1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/Checker.h" 23 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallString.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include <climits> 33 #include <utility> 34 35 using namespace clang; 36 using namespace ento; 37 38 namespace { 39 40 // Used to check correspondence between allocators and deallocators. 41 enum AllocationFamily { 42 AF_None, 43 AF_Malloc, 44 AF_CXXNew, 45 AF_CXXNewArray, 46 AF_IfNameIndex, 47 AF_Alloca 48 }; 49 50 class RefState { 51 enum Kind { // Reference to allocated memory. 52 Allocated, 53 // Reference to zero-allocated memory. 54 AllocatedOfSizeZero, 55 // Reference to released/freed memory. 56 Released, 57 // The responsibility for freeing resources has transferred from 58 // this reference. A relinquished symbol should not be freed. 59 Relinquished, 60 // We are no longer guaranteed to have observed all manipulations 61 // of this pointer/memory. For example, it could have been 62 // passed as a parameter to an opaque function. 63 Escaped 64 }; 65 66 const Stmt *S; 67 unsigned K : 3; // Kind enum, but stored as a bitfield. 68 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 69 // family. 70 71 RefState(Kind k, const Stmt *s, unsigned family) 72 : S(s), K(k), Family(family) { 73 assert(family != AF_None); 74 } 75 public: 76 bool isAllocated() const { return K == Allocated; } 77 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 78 bool isReleased() const { return K == Released; } 79 bool isRelinquished() const { return K == Relinquished; } 80 bool isEscaped() const { return K == Escaped; } 81 AllocationFamily getAllocationFamily() const { 82 return (AllocationFamily)Family; 83 } 84 const Stmt *getStmt() const { return S; } 85 86 bool operator==(const RefState &X) const { 87 return K == X.K && S == X.S && Family == X.Family; 88 } 89 90 static RefState getAllocated(unsigned family, const Stmt *s) { 91 return RefState(Allocated, s, family); 92 } 93 static RefState getAllocatedOfSizeZero(const RefState *RS) { 94 return RefState(AllocatedOfSizeZero, RS->getStmt(), 95 RS->getAllocationFamily()); 96 } 97 static RefState getReleased(unsigned family, const Stmt *s) { 98 return RefState(Released, s, family); 99 } 100 static RefState getRelinquished(unsigned family, const Stmt *s) { 101 return RefState(Relinquished, s, family); 102 } 103 static RefState getEscaped(const RefState *RS) { 104 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 105 } 106 107 void Profile(llvm::FoldingSetNodeID &ID) const { 108 ID.AddInteger(K); 109 ID.AddPointer(S); 110 ID.AddInteger(Family); 111 } 112 113 void dump(raw_ostream &OS) const { 114 switch (static_cast<Kind>(K)) { 115 #define CASE(ID) case ID: OS << #ID; break; 116 CASE(Allocated) 117 CASE(AllocatedOfSizeZero) 118 CASE(Released) 119 CASE(Relinquished) 120 CASE(Escaped) 121 } 122 } 123 124 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 125 }; 126 127 enum ReallocPairKind { 128 RPToBeFreedAfterFailure, 129 // The symbol has been freed when reallocation failed. 130 RPIsFreeOnFailure, 131 // The symbol does not need to be freed after reallocation fails. 132 RPDoNotTrackAfterFailure 133 }; 134 135 /// \class ReallocPair 136 /// \brief Stores information about the symbol being reallocated by a call to 137 /// 'realloc' to allow modeling failed reallocation later in the path. 138 struct ReallocPair { 139 // \brief The symbol which realloc reallocated. 140 SymbolRef ReallocatedSym; 141 ReallocPairKind Kind; 142 143 ReallocPair(SymbolRef S, ReallocPairKind K) : 144 ReallocatedSym(S), Kind(K) {} 145 void Profile(llvm::FoldingSetNodeID &ID) const { 146 ID.AddInteger(Kind); 147 ID.AddPointer(ReallocatedSym); 148 } 149 bool operator==(const ReallocPair &X) const { 150 return ReallocatedSym == X.ReallocatedSym && 151 Kind == X.Kind; 152 } 153 }; 154 155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 156 157 class MallocChecker : public Checker<check::DeadSymbols, 158 check::PointerEscape, 159 check::ConstPointerEscape, 160 check::PreStmt<ReturnStmt>, 161 check::PreCall, 162 check::PostStmt<CallExpr>, 163 check::PostStmt<CXXNewExpr>, 164 check::PreStmt<CXXDeleteExpr>, 165 check::PostStmt<BlockExpr>, 166 check::PostObjCMessage, 167 check::Location, 168 eval::Assume> 169 { 170 public: 171 MallocChecker() 172 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 173 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 174 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 175 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 176 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 177 II_wcsdup(nullptr), II_win_wcsdup(nullptr) {} 178 179 /// In pessimistic mode, the checker assumes that it does not know which 180 /// functions might free the memory. 181 enum CheckKind { 182 CK_MallocChecker, 183 CK_NewDeleteChecker, 184 CK_NewDeleteLeaksChecker, 185 CK_MismatchedDeallocatorChecker, 186 CK_NumCheckKinds 187 }; 188 189 enum class MemoryOperationKind { 190 MOK_Allocate, 191 MOK_Free, 192 MOK_Any 193 }; 194 195 DefaultBool IsOptimistic; 196 197 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 198 CheckName CheckNames[CK_NumCheckKinds]; 199 200 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 201 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 202 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 203 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 204 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 205 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 206 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 207 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 208 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 209 bool Assumption) const; 210 void checkLocation(SVal l, bool isLoad, const Stmt *S, 211 CheckerContext &C) const; 212 213 ProgramStateRef checkPointerEscape(ProgramStateRef State, 214 const InvalidatedSymbols &Escaped, 215 const CallEvent *Call, 216 PointerEscapeKind Kind) const; 217 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 218 const InvalidatedSymbols &Escaped, 219 const CallEvent *Call, 220 PointerEscapeKind Kind) const; 221 222 void printState(raw_ostream &Out, ProgramStateRef State, 223 const char *NL, const char *Sep) const override; 224 225 private: 226 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 227 mutable std::unique_ptr<BugType> BT_DoubleDelete; 228 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 229 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 230 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 231 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 232 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 233 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 234 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 235 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 236 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 237 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 238 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 239 *II_win_wcsdup; 240 mutable Optional<uint64_t> KernelZeroFlagVal; 241 242 void initIdentifierInfo(ASTContext &C) const; 243 244 /// \brief Determine family of a deallocation expression. 245 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 246 247 /// \brief Print names of allocators and deallocators. 248 /// 249 /// \returns true on success. 250 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 251 const Expr *E) const; 252 253 /// \brief Print expected name of an allocator based on the deallocator's 254 /// family derived from the DeallocExpr. 255 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 256 const Expr *DeallocExpr) const; 257 /// \brief Print expected name of a deallocator based on the allocator's 258 /// family. 259 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 260 261 ///@{ 262 /// Check if this is one of the functions which can allocate/reallocate memory 263 /// pointed to by one of its arguments. 264 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 265 bool isCMemFunction(const FunctionDecl *FD, 266 ASTContext &C, 267 AllocationFamily Family, 268 MemoryOperationKind MemKind) const; 269 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 270 ///@} 271 272 /// \brief Perform a zero-allocation check. 273 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 274 const unsigned AllocationSizeArg, 275 ProgramStateRef State) const; 276 277 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 278 const CallExpr *CE, 279 const OwnershipAttr* Att, 280 ProgramStateRef State) const; 281 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 282 const Expr *SizeEx, SVal Init, 283 ProgramStateRef State, 284 AllocationFamily Family = AF_Malloc); 285 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 286 SVal SizeEx, SVal Init, 287 ProgramStateRef State, 288 AllocationFamily Family = AF_Malloc); 289 290 static ProgramStateRef addExtentSize(CheckerContext &C, const CXXNewExpr *NE, 291 ProgramStateRef State); 292 293 // Check if this malloc() for special flags. At present that means M_ZERO or 294 // __GFP_ZERO (in which case, treat it like calloc). 295 llvm::Optional<ProgramStateRef> 296 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 297 const ProgramStateRef &State) const; 298 299 /// Update the RefState to reflect the new memory allocation. 300 static ProgramStateRef 301 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 302 AllocationFamily Family = AF_Malloc); 303 304 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 305 const OwnershipAttr* Att, 306 ProgramStateRef State) const; 307 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 308 ProgramStateRef state, unsigned Num, 309 bool Hold, 310 bool &ReleasedAllocated, 311 bool ReturnsNullOnFailure = false) const; 312 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 313 const Expr *ParentExpr, 314 ProgramStateRef State, 315 bool Hold, 316 bool &ReleasedAllocated, 317 bool ReturnsNullOnFailure = false) const; 318 319 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, 320 bool FreesMemOnFailure, 321 ProgramStateRef State) const; 322 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 323 ProgramStateRef State); 324 325 ///\brief Check if the memory associated with this symbol was released. 326 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 327 328 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 329 330 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 331 const Stmt *S) const; 332 333 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 334 335 /// Check if the function is known free memory, or if it is 336 /// "interesting" and should be modeled explicitly. 337 /// 338 /// \param [out] EscapingSymbol A function might not free memory in general, 339 /// but could be known to free a particular symbol. In this case, false is 340 /// returned and the single escaping symbol is returned through the out 341 /// parameter. 342 /// 343 /// We assume that pointers do not escape through calls to system functions 344 /// not handled by this checker. 345 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 346 ProgramStateRef State, 347 SymbolRef &EscapingSymbol) const; 348 349 // Implementation of the checkPointerEscape callabcks. 350 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind, 354 bool(*CheckRefState)(const RefState*)) const; 355 356 ///@{ 357 /// Tells if a given family/call/symbol is tracked by the current checker. 358 /// Sets CheckKind to the kind of the checker responsible for this 359 /// family/call/symbol. 360 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 361 bool IsALeakCheck = false) const; 362 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 363 const Stmt *AllocDeallocStmt, 364 bool IsALeakCheck = false) const; 365 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 366 bool IsALeakCheck = false) const; 367 ///@} 368 static bool SummarizeValue(raw_ostream &os, SVal V); 369 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 370 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 371 const Expr *DeallocExpr) const; 372 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 373 SourceRange Range) const; 374 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 375 const Expr *DeallocExpr, const RefState *RS, 376 SymbolRef Sym, bool OwnershipTransferred) const; 377 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 378 const Expr *DeallocExpr, 379 const Expr *AllocExpr = nullptr) const; 380 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 381 SymbolRef Sym) const; 382 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 383 SymbolRef Sym, SymbolRef PrevSym) const; 384 385 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 386 387 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 388 SymbolRef Sym) const; 389 390 /// Find the location of the allocation for Sym on the path leading to the 391 /// exploded node N. 392 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 393 CheckerContext &C) const; 394 395 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 396 397 /// The bug visitor which allows us to print extra diagnostics along the 398 /// BugReport path. For example, showing the allocation site of the leaked 399 /// region. 400 class MallocBugVisitor final 401 : public BugReporterVisitorImpl<MallocBugVisitor> { 402 protected: 403 enum NotificationMode { 404 Normal, 405 ReallocationFailed 406 }; 407 408 // The allocated region symbol tracked by the main analysis. 409 SymbolRef Sym; 410 411 // The mode we are in, i.e. what kind of diagnostics will be emitted. 412 NotificationMode Mode; 413 414 // A symbol from when the primary region should have been reallocated. 415 SymbolRef FailedReallocSymbol; 416 417 bool IsLeak; 418 419 public: 420 MallocBugVisitor(SymbolRef S, bool isLeak = false) 421 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {} 422 423 void Profile(llvm::FoldingSetNodeID &ID) const override { 424 static int X = 0; 425 ID.AddPointer(&X); 426 ID.AddPointer(Sym); 427 } 428 429 inline bool isAllocated(const RefState *S, const RefState *SPrev, 430 const Stmt *Stmt) { 431 // Did not track -> allocated. Other state (released) -> allocated. 432 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 433 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 434 (!SPrev || !(SPrev->isAllocated() || 435 SPrev->isAllocatedOfSizeZero()))); 436 } 437 438 inline bool isReleased(const RefState *S, const RefState *SPrev, 439 const Stmt *Stmt) { 440 // Did not track -> released. Other state (allocated) -> released. 441 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 442 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 443 } 444 445 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 446 const Stmt *Stmt) { 447 // Did not track -> relinquished. Other state (allocated) -> relinquished. 448 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 449 isa<ObjCPropertyRefExpr>(Stmt)) && 450 (S && S->isRelinquished()) && 451 (!SPrev || !SPrev->isRelinquished())); 452 } 453 454 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 455 const Stmt *Stmt) { 456 // If the expression is not a call, and the state change is 457 // released -> allocated, it must be the realloc return value 458 // check. If we have to handle more cases here, it might be cleaner just 459 // to track this extra bit in the state itself. 460 return ((!Stmt || !isa<CallExpr>(Stmt)) && 461 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 462 (SPrev && !(SPrev->isAllocated() || 463 SPrev->isAllocatedOfSizeZero()))); 464 } 465 466 std::shared_ptr<PathDiagnosticPiece> VisitNode(const ExplodedNode *N, 467 const ExplodedNode *PrevN, 468 BugReporterContext &BRC, 469 BugReport &BR) override; 470 471 std::unique_ptr<PathDiagnosticPiece> 472 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 473 BugReport &BR) override { 474 if (!IsLeak) 475 return nullptr; 476 477 PathDiagnosticLocation L = 478 PathDiagnosticLocation::createEndOfPath(EndPathNode, 479 BRC.getSourceManager()); 480 // Do not add the statement itself as a range in case of leak. 481 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(), 482 false); 483 } 484 485 private: 486 class StackHintGeneratorForReallocationFailed 487 : public StackHintGeneratorForSymbol { 488 public: 489 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 490 : StackHintGeneratorForSymbol(S, M) {} 491 492 std::string getMessageForArg(const Expr *ArgE, 493 unsigned ArgIndex) override { 494 // Printed parameters start at 1, not 0. 495 ++ArgIndex; 496 497 SmallString<200> buf; 498 llvm::raw_svector_ostream os(buf); 499 500 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 501 << " parameter failed"; 502 503 return os.str(); 504 } 505 506 std::string getMessageForReturn(const CallExpr *CallExpr) override { 507 return "Reallocation of returned value failed"; 508 } 509 }; 510 }; 511 }; 512 } // end anonymous namespace 513 514 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 515 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 516 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 517 518 // A map from the freed symbol to the symbol representing the return value of 519 // the free function. 520 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 521 522 namespace { 523 class StopTrackingCallback final : public SymbolVisitor { 524 ProgramStateRef state; 525 public: 526 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 527 ProgramStateRef getState() const { return state; } 528 529 bool VisitSymbol(SymbolRef sym) override { 530 state = state->remove<RegionState>(sym); 531 return true; 532 } 533 }; 534 } // end anonymous namespace 535 536 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 537 if (II_malloc) 538 return; 539 II_alloca = &Ctx.Idents.get("alloca"); 540 II_malloc = &Ctx.Idents.get("malloc"); 541 II_free = &Ctx.Idents.get("free"); 542 II_realloc = &Ctx.Idents.get("realloc"); 543 II_reallocf = &Ctx.Idents.get("reallocf"); 544 II_calloc = &Ctx.Idents.get("calloc"); 545 II_valloc = &Ctx.Idents.get("valloc"); 546 II_strdup = &Ctx.Idents.get("strdup"); 547 II_strndup = &Ctx.Idents.get("strndup"); 548 II_wcsdup = &Ctx.Idents.get("wcsdup"); 549 II_kmalloc = &Ctx.Idents.get("kmalloc"); 550 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 551 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 552 553 //MSVC uses `_`-prefixed instead, so we check for them too. 554 II_win_strdup = &Ctx.Idents.get("_strdup"); 555 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 556 II_win_alloca = &Ctx.Idents.get("_alloca"); 557 } 558 559 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 560 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 561 return true; 562 563 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 564 return true; 565 566 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 567 return true; 568 569 if (isStandardNewDelete(FD, C)) 570 return true; 571 572 return false; 573 } 574 575 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 576 ASTContext &C, 577 AllocationFamily Family, 578 MemoryOperationKind MemKind) const { 579 if (!FD) 580 return false; 581 582 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 583 MemKind == MemoryOperationKind::MOK_Free); 584 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 585 MemKind == MemoryOperationKind::MOK_Allocate); 586 587 if (FD->getKind() == Decl::Function) { 588 const IdentifierInfo *FunI = FD->getIdentifier(); 589 initIdentifierInfo(C); 590 591 if (Family == AF_Malloc && CheckFree) { 592 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf) 593 return true; 594 } 595 596 if (Family == AF_Malloc && CheckAlloc) { 597 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 598 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 599 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 600 FunI == II_win_wcsdup || FunI == II_kmalloc) 601 return true; 602 } 603 604 if (Family == AF_IfNameIndex && CheckFree) { 605 if (FunI == II_if_freenameindex) 606 return true; 607 } 608 609 if (Family == AF_IfNameIndex && CheckAlloc) { 610 if (FunI == II_if_nameindex) 611 return true; 612 } 613 614 if (Family == AF_Alloca && CheckAlloc) { 615 if (FunI == II_alloca || FunI == II_win_alloca) 616 return true; 617 } 618 } 619 620 if (Family != AF_Malloc) 621 return false; 622 623 if (IsOptimistic && FD->hasAttrs()) { 624 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 625 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 626 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 627 if (CheckFree) 628 return true; 629 } else if (OwnKind == OwnershipAttr::Returns) { 630 if (CheckAlloc) 631 return true; 632 } 633 } 634 } 635 636 return false; 637 } 638 639 // Tells if the callee is one of the following: 640 // 1) A global non-placement new/delete operator function. 641 // 2) A global placement operator function with the single placement argument 642 // of type std::nothrow_t. 643 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 644 ASTContext &C) const { 645 if (!FD) 646 return false; 647 648 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 649 if (Kind != OO_New && Kind != OO_Array_New && 650 Kind != OO_Delete && Kind != OO_Array_Delete) 651 return false; 652 653 // Skip all operator new/delete methods. 654 if (isa<CXXMethodDecl>(FD)) 655 return false; 656 657 // Return true if tested operator is a standard placement nothrow operator. 658 if (FD->getNumParams() == 2) { 659 QualType T = FD->getParamDecl(1)->getType(); 660 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 661 return II->getName().equals("nothrow_t"); 662 } 663 664 // Skip placement operators. 665 if (FD->getNumParams() != 1 || FD->isVariadic()) 666 return false; 667 668 // One of the standard new/new[]/delete/delete[] non-placement operators. 669 return true; 670 } 671 672 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 673 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 674 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 675 // 676 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 677 // 678 // One of the possible flags is M_ZERO, which means 'give me back an 679 // allocation which is already zeroed', like calloc. 680 681 // 2-argument kmalloc(), as used in the Linux kernel: 682 // 683 // void *kmalloc(size_t size, gfp_t flags); 684 // 685 // Has the similar flag value __GFP_ZERO. 686 687 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 688 // code could be shared. 689 690 ASTContext &Ctx = C.getASTContext(); 691 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 692 693 if (!KernelZeroFlagVal.hasValue()) { 694 if (OS == llvm::Triple::FreeBSD) 695 KernelZeroFlagVal = 0x0100; 696 else if (OS == llvm::Triple::NetBSD) 697 KernelZeroFlagVal = 0x0002; 698 else if (OS == llvm::Triple::OpenBSD) 699 KernelZeroFlagVal = 0x0008; 700 else if (OS == llvm::Triple::Linux) 701 // __GFP_ZERO 702 KernelZeroFlagVal = 0x8000; 703 else 704 // FIXME: We need a more general way of getting the M_ZERO value. 705 // See also: O_CREAT in UnixAPIChecker.cpp. 706 707 // Fall back to normal malloc behavior on platforms where we don't 708 // know M_ZERO. 709 return None; 710 } 711 712 // We treat the last argument as the flags argument, and callers fall-back to 713 // normal malloc on a None return. This works for the FreeBSD kernel malloc 714 // as well as Linux kmalloc. 715 if (CE->getNumArgs() < 2) 716 return None; 717 718 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 719 const SVal V = State->getSVal(FlagsEx, C.getLocationContext()); 720 if (!V.getAs<NonLoc>()) { 721 // The case where 'V' can be a location can only be due to a bad header, 722 // so in this case bail out. 723 return None; 724 } 725 726 NonLoc Flags = V.castAs<NonLoc>(); 727 NonLoc ZeroFlag = C.getSValBuilder() 728 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 729 .castAs<NonLoc>(); 730 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 731 Flags, ZeroFlag, 732 FlagsEx->getType()); 733 if (MaskedFlagsUC.isUnknownOrUndef()) 734 return None; 735 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 736 737 // Check if maskedFlags is non-zero. 738 ProgramStateRef TrueState, FalseState; 739 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 740 741 // If M_ZERO is set, treat this like calloc (initialized). 742 if (TrueState && !FalseState) { 743 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 744 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 745 } 746 747 return None; 748 } 749 750 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 751 if (C.wasInlined) 752 return; 753 754 const FunctionDecl *FD = C.getCalleeDecl(CE); 755 if (!FD) 756 return; 757 758 ProgramStateRef State = C.getState(); 759 bool ReleasedAllocatedMemory = false; 760 761 if (FD->getKind() == Decl::Function) { 762 initIdentifierInfo(C.getASTContext()); 763 IdentifierInfo *FunI = FD->getIdentifier(); 764 765 if (FunI == II_malloc) { 766 if (CE->getNumArgs() < 1) 767 return; 768 if (CE->getNumArgs() < 3) { 769 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 770 if (CE->getNumArgs() == 1) 771 State = ProcessZeroAllocation(C, CE, 0, State); 772 } else if (CE->getNumArgs() == 3) { 773 llvm::Optional<ProgramStateRef> MaybeState = 774 performKernelMalloc(CE, C, State); 775 if (MaybeState.hasValue()) 776 State = MaybeState.getValue(); 777 else 778 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 779 } 780 } else if (FunI == II_kmalloc) { 781 if (CE->getNumArgs() < 1) 782 return; 783 llvm::Optional<ProgramStateRef> MaybeState = 784 performKernelMalloc(CE, C, State); 785 if (MaybeState.hasValue()) 786 State = MaybeState.getValue(); 787 else 788 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 789 } else if (FunI == II_valloc) { 790 if (CE->getNumArgs() < 1) 791 return; 792 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 793 State = ProcessZeroAllocation(C, CE, 0, State); 794 } else if (FunI == II_realloc) { 795 State = ReallocMem(C, CE, false, State); 796 State = ProcessZeroAllocation(C, CE, 1, State); 797 } else if (FunI == II_reallocf) { 798 State = ReallocMem(C, CE, true, State); 799 State = ProcessZeroAllocation(C, CE, 1, State); 800 } else if (FunI == II_calloc) { 801 State = CallocMem(C, CE, State); 802 State = ProcessZeroAllocation(C, CE, 0, State); 803 State = ProcessZeroAllocation(C, CE, 1, State); 804 } else if (FunI == II_free) { 805 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 806 } else if (FunI == II_strdup || FunI == II_win_strdup || 807 FunI == II_wcsdup || FunI == II_win_wcsdup) { 808 State = MallocUpdateRefState(C, CE, State); 809 } else if (FunI == II_strndup) { 810 State = MallocUpdateRefState(C, CE, State); 811 } else if (FunI == II_alloca || FunI == II_win_alloca) { 812 if (CE->getNumArgs() < 1) 813 return; 814 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 815 AF_Alloca); 816 State = ProcessZeroAllocation(C, CE, 0, State); 817 } else if (isStandardNewDelete(FD, C.getASTContext())) { 818 // Process direct calls to operator new/new[]/delete/delete[] functions 819 // as distinct from new/new[]/delete/delete[] expressions that are 820 // processed by the checkPostStmt callbacks for CXXNewExpr and 821 // CXXDeleteExpr. 822 OverloadedOperatorKind K = FD->getOverloadedOperator(); 823 if (K == OO_New) { 824 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 825 AF_CXXNew); 826 State = ProcessZeroAllocation(C, CE, 0, State); 827 } 828 else if (K == OO_Array_New) { 829 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 830 AF_CXXNewArray); 831 State = ProcessZeroAllocation(C, CE, 0, State); 832 } 833 else if (K == OO_Delete || K == OO_Array_Delete) 834 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 835 else 836 llvm_unreachable("not a new/delete operator"); 837 } else if (FunI == II_if_nameindex) { 838 // Should we model this differently? We can allocate a fixed number of 839 // elements with zeros in the last one. 840 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 841 AF_IfNameIndex); 842 } else if (FunI == II_if_freenameindex) { 843 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 844 } 845 } 846 847 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 848 // Check all the attributes, if there are any. 849 // There can be multiple of these attributes. 850 if (FD->hasAttrs()) 851 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 852 switch (I->getOwnKind()) { 853 case OwnershipAttr::Returns: 854 State = MallocMemReturnsAttr(C, CE, I, State); 855 break; 856 case OwnershipAttr::Takes: 857 case OwnershipAttr::Holds: 858 State = FreeMemAttr(C, CE, I, State); 859 break; 860 } 861 } 862 } 863 C.addTransition(State); 864 } 865 866 // Performs a 0-sized allocations check. 867 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C, 868 const Expr *E, 869 const unsigned AllocationSizeArg, 870 ProgramStateRef State) const { 871 if (!State) 872 return nullptr; 873 874 const Expr *Arg = nullptr; 875 876 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 877 Arg = CE->getArg(AllocationSizeArg); 878 } 879 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 880 if (NE->isArray()) 881 Arg = NE->getArraySize(); 882 else 883 return State; 884 } 885 else 886 llvm_unreachable("not a CallExpr or CXXNewExpr"); 887 888 assert(Arg); 889 890 Optional<DefinedSVal> DefArgVal = 891 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>(); 892 893 if (!DefArgVal) 894 return State; 895 896 // Check if the allocation size is 0. 897 ProgramStateRef TrueState, FalseState; 898 SValBuilder &SvalBuilder = C.getSValBuilder(); 899 DefinedSVal Zero = 900 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 901 902 std::tie(TrueState, FalseState) = 903 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 904 905 if (TrueState && !FalseState) { 906 SVal retVal = State->getSVal(E, C.getLocationContext()); 907 SymbolRef Sym = retVal.getAsLocSymbol(); 908 if (!Sym) 909 return State; 910 911 const RefState *RS = State->get<RegionState>(Sym); 912 if (RS) { 913 if (RS->isAllocated()) 914 return TrueState->set<RegionState>(Sym, 915 RefState::getAllocatedOfSizeZero(RS)); 916 else 917 return State; 918 } else { 919 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 920 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 921 // tracked. Add zero-reallocated Sym to the state to catch references 922 // to zero-allocated memory. 923 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 924 } 925 } 926 927 // Assume the value is non-zero going forward. 928 assert(FalseState); 929 return FalseState; 930 } 931 932 static QualType getDeepPointeeType(QualType T) { 933 QualType Result = T, PointeeType = T->getPointeeType(); 934 while (!PointeeType.isNull()) { 935 Result = PointeeType; 936 PointeeType = PointeeType->getPointeeType(); 937 } 938 return Result; 939 } 940 941 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 942 943 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 944 if (!ConstructE) 945 return false; 946 947 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 948 return false; 949 950 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 951 952 // Iterate over the constructor parameters. 953 for (const auto *CtorParam : CtorD->parameters()) { 954 955 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 956 if (CtorParamPointeeT.isNull()) 957 continue; 958 959 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 960 961 if (CtorParamPointeeT->getAsCXXRecordDecl()) 962 return true; 963 } 964 965 return false; 966 } 967 968 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 969 CheckerContext &C) const { 970 971 if (NE->getNumPlacementArgs()) 972 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 973 E = NE->placement_arg_end(); I != E; ++I) 974 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 975 checkUseAfterFree(Sym, C, *I); 976 977 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 978 return; 979 980 ParentMap &PM = C.getLocationContext()->getParentMap(); 981 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 982 return; 983 984 ProgramStateRef State = C.getState(); 985 // The return value from operator new is bound to a specified initialization 986 // value (if any) and we don't want to loose this value. So we call 987 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 988 // existing binding. 989 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 990 : AF_CXXNew); 991 State = addExtentSize(C, NE, State); 992 State = ProcessZeroAllocation(C, NE, 0, State); 993 C.addTransition(State); 994 } 995 996 // Sets the extent value of the MemRegion allocated by 997 // new expression NE to its size in Bytes. 998 // 999 ProgramStateRef MallocChecker::addExtentSize(CheckerContext &C, 1000 const CXXNewExpr *NE, 1001 ProgramStateRef State) { 1002 if (!State) 1003 return nullptr; 1004 SValBuilder &svalBuilder = C.getSValBuilder(); 1005 SVal ElementCount; 1006 const LocationContext *LCtx = C.getLocationContext(); 1007 const SubRegion *Region; 1008 if (NE->isArray()) { 1009 const Expr *SizeExpr = NE->getArraySize(); 1010 ElementCount = State->getSVal(SizeExpr, C.getLocationContext()); 1011 // Store the extent size for the (symbolic)region 1012 // containing the elements. 1013 Region = (State->getSVal(NE, LCtx)) 1014 .getAsRegion() 1015 ->getAs<SubRegion>() 1016 ->getSuperRegion() 1017 ->getAs<SubRegion>(); 1018 } else { 1019 ElementCount = svalBuilder.makeIntVal(1, true); 1020 Region = (State->getSVal(NE, LCtx)).getAsRegion()->getAs<SubRegion>(); 1021 } 1022 assert(Region); 1023 1024 // Set the region's extent equal to the Size in Bytes. 1025 QualType ElementType = NE->getAllocatedType(); 1026 ASTContext &AstContext = C.getASTContext(); 1027 CharUnits TypeSize = AstContext.getTypeSizeInChars(ElementType); 1028 1029 if (ElementCount.getAs<NonLoc>()) { 1030 DefinedOrUnknownSVal Extent = Region->getExtent(svalBuilder); 1031 // size in Bytes = ElementCount*TypeSize 1032 SVal SizeInBytes = svalBuilder.evalBinOpNN( 1033 State, BO_Mul, ElementCount.castAs<NonLoc>(), 1034 svalBuilder.makeArrayIndex(TypeSize.getQuantity()), 1035 svalBuilder.getArrayIndexType()); 1036 DefinedOrUnknownSVal extentMatchesSize = svalBuilder.evalEQ( 1037 State, Extent, SizeInBytes.castAs<DefinedOrUnknownSVal>()); 1038 State = State->assume(extentMatchesSize, true); 1039 } 1040 return State; 1041 } 1042 1043 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 1044 CheckerContext &C) const { 1045 1046 if (!ChecksEnabled[CK_NewDeleteChecker]) 1047 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 1048 checkUseAfterFree(Sym, C, DE->getArgument()); 1049 1050 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 1051 return; 1052 1053 ProgramStateRef State = C.getState(); 1054 bool ReleasedAllocated; 1055 State = FreeMemAux(C, DE->getArgument(), DE, State, 1056 /*Hold*/false, ReleasedAllocated); 1057 1058 C.addTransition(State); 1059 } 1060 1061 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1062 // If the first selector piece is one of the names below, assume that the 1063 // object takes ownership of the memory, promising to eventually deallocate it 1064 // with free(). 1065 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1066 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1067 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1068 return FirstSlot == "dataWithBytesNoCopy" || 1069 FirstSlot == "initWithBytesNoCopy" || 1070 FirstSlot == "initWithCharactersNoCopy"; 1071 } 1072 1073 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1074 Selector S = Call.getSelector(); 1075 1076 // FIXME: We should not rely on fully-constrained symbols being folded. 1077 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1078 if (S.getNameForSlot(i).equals("freeWhenDone")) 1079 return !Call.getArgSVal(i).isZeroConstant(); 1080 1081 return None; 1082 } 1083 1084 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1085 CheckerContext &C) const { 1086 if (C.wasInlined) 1087 return; 1088 1089 if (!isKnownDeallocObjCMethodName(Call)) 1090 return; 1091 1092 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1093 if (!*FreeWhenDone) 1094 return; 1095 1096 bool ReleasedAllocatedMemory; 1097 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1098 Call.getOriginExpr(), C.getState(), 1099 /*Hold=*/true, ReleasedAllocatedMemory, 1100 /*RetNullOnFailure=*/true); 1101 1102 C.addTransition(State); 1103 } 1104 1105 ProgramStateRef 1106 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1107 const OwnershipAttr *Att, 1108 ProgramStateRef State) const { 1109 if (!State) 1110 return nullptr; 1111 1112 if (Att->getModule() != II_malloc) 1113 return nullptr; 1114 1115 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1116 if (I != E) { 1117 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State); 1118 } 1119 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1120 } 1121 1122 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1123 const CallExpr *CE, 1124 const Expr *SizeEx, SVal Init, 1125 ProgramStateRef State, 1126 AllocationFamily Family) { 1127 if (!State) 1128 return nullptr; 1129 1130 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()), 1131 Init, State, Family); 1132 } 1133 1134 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1135 const CallExpr *CE, 1136 SVal Size, SVal Init, 1137 ProgramStateRef State, 1138 AllocationFamily Family) { 1139 if (!State) 1140 return nullptr; 1141 1142 // We expect the malloc functions to return a pointer. 1143 if (!Loc::isLocType(CE->getType())) 1144 return nullptr; 1145 1146 // Bind the return value to the symbolic value from the heap region. 1147 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1148 // side effects other than what we model here. 1149 unsigned Count = C.blockCount(); 1150 SValBuilder &svalBuilder = C.getSValBuilder(); 1151 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1152 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1153 .castAs<DefinedSVal>(); 1154 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1155 1156 // Fill the region with the initialization value. 1157 State = State->bindDefault(RetVal, Init); 1158 1159 // Set the region's extent equal to the Size parameter. 1160 const SymbolicRegion *R = 1161 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1162 if (!R) 1163 return nullptr; 1164 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1165 Size.getAs<DefinedOrUnknownSVal>()) { 1166 SValBuilder &svalBuilder = C.getSValBuilder(); 1167 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1168 DefinedOrUnknownSVal extentMatchesSize = 1169 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1170 1171 State = State->assume(extentMatchesSize, true); 1172 assert(State); 1173 } 1174 1175 return MallocUpdateRefState(C, CE, State, Family); 1176 } 1177 1178 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1179 const Expr *E, 1180 ProgramStateRef State, 1181 AllocationFamily Family) { 1182 if (!State) 1183 return nullptr; 1184 1185 // Get the return value. 1186 SVal retVal = State->getSVal(E, C.getLocationContext()); 1187 1188 // We expect the malloc functions to return a pointer. 1189 if (!retVal.getAs<Loc>()) 1190 return nullptr; 1191 1192 SymbolRef Sym = retVal.getAsLocSymbol(); 1193 assert(Sym); 1194 1195 // Set the symbol's state to Allocated. 1196 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1197 } 1198 1199 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1200 const CallExpr *CE, 1201 const OwnershipAttr *Att, 1202 ProgramStateRef State) const { 1203 if (!State) 1204 return nullptr; 1205 1206 if (Att->getModule() != II_malloc) 1207 return nullptr; 1208 1209 bool ReleasedAllocated = false; 1210 1211 for (const auto &Arg : Att->args()) { 1212 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 1213 Att->getOwnKind() == OwnershipAttr::Holds, 1214 ReleasedAllocated); 1215 if (StateI) 1216 State = StateI; 1217 } 1218 return State; 1219 } 1220 1221 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1222 const CallExpr *CE, 1223 ProgramStateRef State, 1224 unsigned Num, 1225 bool Hold, 1226 bool &ReleasedAllocated, 1227 bool ReturnsNullOnFailure) const { 1228 if (!State) 1229 return nullptr; 1230 1231 if (CE->getNumArgs() < (Num + 1)) 1232 return nullptr; 1233 1234 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1235 ReleasedAllocated, ReturnsNullOnFailure); 1236 } 1237 1238 /// Checks if the previous call to free on the given symbol failed - if free 1239 /// failed, returns true. Also, returns the corresponding return value symbol. 1240 static bool didPreviousFreeFail(ProgramStateRef State, 1241 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1242 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1243 if (Ret) { 1244 assert(*Ret && "We should not store the null return symbol"); 1245 ConstraintManager &CMgr = State->getConstraintManager(); 1246 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1247 RetStatusSymbol = *Ret; 1248 return FreeFailed.isConstrainedTrue(); 1249 } 1250 return false; 1251 } 1252 1253 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1254 const Stmt *S) const { 1255 if (!S) 1256 return AF_None; 1257 1258 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1259 const FunctionDecl *FD = C.getCalleeDecl(CE); 1260 1261 if (!FD) 1262 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1263 1264 ASTContext &Ctx = C.getASTContext(); 1265 1266 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1267 return AF_Malloc; 1268 1269 if (isStandardNewDelete(FD, Ctx)) { 1270 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1271 if (Kind == OO_New || Kind == OO_Delete) 1272 return AF_CXXNew; 1273 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1274 return AF_CXXNewArray; 1275 } 1276 1277 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1278 return AF_IfNameIndex; 1279 1280 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1281 return AF_Alloca; 1282 1283 return AF_None; 1284 } 1285 1286 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1287 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1288 1289 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1290 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1291 1292 if (isa<ObjCMessageExpr>(S)) 1293 return AF_Malloc; 1294 1295 return AF_None; 1296 } 1297 1298 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1299 const Expr *E) const { 1300 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1301 // FIXME: This doesn't handle indirect calls. 1302 const FunctionDecl *FD = CE->getDirectCallee(); 1303 if (!FD) 1304 return false; 1305 1306 os << *FD; 1307 if (!FD->isOverloadedOperator()) 1308 os << "()"; 1309 return true; 1310 } 1311 1312 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1313 if (Msg->isInstanceMessage()) 1314 os << "-"; 1315 else 1316 os << "+"; 1317 Msg->getSelector().print(os); 1318 return true; 1319 } 1320 1321 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1322 os << "'" 1323 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1324 << "'"; 1325 return true; 1326 } 1327 1328 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1329 os << "'" 1330 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1331 << "'"; 1332 return true; 1333 } 1334 1335 return false; 1336 } 1337 1338 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1339 const Expr *E) const { 1340 AllocationFamily Family = getAllocationFamily(C, E); 1341 1342 switch(Family) { 1343 case AF_Malloc: os << "malloc()"; return; 1344 case AF_CXXNew: os << "'new'"; return; 1345 case AF_CXXNewArray: os << "'new[]'"; return; 1346 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1347 case AF_Alloca: 1348 case AF_None: llvm_unreachable("not a deallocation expression"); 1349 } 1350 } 1351 1352 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1353 AllocationFamily Family) const { 1354 switch(Family) { 1355 case AF_Malloc: os << "free()"; return; 1356 case AF_CXXNew: os << "'delete'"; return; 1357 case AF_CXXNewArray: os << "'delete[]'"; return; 1358 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1359 case AF_Alloca: 1360 case AF_None: llvm_unreachable("suspicious argument"); 1361 } 1362 } 1363 1364 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1365 const Expr *ArgExpr, 1366 const Expr *ParentExpr, 1367 ProgramStateRef State, 1368 bool Hold, 1369 bool &ReleasedAllocated, 1370 bool ReturnsNullOnFailure) const { 1371 1372 if (!State) 1373 return nullptr; 1374 1375 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext()); 1376 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1377 return nullptr; 1378 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1379 1380 // Check for null dereferences. 1381 if (!location.getAs<Loc>()) 1382 return nullptr; 1383 1384 // The explicit NULL case, no operation is performed. 1385 ProgramStateRef notNullState, nullState; 1386 std::tie(notNullState, nullState) = State->assume(location); 1387 if (nullState && !notNullState) 1388 return nullptr; 1389 1390 // Unknown values could easily be okay 1391 // Undefined values are handled elsewhere 1392 if (ArgVal.isUnknownOrUndef()) 1393 return nullptr; 1394 1395 const MemRegion *R = ArgVal.getAsRegion(); 1396 1397 // Nonlocs can't be freed, of course. 1398 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1399 if (!R) { 1400 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1401 return nullptr; 1402 } 1403 1404 R = R->StripCasts(); 1405 1406 // Blocks might show up as heap data, but should not be free()d 1407 if (isa<BlockDataRegion>(R)) { 1408 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1409 return nullptr; 1410 } 1411 1412 const MemSpaceRegion *MS = R->getMemorySpace(); 1413 1414 // Parameters, locals, statics, globals, and memory returned by 1415 // __builtin_alloca() shouldn't be freed. 1416 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1417 // FIXME: at the time this code was written, malloc() regions were 1418 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1419 // This means that there isn't actually anything from HeapSpaceRegion 1420 // that should be freed, even though we allow it here. 1421 // Of course, free() can work on memory allocated outside the current 1422 // function, so UnknownSpaceRegion is always a possibility. 1423 // False negatives are better than false positives. 1424 1425 if (isa<AllocaRegion>(R)) 1426 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1427 else 1428 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1429 1430 return nullptr; 1431 } 1432 1433 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1434 // Various cases could lead to non-symbol values here. 1435 // For now, ignore them. 1436 if (!SrBase) 1437 return nullptr; 1438 1439 SymbolRef SymBase = SrBase->getSymbol(); 1440 const RefState *RsBase = State->get<RegionState>(SymBase); 1441 SymbolRef PreviousRetStatusSymbol = nullptr; 1442 1443 if (RsBase) { 1444 1445 // Memory returned by alloca() shouldn't be freed. 1446 if (RsBase->getAllocationFamily() == AF_Alloca) { 1447 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1448 return nullptr; 1449 } 1450 1451 // Check for double free first. 1452 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1453 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1454 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1455 SymBase, PreviousRetStatusSymbol); 1456 return nullptr; 1457 1458 // If the pointer is allocated or escaped, but we are now trying to free it, 1459 // check that the call to free is proper. 1460 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1461 RsBase->isEscaped()) { 1462 1463 // Check if an expected deallocation function matches the real one. 1464 bool DeallocMatchesAlloc = 1465 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1466 if (!DeallocMatchesAlloc) { 1467 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1468 ParentExpr, RsBase, SymBase, Hold); 1469 return nullptr; 1470 } 1471 1472 // Check if the memory location being freed is the actual location 1473 // allocated, or an offset. 1474 RegionOffset Offset = R->getAsOffset(); 1475 if (Offset.isValid() && 1476 !Offset.hasSymbolicOffset() && 1477 Offset.getOffset() != 0) { 1478 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1479 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1480 AllocExpr); 1481 return nullptr; 1482 } 1483 } 1484 } 1485 1486 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1487 RsBase->isAllocatedOfSizeZero()); 1488 1489 // Clean out the info on previous call to free return info. 1490 State = State->remove<FreeReturnValue>(SymBase); 1491 1492 // Keep track of the return value. If it is NULL, we will know that free 1493 // failed. 1494 if (ReturnsNullOnFailure) { 1495 SVal RetVal = C.getSVal(ParentExpr); 1496 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1497 if (RetStatusSymbol) { 1498 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1499 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1500 } 1501 } 1502 1503 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1504 : getAllocationFamily(C, ParentExpr); 1505 // Normal free. 1506 if (Hold) 1507 return State->set<RegionState>(SymBase, 1508 RefState::getRelinquished(Family, 1509 ParentExpr)); 1510 1511 return State->set<RegionState>(SymBase, 1512 RefState::getReleased(Family, ParentExpr)); 1513 } 1514 1515 Optional<MallocChecker::CheckKind> 1516 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1517 bool IsALeakCheck) const { 1518 switch (Family) { 1519 case AF_Malloc: 1520 case AF_Alloca: 1521 case AF_IfNameIndex: { 1522 if (ChecksEnabled[CK_MallocChecker]) 1523 return CK_MallocChecker; 1524 1525 return Optional<MallocChecker::CheckKind>(); 1526 } 1527 case AF_CXXNew: 1528 case AF_CXXNewArray: { 1529 if (IsALeakCheck) { 1530 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1531 return CK_NewDeleteLeaksChecker; 1532 } 1533 else { 1534 if (ChecksEnabled[CK_NewDeleteChecker]) 1535 return CK_NewDeleteChecker; 1536 } 1537 return Optional<MallocChecker::CheckKind>(); 1538 } 1539 case AF_None: { 1540 llvm_unreachable("no family"); 1541 } 1542 } 1543 llvm_unreachable("unhandled family"); 1544 } 1545 1546 Optional<MallocChecker::CheckKind> 1547 MallocChecker::getCheckIfTracked(CheckerContext &C, 1548 const Stmt *AllocDeallocStmt, 1549 bool IsALeakCheck) const { 1550 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1551 IsALeakCheck); 1552 } 1553 1554 Optional<MallocChecker::CheckKind> 1555 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1556 bool IsALeakCheck) const { 1557 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1558 return CK_MallocChecker; 1559 1560 const RefState *RS = C.getState()->get<RegionState>(Sym); 1561 assert(RS); 1562 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1563 } 1564 1565 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1566 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1567 os << "an integer (" << IntVal->getValue() << ")"; 1568 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1569 os << "a constant address (" << ConstAddr->getValue() << ")"; 1570 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1571 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1572 else 1573 return false; 1574 1575 return true; 1576 } 1577 1578 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1579 const MemRegion *MR) { 1580 switch (MR->getKind()) { 1581 case MemRegion::FunctionCodeRegionKind: { 1582 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1583 if (FD) 1584 os << "the address of the function '" << *FD << '\''; 1585 else 1586 os << "the address of a function"; 1587 return true; 1588 } 1589 case MemRegion::BlockCodeRegionKind: 1590 os << "block text"; 1591 return true; 1592 case MemRegion::BlockDataRegionKind: 1593 // FIXME: where the block came from? 1594 os << "a block"; 1595 return true; 1596 default: { 1597 const MemSpaceRegion *MS = MR->getMemorySpace(); 1598 1599 if (isa<StackLocalsSpaceRegion>(MS)) { 1600 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1601 const VarDecl *VD; 1602 if (VR) 1603 VD = VR->getDecl(); 1604 else 1605 VD = nullptr; 1606 1607 if (VD) 1608 os << "the address of the local variable '" << VD->getName() << "'"; 1609 else 1610 os << "the address of a local stack variable"; 1611 return true; 1612 } 1613 1614 if (isa<StackArgumentsSpaceRegion>(MS)) { 1615 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1616 const VarDecl *VD; 1617 if (VR) 1618 VD = VR->getDecl(); 1619 else 1620 VD = nullptr; 1621 1622 if (VD) 1623 os << "the address of the parameter '" << VD->getName() << "'"; 1624 else 1625 os << "the address of a parameter"; 1626 return true; 1627 } 1628 1629 if (isa<GlobalsSpaceRegion>(MS)) { 1630 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1631 const VarDecl *VD; 1632 if (VR) 1633 VD = VR->getDecl(); 1634 else 1635 VD = nullptr; 1636 1637 if (VD) { 1638 if (VD->isStaticLocal()) 1639 os << "the address of the static variable '" << VD->getName() << "'"; 1640 else 1641 os << "the address of the global variable '" << VD->getName() << "'"; 1642 } else 1643 os << "the address of a global variable"; 1644 return true; 1645 } 1646 1647 return false; 1648 } 1649 } 1650 } 1651 1652 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1653 SourceRange Range, 1654 const Expr *DeallocExpr) const { 1655 1656 if (!ChecksEnabled[CK_MallocChecker] && 1657 !ChecksEnabled[CK_NewDeleteChecker]) 1658 return; 1659 1660 Optional<MallocChecker::CheckKind> CheckKind = 1661 getCheckIfTracked(C, DeallocExpr); 1662 if (!CheckKind.hasValue()) 1663 return; 1664 1665 if (ExplodedNode *N = C.generateErrorNode()) { 1666 if (!BT_BadFree[*CheckKind]) 1667 BT_BadFree[*CheckKind].reset( 1668 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error")); 1669 1670 SmallString<100> buf; 1671 llvm::raw_svector_ostream os(buf); 1672 1673 const MemRegion *MR = ArgVal.getAsRegion(); 1674 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1675 MR = ER->getSuperRegion(); 1676 1677 os << "Argument to "; 1678 if (!printAllocDeallocName(os, C, DeallocExpr)) 1679 os << "deallocator"; 1680 1681 os << " is "; 1682 bool Summarized = MR ? SummarizeRegion(os, MR) 1683 : SummarizeValue(os, ArgVal); 1684 if (Summarized) 1685 os << ", which is not memory allocated by "; 1686 else 1687 os << "not memory allocated by "; 1688 1689 printExpectedAllocName(os, C, DeallocExpr); 1690 1691 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1692 R->markInteresting(MR); 1693 R->addRange(Range); 1694 C.emitReport(std::move(R)); 1695 } 1696 } 1697 1698 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1699 SourceRange Range) const { 1700 1701 Optional<MallocChecker::CheckKind> CheckKind; 1702 1703 if (ChecksEnabled[CK_MallocChecker]) 1704 CheckKind = CK_MallocChecker; 1705 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1706 CheckKind = CK_MismatchedDeallocatorChecker; 1707 else 1708 return; 1709 1710 if (ExplodedNode *N = C.generateErrorNode()) { 1711 if (!BT_FreeAlloca[*CheckKind]) 1712 BT_FreeAlloca[*CheckKind].reset( 1713 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error")); 1714 1715 auto R = llvm::make_unique<BugReport>( 1716 *BT_FreeAlloca[*CheckKind], 1717 "Memory allocated by alloca() should not be deallocated", N); 1718 R->markInteresting(ArgVal.getAsRegion()); 1719 R->addRange(Range); 1720 C.emitReport(std::move(R)); 1721 } 1722 } 1723 1724 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1725 SourceRange Range, 1726 const Expr *DeallocExpr, 1727 const RefState *RS, 1728 SymbolRef Sym, 1729 bool OwnershipTransferred) const { 1730 1731 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1732 return; 1733 1734 if (ExplodedNode *N = C.generateErrorNode()) { 1735 if (!BT_MismatchedDealloc) 1736 BT_MismatchedDealloc.reset( 1737 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1738 "Bad deallocator", "Memory Error")); 1739 1740 SmallString<100> buf; 1741 llvm::raw_svector_ostream os(buf); 1742 1743 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1744 SmallString<20> AllocBuf; 1745 llvm::raw_svector_ostream AllocOs(AllocBuf); 1746 SmallString<20> DeallocBuf; 1747 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1748 1749 if (OwnershipTransferred) { 1750 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1751 os << DeallocOs.str() << " cannot"; 1752 else 1753 os << "Cannot"; 1754 1755 os << " take ownership of memory"; 1756 1757 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1758 os << " allocated by " << AllocOs.str(); 1759 } else { 1760 os << "Memory"; 1761 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1762 os << " allocated by " << AllocOs.str(); 1763 1764 os << " should be deallocated by "; 1765 printExpectedDeallocName(os, RS->getAllocationFamily()); 1766 1767 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1768 os << ", not " << DeallocOs.str(); 1769 } 1770 1771 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1772 R->markInteresting(Sym); 1773 R->addRange(Range); 1774 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1775 C.emitReport(std::move(R)); 1776 } 1777 } 1778 1779 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1780 SourceRange Range, const Expr *DeallocExpr, 1781 const Expr *AllocExpr) const { 1782 1783 1784 if (!ChecksEnabled[CK_MallocChecker] && 1785 !ChecksEnabled[CK_NewDeleteChecker]) 1786 return; 1787 1788 Optional<MallocChecker::CheckKind> CheckKind = 1789 getCheckIfTracked(C, AllocExpr); 1790 if (!CheckKind.hasValue()) 1791 return; 1792 1793 ExplodedNode *N = C.generateErrorNode(); 1794 if (!N) 1795 return; 1796 1797 if (!BT_OffsetFree[*CheckKind]) 1798 BT_OffsetFree[*CheckKind].reset( 1799 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error")); 1800 1801 SmallString<100> buf; 1802 llvm::raw_svector_ostream os(buf); 1803 SmallString<20> AllocNameBuf; 1804 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1805 1806 const MemRegion *MR = ArgVal.getAsRegion(); 1807 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1808 1809 RegionOffset Offset = MR->getAsOffset(); 1810 assert((Offset.isValid() && 1811 !Offset.hasSymbolicOffset() && 1812 Offset.getOffset() != 0) && 1813 "Only symbols with a valid offset can have offset free errors"); 1814 1815 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1816 1817 os << "Argument to "; 1818 if (!printAllocDeallocName(os, C, DeallocExpr)) 1819 os << "deallocator"; 1820 os << " is offset by " 1821 << offsetBytes 1822 << " " 1823 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1824 << " from the start of "; 1825 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1826 os << "memory allocated by " << AllocNameOs.str(); 1827 else 1828 os << "allocated memory"; 1829 1830 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1831 R->markInteresting(MR->getBaseRegion()); 1832 R->addRange(Range); 1833 C.emitReport(std::move(R)); 1834 } 1835 1836 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1837 SymbolRef Sym) const { 1838 1839 if (!ChecksEnabled[CK_MallocChecker] && 1840 !ChecksEnabled[CK_NewDeleteChecker]) 1841 return; 1842 1843 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1844 if (!CheckKind.hasValue()) 1845 return; 1846 1847 if (ExplodedNode *N = C.generateErrorNode()) { 1848 if (!BT_UseFree[*CheckKind]) 1849 BT_UseFree[*CheckKind].reset(new BugType( 1850 CheckNames[*CheckKind], "Use-after-free", "Memory Error")); 1851 1852 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1853 "Use of memory after it is freed", N); 1854 1855 R->markInteresting(Sym); 1856 R->addRange(Range); 1857 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1858 C.emitReport(std::move(R)); 1859 } 1860 } 1861 1862 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1863 bool Released, SymbolRef Sym, 1864 SymbolRef PrevSym) const { 1865 1866 if (!ChecksEnabled[CK_MallocChecker] && 1867 !ChecksEnabled[CK_NewDeleteChecker]) 1868 return; 1869 1870 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1871 if (!CheckKind.hasValue()) 1872 return; 1873 1874 if (ExplodedNode *N = C.generateErrorNode()) { 1875 if (!BT_DoubleFree[*CheckKind]) 1876 BT_DoubleFree[*CheckKind].reset( 1877 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error")); 1878 1879 auto R = llvm::make_unique<BugReport>( 1880 *BT_DoubleFree[*CheckKind], 1881 (Released ? "Attempt to free released memory" 1882 : "Attempt to free non-owned memory"), 1883 N); 1884 R->addRange(Range); 1885 R->markInteresting(Sym); 1886 if (PrevSym) 1887 R->markInteresting(PrevSym); 1888 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1889 C.emitReport(std::move(R)); 1890 } 1891 } 1892 1893 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 1894 1895 if (!ChecksEnabled[CK_NewDeleteChecker]) 1896 return; 1897 1898 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1899 if (!CheckKind.hasValue()) 1900 return; 1901 1902 if (ExplodedNode *N = C.generateErrorNode()) { 1903 if (!BT_DoubleDelete) 1904 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 1905 "Double delete", "Memory Error")); 1906 1907 auto R = llvm::make_unique<BugReport>( 1908 *BT_DoubleDelete, "Attempt to delete released memory", N); 1909 1910 R->markInteresting(Sym); 1911 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1912 C.emitReport(std::move(R)); 1913 } 1914 } 1915 1916 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 1917 SourceRange Range, 1918 SymbolRef Sym) const { 1919 1920 if (!ChecksEnabled[CK_MallocChecker] && 1921 !ChecksEnabled[CK_NewDeleteChecker]) 1922 return; 1923 1924 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1925 1926 if (!CheckKind.hasValue()) 1927 return; 1928 1929 if (ExplodedNode *N = C.generateErrorNode()) { 1930 if (!BT_UseZerroAllocated[*CheckKind]) 1931 BT_UseZerroAllocated[*CheckKind].reset(new BugType( 1932 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error")); 1933 1934 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 1935 "Use of zero-allocated memory", N); 1936 1937 R->addRange(Range); 1938 if (Sym) { 1939 R->markInteresting(Sym); 1940 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1941 } 1942 C.emitReport(std::move(R)); 1943 } 1944 } 1945 1946 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, 1947 const CallExpr *CE, 1948 bool FreesOnFail, 1949 ProgramStateRef State) const { 1950 if (!State) 1951 return nullptr; 1952 1953 if (CE->getNumArgs() < 2) 1954 return nullptr; 1955 1956 const Expr *arg0Expr = CE->getArg(0); 1957 const LocationContext *LCtx = C.getLocationContext(); 1958 SVal Arg0Val = State->getSVal(arg0Expr, LCtx); 1959 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 1960 return nullptr; 1961 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 1962 1963 SValBuilder &svalBuilder = C.getSValBuilder(); 1964 1965 DefinedOrUnknownSVal PtrEQ = 1966 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 1967 1968 // Get the size argument. If there is no size arg then give up. 1969 const Expr *Arg1 = CE->getArg(1); 1970 if (!Arg1) 1971 return nullptr; 1972 1973 // Get the value of the size argument. 1974 SVal Arg1ValG = State->getSVal(Arg1, LCtx); 1975 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>()) 1976 return nullptr; 1977 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>(); 1978 1979 // Compare the size argument to 0. 1980 DefinedOrUnknownSVal SizeZero = 1981 svalBuilder.evalEQ(State, Arg1Val, 1982 svalBuilder.makeIntValWithPtrWidth(0, false)); 1983 1984 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 1985 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 1986 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 1987 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 1988 // We only assume exceptional states if they are definitely true; if the 1989 // state is under-constrained, assume regular realloc behavior. 1990 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 1991 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 1992 1993 // If the ptr is NULL and the size is not 0, the call is equivalent to 1994 // malloc(size). 1995 if ( PrtIsNull && !SizeIsZero) { 1996 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), 1997 UndefinedVal(), StatePtrIsNull); 1998 return stateMalloc; 1999 } 2000 2001 if (PrtIsNull && SizeIsZero) 2002 return State; 2003 2004 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2005 assert(!PrtIsNull); 2006 SymbolRef FromPtr = arg0Val.getAsSymbol(); 2007 SVal RetVal = State->getSVal(CE, LCtx); 2008 SymbolRef ToPtr = RetVal.getAsSymbol(); 2009 if (!FromPtr || !ToPtr) 2010 return nullptr; 2011 2012 bool ReleasedAllocated = false; 2013 2014 // If the size is 0, free the memory. 2015 if (SizeIsZero) 2016 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 2017 false, ReleasedAllocated)){ 2018 // The semantics of the return value are: 2019 // If size was equal to 0, either NULL or a pointer suitable to be passed 2020 // to free() is returned. We just free the input pointer and do not add 2021 // any constrains on the output pointer. 2022 return stateFree; 2023 } 2024 2025 // Default behavior. 2026 if (ProgramStateRef stateFree = 2027 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 2028 2029 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), 2030 UnknownVal(), stateFree); 2031 if (!stateRealloc) 2032 return nullptr; 2033 2034 ReallocPairKind Kind = RPToBeFreedAfterFailure; 2035 if (FreesOnFail) 2036 Kind = RPIsFreeOnFailure; 2037 else if (!ReleasedAllocated) 2038 Kind = RPDoNotTrackAfterFailure; 2039 2040 // Record the info about the reallocated symbol so that we could properly 2041 // process failed reallocation. 2042 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2043 ReallocPair(FromPtr, Kind)); 2044 // The reallocated symbol should stay alive for as long as the new symbol. 2045 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2046 return stateRealloc; 2047 } 2048 return nullptr; 2049 } 2050 2051 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 2052 ProgramStateRef State) { 2053 if (!State) 2054 return nullptr; 2055 2056 if (CE->getNumArgs() < 2) 2057 return nullptr; 2058 2059 SValBuilder &svalBuilder = C.getSValBuilder(); 2060 const LocationContext *LCtx = C.getLocationContext(); 2061 SVal count = State->getSVal(CE->getArg(0), LCtx); 2062 SVal elementSize = State->getSVal(CE->getArg(1), LCtx); 2063 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize, 2064 svalBuilder.getContext().getSizeType()); 2065 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2066 2067 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2068 } 2069 2070 LeakInfo 2071 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2072 CheckerContext &C) const { 2073 const LocationContext *LeakContext = N->getLocationContext(); 2074 // Walk the ExplodedGraph backwards and find the first node that referred to 2075 // the tracked symbol. 2076 const ExplodedNode *AllocNode = N; 2077 const MemRegion *ReferenceRegion = nullptr; 2078 2079 while (N) { 2080 ProgramStateRef State = N->getState(); 2081 if (!State->get<RegionState>(Sym)) 2082 break; 2083 2084 // Find the most recent expression bound to the symbol in the current 2085 // context. 2086 if (!ReferenceRegion) { 2087 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2088 SVal Val = State->getSVal(MR); 2089 if (Val.getAsLocSymbol() == Sym) { 2090 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2091 // Do not show local variables belonging to a function other than 2092 // where the error is reported. 2093 if (!VR || 2094 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 2095 ReferenceRegion = MR; 2096 } 2097 } 2098 } 2099 2100 // Allocation node, is the last node in the current or parent context in 2101 // which the symbol was tracked. 2102 const LocationContext *NContext = N->getLocationContext(); 2103 if (NContext == LeakContext || 2104 NContext->isParentOf(LeakContext)) 2105 AllocNode = N; 2106 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2107 } 2108 2109 return LeakInfo(AllocNode, ReferenceRegion); 2110 } 2111 2112 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2113 CheckerContext &C) const { 2114 2115 if (!ChecksEnabled[CK_MallocChecker] && 2116 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2117 return; 2118 2119 const RefState *RS = C.getState()->get<RegionState>(Sym); 2120 assert(RS && "cannot leak an untracked symbol"); 2121 AllocationFamily Family = RS->getAllocationFamily(); 2122 2123 if (Family == AF_Alloca) 2124 return; 2125 2126 Optional<MallocChecker::CheckKind> 2127 CheckKind = getCheckIfTracked(Family, true); 2128 2129 if (!CheckKind.hasValue()) 2130 return; 2131 2132 assert(N); 2133 if (!BT_Leak[*CheckKind]) { 2134 BT_Leak[*CheckKind].reset( 2135 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error")); 2136 // Leaks should not be reported if they are post-dominated by a sink: 2137 // (1) Sinks are higher importance bugs. 2138 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2139 // with __noreturn functions such as assert() or exit(). We choose not 2140 // to report leaks on such paths. 2141 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2142 } 2143 2144 // Most bug reports are cached at the location where they occurred. 2145 // With leaks, we want to unique them by the location where they were 2146 // allocated, and only report a single path. 2147 PathDiagnosticLocation LocUsedForUniqueing; 2148 const ExplodedNode *AllocNode = nullptr; 2149 const MemRegion *Region = nullptr; 2150 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2151 2152 const Stmt *AllocationStmt = PathDiagnosticLocation::getStmt(AllocNode); 2153 if (AllocationStmt) 2154 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2155 C.getSourceManager(), 2156 AllocNode->getLocationContext()); 2157 2158 SmallString<200> buf; 2159 llvm::raw_svector_ostream os(buf); 2160 if (Region && Region->canPrintPretty()) { 2161 os << "Potential leak of memory pointed to by "; 2162 Region->printPretty(os); 2163 } else { 2164 os << "Potential memory leak"; 2165 } 2166 2167 auto R = llvm::make_unique<BugReport>( 2168 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2169 AllocNode->getLocationContext()->getDecl()); 2170 R->markInteresting(Sym); 2171 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2172 C.emitReport(std::move(R)); 2173 } 2174 2175 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2176 CheckerContext &C) const 2177 { 2178 if (!SymReaper.hasDeadSymbols()) 2179 return; 2180 2181 ProgramStateRef state = C.getState(); 2182 RegionStateTy RS = state->get<RegionState>(); 2183 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2184 2185 SmallVector<SymbolRef, 2> Errors; 2186 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2187 if (SymReaper.isDead(I->first)) { 2188 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2189 Errors.push_back(I->first); 2190 // Remove the dead symbol from the map. 2191 RS = F.remove(RS, I->first); 2192 2193 } 2194 } 2195 2196 // Cleanup the Realloc Pairs Map. 2197 ReallocPairsTy RP = state->get<ReallocPairs>(); 2198 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2199 if (SymReaper.isDead(I->first) || 2200 SymReaper.isDead(I->second.ReallocatedSym)) { 2201 state = state->remove<ReallocPairs>(I->first); 2202 } 2203 } 2204 2205 // Cleanup the FreeReturnValue Map. 2206 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2207 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2208 if (SymReaper.isDead(I->first) || 2209 SymReaper.isDead(I->second)) { 2210 state = state->remove<FreeReturnValue>(I->first); 2211 } 2212 } 2213 2214 // Generate leak node. 2215 ExplodedNode *N = C.getPredecessor(); 2216 if (!Errors.empty()) { 2217 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2218 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2219 if (N) { 2220 for (SmallVectorImpl<SymbolRef>::iterator 2221 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2222 reportLeak(*I, N, C); 2223 } 2224 } 2225 } 2226 2227 C.addTransition(state->set<RegionState>(RS), N); 2228 } 2229 2230 void MallocChecker::checkPreCall(const CallEvent &Call, 2231 CheckerContext &C) const { 2232 2233 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2234 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2235 if (!Sym || checkDoubleDelete(Sym, C)) 2236 return; 2237 } 2238 2239 // We will check for double free in the post visit. 2240 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2241 const FunctionDecl *FD = FC->getDecl(); 2242 if (!FD) 2243 return; 2244 2245 ASTContext &Ctx = C.getASTContext(); 2246 if (ChecksEnabled[CK_MallocChecker] && 2247 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2248 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2249 MemoryOperationKind::MOK_Free))) 2250 return; 2251 2252 if (ChecksEnabled[CK_NewDeleteChecker] && 2253 isStandardNewDelete(FD, Ctx)) 2254 return; 2255 } 2256 2257 // Check if the callee of a method is deleted. 2258 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2259 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2260 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2261 return; 2262 } 2263 2264 // Check arguments for being used after free. 2265 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2266 SVal ArgSVal = Call.getArgSVal(I); 2267 if (ArgSVal.getAs<Loc>()) { 2268 SymbolRef Sym = ArgSVal.getAsSymbol(); 2269 if (!Sym) 2270 continue; 2271 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2272 return; 2273 } 2274 } 2275 } 2276 2277 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2278 const Expr *E = S->getRetValue(); 2279 if (!E) 2280 return; 2281 2282 // Check if we are returning a symbol. 2283 ProgramStateRef State = C.getState(); 2284 SVal RetVal = State->getSVal(E, C.getLocationContext()); 2285 SymbolRef Sym = RetVal.getAsSymbol(); 2286 if (!Sym) 2287 // If we are returning a field of the allocated struct or an array element, 2288 // the callee could still free the memory. 2289 // TODO: This logic should be a part of generic symbol escape callback. 2290 if (const MemRegion *MR = RetVal.getAsRegion()) 2291 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2292 if (const SymbolicRegion *BMR = 2293 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2294 Sym = BMR->getSymbol(); 2295 2296 // Check if we are returning freed memory. 2297 if (Sym) 2298 checkUseAfterFree(Sym, C, E); 2299 } 2300 2301 // TODO: Blocks should be either inlined or should call invalidate regions 2302 // upon invocation. After that's in place, special casing here will not be 2303 // needed. 2304 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2305 CheckerContext &C) const { 2306 2307 // Scan the BlockDecRefExprs for any object the retain count checker 2308 // may be tracking. 2309 if (!BE->getBlockDecl()->hasCaptures()) 2310 return; 2311 2312 ProgramStateRef state = C.getState(); 2313 const BlockDataRegion *R = 2314 cast<BlockDataRegion>(state->getSVal(BE, 2315 C.getLocationContext()).getAsRegion()); 2316 2317 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2318 E = R->referenced_vars_end(); 2319 2320 if (I == E) 2321 return; 2322 2323 SmallVector<const MemRegion*, 10> Regions; 2324 const LocationContext *LC = C.getLocationContext(); 2325 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2326 2327 for ( ; I != E; ++I) { 2328 const VarRegion *VR = I.getCapturedRegion(); 2329 if (VR->getSuperRegion() == R) { 2330 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2331 } 2332 Regions.push_back(VR); 2333 } 2334 2335 state = 2336 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2337 Regions.data() + Regions.size()).getState(); 2338 C.addTransition(state); 2339 } 2340 2341 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2342 assert(Sym); 2343 const RefState *RS = C.getState()->get<RegionState>(Sym); 2344 return (RS && RS->isReleased()); 2345 } 2346 2347 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2348 const Stmt *S) const { 2349 2350 if (isReleased(Sym, C)) { 2351 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2352 return true; 2353 } 2354 2355 return false; 2356 } 2357 2358 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2359 const Stmt *S) const { 2360 assert(Sym); 2361 2362 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2363 if (RS->isAllocatedOfSizeZero()) 2364 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2365 } 2366 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2367 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2368 } 2369 } 2370 2371 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2372 2373 if (isReleased(Sym, C)) { 2374 ReportDoubleDelete(C, Sym); 2375 return true; 2376 } 2377 return false; 2378 } 2379 2380 // Check if the location is a freed symbolic region. 2381 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2382 CheckerContext &C) const { 2383 SymbolRef Sym = l.getLocSymbolInBase(); 2384 if (Sym) { 2385 checkUseAfterFree(Sym, C, S); 2386 checkUseZeroAllocated(Sym, C, S); 2387 } 2388 } 2389 2390 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2391 // it - assuming that allocation failed on this path. 2392 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2393 SVal Cond, 2394 bool Assumption) const { 2395 RegionStateTy RS = state->get<RegionState>(); 2396 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2397 // If the symbol is assumed to be NULL, remove it from consideration. 2398 ConstraintManager &CMgr = state->getConstraintManager(); 2399 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2400 if (AllocFailed.isConstrainedTrue()) 2401 state = state->remove<RegionState>(I.getKey()); 2402 } 2403 2404 // Realloc returns 0 when reallocation fails, which means that we should 2405 // restore the state of the pointer being reallocated. 2406 ReallocPairsTy RP = state->get<ReallocPairs>(); 2407 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2408 // If the symbol is assumed to be NULL, remove it from consideration. 2409 ConstraintManager &CMgr = state->getConstraintManager(); 2410 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2411 if (!AllocFailed.isConstrainedTrue()) 2412 continue; 2413 2414 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2415 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2416 if (RS->isReleased()) { 2417 if (I.getData().Kind == RPToBeFreedAfterFailure) 2418 state = state->set<RegionState>(ReallocSym, 2419 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2420 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2421 state = state->remove<RegionState>(ReallocSym); 2422 else 2423 assert(I.getData().Kind == RPIsFreeOnFailure); 2424 } 2425 } 2426 state = state->remove<ReallocPairs>(I.getKey()); 2427 } 2428 2429 return state; 2430 } 2431 2432 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2433 const CallEvent *Call, 2434 ProgramStateRef State, 2435 SymbolRef &EscapingSymbol) const { 2436 assert(Call); 2437 EscapingSymbol = nullptr; 2438 2439 // For now, assume that any C++ or block call can free memory. 2440 // TODO: If we want to be more optimistic here, we'll need to make sure that 2441 // regions escape to C++ containers. They seem to do that even now, but for 2442 // mysterious reasons. 2443 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2444 return true; 2445 2446 // Check Objective-C messages by selector name. 2447 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2448 // If it's not a framework call, or if it takes a callback, assume it 2449 // can free memory. 2450 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2451 return true; 2452 2453 // If it's a method we know about, handle it explicitly post-call. 2454 // This should happen before the "freeWhenDone" check below. 2455 if (isKnownDeallocObjCMethodName(*Msg)) 2456 return false; 2457 2458 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2459 // about, we can't be sure that the object will use free() to deallocate the 2460 // memory, so we can't model it explicitly. The best we can do is use it to 2461 // decide whether the pointer escapes. 2462 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2463 return *FreeWhenDone; 2464 2465 // If the first selector piece ends with "NoCopy", and there is no 2466 // "freeWhenDone" parameter set to zero, we know ownership is being 2467 // transferred. Again, though, we can't be sure that the object will use 2468 // free() to deallocate the memory, so we can't model it explicitly. 2469 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2470 if (FirstSlot.endswith("NoCopy")) 2471 return true; 2472 2473 // If the first selector starts with addPointer, insertPointer, 2474 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2475 // This is similar to C++ containers (vector); we still might want to check 2476 // that the pointers get freed by following the container itself. 2477 if (FirstSlot.startswith("addPointer") || 2478 FirstSlot.startswith("insertPointer") || 2479 FirstSlot.startswith("replacePointer") || 2480 FirstSlot.equals("valueWithPointer")) { 2481 return true; 2482 } 2483 2484 // We should escape receiver on call to 'init'. This is especially relevant 2485 // to the receiver, as the corresponding symbol is usually not referenced 2486 // after the call. 2487 if (Msg->getMethodFamily() == OMF_init) { 2488 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2489 return true; 2490 } 2491 2492 // Otherwise, assume that the method does not free memory. 2493 // Most framework methods do not free memory. 2494 return false; 2495 } 2496 2497 // At this point the only thing left to handle is straight function calls. 2498 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2499 if (!FD) 2500 return true; 2501 2502 ASTContext &ASTC = State->getStateManager().getContext(); 2503 2504 // If it's one of the allocation functions we can reason about, we model 2505 // its behavior explicitly. 2506 if (isMemFunction(FD, ASTC)) 2507 return false; 2508 2509 // If it's not a system call, assume it frees memory. 2510 if (!Call->isInSystemHeader()) 2511 return true; 2512 2513 // White list the system functions whose arguments escape. 2514 const IdentifierInfo *II = FD->getIdentifier(); 2515 if (!II) 2516 return true; 2517 StringRef FName = II->getName(); 2518 2519 // White list the 'XXXNoCopy' CoreFoundation functions. 2520 // We specifically check these before 2521 if (FName.endswith("NoCopy")) { 2522 // Look for the deallocator argument. We know that the memory ownership 2523 // is not transferred only if the deallocator argument is 2524 // 'kCFAllocatorNull'. 2525 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2526 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2527 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2528 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2529 if (DeallocatorName == "kCFAllocatorNull") 2530 return false; 2531 } 2532 } 2533 return true; 2534 } 2535 2536 // Associating streams with malloced buffers. The pointer can escape if 2537 // 'closefn' is specified (and if that function does free memory), 2538 // but it will not if closefn is not specified. 2539 // Currently, we do not inspect the 'closefn' function (PR12101). 2540 if (FName == "funopen") 2541 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2542 return false; 2543 2544 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2545 // these leaks might be intentional when setting the buffer for stdio. 2546 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2547 if (FName == "setbuf" || FName =="setbuffer" || 2548 FName == "setlinebuf" || FName == "setvbuf") { 2549 if (Call->getNumArgs() >= 1) { 2550 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2551 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2552 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2553 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2554 return true; 2555 } 2556 } 2557 2558 // A bunch of other functions which either take ownership of a pointer or 2559 // wrap the result up in a struct or object, meaning it can be freed later. 2560 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2561 // but the Malloc checker cannot differentiate between them. The right way 2562 // of doing this would be to implement a pointer escapes callback. 2563 if (FName == "CGBitmapContextCreate" || 2564 FName == "CGBitmapContextCreateWithData" || 2565 FName == "CVPixelBufferCreateWithBytes" || 2566 FName == "CVPixelBufferCreateWithPlanarBytes" || 2567 FName == "OSAtomicEnqueue") { 2568 return true; 2569 } 2570 2571 if (FName == "postEvent" && 2572 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2573 return true; 2574 } 2575 2576 if (FName == "postEvent" && 2577 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2578 return true; 2579 } 2580 2581 if (FName == "connectImpl" && 2582 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 2583 return true; 2584 } 2585 2586 // Handle cases where we know a buffer's /address/ can escape. 2587 // Note that the above checks handle some special cases where we know that 2588 // even though the address escapes, it's still our responsibility to free the 2589 // buffer. 2590 if (Call->argumentsMayEscape()) 2591 return true; 2592 2593 // Otherwise, assume that the function does not free memory. 2594 // Most system calls do not free the memory. 2595 return false; 2596 } 2597 2598 static bool retTrue(const RefState *RS) { 2599 return true; 2600 } 2601 2602 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2603 return (RS->getAllocationFamily() == AF_CXXNewArray || 2604 RS->getAllocationFamily() == AF_CXXNew); 2605 } 2606 2607 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2608 const InvalidatedSymbols &Escaped, 2609 const CallEvent *Call, 2610 PointerEscapeKind Kind) const { 2611 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2612 } 2613 2614 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2615 const InvalidatedSymbols &Escaped, 2616 const CallEvent *Call, 2617 PointerEscapeKind Kind) const { 2618 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2619 &checkIfNewOrNewArrayFamily); 2620 } 2621 2622 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2623 const InvalidatedSymbols &Escaped, 2624 const CallEvent *Call, 2625 PointerEscapeKind Kind, 2626 bool(*CheckRefState)(const RefState*)) const { 2627 // If we know that the call does not free memory, or we want to process the 2628 // call later, keep tracking the top level arguments. 2629 SymbolRef EscapingSymbol = nullptr; 2630 if (Kind == PSK_DirectEscapeOnCall && 2631 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2632 EscapingSymbol) && 2633 !EscapingSymbol) { 2634 return State; 2635 } 2636 2637 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2638 E = Escaped.end(); 2639 I != E; ++I) { 2640 SymbolRef sym = *I; 2641 2642 if (EscapingSymbol && EscapingSymbol != sym) 2643 continue; 2644 2645 if (const RefState *RS = State->get<RegionState>(sym)) { 2646 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2647 CheckRefState(RS)) { 2648 State = State->remove<RegionState>(sym); 2649 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2650 } 2651 } 2652 } 2653 return State; 2654 } 2655 2656 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2657 ProgramStateRef prevState) { 2658 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2659 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2660 2661 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2662 I != E; ++I) { 2663 SymbolRef sym = I.getKey(); 2664 if (!currMap.lookup(sym)) 2665 return sym; 2666 } 2667 2668 return nullptr; 2669 } 2670 2671 std::shared_ptr<PathDiagnosticPiece> MallocChecker::MallocBugVisitor::VisitNode( 2672 const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, 2673 BugReport &BR) { 2674 ProgramStateRef state = N->getState(); 2675 ProgramStateRef statePrev = PrevN->getState(); 2676 2677 const RefState *RS = state->get<RegionState>(Sym); 2678 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2679 if (!RS) 2680 return nullptr; 2681 2682 const Stmt *S = PathDiagnosticLocation::getStmt(N); 2683 if (!S) 2684 return nullptr; 2685 2686 // FIXME: We will eventually need to handle non-statement-based events 2687 // (__attribute__((cleanup))). 2688 2689 // Find out if this is an interesting point and what is the kind. 2690 const char *Msg = nullptr; 2691 StackHintGeneratorForSymbol *StackHint = nullptr; 2692 if (Mode == Normal) { 2693 if (isAllocated(RS, RSPrev, S)) { 2694 Msg = "Memory is allocated"; 2695 StackHint = new StackHintGeneratorForSymbol(Sym, 2696 "Returned allocated memory"); 2697 } else if (isReleased(RS, RSPrev, S)) { 2698 Msg = "Memory is released"; 2699 StackHint = new StackHintGeneratorForSymbol(Sym, 2700 "Returning; memory was released"); 2701 } else if (isRelinquished(RS, RSPrev, S)) { 2702 Msg = "Memory ownership is transferred"; 2703 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2704 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2705 Mode = ReallocationFailed; 2706 Msg = "Reallocation failed"; 2707 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2708 "Reallocation failed"); 2709 2710 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2711 // Is it possible to fail two reallocs WITHOUT testing in between? 2712 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2713 "We only support one failed realloc at a time."); 2714 BR.markInteresting(sym); 2715 FailedReallocSymbol = sym; 2716 } 2717 } 2718 2719 // We are in a special mode if a reallocation failed later in the path. 2720 } else if (Mode == ReallocationFailed) { 2721 assert(FailedReallocSymbol && "No symbol to look for."); 2722 2723 // Is this is the first appearance of the reallocated symbol? 2724 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2725 // We're at the reallocation point. 2726 Msg = "Attempt to reallocate memory"; 2727 StackHint = new StackHintGeneratorForSymbol(Sym, 2728 "Returned reallocated memory"); 2729 FailedReallocSymbol = nullptr; 2730 Mode = Normal; 2731 } 2732 } 2733 2734 if (!Msg) 2735 return nullptr; 2736 assert(StackHint); 2737 2738 // Generate the extra diagnostic. 2739 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2740 N->getLocationContext()); 2741 return std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true, StackHint); 2742 } 2743 2744 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2745 const char *NL, const char *Sep) const { 2746 2747 RegionStateTy RS = State->get<RegionState>(); 2748 2749 if (!RS.isEmpty()) { 2750 Out << Sep << "MallocChecker :" << NL; 2751 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2752 const RefState *RefS = State->get<RegionState>(I.getKey()); 2753 AllocationFamily Family = RefS->getAllocationFamily(); 2754 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2755 if (!CheckKind.hasValue()) 2756 CheckKind = getCheckIfTracked(Family, true); 2757 2758 I.getKey()->dumpToStream(Out); 2759 Out << " : "; 2760 I.getData().dump(Out); 2761 if (CheckKind.hasValue()) 2762 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2763 Out << NL; 2764 } 2765 } 2766 } 2767 2768 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2769 registerCStringCheckerBasic(mgr); 2770 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2771 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 2772 "Optimistic", false, checker); 2773 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2774 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2775 mgr.getCurrentCheckName(); 2776 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2777 // checker. 2778 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) 2779 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2780 } 2781 2782 #define REGISTER_CHECKER(name) \ 2783 void ento::register##name(CheckerManager &mgr) { \ 2784 registerCStringCheckerBasic(mgr); \ 2785 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2786 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 2787 "Optimistic", false, checker); \ 2788 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2789 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2790 } 2791 2792 REGISTER_CHECKER(MallocChecker) 2793 REGISTER_CHECKER(NewDeleteChecker) 2794 REGISTER_CHECKER(MismatchedDeallocatorChecker) 2795