1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <optional> 90 #include <utility> 91 92 using namespace clang; 93 using namespace ento; 94 using namespace std::placeholders; 95 96 //===----------------------------------------------------------------------===// 97 // The types of allocation we're modeling. This is used to check whether a 98 // dynamically allocated object is deallocated with the correct function, like 99 // not using operator delete on an object created by malloc(), or alloca regions 100 // aren't ever deallocated manually. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 // Used to check correspondence between allocators and deallocators. 106 enum AllocationFamily { 107 AF_None, 108 AF_Malloc, 109 AF_CXXNew, 110 AF_CXXNewArray, 111 AF_IfNameIndex, 112 AF_Alloca, 113 AF_InnerBuffer 114 }; 115 116 } // end of anonymous namespace 117 118 /// Print names of allocators and deallocators. 119 /// 120 /// \returns true on success. 121 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 122 123 /// Print expected name of an allocator based on the deallocator's family 124 /// derived from the DeallocExpr. 125 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 126 127 /// Print expected name of a deallocator based on the allocator's 128 /// family. 129 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 130 131 //===----------------------------------------------------------------------===// 132 // The state of a symbol, in terms of memory management. 133 //===----------------------------------------------------------------------===// 134 135 namespace { 136 137 class RefState { 138 enum Kind { 139 // Reference to allocated memory. 140 Allocated, 141 // Reference to zero-allocated memory. 142 AllocatedOfSizeZero, 143 // Reference to released/freed memory. 144 Released, 145 // The responsibility for freeing resources has transferred from 146 // this reference. A relinquished symbol should not be freed. 147 Relinquished, 148 // We are no longer guaranteed to have observed all manipulations 149 // of this pointer/memory. For example, it could have been 150 // passed as a parameter to an opaque function. 151 Escaped 152 }; 153 154 const Stmt *S; 155 156 Kind K; 157 AllocationFamily Family; 158 159 RefState(Kind k, const Stmt *s, AllocationFamily family) 160 : S(s), K(k), Family(family) { 161 assert(family != AF_None); 162 } 163 164 public: 165 bool isAllocated() const { return K == Allocated; } 166 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 167 bool isReleased() const { return K == Released; } 168 bool isRelinquished() const { return K == Relinquished; } 169 bool isEscaped() const { return K == Escaped; } 170 AllocationFamily getAllocationFamily() const { return Family; } 171 const Stmt *getStmt() const { return S; } 172 173 bool operator==(const RefState &X) const { 174 return K == X.K && S == X.S && Family == X.Family; 175 } 176 177 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 178 return RefState(Allocated, s, family); 179 } 180 static RefState getAllocatedOfSizeZero(const RefState *RS) { 181 return RefState(AllocatedOfSizeZero, RS->getStmt(), 182 RS->getAllocationFamily()); 183 } 184 static RefState getReleased(AllocationFamily family, const Stmt *s) { 185 return RefState(Released, s, family); 186 } 187 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 188 return RefState(Relinquished, s, family); 189 } 190 static RefState getEscaped(const RefState *RS) { 191 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 192 } 193 194 void Profile(llvm::FoldingSetNodeID &ID) const { 195 ID.AddInteger(K); 196 ID.AddPointer(S); 197 ID.AddInteger(Family); 198 } 199 200 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 201 switch (K) { 202 #define CASE(ID) case ID: OS << #ID; break; 203 CASE(Allocated) 204 CASE(AllocatedOfSizeZero) 205 CASE(Released) 206 CASE(Relinquished) 207 CASE(Escaped) 208 } 209 } 210 211 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 212 }; 213 214 } // end of anonymous namespace 215 216 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 217 218 /// Check if the memory associated with this symbol was released. 219 static bool isReleased(SymbolRef Sym, CheckerContext &C); 220 221 /// Update the RefState to reflect the new memory allocation. 222 /// The optional \p RetVal parameter specifies the newly allocated pointer 223 /// value; if unspecified, the value of expression \p E is used. 224 static ProgramStateRef 225 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 226 AllocationFamily Family, 227 std::optional<SVal> RetVal = std::nullopt); 228 229 //===----------------------------------------------------------------------===// 230 // The modeling of memory reallocation. 231 // 232 // The terminology 'toPtr' and 'fromPtr' will be used: 233 // toPtr = realloc(fromPtr, 20); 234 //===----------------------------------------------------------------------===// 235 236 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 237 238 namespace { 239 240 /// The state of 'fromPtr' after reallocation is known to have failed. 241 enum OwnershipAfterReallocKind { 242 // The symbol needs to be freed (e.g.: realloc) 243 OAR_ToBeFreedAfterFailure, 244 // The symbol has been freed (e.g.: reallocf) 245 OAR_FreeOnFailure, 246 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 247 // 'fromPtr' was allocated: 248 // void Haha(int *ptr) { 249 // ptr = realloc(ptr, 67); 250 // // ... 251 // } 252 // ). 253 OAR_DoNotTrackAfterFailure 254 }; 255 256 /// Stores information about the 'fromPtr' symbol after reallocation. 257 /// 258 /// This is important because realloc may fail, and that needs special modeling. 259 /// Whether reallocation failed or not will not be known until later, so we'll 260 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 261 /// later, etc. 262 struct ReallocPair { 263 264 // The 'fromPtr'. 265 SymbolRef ReallocatedSym; 266 OwnershipAfterReallocKind Kind; 267 268 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 269 : ReallocatedSym(S), Kind(K) {} 270 void Profile(llvm::FoldingSetNodeID &ID) const { 271 ID.AddInteger(Kind); 272 ID.AddPointer(ReallocatedSym); 273 } 274 bool operator==(const ReallocPair &X) const { 275 return ReallocatedSym == X.ReallocatedSym && 276 Kind == X.Kind; 277 } 278 }; 279 280 } // end of anonymous namespace 281 282 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 283 284 /// Tells if the callee is one of the builtin new/delete operators, including 285 /// placement operators and other standard overloads. 286 static bool isStandardNewDelete(const FunctionDecl *FD); 287 static bool isStandardNewDelete(const CallEvent &Call) { 288 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 289 return false; 290 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Definition of the MallocChecker class. 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 299 class MallocChecker 300 : public Checker<check::DeadSymbols, check::PointerEscape, 301 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 302 check::EndFunction, check::PreCall, check::PostCall, 303 check::NewAllocator, check::PostStmt<BlockExpr>, 304 check::PostObjCMessage, check::Location, eval::Assume> { 305 public: 306 /// In pessimistic mode, the checker assumes that it does not know which 307 /// functions might free the memory. 308 /// In optimistic mode, the checker assumes that all user-defined functions 309 /// which might free a pointer are annotated. 310 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 311 312 bool ShouldRegisterNoOwnershipChangeVisitor = false; 313 314 /// Many checkers are essentially built into this one, so enabling them will 315 /// make MallocChecker perform additional modeling and reporting. 316 enum CheckKind { 317 /// When a subchecker is enabled but MallocChecker isn't, model memory 318 /// management but do not emit warnings emitted with MallocChecker only 319 /// enabled. 320 CK_MallocChecker, 321 CK_NewDeleteChecker, 322 CK_NewDeleteLeaksChecker, 323 CK_MismatchedDeallocatorChecker, 324 CK_InnerPointerChecker, 325 CK_NumCheckKinds 326 }; 327 328 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 329 330 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 331 CheckerNameRef CheckNames[CK_NumCheckKinds]; 332 333 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 335 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 336 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 337 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 338 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 339 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 340 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 341 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 342 bool Assumption) const; 343 void checkLocation(SVal l, bool isLoad, const Stmt *S, 344 CheckerContext &C) const; 345 346 ProgramStateRef checkPointerEscape(ProgramStateRef State, 347 const InvalidatedSymbols &Escaped, 348 const CallEvent *Call, 349 PointerEscapeKind Kind) const; 350 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind) const; 354 355 void printState(raw_ostream &Out, ProgramStateRef State, 356 const char *NL, const char *Sep) const override; 357 358 private: 359 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 360 mutable std::unique_ptr<BugType> BT_DoubleDelete; 361 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 365 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 366 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 367 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 368 369 #define CHECK_FN(NAME) \ 370 void NAME(const CallEvent &Call, CheckerContext &C) const; 371 372 CHECK_FN(checkFree) 373 CHECK_FN(checkIfNameIndex) 374 CHECK_FN(checkBasicAlloc) 375 CHECK_FN(checkKernelMalloc) 376 CHECK_FN(checkCalloc) 377 CHECK_FN(checkAlloca) 378 CHECK_FN(checkStrdup) 379 CHECK_FN(checkIfFreeNameIndex) 380 CHECK_FN(checkCXXNewOrCXXDelete) 381 CHECK_FN(checkGMalloc0) 382 CHECK_FN(checkGMemdup) 383 CHECK_FN(checkGMallocN) 384 CHECK_FN(checkGMallocN0) 385 CHECK_FN(checkReallocN) 386 CHECK_FN(checkOwnershipAttr) 387 388 void checkRealloc(const CallEvent &Call, CheckerContext &C, 389 bool ShouldFreeOnFail) const; 390 391 using CheckFn = std::function<void(const MallocChecker *, 392 const CallEvent &Call, CheckerContext &C)>; 393 394 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 395 {{{"free"}, 1}, &MallocChecker::checkFree}, 396 {{{"if_freenameindex"}, 1}, &MallocChecker::checkIfFreeNameIndex}, 397 {{{"kfree"}, 1}, &MallocChecker::checkFree}, 398 {{{"g_free"}, 1}, &MallocChecker::checkFree}, 399 }; 400 401 bool isFreeingCall(const CallEvent &Call) const; 402 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 403 404 friend class NoOwnershipChangeVisitor; 405 406 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 407 {{{"alloca"}, 1}, &MallocChecker::checkAlloca}, 408 {{{"_alloca"}, 1}, &MallocChecker::checkAlloca}, 409 {{{"malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 410 {{{"malloc"}, 3}, &MallocChecker::checkKernelMalloc}, 411 {{{"calloc"}, 2}, &MallocChecker::checkCalloc}, 412 {{{"valloc"}, 1}, &MallocChecker::checkBasicAlloc}, 413 {{CDF_MaybeBuiltin, {"strndup"}, 2}, &MallocChecker::checkStrdup}, 414 {{CDF_MaybeBuiltin, {"strdup"}, 1}, &MallocChecker::checkStrdup}, 415 {{{"_strdup"}, 1}, &MallocChecker::checkStrdup}, 416 {{{"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc}, 417 {{{"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex}, 418 {{CDF_MaybeBuiltin, {"wcsdup"}, 1}, &MallocChecker::checkStrdup}, 419 {{CDF_MaybeBuiltin, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup}, 420 {{{"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 421 {{{"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 422 {{{"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc}, 423 {{{"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0}, 424 {{{"g_memdup"}, 2}, &MallocChecker::checkGMemdup}, 425 {{{"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 426 {{{"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 427 {{{"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN}, 428 {{{"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0}, 429 }; 430 431 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 432 {{{"realloc"}, 2}, 433 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 434 {{{"reallocf"}, 2}, 435 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 436 {{{"g_realloc"}, 2}, 437 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 438 {{{"g_try_realloc"}, 2}, 439 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 440 {{{"g_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 441 {{{"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN}, 442 }; 443 444 bool isMemCall(const CallEvent &Call) const; 445 446 // TODO: Remove mutable by moving the initializtaion to the registry function. 447 mutable std::optional<uint64_t> KernelZeroFlagVal; 448 449 using KernelZeroSizePtrValueTy = std::optional<int>; 450 /// Store the value of macro called `ZERO_SIZE_PTR`. 451 /// The value is initialized at first use, before first use the outer 452 /// Optional is empty, afterwards it contains another Optional that indicates 453 /// if the macro value could be determined, and if yes the value itself. 454 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 455 456 /// Process C++ operator new()'s allocation, which is the part of C++ 457 /// new-expression that goes before the constructor. 458 [[nodiscard]] ProgramStateRef 459 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 460 AllocationFamily Family) const; 461 462 /// Perform a zero-allocation check. 463 /// 464 /// \param [in] Call The expression that allocates memory. 465 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 466 /// of the memory that needs to be allocated. E.g. for malloc, this would be 467 /// 0. 468 /// \param [in] RetVal Specifies the newly allocated pointer value; 469 /// if unspecified, the value of expression \p E is used. 470 [[nodiscard]] static ProgramStateRef 471 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 472 ProgramStateRef State, 473 std::optional<SVal> RetVal = std::nullopt); 474 475 /// Model functions with the ownership_returns attribute. 476 /// 477 /// User-defined function may have the ownership_returns attribute, which 478 /// annotates that the function returns with an object that was allocated on 479 /// the heap, and passes the ownertship to the callee. 480 /// 481 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 482 /// 483 /// It has two parameters: 484 /// - first: name of the resource (e.g. 'malloc') 485 /// - (OPTIONAL) second: size of the allocated region 486 /// 487 /// \param [in] Call The expression that allocates memory. 488 /// \param [in] Att The ownership_returns attribute. 489 /// \param [in] State The \c ProgramState right before allocation. 490 /// \returns The ProgramState right after allocation. 491 [[nodiscard]] ProgramStateRef 492 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 493 const OwnershipAttr *Att, ProgramStateRef State) const; 494 495 /// Models memory allocation. 496 /// 497 /// \param [in] Call The expression that allocates memory. 498 /// \param [in] SizeEx Size of the memory that needs to be allocated. 499 /// \param [in] Init The value the allocated memory needs to be initialized. 500 /// with. For example, \c calloc initializes the allocated memory to 0, 501 /// malloc leaves it undefined. 502 /// \param [in] State The \c ProgramState right before allocation. 503 /// \returns The ProgramState right after allocation. 504 [[nodiscard]] static ProgramStateRef 505 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 506 SVal Init, ProgramStateRef State, AllocationFamily Family); 507 508 /// Models memory allocation. 509 /// 510 /// \param [in] Call The expression that allocates memory. 511 /// \param [in] Size Size of the memory that needs to be allocated. 512 /// \param [in] Init The value the allocated memory needs to be initialized. 513 /// with. For example, \c calloc initializes the allocated memory to 0, 514 /// malloc leaves it undefined. 515 /// \param [in] State The \c ProgramState right before allocation. 516 /// \returns The ProgramState right after allocation. 517 [[nodiscard]] static ProgramStateRef 518 MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init, 519 ProgramStateRef State, AllocationFamily Family); 520 521 // Check if this malloc() for special flags. At present that means M_ZERO or 522 // __GFP_ZERO (in which case, treat it like calloc). 523 [[nodiscard]] std::optional<ProgramStateRef> 524 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 525 const ProgramStateRef &State) const; 526 527 /// Model functions with the ownership_takes and ownership_holds attributes. 528 /// 529 /// User-defined function may have the ownership_takes and/or ownership_holds 530 /// attributes, which annotates that the function frees the memory passed as a 531 /// parameter. 532 /// 533 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 534 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 535 /// 536 /// They have two parameters: 537 /// - first: name of the resource (e.g. 'malloc') 538 /// - second: index of the parameter the attribute applies to 539 /// 540 /// \param [in] Call The expression that frees memory. 541 /// \param [in] Att The ownership_takes or ownership_holds attribute. 542 /// \param [in] State The \c ProgramState right before allocation. 543 /// \returns The ProgramState right after deallocation. 544 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 545 const CallEvent &Call, 546 const OwnershipAttr *Att, 547 ProgramStateRef State) const; 548 549 /// Models memory deallocation. 550 /// 551 /// \param [in] Call The expression that frees memory. 552 /// \param [in] State The \c ProgramState right before allocation. 553 /// \param [in] Num Index of the argument that needs to be freed. This is 554 /// normally 0, but for custom free functions it may be different. 555 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 556 /// attribute. 557 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 558 /// to have been allocated, or in other words, the symbol to be freed was 559 /// registered as allocated by this checker. In the following case, \c ptr 560 /// isn't known to be allocated. 561 /// void Haha(int *ptr) { 562 /// ptr = realloc(ptr, 67); 563 /// // ... 564 /// } 565 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 566 /// we're modeling returns with Null on failure. 567 /// \returns The ProgramState right after deallocation. 568 [[nodiscard]] ProgramStateRef 569 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 570 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 571 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 572 573 /// Models memory deallocation. 574 /// 575 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 576 /// \param [in] Call The expression that frees the memory. 577 /// \param [in] State The \c ProgramState right before allocation. 578 /// normally 0, but for custom free functions it may be different. 579 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 580 /// attribute. 581 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 582 /// to have been allocated, or in other words, the symbol to be freed was 583 /// registered as allocated by this checker. In the following case, \c ptr 584 /// isn't known to be allocated. 585 /// void Haha(int *ptr) { 586 /// ptr = realloc(ptr, 67); 587 /// // ... 588 /// } 589 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 590 /// we're modeling returns with Null on failure. 591 /// \returns The ProgramState right after deallocation. 592 [[nodiscard]] ProgramStateRef 593 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 594 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 595 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 596 597 // TODO: Needs some refactoring, as all other deallocation modeling 598 // functions are suffering from out parameters and messy code due to how 599 // realloc is handled. 600 // 601 /// Models memory reallocation. 602 /// 603 /// \param [in] Call The expression that reallocated memory 604 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 605 /// memory should be freed. 606 /// \param [in] State The \c ProgramState right before reallocation. 607 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 608 /// has an '_n' suffix, such as g_realloc_n. 609 /// \returns The ProgramState right after reallocation. 610 [[nodiscard]] ProgramStateRef 611 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 612 ProgramStateRef State, AllocationFamily Family, 613 bool SuffixWithN = false) const; 614 615 /// Evaluates the buffer size that needs to be allocated. 616 /// 617 /// \param [in] Blocks The amount of blocks that needs to be allocated. 618 /// \param [in] BlockBytes The size of a block. 619 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 620 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 621 const Expr *Blocks, 622 const Expr *BlockBytes); 623 624 /// Models zero initialized array allocation. 625 /// 626 /// \param [in] Call The expression that reallocated memory 627 /// \param [in] State The \c ProgramState right before reallocation. 628 /// \returns The ProgramState right after allocation. 629 [[nodiscard]] static ProgramStateRef 630 CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State); 631 632 /// See if deallocation happens in a suspicious context. If so, escape the 633 /// pointers that otherwise would have been deallocated and return true. 634 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 635 CheckerContext &C) const; 636 637 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 638 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 639 640 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 641 /// sized memory region. 642 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 643 const Stmt *S) const; 644 645 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 646 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 647 648 /// Check if the function is known to free memory, or if it is 649 /// "interesting" and should be modeled explicitly. 650 /// 651 /// \param [out] EscapingSymbol A function might not free memory in general, 652 /// but could be known to free a particular symbol. In this case, false is 653 /// returned and the single escaping symbol is returned through the out 654 /// parameter. 655 /// 656 /// We assume that pointers do not escape through calls to system functions 657 /// not handled by this checker. 658 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 659 ProgramStateRef State, 660 SymbolRef &EscapingSymbol) const; 661 662 /// Implementation of the checkPointerEscape callbacks. 663 [[nodiscard]] ProgramStateRef 664 checkPointerEscapeAux(ProgramStateRef State, 665 const InvalidatedSymbols &Escaped, 666 const CallEvent *Call, PointerEscapeKind Kind, 667 bool IsConstPointerEscape) const; 668 669 // Implementation of the checkPreStmt and checkEndFunction callbacks. 670 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 671 672 ///@{ 673 /// Tells if a given family/call/symbol is tracked by the current checker. 674 /// Sets CheckKind to the kind of the checker responsible for this 675 /// family/call/symbol. 676 std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 677 bool IsALeakCheck = false) const; 678 679 std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 680 bool IsALeakCheck = false) const; 681 ///@} 682 static bool SummarizeValue(raw_ostream &os, SVal V); 683 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 684 685 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 686 const Expr *DeallocExpr, 687 AllocationFamily Family) const; 688 689 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 690 SourceRange Range) const; 691 692 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 693 const Expr *DeallocExpr, const RefState *RS, 694 SymbolRef Sym, bool OwnershipTransferred) const; 695 696 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 697 const Expr *DeallocExpr, AllocationFamily Family, 698 const Expr *AllocExpr = nullptr) const; 699 700 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 701 SymbolRef Sym) const; 702 703 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 704 SymbolRef Sym, SymbolRef PrevSym) const; 705 706 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 707 708 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 709 SymbolRef Sym) const; 710 711 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 712 const Expr *FreeExpr, 713 AllocationFamily Family) const; 714 715 /// Find the location of the allocation for Sym on the path leading to the 716 /// exploded node N. 717 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 718 CheckerContext &C); 719 720 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 721 722 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 723 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 724 SVal ArgVal) const; 725 }; 726 } // end anonymous namespace 727 728 //===----------------------------------------------------------------------===// 729 // Definition of NoOwnershipChangeVisitor. 730 //===----------------------------------------------------------------------===// 731 732 namespace { 733 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 734 // The symbol whose (lack of) ownership change we are interested in. 735 SymbolRef Sym; 736 const MallocChecker &Checker; 737 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 738 739 // Collect which entities point to the allocated memory, and could be 740 // responsible for deallocating it. 741 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 742 SymbolRef Sym; 743 OwnerSet &Owners; 744 745 public: 746 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 747 : Sym(Sym), Owners(Owners) {} 748 749 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 750 SVal Val) override { 751 if (Val.getAsSymbol() == Sym) 752 Owners.insert(Region); 753 return true; 754 } 755 756 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 757 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 758 out << "Owners: {\n"; 759 for (const MemRegion *Owner : Owners) { 760 out << " "; 761 Owner->dumpToStream(out); 762 out << ",\n"; 763 } 764 out << "}\n"; 765 } 766 }; 767 768 protected: 769 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 770 OwnerSet Ret; 771 772 ProgramStateRef State = N->getState(); 773 OwnershipBindingsHandler Handler{Sym, Ret}; 774 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 775 Handler); 776 return Ret; 777 } 778 779 LLVM_DUMP_METHOD static std::string 780 getFunctionName(const ExplodedNode *CallEnterN) { 781 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 782 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 783 if (const FunctionDecl *FD = CE->getDirectCallee()) 784 return FD->getQualifiedNameAsString(); 785 return ""; 786 } 787 788 /// Syntactically checks whether the callee is a deallocating function. Since 789 /// we have no path-sensitive information on this call (we would need a 790 /// CallEvent instead of a CallExpr for that), its possible that a 791 /// deallocation function was called indirectly through a function pointer, 792 /// but we are not able to tell, so this is a best effort analysis. 793 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 794 /// clang/test/Analysis/NewDeleteLeaks.cpp. 795 bool isFreeingCallAsWritten(const CallExpr &Call) const { 796 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 797 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 798 return true; 799 800 if (const auto *Func = 801 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 802 return MallocChecker::isFreeingOwnershipAttrCall(Func); 803 804 return false; 805 } 806 807 /// Heuristically guess whether the callee intended to free memory. This is 808 /// done syntactically, because we are trying to argue about alternative 809 /// paths of execution, and as a consequence we don't have path-sensitive 810 /// information. 811 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 812 using namespace clang::ast_matchers; 813 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 814 815 // Given that the stack frame was entered, the body should always be 816 // theoretically obtainable. In case of body farms, the synthesized body 817 // is not attached to declaration, thus triggering the '!FD->hasBody()' 818 // branch. That said, would a synthesized body ever intend to handle 819 // ownership? As of today they don't. And if they did, how would we 820 // put notes inside it, given that it doesn't match any source locations? 821 if (!FD || !FD->hasBody()) 822 return false; 823 824 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 825 callExpr().bind("call")))), 826 *FD->getBody(), ACtx); 827 for (BoundNodes Match : Matches) { 828 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 829 return true; 830 831 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 832 if (isFreeingCallAsWritten(*Call)) 833 return true; 834 } 835 // TODO: Ownership might change with an attempt to store the allocated 836 // memory, not only through deallocation. Check for attempted stores as 837 // well. 838 return false; 839 } 840 841 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 842 const ExplodedNode *CallExitEndN) override { 843 if (!doesFnIntendToHandleOwnership( 844 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 845 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 846 return true; 847 848 if (CallEnterN->getState()->get<RegionState>(Sym) != 849 CallExitEndN->getState()->get<RegionState>(Sym)) 850 return true; 851 852 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 853 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 854 855 // Owners in the current set may be purged from the analyzer later on. 856 // If a variable is dead (is not referenced directly or indirectly after 857 // some point), it will be removed from the Store before the end of its 858 // actual lifetime. 859 // This means that if the ownership status didn't change, CurrOwners 860 // must be a superset of, but not necessarily equal to ExitOwners. 861 return !llvm::set_is_subset(ExitOwners, CurrOwners); 862 } 863 864 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 865 PathDiagnosticLocation L = PathDiagnosticLocation::create( 866 N->getLocation(), 867 N->getState()->getStateManager().getContext().getSourceManager()); 868 return std::make_shared<PathDiagnosticEventPiece>( 869 L, "Returning without deallocating memory or storing the pointer for " 870 "later deallocation"); 871 } 872 873 PathDiagnosticPieceRef 874 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 875 const ObjCMethodCall &Call, 876 const ExplodedNode *N) override { 877 // TODO: Implement. 878 return nullptr; 879 } 880 881 PathDiagnosticPieceRef 882 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 883 const CXXConstructorCall &Call, 884 const ExplodedNode *N) override { 885 // TODO: Implement. 886 return nullptr; 887 } 888 889 PathDiagnosticPieceRef 890 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 891 const ExplodedNode *N) override { 892 // TODO: Factor the logic of "what constitutes as an entity being passed 893 // into a function call" out by reusing the code in 894 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 895 // the printing technology in UninitializedObject's FieldChainInfo. 896 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 897 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 898 SVal V = Call.getArgSVal(I); 899 if (V.getAsSymbol() == Sym) 900 return emitNote(N); 901 } 902 return nullptr; 903 } 904 905 public: 906 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 907 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 908 Checker(*Checker) {} 909 910 void Profile(llvm::FoldingSetNodeID &ID) const override { 911 static int Tag = 0; 912 ID.AddPointer(&Tag); 913 ID.AddPointer(Sym); 914 } 915 }; 916 917 } // end anonymous namespace 918 919 //===----------------------------------------------------------------------===// 920 // Definition of MallocBugVisitor. 921 //===----------------------------------------------------------------------===// 922 923 namespace { 924 /// The bug visitor which allows us to print extra diagnostics along the 925 /// BugReport path. For example, showing the allocation site of the leaked 926 /// region. 927 class MallocBugVisitor final : public BugReporterVisitor { 928 protected: 929 enum NotificationMode { Normal, ReallocationFailed }; 930 931 // The allocated region symbol tracked by the main analysis. 932 SymbolRef Sym; 933 934 // The mode we are in, i.e. what kind of diagnostics will be emitted. 935 NotificationMode Mode; 936 937 // A symbol from when the primary region should have been reallocated. 938 SymbolRef FailedReallocSymbol; 939 940 // A C++ destructor stack frame in which memory was released. Used for 941 // miscellaneous false positive suppression. 942 const StackFrameContext *ReleaseDestructorLC; 943 944 bool IsLeak; 945 946 public: 947 MallocBugVisitor(SymbolRef S, bool isLeak = false) 948 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 949 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 950 951 static void *getTag() { 952 static int Tag = 0; 953 return &Tag; 954 } 955 956 void Profile(llvm::FoldingSetNodeID &ID) const override { 957 ID.AddPointer(getTag()); 958 ID.AddPointer(Sym); 959 } 960 961 /// Did not track -> allocated. Other state (released) -> allocated. 962 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 963 const Stmt *Stmt) { 964 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 965 (RSCurr && 966 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 967 (!RSPrev || 968 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 969 } 970 971 /// Did not track -> released. Other state (allocated) -> released. 972 /// The statement associated with the release might be missing. 973 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 974 const Stmt *Stmt) { 975 bool IsReleased = 976 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 977 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 978 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 979 return IsReleased; 980 } 981 982 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 983 static inline bool isRelinquished(const RefState *RSCurr, 984 const RefState *RSPrev, const Stmt *Stmt) { 985 return ( 986 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 987 (RSCurr && RSCurr->isRelinquished()) && 988 (!RSPrev || !RSPrev->isRelinquished())); 989 } 990 991 /// If the expression is not a call, and the state change is 992 /// released -> allocated, it must be the realloc return value 993 /// check. If we have to handle more cases here, it might be cleaner just 994 /// to track this extra bit in the state itself. 995 static inline bool hasReallocFailed(const RefState *RSCurr, 996 const RefState *RSPrev, 997 const Stmt *Stmt) { 998 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 999 (RSCurr && 1000 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1001 (RSPrev && 1002 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1003 } 1004 1005 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1006 BugReporterContext &BRC, 1007 PathSensitiveBugReport &BR) override; 1008 1009 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1010 const ExplodedNode *EndPathNode, 1011 PathSensitiveBugReport &BR) override { 1012 if (!IsLeak) 1013 return nullptr; 1014 1015 PathDiagnosticLocation L = BR.getLocation(); 1016 // Do not add the statement itself as a range in case of leak. 1017 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1018 false); 1019 } 1020 1021 private: 1022 class StackHintGeneratorForReallocationFailed 1023 : public StackHintGeneratorForSymbol { 1024 public: 1025 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1026 : StackHintGeneratorForSymbol(S, M) {} 1027 1028 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1029 // Printed parameters start at 1, not 0. 1030 ++ArgIndex; 1031 1032 SmallString<200> buf; 1033 llvm::raw_svector_ostream os(buf); 1034 1035 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1036 << " parameter failed"; 1037 1038 return std::string(os.str()); 1039 } 1040 1041 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1042 return "Reallocation of returned value failed"; 1043 } 1044 }; 1045 }; 1046 } // end anonymous namespace 1047 1048 // A map from the freed symbol to the symbol representing the return value of 1049 // the free function. 1050 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1051 1052 namespace { 1053 class StopTrackingCallback final : public SymbolVisitor { 1054 ProgramStateRef state; 1055 1056 public: 1057 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1058 ProgramStateRef getState() const { return state; } 1059 1060 bool VisitSymbol(SymbolRef sym) override { 1061 state = state->remove<RegionState>(sym); 1062 return true; 1063 } 1064 }; 1065 } // end anonymous namespace 1066 1067 static bool isStandardNewDelete(const FunctionDecl *FD) { 1068 if (!FD) 1069 return false; 1070 1071 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1072 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1073 Kind != OO_Array_Delete) 1074 return false; 1075 1076 // This is standard if and only if it's not defined in a user file. 1077 SourceLocation L = FD->getLocation(); 1078 // If the header for operator delete is not included, it's still defined 1079 // in an invalid source location. Check to make sure we don't crash. 1080 return !L.isValid() || 1081 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1082 } 1083 1084 //===----------------------------------------------------------------------===// 1085 // Methods of MallocChecker and MallocBugVisitor. 1086 //===----------------------------------------------------------------------===// 1087 1088 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1089 if (Func->hasAttrs()) { 1090 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1091 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1092 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1093 return true; 1094 } 1095 } 1096 return false; 1097 } 1098 1099 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1100 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1101 return true; 1102 1103 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1104 return isFreeingOwnershipAttrCall(Func); 1105 1106 return false; 1107 } 1108 1109 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1110 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1111 ReallocatingMemFnMap.lookup(Call)) 1112 return true; 1113 1114 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1115 return false; 1116 1117 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1118 return Func && Func->hasAttr<OwnershipAttr>(); 1119 } 1120 1121 std::optional<ProgramStateRef> 1122 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1123 const ProgramStateRef &State) const { 1124 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1125 // 1126 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1127 // 1128 // One of the possible flags is M_ZERO, which means 'give me back an 1129 // allocation which is already zeroed', like calloc. 1130 1131 // 2-argument kmalloc(), as used in the Linux kernel: 1132 // 1133 // void *kmalloc(size_t size, gfp_t flags); 1134 // 1135 // Has the similar flag value __GFP_ZERO. 1136 1137 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1138 // code could be shared. 1139 1140 ASTContext &Ctx = C.getASTContext(); 1141 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1142 1143 if (!KernelZeroFlagVal) { 1144 switch (OS) { 1145 case llvm::Triple::FreeBSD: 1146 KernelZeroFlagVal = 0x0100; 1147 break; 1148 case llvm::Triple::NetBSD: 1149 KernelZeroFlagVal = 0x0002; 1150 break; 1151 case llvm::Triple::OpenBSD: 1152 KernelZeroFlagVal = 0x0008; 1153 break; 1154 case llvm::Triple::Linux: 1155 // __GFP_ZERO 1156 KernelZeroFlagVal = 0x8000; 1157 break; 1158 default: 1159 // FIXME: We need a more general way of getting the M_ZERO value. 1160 // See also: O_CREAT in UnixAPIChecker.cpp. 1161 1162 // Fall back to normal malloc behavior on platforms where we don't 1163 // know M_ZERO. 1164 return std::nullopt; 1165 } 1166 } 1167 1168 // We treat the last argument as the flags argument, and callers fall-back to 1169 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1170 // as well as Linux kmalloc. 1171 if (Call.getNumArgs() < 2) 1172 return std::nullopt; 1173 1174 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1175 const SVal V = C.getSVal(FlagsEx); 1176 if (!isa<NonLoc>(V)) { 1177 // The case where 'V' can be a location can only be due to a bad header, 1178 // so in this case bail out. 1179 return std::nullopt; 1180 } 1181 1182 NonLoc Flags = V.castAs<NonLoc>(); 1183 NonLoc ZeroFlag = C.getSValBuilder() 1184 .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType()) 1185 .castAs<NonLoc>(); 1186 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1187 Flags, ZeroFlag, 1188 FlagsEx->getType()); 1189 if (MaskedFlagsUC.isUnknownOrUndef()) 1190 return std::nullopt; 1191 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1192 1193 // Check if maskedFlags is non-zero. 1194 ProgramStateRef TrueState, FalseState; 1195 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1196 1197 // If M_ZERO is set, treat this like calloc (initialized). 1198 if (TrueState && !FalseState) { 1199 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1200 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1201 AF_Malloc); 1202 } 1203 1204 return std::nullopt; 1205 } 1206 1207 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1208 const Expr *BlockBytes) { 1209 SValBuilder &SB = C.getSValBuilder(); 1210 SVal BlocksVal = C.getSVal(Blocks); 1211 SVal BlockBytesVal = C.getSVal(BlockBytes); 1212 ProgramStateRef State = C.getState(); 1213 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1214 SB.getContext().getSizeType()); 1215 return TotalSize; 1216 } 1217 1218 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1219 CheckerContext &C) const { 1220 ProgramStateRef State = C.getState(); 1221 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1222 AF_Malloc); 1223 State = ProcessZeroAllocCheck(Call, 0, State); 1224 C.addTransition(State); 1225 } 1226 1227 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1228 CheckerContext &C) const { 1229 ProgramStateRef State = C.getState(); 1230 std::optional<ProgramStateRef> MaybeState = 1231 performKernelMalloc(Call, C, State); 1232 if (MaybeState) 1233 State = *MaybeState; 1234 else 1235 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1236 AF_Malloc); 1237 C.addTransition(State); 1238 } 1239 1240 static bool isStandardRealloc(const CallEvent &Call) { 1241 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1242 assert(FD); 1243 ASTContext &AC = FD->getASTContext(); 1244 1245 if (isa<CXXMethodDecl>(FD)) 1246 return false; 1247 1248 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1249 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1250 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1251 AC.getSizeType(); 1252 } 1253 1254 static bool isGRealloc(const CallEvent &Call) { 1255 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1256 assert(FD); 1257 ASTContext &AC = FD->getASTContext(); 1258 1259 if (isa<CXXMethodDecl>(FD)) 1260 return false; 1261 1262 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1263 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1264 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1265 AC.UnsignedLongTy; 1266 } 1267 1268 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1269 bool ShouldFreeOnFail) const { 1270 // HACK: CallDescription currently recognizes non-standard realloc functions 1271 // as standard because it doesn't check the type, or wether its a non-method 1272 // function. This should be solved by making CallDescription smarter. 1273 // Mind that this came from a bug report, and all other functions suffer from 1274 // this. 1275 // https://bugs.llvm.org/show_bug.cgi?id=46253 1276 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1277 return; 1278 ProgramStateRef State = C.getState(); 1279 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1280 State = ProcessZeroAllocCheck(Call, 1, State); 1281 C.addTransition(State); 1282 } 1283 1284 void MallocChecker::checkCalloc(const CallEvent &Call, 1285 CheckerContext &C) const { 1286 ProgramStateRef State = C.getState(); 1287 State = CallocMem(C, Call, State); 1288 State = ProcessZeroAllocCheck(Call, 0, State); 1289 State = ProcessZeroAllocCheck(Call, 1, State); 1290 C.addTransition(State); 1291 } 1292 1293 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1294 ProgramStateRef State = C.getState(); 1295 bool IsKnownToBeAllocatedMemory = false; 1296 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1297 return; 1298 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1299 AF_Malloc); 1300 C.addTransition(State); 1301 } 1302 1303 void MallocChecker::checkAlloca(const CallEvent &Call, 1304 CheckerContext &C) const { 1305 ProgramStateRef State = C.getState(); 1306 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1307 AF_Alloca); 1308 State = ProcessZeroAllocCheck(Call, 0, State); 1309 C.addTransition(State); 1310 } 1311 1312 void MallocChecker::checkStrdup(const CallEvent &Call, 1313 CheckerContext &C) const { 1314 ProgramStateRef State = C.getState(); 1315 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1316 if (!CE) 1317 return; 1318 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1319 1320 C.addTransition(State); 1321 } 1322 1323 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1324 CheckerContext &C) const { 1325 ProgramStateRef State = C.getState(); 1326 // Should we model this differently? We can allocate a fixed number of 1327 // elements with zeros in the last one. 1328 State = 1329 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1330 1331 C.addTransition(State); 1332 } 1333 1334 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1335 CheckerContext &C) const { 1336 ProgramStateRef State = C.getState(); 1337 bool IsKnownToBeAllocatedMemory = false; 1338 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1339 AF_IfNameIndex); 1340 C.addTransition(State); 1341 } 1342 1343 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1344 CheckerContext &C) const { 1345 ProgramStateRef State = C.getState(); 1346 bool IsKnownToBeAllocatedMemory = false; 1347 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1348 if (!CE) 1349 return; 1350 1351 assert(isStandardNewDelete(Call)); 1352 1353 // Process direct calls to operator new/new[]/delete/delete[] functions 1354 // as distinct from new/new[]/delete/delete[] expressions that are 1355 // processed by the checkPostStmt callbacks for CXXNewExpr and 1356 // CXXDeleteExpr. 1357 const FunctionDecl *FD = C.getCalleeDecl(CE); 1358 switch (FD->getOverloadedOperator()) { 1359 case OO_New: 1360 State = 1361 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1362 State = ProcessZeroAllocCheck(Call, 0, State); 1363 break; 1364 case OO_Array_New: 1365 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1366 AF_CXXNewArray); 1367 State = ProcessZeroAllocCheck(Call, 0, State); 1368 break; 1369 case OO_Delete: 1370 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1371 AF_CXXNew); 1372 break; 1373 case OO_Array_Delete: 1374 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1375 AF_CXXNewArray); 1376 break; 1377 default: 1378 llvm_unreachable("not a new/delete operator"); 1379 } 1380 1381 C.addTransition(State); 1382 } 1383 1384 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1385 CheckerContext &C) const { 1386 ProgramStateRef State = C.getState(); 1387 SValBuilder &svalBuilder = C.getSValBuilder(); 1388 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1389 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1390 State = ProcessZeroAllocCheck(Call, 0, State); 1391 C.addTransition(State); 1392 } 1393 1394 void MallocChecker::checkGMemdup(const CallEvent &Call, 1395 CheckerContext &C) const { 1396 ProgramStateRef State = C.getState(); 1397 State = 1398 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1399 State = ProcessZeroAllocCheck(Call, 1, State); 1400 C.addTransition(State); 1401 } 1402 1403 void MallocChecker::checkGMallocN(const CallEvent &Call, 1404 CheckerContext &C) const { 1405 ProgramStateRef State = C.getState(); 1406 SVal Init = UndefinedVal(); 1407 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1408 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1409 State = ProcessZeroAllocCheck(Call, 0, State); 1410 State = ProcessZeroAllocCheck(Call, 1, State); 1411 C.addTransition(State); 1412 } 1413 1414 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1415 CheckerContext &C) const { 1416 ProgramStateRef State = C.getState(); 1417 SValBuilder &SB = C.getSValBuilder(); 1418 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1419 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1420 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1421 State = ProcessZeroAllocCheck(Call, 0, State); 1422 State = ProcessZeroAllocCheck(Call, 1, State); 1423 C.addTransition(State); 1424 } 1425 1426 void MallocChecker::checkReallocN(const CallEvent &Call, 1427 CheckerContext &C) const { 1428 ProgramStateRef State = C.getState(); 1429 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1430 /*SuffixWithN=*/true); 1431 State = ProcessZeroAllocCheck(Call, 1, State); 1432 State = ProcessZeroAllocCheck(Call, 2, State); 1433 C.addTransition(State); 1434 } 1435 1436 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1437 CheckerContext &C) const { 1438 ProgramStateRef State = C.getState(); 1439 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1440 if (!CE) 1441 return; 1442 const FunctionDecl *FD = C.getCalleeDecl(CE); 1443 if (!FD) 1444 return; 1445 if (ShouldIncludeOwnershipAnnotatedFunctions || 1446 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1447 // Check all the attributes, if there are any. 1448 // There can be multiple of these attributes. 1449 if (FD->hasAttrs()) 1450 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1451 switch (I->getOwnKind()) { 1452 case OwnershipAttr::Returns: 1453 State = MallocMemReturnsAttr(C, Call, I, State); 1454 break; 1455 case OwnershipAttr::Takes: 1456 case OwnershipAttr::Holds: 1457 State = FreeMemAttr(C, Call, I, State); 1458 break; 1459 } 1460 } 1461 } 1462 C.addTransition(State); 1463 } 1464 1465 void MallocChecker::checkPostCall(const CallEvent &Call, 1466 CheckerContext &C) const { 1467 if (C.wasInlined) 1468 return; 1469 if (!Call.getOriginExpr()) 1470 return; 1471 1472 ProgramStateRef State = C.getState(); 1473 1474 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1475 (*Callback)(this, Call, C); 1476 return; 1477 } 1478 1479 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1480 (*Callback)(this, Call, C); 1481 return; 1482 } 1483 1484 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1485 (*Callback)(this, Call, C); 1486 return; 1487 } 1488 1489 if (isStandardNewDelete(Call)) { 1490 checkCXXNewOrCXXDelete(Call, C); 1491 return; 1492 } 1493 1494 checkOwnershipAttr(Call, C); 1495 } 1496 1497 // Performs a 0-sized allocations check. 1498 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1499 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1500 std::optional<SVal> RetVal) { 1501 if (!State) 1502 return nullptr; 1503 1504 if (!RetVal) 1505 RetVal = Call.getReturnValue(); 1506 1507 const Expr *Arg = nullptr; 1508 1509 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1510 Arg = CE->getArg(IndexOfSizeArg); 1511 } else if (const CXXNewExpr *NE = 1512 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1513 if (NE->isArray()) { 1514 Arg = *NE->getArraySize(); 1515 } else { 1516 return State; 1517 } 1518 } else 1519 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1520 1521 assert(Arg); 1522 1523 auto DefArgVal = 1524 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1525 1526 if (!DefArgVal) 1527 return State; 1528 1529 // Check if the allocation size is 0. 1530 ProgramStateRef TrueState, FalseState; 1531 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1532 DefinedSVal Zero = 1533 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1534 1535 std::tie(TrueState, FalseState) = 1536 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1537 1538 if (TrueState && !FalseState) { 1539 SymbolRef Sym = RetVal->getAsLocSymbol(); 1540 if (!Sym) 1541 return State; 1542 1543 const RefState *RS = State->get<RegionState>(Sym); 1544 if (RS) { 1545 if (RS->isAllocated()) 1546 return TrueState->set<RegionState>(Sym, 1547 RefState::getAllocatedOfSizeZero(RS)); 1548 else 1549 return State; 1550 } else { 1551 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1552 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1553 // tracked. Add zero-reallocated Sym to the state to catch references 1554 // to zero-allocated memory. 1555 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1556 } 1557 } 1558 1559 // Assume the value is non-zero going forward. 1560 assert(FalseState); 1561 return FalseState; 1562 } 1563 1564 static QualType getDeepPointeeType(QualType T) { 1565 QualType Result = T, PointeeType = T->getPointeeType(); 1566 while (!PointeeType.isNull()) { 1567 Result = PointeeType; 1568 PointeeType = PointeeType->getPointeeType(); 1569 } 1570 return Result; 1571 } 1572 1573 /// \returns true if the constructor invoked by \p NE has an argument of a 1574 /// pointer/reference to a record type. 1575 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1576 1577 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1578 if (!ConstructE) 1579 return false; 1580 1581 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1582 return false; 1583 1584 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1585 1586 // Iterate over the constructor parameters. 1587 for (const auto *CtorParam : CtorD->parameters()) { 1588 1589 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1590 if (CtorParamPointeeT.isNull()) 1591 continue; 1592 1593 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1594 1595 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1596 return true; 1597 } 1598 1599 return false; 1600 } 1601 1602 ProgramStateRef 1603 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1604 CheckerContext &C, 1605 AllocationFamily Family) const { 1606 if (!isStandardNewDelete(Call)) 1607 return nullptr; 1608 1609 const CXXNewExpr *NE = Call.getOriginExpr(); 1610 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1611 ProgramStateRef State = C.getState(); 1612 1613 // Non-trivial constructors have a chance to escape 'this', but marking all 1614 // invocations of trivial constructors as escaped would cause too great of 1615 // reduction of true positives, so let's just do that for constructors that 1616 // have an argument of a pointer-to-record type. 1617 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1618 return State; 1619 1620 // The return value from operator new is bound to a specified initialization 1621 // value (if any) and we don't want to loose this value. So we call 1622 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1623 // existing binding. 1624 SVal Target = Call.getObjectUnderConstruction(); 1625 State = MallocUpdateRefState(C, NE, State, Family, Target); 1626 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1627 return State; 1628 } 1629 1630 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1631 CheckerContext &C) const { 1632 if (!C.wasInlined) { 1633 ProgramStateRef State = processNewAllocation( 1634 Call, C, 1635 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1636 C.addTransition(State); 1637 } 1638 } 1639 1640 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1641 // If the first selector piece is one of the names below, assume that the 1642 // object takes ownership of the memory, promising to eventually deallocate it 1643 // with free(). 1644 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1645 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1646 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1647 return FirstSlot == "dataWithBytesNoCopy" || 1648 FirstSlot == "initWithBytesNoCopy" || 1649 FirstSlot == "initWithCharactersNoCopy"; 1650 } 1651 1652 static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1653 Selector S = Call.getSelector(); 1654 1655 // FIXME: We should not rely on fully-constrained symbols being folded. 1656 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1657 if (S.getNameForSlot(i).equals("freeWhenDone")) 1658 return !Call.getArgSVal(i).isZeroConstant(); 1659 1660 return std::nullopt; 1661 } 1662 1663 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1664 CheckerContext &C) const { 1665 if (C.wasInlined) 1666 return; 1667 1668 if (!isKnownDeallocObjCMethodName(Call)) 1669 return; 1670 1671 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1672 if (!*FreeWhenDone) 1673 return; 1674 1675 if (Call.hasNonZeroCallbackArg()) 1676 return; 1677 1678 bool IsKnownToBeAllocatedMemory; 1679 ProgramStateRef State = 1680 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1681 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1682 /*ReturnsNullOnFailure=*/true); 1683 1684 C.addTransition(State); 1685 } 1686 1687 ProgramStateRef 1688 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1689 const OwnershipAttr *Att, 1690 ProgramStateRef State) const { 1691 if (!State) 1692 return nullptr; 1693 1694 if (Att->getModule()->getName() != "malloc") 1695 return nullptr; 1696 1697 if (!Att->args().empty()) { 1698 return MallocMemAux(C, Call, 1699 Call.getArgExpr(Att->args_begin()->getASTIndex()), 1700 UndefinedVal(), State, AF_Malloc); 1701 } 1702 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1703 } 1704 1705 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1706 const CallEvent &Call, 1707 const Expr *SizeEx, SVal Init, 1708 ProgramStateRef State, 1709 AllocationFamily Family) { 1710 if (!State) 1711 return nullptr; 1712 1713 assert(SizeEx); 1714 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1715 } 1716 1717 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1718 const CallEvent &Call, SVal Size, 1719 SVal Init, ProgramStateRef State, 1720 AllocationFamily Family) { 1721 if (!State) 1722 return nullptr; 1723 1724 const Expr *CE = Call.getOriginExpr(); 1725 1726 // We expect the malloc functions to return a pointer. 1727 if (!Loc::isLocType(CE->getType())) 1728 return nullptr; 1729 1730 // Bind the return value to the symbolic value from the heap region. 1731 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1732 // side effects other than what we model here. 1733 unsigned Count = C.blockCount(); 1734 SValBuilder &svalBuilder = C.getSValBuilder(); 1735 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1736 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1737 .castAs<DefinedSVal>(); 1738 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1739 1740 // Fill the region with the initialization value. 1741 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1742 1743 // If Size is somehow undefined at this point, this line prevents a crash. 1744 if (Size.isUndef()) 1745 Size = UnknownVal(); 1746 1747 // Set the region's extent. 1748 State = setDynamicExtent(State, RetVal.getAsRegion(), 1749 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1750 1751 return MallocUpdateRefState(C, CE, State, Family); 1752 } 1753 1754 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1755 ProgramStateRef State, 1756 AllocationFamily Family, 1757 std::optional<SVal> RetVal) { 1758 if (!State) 1759 return nullptr; 1760 1761 // Get the return value. 1762 if (!RetVal) 1763 RetVal = C.getSVal(E); 1764 1765 // We expect the malloc functions to return a pointer. 1766 if (!RetVal->getAs<Loc>()) 1767 return nullptr; 1768 1769 SymbolRef Sym = RetVal->getAsLocSymbol(); 1770 // This is a return value of a function that was not inlined, such as malloc() 1771 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1772 assert(Sym); 1773 1774 // Set the symbol's state to Allocated. 1775 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1776 } 1777 1778 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1779 const CallEvent &Call, 1780 const OwnershipAttr *Att, 1781 ProgramStateRef State) const { 1782 if (!State) 1783 return nullptr; 1784 1785 if (Att->getModule()->getName() != "malloc") 1786 return nullptr; 1787 1788 bool IsKnownToBeAllocated = false; 1789 1790 for (const auto &Arg : Att->args()) { 1791 ProgramStateRef StateI = 1792 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1793 Att->getOwnKind() == OwnershipAttr::Holds, 1794 IsKnownToBeAllocated, AF_Malloc); 1795 if (StateI) 1796 State = StateI; 1797 } 1798 return State; 1799 } 1800 1801 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1802 const CallEvent &Call, 1803 ProgramStateRef State, unsigned Num, 1804 bool Hold, bool &IsKnownToBeAllocated, 1805 AllocationFamily Family, 1806 bool ReturnsNullOnFailure) const { 1807 if (!State) 1808 return nullptr; 1809 1810 if (Call.getNumArgs() < (Num + 1)) 1811 return nullptr; 1812 1813 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1814 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1815 } 1816 1817 /// Checks if the previous call to free on the given symbol failed - if free 1818 /// failed, returns true. Also, returns the corresponding return value symbol. 1819 static bool didPreviousFreeFail(ProgramStateRef State, 1820 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1821 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1822 if (Ret) { 1823 assert(*Ret && "We should not store the null return symbol"); 1824 ConstraintManager &CMgr = State->getConstraintManager(); 1825 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1826 RetStatusSymbol = *Ret; 1827 return FreeFailed.isConstrainedTrue(); 1828 } 1829 return false; 1830 } 1831 1832 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1833 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1834 // FIXME: This doesn't handle indirect calls. 1835 const FunctionDecl *FD = CE->getDirectCallee(); 1836 if (!FD) 1837 return false; 1838 1839 os << *FD; 1840 if (!FD->isOverloadedOperator()) 1841 os << "()"; 1842 return true; 1843 } 1844 1845 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1846 if (Msg->isInstanceMessage()) 1847 os << "-"; 1848 else 1849 os << "+"; 1850 Msg->getSelector().print(os); 1851 return true; 1852 } 1853 1854 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1855 os << "'" 1856 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1857 << "'"; 1858 return true; 1859 } 1860 1861 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1862 os << "'" 1863 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1864 << "'"; 1865 return true; 1866 } 1867 1868 return false; 1869 } 1870 1871 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1872 1873 switch(Family) { 1874 case AF_Malloc: os << "malloc()"; return; 1875 case AF_CXXNew: os << "'new'"; return; 1876 case AF_CXXNewArray: os << "'new[]'"; return; 1877 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1878 case AF_InnerBuffer: os << "container-specific allocator"; return; 1879 case AF_Alloca: 1880 case AF_None: llvm_unreachable("not a deallocation expression"); 1881 } 1882 } 1883 1884 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1885 switch(Family) { 1886 case AF_Malloc: os << "free()"; return; 1887 case AF_CXXNew: os << "'delete'"; return; 1888 case AF_CXXNewArray: os << "'delete[]'"; return; 1889 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1890 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1891 case AF_Alloca: 1892 case AF_None: llvm_unreachable("suspicious argument"); 1893 } 1894 } 1895 1896 ProgramStateRef MallocChecker::FreeMemAux( 1897 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1898 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1899 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1900 1901 if (!State) 1902 return nullptr; 1903 1904 SVal ArgVal = C.getSVal(ArgExpr); 1905 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1906 return nullptr; 1907 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1908 1909 // Check for null dereferences. 1910 if (!isa<Loc>(location)) 1911 return nullptr; 1912 1913 // The explicit NULL case, no operation is performed. 1914 ProgramStateRef notNullState, nullState; 1915 std::tie(notNullState, nullState) = State->assume(location); 1916 if (nullState && !notNullState) 1917 return nullptr; 1918 1919 // Unknown values could easily be okay 1920 // Undefined values are handled elsewhere 1921 if (ArgVal.isUnknownOrUndef()) 1922 return nullptr; 1923 1924 const MemRegion *R = ArgVal.getAsRegion(); 1925 const Expr *ParentExpr = Call.getOriginExpr(); 1926 1927 // NOTE: We detected a bug, but the checker under whose name we would emit the 1928 // error could be disabled. Generally speaking, the MallocChecker family is an 1929 // integral part of the Static Analyzer, and disabling any part of it should 1930 // only be done under exceptional circumstances, such as frequent false 1931 // positives. If this is the case, we can reasonably believe that there are 1932 // serious faults in our understanding of the source code, and even if we 1933 // don't emit an warning, we should terminate further analysis with a sink 1934 // node. 1935 1936 // Nonlocs can't be freed, of course. 1937 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1938 if (!R) { 1939 // Exception: 1940 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1941 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1942 // zero-sized memory block which is allowed to be freed, despite not being a 1943 // null pointer. 1944 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1945 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1946 Family); 1947 return nullptr; 1948 } 1949 1950 R = R->StripCasts(); 1951 1952 // Blocks might show up as heap data, but should not be free()d 1953 if (isa<BlockDataRegion>(R)) { 1954 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1955 Family); 1956 return nullptr; 1957 } 1958 1959 const MemSpaceRegion *MS = R->getMemorySpace(); 1960 1961 // Parameters, locals, statics, globals, and memory returned by 1962 // __builtin_alloca() shouldn't be freed. 1963 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1964 // FIXME: at the time this code was written, malloc() regions were 1965 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1966 // This means that there isn't actually anything from HeapSpaceRegion 1967 // that should be freed, even though we allow it here. 1968 // Of course, free() can work on memory allocated outside the current 1969 // function, so UnknownSpaceRegion is always a possibility. 1970 // False negatives are better than false positives. 1971 1972 if (isa<AllocaRegion>(R)) 1973 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1974 else 1975 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1976 Family); 1977 1978 return nullptr; 1979 } 1980 1981 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1982 // Various cases could lead to non-symbol values here. 1983 // For now, ignore them. 1984 if (!SrBase) 1985 return nullptr; 1986 1987 SymbolRef SymBase = SrBase->getSymbol(); 1988 const RefState *RsBase = State->get<RegionState>(SymBase); 1989 SymbolRef PreviousRetStatusSymbol = nullptr; 1990 1991 IsKnownToBeAllocated = 1992 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1993 1994 if (RsBase) { 1995 1996 // Memory returned by alloca() shouldn't be freed. 1997 if (RsBase->getAllocationFamily() == AF_Alloca) { 1998 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1999 return nullptr; 2000 } 2001 2002 // Check for double free first. 2003 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 2004 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2005 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2006 SymBase, PreviousRetStatusSymbol); 2007 return nullptr; 2008 2009 // If the pointer is allocated or escaped, but we are now trying to free it, 2010 // check that the call to free is proper. 2011 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2012 RsBase->isEscaped()) { 2013 2014 // Check if an expected deallocation function matches the real one. 2015 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2016 if (!DeallocMatchesAlloc) { 2017 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2018 RsBase, SymBase, Hold); 2019 return nullptr; 2020 } 2021 2022 // Check if the memory location being freed is the actual location 2023 // allocated, or an offset. 2024 RegionOffset Offset = R->getAsOffset(); 2025 if (Offset.isValid() && 2026 !Offset.hasSymbolicOffset() && 2027 Offset.getOffset() != 0) { 2028 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2029 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2030 Family, AllocExpr); 2031 return nullptr; 2032 } 2033 } 2034 } 2035 2036 if (SymBase->getType()->isFunctionPointerType()) { 2037 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2038 Family); 2039 return nullptr; 2040 } 2041 2042 // Clean out the info on previous call to free return info. 2043 State = State->remove<FreeReturnValue>(SymBase); 2044 2045 // Keep track of the return value. If it is NULL, we will know that free 2046 // failed. 2047 if (ReturnsNullOnFailure) { 2048 SVal RetVal = C.getSVal(ParentExpr); 2049 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2050 if (RetStatusSymbol) { 2051 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2052 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2053 } 2054 } 2055 2056 // If we don't know anything about this symbol, a free on it may be totally 2057 // valid. If this is the case, lets assume that the allocation family of the 2058 // freeing function is the same as the symbols allocation family, and go with 2059 // that. 2060 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2061 2062 // Normal free. 2063 if (Hold) 2064 return State->set<RegionState>(SymBase, 2065 RefState::getRelinquished(Family, 2066 ParentExpr)); 2067 2068 return State->set<RegionState>(SymBase, 2069 RefState::getReleased(Family, ParentExpr)); 2070 } 2071 2072 std::optional<MallocChecker::CheckKind> 2073 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2074 bool IsALeakCheck) const { 2075 switch (Family) { 2076 case AF_Malloc: 2077 case AF_Alloca: 2078 case AF_IfNameIndex: { 2079 if (ChecksEnabled[CK_MallocChecker]) 2080 return CK_MallocChecker; 2081 return std::nullopt; 2082 } 2083 case AF_CXXNew: 2084 case AF_CXXNewArray: { 2085 if (IsALeakCheck) { 2086 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2087 return CK_NewDeleteLeaksChecker; 2088 } 2089 else { 2090 if (ChecksEnabled[CK_NewDeleteChecker]) 2091 return CK_NewDeleteChecker; 2092 } 2093 return std::nullopt; 2094 } 2095 case AF_InnerBuffer: { 2096 if (ChecksEnabled[CK_InnerPointerChecker]) 2097 return CK_InnerPointerChecker; 2098 return std::nullopt; 2099 } 2100 case AF_None: { 2101 llvm_unreachable("no family"); 2102 } 2103 } 2104 llvm_unreachable("unhandled family"); 2105 } 2106 2107 std::optional<MallocChecker::CheckKind> 2108 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2109 bool IsALeakCheck) const { 2110 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2111 return CK_MallocChecker; 2112 2113 const RefState *RS = C.getState()->get<RegionState>(Sym); 2114 assert(RS); 2115 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2116 } 2117 2118 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2119 if (std::optional<nonloc::ConcreteInt> IntVal = 2120 V.getAs<nonloc::ConcreteInt>()) 2121 os << "an integer (" << IntVal->getValue() << ")"; 2122 else if (std::optional<loc::ConcreteInt> ConstAddr = 2123 V.getAs<loc::ConcreteInt>()) 2124 os << "a constant address (" << ConstAddr->getValue() << ")"; 2125 else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2126 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2127 else 2128 return false; 2129 2130 return true; 2131 } 2132 2133 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2134 const MemRegion *MR) { 2135 switch (MR->getKind()) { 2136 case MemRegion::FunctionCodeRegionKind: { 2137 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2138 if (FD) 2139 os << "the address of the function '" << *FD << '\''; 2140 else 2141 os << "the address of a function"; 2142 return true; 2143 } 2144 case MemRegion::BlockCodeRegionKind: 2145 os << "block text"; 2146 return true; 2147 case MemRegion::BlockDataRegionKind: 2148 // FIXME: where the block came from? 2149 os << "a block"; 2150 return true; 2151 default: { 2152 const MemSpaceRegion *MS = MR->getMemorySpace(); 2153 2154 if (isa<StackLocalsSpaceRegion>(MS)) { 2155 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2156 const VarDecl *VD; 2157 if (VR) 2158 VD = VR->getDecl(); 2159 else 2160 VD = nullptr; 2161 2162 if (VD) 2163 os << "the address of the local variable '" << VD->getName() << "'"; 2164 else 2165 os << "the address of a local stack variable"; 2166 return true; 2167 } 2168 2169 if (isa<StackArgumentsSpaceRegion>(MS)) { 2170 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2171 const VarDecl *VD; 2172 if (VR) 2173 VD = VR->getDecl(); 2174 else 2175 VD = nullptr; 2176 2177 if (VD) 2178 os << "the address of the parameter '" << VD->getName() << "'"; 2179 else 2180 os << "the address of a parameter"; 2181 return true; 2182 } 2183 2184 if (isa<GlobalsSpaceRegion>(MS)) { 2185 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2186 const VarDecl *VD; 2187 if (VR) 2188 VD = VR->getDecl(); 2189 else 2190 VD = nullptr; 2191 2192 if (VD) { 2193 if (VD->isStaticLocal()) 2194 os << "the address of the static variable '" << VD->getName() << "'"; 2195 else 2196 os << "the address of the global variable '" << VD->getName() << "'"; 2197 } else 2198 os << "the address of a global variable"; 2199 return true; 2200 } 2201 2202 return false; 2203 } 2204 } 2205 } 2206 2207 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2208 SourceRange Range, 2209 const Expr *DeallocExpr, 2210 AllocationFamily Family) const { 2211 2212 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2213 C.addSink(); 2214 return; 2215 } 2216 2217 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2218 if (!CheckKind) 2219 return; 2220 2221 if (ExplodedNode *N = C.generateErrorNode()) { 2222 if (!BT_BadFree[*CheckKind]) 2223 BT_BadFree[*CheckKind].reset(new BugType( 2224 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2225 2226 SmallString<100> buf; 2227 llvm::raw_svector_ostream os(buf); 2228 2229 const MemRegion *MR = ArgVal.getAsRegion(); 2230 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2231 MR = ER->getSuperRegion(); 2232 2233 os << "Argument to "; 2234 if (!printMemFnName(os, C, DeallocExpr)) 2235 os << "deallocator"; 2236 2237 os << " is "; 2238 bool Summarized = MR ? SummarizeRegion(os, MR) 2239 : SummarizeValue(os, ArgVal); 2240 if (Summarized) 2241 os << ", which is not memory allocated by "; 2242 else 2243 os << "not memory allocated by "; 2244 2245 printExpectedAllocName(os, Family); 2246 2247 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2248 os.str(), N); 2249 R->markInteresting(MR); 2250 R->addRange(Range); 2251 C.emitReport(std::move(R)); 2252 } 2253 } 2254 2255 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2256 SourceRange Range) const { 2257 2258 std::optional<MallocChecker::CheckKind> CheckKind; 2259 2260 if (ChecksEnabled[CK_MallocChecker]) 2261 CheckKind = CK_MallocChecker; 2262 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2263 CheckKind = CK_MismatchedDeallocatorChecker; 2264 else { 2265 C.addSink(); 2266 return; 2267 } 2268 2269 if (ExplodedNode *N = C.generateErrorNode()) { 2270 if (!BT_FreeAlloca[*CheckKind]) 2271 BT_FreeAlloca[*CheckKind].reset(new BugType( 2272 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2273 2274 auto R = std::make_unique<PathSensitiveBugReport>( 2275 *BT_FreeAlloca[*CheckKind], 2276 "Memory allocated by alloca() should not be deallocated", N); 2277 R->markInteresting(ArgVal.getAsRegion()); 2278 R->addRange(Range); 2279 C.emitReport(std::move(R)); 2280 } 2281 } 2282 2283 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2284 SourceRange Range, 2285 const Expr *DeallocExpr, 2286 const RefState *RS, SymbolRef Sym, 2287 bool OwnershipTransferred) const { 2288 2289 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2290 C.addSink(); 2291 return; 2292 } 2293 2294 if (ExplodedNode *N = C.generateErrorNode()) { 2295 if (!BT_MismatchedDealloc) 2296 BT_MismatchedDealloc.reset( 2297 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2298 "Bad deallocator", categories::MemoryError)); 2299 2300 SmallString<100> buf; 2301 llvm::raw_svector_ostream os(buf); 2302 2303 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2304 SmallString<20> AllocBuf; 2305 llvm::raw_svector_ostream AllocOs(AllocBuf); 2306 SmallString<20> DeallocBuf; 2307 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2308 2309 if (OwnershipTransferred) { 2310 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2311 os << DeallocOs.str() << " cannot"; 2312 else 2313 os << "Cannot"; 2314 2315 os << " take ownership of memory"; 2316 2317 if (printMemFnName(AllocOs, C, AllocExpr)) 2318 os << " allocated by " << AllocOs.str(); 2319 } else { 2320 os << "Memory"; 2321 if (printMemFnName(AllocOs, C, AllocExpr)) 2322 os << " allocated by " << AllocOs.str(); 2323 2324 os << " should be deallocated by "; 2325 printExpectedDeallocName(os, RS->getAllocationFamily()); 2326 2327 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2328 os << ", not " << DeallocOs.str(); 2329 } 2330 2331 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2332 os.str(), N); 2333 R->markInteresting(Sym); 2334 R->addRange(Range); 2335 R->addVisitor<MallocBugVisitor>(Sym); 2336 C.emitReport(std::move(R)); 2337 } 2338 } 2339 2340 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2341 SourceRange Range, const Expr *DeallocExpr, 2342 AllocationFamily Family, 2343 const Expr *AllocExpr) const { 2344 2345 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2346 C.addSink(); 2347 return; 2348 } 2349 2350 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2351 if (!CheckKind) 2352 return; 2353 2354 ExplodedNode *N = C.generateErrorNode(); 2355 if (!N) 2356 return; 2357 2358 if (!BT_OffsetFree[*CheckKind]) 2359 BT_OffsetFree[*CheckKind].reset(new BugType( 2360 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2361 2362 SmallString<100> buf; 2363 llvm::raw_svector_ostream os(buf); 2364 SmallString<20> AllocNameBuf; 2365 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2366 2367 const MemRegion *MR = ArgVal.getAsRegion(); 2368 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2369 2370 RegionOffset Offset = MR->getAsOffset(); 2371 assert((Offset.isValid() && 2372 !Offset.hasSymbolicOffset() && 2373 Offset.getOffset() != 0) && 2374 "Only symbols with a valid offset can have offset free errors"); 2375 2376 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2377 2378 os << "Argument to "; 2379 if (!printMemFnName(os, C, DeallocExpr)) 2380 os << "deallocator"; 2381 os << " is offset by " 2382 << offsetBytes 2383 << " " 2384 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2385 << " from the start of "; 2386 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2387 os << "memory allocated by " << AllocNameOs.str(); 2388 else 2389 os << "allocated memory"; 2390 2391 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2392 os.str(), N); 2393 R->markInteresting(MR->getBaseRegion()); 2394 R->addRange(Range); 2395 C.emitReport(std::move(R)); 2396 } 2397 2398 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2399 SymbolRef Sym) const { 2400 2401 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2402 !ChecksEnabled[CK_InnerPointerChecker]) { 2403 C.addSink(); 2404 return; 2405 } 2406 2407 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2408 if (!CheckKind) 2409 return; 2410 2411 if (ExplodedNode *N = C.generateErrorNode()) { 2412 if (!BT_UseFree[*CheckKind]) 2413 BT_UseFree[*CheckKind].reset(new BugType( 2414 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2415 2416 AllocationFamily AF = 2417 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2418 2419 auto R = std::make_unique<PathSensitiveBugReport>( 2420 *BT_UseFree[*CheckKind], 2421 AF == AF_InnerBuffer 2422 ? "Inner pointer of container used after re/deallocation" 2423 : "Use of memory after it is freed", 2424 N); 2425 2426 R->markInteresting(Sym); 2427 R->addRange(Range); 2428 R->addVisitor<MallocBugVisitor>(Sym); 2429 2430 if (AF == AF_InnerBuffer) 2431 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2432 2433 C.emitReport(std::move(R)); 2434 } 2435 } 2436 2437 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2438 bool Released, SymbolRef Sym, 2439 SymbolRef PrevSym) const { 2440 2441 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2442 C.addSink(); 2443 return; 2444 } 2445 2446 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2447 if (!CheckKind) 2448 return; 2449 2450 if (ExplodedNode *N = C.generateErrorNode()) { 2451 if (!BT_DoubleFree[*CheckKind]) 2452 BT_DoubleFree[*CheckKind].reset(new BugType( 2453 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2454 2455 auto R = std::make_unique<PathSensitiveBugReport>( 2456 *BT_DoubleFree[*CheckKind], 2457 (Released ? "Attempt to free released memory" 2458 : "Attempt to free non-owned memory"), 2459 N); 2460 R->addRange(Range); 2461 R->markInteresting(Sym); 2462 if (PrevSym) 2463 R->markInteresting(PrevSym); 2464 R->addVisitor<MallocBugVisitor>(Sym); 2465 C.emitReport(std::move(R)); 2466 } 2467 } 2468 2469 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2470 2471 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2472 C.addSink(); 2473 return; 2474 } 2475 2476 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2477 if (!CheckKind) 2478 return; 2479 2480 if (ExplodedNode *N = C.generateErrorNode()) { 2481 if (!BT_DoubleDelete) 2482 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2483 "Double delete", 2484 categories::MemoryError)); 2485 2486 auto R = std::make_unique<PathSensitiveBugReport>( 2487 *BT_DoubleDelete, "Attempt to delete released memory", N); 2488 2489 R->markInteresting(Sym); 2490 R->addVisitor<MallocBugVisitor>(Sym); 2491 C.emitReport(std::move(R)); 2492 } 2493 } 2494 2495 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2496 SymbolRef Sym) const { 2497 2498 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2499 C.addSink(); 2500 return; 2501 } 2502 2503 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2504 2505 if (!CheckKind) 2506 return; 2507 2508 if (ExplodedNode *N = C.generateErrorNode()) { 2509 if (!BT_UseZerroAllocated[*CheckKind]) 2510 BT_UseZerroAllocated[*CheckKind].reset( 2511 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2512 categories::MemoryError)); 2513 2514 auto R = std::make_unique<PathSensitiveBugReport>( 2515 *BT_UseZerroAllocated[*CheckKind], 2516 "Use of memory allocated with size zero", N); 2517 2518 R->addRange(Range); 2519 if (Sym) { 2520 R->markInteresting(Sym); 2521 R->addVisitor<MallocBugVisitor>(Sym); 2522 } 2523 C.emitReport(std::move(R)); 2524 } 2525 } 2526 2527 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2528 SourceRange Range, 2529 const Expr *FreeExpr, 2530 AllocationFamily Family) const { 2531 if (!ChecksEnabled[CK_MallocChecker]) { 2532 C.addSink(); 2533 return; 2534 } 2535 2536 std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2537 if (!CheckKind) 2538 return; 2539 2540 if (ExplodedNode *N = C.generateErrorNode()) { 2541 if (!BT_BadFree[*CheckKind]) 2542 BT_BadFree[*CheckKind].reset(new BugType( 2543 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2544 2545 SmallString<100> Buf; 2546 llvm::raw_svector_ostream Os(Buf); 2547 2548 const MemRegion *MR = ArgVal.getAsRegion(); 2549 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2550 MR = ER->getSuperRegion(); 2551 2552 Os << "Argument to "; 2553 if (!printMemFnName(Os, C, FreeExpr)) 2554 Os << "deallocator"; 2555 2556 Os << " is a function pointer"; 2557 2558 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2559 Os.str(), N); 2560 R->markInteresting(MR); 2561 R->addRange(Range); 2562 C.emitReport(std::move(R)); 2563 } 2564 } 2565 2566 ProgramStateRef 2567 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2568 bool ShouldFreeOnFail, ProgramStateRef State, 2569 AllocationFamily Family, bool SuffixWithN) const { 2570 if (!State) 2571 return nullptr; 2572 2573 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2574 2575 if (SuffixWithN && CE->getNumArgs() < 3) 2576 return nullptr; 2577 else if (CE->getNumArgs() < 2) 2578 return nullptr; 2579 2580 const Expr *arg0Expr = CE->getArg(0); 2581 SVal Arg0Val = C.getSVal(arg0Expr); 2582 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2583 return nullptr; 2584 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2585 2586 SValBuilder &svalBuilder = C.getSValBuilder(); 2587 2588 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2589 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2590 2591 // Get the size argument. 2592 const Expr *Arg1 = CE->getArg(1); 2593 2594 // Get the value of the size argument. 2595 SVal TotalSize = C.getSVal(Arg1); 2596 if (SuffixWithN) 2597 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2598 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2599 return nullptr; 2600 2601 // Compare the size argument to 0. 2602 DefinedOrUnknownSVal SizeZero = 2603 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2604 svalBuilder.makeIntValWithWidth( 2605 svalBuilder.getContext().getSizeType(), 0)); 2606 2607 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2608 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2609 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2610 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2611 // We only assume exceptional states if they are definitely true; if the 2612 // state is under-constrained, assume regular realloc behavior. 2613 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2614 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2615 2616 // If the ptr is NULL and the size is not 0, the call is equivalent to 2617 // malloc(size). 2618 if (PrtIsNull && !SizeIsZero) { 2619 ProgramStateRef stateMalloc = MallocMemAux( 2620 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2621 return stateMalloc; 2622 } 2623 2624 if (PrtIsNull && SizeIsZero) 2625 return State; 2626 2627 assert(!PrtIsNull); 2628 2629 bool IsKnownToBeAllocated = false; 2630 2631 // If the size is 0, free the memory. 2632 if (SizeIsZero) 2633 // The semantics of the return value are: 2634 // If size was equal to 0, either NULL or a pointer suitable to be passed 2635 // to free() is returned. We just free the input pointer and do not add 2636 // any constrains on the output pointer. 2637 if (ProgramStateRef stateFree = FreeMemAux( 2638 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2639 return stateFree; 2640 2641 // Default behavior. 2642 if (ProgramStateRef stateFree = 2643 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2644 2645 ProgramStateRef stateRealloc = 2646 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2647 if (!stateRealloc) 2648 return nullptr; 2649 2650 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2651 if (ShouldFreeOnFail) 2652 Kind = OAR_FreeOnFailure; 2653 else if (!IsKnownToBeAllocated) 2654 Kind = OAR_DoNotTrackAfterFailure; 2655 2656 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2657 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2658 SVal RetVal = C.getSVal(CE); 2659 SymbolRef ToPtr = RetVal.getAsSymbol(); 2660 assert(FromPtr && ToPtr && 2661 "By this point, FreeMemAux and MallocMemAux should have checked " 2662 "whether the argument or the return value is symbolic!"); 2663 2664 // Record the info about the reallocated symbol so that we could properly 2665 // process failed reallocation. 2666 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2667 ReallocPair(FromPtr, Kind)); 2668 // The reallocated symbol should stay alive for as long as the new symbol. 2669 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2670 return stateRealloc; 2671 } 2672 return nullptr; 2673 } 2674 2675 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2676 const CallEvent &Call, 2677 ProgramStateRef State) { 2678 if (!State) 2679 return nullptr; 2680 2681 if (Call.getNumArgs() < 2) 2682 return nullptr; 2683 2684 SValBuilder &svalBuilder = C.getSValBuilder(); 2685 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2686 SVal TotalSize = 2687 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2688 2689 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2690 } 2691 2692 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2693 SymbolRef Sym, 2694 CheckerContext &C) { 2695 const LocationContext *LeakContext = N->getLocationContext(); 2696 // Walk the ExplodedGraph backwards and find the first node that referred to 2697 // the tracked symbol. 2698 const ExplodedNode *AllocNode = N; 2699 const MemRegion *ReferenceRegion = nullptr; 2700 2701 while (N) { 2702 ProgramStateRef State = N->getState(); 2703 if (!State->get<RegionState>(Sym)) 2704 break; 2705 2706 // Find the most recent expression bound to the symbol in the current 2707 // context. 2708 if (!ReferenceRegion) { 2709 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2710 SVal Val = State->getSVal(MR); 2711 if (Val.getAsLocSymbol() == Sym) { 2712 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2713 // Do not show local variables belonging to a function other than 2714 // where the error is reported. 2715 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2716 ReferenceRegion = MR; 2717 } 2718 } 2719 } 2720 2721 // Allocation node, is the last node in the current or parent context in 2722 // which the symbol was tracked. 2723 const LocationContext *NContext = N->getLocationContext(); 2724 if (NContext == LeakContext || 2725 NContext->isParentOf(LeakContext)) 2726 AllocNode = N; 2727 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2728 } 2729 2730 return LeakInfo(AllocNode, ReferenceRegion); 2731 } 2732 2733 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2734 CheckerContext &C) const { 2735 2736 if (!ChecksEnabled[CK_MallocChecker] && 2737 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2738 return; 2739 2740 const RefState *RS = C.getState()->get<RegionState>(Sym); 2741 assert(RS && "cannot leak an untracked symbol"); 2742 AllocationFamily Family = RS->getAllocationFamily(); 2743 2744 if (Family == AF_Alloca) 2745 return; 2746 2747 std::optional<MallocChecker::CheckKind> CheckKind = 2748 getCheckIfTracked(Family, true); 2749 2750 if (!CheckKind) 2751 return; 2752 2753 assert(N); 2754 if (!BT_Leak[*CheckKind]) { 2755 // Leaks should not be reported if they are post-dominated by a sink: 2756 // (1) Sinks are higher importance bugs. 2757 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2758 // with __noreturn functions such as assert() or exit(). We choose not 2759 // to report leaks on such paths. 2760 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2761 categories::MemoryError, 2762 /*SuppressOnSink=*/true)); 2763 } 2764 2765 // Most bug reports are cached at the location where they occurred. 2766 // With leaks, we want to unique them by the location where they were 2767 // allocated, and only report a single path. 2768 PathDiagnosticLocation LocUsedForUniqueing; 2769 const ExplodedNode *AllocNode = nullptr; 2770 const MemRegion *Region = nullptr; 2771 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2772 2773 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2774 if (AllocationStmt) 2775 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2776 C.getSourceManager(), 2777 AllocNode->getLocationContext()); 2778 2779 SmallString<200> buf; 2780 llvm::raw_svector_ostream os(buf); 2781 if (Region && Region->canPrintPretty()) { 2782 os << "Potential leak of memory pointed to by "; 2783 Region->printPretty(os); 2784 } else { 2785 os << "Potential memory leak"; 2786 } 2787 2788 auto R = std::make_unique<PathSensitiveBugReport>( 2789 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2790 AllocNode->getLocationContext()->getDecl()); 2791 R->markInteresting(Sym); 2792 R->addVisitor<MallocBugVisitor>(Sym, true); 2793 if (ShouldRegisterNoOwnershipChangeVisitor) 2794 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2795 C.emitReport(std::move(R)); 2796 } 2797 2798 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2799 CheckerContext &C) const 2800 { 2801 ProgramStateRef state = C.getState(); 2802 RegionStateTy OldRS = state->get<RegionState>(); 2803 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2804 2805 RegionStateTy RS = OldRS; 2806 SmallVector<SymbolRef, 2> Errors; 2807 for (auto [Sym, State] : RS) { 2808 if (SymReaper.isDead(Sym)) { 2809 if (State.isAllocated() || State.isAllocatedOfSizeZero()) 2810 Errors.push_back(Sym); 2811 // Remove the dead symbol from the map. 2812 RS = F.remove(RS, Sym); 2813 } 2814 } 2815 2816 if (RS == OldRS) { 2817 // We shouldn't have touched other maps yet. 2818 assert(state->get<ReallocPairs>() == 2819 C.getState()->get<ReallocPairs>()); 2820 assert(state->get<FreeReturnValue>() == 2821 C.getState()->get<FreeReturnValue>()); 2822 return; 2823 } 2824 2825 // Cleanup the Realloc Pairs Map. 2826 ReallocPairsTy RP = state->get<ReallocPairs>(); 2827 for (auto [Sym, ReallocPair] : RP) { 2828 if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) { 2829 state = state->remove<ReallocPairs>(Sym); 2830 } 2831 } 2832 2833 // Cleanup the FreeReturnValue Map. 2834 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2835 for (auto [Sym, RetSym] : FR) { 2836 if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) { 2837 state = state->remove<FreeReturnValue>(Sym); 2838 } 2839 } 2840 2841 // Generate leak node. 2842 ExplodedNode *N = C.getPredecessor(); 2843 if (!Errors.empty()) { 2844 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2845 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2846 if (N) { 2847 for (SymbolRef Sym : Errors) { 2848 HandleLeak(Sym, N, C); 2849 } 2850 } 2851 } 2852 2853 C.addTransition(state->set<RegionState>(RS), N); 2854 } 2855 2856 void MallocChecker::checkPreCall(const CallEvent &Call, 2857 CheckerContext &C) const { 2858 2859 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2860 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2861 2862 if (!ChecksEnabled[CK_NewDeleteChecker]) 2863 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2864 checkUseAfterFree(Sym, C, DE->getArgument()); 2865 2866 if (!isStandardNewDelete(DC->getDecl())) 2867 return; 2868 2869 ProgramStateRef State = C.getState(); 2870 bool IsKnownToBeAllocated; 2871 State = FreeMemAux(C, DE->getArgument(), Call, State, 2872 /*Hold*/ false, IsKnownToBeAllocated, 2873 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2874 2875 C.addTransition(State); 2876 return; 2877 } 2878 2879 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2880 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2881 if (!Sym || checkDoubleDelete(Sym, C)) 2882 return; 2883 } 2884 2885 // We will check for double free in the post visit. 2886 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2887 const FunctionDecl *FD = FC->getDecl(); 2888 if (!FD) 2889 return; 2890 2891 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2892 return; 2893 } 2894 2895 // Check if the callee of a method is deleted. 2896 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2897 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2898 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2899 return; 2900 } 2901 2902 // Check arguments for being used after free. 2903 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2904 SVal ArgSVal = Call.getArgSVal(I); 2905 if (isa<Loc>(ArgSVal)) { 2906 SymbolRef Sym = ArgSVal.getAsSymbol(); 2907 if (!Sym) 2908 continue; 2909 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2910 return; 2911 } 2912 } 2913 } 2914 2915 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2916 CheckerContext &C) const { 2917 checkEscapeOnReturn(S, C); 2918 } 2919 2920 // In the CFG, automatic destructors come after the return statement. 2921 // This callback checks for returning memory that is freed by automatic 2922 // destructors, as those cannot be reached in checkPreStmt(). 2923 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2924 CheckerContext &C) const { 2925 checkEscapeOnReturn(S, C); 2926 } 2927 2928 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2929 CheckerContext &C) const { 2930 if (!S) 2931 return; 2932 2933 const Expr *E = S->getRetValue(); 2934 if (!E) 2935 return; 2936 2937 // Check if we are returning a symbol. 2938 ProgramStateRef State = C.getState(); 2939 SVal RetVal = C.getSVal(E); 2940 SymbolRef Sym = RetVal.getAsSymbol(); 2941 if (!Sym) 2942 // If we are returning a field of the allocated struct or an array element, 2943 // the callee could still free the memory. 2944 // TODO: This logic should be a part of generic symbol escape callback. 2945 if (const MemRegion *MR = RetVal.getAsRegion()) 2946 if (isa<FieldRegion, ElementRegion>(MR)) 2947 if (const SymbolicRegion *BMR = 2948 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2949 Sym = BMR->getSymbol(); 2950 2951 // Check if we are returning freed memory. 2952 if (Sym) 2953 checkUseAfterFree(Sym, C, E); 2954 } 2955 2956 // TODO: Blocks should be either inlined or should call invalidate regions 2957 // upon invocation. After that's in place, special casing here will not be 2958 // needed. 2959 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2960 CheckerContext &C) const { 2961 2962 // Scan the BlockDecRefExprs for any object the retain count checker 2963 // may be tracking. 2964 if (!BE->getBlockDecl()->hasCaptures()) 2965 return; 2966 2967 ProgramStateRef state = C.getState(); 2968 const BlockDataRegion *R = 2969 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2970 2971 auto ReferencedVars = R->referenced_vars(); 2972 if (ReferencedVars.empty()) 2973 return; 2974 2975 SmallVector<const MemRegion*, 10> Regions; 2976 const LocationContext *LC = C.getLocationContext(); 2977 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2978 2979 for (const auto &Var : ReferencedVars) { 2980 const VarRegion *VR = Var.getCapturedRegion(); 2981 if (VR->getSuperRegion() == R) { 2982 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2983 } 2984 Regions.push_back(VR); 2985 } 2986 2987 state = 2988 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2989 C.addTransition(state); 2990 } 2991 2992 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2993 assert(Sym); 2994 const RefState *RS = C.getState()->get<RegionState>(Sym); 2995 return (RS && RS->isReleased()); 2996 } 2997 2998 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2999 const CallEvent &Call, CheckerContext &C) const { 3000 if (Call.getNumArgs() == 0) 3001 return false; 3002 3003 StringRef FunctionStr = ""; 3004 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3005 if (const Stmt *Body = FD->getBody()) 3006 if (Body->getBeginLoc().isValid()) 3007 FunctionStr = 3008 Lexer::getSourceText(CharSourceRange::getTokenRange( 3009 {FD->getBeginLoc(), Body->getBeginLoc()}), 3010 C.getSourceManager(), C.getLangOpts()); 3011 3012 // We do not model the Integer Set Library's retain-count based allocation. 3013 if (!FunctionStr.contains("__isl_")) 3014 return false; 3015 3016 ProgramStateRef State = C.getState(); 3017 3018 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3019 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3020 if (const RefState *RS = State->get<RegionState>(Sym)) 3021 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3022 3023 C.addTransition(State); 3024 return true; 3025 } 3026 3027 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3028 const Stmt *S) const { 3029 3030 if (isReleased(Sym, C)) { 3031 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3032 return true; 3033 } 3034 3035 return false; 3036 } 3037 3038 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3039 const Stmt *S) const { 3040 assert(Sym); 3041 3042 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3043 if (RS->isAllocatedOfSizeZero()) 3044 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3045 } 3046 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3047 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3048 } 3049 } 3050 3051 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3052 3053 if (isReleased(Sym, C)) { 3054 HandleDoubleDelete(C, Sym); 3055 return true; 3056 } 3057 return false; 3058 } 3059 3060 // Check if the location is a freed symbolic region. 3061 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3062 CheckerContext &C) const { 3063 SymbolRef Sym = l.getLocSymbolInBase(); 3064 if (Sym) { 3065 checkUseAfterFree(Sym, C, S); 3066 checkUseZeroAllocated(Sym, C, S); 3067 } 3068 } 3069 3070 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3071 // it - assuming that allocation failed on this path. 3072 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3073 SVal Cond, 3074 bool Assumption) const { 3075 RegionStateTy RS = state->get<RegionState>(); 3076 for (SymbolRef Sym : llvm::make_first_range(RS)) { 3077 // If the symbol is assumed to be NULL, remove it from consideration. 3078 ConstraintManager &CMgr = state->getConstraintManager(); 3079 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3080 if (AllocFailed.isConstrainedTrue()) 3081 state = state->remove<RegionState>(Sym); 3082 } 3083 3084 // Realloc returns 0 when reallocation fails, which means that we should 3085 // restore the state of the pointer being reallocated. 3086 ReallocPairsTy RP = state->get<ReallocPairs>(); 3087 for (auto [Sym, ReallocPair] : RP) { 3088 // If the symbol is assumed to be NULL, remove it from consideration. 3089 ConstraintManager &CMgr = state->getConstraintManager(); 3090 ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym); 3091 if (!AllocFailed.isConstrainedTrue()) 3092 continue; 3093 3094 SymbolRef ReallocSym = ReallocPair.ReallocatedSym; 3095 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3096 if (RS->isReleased()) { 3097 switch (ReallocPair.Kind) { 3098 case OAR_ToBeFreedAfterFailure: 3099 state = state->set<RegionState>(ReallocSym, 3100 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3101 break; 3102 case OAR_DoNotTrackAfterFailure: 3103 state = state->remove<RegionState>(ReallocSym); 3104 break; 3105 default: 3106 assert(ReallocPair.Kind == OAR_FreeOnFailure); 3107 } 3108 } 3109 } 3110 state = state->remove<ReallocPairs>(Sym); 3111 } 3112 3113 return state; 3114 } 3115 3116 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3117 const CallEvent *Call, 3118 ProgramStateRef State, 3119 SymbolRef &EscapingSymbol) const { 3120 assert(Call); 3121 EscapingSymbol = nullptr; 3122 3123 // For now, assume that any C++ or block call can free memory. 3124 // TODO: If we want to be more optimistic here, we'll need to make sure that 3125 // regions escape to C++ containers. They seem to do that even now, but for 3126 // mysterious reasons. 3127 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3128 return true; 3129 3130 // Check Objective-C messages by selector name. 3131 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3132 // If it's not a framework call, or if it takes a callback, assume it 3133 // can free memory. 3134 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3135 return true; 3136 3137 // If it's a method we know about, handle it explicitly post-call. 3138 // This should happen before the "freeWhenDone" check below. 3139 if (isKnownDeallocObjCMethodName(*Msg)) 3140 return false; 3141 3142 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3143 // about, we can't be sure that the object will use free() to deallocate the 3144 // memory, so we can't model it explicitly. The best we can do is use it to 3145 // decide whether the pointer escapes. 3146 if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3147 return *FreeWhenDone; 3148 3149 // If the first selector piece ends with "NoCopy", and there is no 3150 // "freeWhenDone" parameter set to zero, we know ownership is being 3151 // transferred. Again, though, we can't be sure that the object will use 3152 // free() to deallocate the memory, so we can't model it explicitly. 3153 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3154 if (FirstSlot.endswith("NoCopy")) 3155 return true; 3156 3157 // If the first selector starts with addPointer, insertPointer, 3158 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3159 // This is similar to C++ containers (vector); we still might want to check 3160 // that the pointers get freed by following the container itself. 3161 if (FirstSlot.startswith("addPointer") || 3162 FirstSlot.startswith("insertPointer") || 3163 FirstSlot.startswith("replacePointer") || 3164 FirstSlot.equals("valueWithPointer")) { 3165 return true; 3166 } 3167 3168 // We should escape receiver on call to 'init'. This is especially relevant 3169 // to the receiver, as the corresponding symbol is usually not referenced 3170 // after the call. 3171 if (Msg->getMethodFamily() == OMF_init) { 3172 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3173 return true; 3174 } 3175 3176 // Otherwise, assume that the method does not free memory. 3177 // Most framework methods do not free memory. 3178 return false; 3179 } 3180 3181 // At this point the only thing left to handle is straight function calls. 3182 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3183 if (!FD) 3184 return true; 3185 3186 // If it's one of the allocation functions we can reason about, we model 3187 // its behavior explicitly. 3188 if (isMemCall(*Call)) 3189 return false; 3190 3191 // If it's not a system call, assume it frees memory. 3192 if (!Call->isInSystemHeader()) 3193 return true; 3194 3195 // White list the system functions whose arguments escape. 3196 const IdentifierInfo *II = FD->getIdentifier(); 3197 if (!II) 3198 return true; 3199 StringRef FName = II->getName(); 3200 3201 // White list the 'XXXNoCopy' CoreFoundation functions. 3202 // We specifically check these before 3203 if (FName.endswith("NoCopy")) { 3204 // Look for the deallocator argument. We know that the memory ownership 3205 // is not transferred only if the deallocator argument is 3206 // 'kCFAllocatorNull'. 3207 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3208 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3209 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3210 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3211 if (DeallocatorName == "kCFAllocatorNull") 3212 return false; 3213 } 3214 } 3215 return true; 3216 } 3217 3218 // Associating streams with malloced buffers. The pointer can escape if 3219 // 'closefn' is specified (and if that function does free memory), 3220 // but it will not if closefn is not specified. 3221 // Currently, we do not inspect the 'closefn' function (PR12101). 3222 if (FName == "funopen") 3223 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3224 return false; 3225 3226 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3227 // these leaks might be intentional when setting the buffer for stdio. 3228 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3229 if (FName == "setbuf" || FName =="setbuffer" || 3230 FName == "setlinebuf" || FName == "setvbuf") { 3231 if (Call->getNumArgs() >= 1) { 3232 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3233 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3234 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3235 if (D->getCanonicalDecl()->getName().contains("std")) 3236 return true; 3237 } 3238 } 3239 3240 // A bunch of other functions which either take ownership of a pointer or 3241 // wrap the result up in a struct or object, meaning it can be freed later. 3242 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3243 // but the Malloc checker cannot differentiate between them. The right way 3244 // of doing this would be to implement a pointer escapes callback. 3245 if (FName == "CGBitmapContextCreate" || 3246 FName == "CGBitmapContextCreateWithData" || 3247 FName == "CVPixelBufferCreateWithBytes" || 3248 FName == "CVPixelBufferCreateWithPlanarBytes" || 3249 FName == "OSAtomicEnqueue") { 3250 return true; 3251 } 3252 3253 if (FName == "postEvent" && 3254 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3255 return true; 3256 } 3257 3258 if (FName == "connectImpl" && 3259 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3260 return true; 3261 } 3262 3263 if (FName == "singleShotImpl" && 3264 FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") { 3265 return true; 3266 } 3267 3268 // Handle cases where we know a buffer's /address/ can escape. 3269 // Note that the above checks handle some special cases where we know that 3270 // even though the address escapes, it's still our responsibility to free the 3271 // buffer. 3272 if (Call->argumentsMayEscape()) 3273 return true; 3274 3275 // Otherwise, assume that the function does not free memory. 3276 // Most system calls do not free the memory. 3277 return false; 3278 } 3279 3280 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3281 const InvalidatedSymbols &Escaped, 3282 const CallEvent *Call, 3283 PointerEscapeKind Kind) const { 3284 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3285 /*IsConstPointerEscape*/ false); 3286 } 3287 3288 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3289 const InvalidatedSymbols &Escaped, 3290 const CallEvent *Call, 3291 PointerEscapeKind Kind) const { 3292 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3293 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3294 /*IsConstPointerEscape*/ true); 3295 } 3296 3297 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3298 return (RS->getAllocationFamily() == AF_CXXNewArray || 3299 RS->getAllocationFamily() == AF_CXXNew); 3300 } 3301 3302 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3303 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3304 const CallEvent *Call, PointerEscapeKind Kind, 3305 bool IsConstPointerEscape) const { 3306 // If we know that the call does not free memory, or we want to process the 3307 // call later, keep tracking the top level arguments. 3308 SymbolRef EscapingSymbol = nullptr; 3309 if (Kind == PSK_DirectEscapeOnCall && 3310 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3311 EscapingSymbol) && 3312 !EscapingSymbol) { 3313 return State; 3314 } 3315 3316 for (SymbolRef sym : Escaped) { 3317 if (EscapingSymbol && EscapingSymbol != sym) 3318 continue; 3319 3320 if (const RefState *RS = State->get<RegionState>(sym)) 3321 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3322 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3323 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3324 } 3325 return State; 3326 } 3327 3328 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3329 SVal ArgVal) const { 3330 if (!KernelZeroSizePtrValue) 3331 KernelZeroSizePtrValue = 3332 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3333 3334 const llvm::APSInt *ArgValKnown = 3335 C.getSValBuilder().getKnownValue(State, ArgVal); 3336 return ArgValKnown && *KernelZeroSizePtrValue && 3337 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3338 } 3339 3340 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3341 ProgramStateRef prevState) { 3342 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3343 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3344 3345 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3346 SymbolRef sym = Pair.first; 3347 if (!currMap.lookup(sym)) 3348 return sym; 3349 } 3350 3351 return nullptr; 3352 } 3353 3354 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3355 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3356 StringRef N = II->getName(); 3357 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3358 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3359 N.contains_insensitive("intrusive") || 3360 N.contains_insensitive("shared")) { 3361 return true; 3362 } 3363 } 3364 } 3365 return false; 3366 } 3367 3368 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3369 BugReporterContext &BRC, 3370 PathSensitiveBugReport &BR) { 3371 ProgramStateRef state = N->getState(); 3372 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3373 3374 const RefState *RSCurr = state->get<RegionState>(Sym); 3375 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3376 3377 const Stmt *S = N->getStmtForDiagnostics(); 3378 // When dealing with containers, we sometimes want to give a note 3379 // even if the statement is missing. 3380 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3381 return nullptr; 3382 3383 const LocationContext *CurrentLC = N->getLocationContext(); 3384 3385 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3386 // the pointer was released (before the release), this is likely a destructor 3387 // of a shared pointer. 3388 // Because we don't model atomics, and also because we don't know that the 3389 // original reference count is positive, we should not report use-after-frees 3390 // on objects deleted in such destructors. This can probably be improved 3391 // through better shared pointer modeling. 3392 if (ReleaseDestructorLC) { 3393 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3394 AtomicExpr::AtomicOp Op = AE->getOp(); 3395 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3396 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3397 if (ReleaseDestructorLC == CurrentLC || 3398 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3399 BR.markInvalid(getTag(), S); 3400 } 3401 } 3402 } 3403 } 3404 3405 // FIXME: We will eventually need to handle non-statement-based events 3406 // (__attribute__((cleanup))). 3407 3408 // Find out if this is an interesting point and what is the kind. 3409 StringRef Msg; 3410 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3411 SmallString<256> Buf; 3412 llvm::raw_svector_ostream OS(Buf); 3413 3414 if (Mode == Normal) { 3415 if (isAllocated(RSCurr, RSPrev, S)) { 3416 Msg = "Memory is allocated"; 3417 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3418 Sym, "Returned allocated memory"); 3419 } else if (isReleased(RSCurr, RSPrev, S)) { 3420 const auto Family = RSCurr->getAllocationFamily(); 3421 switch (Family) { 3422 case AF_Alloca: 3423 case AF_Malloc: 3424 case AF_CXXNew: 3425 case AF_CXXNewArray: 3426 case AF_IfNameIndex: 3427 Msg = "Memory is released"; 3428 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3429 Sym, "Returning; memory was released"); 3430 break; 3431 case AF_InnerBuffer: { 3432 const MemRegion *ObjRegion = 3433 allocation_state::getContainerObjRegion(statePrev, Sym); 3434 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3435 QualType ObjTy = TypedRegion->getValueType(); 3436 OS << "Inner buffer of '" << ObjTy << "' "; 3437 3438 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3439 OS << "deallocated by call to destructor"; 3440 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3441 Sym, "Returning; inner buffer was deallocated"); 3442 } else { 3443 OS << "reallocated by call to '"; 3444 const Stmt *S = RSCurr->getStmt(); 3445 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3446 OS << MemCallE->getMethodDecl()->getDeclName(); 3447 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3448 OS << OpCallE->getDirectCallee()->getDeclName(); 3449 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3450 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3451 CallEventRef<> Call = 3452 CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0}); 3453 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3454 OS << D->getDeclName(); 3455 else 3456 OS << "unknown"; 3457 } 3458 OS << "'"; 3459 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3460 Sym, "Returning; inner buffer was reallocated"); 3461 } 3462 Msg = OS.str(); 3463 break; 3464 } 3465 case AF_None: 3466 llvm_unreachable("Unhandled allocation family!"); 3467 } 3468 3469 // See if we're releasing memory while inlining a destructor 3470 // (or one of its callees). This turns on various common 3471 // false positive suppressions. 3472 bool FoundAnyDestructor = false; 3473 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3474 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3475 if (isReferenceCountingPointerDestructor(DD)) { 3476 // This immediately looks like a reference-counting destructor. 3477 // We're bad at guessing the original reference count of the object, 3478 // so suppress the report for now. 3479 BR.markInvalid(getTag(), DD); 3480 } else if (!FoundAnyDestructor) { 3481 assert(!ReleaseDestructorLC && 3482 "There can be only one release point!"); 3483 // Suspect that it's a reference counting pointer destructor. 3484 // On one of the next nodes might find out that it has atomic 3485 // reference counting operations within it (see the code above), 3486 // and if so, we'd conclude that it likely is a reference counting 3487 // pointer destructor. 3488 ReleaseDestructorLC = LC->getStackFrame(); 3489 // It is unlikely that releasing memory is delegated to a destructor 3490 // inside a destructor of a shared pointer, because it's fairly hard 3491 // to pass the information that the pointer indeed needs to be 3492 // released into it. So we're only interested in the innermost 3493 // destructor. 3494 FoundAnyDestructor = true; 3495 } 3496 } 3497 } 3498 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3499 Msg = "Memory ownership is transferred"; 3500 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3501 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3502 Mode = ReallocationFailed; 3503 Msg = "Reallocation failed"; 3504 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3505 Sym, "Reallocation failed"); 3506 3507 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3508 // Is it possible to fail two reallocs WITHOUT testing in between? 3509 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3510 "We only support one failed realloc at a time."); 3511 BR.markInteresting(sym); 3512 FailedReallocSymbol = sym; 3513 } 3514 } 3515 3516 // We are in a special mode if a reallocation failed later in the path. 3517 } else if (Mode == ReallocationFailed) { 3518 assert(FailedReallocSymbol && "No symbol to look for."); 3519 3520 // Is this is the first appearance of the reallocated symbol? 3521 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3522 // We're at the reallocation point. 3523 Msg = "Attempt to reallocate memory"; 3524 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3525 Sym, "Returned reallocated memory"); 3526 FailedReallocSymbol = nullptr; 3527 Mode = Normal; 3528 } 3529 } 3530 3531 if (Msg.empty()) { 3532 assert(!StackHint); 3533 return nullptr; 3534 } 3535 3536 assert(StackHint); 3537 3538 // Generate the extra diagnostic. 3539 PathDiagnosticLocation Pos; 3540 if (!S) { 3541 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3542 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3543 if (!PostImplCall) 3544 return nullptr; 3545 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3546 BRC.getSourceManager()); 3547 } else { 3548 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3549 N->getLocationContext()); 3550 } 3551 3552 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3553 BR.addCallStackHint(P, std::move(StackHint)); 3554 return P; 3555 } 3556 3557 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3558 const char *NL, const char *Sep) const { 3559 3560 RegionStateTy RS = State->get<RegionState>(); 3561 3562 if (!RS.isEmpty()) { 3563 Out << Sep << "MallocChecker :" << NL; 3564 for (auto [Sym, Data] : RS) { 3565 const RefState *RefS = State->get<RegionState>(Sym); 3566 AllocationFamily Family = RefS->getAllocationFamily(); 3567 std::optional<MallocChecker::CheckKind> CheckKind = 3568 getCheckIfTracked(Family); 3569 if (!CheckKind) 3570 CheckKind = getCheckIfTracked(Family, true); 3571 3572 Sym->dumpToStream(Out); 3573 Out << " : "; 3574 Data.dump(Out); 3575 if (CheckKind) 3576 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3577 Out << NL; 3578 } 3579 } 3580 } 3581 3582 namespace clang { 3583 namespace ento { 3584 namespace allocation_state { 3585 3586 ProgramStateRef 3587 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3588 AllocationFamily Family = AF_InnerBuffer; 3589 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3590 } 3591 3592 } // end namespace allocation_state 3593 } // end namespace ento 3594 } // end namespace clang 3595 3596 // Intended to be used in InnerPointerChecker to register the part of 3597 // MallocChecker connected to it. 3598 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3599 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3600 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3601 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3602 mgr.getCurrentCheckerName(); 3603 } 3604 3605 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3606 auto *checker = mgr.registerChecker<MallocChecker>(); 3607 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3608 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3609 checker->ShouldRegisterNoOwnershipChangeVisitor = 3610 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3611 checker, "AddNoOwnershipChangeNotes"); 3612 } 3613 3614 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3615 return true; 3616 } 3617 3618 #define REGISTER_CHECKER(name) \ 3619 void ento::register##name(CheckerManager &mgr) { \ 3620 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3621 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3622 checker->CheckNames[MallocChecker::CK_##name] = \ 3623 mgr.getCurrentCheckerName(); \ 3624 } \ 3625 \ 3626 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3627 3628 REGISTER_CHECKER(MallocChecker) 3629 REGISTER_CHECKER(NewDeleteChecker) 3630 REGISTER_CHECKER(NewDeleteLeaksChecker) 3631 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3632