Free); 652 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 653 MemKind == MemoryOperationKind::MOK_Allocate); 654 655 if (FD->getKind() == Decl::Function) { 656 const IdentifierInfo *FunI = FD->getIdentifier(); 657 initIdentifierInfo(C); 658 659 if (Family == AF_Malloc && CheckFree) { 660 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf || 661 FunI == II_g_free) 662 return true; 663 } 664 665 if (Family == AF_Malloc && CheckAlloc) { 666 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 667 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 668 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 669 FunI == II_win_wcsdup || FunI == II_kmalloc || 670 FunI == II_g_malloc || FunI == II_g_malloc0 || 671 FunI == II_g_realloc || FunI == II_g_try_malloc || 672 FunI == II_g_try_malloc0 || FunI == II_g_try_realloc || 673 FunI == II_g_memdup || FunI == II_g_malloc_n || 674 FunI == II_g_malloc0_n || FunI == II_g_realloc_n || 675 FunI == II_g_try_malloc_n || FunI == II_g_try_malloc0_n || 676 FunI == II_g_try_realloc_n) 677 return true; 678 } 679 680 if (Family == AF_IfNameIndex && CheckFree) { 681 if (FunI == II_if_freenameindex) 682 return true; 683 } 684 685 if (Family == AF_IfNameIndex && CheckAlloc) { 686 if (FunI == II_if_nameindex) 687 return true; 688 } 689 690 if (Family == AF_Alloca && CheckAlloc) { 691 if (FunI == II_alloca || FunI == II_win_alloca) 692 return true; 693 } 694 } 695 696 if (Family != AF_Malloc) 697 return false; 698 699 if (IsOptimistic && FD->hasAttrs()) { 700 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 701 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 702 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 703 if (CheckFree) 704 return true; 705 } else if (OwnKind == OwnershipAttr::Returns) { 706 if (CheckAlloc) 707 return true; 708 } 709 } 710 } 711 712 return false; 713 } 714 715 // Tells if the callee is one of the following: 716 // 1) A global non-placement new/delete operator function. 717 // 2) A global placement operator function with the single placement argument 718 // of type std::nothrow_t. 719 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 720 ASTContext &C) const { 721 if (!FD) 722 return false; 723 724 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 725 if (Kind != OO_New && Kind != OO_Array_New && 726 Kind != OO_Delete && Kind != OO_Array_Delete) 727 return false; 728 729 // Skip all operator new/delete methods. 730 if (isa<CXXMethodDecl>(FD)) 731 return false; 732 733 // Return true if tested operator is a standard placement nothrow operator. 734 if (FD->getNumParams() == 2) { 735 QualType T = FD->getParamDecl(1)->getType(); 736 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 737 return II->getName().equals("nothrow_t"); 738 } 739 740 // Skip placement operators. 741 if (FD->getNumParams() != 1 || FD->isVariadic()) 742 return false; 743 744 // One of the standard new/new[]/delete/delete[] non-placement operators. 745 return true; 746 } 747 748 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 749 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 750 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 751 // 752 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 753 // 754 // One of the possible flags is M_ZERO, which means 'give me back an 755 // allocation which is already zeroed', like calloc. 756 757 // 2-argument kmalloc(), as used in the Linux kernel: 758 // 759 // void *kmalloc(size_t size, gfp_t flags); 760 // 761 // Has the similar flag value __GFP_ZERO. 762 763 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 764 // code could be shared. 765 766 ASTContext &Ctx = C.getASTContext(); 767 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 768 769 if (!KernelZeroFlagVal.hasValue()) { 770 if (OS == llvm::Triple::FreeBSD) 771 KernelZeroFlagVal = 0x0100; 772 else if (OS == llvm::Triple::NetBSD) 773 KernelZeroFlagVal = 0x0002; 774 else if (OS == llvm::Triple::OpenBSD) 775 KernelZeroFlagVal = 0x0008; 776 else if (OS == llvm::Triple::Linux) 777 // __GFP_ZERO 778 KernelZeroFlagVal = 0x8000; 779 else 780 // FIXME: We need a more general way of getting the M_ZERO value. 781 // See also: O_CREAT in UnixAPIChecker.cpp. 782 783 // Fall back to normal malloc behavior on platforms where we don't 784 // know M_ZERO. 785 return None; 786 } 787 788 // We treat the last argument as the flags argument, and callers fall-back to 789 // normal malloc on a None return. This works for the FreeBSD kernel malloc 790 // as well as Linux kmalloc. 791 if (CE->getNumArgs() < 2) 792 return None; 793 794 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 795 const SVal V = C.getSVal(FlagsEx); 796 if (!V.getAs<NonLoc>()) { 797 // The case where 'V' can be a location can only be due to a bad header, 798 // so in this case bail out. 799 return None; 800 } 801 802 NonLoc Flags = V.castAs<NonLoc>(); 803 NonLoc ZeroFlag = C.getSValBuilder() 804 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 805 .castAs<NonLoc>(); 806 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 807 Flags, ZeroFlag, 808 FlagsEx->getType()); 809 if (MaskedFlagsUC.isUnknownOrUndef()) 810 return None; 811 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 812 813 // Check if maskedFlags is non-zero. 814 ProgramStateRef TrueState, FalseState; 815 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 816 817 // If M_ZERO is set, treat this like calloc (initialized). 818 if (TrueState && !FalseState) { 819 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 820 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 821 } 822 823 return None; 824 } 825 826 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 827 const Expr *BlockBytes) { 828 SValBuilder &SB = C.getSValBuilder(); 829 SVal BlocksVal = C.getSVal(Blocks); 830 SVal BlockBytesVal = C.getSVal(BlockBytes); 831 ProgramStateRef State = C.getState(); 832 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 833 SB.getContext().getSizeType()); 834 return TotalSize; 835 } 836 837 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 838 if (C.wasInlined) 839 return; 840 841 const FunctionDecl *FD = C.getCalleeDecl(CE); 842 if (!FD) 843 return; 844 845 ProgramStateRef State = C.getState(); 846 bool ReleasedAllocatedMemory = false; 847 848 if (FD->getKind() == Decl::Function) { 849 initIdentifierInfo(C.getASTContext()); 850 IdentifierInfo *FunI = FD->getIdentifier(); 851 852 if (FunI == II_malloc || FunI == II_g_malloc || FunI == II_g_try_malloc) { 853 if (CE->getNumArgs() < 1) 854 return; 855 if (CE->getNumArgs() < 3) { 856 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 857 if (CE->getNumArgs() == 1) 858 State = ProcessZeroAllocation(C, CE, 0, State); 859 } else if (CE->getNumArgs() == 3) { 860 llvm::Optional<ProgramStateRef> MaybeState = 861 performKernelMalloc(CE, C, State); 862 if (MaybeState.hasValue()) 863 State = MaybeState.getValue(); 864 else 865 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 866 } 867 } else if (FunI == II_kmalloc) { 868 if (CE->getNumArgs() < 1) 869 return; 870 llvm::Optional<ProgramStateRef> MaybeState = 871 performKernelMalloc(CE, C, State); 872 if (MaybeState.hasValue()) 873 State = MaybeState.getValue(); 874 else 875 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 876 } else if (FunI == II_valloc) { 877 if (CE->getNumArgs() < 1) 878 return; 879 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 880 State = ProcessZeroAllocation(C, CE, 0, State); 881 } else if (FunI == II_realloc || FunI == II_g_realloc || 882 FunI == II_g_try_realloc) { 883 State = ReallocMemAux(C, CE, false, State); 884 State = ProcessZeroAllocation(C, CE, 1, State); 885 } else if (FunI == II_reallocf) { 886 State = ReallocMemAux(C, CE, true, State); 887 State = ProcessZeroAllocation(C, CE, 1, State); 888 } else if (FunI == II_calloc) { 889 State = CallocMem(C, CE, State); 890 State = ProcessZeroAllocation(C, CE, 0, State); 891 State = ProcessZeroAllocation(C, CE, 1, State); 892 } else if (FunI == II_free || FunI == II_g_free) { 893 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 894 } else if (FunI == II_strdup || FunI == II_win_strdup || 895 FunI == II_wcsdup || FunI == II_win_wcsdup) { 896 State = MallocUpdateRefState(C, CE, State); 897 } else if (FunI == II_strndup) { 898 State = MallocUpdateRefState(C, CE, State); 899 } else if (FunI == II_alloca || FunI == II_win_alloca) { 900 if (CE->getNumArgs() < 1) 901 return; 902 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 903 AF_Alloca); 904 State = ProcessZeroAllocation(C, CE, 0, State); 905 } else if (isStandardNewDelete(FD, C.getASTContext())) { 906 // Process direct calls to operator new/new[]/delete/delete[] functions 907 // as distinct from new/new[]/delete/delete[] expressions that are 908 // processed by the checkPostStmt callbacks for CXXNewExpr and 909 // CXXDeleteExpr. 910 OverloadedOperatorKind K = FD->getOverloadedOperator(); 911 if (K == OO_New) { 912 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 913 AF_CXXNew); 914 State = ProcessZeroAllocation(C, CE, 0, State); 915 } 916 else if (K == OO_Array_New) { 917 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 918 AF_CXXNewArray); 919 State = ProcessZeroAllocation(C, CE, 0, State); 920 } 921 else if (K == OO_Delete || K == OO_Array_Delete) 922 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 923 else 924 llvm_unreachable("not a new/delete operator"); 925 } else if (FunI == II_if_nameindex) { 926 // Should we model this differently? We can allocate a fixed number of 927 // elements with zeros in the last one. 928 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 929 AF_IfNameIndex); 930 } else if (FunI == II_if_freenameindex) { 931 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 932 } else if (FunI == II_g_malloc0 || FunI == II_g_try_malloc0) { 933 if (CE->getNumArgs() < 1) 934 return; 935 SValBuilder &svalBuilder = C.getSValBuilder(); 936 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 937 State = MallocMemAux(C, CE, CE->getArg(0), zeroVal, State); 938 State = ProcessZeroAllocation(C, CE, 0, State); 939 } else if (FunI == II_g_memdup) { 940 if (CE->getNumArgs() < 2) 941 return; 942 State = MallocMemAux(C, CE, CE->getArg(1), UndefinedVal(), State); 943 State = ProcessZeroAllocation(C, CE, 1, State); 944 } else if (FunI == II_g_malloc_n || FunI == II_g_try_malloc_n || 945 FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 946 if (CE->getNumArgs() < 2) 947 return; 948 SVal Init = UndefinedVal(); 949 if (FunI == II_g_malloc0_n || FunI == II_g_try_malloc0_n) { 950 SValBuilder &SB = C.getSValBuilder(); 951 Init = SB.makeZeroVal(SB.getContext().CharTy); 952 } 953 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 954 State = MallocMemAux(C, CE, TotalSize, Init, State); 955 State = ProcessZeroAllocation(C, CE, 0, State); 956 State = ProcessZeroAllocation(C, CE, 1, State); 957 } else if (FunI == II_g_realloc_n || FunI == II_g_try_realloc_n) { 958 if (CE->getNumArgs() < 3) 959 return; 960 State = ReallocMemAux(C, CE, false, State, true); 961 State = ProcessZeroAllocation(C, CE, 1, State); 962 State = ProcessZeroAllocation(C, CE, 2, State); 963 } 964 } 965 966 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 967 // Check all the attributes, if there are any. 968 // There can be multiple of these attributes. 969 if (FD->hasAttrs()) 970 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 971 switch (I->getOwnKind()) { 972 case OwnershipAttr::Returns: 973 State = MallocMemReturnsAttr(C, CE, I, State); 974 break; 975 case OwnershipAttr::Takes: 976 case OwnershipAttr::Holds: 977 State = FreeMemAttr(C, CE, I, State); 978 break; 979 } 980 } 981 } 982 C.addTransition(State); 983 } 984 985 // Performs a 0-sized allocations check. 986 ProgramStateRef MallocChecker::ProcessZeroAllocation( 987 CheckerContext &C, const Expr *E, const unsigned AllocationSizeArg, 988 ProgramStateRef State, Optional<SVal> RetVal) const { 989 if (!State) 990 return nullptr; 991 992 if (!RetVal) 993 RetVal = C.getSVal(E); 994 995 const Expr *Arg = nullptr; 996 997 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 998 Arg = CE->getArg(AllocationSizeArg); 999 } 1000 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1001 if (NE->isArray()) 1002 Arg = NE->getArraySize(); 1003 else 1004 return State; 1005 } 1006 else 1007 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1008 1009 assert(Arg); 1010 1011 Optional<DefinedSVal> DefArgVal = C.getSVal(Arg).getAs<DefinedSVal>(); 1012 1013 if (!DefArgVal) 1014 return State; 1015 1016 // Check if the allocation size is 0. 1017 ProgramStateRef TrueState, FalseState; 1018 SValBuilder &SvalBuilder = C.getSValBuilder(); 1019 DefinedSVal Zero = 1020 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1021 1022 std::tie(TrueState, FalseState) = 1023 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1024 1025 if (TrueState && !FalseState) { 1026 SymbolRef Sym = RetVal->getAsLocSymbol(); 1027 if (!Sym) 1028 return State; 1029 1030 const RefState *RS = State->get<RegionState>(Sym); 1031 if (RS) { 1032 if (RS->isAllocated()) 1033 return TrueState->set<RegionState>(Sym, 1034 RefState::getAllocatedOfSizeZero(RS)); 1035 else 1036 return State; 1037 } else { 1038 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1039 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1040 // tracked. Add zero-reallocated Sym to the state to catch references 1041 // to zero-allocated memory. 1042 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1043 } 1044 } 1045 1046 // Assume the value is non-zero going forward. 1047 assert(FalseState); 1048 return FalseState; 1049 } 1050 1051 static QualType getDeepPointeeType(QualType T) { 1052 QualType Result = T, PointeeType = T->getPointeeType(); 1053 while (!PointeeType.isNull()) { 1054 Result = PointeeType; 1055 PointeeType = PointeeType->getPointeeType(); 1056 } 1057 return Result; 1058 } 1059 1060 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 1061 1062 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1063 if (!ConstructE) 1064 return false; 1065 1066 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1067 return false; 1068 1069 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1070 1071 // Iterate over the constructor parameters. 1072 for (const auto *CtorParam : CtorD->parameters()) { 1073 1074 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1075 if (CtorParamPointeeT.isNull()) 1076 continue; 1077 1078 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1079 1080 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1081 return true; 1082 } 1083 1084 return false; 1085 } 1086 1087 void MallocChecker::processNewAllocation(const CXXNewExpr *NE, 1088 CheckerContext &C, 1089 SVal Target) const { 1090 if (NE->getNumPlacementArgs()) 1091 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 1092 E = NE->placement_arg_end(); I != E; ++I) 1093 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 1094 checkUseAfterFree(Sym, C, *I); 1095 1096 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 1097 return; 1098 1099 ParentMap &PM = C.getLocationContext()->getParentMap(); 1100 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 1101 return; 1102 1103 ProgramStateRef State = C.getState(); 1104 // The return value from operator new is bound to a specified initialization 1105 // value (if any) and we don't want to loose this value. So we call 1106 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 1107 // existing binding. 1108 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 1109 : AF_CXXNew, Target); 1110 State = addExtentSize(C, NE, State, Target); 1111 State = ProcessZeroAllocation(C, NE, 0, State, Target); 1112 C.addTransition(State); 1113 } 1114 1115 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 1116 CheckerContext &C) const { 1117 if (!C.getAnalysisManager().getAnalyzerOptions().mayInlineCXXAllocator()) 1118 processNewAllocation(NE, C, C.getSVal(NE)); 1119 } 1120 1121 void MallocChecker::checkNewAllocator(const CXXNewExpr *NE, SVal Target, 1122 CheckerContext &C) const { 1123 if (!C.wasInlined) 1124 processNewAllocation(NE, C, Target); 1125 } 1126 1127 // Sets the extent value of the MemRegion allocated by 1128 // new expression NE to its size in Bytes. 1129 // 1130 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1131 const CXXNewExpr *NE, 1132 ProgramStateRef State, 1133 SVal Target) { 1134 if (!State) 1135 return nullptr; 1136 SValBuilder &svalBuilder = C.getSValBuilder(); 1137 SVal ElementCount; 1138 const SubRegion *Region; 1139 if (NE->isArray()) { 1140 const Expr *SizeExpr = NE->getArraySize(); 1141 ElementCount = C.getSVal(SizeExpr); 1142 // Store the extent size for the (symbolic)region 1143 // containing the elements. 1144 Region = Target.getAsRegion() 1145 ->getAs<SubRegion>() 1146 ->StripCasts() 1147 ->getAs<SubRegion>(); 1148 } else { 1149 ElementCount = svalBuilder.makeIntVal(1, true); 1150 Region = Target.getAsRegion()->getAs<SubRegion>(); 1151 } 1152 assert(Region); 1153 1154 // Set the region's extent equal to the Size in Bytes. 1155 QualType ElementType = NE->getAllocatedType(); 1156 ASTContext &AstContext = C.getASTContext(); 1157 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1158 1159 if (ElementCount.getAs<NonLoc>()) { 1160 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1161 // size in Bytes = ElementCount*TypeSize 1162 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1163 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1164 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1165 svalBuilder.getArrayIndexType()); 1166 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1167 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1168 State = State->assume(extentMatchesSize, true); 1169 } 1170 return State; 1171 } 1172 1173 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1174 CheckerContext &C) const { 1175 1176 if (!ChecksEnabled[CK_NewDeleteChecker]) 1177 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1178 checkUseAfterFree(Sym, C, DE->getArgument()); 1179 1180 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1181 return; 1182 1183 ProgramStateRef State = C.getState(); 1184 bool ReleasedAllocated; 1185 State = FreeMemAux(C, DE->getArgument(), DE, State, 1186 /*Hold*/false, ReleasedAllocated); 1187 1188 C.addTransition(State); 1189 } 1190 1191 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1192 // If the first selector piece is one of the names below, assume that the 1193 // object takes ownership of the memory, promising to eventually deallocate it 1194 // with free(). 1195 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1196 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1197 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1198 return FirstSlot == "dataWithBytesNoCopy" || 1199 FirstSlot == "initWithBytesNoCopy" || 1200 FirstSlot == "initWithCharactersNoCopy"; 1201 } 1202 1203 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1204 Selector S = Call.getSelector(); 1205 1206 // FIXME: We should not rely on fully-constrained symbols being folded. 1207 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1208 if (S.getNameForSlot(i).equals("freeWhenDone")) 1209 return !Call.getArgSVal(i).isZeroConstant(); 1210 1211 return None; 1212 } 1213 1214 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1215 CheckerContext &C) const { 1216 if (C.wasInlined) 1217 return; 1218 1219 if (!isKnownDeallocObjCMethodName(Call)) 1220 return; 1221 1222 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1223 if (!*FreeWhenDone) 1224 return; 1225 1226 bool ReleasedAllocatedMemory; 1227 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1228 Call.getOriginExpr(), C.getState(), 1229 /*Hold=*/true, ReleasedAllocatedMemory, 1230 /*RetNullOnFailure=*/true); 1231 1232 C.addTransition(State); 1233 } 1234 1235 ProgramStateRef 1236 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1237 const OwnershipAttr *Att, 1238 ProgramStateRef State) const { 1239 if (!State) 1240 return nullptr; 1241 1242 if (Att->getModule() != II_malloc) 1243 return nullptr; 1244 1245 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1246 if (I != E) { 1247 return MallocMemAux(C, CE, CE->getArg(I->getASTIndex()), UndefinedVal(), 1248 State); 1249 } 1250 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1251 } 1252 1253 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1254 const CallExpr *CE, 1255 const Expr *SizeEx, SVal Init, 1256 ProgramStateRef State, 1257 AllocationFamily Family) { 1258 if (!State) 1259 return nullptr; 1260 1261 return MallocMemAux(C, CE, C.getSVal(SizeEx), Init, State, Family); 1262 } 1263 1264 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1265 const CallExpr *CE, 1266 SVal Size, SVal Init, 1267 ProgramStateRef State, 1268 AllocationFamily Family) { 1269 if (!State) 1270 return nullptr; 1271 1272 // We expect the malloc functions to return a pointer. 1273 if (!Loc::isLocType(CE->getType())) 1274 return nullptr; 1275 1276 // Bind the return value to the symbolic value from the heap region. 1277 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1278 // side effects other than what we model here. 1279 unsigned Count = C.blockCount(); 1280 SValBuilder &svalBuilder = C.getSValBuilder(); 1281 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1282 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1283 .castAs<DefinedSVal>(); 1284 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1285 1286 // Fill the region with the initialization value. 1287 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1288 1289 // Set the region's extent equal to the Size parameter. 1290 const SymbolicRegion *R = 1291 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1292 if (!R) 1293 return nullptr; 1294 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1295 Size.getAs<DefinedOrUnknownSVal>()) { 1296 SValBuilder &svalBuilder = C.getSValBuilder(); 1297 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1298 DefinedOrUnknownSVal extentMatchesSize = 1299 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1300 1301 State = State->assume(extentMatchesSize, true); 1302 assert(State); 1303 } 1304 1305 return MallocUpdateRefState(C, CE, State, Family); 1306 } 1307 1308 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1309 const Expr *E, 1310 ProgramStateRef State, 1311 AllocationFamily Family, 1312 Optional<SVal> RetVal) { 1313 if (!State) 1314 return nullptr; 1315 1316 // Get the return value. 1317 if (!RetVal) 1318 RetVal = C.getSVal(E); 1319 1320 // We expect the malloc functions to return a pointer. 1321 if (!RetVal->getAs<Loc>()) 1322 return nullptr; 1323 1324 SymbolRef Sym = RetVal->getAsLocSymbol(); 1325 // This is a return value of a function that was not inlined, such as malloc() 1326 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1327 assert(Sym); 1328 1329 // Set the symbol's state to Allocated. 1330 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1331 } 1332 1333 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1334 const CallExpr *CE, 1335 const OwnershipAttr *Att, 1336 ProgramStateRef State) const { 1337 if (!State) 1338 return nullptr; 1339 1340 if (Att->getModule() != II_malloc) 1341 return nullptr; 1342 1343 bool ReleasedAllocated = false; 1344 1345 for (const auto &Arg : Att->args()) { 1346 ProgramStateRef StateI = FreeMemAux( 1347 C, CE, State, Arg.getASTIndex(), 1348 Att->getOwnKind() == OwnershipAttr::Holds, ReleasedAllocated); 1349 if (StateI) 1350 State = StateI; 1351 } 1352 return State; 1353 } 1354 1355 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1356 const CallExpr *CE, 1357 ProgramStateRef State, 1358 unsigned Num, 1359 bool Hold, 1360 bool &ReleasedAllocated, 1361 bool ReturnsNullOnFailure) const { 1362 if (!State) 1363 return nullptr; 1364 1365 if (CE->getNumArgs() < (Num + 1)) 1366 return nullptr; 1367 1368 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1369 ReleasedAllocated, ReturnsNullOnFailure); 1370 } 1371 1372 /// Checks if the previous call to free on the given symbol failed - if free 1373 /// failed, returns true. Also, returns the corresponding return value symbol. 1374 static bool didPreviousFreeFail(ProgramStateRef State, 1375 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1376 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1377 if (Ret) { 1378 assert(*Ret && "We should not store the null return symbol"); 1379 ConstraintManager &CMgr = State->getConstraintManager(); 1380 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1381 RetStatusSymbol = *Ret; 1382 return FreeFailed.isConstrainedTrue(); 1383 } 1384 return false; 1385 } 1386 1387 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1388 const Stmt *S) const { 1389 if (!S) 1390 return AF_None; 1391 1392 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1393 const FunctionDecl *FD = C.getCalleeDecl(CE); 1394 1395 if (!FD) 1396 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1397 1398 ASTContext &Ctx = C.getASTContext(); 1399 1400 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1401 return AF_Malloc; 1402 1403 if (isStandardNewDelete(FD, Ctx)) { 1404 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1405 if (Kind == OO_New || Kind == OO_Delete) 1406 return AF_CXXNew; 1407 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1408 return AF_CXXNewArray; 1409 } 1410 1411 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1412 return AF_IfNameIndex; 1413 1414 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1415 return AF_Alloca; 1416 1417 return AF_None; 1418 } 1419 1420 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1421 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1422 1423 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1424 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1425 1426 if (isa<ObjCMessageExpr>(S)) 1427 return AF_Malloc; 1428 1429 return AF_None; 1430 } 1431 1432 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1433 const Expr *E) const { 1434 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1435 // FIXME: This doesn't handle indirect calls. 1436 const FunctionDecl *FD = CE->getDirectCallee(); 1437 if (!FD) 1438 return false; 1439 1440 os << *FD; 1441 if (!FD->isOverloadedOperator()) 1442 os << "()"; 1443 return true; 1444 } 1445 1446 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1447 if (Msg->isInstanceMessage()) 1448 os << "-"; 1449 else 1450 os << "+"; 1451 Msg->getSelector().print(os); 1452 return true; 1453 } 1454 1455 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1456 os << "'" 1457 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1458 << "'"; 1459 return true; 1460 } 1461 1462 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1463 os << "'" 1464 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1465 << "'"; 1466 return true; 1467 } 1468 1469 return false; 1470 } 1471 1472 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1473 const Expr *E) const { 1474 AllocationFamily Family = getAllocationFamily(C, E); 1475 1476 switch(Family) { 1477 case AF_Malloc: os << "malloc()"; return; 1478 case AF_CXXNew: os << "'new'"; return; 1479 case AF_CXXNewArray: os << "'new[]'"; return; 1480 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1481 case AF_InnerBuffer: os << "container-specific allocator"; return; 1482 case AF_Alloca: 1483 case AF_None: llvm_unreachable("not a deallocation expression"); 1484 } 1485 } 1486 1487 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1488 AllocationFamily Family) const { 1489 switch(Family) { 1490 case AF_Malloc: os << "free()"; return; 1491 case AF_CXXNew: os << "'delete'"; return; 1492 case AF_CXXNewArray: os << "'delete[]'"; return; 1493 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1494 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1495 case AF_Alloca: 1496 case AF_None: llvm_unreachable("suspicious argument"); 1497 } 1498 } 1499 1500 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1501 const Expr *ArgExpr, 1502 const Expr *ParentExpr, 1503 ProgramStateRef State, 1504 bool Hold, 1505 bool &ReleasedAllocated, 1506 bool ReturnsNullOnFailure) const { 1507 1508 if (!State) 1509 return nullptr; 1510 1511 SVal ArgVal = C.getSVal(ArgExpr); 1512 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1513 return nullptr; 1514 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1515 1516 // Check for null dereferences. 1517 if (!location.getAs<Loc>()) 1518 return nullptr; 1519 1520 // The explicit NULL case, no operation is performed. 1521 ProgramStateRef notNullState, nullState; 1522 std::tie(notNullState, nullState) = State->assume(location); 1523 if (nullState && !notNullState) 1524 return nullptr; 1525 1526 // Unknown values could easily be okay 1527 // Undefined values are handled elsewhere 1528 if (ArgVal.isUnknownOrUndef()) 1529 return nullptr; 1530 1531 const MemRegion *R = ArgVal.getAsRegion(); 1532 1533 // Nonlocs can't be freed, of course. 1534 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1535 if (!R) { 1536 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1537 return nullptr; 1538 } 1539 1540 R = R->StripCasts(); 1541 1542 // Blocks might show up as heap data, but should not be free()d 1543 if (isa<BlockDataRegion>(R)) { 1544 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1545 return nullptr; 1546 } 1547 1548 const MemSpaceRegion *MS = R->getMemorySpace(); 1549 1550 // Parameters, locals, statics, globals, and memory returned by 1551 // __builtin_alloca() shouldn't be freed. 1552 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1553 // FIXME: at the time this code was written, malloc() regions were 1554 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1555 // This means that there isn't actually anything from HeapSpaceRegion 1556 // that should be freed, even though we allow it here. 1557 // Of course, free() can work on memory allocated outside the current 1558 // function, so UnknownSpaceRegion is always a possibility. 1559 // False negatives are better than false positives. 1560 1561 if (isa<AllocaRegion>(R)) 1562 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1563 else 1564 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1565 1566 return nullptr; 1567 } 1568 1569 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1570 // Various cases could lead to non-symbol values here. 1571 // For now, ignore them. 1572 if (!SrBase) 1573 return nullptr; 1574 1575 SymbolRef SymBase = SrBase->getSymbol(); 1576 const RefState *RsBase = State->get<RegionState>(SymBase); 1577 SymbolRef PreviousRetStatusSymbol = nullptr; 1578 1579 if (RsBase) { 1580 1581 // Memory returned by alloca() shouldn't be freed. 1582 if (RsBase->getAllocationFamily() == AF_Alloca) { 1583 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1584 return nullptr; 1585 } 1586 1587 // Check for double free first. 1588 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1589 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1590 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1591 SymBase, PreviousRetStatusSymbol); 1592 return nullptr; 1593 1594 // If the pointer is allocated or escaped, but we are now trying to free it, 1595 // check that the call to free is proper. 1596 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1597 RsBase->isEscaped()) { 1598 1599 // Check if an expected deallocation function matches the real one. 1600 bool DeallocMatchesAlloc = 1601 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1602 if (!DeallocMatchesAlloc) { 1603 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1604 ParentExpr, RsBase, SymBase, Hold); 1605 return nullptr; 1606 } 1607 1608 // Check if the memory location being freed is the actual location 1609 // allocated, or an offset. 1610 RegionOffset Offset = R->getAsOffset(); 1611 if (Offset.isValid() && 1612 !Offset.hasSymbolicOffset() && 1613 Offset.getOffset() != 0) { 1614 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1615 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1616 AllocExpr); 1617 return nullptr; 1618 } 1619 } 1620 } 1621 1622 if (SymBase->getType()->isFunctionPointerType()) { 1623 ReportFunctionPointerFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1624 return nullptr; 1625 } 1626 1627 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1628 RsBase->isAllocatedOfSizeZero()); 1629 1630 // Clean out the info on previous call to free return info. 1631 State = State->remove<FreeReturnValue>(SymBase); 1632 1633 // Keep track of the return value. If it is NULL, we will know that free 1634 // failed. 1635 if (ReturnsNullOnFailure) { 1636 SVal RetVal = C.getSVal(ParentExpr); 1637 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1638 if (RetStatusSymbol) { 1639 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1640 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1641 } 1642 } 1643 1644 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1645 : getAllocationFamily(C, ParentExpr); 1646 // Normal free. 1647 if (Hold) 1648 return State->set<RegionState>(SymBase, 1649 RefState::getRelinquished(Family, 1650 ParentExpr)); 1651 1652 return State->set<RegionState>(SymBase, 1653 RefState::getReleased(Family, ParentExpr)); 1654 } 1655 1656 Optional<MallocChecker::CheckKind> 1657 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1658 bool IsALeakCheck) const { 1659 switch (Family) { 1660 case AF_Malloc: 1661 case AF_Alloca: 1662 case AF_IfNameIndex: { 1663 if (ChecksEnabled[CK_MallocChecker]) 1664 return CK_MallocChecker; 1665 1666 return Optional<MallocChecker::CheckKind>(); 1667 } 1668 case AF_CXXNew: 1669 case AF_CXXNewArray: 1670 // FIXME: Add new CheckKind for AF_InnerBuffer. 1671 case AF_InnerBuffer: { 1672 if (IsALeakCheck) { 1673 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1674 return CK_NewDeleteLeaksChecker; 1675 } 1676 else { 1677 if (ChecksEnabled[CK_NewDeleteChecker]) 1678 return CK_NewDeleteChecker; 1679 } 1680 return Optional<MallocChecker::CheckKind>(); 1681 } 1682 case AF_None: { 1683 llvm_unreachable("no family"); 1684 } 1685 } 1686 llvm_unreachable("unhandled family"); 1687 } 1688 1689 Optional<MallocChecker::CheckKind> 1690 MallocChecker::getCheckIfTracked(CheckerContext &C, 1691 const Stmt *AllocDeallocStmt, 1692 bool IsALeakCheck) const { 1693 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1694 IsALeakCheck); 1695 } 1696 1697 Optional<MallocChecker::CheckKind> 1698 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1699 bool IsALeakCheck) const { 1700 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1701 return CK_MallocChecker; 1702 1703 const RefState *RS = C.getState()->get<RegionState>(Sym); 1704 assert(RS); 1705 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1706 } 1707 1708 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1709 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1710 os << "an integer (" << IntVal->getValue() << ")"; 1711 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1712 os << "a constant address (" << ConstAddr->getValue() << ")"; 1713 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1714 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1715 else 1716 return false; 1717 1718 return true; 1719 } 1720 1721 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1722 const MemRegion *MR) { 1723 switch (MR->getKind()) { 1724 case MemRegion::FunctionCodeRegionKind: { 1725 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1726 if (FD) 1727 os << "the address of the function '" << *FD << '\''; 1728 else 1729 os << "the address of a function"; 1730 return true; 1731 } 1732 case MemRegion::BlockCodeRegionKind: 1733 os << "block text"; 1734 return true; 1735 case MemRegion::BlockDataRegionKind: 1736 // FIXME: where the block came from? 1737 os << "a block"; 1738 return true; 1739 default: { 1740 const MemSpaceRegion *MS = MR->getMemorySpace(); 1741 1742 if (isa<StackLocalsSpaceRegion>(MS)) { 1743 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1744 const VarDecl *VD; 1745 if (VR) 1746 VD = VR->getDecl(); 1747 else 1748 VD = nullptr; 1749 1750 if (VD) 1751 os << "the address of the local variable '" << VD->getName() << "'"; 1752 else 1753 os << "the address of a local stack variable"; 1754 return true; 1755 } 1756 1757 if (isa<StackArgumentsSpaceRegion>(MS)) { 1758 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1759 const VarDecl *VD; 1760 if (VR) 1761 VD = VR->getDecl(); 1762 else 1763 VD = nullptr; 1764 1765 if (VD) 1766 os << "the address of the parameter '" << VD->getName() << "'"; 1767 else 1768 os << "the address of a parameter"; 1769 return true; 1770 } 1771 1772 if (isa<GlobalsSpaceRegion>(MS)) { 1773 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1774 const VarDecl *VD; 1775 if (VR) 1776 VD = VR->getDecl(); 1777 else 1778 VD = nullptr; 1779 1780 if (VD) { 1781 if (VD->isStaticLocal()) 1782 os << "the address of the static variable '" << VD->getName() << "'"; 1783 else 1784 os << "the address of the global variable '" << VD->getName() << "'"; 1785 } else 1786 os << "the address of a global variable"; 1787 return true; 1788 } 1789 1790 return false; 1791 } 1792 } 1793 } 1794 1795 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1796 SourceRange Range, 1797 const Expr *DeallocExpr) const { 1798 1799 if (!ChecksEnabled[CK_MallocChecker] && 1800 !ChecksEnabled[CK_NewDeleteChecker]) 1801 return; 1802 1803 Optional<MallocChecker::CheckKind> CheckKind = 1804 getCheckIfTracked(C, DeallocExpr); 1805 if (!CheckKind.hasValue()) 1806 return; 1807 1808 if (ExplodedNode *N = C.generateErrorNode()) { 1809 if (!BT_BadFree[*CheckKind]) 1810 BT_BadFree[*CheckKind].reset(new BugType( 1811 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 1812 1813 SmallString<100> buf; 1814 llvm::raw_svector_ostream os(buf); 1815 1816 const MemRegion *MR = ArgVal.getAsRegion(); 1817 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1818 MR = ER->getSuperRegion(); 1819 1820 os << "Argument to "; 1821 if (!printAllocDeallocName(os, C, DeallocExpr)) 1822 os << "deallocator"; 1823 1824 os << " is "; 1825 bool Summarized = MR ? SummarizeRegion(os, MR) 1826 : SummarizeValue(os, ArgVal); 1827 if (Summarized) 1828 os << ", which is not memory allocated by "; 1829 else 1830 os << "not memory allocated by "; 1831 1832 printExpectedAllocName(os, C, DeallocExpr); 1833 1834 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1835 R->markInteresting(MR); 1836 R->addRange(Range); 1837 C.emitReport(std::move(R)); 1838 } 1839 } 1840 1841 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1842 SourceRange Range) const { 1843 1844 Optional<MallocChecker::CheckKind> CheckKind; 1845 1846 if (ChecksEnabled[CK_MallocChecker]) 1847 CheckKind = CK_MallocChecker; 1848 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1849 CheckKind = CK_MismatchedDeallocatorChecker; 1850 else 1851 return; 1852 1853 if (ExplodedNode *N = C.generateErrorNode()) { 1854 if (!BT_FreeAlloca[*CheckKind]) 1855 BT_FreeAlloca[*CheckKind].reset(new BugType( 1856 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 1857 1858 auto R = llvm::make_unique<BugReport>( 1859 *BT_FreeAlloca[*CheckKind], 1860 "Memory allocated by alloca() should not be deallocated", N); 1861 R->markInteresting(ArgVal.getAsRegion()); 1862 R->addRange(Range); 1863 C.emitReport(std::move(R)); 1864 } 1865 } 1866 1867 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1868 SourceRange Range, 1869 const Expr *DeallocExpr, 1870 const RefState *RS, 1871 SymbolRef Sym, 1872 bool OwnershipTransferred) const { 1873 1874 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1875 return; 1876 1877 if (ExplodedNode *N = C.generateErrorNode()) { 1878 if (!BT_MismatchedDealloc) 1879 BT_MismatchedDealloc.reset( 1880 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1881 "Bad deallocator", categories::MemoryError)); 1882 1883 SmallString<100> buf; 1884 llvm::raw_svector_ostream os(buf); 1885 1886 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1887 SmallString<20> AllocBuf; 1888 llvm::raw_svector_ostream AllocOs(AllocBuf); 1889 SmallString<20> DeallocBuf; 1890 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1891 1892 if (OwnershipTransferred) { 1893 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1894 os << DeallocOs.str() << " cannot"; 1895 else 1896 os << "Cannot"; 1897 1898 os << " take ownership of memory"; 1899 1900 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1901 os << " allocated by " << AllocOs.str(); 1902 } else { 1903 os << "Memory"; 1904 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1905 os << " allocated by " << AllocOs.str(); 1906 1907 os << " should be deallocated by "; 1908 printExpectedDeallocName(os, RS->getAllocationFamily()); 1909 1910 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1911 os << ", not " << DeallocOs.str(); 1912 } 1913 1914 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1915 R->markInteresting(Sym); 1916 R->addRange(Range); 1917 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1918 C.emitReport(std::move(R)); 1919 } 1920 } 1921 1922 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1923 SourceRange Range, const Expr *DeallocExpr, 1924 const Expr *AllocExpr) const { 1925 1926 1927 if (!ChecksEnabled[CK_MallocChecker] && 1928 !ChecksEnabled[CK_NewDeleteChecker]) 1929 return; 1930 1931 Optional<MallocChecker::CheckKind> CheckKind = 1932 getCheckIfTracked(C, AllocExpr); 1933 if (!CheckKind.hasValue()) 1934 return; 1935 1936 ExplodedNode *N = C.generateErrorNode(); 1937 if (!N) 1938 return; 1939 1940 if (!BT_OffsetFree[*CheckKind]) 1941 BT_OffsetFree[*CheckKind].reset(new BugType( 1942 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 1943 1944 SmallString<100> buf; 1945 llvm::raw_svector_ostream os(buf); 1946 SmallString<20> AllocNameBuf; 1947 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1948 1949 const MemRegion *MR = ArgVal.getAsRegion(); 1950 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1951 1952 RegionOffset Offset = MR->getAsOffset(); 1953 assert((Offset.isValid() && 1954 !Offset.hasSymbolicOffset() && 1955 Offset.getOffset() != 0) && 1956 "Only symbols with a valid offset can have offset free errors"); 1957 1958 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1959 1960 os << "Argument to "; 1961 if (!printAllocDeallocName(os, C, DeallocExpr)) 1962 os << "deallocator"; 1963 os << " is offset by " 1964 << offsetBytes 1965 << " " 1966 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1967 << " from the start of "; 1968 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1969 os << "memory allocated by " << AllocNameOs.str(); 1970 else 1971 os << "allocated memory"; 1972 1973 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1974 R->markInteresting(MR->getBaseRegion()); 1975 R->addRange(Range); 1976 C.emitReport(std::move(R)); 1977 } 1978 1979 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1980 SymbolRef Sym) const { 1981 1982 if (!ChecksEnabled[CK_MallocChecker] && 1983 !ChecksEnabled[CK_NewDeleteChecker]) 1984 return; 1985 1986 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1987 if (!CheckKind.hasValue()) 1988 return; 1989 1990 if (ExplodedNode *N = C.generateErrorNode()) { 1991 if (!BT_UseFree[*CheckKind]) 1992 BT_UseFree[*CheckKind].reset(new BugType( 1993 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 1994 1995 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1996 "Use of memory after it is freed", N); 1997 1998 R->markInteresting(Sym); 1999 R->addRange(Range); 2000 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2001 2002 const RefState *RS = C.getState()->get<RegionState>(Sym); 2003 if (RS->getAllocationFamily() == AF_InnerBuffer) 2004 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2005 2006 C.emitReport(std::move(R)); 2007 } 2008 } 2009 2010 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 2011 bool Released, SymbolRef Sym, 2012 SymbolRef PrevSym) const { 2013 2014 if (!ChecksEnabled[CK_MallocChecker] && 2015 !ChecksEnabled[CK_NewDeleteChecker]) 2016 return; 2017 2018 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2019 if (!CheckKind.hasValue()) 2020 return; 2021 2022 if (ExplodedNode *N = C.generateErrorNode()) { 2023 if (!BT_DoubleFree[*CheckKind]) 2024 BT_DoubleFree[*CheckKind].reset(new BugType( 2025 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2026 2027 auto R = llvm::make_unique<BugReport>( 2028 *BT_DoubleFree[*CheckKind], 2029 (Released ? "Attempt to free released memory" 2030 : "Attempt to free non-owned memory"), 2031 N); 2032 R->addRange(Range); 2033 R->markInteresting(Sym); 2034 if (PrevSym) 2035 R->markInteresting(PrevSym); 2036 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2037 C.emitReport(std::move(R)); 2038 } 2039 } 2040 2041 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2042 2043 if (!ChecksEnabled[CK_NewDeleteChecker]) 2044 return; 2045 2046 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2047 if (!CheckKind.hasValue()) 2048 return; 2049 2050 if (ExplodedNode *N = C.generateErrorNode()) { 2051 if (!BT_DoubleDelete) 2052 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2053 "Double delete", 2054 categories::MemoryError)); 2055 2056 auto R = llvm::make_unique<BugReport>( 2057 *BT_DoubleDelete, "Attempt to delete released memory", N); 2058 2059 R->markInteresting(Sym); 2060 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2061 C.emitReport(std::move(R)); 2062 } 2063 } 2064 2065 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 2066 SourceRange Range, 2067 SymbolRef Sym) const { 2068 2069 if (!ChecksEnabled[CK_MallocChecker] && 2070 !ChecksEnabled[CK_NewDeleteChecker]) 2071 return; 2072 2073 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2074 2075 if (!CheckKind.hasValue()) 2076 return; 2077 2078 if (ExplodedNode *N = C.generateErrorNode()) { 2079 if (!BT_UseZerroAllocated[*CheckKind]) 2080 BT_UseZerroAllocated[*CheckKind].reset( 2081 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2082 categories::MemoryError)); 2083 2084 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 2085 "Use of zero-allocated memory", N); 2086 2087 R->addRange(Range); 2088 if (Sym) { 2089 R->markInteresting(Sym); 2090 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 2091 } 2092 C.emitReport(std::move(R)); 2093 } 2094 } 2095 2096 void MallocChecker::ReportFunctionPointerFree(CheckerContext &C, SVal ArgVal, 2097 SourceRange Range, 2098 const Expr *FreeExpr) const { 2099 if (!ChecksEnabled[CK_MallocChecker]) 2100 return; 2101 2102 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, FreeExpr); 2103 if (!CheckKind.hasValue()) 2104 return; 2105 2106 if (ExplodedNode *N = C.generateErrorNode()) { 2107 if (!BT_BadFree[*CheckKind]) 2108 BT_BadFree[*CheckKind].reset(new BugType( 2109 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2110 2111 SmallString<100> Buf; 2112 llvm::raw_svector_ostream Os(Buf); 2113 2114 const MemRegion *MR = ArgVal.getAsRegion(); 2115 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2116 MR = ER->getSuperRegion(); 2117 2118 Os << "Argument to "; 2119 if (!printAllocDeallocName(Os, C, FreeExpr)) 2120 Os << "deallocator"; 2121 2122 Os << " is a function pointer"; 2123 2124 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], Os.str(), N); 2125 R->markInteresting(MR); 2126 R->addRange(Range); 2127 C.emitReport(std::move(R)); 2128 } 2129 } 2130 2131 ProgramStateRef MallocChecker::ReallocMemAux(CheckerContext &C, 2132 const CallExpr *CE, 2133 bool FreesOnFail, 2134 ProgramStateRef State, 2135 bool SuffixWithN) const { 2136 if (!State) 2137 return nullptr; 2138 2139 if (SuffixWithN && CE->getNumArgs() < 3) 2140 return nullptr; 2141 else if (CE->getNumArgs() < 2) 2142 return nullptr; 2143 2144 const Expr *arg0Expr = CE->getArg(0); 2145 SVal Arg0Val = C.getSVal(arg0Expr); 2146 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 2147 return nullptr; 2148 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2149 2150 SValBuilder &svalBuilder = C.getSValBuilder(); 2151 2152 DefinedOrUnknownSVal PtrEQ = 2153 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 2154 2155 // Get the size argument. 2156 const Expr *Arg1 = CE->getArg(1); 2157 2158 // Get the value of the size argument. 2159 SVal TotalSize = C.getSVal(Arg1); 2160 if (SuffixWithN) 2161 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2162 if (!TotalSize.getAs<DefinedOrUnknownSVal>()) 2163 return nullptr; 2164 2165 // Compare the size argument to 0. 2166 DefinedOrUnknownSVal SizeZero = 2167 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2168 svalBuilder.makeIntValWithPtrWidth(0, false)); 2169 2170 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2171 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2172 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2173 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2174 // We only assume exceptional states if they are definitely true; if the 2175 // state is under-constrained, assume regular realloc behavior. 2176 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2177 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2178 2179 // If the ptr is NULL and the size is not 0, the call is equivalent to 2180 // malloc(size). 2181 if (PrtIsNull && !SizeIsZero) { 2182 ProgramStateRef stateMalloc = MallocMemAux(C, CE, TotalSize, 2183 UndefinedVal(), StatePtrIsNull); 2184 return stateMalloc; 2185 } 2186 2187 if (PrtIsNull && SizeIsZero) 2188 return State; 2189 2190 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2191 assert(!PrtIsNull); 2192 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2193 SVal RetVal = C.getSVal(CE); 2194 SymbolRef ToPtr = RetVal.getAsSymbol(); 2195 if (!FromPtr || !ToPtr) 2196 return nullptr; 2197 2198 bool ReleasedAllocated = false; 2199 2200 // If the size is 0, free the memory. 2201 if (SizeIsZero) 2202 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2203 false, ReleasedAllocated)){ 2204 // The semantics of the return value are: 2205 // If size was equal to 0, either NULL or a pointer suitable to be passed 2206 // to free() is returned. We just free the input pointer and do not add 2207 // any constrains on the output pointer. 2208 return stateFree; 2209 } 2210 2211 // Default behavior. 2212 if (ProgramStateRef stateFree = 2213 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2214 2215 ProgramStateRef stateRealloc = MallocMemAux(C, CE, TotalSize, 2216 UnknownVal(), stateFree); 2217 if (!stateRealloc) 2218 return nullptr; 2219 2220 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2221 if (FreesOnFail) 2222 Kind = RPIsFreeOnFailure; 2223 else if (!ReleasedAllocated) 2224 Kind = RPDoNotTrackAfterFailure; 2225 2226 // Record the info about the reallocated symbol so that we could properly 2227 // process failed reallocation. 2228 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2229 ReallocPair(FromPtr, Kind)); 2230 // The reallocated symbol should stay alive for as long as the new symbol. 2231 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2232 return stateRealloc; 2233 } 2234 return nullptr; 2235 } 2236 2237 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2238 ProgramStateRef State) { 2239 if (!State) 2240 return nullptr; 2241 2242 if (CE->getNumArgs() < 2) 2243 return nullptr; 2244 2245 SValBuilder &svalBuilder = C.getSValBuilder(); 2246 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2247 SVal TotalSize = evalMulForBufferSize(C, CE->getArg(0), CE->getArg(1)); 2248 2249 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2250 } 2251 2252 LeakInfo 2253 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2254 CheckerContext &C) const { 2255 const LocationContext *LeakContext = N->getLocationContext(); 2256 // Walk the ExplodedGraph backwards and find the first node that referred to 2257 // the tracked symbol. 2258 const ExplodedNode *AllocNode = N; 2259 const MemRegion *ReferenceRegion = nullptr; 2260 2261 while (N) { 2262 ProgramStateRef State = N->getState(); 2263 if (!State->get<RegionState>(Sym)) 2264 break; 2265 2266 // Find the most recent expression bound to the symbol in the current 2267 // context. 2268 if (!ReferenceRegion) { 2269 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2270 SVal Val = State->getSVal(MR); 2271 if (Val.getAsLocSymbol() == Sym) { 2272 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2273 // Do not show local variables belonging to a function other than 2274 // where the error is reported. 2275 if (!VR || 2276 (VR->getStackFrame() == LeakContext->getStackFrame())) 2277 ReferenceRegion = MR; 2278 } 2279 } 2280 } 2281 2282 // Allocation node, is the last node in the current or parent context in 2283 // which the symbol was tracked. 2284 const LocationContext *NContext = N->getLocationContext(); 2285 if (NContext == LeakContext || 2286 NContext->isParentOf(LeakContext)) 2287 AllocNode = N; 2288 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2289 } 2290 2291 return LeakInfo(AllocNode, ReferenceRegion); 2292 } 2293 2294 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2295 CheckerContext &C) const { 2296 2297 if (!ChecksEnabled[CK_MallocChecker] && 2298 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2299 return; 2300 2301 const RefState *RS = C.getState()->get<RegionState>(Sym); 2302 assert(RS && "cannot leak an untracked symbol"); 2303 AllocationFamily Family = RS->getAllocationFamily(); 2304 2305 if (Family == AF_Alloca) 2306 return; 2307 2308 Optional<MallocChecker::CheckKind> 2309 CheckKind = getCheckIfTracked(Family, true); 2310 2311 if (!CheckKind.hasValue()) 2312 return; 2313 2314 assert(N); 2315 if (!BT_Leak[*CheckKind]) { 2316 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2317 categories::MemoryError)); 2318 // Leaks should not be reported if they are post-dominated by a sink: 2319 // (1) Sinks are higher importance bugs. 2320 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2321 // with __noreturn functions such as assert() or exit(). We choose not 2322 // to report leaks on such paths. 2323 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2324 } 2325 2326 // Most bug reports are cached at the location where they occurred. 2327 // With leaks, we want to unique them by the location where they were 2328 // allocated, and only report a single path. 2329 PathDiagnosticLocation LocUsedForUniqueing; 2330 const ExplodedNode *AllocNode = nullptr; 2331 const MemRegion *Region = nullptr; 2332 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2333 2334 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2335 if (AllocationStmt) 2336 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2337 C.getSourceManager(), 2338 AllocNode->getLocationContext()); 2339 2340 SmallString<200> buf; 2341 llvm::raw_svector_ostream os(buf); 2342 if (Region && Region->canPrintPretty()) { 2343 os << "Potential leak of memory pointed to by "; 2344 Region->printPretty(os); 2345 } else { 2346 os << "Potential memory leak"; 2347 } 2348 2349 auto R = llvm::make_unique<BugReport>( 2350 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2351 AllocNode->getLocationContext()->getDecl()); 2352 R->markInteresting(Sym); 2353 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2354 C.emitReport(std::move(R)); 2355 } 2356 2357 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2358 CheckerContext &C) const 2359 { 2360 if (!SymReaper.hasDeadSymbols()) 2361 return; 2362 2363 ProgramStateRef state = C.getState(); 2364 RegionStateTy RS = state->get<RegionState>(); 2365 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2366 2367 SmallVector<SymbolRef, 2> Errors; 2368 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2369 if (SymReaper.isDead(I->first)) { 2370 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2371 Errors.push_back(I->first); 2372 // Remove the dead symbol from the map. 2373 RS = F.remove(RS, I->first); 2374 2375 } 2376 } 2377 2378 // Cleanup the Realloc Pairs Map. 2379 ReallocPairsTy RP = state->get<ReallocPairs>(); 2380 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2381 if (SymReaper.isDead(I->first) || 2382 SymReaper.isDead(I->second.ReallocatedSym)) { 2383 state = state->remove<ReallocPairs>(I->first); 2384 } 2385 } 2386 2387 // Cleanup the FreeReturnValue Map. 2388 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2389 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2390 if (SymReaper.isDead(I->first) || 2391 SymReaper.isDead(I->second)) { 2392 state = state->remove<FreeReturnValue>(I->first); 2393 } 2394 } 2395 2396 // Generate leak node. 2397 ExplodedNode *N = C.getPredecessor(); 2398 if (!Errors.empty()) { 2399 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2400 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2401 if (N) { 2402 for (SmallVectorImpl<SymbolRef>::iterator 2403 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2404 reportLeak(*I, N, C); 2405 } 2406 } 2407 } 2408 2409 C.addTransition(state->set<RegionState>(RS), N); 2410 } 2411 2412 void MallocChecker::checkPreCall(const CallEvent &Call, 2413 CheckerContext &C) const { 2414 2415 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2416 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2417 if (!Sym || checkDoubleDelete(Sym, C)) 2418 return; 2419 } 2420 2421 // We will check for double free in the post visit. 2422 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2423 const FunctionDecl *FD = FC->getDecl(); 2424 if (!FD) 2425 return; 2426 2427 ASTContext &Ctx = C.getASTContext(); 2428 if (ChecksEnabled[CK_MallocChecker] && 2429 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2430 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2431 MemoryOperationKind::MOK_Free))) 2432 return; 2433 2434 if (ChecksEnabled[CK_NewDeleteChecker] && 2435 isStandardNewDelete(FD, Ctx)) 2436 return; 2437 } 2438 2439 // Check if the callee of a method is deleted. 2440 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2441 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2442 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2443 return; 2444 } 2445 2446 // Check arguments for being used after free. 2447 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2448 SVal ArgSVal = Call.getArgSVal(I); 2449 if (ArgSVal.getAs<Loc>()) { 2450 SymbolRef Sym = ArgSVal.getAsSymbol(); 2451 if (!Sym) 2452 continue; 2453 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2454 return; 2455 } 2456 } 2457 } 2458 2459 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2460 CheckerContext &C) const { 2461 checkEscapeOnReturn(S, C); 2462 } 2463 2464 // In the CFG, automatic destructors come after the return statement. 2465 // This callback checks for returning memory that is freed by automatic 2466 // destructors, as those cannot be reached in checkPreStmt(). 2467 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2468 CheckerContext &C) const { 2469 checkEscapeOnReturn(S, C); 2470 } 2471 2472 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2473 CheckerContext &C) const { 2474 if (!S) 2475 return; 2476 2477 const Expr *E = S->getRetValue(); 2478 if (!E) 2479 return; 2480 2481 // Check if we are returning a symbol. 2482 ProgramStateRef State = C.getState(); 2483 SVal RetVal = C.getSVal(E); 2484 SymbolRef Sym = RetVal.getAsSymbol(); 2485 if (!Sym) 2486 // If we are returning a field of the allocated struct or an array element, 2487 // the callee could still free the memory. 2488 // TODO: This logic should be a part of generic symbol escape callback. 2489 if (const MemRegion *MR = RetVal.getAsRegion()) 2490 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2491 if (const SymbolicRegion *BMR = 2492 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2493 Sym = BMR->getSymbol(); 2494 2495 // Check if we are returning freed memory. 2496 if (Sym) 2497 checkUseAfterFree(Sym, C, E); 2498 } 2499 2500 // TODO: Blocks should be either inlined or should call invalidate regions 2501 // upon invocation. After that's in place, special casing here will not be 2502 // needed. 2503 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2504 CheckerContext &C) const { 2505 2506 // Scan the BlockDecRefExprs for any object the retain count checker 2507 // may be tracking. 2508 if (!BE->getBlockDecl()->hasCaptures()) 2509 return; 2510 2511 ProgramStateRef state = C.getState(); 2512 const BlockDataRegion *R = 2513 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2514 2515 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2516 E = R->referenced_vars_end(); 2517 2518 if (I == E) 2519 return; 2520 2521 SmallVector<const MemRegion*, 10> Regions; 2522 const LocationContext *LC = C.getLocationContext(); 2523 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2524 2525 for ( ; I != E; ++I) { 2526 const VarRegion *VR = I.getCapturedRegion(); 2527 if (VR->getSuperRegion() == R) { 2528 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2529 } 2530 Regions.push_back(VR); 2531 } 2532 2533 state = 2534 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2535 Regions.data() + Regions.size()).getState(); 2536 C.addTransition(state); 2537 } 2538 2539 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2540 assert(Sym); 2541 const RefState *RS = C.getState()->get<RegionState>(Sym); 2542 return (RS && RS->isReleased()); 2543 } 2544 2545 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2546 const Stmt *S) const { 2547 2548 if (isReleased(Sym, C)) { 2549 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2550 return true; 2551 } 2552 2553 return false; 2554 } 2555 2556 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2557 const Stmt *S) const { 2558 assert(Sym); 2559 2560 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2561 if (RS->isAllocatedOfSizeZero()) 2562 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2563 } 2564 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2565 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2566 } 2567 } 2568 2569 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2570 2571 if (isReleased(Sym, C)) { 2572 ReportDoubleDelete(C, Sym); 2573 return true; 2574 } 2575 return false; 2576 } 2577 2578 // Check if the location is a freed symbolic region. 2579 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2580 CheckerContext &C) const { 2581 SymbolRef Sym = l.getLocSymbolInBase(); 2582 if (Sym) { 2583 checkUseAfterFree(Sym, C, S); 2584 checkUseZeroAllocated(Sym, C, S); 2585 } 2586 } 2587 2588 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2589 // it - assuming that allocation failed on this path. 2590 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2591 SVal Cond, 2592 bool Assumption) const { 2593 RegionStateTy RS = state->get<RegionState>(); 2594 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2595 // If the symbol is assumed to be NULL, remove it from consideration. 2596 ConstraintManager &CMgr = state->getConstraintManager(); 2597 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2598 if (AllocFailed.isConstrainedTrue()) 2599 state = state->remove<RegionState>(I.getKey()); 2600 } 2601 2602 // Realloc returns 0 when reallocation fails, which means that we should 2603 // restore the state of the pointer being reallocated. 2604 ReallocPairsTy RP = state->get<ReallocPairs>(); 2605 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2606 // If the symbol is assumed to be NULL, remove it from consideration. 2607 ConstraintManager &CMgr = state->getConstraintManager(); 2608 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2609 if (!AllocFailed.isConstrainedTrue()) 2610 continue; 2611 2612 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2613 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2614 if (RS->isReleased()) { 2615 if (I.getData().Kind == RPToBeFreedAfterFailure) 2616 state = state->set<RegionState>(ReallocSym, 2617 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2618 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2619 state = state->remove<RegionState>(ReallocSym); 2620 else 2621 assert(I.getData().Kind == RPIsFreeOnFailure); 2622 } 2623 } 2624 state = state->remove<ReallocPairs>(I.getKey()); 2625 } 2626 2627 return state; 2628 } 2629 2630 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2631 const CallEvent *Call, 2632 ProgramStateRef State, 2633 SymbolRef &EscapingSymbol) const { 2634 assert(Call); 2635 EscapingSymbol = nullptr; 2636 2637 // For now, assume that any C++ or block call can free memory. 2638 // TODO: If we want to be more optimistic here, we'll need to make sure that 2639 // regions escape to C++ containers. They seem to do that even now, but for 2640 // mysterious reasons. 2641 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2642 return true; 2643 2644 // Check Objective-C messages by selector name. 2645 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2646 // If it's not a framework call, or if it takes a callback, assume it 2647 // can free memory. 2648 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2649 return true; 2650 2651 // If it's a method we know about, handle it explicitly post-call. 2652 // This should happen before the "freeWhenDone" check below. 2653 if (isKnownDeallocObjCMethodName(*Msg)) 2654 return false; 2655 2656 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2657 // about, we can't be sure that the object will use free() to deallocate the 2658 // memory, so we can't model it explicitly. The best we can do is use it to 2659 // decide whether the pointer escapes. 2660 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2661 return *FreeWhenDone; 2662 2663 // If the first selector piece ends with "NoCopy", and there is no 2664 // "freeWhenDone" parameter set to zero, we know ownership is being 2665 // transferred. Again, though, we can't be sure that the object will use 2666 // free() to deallocate the memory, so we can't model it explicitly. 2667 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2668 if (FirstSlot.endswith("NoCopy")) 2669 return true; 2670 2671 // If the first selector starts with addPointer, insertPointer, 2672 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2673 // This is similar to C++ containers (vector); we still might want to check 2674 // that the pointers get freed by following the container itself. 2675 if (FirstSlot.startswith("addPointer") || 2676 FirstSlot.startswith("insertPointer") || 2677 FirstSlot.startswith("replacePointer") || 2678 FirstSlot.equals("valueWithPointer")) { 2679 return true; 2680 } 2681 2682 // We should escape receiver on call to 'init'. This is especially relevant 2683 // to the receiver, as the corresponding symbol is usually not referenced 2684 // after the call. 2685 if (Msg->getMethodFamily() == OMF_init) { 2686 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2687 return true; 2688 } 2689 2690 // Otherwise, assume that the method does not free memory. 2691 // Most framework methods do not free memory. 2692 return false; 2693 } 2694 2695 // At this point the only thing left to handle is straight function calls. 2696 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2697 if (!FD) 2698 return true; 2699 2700 ASTContext &ASTC = State->getStateManager().getContext(); 2701 2702 // If it's one of the allocation functions we can reason about, we model 2703 // its behavior explicitly. 2704 if (isMemFunction(FD, ASTC)) 2705 return false; 2706 2707 // If it's not a system call, assume it frees memory. 2708 if (!Call->isInSystemHeader()) 2709 return true; 2710 2711 // White list the system functions whose arguments escape. 2712 const IdentifierInfo *II = FD->getIdentifier(); 2713 if (!II) 2714 return true; 2715 StringRef FName = II->getName(); 2716 2717 // White list the 'XXXNoCopy' CoreFoundation functions. 2718 // We specifically check these before 2719 if (FName.endswith("NoCopy")) { 2720 // Look for the deallocator argument. We know that the memory ownership 2721 // is not transferred only if the deallocator argument is 2722 // 'kCFAllocatorNull'. 2723 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2724 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2725 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2726 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2727 if (DeallocatorName == "kCFAllocatorNull") 2728 return false; 2729 } 2730 } 2731 return true; 2732 } 2733 2734 // Associating streams with malloced buffers. The pointer can escape if 2735 // 'closefn' is specified (and if that function does free memory), 2736 // but it will not if closefn is not specified. 2737 // Currently, we do not inspect the 'closefn' function (PR12101). 2738 if (FName == "funopen") 2739 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2740 return false; 2741 2742 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2743 // these leaks might be intentional when setting the buffer for stdio. 2744 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2745 if (FName == "setbuf" || FName =="setbuffer" || 2746 FName == "setlinebuf" || FName == "setvbuf") { 2747 if (Call->getNumArgs() >= 1) { 2748 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2749 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2750 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2751 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2752 return true; 2753 } 2754 } 2755 2756 // A bunch of other functions which either take ownership of a pointer or 2757 // wrap the result up in a struct or object, meaning it can be freed later. 2758 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2759 // but the Malloc checker cannot differentiate between them. The right way 2760 // of doing this would be to implement a pointer escapes callback. 2761 if (FName == "CGBitmapContextCreate" || 2762 FName == "CGBitmapContextCreateWithData" || 2763 FName == "CVPixelBufferCreateWithBytes" || 2764 FName == "CVPixelBufferCreateWithPlanarBytes" || 2765 FName == "OSAtomicEnqueue") { 2766 return true; 2767 } 2768 2769 if (FName == "postEvent" && 2770 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2771 return true; 2772 } 2773 2774 if (FName == "postEvent" && 2775 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2776 return true; 2777 } 2778 2779 if (FName == "connectImpl" && 2780 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2781 return true; 2782 } 2783 2784 // Handle cases where we know a buffer's /address/ can escape. 2785 // Note that the above checks handle some special cases where we know that 2786 // even though the address escapes, it's still our responsibility to free the 2787 // buffer. 2788 if (Call->argumentsMayEscape()) 2789 return true; 2790 2791 // Otherwise, assume that the function does not free memory. 2792 // Most system calls do not free the memory. 2793 return false; 2794 } 2795 2796 static bool retTrue(const RefState *RS) { 2797 return true; 2798 } 2799 2800 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2801 return (RS->getAllocationFamily() == AF_CXXNewArray || 2802 RS->getAllocationFamily() == AF_CXXNew); 2803 } 2804 2805 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2806 const InvalidatedSymbols &Escaped, 2807 const CallEvent *Call, 2808 PointerEscapeKind Kind) const { 2809 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2810 } 2811 2812 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2813 const InvalidatedSymbols &Escaped, 2814 const CallEvent *Call, 2815 PointerEscapeKind Kind) const { 2816 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2817 &checkIfNewOrNewArrayFamily); 2818 } 2819 2820 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2821 const InvalidatedSymbols &Escaped, 2822 const CallEvent *Call, 2823 PointerEscapeKind Kind, 2824 bool(*CheckRefState)(const RefState*)) const { 2825 // If we know that the call does not free memory, or we want to process the 2826 // call later, keep tracking the top level arguments. 2827 SymbolRef EscapingSymbol = nullptr; 2828 if (Kind == PSK_DirectEscapeOnCall && 2829 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2830 EscapingSymbol) && 2831 !EscapingSymbol) { 2832 return State; 2833 } 2834 2835 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2836 E = Escaped.end(); 2837 I != E; ++I) { 2838 SymbolRef sym = *I; 2839 2840 if (EscapingSymbol && EscapingSymbol != sym) 2841 continue; 2842 2843 if (const RefState *RS = State->get<RegionState>(sym)) { 2844 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2845 CheckRefState(RS)) { 2846 State = State->remove<RegionState>(sym); 2847 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2848 } 2849 } 2850 } 2851 return State; 2852 } 2853 2854 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2855 ProgramStateRef prevState) { 2856 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2857 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2858 2859 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2860 I != E; ++I) { 2861 SymbolRef sym = I.getKey(); 2862 if (!currMap.lookup(sym)) 2863 return sym; 2864 } 2865 2866 return nullptr; 2867 } 2868 2869 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 2870 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 2871 StringRef N = II->getName(); 2872 if (N.contains_lower("ptr") || N.contains_lower("pointer")) { 2873 if (N.contains_lower("ref") || N.contains_lower("cnt") || 2874 N.contains_lower("intrusive") || N.contains_lower("shared")) { 2875 return true; 2876 } 2877 } 2878 } 2879 return false; 2880 } 2881 2882 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2883 const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, 2884 BugReport &BR) { 2885 2886 ProgramStateRef state = N->getState(); 2887 ProgramStateRef statePrev = PrevN->getState(); 2888 2889 const RefState *RS = state->get<RegionState>(Sym); 2890 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2891 2892 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2893 // When dealing with containers, we sometimes want to give a note 2894 // even if the statement is missing. 2895 if (!S && (!RS || RS->getAllocationFamily() != AF_InnerBuffer)) 2896 return nullptr; 2897 2898 const LocationContext *CurrentLC = N->getLocationContext(); 2899 2900 // If we find an atomic fetch_add or fetch_sub within the destructor in which 2901 // the pointer was released (before the release), this is likely a destructor 2902 // of a shared pointer. 2903 // Because we don't model atomics, and also because we don't know that the 2904 // original reference count is positive, we should not report use-after-frees 2905 // on objects deleted in such destructors. This can probably be improved 2906 // through better shared pointer modeling. 2907 if (ReleaseDestructorLC) { 2908 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 2909 AtomicExpr::AtomicOp Op = AE->getOp(); 2910 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 2911 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 2912 if (ReleaseDestructorLC == CurrentLC || 2913 ReleaseDestructorLC->isParentOf(CurrentLC)) { 2914 BR.markInvalid(getTag(), S); 2915 } 2916 } 2917 } 2918 } 2919 2920 // FIXME: We will eventually need to handle non-statement-based events 2921 // (__attribute__((cleanup))). 2922 2923 // Find out if this is an interesting point and what is the kind. 2924 StringRef Msg; 2925 StackHintGeneratorForSymbol *StackHint = nullptr; 2926 SmallString<256> Buf; 2927 llvm::raw_svector_ostream OS(Buf); 2928 2929 if (Mode == Normal) { 2930 if (isAllocated(RS, RSPrev, S)) { 2931 Msg = "Memory is allocated"; 2932 StackHint = new StackHintGeneratorForSymbol(Sym, 2933 "Returned allocated memory"); 2934 } else if (isReleased(RS, RSPrev, S)) { 2935 const auto Family = RS->getAllocationFamily(); 2936 switch (Family) { 2937 case AF_Alloca: 2938 case AF_Malloc: 2939 case AF_CXXNew: 2940 case AF_CXXNewArray: 2941 case AF_IfNameIndex: 2942 Msg = "Memory is released"; 2943 break; 2944 case AF_InnerBuffer: { 2945 OS << "Inner pointer invalidated by call to "; 2946 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 2947 OS << "destructor"; 2948 } else { 2949 OS << "'"; 2950 const Stmt *S = RS->getStmt(); 2951 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 2952 OS << MemCallE->getMethodDecl()->getNameAsString(); 2953 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 2954 OS << OpCallE->getDirectCallee()->getNameAsString(); 2955 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 2956 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 2957 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 2958 const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()); 2959 OS << (D ? D->getNameAsString() : "unknown"); 2960 } 2961 OS << "'"; 2962 } 2963 Msg = OS.str(); 2964 break; 2965 } 2966 case AF_None: 2967 llvm_unreachable("Unhandled allocation family!"); 2968 } 2969 StackHint = new StackHintGeneratorForSymbol(Sym, 2970 "Returning; memory was released"); 2971 2972 // See if we're releasing memory while inlining a destructor 2973 // (or one of its callees). This turns on various common 2974 // false positive suppressions. 2975 bool FoundAnyDestructor = false; 2976 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 2977 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 2978 if (isReferenceCountingPointerDestructor(DD)) { 2979 // This immediately looks like a reference-counting destructor. 2980 // We're bad at guessing the original reference count of the object, 2981 // so suppress the report for now. 2982 BR.markInvalid(getTag(), DD); 2983 } else if (!FoundAnyDestructor) { 2984 assert(!ReleaseDestructorLC && 2985 "There can be only one release point!"); 2986 // Suspect that it's a reference counting pointer destructor. 2987 // On one of the next nodes might find out that it has atomic 2988 // reference counting operations within it (see the code above), 2989 // and if so, we'd conclude that it likely is a reference counting 2990 // pointer destructor. 2991 ReleaseDestructorLC = LC->getStackFrame(); 2992 // It is unlikely that releasing memory is delegated to a destructor 2993 // inside a destructor of a shared pointer, because it's fairly hard 2994 // to pass the information that the pointer indeed needs to be 2995 // released into it. So we're only interested in the innermost 2996 // destructor. 2997 FoundAnyDestructor = true; 2998 } 2999 } 3000 } 3001 } else if (isRelinquished(RS, RSPrev, S)) { 3002 Msg = "Memory ownership is transferred"; 3003 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 3004 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 3005 Mode = ReallocationFailed; 3006 Msg = "Reallocation failed"; 3007 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 3008 "Reallocation failed"); 3009 3010 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3011 // Is it possible to fail two reallocs WITHOUT testing in between? 3012 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3013 "We only support one failed realloc at a time."); 3014 BR.markInteresting(sym); 3015 FailedReallocSymbol = sym; 3016 } 3017 } 3018 3019 // We are in a special mode if a reallocation failed later in the path. 3020 } else if (Mode == ReallocationFailed) { 3021 assert(FailedReallocSymbol && "No symbol to look for."); 3022 3023 // Is this is the first appearance of the reallocated symbol? 3024 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3025 // We're at the reallocation point. 3026 Msg = "Attempt to reallocate memory"; 3027 StackHint = new StackHintGeneratorForSymbol(Sym, 3028 "Returned reallocated memory"); 3029 FailedReallocSymbol = nullptr; 3030 Mode = Normal; 3031 } 3032 } 3033 3034 if (Msg.empty()) 3035 return nullptr; 3036 assert(StackHint); 3037 3038 // Generate the extra diagnostic. 3039 PathDiagnosticLocation Pos; 3040 if (!S) { 3041 assert(RS->getAllocationFamily() == AF_InnerBuffer); 3042 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3043 if (!PostImplCall) 3044 return nullptr; 3045 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3046 BRC.getSourceManager()); 3047 } else { 3048 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3049 N->getLocationContext()); 3050 } 3051 3052 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 3053 } 3054 3055 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3056 const char *NL, const char *Sep) const { 3057 3058 RegionStateTy RS = State->get<RegionState>(); 3059 3060 if (!RS.isEmpty()) { 3061 Out << Sep << "MallocChecker :" << NL; 3062 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3063 const RefState *RefS = State->get<RegionState>(I.getKey()); 3064 AllocationFamily Family = RefS->getAllocationFamily(); 3065 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3066 if (!CheckKind.hasValue()) 3067 CheckKind = getCheckIfTracked(Family, true); 3068 3069 I.getKey()->dumpToStream(Out); 3070 Out << " : "; 3071 I.getData().dump(Out); 3072 if (CheckKind.hasValue()) 3073 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3074 Out << NL; 3075 } 3076 } 3077 } 3078 3079 namespace clang { 3080 namespace ento { 3081 namespace allocation_state { 3082 3083 ProgramStateRef 3084 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3085 AllocationFamily Family = AF_InnerBuffer; 3086 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3087 } 3088 3089 } // end namespace allocation_state 3090 } // end namespace ento 3091 } // end namespace clang 3092 3093 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 3094 registerCStringCheckerBasic(mgr); 3095 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 3096 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 3097 "Optimistic", false, checker); 3098 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 3099 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 3100 mgr.getCurrentCheckName(); 3101 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 3102 // checker. 3103 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) { 3104 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 3105 // FIXME: This does not set the correct name, but without this workaround 3106 // no name will be set at all. 3107 checker->CheckNames[MallocChecker::CK_NewDeleteChecker] = 3108 mgr.getCurrentCheckName(); 3109 } 3110 } 3111 3112 #define REGISTER_CHECKER(name) \ 3113 void ento::register##name(CheckerManager &mgr) { \ 3114 registerCStringCheckerBasic(mgr); \ 3115 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 3116 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 3117 "Optimistic", false, checker); \ 3118 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3119 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 3120 } 3121 3122 REGISTER_CHECKER(MallocChecker) 3123 REGISTER_CHECKER(NewDeleteChecker) 3124 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3125