1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a variety of memory management related checkers, such as 10 // leak, double free, and use-after-free. 11 // 12 // The following checkers are defined here: 13 // 14 // * MallocChecker 15 // Despite its name, it models all sorts of memory allocations and 16 // de- or reallocation, including but not limited to malloc, free, 17 // relloc, new, delete. It also reports on a variety of memory misuse 18 // errors. 19 // Many other checkers interact very closely with this checker, in fact, 20 // most are merely options to this one. Other checkers may register 21 // MallocChecker, but do not enable MallocChecker's reports (more details 22 // to follow around its field, ChecksEnabled). 23 // It also has a boolean "Optimistic" checker option, which if set to true 24 // will cause the checker to model user defined memory management related 25 // functions annotated via the attribute ownership_takes, ownership_holds 26 // and ownership_returns. 27 // 28 // * NewDeleteChecker 29 // Enables the modeling of new, new[], delete, delete[] in MallocChecker, 30 // and checks for related double-free and use-after-free errors. 31 // 32 // * NewDeleteLeaksChecker 33 // Checks for leaks related to new, new[], delete, delete[]. 34 // Depends on NewDeleteChecker. 35 // 36 // * MismatchedDeallocatorChecker 37 // Enables checking whether memory is deallocated with the correspending 38 // allocation function in MallocChecker, such as malloc() allocated 39 // regions are only freed by free(), new by delete, new[] by delete[]. 40 // 41 // InnerPointerChecker interacts very closely with MallocChecker, but unlike 42 // the above checkers, it has it's own file, hence the many InnerPointerChecker 43 // related headers and non-static functions. 44 // 45 //===----------------------------------------------------------------------===// 46 47 #include "AllocationState.h" 48 #include "InterCheckerAPI.h" 49 #include "clang/AST/Attr.h" 50 #include "clang/AST/DeclCXX.h" 51 #include "clang/AST/DeclTemplate.h" 52 #include "clang/AST/Expr.h" 53 #include "clang/AST/ExprCXX.h" 54 #include "clang/AST/ParentMap.h" 55 #include "clang/ASTMatchers/ASTMatchFinder.h" 56 #include "clang/ASTMatchers/ASTMatchers.h" 57 #include "clang/Analysis/ProgramPoint.h" 58 #include "clang/Basic/LLVM.h" 59 #include "clang/Basic/SourceManager.h" 60 #include "clang/Basic/TargetInfo.h" 61 #include "clang/Lex/Lexer.h" 62 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 63 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 64 #include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h" 65 #include "clang/StaticAnalyzer/Core/Checker.h" 66 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 67 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 68 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 69 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 70 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 74 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 75 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" 76 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" 77 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h" 78 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 79 #include "llvm/ADT/STLExtras.h" 80 #include "llvm/ADT/SetOperations.h" 81 #include "llvm/ADT/SmallString.h" 82 #include "llvm/ADT/StringExtras.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <climits> 88 #include <functional> 89 #include <optional> 90 #include <utility> 91 92 using namespace clang; 93 using namespace ento; 94 using namespace std::placeholders; 95 96 //===----------------------------------------------------------------------===// 97 // The types of allocation we're modeling. This is used to check whether a 98 // dynamically allocated object is deallocated with the correct function, like 99 // not using operator delete on an object created by malloc(), or alloca regions 100 // aren't ever deallocated manually. 101 //===----------------------------------------------------------------------===// 102 103 namespace { 104 105 // Used to check correspondence between allocators and deallocators. 106 enum AllocationFamily { 107 AF_None, 108 AF_Malloc, 109 AF_CXXNew, 110 AF_CXXNewArray, 111 AF_IfNameIndex, 112 AF_Alloca, 113 AF_InnerBuffer 114 }; 115 116 } // end of anonymous namespace 117 118 /// Print names of allocators and deallocators. 119 /// 120 /// \returns true on success. 121 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E); 122 123 /// Print expected name of an allocator based on the deallocator's family 124 /// derived from the DeallocExpr. 125 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family); 126 127 /// Print expected name of a deallocator based on the allocator's 128 /// family. 129 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family); 130 131 //===----------------------------------------------------------------------===// 132 // The state of a symbol, in terms of memory management. 133 //===----------------------------------------------------------------------===// 134 135 namespace { 136 137 class RefState { 138 enum Kind { 139 // Reference to allocated memory. 140 Allocated, 141 // Reference to zero-allocated memory. 142 AllocatedOfSizeZero, 143 // Reference to released/freed memory. 144 Released, 145 // The responsibility for freeing resources has transferred from 146 // this reference. A relinquished symbol should not be freed. 147 Relinquished, 148 // We are no longer guaranteed to have observed all manipulations 149 // of this pointer/memory. For example, it could have been 150 // passed as a parameter to an opaque function. 151 Escaped 152 }; 153 154 const Stmt *S; 155 156 Kind K; 157 AllocationFamily Family; 158 159 RefState(Kind k, const Stmt *s, AllocationFamily family) 160 : S(s), K(k), Family(family) { 161 assert(family != AF_None); 162 } 163 164 public: 165 bool isAllocated() const { return K == Allocated; } 166 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 167 bool isReleased() const { return K == Released; } 168 bool isRelinquished() const { return K == Relinquished; } 169 bool isEscaped() const { return K == Escaped; } 170 AllocationFamily getAllocationFamily() const { return Family; } 171 const Stmt *getStmt() const { return S; } 172 173 bool operator==(const RefState &X) const { 174 return K == X.K && S == X.S && Family == X.Family; 175 } 176 177 static RefState getAllocated(AllocationFamily family, const Stmt *s) { 178 return RefState(Allocated, s, family); 179 } 180 static RefState getAllocatedOfSizeZero(const RefState *RS) { 181 return RefState(AllocatedOfSizeZero, RS->getStmt(), 182 RS->getAllocationFamily()); 183 } 184 static RefState getReleased(AllocationFamily family, const Stmt *s) { 185 return RefState(Released, s, family); 186 } 187 static RefState getRelinquished(AllocationFamily family, const Stmt *s) { 188 return RefState(Relinquished, s, family); 189 } 190 static RefState getEscaped(const RefState *RS) { 191 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 192 } 193 194 void Profile(llvm::FoldingSetNodeID &ID) const { 195 ID.AddInteger(K); 196 ID.AddPointer(S); 197 ID.AddInteger(Family); 198 } 199 200 LLVM_DUMP_METHOD void dump(raw_ostream &OS) const { 201 switch (K) { 202 #define CASE(ID) case ID: OS << #ID; break; 203 CASE(Allocated) 204 CASE(AllocatedOfSizeZero) 205 CASE(Released) 206 CASE(Relinquished) 207 CASE(Escaped) 208 } 209 } 210 211 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 212 }; 213 214 } // end of anonymous namespace 215 216 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 217 218 /// Check if the memory associated with this symbol was released. 219 static bool isReleased(SymbolRef Sym, CheckerContext &C); 220 221 /// Update the RefState to reflect the new memory allocation. 222 /// The optional \p RetVal parameter specifies the newly allocated pointer 223 /// value; if unspecified, the value of expression \p E is used. 224 static ProgramStateRef 225 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 226 AllocationFamily Family, 227 Optional<SVal> RetVal = std::nullopt); 228 229 //===----------------------------------------------------------------------===// 230 // The modeling of memory reallocation. 231 // 232 // The terminology 'toPtr' and 'fromPtr' will be used: 233 // toPtr = realloc(fromPtr, 20); 234 //===----------------------------------------------------------------------===// 235 236 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 237 238 namespace { 239 240 /// The state of 'fromPtr' after reallocation is known to have failed. 241 enum OwnershipAfterReallocKind { 242 // The symbol needs to be freed (e.g.: realloc) 243 OAR_ToBeFreedAfterFailure, 244 // The symbol has been freed (e.g.: reallocf) 245 OAR_FreeOnFailure, 246 // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where 247 // 'fromPtr' was allocated: 248 // void Haha(int *ptr) { 249 // ptr = realloc(ptr, 67); 250 // // ... 251 // } 252 // ). 253 OAR_DoNotTrackAfterFailure 254 }; 255 256 /// Stores information about the 'fromPtr' symbol after reallocation. 257 /// 258 /// This is important because realloc may fail, and that needs special modeling. 259 /// Whether reallocation failed or not will not be known until later, so we'll 260 /// store whether upon failure 'fromPtr' will be freed, or needs to be freed 261 /// later, etc. 262 struct ReallocPair { 263 264 // The 'fromPtr'. 265 SymbolRef ReallocatedSym; 266 OwnershipAfterReallocKind Kind; 267 268 ReallocPair(SymbolRef S, OwnershipAfterReallocKind K) 269 : ReallocatedSym(S), Kind(K) {} 270 void Profile(llvm::FoldingSetNodeID &ID) const { 271 ID.AddInteger(Kind); 272 ID.AddPointer(ReallocatedSym); 273 } 274 bool operator==(const ReallocPair &X) const { 275 return ReallocatedSym == X.ReallocatedSym && 276 Kind == X.Kind; 277 } 278 }; 279 280 } // end of anonymous namespace 281 282 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 283 284 /// Tells if the callee is one of the builtin new/delete operators, including 285 /// placement operators and other standard overloads. 286 static bool isStandardNewDelete(const FunctionDecl *FD); 287 static bool isStandardNewDelete(const CallEvent &Call) { 288 if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl())) 289 return false; 290 return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl())); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Definition of the MallocChecker class. 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 299 class MallocChecker 300 : public Checker<check::DeadSymbols, check::PointerEscape, 301 check::ConstPointerEscape, check::PreStmt<ReturnStmt>, 302 check::EndFunction, check::PreCall, check::PostCall, 303 check::NewAllocator, check::PostStmt<BlockExpr>, 304 check::PostObjCMessage, check::Location, eval::Assume> { 305 public: 306 /// In pessimistic mode, the checker assumes that it does not know which 307 /// functions might free the memory. 308 /// In optimistic mode, the checker assumes that all user-defined functions 309 /// which might free a pointer are annotated. 310 bool ShouldIncludeOwnershipAnnotatedFunctions = false; 311 312 bool ShouldRegisterNoOwnershipChangeVisitor = false; 313 314 /// Many checkers are essentially built into this one, so enabling them will 315 /// make MallocChecker perform additional modeling and reporting. 316 enum CheckKind { 317 /// When a subchecker is enabled but MallocChecker isn't, model memory 318 /// management but do not emit warnings emitted with MallocChecker only 319 /// enabled. 320 CK_MallocChecker, 321 CK_NewDeleteChecker, 322 CK_NewDeleteLeaksChecker, 323 CK_MismatchedDeallocatorChecker, 324 CK_InnerPointerChecker, 325 CK_NumCheckKinds 326 }; 327 328 using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>; 329 330 bool ChecksEnabled[CK_NumCheckKinds] = {false}; 331 CheckerNameRef CheckNames[CK_NumCheckKinds]; 332 333 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 334 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 335 void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const; 336 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 337 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 338 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 339 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 340 void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const; 341 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 342 bool Assumption) const; 343 void checkLocation(SVal l, bool isLoad, const Stmt *S, 344 CheckerContext &C) const; 345 346 ProgramStateRef checkPointerEscape(ProgramStateRef State, 347 const InvalidatedSymbols &Escaped, 348 const CallEvent *Call, 349 PointerEscapeKind Kind) const; 350 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 351 const InvalidatedSymbols &Escaped, 352 const CallEvent *Call, 353 PointerEscapeKind Kind) const; 354 355 void printState(raw_ostream &Out, ProgramStateRef State, 356 const char *NL, const char *Sep) const override; 357 358 private: 359 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 360 mutable std::unique_ptr<BugType> BT_DoubleDelete; 361 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 362 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 363 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 364 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 365 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 366 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 367 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 368 369 #define CHECK_FN(NAME) \ 370 void NAME(const CallEvent &Call, CheckerContext &C) const; 371 372 CHECK_FN(checkFree) 373 CHECK_FN(checkIfNameIndex) 374 CHECK_FN(checkBasicAlloc) 375 CHECK_FN(checkKernelMalloc) 376 CHECK_FN(checkCalloc) 377 CHECK_FN(checkAlloca) 378 CHECK_FN(checkStrdup) 379 CHECK_FN(checkIfFreeNameIndex) 380 CHECK_FN(checkCXXNewOrCXXDelete) 381 CHECK_FN(checkGMalloc0) 382 CHECK_FN(checkGMemdup) 383 CHECK_FN(checkGMallocN) 384 CHECK_FN(checkGMallocN0) 385 CHECK_FN(checkReallocN) 386 CHECK_FN(checkOwnershipAttr) 387 388 void checkRealloc(const CallEvent &Call, CheckerContext &C, 389 bool ShouldFreeOnFail) const; 390 391 using CheckFn = std::function<void(const MallocChecker *, 392 const CallEvent &Call, CheckerContext &C)>; 393 394 const CallDescriptionMap<CheckFn> FreeingMemFnMap{ 395 {{"free", 1}, &MallocChecker::checkFree}, 396 {{"if_freenameindex", 1}, &MallocChecker::checkIfFreeNameIndex}, 397 {{"kfree", 1}, &MallocChecker::checkFree}, 398 {{"g_free", 1}, &MallocChecker::checkFree}, 399 }; 400 401 bool isFreeingCall(const CallEvent &Call) const; 402 static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func); 403 404 friend class NoOwnershipChangeVisitor; 405 406 CallDescriptionMap<CheckFn> AllocatingMemFnMap{ 407 {{"alloca", 1}, &MallocChecker::checkAlloca}, 408 {{"_alloca", 1}, &MallocChecker::checkAlloca}, 409 {{"malloc", 1}, &MallocChecker::checkBasicAlloc}, 410 {{"malloc", 3}, &MallocChecker::checkKernelMalloc}, 411 {{"calloc", 2}, &MallocChecker::checkCalloc}, 412 {{"valloc", 1}, &MallocChecker::checkBasicAlloc}, 413 {{CDF_MaybeBuiltin, "strndup", 2}, &MallocChecker::checkStrdup}, 414 {{CDF_MaybeBuiltin, "strdup", 1}, &MallocChecker::checkStrdup}, 415 {{"_strdup", 1}, &MallocChecker::checkStrdup}, 416 {{"kmalloc", 2}, &MallocChecker::checkKernelMalloc}, 417 {{"if_nameindex", 1}, &MallocChecker::checkIfNameIndex}, 418 {{CDF_MaybeBuiltin, "wcsdup", 1}, &MallocChecker::checkStrdup}, 419 {{CDF_MaybeBuiltin, "_wcsdup", 1}, &MallocChecker::checkStrdup}, 420 {{"g_malloc", 1}, &MallocChecker::checkBasicAlloc}, 421 {{"g_malloc0", 1}, &MallocChecker::checkGMalloc0}, 422 {{"g_try_malloc", 1}, &MallocChecker::checkBasicAlloc}, 423 {{"g_try_malloc0", 1}, &MallocChecker::checkGMalloc0}, 424 {{"g_memdup", 2}, &MallocChecker::checkGMemdup}, 425 {{"g_malloc_n", 2}, &MallocChecker::checkGMallocN}, 426 {{"g_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 427 {{"g_try_malloc_n", 2}, &MallocChecker::checkGMallocN}, 428 {{"g_try_malloc0_n", 2}, &MallocChecker::checkGMallocN0}, 429 }; 430 431 CallDescriptionMap<CheckFn> ReallocatingMemFnMap{ 432 {{"realloc", 2}, 433 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 434 {{"reallocf", 2}, 435 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)}, 436 {{"g_realloc", 2}, 437 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 438 {{"g_try_realloc", 2}, 439 std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)}, 440 {{"g_realloc_n", 3}, &MallocChecker::checkReallocN}, 441 {{"g_try_realloc_n", 3}, &MallocChecker::checkReallocN}, 442 }; 443 444 bool isMemCall(const CallEvent &Call) const; 445 446 // TODO: Remove mutable by moving the initializtaion to the registry function. 447 mutable std::optional<uint64_t> KernelZeroFlagVal; 448 449 using KernelZeroSizePtrValueTy = Optional<int>; 450 /// Store the value of macro called `ZERO_SIZE_PTR`. 451 /// The value is initialized at first use, before first use the outer 452 /// Optional is empty, afterwards it contains another Optional that indicates 453 /// if the macro value could be determined, and if yes the value itself. 454 mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue; 455 456 /// Process C++ operator new()'s allocation, which is the part of C++ 457 /// new-expression that goes before the constructor. 458 [[nodiscard]] ProgramStateRef 459 processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C, 460 AllocationFamily Family) const; 461 462 /// Perform a zero-allocation check. 463 /// 464 /// \param [in] Call The expression that allocates memory. 465 /// \param [in] IndexOfSizeArg Index of the argument that specifies the size 466 /// of the memory that needs to be allocated. E.g. for malloc, this would be 467 /// 0. 468 /// \param [in] RetVal Specifies the newly allocated pointer value; 469 /// if unspecified, the value of expression \p E is used. 470 [[nodiscard]] static ProgramStateRef 471 ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg, 472 ProgramStateRef State, 473 Optional<SVal> RetVal = std::nullopt); 474 475 /// Model functions with the ownership_returns attribute. 476 /// 477 /// User-defined function may have the ownership_returns attribute, which 478 /// annotates that the function returns with an object that was allocated on 479 /// the heap, and passes the ownertship to the callee. 480 /// 481 /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t); 482 /// 483 /// It has two parameters: 484 /// - first: name of the resource (e.g. 'malloc') 485 /// - (OPTIONAL) second: size of the allocated region 486 /// 487 /// \param [in] Call The expression that allocates memory. 488 /// \param [in] Att The ownership_returns attribute. 489 /// \param [in] State The \c ProgramState right before allocation. 490 /// \returns The ProgramState right after allocation. 491 [[nodiscard]] ProgramStateRef 492 MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 493 const OwnershipAttr *Att, ProgramStateRef State) const; 494 495 /// Models memory allocation. 496 /// 497 /// \param [in] Call The expression that allocates memory. 498 /// \param [in] SizeEx Size of the memory that needs to be allocated. 499 /// \param [in] Init The value the allocated memory needs to be initialized. 500 /// with. For example, \c calloc initializes the allocated memory to 0, 501 /// malloc leaves it undefined. 502 /// \param [in] State The \c ProgramState right before allocation. 503 /// \returns The ProgramState right after allocation. 504 [[nodiscard]] static ProgramStateRef 505 MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx, 506 SVal Init, ProgramStateRef State, AllocationFamily Family); 507 508 /// Models memory allocation. 509 /// 510 /// \param [in] Call The expression that allocates memory. 511 /// \param [in] Size Size of the memory that needs to be allocated. 512 /// \param [in] Init The value the allocated memory needs to be initialized. 513 /// with. For example, \c calloc initializes the allocated memory to 0, 514 /// malloc leaves it undefined. 515 /// \param [in] State The \c ProgramState right before allocation. 516 /// \returns The ProgramState right after allocation. 517 [[nodiscard]] static ProgramStateRef 518 MallocMemAux(CheckerContext &C, const CallEvent &Call, SVal Size, SVal Init, 519 ProgramStateRef State, AllocationFamily Family); 520 521 // Check if this malloc() for special flags. At present that means M_ZERO or 522 // __GFP_ZERO (in which case, treat it like calloc). 523 [[nodiscard]] llvm::Optional<ProgramStateRef> 524 performKernelMalloc(const CallEvent &Call, CheckerContext &C, 525 const ProgramStateRef &State) const; 526 527 /// Model functions with the ownership_takes and ownership_holds attributes. 528 /// 529 /// User-defined function may have the ownership_takes and/or ownership_holds 530 /// attributes, which annotates that the function frees the memory passed as a 531 /// parameter. 532 /// 533 /// void __attribute((ownership_takes(malloc, 1))) my_free(void *); 534 /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *); 535 /// 536 /// They have two parameters: 537 /// - first: name of the resource (e.g. 'malloc') 538 /// - second: index of the parameter the attribute applies to 539 /// 540 /// \param [in] Call The expression that frees memory. 541 /// \param [in] Att The ownership_takes or ownership_holds attribute. 542 /// \param [in] State The \c ProgramState right before allocation. 543 /// \returns The ProgramState right after deallocation. 544 [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C, 545 const CallEvent &Call, 546 const OwnershipAttr *Att, 547 ProgramStateRef State) const; 548 549 /// Models memory deallocation. 550 /// 551 /// \param [in] Call The expression that frees memory. 552 /// \param [in] State The \c ProgramState right before allocation. 553 /// \param [in] Num Index of the argument that needs to be freed. This is 554 /// normally 0, but for custom free functions it may be different. 555 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 556 /// attribute. 557 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 558 /// to have been allocated, or in other words, the symbol to be freed was 559 /// registered as allocated by this checker. In the following case, \c ptr 560 /// isn't known to be allocated. 561 /// void Haha(int *ptr) { 562 /// ptr = realloc(ptr, 67); 563 /// // ... 564 /// } 565 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 566 /// we're modeling returns with Null on failure. 567 /// \returns The ProgramState right after deallocation. 568 [[nodiscard]] ProgramStateRef 569 FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State, 570 unsigned Num, bool Hold, bool &IsKnownToBeAllocated, 571 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 572 573 /// Models memory deallocation. 574 /// 575 /// \param [in] ArgExpr The variable who's pointee needs to be freed. 576 /// \param [in] Call The expression that frees the memory. 577 /// \param [in] State The \c ProgramState right before allocation. 578 /// normally 0, but for custom free functions it may be different. 579 /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds 580 /// attribute. 581 /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known 582 /// to have been allocated, or in other words, the symbol to be freed was 583 /// registered as allocated by this checker. In the following case, \c ptr 584 /// isn't known to be allocated. 585 /// void Haha(int *ptr) { 586 /// ptr = realloc(ptr, 67); 587 /// // ... 588 /// } 589 /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function 590 /// we're modeling returns with Null on failure. 591 /// \returns The ProgramState right after deallocation. 592 [[nodiscard]] ProgramStateRef 593 FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 594 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 595 AllocationFamily Family, bool ReturnsNullOnFailure = false) const; 596 597 // TODO: Needs some refactoring, as all other deallocation modeling 598 // functions are suffering from out parameters and messy code due to how 599 // realloc is handled. 600 // 601 /// Models memory reallocation. 602 /// 603 /// \param [in] Call The expression that reallocated memory 604 /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied 605 /// memory should be freed. 606 /// \param [in] State The \c ProgramState right before reallocation. 607 /// \param [in] SuffixWithN Whether the reallocation function we're modeling 608 /// has an '_n' suffix, such as g_realloc_n. 609 /// \returns The ProgramState right after reallocation. 610 [[nodiscard]] ProgramStateRef 611 ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail, 612 ProgramStateRef State, AllocationFamily Family, 613 bool SuffixWithN = false) const; 614 615 /// Evaluates the buffer size that needs to be allocated. 616 /// 617 /// \param [in] Blocks The amount of blocks that needs to be allocated. 618 /// \param [in] BlockBytes The size of a block. 619 /// \returns The symbolic value of \p Blocks * \p BlockBytes. 620 [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C, 621 const Expr *Blocks, 622 const Expr *BlockBytes); 623 624 /// Models zero initialized array allocation. 625 /// 626 /// \param [in] Call The expression that reallocated memory 627 /// \param [in] State The \c ProgramState right before reallocation. 628 /// \returns The ProgramState right after allocation. 629 [[nodiscard]] static ProgramStateRef 630 CallocMem(CheckerContext &C, const CallEvent &Call, ProgramStateRef State); 631 632 /// See if deallocation happens in a suspicious context. If so, escape the 633 /// pointers that otherwise would have been deallocated and return true. 634 bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call, 635 CheckerContext &C) const; 636 637 /// If in \p S \p Sym is used, check whether \p Sym was already freed. 638 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 639 640 /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero 641 /// sized memory region. 642 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 643 const Stmt *S) const; 644 645 /// If in \p S \p Sym is being freed, check whether \p Sym was already freed. 646 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 647 648 /// Check if the function is known to free memory, or if it is 649 /// "interesting" and should be modeled explicitly. 650 /// 651 /// \param [out] EscapingSymbol A function might not free memory in general, 652 /// but could be known to free a particular symbol. In this case, false is 653 /// returned and the single escaping symbol is returned through the out 654 /// parameter. 655 /// 656 /// We assume that pointers do not escape through calls to system functions 657 /// not handled by this checker. 658 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 659 ProgramStateRef State, 660 SymbolRef &EscapingSymbol) const; 661 662 /// Implementation of the checkPointerEscape callbacks. 663 [[nodiscard]] ProgramStateRef 664 checkPointerEscapeAux(ProgramStateRef State, 665 const InvalidatedSymbols &Escaped, 666 const CallEvent *Call, PointerEscapeKind Kind, 667 bool IsConstPointerEscape) const; 668 669 // Implementation of the checkPreStmt and checkEndFunction callbacks. 670 void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const; 671 672 ///@{ 673 /// Tells if a given family/call/symbol is tracked by the current checker. 674 /// Sets CheckKind to the kind of the checker responsible for this 675 /// family/call/symbol. 676 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 677 bool IsALeakCheck = false) const; 678 679 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 680 bool IsALeakCheck = false) const; 681 ///@} 682 static bool SummarizeValue(raw_ostream &os, SVal V); 683 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 684 685 void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range, 686 const Expr *DeallocExpr, 687 AllocationFamily Family) const; 688 689 void HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 690 SourceRange Range) const; 691 692 void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range, 693 const Expr *DeallocExpr, const RefState *RS, 694 SymbolRef Sym, bool OwnershipTransferred) const; 695 696 void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 697 const Expr *DeallocExpr, AllocationFamily Family, 698 const Expr *AllocExpr = nullptr) const; 699 700 void HandleUseAfterFree(CheckerContext &C, SourceRange Range, 701 SymbolRef Sym) const; 702 703 void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 704 SymbolRef Sym, SymbolRef PrevSym) const; 705 706 void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 707 708 void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 709 SymbolRef Sym) const; 710 711 void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 712 const Expr *FreeExpr, 713 AllocationFamily Family) const; 714 715 /// Find the location of the allocation for Sym on the path leading to the 716 /// exploded node N. 717 static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 718 CheckerContext &C); 719 720 void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 721 722 /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`. 723 bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 724 SVal ArgVal) const; 725 }; 726 } // end anonymous namespace 727 728 //===----------------------------------------------------------------------===// 729 // Definition of NoOwnershipChangeVisitor. 730 //===----------------------------------------------------------------------===// 731 732 namespace { 733 class NoOwnershipChangeVisitor final : public NoStateChangeFuncVisitor { 734 // The symbol whose (lack of) ownership change we are interested in. 735 SymbolRef Sym; 736 const MallocChecker &Checker; 737 using OwnerSet = llvm::SmallPtrSet<const MemRegion *, 8>; 738 739 // Collect which entities point to the allocated memory, and could be 740 // responsible for deallocating it. 741 class OwnershipBindingsHandler : public StoreManager::BindingsHandler { 742 SymbolRef Sym; 743 OwnerSet &Owners; 744 745 public: 746 OwnershipBindingsHandler(SymbolRef Sym, OwnerSet &Owners) 747 : Sym(Sym), Owners(Owners) {} 748 749 bool HandleBinding(StoreManager &SMgr, Store Store, const MemRegion *Region, 750 SVal Val) override { 751 if (Val.getAsSymbol() == Sym) 752 Owners.insert(Region); 753 return true; 754 } 755 756 LLVM_DUMP_METHOD void dump() const { dumpToStream(llvm::errs()); } 757 LLVM_DUMP_METHOD void dumpToStream(llvm::raw_ostream &out) const { 758 out << "Owners: {\n"; 759 for (const MemRegion *Owner : Owners) { 760 out << " "; 761 Owner->dumpToStream(out); 762 out << ",\n"; 763 } 764 out << "}\n"; 765 } 766 }; 767 768 protected: 769 OwnerSet getOwnersAtNode(const ExplodedNode *N) { 770 OwnerSet Ret; 771 772 ProgramStateRef State = N->getState(); 773 OwnershipBindingsHandler Handler{Sym, Ret}; 774 State->getStateManager().getStoreManager().iterBindings(State->getStore(), 775 Handler); 776 return Ret; 777 } 778 779 LLVM_DUMP_METHOD static std::string 780 getFunctionName(const ExplodedNode *CallEnterN) { 781 if (const CallExpr *CE = llvm::dyn_cast_or_null<CallExpr>( 782 CallEnterN->getLocationAs<CallEnter>()->getCallExpr())) 783 if (const FunctionDecl *FD = CE->getDirectCallee()) 784 return FD->getQualifiedNameAsString(); 785 return ""; 786 } 787 788 /// Syntactically checks whether the callee is a deallocating function. Since 789 /// we have no path-sensitive information on this call (we would need a 790 /// CallEvent instead of a CallExpr for that), its possible that a 791 /// deallocation function was called indirectly through a function pointer, 792 /// but we are not able to tell, so this is a best effort analysis. 793 /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in 794 /// clang/test/Analysis/NewDeleteLeaks.cpp. 795 bool isFreeingCallAsWritten(const CallExpr &Call) const { 796 if (Checker.FreeingMemFnMap.lookupAsWritten(Call) || 797 Checker.ReallocatingMemFnMap.lookupAsWritten(Call)) 798 return true; 799 800 if (const auto *Func = 801 llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl())) 802 return MallocChecker::isFreeingOwnershipAttrCall(Func); 803 804 return false; 805 } 806 807 /// Heuristically guess whether the callee intended to free memory. This is 808 /// done syntactically, because we are trying to argue about alternative 809 /// paths of execution, and as a consequence we don't have path-sensitive 810 /// information. 811 bool doesFnIntendToHandleOwnership(const Decl *Callee, ASTContext &ACtx) { 812 using namespace clang::ast_matchers; 813 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee); 814 815 // Given that the stack frame was entered, the body should always be 816 // theoretically obtainable. In case of body farms, the synthesized body 817 // is not attached to declaration, thus triggering the '!FD->hasBody()' 818 // branch. That said, would a synthesized body ever intend to handle 819 // ownership? As of today they don't. And if they did, how would we 820 // put notes inside it, given that it doesn't match any source locations? 821 if (!FD || !FD->hasBody()) 822 return false; 823 824 auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"), 825 callExpr().bind("call")))), 826 *FD->getBody(), ACtx); 827 for (BoundNodes Match : Matches) { 828 if (Match.getNodeAs<CXXDeleteExpr>("delete")) 829 return true; 830 831 if (const auto *Call = Match.getNodeAs<CallExpr>("call")) 832 if (isFreeingCallAsWritten(*Call)) 833 return true; 834 } 835 // TODO: Ownership might change with an attempt to store the allocated 836 // memory, not only through deallocation. Check for attempted stores as 837 // well. 838 return false; 839 } 840 841 bool wasModifiedInFunction(const ExplodedNode *CallEnterN, 842 const ExplodedNode *CallExitEndN) override { 843 if (!doesFnIntendToHandleOwnership( 844 CallExitEndN->getFirstPred()->getLocationContext()->getDecl(), 845 CallExitEndN->getState()->getAnalysisManager().getASTContext())) 846 return true; 847 848 if (CallEnterN->getState()->get<RegionState>(Sym) != 849 CallExitEndN->getState()->get<RegionState>(Sym)) 850 return true; 851 852 OwnerSet CurrOwners = getOwnersAtNode(CallEnterN); 853 OwnerSet ExitOwners = getOwnersAtNode(CallExitEndN); 854 855 // Owners in the current set may be purged from the analyzer later on. 856 // If a variable is dead (is not referenced directly or indirectly after 857 // some point), it will be removed from the Store before the end of its 858 // actual lifetime. 859 // This means that if the ownership status didn't change, CurrOwners 860 // must be a superset of, but not necessarily equal to ExitOwners. 861 return !llvm::set_is_subset(ExitOwners, CurrOwners); 862 } 863 864 static PathDiagnosticPieceRef emitNote(const ExplodedNode *N) { 865 PathDiagnosticLocation L = PathDiagnosticLocation::create( 866 N->getLocation(), 867 N->getState()->getStateManager().getContext().getSourceManager()); 868 return std::make_shared<PathDiagnosticEventPiece>( 869 L, "Returning without deallocating memory or storing the pointer for " 870 "later deallocation"); 871 } 872 873 PathDiagnosticPieceRef 874 maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R, 875 const ObjCMethodCall &Call, 876 const ExplodedNode *N) override { 877 // TODO: Implement. 878 return nullptr; 879 } 880 881 PathDiagnosticPieceRef 882 maybeEmitNoteForCXXThis(PathSensitiveBugReport &R, 883 const CXXConstructorCall &Call, 884 const ExplodedNode *N) override { 885 // TODO: Implement. 886 return nullptr; 887 } 888 889 PathDiagnosticPieceRef 890 maybeEmitNoteForParameters(PathSensitiveBugReport &R, const CallEvent &Call, 891 const ExplodedNode *N) override { 892 // TODO: Factor the logic of "what constitutes as an entity being passed 893 // into a function call" out by reusing the code in 894 // NoStoreFuncVisitor::maybeEmitNoteForParameters, maybe by incorporating 895 // the printing technology in UninitializedObject's FieldChainInfo. 896 ArrayRef<ParmVarDecl *> Parameters = Call.parameters(); 897 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) { 898 SVal V = Call.getArgSVal(I); 899 if (V.getAsSymbol() == Sym) 900 return emitNote(N); 901 } 902 return nullptr; 903 } 904 905 public: 906 NoOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker) 907 : NoStateChangeFuncVisitor(bugreporter::TrackingKind::Thorough), Sym(Sym), 908 Checker(*Checker) {} 909 910 void Profile(llvm::FoldingSetNodeID &ID) const override { 911 static int Tag = 0; 912 ID.AddPointer(&Tag); 913 ID.AddPointer(Sym); 914 } 915 }; 916 917 } // end anonymous namespace 918 919 //===----------------------------------------------------------------------===// 920 // Definition of MallocBugVisitor. 921 //===----------------------------------------------------------------------===// 922 923 namespace { 924 /// The bug visitor which allows us to print extra diagnostics along the 925 /// BugReport path. For example, showing the allocation site of the leaked 926 /// region. 927 class MallocBugVisitor final : public BugReporterVisitor { 928 protected: 929 enum NotificationMode { Normal, ReallocationFailed }; 930 931 // The allocated region symbol tracked by the main analysis. 932 SymbolRef Sym; 933 934 // The mode we are in, i.e. what kind of diagnostics will be emitted. 935 NotificationMode Mode; 936 937 // A symbol from when the primary region should have been reallocated. 938 SymbolRef FailedReallocSymbol; 939 940 // A C++ destructor stack frame in which memory was released. Used for 941 // miscellaneous false positive suppression. 942 const StackFrameContext *ReleaseDestructorLC; 943 944 bool IsLeak; 945 946 public: 947 MallocBugVisitor(SymbolRef S, bool isLeak = false) 948 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), 949 ReleaseDestructorLC(nullptr), IsLeak(isLeak) {} 950 951 static void *getTag() { 952 static int Tag = 0; 953 return &Tag; 954 } 955 956 void Profile(llvm::FoldingSetNodeID &ID) const override { 957 ID.AddPointer(getTag()); 958 ID.AddPointer(Sym); 959 } 960 961 /// Did not track -> allocated. Other state (released) -> allocated. 962 static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev, 963 const Stmt *Stmt) { 964 return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) && 965 (RSCurr && 966 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 967 (!RSPrev || 968 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 969 } 970 971 /// Did not track -> released. Other state (allocated) -> released. 972 /// The statement associated with the release might be missing. 973 static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev, 974 const Stmt *Stmt) { 975 bool IsReleased = 976 (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased()); 977 assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) || 978 (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer)); 979 return IsReleased; 980 } 981 982 /// Did not track -> relinquished. Other state (allocated) -> relinquished. 983 static inline bool isRelinquished(const RefState *RSCurr, 984 const RefState *RSPrev, const Stmt *Stmt) { 985 return ( 986 isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) && 987 (RSCurr && RSCurr->isRelinquished()) && 988 (!RSPrev || !RSPrev->isRelinquished())); 989 } 990 991 /// If the expression is not a call, and the state change is 992 /// released -> allocated, it must be the realloc return value 993 /// check. If we have to handle more cases here, it might be cleaner just 994 /// to track this extra bit in the state itself. 995 static inline bool hasReallocFailed(const RefState *RSCurr, 996 const RefState *RSPrev, 997 const Stmt *Stmt) { 998 return ((!isa_and_nonnull<CallExpr>(Stmt)) && 999 (RSCurr && 1000 (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) && 1001 (RSPrev && 1002 !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero()))); 1003 } 1004 1005 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, 1006 BugReporterContext &BRC, 1007 PathSensitiveBugReport &BR) override; 1008 1009 PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC, 1010 const ExplodedNode *EndPathNode, 1011 PathSensitiveBugReport &BR) override { 1012 if (!IsLeak) 1013 return nullptr; 1014 1015 PathDiagnosticLocation L = BR.getLocation(); 1016 // Do not add the statement itself as a range in case of leak. 1017 return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(), 1018 false); 1019 } 1020 1021 private: 1022 class StackHintGeneratorForReallocationFailed 1023 : public StackHintGeneratorForSymbol { 1024 public: 1025 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 1026 : StackHintGeneratorForSymbol(S, M) {} 1027 1028 std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override { 1029 // Printed parameters start at 1, not 0. 1030 ++ArgIndex; 1031 1032 SmallString<200> buf; 1033 llvm::raw_svector_ostream os(buf); 1034 1035 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 1036 << " parameter failed"; 1037 1038 return std::string(os.str()); 1039 } 1040 1041 std::string getMessageForReturn(const CallExpr *CallExpr) override { 1042 return "Reallocation of returned value failed"; 1043 } 1044 }; 1045 }; 1046 } // end anonymous namespace 1047 1048 // A map from the freed symbol to the symbol representing the return value of 1049 // the free function. 1050 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 1051 1052 namespace { 1053 class StopTrackingCallback final : public SymbolVisitor { 1054 ProgramStateRef state; 1055 1056 public: 1057 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 1058 ProgramStateRef getState() const { return state; } 1059 1060 bool VisitSymbol(SymbolRef sym) override { 1061 state = state->remove<RegionState>(sym); 1062 return true; 1063 } 1064 }; 1065 } // end anonymous namespace 1066 1067 static bool isStandardNewDelete(const FunctionDecl *FD) { 1068 if (!FD) 1069 return false; 1070 1071 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1072 if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete && 1073 Kind != OO_Array_Delete) 1074 return false; 1075 1076 // This is standard if and only if it's not defined in a user file. 1077 SourceLocation L = FD->getLocation(); 1078 // If the header for operator delete is not included, it's still defined 1079 // in an invalid source location. Check to make sure we don't crash. 1080 return !L.isValid() || 1081 FD->getASTContext().getSourceManager().isInSystemHeader(L); 1082 } 1083 1084 //===----------------------------------------------------------------------===// 1085 // Methods of MallocChecker and MallocBugVisitor. 1086 //===----------------------------------------------------------------------===// 1087 1088 bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) { 1089 if (Func->hasAttrs()) { 1090 for (const auto *I : Func->specific_attrs<OwnershipAttr>()) { 1091 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 1092 if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) 1093 return true; 1094 } 1095 } 1096 return false; 1097 } 1098 1099 bool MallocChecker::isFreeingCall(const CallEvent &Call) const { 1100 if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call)) 1101 return true; 1102 1103 if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl())) 1104 return isFreeingOwnershipAttrCall(Func); 1105 1106 return false; 1107 } 1108 1109 bool MallocChecker::isMemCall(const CallEvent &Call) const { 1110 if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) || 1111 ReallocatingMemFnMap.lookup(Call)) 1112 return true; 1113 1114 if (!ShouldIncludeOwnershipAnnotatedFunctions) 1115 return false; 1116 1117 const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl()); 1118 return Func && Func->hasAttr<OwnershipAttr>(); 1119 } 1120 1121 llvm::Optional<ProgramStateRef> 1122 MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C, 1123 const ProgramStateRef &State) const { 1124 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 1125 // 1126 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 1127 // 1128 // One of the possible flags is M_ZERO, which means 'give me back an 1129 // allocation which is already zeroed', like calloc. 1130 1131 // 2-argument kmalloc(), as used in the Linux kernel: 1132 // 1133 // void *kmalloc(size_t size, gfp_t flags); 1134 // 1135 // Has the similar flag value __GFP_ZERO. 1136 1137 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 1138 // code could be shared. 1139 1140 ASTContext &Ctx = C.getASTContext(); 1141 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 1142 1143 if (!KernelZeroFlagVal) { 1144 if (OS == llvm::Triple::FreeBSD) 1145 KernelZeroFlagVal = 0x0100; 1146 else if (OS == llvm::Triple::NetBSD) 1147 KernelZeroFlagVal = 0x0002; 1148 else if (OS == llvm::Triple::OpenBSD) 1149 KernelZeroFlagVal = 0x0008; 1150 else if (OS == llvm::Triple::Linux) 1151 // __GFP_ZERO 1152 KernelZeroFlagVal = 0x8000; 1153 else 1154 // FIXME: We need a more general way of getting the M_ZERO value. 1155 // See also: O_CREAT in UnixAPIChecker.cpp. 1156 1157 // Fall back to normal malloc behavior on platforms where we don't 1158 // know M_ZERO. 1159 return std::nullopt; 1160 } 1161 1162 // We treat the last argument as the flags argument, and callers fall-back to 1163 // normal malloc on a None return. This works for the FreeBSD kernel malloc 1164 // as well as Linux kmalloc. 1165 if (Call.getNumArgs() < 2) 1166 return std::nullopt; 1167 1168 const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1); 1169 const SVal V = C.getSVal(FlagsEx); 1170 if (!isa<NonLoc>(V)) { 1171 // The case where 'V' can be a location can only be due to a bad header, 1172 // so in this case bail out. 1173 return std::nullopt; 1174 } 1175 1176 NonLoc Flags = V.castAs<NonLoc>(); 1177 NonLoc ZeroFlag = 1178 C.getSValBuilder() 1179 .makeIntVal(KernelZeroFlagVal.value(), FlagsEx->getType()) 1180 .castAs<NonLoc>(); 1181 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 1182 Flags, ZeroFlag, 1183 FlagsEx->getType()); 1184 if (MaskedFlagsUC.isUnknownOrUndef()) 1185 return std::nullopt; 1186 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 1187 1188 // Check if maskedFlags is non-zero. 1189 ProgramStateRef TrueState, FalseState; 1190 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 1191 1192 // If M_ZERO is set, treat this like calloc (initialized). 1193 if (TrueState && !FalseState) { 1194 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 1195 return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState, 1196 AF_Malloc); 1197 } 1198 1199 return std::nullopt; 1200 } 1201 1202 SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks, 1203 const Expr *BlockBytes) { 1204 SValBuilder &SB = C.getSValBuilder(); 1205 SVal BlocksVal = C.getSVal(Blocks); 1206 SVal BlockBytesVal = C.getSVal(BlockBytes); 1207 ProgramStateRef State = C.getState(); 1208 SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal, 1209 SB.getContext().getSizeType()); 1210 return TotalSize; 1211 } 1212 1213 void MallocChecker::checkBasicAlloc(const CallEvent &Call, 1214 CheckerContext &C) const { 1215 ProgramStateRef State = C.getState(); 1216 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1217 AF_Malloc); 1218 State = ProcessZeroAllocCheck(Call, 0, State); 1219 C.addTransition(State); 1220 } 1221 1222 void MallocChecker::checkKernelMalloc(const CallEvent &Call, 1223 CheckerContext &C) const { 1224 ProgramStateRef State = C.getState(); 1225 llvm::Optional<ProgramStateRef> MaybeState = 1226 performKernelMalloc(Call, C, State); 1227 if (MaybeState) 1228 State = MaybeState.value(); 1229 else 1230 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1231 AF_Malloc); 1232 C.addTransition(State); 1233 } 1234 1235 static bool isStandardRealloc(const CallEvent &Call) { 1236 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1237 assert(FD); 1238 ASTContext &AC = FD->getASTContext(); 1239 1240 if (isa<CXXMethodDecl>(FD)) 1241 return false; 1242 1243 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1244 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1245 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1246 AC.getSizeType(); 1247 } 1248 1249 static bool isGRealloc(const CallEvent &Call) { 1250 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl()); 1251 assert(FD); 1252 ASTContext &AC = FD->getASTContext(); 1253 1254 if (isa<CXXMethodDecl>(FD)) 1255 return false; 1256 1257 return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy && 1258 FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy && 1259 FD->getParamDecl(1)->getType().getDesugaredType(AC) == 1260 AC.UnsignedLongTy; 1261 } 1262 1263 void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C, 1264 bool ShouldFreeOnFail) const { 1265 // HACK: CallDescription currently recognizes non-standard realloc functions 1266 // as standard because it doesn't check the type, or wether its a non-method 1267 // function. This should be solved by making CallDescription smarter. 1268 // Mind that this came from a bug report, and all other functions suffer from 1269 // this. 1270 // https://bugs.llvm.org/show_bug.cgi?id=46253 1271 if (!isStandardRealloc(Call) && !isGRealloc(Call)) 1272 return; 1273 ProgramStateRef State = C.getState(); 1274 State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc); 1275 State = ProcessZeroAllocCheck(Call, 1, State); 1276 C.addTransition(State); 1277 } 1278 1279 void MallocChecker::checkCalloc(const CallEvent &Call, 1280 CheckerContext &C) const { 1281 ProgramStateRef State = C.getState(); 1282 State = CallocMem(C, Call, State); 1283 State = ProcessZeroAllocCheck(Call, 0, State); 1284 State = ProcessZeroAllocCheck(Call, 1, State); 1285 C.addTransition(State); 1286 } 1287 1288 void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const { 1289 ProgramStateRef State = C.getState(); 1290 bool IsKnownToBeAllocatedMemory = false; 1291 if (suppressDeallocationsInSuspiciousContexts(Call, C)) 1292 return; 1293 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1294 AF_Malloc); 1295 C.addTransition(State); 1296 } 1297 1298 void MallocChecker::checkAlloca(const CallEvent &Call, 1299 CheckerContext &C) const { 1300 ProgramStateRef State = C.getState(); 1301 State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State, 1302 AF_Alloca); 1303 State = ProcessZeroAllocCheck(Call, 0, State); 1304 C.addTransition(State); 1305 } 1306 1307 void MallocChecker::checkStrdup(const CallEvent &Call, 1308 CheckerContext &C) const { 1309 ProgramStateRef State = C.getState(); 1310 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1311 if (!CE) 1312 return; 1313 State = MallocUpdateRefState(C, CE, State, AF_Malloc); 1314 1315 C.addTransition(State); 1316 } 1317 1318 void MallocChecker::checkIfNameIndex(const CallEvent &Call, 1319 CheckerContext &C) const { 1320 ProgramStateRef State = C.getState(); 1321 // Should we model this differently? We can allocate a fixed number of 1322 // elements with zeros in the last one. 1323 State = 1324 MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex); 1325 1326 C.addTransition(State); 1327 } 1328 1329 void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call, 1330 CheckerContext &C) const { 1331 ProgramStateRef State = C.getState(); 1332 bool IsKnownToBeAllocatedMemory = false; 1333 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1334 AF_IfNameIndex); 1335 C.addTransition(State); 1336 } 1337 1338 void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call, 1339 CheckerContext &C) const { 1340 ProgramStateRef State = C.getState(); 1341 bool IsKnownToBeAllocatedMemory = false; 1342 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1343 if (!CE) 1344 return; 1345 1346 assert(isStandardNewDelete(Call)); 1347 1348 // Process direct calls to operator new/new[]/delete/delete[] functions 1349 // as distinct from new/new[]/delete/delete[] expressions that are 1350 // processed by the checkPostStmt callbacks for CXXNewExpr and 1351 // CXXDeleteExpr. 1352 const FunctionDecl *FD = C.getCalleeDecl(CE); 1353 switch (FD->getOverloadedOperator()) { 1354 case OO_New: 1355 State = 1356 MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew); 1357 State = ProcessZeroAllocCheck(Call, 0, State); 1358 break; 1359 case OO_Array_New: 1360 State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, 1361 AF_CXXNewArray); 1362 State = ProcessZeroAllocCheck(Call, 0, State); 1363 break; 1364 case OO_Delete: 1365 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1366 AF_CXXNew); 1367 break; 1368 case OO_Array_Delete: 1369 State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory, 1370 AF_CXXNewArray); 1371 break; 1372 default: 1373 llvm_unreachable("not a new/delete operator"); 1374 } 1375 1376 C.addTransition(State); 1377 } 1378 1379 void MallocChecker::checkGMalloc0(const CallEvent &Call, 1380 CheckerContext &C) const { 1381 ProgramStateRef State = C.getState(); 1382 SValBuilder &svalBuilder = C.getSValBuilder(); 1383 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 1384 State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc); 1385 State = ProcessZeroAllocCheck(Call, 0, State); 1386 C.addTransition(State); 1387 } 1388 1389 void MallocChecker::checkGMemdup(const CallEvent &Call, 1390 CheckerContext &C) const { 1391 ProgramStateRef State = C.getState(); 1392 State = 1393 MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc); 1394 State = ProcessZeroAllocCheck(Call, 1, State); 1395 C.addTransition(State); 1396 } 1397 1398 void MallocChecker::checkGMallocN(const CallEvent &Call, 1399 CheckerContext &C) const { 1400 ProgramStateRef State = C.getState(); 1401 SVal Init = UndefinedVal(); 1402 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1403 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1404 State = ProcessZeroAllocCheck(Call, 0, State); 1405 State = ProcessZeroAllocCheck(Call, 1, State); 1406 C.addTransition(State); 1407 } 1408 1409 void MallocChecker::checkGMallocN0(const CallEvent &Call, 1410 CheckerContext &C) const { 1411 ProgramStateRef State = C.getState(); 1412 SValBuilder &SB = C.getSValBuilder(); 1413 SVal Init = SB.makeZeroVal(SB.getContext().CharTy); 1414 SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 1415 State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc); 1416 State = ProcessZeroAllocCheck(Call, 0, State); 1417 State = ProcessZeroAllocCheck(Call, 1, State); 1418 C.addTransition(State); 1419 } 1420 1421 void MallocChecker::checkReallocN(const CallEvent &Call, 1422 CheckerContext &C) const { 1423 ProgramStateRef State = C.getState(); 1424 State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc, 1425 /*SuffixWithN=*/true); 1426 State = ProcessZeroAllocCheck(Call, 1, State); 1427 State = ProcessZeroAllocCheck(Call, 2, State); 1428 C.addTransition(State); 1429 } 1430 1431 void MallocChecker::checkOwnershipAttr(const CallEvent &Call, 1432 CheckerContext &C) const { 1433 ProgramStateRef State = C.getState(); 1434 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 1435 if (!CE) 1436 return; 1437 const FunctionDecl *FD = C.getCalleeDecl(CE); 1438 if (!FD) 1439 return; 1440 if (ShouldIncludeOwnershipAnnotatedFunctions || 1441 ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 1442 // Check all the attributes, if there are any. 1443 // There can be multiple of these attributes. 1444 if (FD->hasAttrs()) 1445 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 1446 switch (I->getOwnKind()) { 1447 case OwnershipAttr::Returns: 1448 State = MallocMemReturnsAttr(C, Call, I, State); 1449 break; 1450 case OwnershipAttr::Takes: 1451 case OwnershipAttr::Holds: 1452 State = FreeMemAttr(C, Call, I, State); 1453 break; 1454 } 1455 } 1456 } 1457 C.addTransition(State); 1458 } 1459 1460 void MallocChecker::checkPostCall(const CallEvent &Call, 1461 CheckerContext &C) const { 1462 if (C.wasInlined) 1463 return; 1464 if (!Call.getOriginExpr()) 1465 return; 1466 1467 ProgramStateRef State = C.getState(); 1468 1469 if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) { 1470 (*Callback)(this, Call, C); 1471 return; 1472 } 1473 1474 if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) { 1475 (*Callback)(this, Call, C); 1476 return; 1477 } 1478 1479 if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) { 1480 (*Callback)(this, Call, C); 1481 return; 1482 } 1483 1484 if (isStandardNewDelete(Call)) { 1485 checkCXXNewOrCXXDelete(Call, C); 1486 return; 1487 } 1488 1489 checkOwnershipAttr(Call, C); 1490 } 1491 1492 // Performs a 0-sized allocations check. 1493 ProgramStateRef MallocChecker::ProcessZeroAllocCheck( 1494 const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State, 1495 Optional<SVal> RetVal) { 1496 if (!State) 1497 return nullptr; 1498 1499 if (!RetVal) 1500 RetVal = Call.getReturnValue(); 1501 1502 const Expr *Arg = nullptr; 1503 1504 if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) { 1505 Arg = CE->getArg(IndexOfSizeArg); 1506 } else if (const CXXNewExpr *NE = 1507 dyn_cast<CXXNewExpr>(Call.getOriginExpr())) { 1508 if (NE->isArray()) { 1509 Arg = *NE->getArraySize(); 1510 } else { 1511 return State; 1512 } 1513 } else 1514 llvm_unreachable("not a CallExpr or CXXNewExpr"); 1515 1516 assert(Arg); 1517 1518 auto DefArgVal = 1519 State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>(); 1520 1521 if (!DefArgVal) 1522 return State; 1523 1524 // Check if the allocation size is 0. 1525 ProgramStateRef TrueState, FalseState; 1526 SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder(); 1527 DefinedSVal Zero = 1528 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 1529 1530 std::tie(TrueState, FalseState) = 1531 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 1532 1533 if (TrueState && !FalseState) { 1534 SymbolRef Sym = RetVal->getAsLocSymbol(); 1535 if (!Sym) 1536 return State; 1537 1538 const RefState *RS = State->get<RegionState>(Sym); 1539 if (RS) { 1540 if (RS->isAllocated()) 1541 return TrueState->set<RegionState>(Sym, 1542 RefState::getAllocatedOfSizeZero(RS)); 1543 else 1544 return State; 1545 } else { 1546 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 1547 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 1548 // tracked. Add zero-reallocated Sym to the state to catch references 1549 // to zero-allocated memory. 1550 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 1551 } 1552 } 1553 1554 // Assume the value is non-zero going forward. 1555 assert(FalseState); 1556 return FalseState; 1557 } 1558 1559 static QualType getDeepPointeeType(QualType T) { 1560 QualType Result = T, PointeeType = T->getPointeeType(); 1561 while (!PointeeType.isNull()) { 1562 Result = PointeeType; 1563 PointeeType = PointeeType->getPointeeType(); 1564 } 1565 return Result; 1566 } 1567 1568 /// \returns true if the constructor invoked by \p NE has an argument of a 1569 /// pointer/reference to a record type. 1570 static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) { 1571 1572 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 1573 if (!ConstructE) 1574 return false; 1575 1576 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 1577 return false; 1578 1579 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 1580 1581 // Iterate over the constructor parameters. 1582 for (const auto *CtorParam : CtorD->parameters()) { 1583 1584 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 1585 if (CtorParamPointeeT.isNull()) 1586 continue; 1587 1588 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 1589 1590 if (CtorParamPointeeT->getAsCXXRecordDecl()) 1591 return true; 1592 } 1593 1594 return false; 1595 } 1596 1597 ProgramStateRef 1598 MallocChecker::processNewAllocation(const CXXAllocatorCall &Call, 1599 CheckerContext &C, 1600 AllocationFamily Family) const { 1601 if (!isStandardNewDelete(Call)) 1602 return nullptr; 1603 1604 const CXXNewExpr *NE = Call.getOriginExpr(); 1605 const ParentMap &PM = C.getLocationContext()->getParentMap(); 1606 ProgramStateRef State = C.getState(); 1607 1608 // Non-trivial constructors have a chance to escape 'this', but marking all 1609 // invocations of trivial constructors as escaped would cause too great of 1610 // reduction of true positives, so let's just do that for constructors that 1611 // have an argument of a pointer-to-record type. 1612 if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE)) 1613 return State; 1614 1615 // The return value from operator new is bound to a specified initialization 1616 // value (if any) and we don't want to loose this value. So we call 1617 // MallocUpdateRefState() instead of MallocMemAux() which breaks the 1618 // existing binding. 1619 SVal Target = Call.getObjectUnderConstruction(); 1620 State = MallocUpdateRefState(C, NE, State, Family, Target); 1621 State = ProcessZeroAllocCheck(Call, 0, State, Target); 1622 return State; 1623 } 1624 1625 void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call, 1626 CheckerContext &C) const { 1627 if (!C.wasInlined) { 1628 ProgramStateRef State = processNewAllocation( 1629 Call, C, 1630 (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew)); 1631 C.addTransition(State); 1632 } 1633 } 1634 1635 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1636 // If the first selector piece is one of the names below, assume that the 1637 // object takes ownership of the memory, promising to eventually deallocate it 1638 // with free(). 1639 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1640 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1641 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1642 return FirstSlot == "dataWithBytesNoCopy" || 1643 FirstSlot == "initWithBytesNoCopy" || 1644 FirstSlot == "initWithCharactersNoCopy"; 1645 } 1646 1647 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1648 Selector S = Call.getSelector(); 1649 1650 // FIXME: We should not rely on fully-constrained symbols being folded. 1651 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1652 if (S.getNameForSlot(i).equals("freeWhenDone")) 1653 return !Call.getArgSVal(i).isZeroConstant(); 1654 1655 return std::nullopt; 1656 } 1657 1658 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1659 CheckerContext &C) const { 1660 if (C.wasInlined) 1661 return; 1662 1663 if (!isKnownDeallocObjCMethodName(Call)) 1664 return; 1665 1666 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1667 if (!*FreeWhenDone) 1668 return; 1669 1670 if (Call.hasNonZeroCallbackArg()) 1671 return; 1672 1673 bool IsKnownToBeAllocatedMemory; 1674 ProgramStateRef State = 1675 FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(), 1676 /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc, 1677 /*ReturnsNullOnFailure=*/true); 1678 1679 C.addTransition(State); 1680 } 1681 1682 ProgramStateRef 1683 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call, 1684 const OwnershipAttr *Att, 1685 ProgramStateRef State) const { 1686 if (!State) 1687 return nullptr; 1688 1689 if (Att->getModule()->getName() != "malloc") 1690 return nullptr; 1691 1692 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1693 if (I != E) { 1694 return MallocMemAux(C, Call, Call.getArgExpr(I->getASTIndex()), 1695 UndefinedVal(), State, AF_Malloc); 1696 } 1697 return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc); 1698 } 1699 1700 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1701 const CallEvent &Call, 1702 const Expr *SizeEx, SVal Init, 1703 ProgramStateRef State, 1704 AllocationFamily Family) { 1705 if (!State) 1706 return nullptr; 1707 1708 assert(SizeEx); 1709 return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family); 1710 } 1711 1712 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1713 const CallEvent &Call, SVal Size, 1714 SVal Init, ProgramStateRef State, 1715 AllocationFamily Family) { 1716 if (!State) 1717 return nullptr; 1718 1719 const Expr *CE = Call.getOriginExpr(); 1720 1721 // We expect the malloc functions to return a pointer. 1722 if (!Loc::isLocType(CE->getType())) 1723 return nullptr; 1724 1725 // Bind the return value to the symbolic value from the heap region. 1726 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1727 // side effects other than what we model here. 1728 unsigned Count = C.blockCount(); 1729 SValBuilder &svalBuilder = C.getSValBuilder(); 1730 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1731 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1732 .castAs<DefinedSVal>(); 1733 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1734 1735 // Fill the region with the initialization value. 1736 State = State->bindDefaultInitial(RetVal, Init, LCtx); 1737 1738 // If Size is somehow undefined at this point, this line prevents a crash. 1739 if (Size.isUndef()) 1740 Size = UnknownVal(); 1741 1742 // Set the region's extent. 1743 State = setDynamicExtent(State, RetVal.getAsRegion(), 1744 Size.castAs<DefinedOrUnknownSVal>(), svalBuilder); 1745 1746 return MallocUpdateRefState(C, CE, State, Family); 1747 } 1748 1749 static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E, 1750 ProgramStateRef State, 1751 AllocationFamily Family, 1752 Optional<SVal> RetVal) { 1753 if (!State) 1754 return nullptr; 1755 1756 // Get the return value. 1757 if (!RetVal) 1758 RetVal = C.getSVal(E); 1759 1760 // We expect the malloc functions to return a pointer. 1761 if (!RetVal->getAs<Loc>()) 1762 return nullptr; 1763 1764 SymbolRef Sym = RetVal->getAsLocSymbol(); 1765 // This is a return value of a function that was not inlined, such as malloc() 1766 // or new(). We've checked that in the caller. Therefore, it must be a symbol. 1767 assert(Sym); 1768 1769 // Set the symbol's state to Allocated. 1770 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1771 } 1772 1773 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1774 const CallEvent &Call, 1775 const OwnershipAttr *Att, 1776 ProgramStateRef State) const { 1777 if (!State) 1778 return nullptr; 1779 1780 if (Att->getModule()->getName() != "malloc") 1781 return nullptr; 1782 1783 bool IsKnownToBeAllocated = false; 1784 1785 for (const auto &Arg : Att->args()) { 1786 ProgramStateRef StateI = 1787 FreeMemAux(C, Call, State, Arg.getASTIndex(), 1788 Att->getOwnKind() == OwnershipAttr::Holds, 1789 IsKnownToBeAllocated, AF_Malloc); 1790 if (StateI) 1791 State = StateI; 1792 } 1793 return State; 1794 } 1795 1796 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1797 const CallEvent &Call, 1798 ProgramStateRef State, unsigned Num, 1799 bool Hold, bool &IsKnownToBeAllocated, 1800 AllocationFamily Family, 1801 bool ReturnsNullOnFailure) const { 1802 if (!State) 1803 return nullptr; 1804 1805 if (Call.getNumArgs() < (Num + 1)) 1806 return nullptr; 1807 1808 return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold, 1809 IsKnownToBeAllocated, Family, ReturnsNullOnFailure); 1810 } 1811 1812 /// Checks if the previous call to free on the given symbol failed - if free 1813 /// failed, returns true. Also, returns the corresponding return value symbol. 1814 static bool didPreviousFreeFail(ProgramStateRef State, 1815 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1816 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1817 if (Ret) { 1818 assert(*Ret && "We should not store the null return symbol"); 1819 ConstraintManager &CMgr = State->getConstraintManager(); 1820 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1821 RetStatusSymbol = *Ret; 1822 return FreeFailed.isConstrainedTrue(); 1823 } 1824 return false; 1825 } 1826 1827 static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) { 1828 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1829 // FIXME: This doesn't handle indirect calls. 1830 const FunctionDecl *FD = CE->getDirectCallee(); 1831 if (!FD) 1832 return false; 1833 1834 os << *FD; 1835 if (!FD->isOverloadedOperator()) 1836 os << "()"; 1837 return true; 1838 } 1839 1840 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1841 if (Msg->isInstanceMessage()) 1842 os << "-"; 1843 else 1844 os << "+"; 1845 Msg->getSelector().print(os); 1846 return true; 1847 } 1848 1849 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1850 os << "'" 1851 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1852 << "'"; 1853 return true; 1854 } 1855 1856 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1857 os << "'" 1858 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1859 << "'"; 1860 return true; 1861 } 1862 1863 return false; 1864 } 1865 1866 static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) { 1867 1868 switch(Family) { 1869 case AF_Malloc: os << "malloc()"; return; 1870 case AF_CXXNew: os << "'new'"; return; 1871 case AF_CXXNewArray: os << "'new[]'"; return; 1872 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1873 case AF_InnerBuffer: os << "container-specific allocator"; return; 1874 case AF_Alloca: 1875 case AF_None: llvm_unreachable("not a deallocation expression"); 1876 } 1877 } 1878 1879 static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) { 1880 switch(Family) { 1881 case AF_Malloc: os << "free()"; return; 1882 case AF_CXXNew: os << "'delete'"; return; 1883 case AF_CXXNewArray: os << "'delete[]'"; return; 1884 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1885 case AF_InnerBuffer: os << "container-specific deallocator"; return; 1886 case AF_Alloca: 1887 case AF_None: llvm_unreachable("suspicious argument"); 1888 } 1889 } 1890 1891 ProgramStateRef MallocChecker::FreeMemAux( 1892 CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call, 1893 ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated, 1894 AllocationFamily Family, bool ReturnsNullOnFailure) const { 1895 1896 if (!State) 1897 return nullptr; 1898 1899 SVal ArgVal = C.getSVal(ArgExpr); 1900 if (!isa<DefinedOrUnknownSVal>(ArgVal)) 1901 return nullptr; 1902 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1903 1904 // Check for null dereferences. 1905 if (!isa<Loc>(location)) 1906 return nullptr; 1907 1908 // The explicit NULL case, no operation is performed. 1909 ProgramStateRef notNullState, nullState; 1910 std::tie(notNullState, nullState) = State->assume(location); 1911 if (nullState && !notNullState) 1912 return nullptr; 1913 1914 // Unknown values could easily be okay 1915 // Undefined values are handled elsewhere 1916 if (ArgVal.isUnknownOrUndef()) 1917 return nullptr; 1918 1919 const MemRegion *R = ArgVal.getAsRegion(); 1920 const Expr *ParentExpr = Call.getOriginExpr(); 1921 1922 // NOTE: We detected a bug, but the checker under whose name we would emit the 1923 // error could be disabled. Generally speaking, the MallocChecker family is an 1924 // integral part of the Static Analyzer, and disabling any part of it should 1925 // only be done under exceptional circumstances, such as frequent false 1926 // positives. If this is the case, we can reasonably believe that there are 1927 // serious faults in our understanding of the source code, and even if we 1928 // don't emit an warning, we should terminate further analysis with a sink 1929 // node. 1930 1931 // Nonlocs can't be freed, of course. 1932 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1933 if (!R) { 1934 // Exception: 1935 // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source 1936 // code. In that case, the ZERO_SIZE_PTR defines a special value used for a 1937 // zero-sized memory block which is allowed to be freed, despite not being a 1938 // null pointer. 1939 if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal)) 1940 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1941 Family); 1942 return nullptr; 1943 } 1944 1945 R = R->StripCasts(); 1946 1947 // Blocks might show up as heap data, but should not be free()d 1948 if (isa<BlockDataRegion>(R)) { 1949 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1950 Family); 1951 return nullptr; 1952 } 1953 1954 const MemSpaceRegion *MS = R->getMemorySpace(); 1955 1956 // Parameters, locals, statics, globals, and memory returned by 1957 // __builtin_alloca() shouldn't be freed. 1958 if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) { 1959 // FIXME: at the time this code was written, malloc() regions were 1960 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1961 // This means that there isn't actually anything from HeapSpaceRegion 1962 // that should be freed, even though we allow it here. 1963 // Of course, free() can work on memory allocated outside the current 1964 // function, so UnknownSpaceRegion is always a possibility. 1965 // False negatives are better than false positives. 1966 1967 if (isa<AllocaRegion>(R)) 1968 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1969 else 1970 HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1971 Family); 1972 1973 return nullptr; 1974 } 1975 1976 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1977 // Various cases could lead to non-symbol values here. 1978 // For now, ignore them. 1979 if (!SrBase) 1980 return nullptr; 1981 1982 SymbolRef SymBase = SrBase->getSymbol(); 1983 const RefState *RsBase = State->get<RegionState>(SymBase); 1984 SymbolRef PreviousRetStatusSymbol = nullptr; 1985 1986 IsKnownToBeAllocated = 1987 RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero()); 1988 1989 if (RsBase) { 1990 1991 // Memory returned by alloca() shouldn't be freed. 1992 if (RsBase->getAllocationFamily() == AF_Alloca) { 1993 HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1994 return nullptr; 1995 } 1996 1997 // Check for double free first. 1998 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1999 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 2000 HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 2001 SymBase, PreviousRetStatusSymbol); 2002 return nullptr; 2003 2004 // If the pointer is allocated or escaped, but we are now trying to free it, 2005 // check that the call to free is proper. 2006 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 2007 RsBase->isEscaped()) { 2008 2009 // Check if an expected deallocation function matches the real one. 2010 bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family; 2011 if (!DeallocMatchesAlloc) { 2012 HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr, 2013 RsBase, SymBase, Hold); 2014 return nullptr; 2015 } 2016 2017 // Check if the memory location being freed is the actual location 2018 // allocated, or an offset. 2019 RegionOffset Offset = R->getAsOffset(); 2020 if (Offset.isValid() && 2021 !Offset.hasSymbolicOffset() && 2022 Offset.getOffset() != 0) { 2023 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 2024 HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2025 Family, AllocExpr); 2026 return nullptr; 2027 } 2028 } 2029 } 2030 2031 if (SymBase->getType()->isFunctionPointerType()) { 2032 HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 2033 Family); 2034 return nullptr; 2035 } 2036 2037 // Clean out the info on previous call to free return info. 2038 State = State->remove<FreeReturnValue>(SymBase); 2039 2040 // Keep track of the return value. If it is NULL, we will know that free 2041 // failed. 2042 if (ReturnsNullOnFailure) { 2043 SVal RetVal = C.getSVal(ParentExpr); 2044 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 2045 if (RetStatusSymbol) { 2046 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 2047 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 2048 } 2049 } 2050 2051 // If we don't know anything about this symbol, a free on it may be totally 2052 // valid. If this is the case, lets assume that the allocation family of the 2053 // freeing function is the same as the symbols allocation family, and go with 2054 // that. 2055 assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family)); 2056 2057 // Normal free. 2058 if (Hold) 2059 return State->set<RegionState>(SymBase, 2060 RefState::getRelinquished(Family, 2061 ParentExpr)); 2062 2063 return State->set<RegionState>(SymBase, 2064 RefState::getReleased(Family, ParentExpr)); 2065 } 2066 2067 Optional<MallocChecker::CheckKind> 2068 MallocChecker::getCheckIfTracked(AllocationFamily Family, 2069 bool IsALeakCheck) const { 2070 switch (Family) { 2071 case AF_Malloc: 2072 case AF_Alloca: 2073 case AF_IfNameIndex: { 2074 if (ChecksEnabled[CK_MallocChecker]) 2075 return CK_MallocChecker; 2076 return std::nullopt; 2077 } 2078 case AF_CXXNew: 2079 case AF_CXXNewArray: { 2080 if (IsALeakCheck) { 2081 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 2082 return CK_NewDeleteLeaksChecker; 2083 } 2084 else { 2085 if (ChecksEnabled[CK_NewDeleteChecker]) 2086 return CK_NewDeleteChecker; 2087 } 2088 return std::nullopt; 2089 } 2090 case AF_InnerBuffer: { 2091 if (ChecksEnabled[CK_InnerPointerChecker]) 2092 return CK_InnerPointerChecker; 2093 return std::nullopt; 2094 } 2095 case AF_None: { 2096 llvm_unreachable("no family"); 2097 } 2098 } 2099 llvm_unreachable("unhandled family"); 2100 } 2101 2102 Optional<MallocChecker::CheckKind> 2103 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 2104 bool IsALeakCheck) const { 2105 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 2106 return CK_MallocChecker; 2107 2108 const RefState *RS = C.getState()->get<RegionState>(Sym); 2109 assert(RS); 2110 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 2111 } 2112 2113 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 2114 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 2115 os << "an integer (" << IntVal->getValue() << ")"; 2116 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 2117 os << "a constant address (" << ConstAddr->getValue() << ")"; 2118 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 2119 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 2120 else 2121 return false; 2122 2123 return true; 2124 } 2125 2126 bool MallocChecker::SummarizeRegion(raw_ostream &os, 2127 const MemRegion *MR) { 2128 switch (MR->getKind()) { 2129 case MemRegion::FunctionCodeRegionKind: { 2130 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 2131 if (FD) 2132 os << "the address of the function '" << *FD << '\''; 2133 else 2134 os << "the address of a function"; 2135 return true; 2136 } 2137 case MemRegion::BlockCodeRegionKind: 2138 os << "block text"; 2139 return true; 2140 case MemRegion::BlockDataRegionKind: 2141 // FIXME: where the block came from? 2142 os << "a block"; 2143 return true; 2144 default: { 2145 const MemSpaceRegion *MS = MR->getMemorySpace(); 2146 2147 if (isa<StackLocalsSpaceRegion>(MS)) { 2148 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2149 const VarDecl *VD; 2150 if (VR) 2151 VD = VR->getDecl(); 2152 else 2153 VD = nullptr; 2154 2155 if (VD) 2156 os << "the address of the local variable '" << VD->getName() << "'"; 2157 else 2158 os << "the address of a local stack variable"; 2159 return true; 2160 } 2161 2162 if (isa<StackArgumentsSpaceRegion>(MS)) { 2163 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2164 const VarDecl *VD; 2165 if (VR) 2166 VD = VR->getDecl(); 2167 else 2168 VD = nullptr; 2169 2170 if (VD) 2171 os << "the address of the parameter '" << VD->getName() << "'"; 2172 else 2173 os << "the address of a parameter"; 2174 return true; 2175 } 2176 2177 if (isa<GlobalsSpaceRegion>(MS)) { 2178 const VarRegion *VR = dyn_cast<VarRegion>(MR); 2179 const VarDecl *VD; 2180 if (VR) 2181 VD = VR->getDecl(); 2182 else 2183 VD = nullptr; 2184 2185 if (VD) { 2186 if (VD->isStaticLocal()) 2187 os << "the address of the static variable '" << VD->getName() << "'"; 2188 else 2189 os << "the address of the global variable '" << VD->getName() << "'"; 2190 } else 2191 os << "the address of a global variable"; 2192 return true; 2193 } 2194 2195 return false; 2196 } 2197 } 2198 } 2199 2200 void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, 2201 SourceRange Range, 2202 const Expr *DeallocExpr, 2203 AllocationFamily Family) const { 2204 2205 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2206 C.addSink(); 2207 return; 2208 } 2209 2210 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2211 if (!CheckKind) 2212 return; 2213 2214 if (ExplodedNode *N = C.generateErrorNode()) { 2215 if (!BT_BadFree[*CheckKind]) 2216 BT_BadFree[*CheckKind].reset(new BugType( 2217 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2218 2219 SmallString<100> buf; 2220 llvm::raw_svector_ostream os(buf); 2221 2222 const MemRegion *MR = ArgVal.getAsRegion(); 2223 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2224 MR = ER->getSuperRegion(); 2225 2226 os << "Argument to "; 2227 if (!printMemFnName(os, C, DeallocExpr)) 2228 os << "deallocator"; 2229 2230 os << " is "; 2231 bool Summarized = MR ? SummarizeRegion(os, MR) 2232 : SummarizeValue(os, ArgVal); 2233 if (Summarized) 2234 os << ", which is not memory allocated by "; 2235 else 2236 os << "not memory allocated by "; 2237 2238 printExpectedAllocName(os, Family); 2239 2240 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2241 os.str(), N); 2242 R->markInteresting(MR); 2243 R->addRange(Range); 2244 C.emitReport(std::move(R)); 2245 } 2246 } 2247 2248 void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal, 2249 SourceRange Range) const { 2250 2251 std::optional<MallocChecker::CheckKind> CheckKind; 2252 2253 if (ChecksEnabled[CK_MallocChecker]) 2254 CheckKind = CK_MallocChecker; 2255 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 2256 CheckKind = CK_MismatchedDeallocatorChecker; 2257 else { 2258 C.addSink(); 2259 return; 2260 } 2261 2262 if (ExplodedNode *N = C.generateErrorNode()) { 2263 if (!BT_FreeAlloca[*CheckKind]) 2264 BT_FreeAlloca[*CheckKind].reset(new BugType( 2265 CheckNames[*CheckKind], "Free alloca()", categories::MemoryError)); 2266 2267 auto R = std::make_unique<PathSensitiveBugReport>( 2268 *BT_FreeAlloca[*CheckKind], 2269 "Memory allocated by alloca() should not be deallocated", N); 2270 R->markInteresting(ArgVal.getAsRegion()); 2271 R->addRange(Range); 2272 C.emitReport(std::move(R)); 2273 } 2274 } 2275 2276 void MallocChecker::HandleMismatchedDealloc(CheckerContext &C, 2277 SourceRange Range, 2278 const Expr *DeallocExpr, 2279 const RefState *RS, SymbolRef Sym, 2280 bool OwnershipTransferred) const { 2281 2282 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 2283 C.addSink(); 2284 return; 2285 } 2286 2287 if (ExplodedNode *N = C.generateErrorNode()) { 2288 if (!BT_MismatchedDealloc) 2289 BT_MismatchedDealloc.reset( 2290 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 2291 "Bad deallocator", categories::MemoryError)); 2292 2293 SmallString<100> buf; 2294 llvm::raw_svector_ostream os(buf); 2295 2296 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 2297 SmallString<20> AllocBuf; 2298 llvm::raw_svector_ostream AllocOs(AllocBuf); 2299 SmallString<20> DeallocBuf; 2300 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 2301 2302 if (OwnershipTransferred) { 2303 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2304 os << DeallocOs.str() << " cannot"; 2305 else 2306 os << "Cannot"; 2307 2308 os << " take ownership of memory"; 2309 2310 if (printMemFnName(AllocOs, C, AllocExpr)) 2311 os << " allocated by " << AllocOs.str(); 2312 } else { 2313 os << "Memory"; 2314 if (printMemFnName(AllocOs, C, AllocExpr)) 2315 os << " allocated by " << AllocOs.str(); 2316 2317 os << " should be deallocated by "; 2318 printExpectedDeallocName(os, RS->getAllocationFamily()); 2319 2320 if (printMemFnName(DeallocOs, C, DeallocExpr)) 2321 os << ", not " << DeallocOs.str(); 2322 } 2323 2324 auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc, 2325 os.str(), N); 2326 R->markInteresting(Sym); 2327 R->addRange(Range); 2328 R->addVisitor<MallocBugVisitor>(Sym); 2329 C.emitReport(std::move(R)); 2330 } 2331 } 2332 2333 void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal, 2334 SourceRange Range, const Expr *DeallocExpr, 2335 AllocationFamily Family, 2336 const Expr *AllocExpr) const { 2337 2338 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2339 C.addSink(); 2340 return; 2341 } 2342 2343 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2344 if (!CheckKind) 2345 return; 2346 2347 ExplodedNode *N = C.generateErrorNode(); 2348 if (!N) 2349 return; 2350 2351 if (!BT_OffsetFree[*CheckKind]) 2352 BT_OffsetFree[*CheckKind].reset(new BugType( 2353 CheckNames[*CheckKind], "Offset free", categories::MemoryError)); 2354 2355 SmallString<100> buf; 2356 llvm::raw_svector_ostream os(buf); 2357 SmallString<20> AllocNameBuf; 2358 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 2359 2360 const MemRegion *MR = ArgVal.getAsRegion(); 2361 assert(MR && "Only MemRegion based symbols can have offset free errors"); 2362 2363 RegionOffset Offset = MR->getAsOffset(); 2364 assert((Offset.isValid() && 2365 !Offset.hasSymbolicOffset() && 2366 Offset.getOffset() != 0) && 2367 "Only symbols with a valid offset can have offset free errors"); 2368 2369 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 2370 2371 os << "Argument to "; 2372 if (!printMemFnName(os, C, DeallocExpr)) 2373 os << "deallocator"; 2374 os << " is offset by " 2375 << offsetBytes 2376 << " " 2377 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 2378 << " from the start of "; 2379 if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr)) 2380 os << "memory allocated by " << AllocNameOs.str(); 2381 else 2382 os << "allocated memory"; 2383 2384 auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind], 2385 os.str(), N); 2386 R->markInteresting(MR->getBaseRegion()); 2387 R->addRange(Range); 2388 C.emitReport(std::move(R)); 2389 } 2390 2391 void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range, 2392 SymbolRef Sym) const { 2393 2394 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] && 2395 !ChecksEnabled[CK_InnerPointerChecker]) { 2396 C.addSink(); 2397 return; 2398 } 2399 2400 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2401 if (!CheckKind) 2402 return; 2403 2404 if (ExplodedNode *N = C.generateErrorNode()) { 2405 if (!BT_UseFree[*CheckKind]) 2406 BT_UseFree[*CheckKind].reset(new BugType( 2407 CheckNames[*CheckKind], "Use-after-free", categories::MemoryError)); 2408 2409 AllocationFamily AF = 2410 C.getState()->get<RegionState>(Sym)->getAllocationFamily(); 2411 2412 auto R = std::make_unique<PathSensitiveBugReport>( 2413 *BT_UseFree[*CheckKind], 2414 AF == AF_InnerBuffer 2415 ? "Inner pointer of container used after re/deallocation" 2416 : "Use of memory after it is freed", 2417 N); 2418 2419 R->markInteresting(Sym); 2420 R->addRange(Range); 2421 R->addVisitor<MallocBugVisitor>(Sym); 2422 2423 if (AF == AF_InnerBuffer) 2424 R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym)); 2425 2426 C.emitReport(std::move(R)); 2427 } 2428 } 2429 2430 void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range, 2431 bool Released, SymbolRef Sym, 2432 SymbolRef PrevSym) const { 2433 2434 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2435 C.addSink(); 2436 return; 2437 } 2438 2439 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2440 if (!CheckKind) 2441 return; 2442 2443 if (ExplodedNode *N = C.generateErrorNode()) { 2444 if (!BT_DoubleFree[*CheckKind]) 2445 BT_DoubleFree[*CheckKind].reset(new BugType( 2446 CheckNames[*CheckKind], "Double free", categories::MemoryError)); 2447 2448 auto R = std::make_unique<PathSensitiveBugReport>( 2449 *BT_DoubleFree[*CheckKind], 2450 (Released ? "Attempt to free released memory" 2451 : "Attempt to free non-owned memory"), 2452 N); 2453 R->addRange(Range); 2454 R->markInteresting(Sym); 2455 if (PrevSym) 2456 R->markInteresting(PrevSym); 2457 R->addVisitor<MallocBugVisitor>(Sym); 2458 C.emitReport(std::move(R)); 2459 } 2460 } 2461 2462 void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 2463 2464 if (!ChecksEnabled[CK_NewDeleteChecker]) { 2465 C.addSink(); 2466 return; 2467 } 2468 2469 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2470 if (!CheckKind) 2471 return; 2472 2473 if (ExplodedNode *N = C.generateErrorNode()) { 2474 if (!BT_DoubleDelete) 2475 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 2476 "Double delete", 2477 categories::MemoryError)); 2478 2479 auto R = std::make_unique<PathSensitiveBugReport>( 2480 *BT_DoubleDelete, "Attempt to delete released memory", N); 2481 2482 R->markInteresting(Sym); 2483 R->addVisitor<MallocBugVisitor>(Sym); 2484 C.emitReport(std::move(R)); 2485 } 2486 } 2487 2488 void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range, 2489 SymbolRef Sym) const { 2490 2491 if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) { 2492 C.addSink(); 2493 return; 2494 } 2495 2496 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 2497 2498 if (!CheckKind) 2499 return; 2500 2501 if (ExplodedNode *N = C.generateErrorNode()) { 2502 if (!BT_UseZerroAllocated[*CheckKind]) 2503 BT_UseZerroAllocated[*CheckKind].reset( 2504 new BugType(CheckNames[*CheckKind], "Use of zero allocated", 2505 categories::MemoryError)); 2506 2507 auto R = std::make_unique<PathSensitiveBugReport>( 2508 *BT_UseZerroAllocated[*CheckKind], 2509 "Use of memory allocated with size zero", N); 2510 2511 R->addRange(Range); 2512 if (Sym) { 2513 R->markInteresting(Sym); 2514 R->addVisitor<MallocBugVisitor>(Sym); 2515 } 2516 C.emitReport(std::move(R)); 2517 } 2518 } 2519 2520 void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, 2521 SourceRange Range, 2522 const Expr *FreeExpr, 2523 AllocationFamily Family) const { 2524 if (!ChecksEnabled[CK_MallocChecker]) { 2525 C.addSink(); 2526 return; 2527 } 2528 2529 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2530 if (!CheckKind) 2531 return; 2532 2533 if (ExplodedNode *N = C.generateErrorNode()) { 2534 if (!BT_BadFree[*CheckKind]) 2535 BT_BadFree[*CheckKind].reset(new BugType( 2536 CheckNames[*CheckKind], "Bad free", categories::MemoryError)); 2537 2538 SmallString<100> Buf; 2539 llvm::raw_svector_ostream Os(Buf); 2540 2541 const MemRegion *MR = ArgVal.getAsRegion(); 2542 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 2543 MR = ER->getSuperRegion(); 2544 2545 Os << "Argument to "; 2546 if (!printMemFnName(Os, C, FreeExpr)) 2547 Os << "deallocator"; 2548 2549 Os << " is a function pointer"; 2550 2551 auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind], 2552 Os.str(), N); 2553 R->markInteresting(MR); 2554 R->addRange(Range); 2555 C.emitReport(std::move(R)); 2556 } 2557 } 2558 2559 ProgramStateRef 2560 MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call, 2561 bool ShouldFreeOnFail, ProgramStateRef State, 2562 AllocationFamily Family, bool SuffixWithN) const { 2563 if (!State) 2564 return nullptr; 2565 2566 const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr()); 2567 2568 if (SuffixWithN && CE->getNumArgs() < 3) 2569 return nullptr; 2570 else if (CE->getNumArgs() < 2) 2571 return nullptr; 2572 2573 const Expr *arg0Expr = CE->getArg(0); 2574 SVal Arg0Val = C.getSVal(arg0Expr); 2575 if (!isa<DefinedOrUnknownSVal>(Arg0Val)) 2576 return nullptr; 2577 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 2578 2579 SValBuilder &svalBuilder = C.getSValBuilder(); 2580 2581 DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ( 2582 State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType())); 2583 2584 // Get the size argument. 2585 const Expr *Arg1 = CE->getArg(1); 2586 2587 // Get the value of the size argument. 2588 SVal TotalSize = C.getSVal(Arg1); 2589 if (SuffixWithN) 2590 TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2)); 2591 if (!isa<DefinedOrUnknownSVal>(TotalSize)) 2592 return nullptr; 2593 2594 // Compare the size argument to 0. 2595 DefinedOrUnknownSVal SizeZero = 2596 svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(), 2597 svalBuilder.makeIntValWithWidth( 2598 svalBuilder.getContext().getSizeType(), 0)); 2599 2600 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 2601 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 2602 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 2603 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 2604 // We only assume exceptional states if they are definitely true; if the 2605 // state is under-constrained, assume regular realloc behavior. 2606 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 2607 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 2608 2609 // If the ptr is NULL and the size is not 0, the call is equivalent to 2610 // malloc(size). 2611 if (PrtIsNull && !SizeIsZero) { 2612 ProgramStateRef stateMalloc = MallocMemAux( 2613 C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family); 2614 return stateMalloc; 2615 } 2616 2617 if (PrtIsNull && SizeIsZero) 2618 return State; 2619 2620 assert(!PrtIsNull); 2621 2622 bool IsKnownToBeAllocated = false; 2623 2624 // If the size is 0, free the memory. 2625 if (SizeIsZero) 2626 // The semantics of the return value are: 2627 // If size was equal to 0, either NULL or a pointer suitable to be passed 2628 // to free() is returned. We just free the input pointer and do not add 2629 // any constrains on the output pointer. 2630 if (ProgramStateRef stateFree = FreeMemAux( 2631 C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family)) 2632 return stateFree; 2633 2634 // Default behavior. 2635 if (ProgramStateRef stateFree = 2636 FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) { 2637 2638 ProgramStateRef stateRealloc = 2639 MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family); 2640 if (!stateRealloc) 2641 return nullptr; 2642 2643 OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure; 2644 if (ShouldFreeOnFail) 2645 Kind = OAR_FreeOnFailure; 2646 else if (!IsKnownToBeAllocated) 2647 Kind = OAR_DoNotTrackAfterFailure; 2648 2649 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 2650 SymbolRef FromPtr = arg0Val.getLocSymbolInBase(); 2651 SVal RetVal = C.getSVal(CE); 2652 SymbolRef ToPtr = RetVal.getAsSymbol(); 2653 assert(FromPtr && ToPtr && 2654 "By this point, FreeMemAux and MallocMemAux should have checked " 2655 "whether the argument or the return value is symbolic!"); 2656 2657 // Record the info about the reallocated symbol so that we could properly 2658 // process failed reallocation. 2659 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 2660 ReallocPair(FromPtr, Kind)); 2661 // The reallocated symbol should stay alive for as long as the new symbol. 2662 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 2663 return stateRealloc; 2664 } 2665 return nullptr; 2666 } 2667 2668 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, 2669 const CallEvent &Call, 2670 ProgramStateRef State) { 2671 if (!State) 2672 return nullptr; 2673 2674 if (Call.getNumArgs() < 2) 2675 return nullptr; 2676 2677 SValBuilder &svalBuilder = C.getSValBuilder(); 2678 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2679 SVal TotalSize = 2680 evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1)); 2681 2682 return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc); 2683 } 2684 2685 MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N, 2686 SymbolRef Sym, 2687 CheckerContext &C) { 2688 const LocationContext *LeakContext = N->getLocationContext(); 2689 // Walk the ExplodedGraph backwards and find the first node that referred to 2690 // the tracked symbol. 2691 const ExplodedNode *AllocNode = N; 2692 const MemRegion *ReferenceRegion = nullptr; 2693 2694 while (N) { 2695 ProgramStateRef State = N->getState(); 2696 if (!State->get<RegionState>(Sym)) 2697 break; 2698 2699 // Find the most recent expression bound to the symbol in the current 2700 // context. 2701 if (!ReferenceRegion) { 2702 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2703 SVal Val = State->getSVal(MR); 2704 if (Val.getAsLocSymbol() == Sym) { 2705 const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>(); 2706 // Do not show local variables belonging to a function other than 2707 // where the error is reported. 2708 if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame())) 2709 ReferenceRegion = MR; 2710 } 2711 } 2712 } 2713 2714 // Allocation node, is the last node in the current or parent context in 2715 // which the symbol was tracked. 2716 const LocationContext *NContext = N->getLocationContext(); 2717 if (NContext == LeakContext || 2718 NContext->isParentOf(LeakContext)) 2719 AllocNode = N; 2720 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2721 } 2722 2723 return LeakInfo(AllocNode, ReferenceRegion); 2724 } 2725 2726 void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N, 2727 CheckerContext &C) const { 2728 2729 if (!ChecksEnabled[CK_MallocChecker] && 2730 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2731 return; 2732 2733 const RefState *RS = C.getState()->get<RegionState>(Sym); 2734 assert(RS && "cannot leak an untracked symbol"); 2735 AllocationFamily Family = RS->getAllocationFamily(); 2736 2737 if (Family == AF_Alloca) 2738 return; 2739 2740 Optional<MallocChecker::CheckKind> 2741 CheckKind = getCheckIfTracked(Family, true); 2742 2743 if (!CheckKind) 2744 return; 2745 2746 assert(N); 2747 if (!BT_Leak[*CheckKind]) { 2748 // Leaks should not be reported if they are post-dominated by a sink: 2749 // (1) Sinks are higher importance bugs. 2750 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2751 // with __noreturn functions such as assert() or exit(). We choose not 2752 // to report leaks on such paths. 2753 BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak", 2754 categories::MemoryError, 2755 /*SuppressOnSink=*/true)); 2756 } 2757 2758 // Most bug reports are cached at the location where they occurred. 2759 // With leaks, we want to unique them by the location where they were 2760 // allocated, and only report a single path. 2761 PathDiagnosticLocation LocUsedForUniqueing; 2762 const ExplodedNode *AllocNode = nullptr; 2763 const MemRegion *Region = nullptr; 2764 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2765 2766 const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics(); 2767 if (AllocationStmt) 2768 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2769 C.getSourceManager(), 2770 AllocNode->getLocationContext()); 2771 2772 SmallString<200> buf; 2773 llvm::raw_svector_ostream os(buf); 2774 if (Region && Region->canPrintPretty()) { 2775 os << "Potential leak of memory pointed to by "; 2776 Region->printPretty(os); 2777 } else { 2778 os << "Potential memory leak"; 2779 } 2780 2781 auto R = std::make_unique<PathSensitiveBugReport>( 2782 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2783 AllocNode->getLocationContext()->getDecl()); 2784 R->markInteresting(Sym); 2785 R->addVisitor<MallocBugVisitor>(Sym, true); 2786 if (ShouldRegisterNoOwnershipChangeVisitor) 2787 R->addVisitor<NoOwnershipChangeVisitor>(Sym, this); 2788 C.emitReport(std::move(R)); 2789 } 2790 2791 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2792 CheckerContext &C) const 2793 { 2794 ProgramStateRef state = C.getState(); 2795 RegionStateTy OldRS = state->get<RegionState>(); 2796 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2797 2798 RegionStateTy RS = OldRS; 2799 SmallVector<SymbolRef, 2> Errors; 2800 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2801 if (SymReaper.isDead(I->first)) { 2802 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2803 Errors.push_back(I->first); 2804 // Remove the dead symbol from the map. 2805 RS = F.remove(RS, I->first); 2806 } 2807 } 2808 2809 if (RS == OldRS) { 2810 // We shouldn't have touched other maps yet. 2811 assert(state->get<ReallocPairs>() == 2812 C.getState()->get<ReallocPairs>()); 2813 assert(state->get<FreeReturnValue>() == 2814 C.getState()->get<FreeReturnValue>()); 2815 return; 2816 } 2817 2818 // Cleanup the Realloc Pairs Map. 2819 ReallocPairsTy RP = state->get<ReallocPairs>(); 2820 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2821 if (SymReaper.isDead(I->first) || 2822 SymReaper.isDead(I->second.ReallocatedSym)) { 2823 state = state->remove<ReallocPairs>(I->first); 2824 } 2825 } 2826 2827 // Cleanup the FreeReturnValue Map. 2828 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2829 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2830 if (SymReaper.isDead(I->first) || 2831 SymReaper.isDead(I->second)) { 2832 state = state->remove<FreeReturnValue>(I->first); 2833 } 2834 } 2835 2836 // Generate leak node. 2837 ExplodedNode *N = C.getPredecessor(); 2838 if (!Errors.empty()) { 2839 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2840 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2841 if (N) { 2842 for (SmallVectorImpl<SymbolRef>::iterator 2843 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2844 HandleLeak(*I, N, C); 2845 } 2846 } 2847 } 2848 2849 C.addTransition(state->set<RegionState>(RS), N); 2850 } 2851 2852 void MallocChecker::checkPreCall(const CallEvent &Call, 2853 CheckerContext &C) const { 2854 2855 if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) { 2856 const CXXDeleteExpr *DE = DC->getOriginExpr(); 2857 2858 if (!ChecksEnabled[CK_NewDeleteChecker]) 2859 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 2860 checkUseAfterFree(Sym, C, DE->getArgument()); 2861 2862 if (!isStandardNewDelete(DC->getDecl())) 2863 return; 2864 2865 ProgramStateRef State = C.getState(); 2866 bool IsKnownToBeAllocated; 2867 State = FreeMemAux(C, DE->getArgument(), Call, State, 2868 /*Hold*/ false, IsKnownToBeAllocated, 2869 (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew)); 2870 2871 C.addTransition(State); 2872 return; 2873 } 2874 2875 if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2876 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2877 if (!Sym || checkDoubleDelete(Sym, C)) 2878 return; 2879 } 2880 2881 // We will check for double free in the post visit. 2882 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2883 const FunctionDecl *FD = FC->getDecl(); 2884 if (!FD) 2885 return; 2886 2887 if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call)) 2888 return; 2889 } 2890 2891 // Check if the callee of a method is deleted. 2892 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2893 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2894 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2895 return; 2896 } 2897 2898 // Check arguments for being used after free. 2899 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2900 SVal ArgSVal = Call.getArgSVal(I); 2901 if (isa<Loc>(ArgSVal)) { 2902 SymbolRef Sym = ArgSVal.getAsSymbol(); 2903 if (!Sym) 2904 continue; 2905 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2906 return; 2907 } 2908 } 2909 } 2910 2911 void MallocChecker::checkPreStmt(const ReturnStmt *S, 2912 CheckerContext &C) const { 2913 checkEscapeOnReturn(S, C); 2914 } 2915 2916 // In the CFG, automatic destructors come after the return statement. 2917 // This callback checks for returning memory that is freed by automatic 2918 // destructors, as those cannot be reached in checkPreStmt(). 2919 void MallocChecker::checkEndFunction(const ReturnStmt *S, 2920 CheckerContext &C) const { 2921 checkEscapeOnReturn(S, C); 2922 } 2923 2924 void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S, 2925 CheckerContext &C) const { 2926 if (!S) 2927 return; 2928 2929 const Expr *E = S->getRetValue(); 2930 if (!E) 2931 return; 2932 2933 // Check if we are returning a symbol. 2934 ProgramStateRef State = C.getState(); 2935 SVal RetVal = C.getSVal(E); 2936 SymbolRef Sym = RetVal.getAsSymbol(); 2937 if (!Sym) 2938 // If we are returning a field of the allocated struct or an array element, 2939 // the callee could still free the memory. 2940 // TODO: This logic should be a part of generic symbol escape callback. 2941 if (const MemRegion *MR = RetVal.getAsRegion()) 2942 if (isa<FieldRegion, ElementRegion>(MR)) 2943 if (const SymbolicRegion *BMR = 2944 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2945 Sym = BMR->getSymbol(); 2946 2947 // Check if we are returning freed memory. 2948 if (Sym) 2949 checkUseAfterFree(Sym, C, E); 2950 } 2951 2952 // TODO: Blocks should be either inlined or should call invalidate regions 2953 // upon invocation. After that's in place, special casing here will not be 2954 // needed. 2955 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2956 CheckerContext &C) const { 2957 2958 // Scan the BlockDecRefExprs for any object the retain count checker 2959 // may be tracking. 2960 if (!BE->getBlockDecl()->hasCaptures()) 2961 return; 2962 2963 ProgramStateRef state = C.getState(); 2964 const BlockDataRegion *R = 2965 cast<BlockDataRegion>(C.getSVal(BE).getAsRegion()); 2966 2967 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2968 E = R->referenced_vars_end(); 2969 2970 if (I == E) 2971 return; 2972 2973 SmallVector<const MemRegion*, 10> Regions; 2974 const LocationContext *LC = C.getLocationContext(); 2975 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2976 2977 for ( ; I != E; ++I) { 2978 const VarRegion *VR = I.getCapturedRegion(); 2979 if (VR->getSuperRegion() == R) { 2980 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2981 } 2982 Regions.push_back(VR); 2983 } 2984 2985 state = 2986 state->scanReachableSymbols<StopTrackingCallback>(Regions).getState(); 2987 C.addTransition(state); 2988 } 2989 2990 static bool isReleased(SymbolRef Sym, CheckerContext &C) { 2991 assert(Sym); 2992 const RefState *RS = C.getState()->get<RegionState>(Sym); 2993 return (RS && RS->isReleased()); 2994 } 2995 2996 bool MallocChecker::suppressDeallocationsInSuspiciousContexts( 2997 const CallEvent &Call, CheckerContext &C) const { 2998 if (Call.getNumArgs() == 0) 2999 return false; 3000 3001 StringRef FunctionStr = ""; 3002 if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl())) 3003 if (const Stmt *Body = FD->getBody()) 3004 if (Body->getBeginLoc().isValid()) 3005 FunctionStr = 3006 Lexer::getSourceText(CharSourceRange::getTokenRange( 3007 {FD->getBeginLoc(), Body->getBeginLoc()}), 3008 C.getSourceManager(), C.getLangOpts()); 3009 3010 // We do not model the Integer Set Library's retain-count based allocation. 3011 if (!FunctionStr.contains("__isl_")) 3012 return false; 3013 3014 ProgramStateRef State = C.getState(); 3015 3016 for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments()) 3017 if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol()) 3018 if (const RefState *RS = State->get<RegionState>(Sym)) 3019 State = State->set<RegionState>(Sym, RefState::getEscaped(RS)); 3020 3021 C.addTransition(State); 3022 return true; 3023 } 3024 3025 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 3026 const Stmt *S) const { 3027 3028 if (isReleased(Sym, C)) { 3029 HandleUseAfterFree(C, S->getSourceRange(), Sym); 3030 return true; 3031 } 3032 3033 return false; 3034 } 3035 3036 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 3037 const Stmt *S) const { 3038 assert(Sym); 3039 3040 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 3041 if (RS->isAllocatedOfSizeZero()) 3042 HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym); 3043 } 3044 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 3045 HandleUseZeroAlloc(C, S->getSourceRange(), Sym); 3046 } 3047 } 3048 3049 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 3050 3051 if (isReleased(Sym, C)) { 3052 HandleDoubleDelete(C, Sym); 3053 return true; 3054 } 3055 return false; 3056 } 3057 3058 // Check if the location is a freed symbolic region. 3059 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 3060 CheckerContext &C) const { 3061 SymbolRef Sym = l.getLocSymbolInBase(); 3062 if (Sym) { 3063 checkUseAfterFree(Sym, C, S); 3064 checkUseZeroAllocated(Sym, C, S); 3065 } 3066 } 3067 3068 // If a symbolic region is assumed to NULL (or another constant), stop tracking 3069 // it - assuming that allocation failed on this path. 3070 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 3071 SVal Cond, 3072 bool Assumption) const { 3073 RegionStateTy RS = state->get<RegionState>(); 3074 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3075 // If the symbol is assumed to be NULL, remove it from consideration. 3076 ConstraintManager &CMgr = state->getConstraintManager(); 3077 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3078 if (AllocFailed.isConstrainedTrue()) 3079 state = state->remove<RegionState>(I.getKey()); 3080 } 3081 3082 // Realloc returns 0 when reallocation fails, which means that we should 3083 // restore the state of the pointer being reallocated. 3084 ReallocPairsTy RP = state->get<ReallocPairs>(); 3085 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 3086 // If the symbol is assumed to be NULL, remove it from consideration. 3087 ConstraintManager &CMgr = state->getConstraintManager(); 3088 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 3089 if (!AllocFailed.isConstrainedTrue()) 3090 continue; 3091 3092 SymbolRef ReallocSym = I.getData().ReallocatedSym; 3093 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 3094 if (RS->isReleased()) { 3095 switch (I.getData().Kind) { 3096 case OAR_ToBeFreedAfterFailure: 3097 state = state->set<RegionState>(ReallocSym, 3098 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 3099 break; 3100 case OAR_DoNotTrackAfterFailure: 3101 state = state->remove<RegionState>(ReallocSym); 3102 break; 3103 default: 3104 assert(I.getData().Kind == OAR_FreeOnFailure); 3105 } 3106 } 3107 } 3108 state = state->remove<ReallocPairs>(I.getKey()); 3109 } 3110 3111 return state; 3112 } 3113 3114 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 3115 const CallEvent *Call, 3116 ProgramStateRef State, 3117 SymbolRef &EscapingSymbol) const { 3118 assert(Call); 3119 EscapingSymbol = nullptr; 3120 3121 // For now, assume that any C++ or block call can free memory. 3122 // TODO: If we want to be more optimistic here, we'll need to make sure that 3123 // regions escape to C++ containers. They seem to do that even now, but for 3124 // mysterious reasons. 3125 if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call)) 3126 return true; 3127 3128 // Check Objective-C messages by selector name. 3129 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 3130 // If it's not a framework call, or if it takes a callback, assume it 3131 // can free memory. 3132 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 3133 return true; 3134 3135 // If it's a method we know about, handle it explicitly post-call. 3136 // This should happen before the "freeWhenDone" check below. 3137 if (isKnownDeallocObjCMethodName(*Msg)) 3138 return false; 3139 3140 // If there's a "freeWhenDone" parameter, but the method isn't one we know 3141 // about, we can't be sure that the object will use free() to deallocate the 3142 // memory, so we can't model it explicitly. The best we can do is use it to 3143 // decide whether the pointer escapes. 3144 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 3145 return *FreeWhenDone; 3146 3147 // If the first selector piece ends with "NoCopy", and there is no 3148 // "freeWhenDone" parameter set to zero, we know ownership is being 3149 // transferred. Again, though, we can't be sure that the object will use 3150 // free() to deallocate the memory, so we can't model it explicitly. 3151 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 3152 if (FirstSlot.endswith("NoCopy")) 3153 return true; 3154 3155 // If the first selector starts with addPointer, insertPointer, 3156 // or replacePointer, assume we are dealing with NSPointerArray or similar. 3157 // This is similar to C++ containers (vector); we still might want to check 3158 // that the pointers get freed by following the container itself. 3159 if (FirstSlot.startswith("addPointer") || 3160 FirstSlot.startswith("insertPointer") || 3161 FirstSlot.startswith("replacePointer") || 3162 FirstSlot.equals("valueWithPointer")) { 3163 return true; 3164 } 3165 3166 // We should escape receiver on call to 'init'. This is especially relevant 3167 // to the receiver, as the corresponding symbol is usually not referenced 3168 // after the call. 3169 if (Msg->getMethodFamily() == OMF_init) { 3170 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 3171 return true; 3172 } 3173 3174 // Otherwise, assume that the method does not free memory. 3175 // Most framework methods do not free memory. 3176 return false; 3177 } 3178 3179 // At this point the only thing left to handle is straight function calls. 3180 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 3181 if (!FD) 3182 return true; 3183 3184 // If it's one of the allocation functions we can reason about, we model 3185 // its behavior explicitly. 3186 if (isMemCall(*Call)) 3187 return false; 3188 3189 // If it's not a system call, assume it frees memory. 3190 if (!Call->isInSystemHeader()) 3191 return true; 3192 3193 // White list the system functions whose arguments escape. 3194 const IdentifierInfo *II = FD->getIdentifier(); 3195 if (!II) 3196 return true; 3197 StringRef FName = II->getName(); 3198 3199 // White list the 'XXXNoCopy' CoreFoundation functions. 3200 // We specifically check these before 3201 if (FName.endswith("NoCopy")) { 3202 // Look for the deallocator argument. We know that the memory ownership 3203 // is not transferred only if the deallocator argument is 3204 // 'kCFAllocatorNull'. 3205 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 3206 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 3207 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 3208 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 3209 if (DeallocatorName == "kCFAllocatorNull") 3210 return false; 3211 } 3212 } 3213 return true; 3214 } 3215 3216 // Associating streams with malloced buffers. The pointer can escape if 3217 // 'closefn' is specified (and if that function does free memory), 3218 // but it will not if closefn is not specified. 3219 // Currently, we do not inspect the 'closefn' function (PR12101). 3220 if (FName == "funopen") 3221 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 3222 return false; 3223 3224 // Do not warn on pointers passed to 'setbuf' when used with std streams, 3225 // these leaks might be intentional when setting the buffer for stdio. 3226 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 3227 if (FName == "setbuf" || FName =="setbuffer" || 3228 FName == "setlinebuf" || FName == "setvbuf") { 3229 if (Call->getNumArgs() >= 1) { 3230 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 3231 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 3232 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 3233 if (D->getCanonicalDecl()->getName().contains("std")) 3234 return true; 3235 } 3236 } 3237 3238 // A bunch of other functions which either take ownership of a pointer or 3239 // wrap the result up in a struct or object, meaning it can be freed later. 3240 // (See RetainCountChecker.) Not all the parameters here are invalidated, 3241 // but the Malloc checker cannot differentiate between them. The right way 3242 // of doing this would be to implement a pointer escapes callback. 3243 if (FName == "CGBitmapContextCreate" || 3244 FName == "CGBitmapContextCreateWithData" || 3245 FName == "CVPixelBufferCreateWithBytes" || 3246 FName == "CVPixelBufferCreateWithPlanarBytes" || 3247 FName == "OSAtomicEnqueue") { 3248 return true; 3249 } 3250 3251 if (FName == "postEvent" && 3252 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 3253 return true; 3254 } 3255 3256 if (FName == "connectImpl" && 3257 FD->getQualifiedNameAsString() == "QObject::connectImpl") { 3258 return true; 3259 } 3260 3261 // Handle cases where we know a buffer's /address/ can escape. 3262 // Note that the above checks handle some special cases where we know that 3263 // even though the address escapes, it's still our responsibility to free the 3264 // buffer. 3265 if (Call->argumentsMayEscape()) 3266 return true; 3267 3268 // Otherwise, assume that the function does not free memory. 3269 // Most system calls do not free the memory. 3270 return false; 3271 } 3272 3273 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 3274 const InvalidatedSymbols &Escaped, 3275 const CallEvent *Call, 3276 PointerEscapeKind Kind) const { 3277 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3278 /*IsConstPointerEscape*/ false); 3279 } 3280 3281 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 3282 const InvalidatedSymbols &Escaped, 3283 const CallEvent *Call, 3284 PointerEscapeKind Kind) const { 3285 // If a const pointer escapes, it may not be freed(), but it could be deleted. 3286 return checkPointerEscapeAux(State, Escaped, Call, Kind, 3287 /*IsConstPointerEscape*/ true); 3288 } 3289 3290 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 3291 return (RS->getAllocationFamily() == AF_CXXNewArray || 3292 RS->getAllocationFamily() == AF_CXXNew); 3293 } 3294 3295 ProgramStateRef MallocChecker::checkPointerEscapeAux( 3296 ProgramStateRef State, const InvalidatedSymbols &Escaped, 3297 const CallEvent *Call, PointerEscapeKind Kind, 3298 bool IsConstPointerEscape) const { 3299 // If we know that the call does not free memory, or we want to process the 3300 // call later, keep tracking the top level arguments. 3301 SymbolRef EscapingSymbol = nullptr; 3302 if (Kind == PSK_DirectEscapeOnCall && 3303 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 3304 EscapingSymbol) && 3305 !EscapingSymbol) { 3306 return State; 3307 } 3308 3309 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 3310 E = Escaped.end(); 3311 I != E; ++I) { 3312 SymbolRef sym = *I; 3313 3314 if (EscapingSymbol && EscapingSymbol != sym) 3315 continue; 3316 3317 if (const RefState *RS = State->get<RegionState>(sym)) 3318 if (RS->isAllocated() || RS->isAllocatedOfSizeZero()) 3319 if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS)) 3320 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 3321 } 3322 return State; 3323 } 3324 3325 bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C, 3326 SVal ArgVal) const { 3327 if (!KernelZeroSizePtrValue) 3328 KernelZeroSizePtrValue = 3329 tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor()); 3330 3331 const llvm::APSInt *ArgValKnown = 3332 C.getSValBuilder().getKnownValue(State, ArgVal); 3333 return ArgValKnown && *KernelZeroSizePtrValue && 3334 ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue; 3335 } 3336 3337 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 3338 ProgramStateRef prevState) { 3339 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 3340 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 3341 3342 for (const ReallocPairsTy::value_type &Pair : prevMap) { 3343 SymbolRef sym = Pair.first; 3344 if (!currMap.lookup(sym)) 3345 return sym; 3346 } 3347 3348 return nullptr; 3349 } 3350 3351 static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) { 3352 if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) { 3353 StringRef N = II->getName(); 3354 if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) { 3355 if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") || 3356 N.contains_insensitive("intrusive") || 3357 N.contains_insensitive("shared")) { 3358 return true; 3359 } 3360 } 3361 } 3362 return false; 3363 } 3364 3365 PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N, 3366 BugReporterContext &BRC, 3367 PathSensitiveBugReport &BR) { 3368 ProgramStateRef state = N->getState(); 3369 ProgramStateRef statePrev = N->getFirstPred()->getState(); 3370 3371 const RefState *RSCurr = state->get<RegionState>(Sym); 3372 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 3373 3374 const Stmt *S = N->getStmtForDiagnostics(); 3375 // When dealing with containers, we sometimes want to give a note 3376 // even if the statement is missing. 3377 if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer)) 3378 return nullptr; 3379 3380 const LocationContext *CurrentLC = N->getLocationContext(); 3381 3382 // If we find an atomic fetch_add or fetch_sub within the destructor in which 3383 // the pointer was released (before the release), this is likely a destructor 3384 // of a shared pointer. 3385 // Because we don't model atomics, and also because we don't know that the 3386 // original reference count is positive, we should not report use-after-frees 3387 // on objects deleted in such destructors. This can probably be improved 3388 // through better shared pointer modeling. 3389 if (ReleaseDestructorLC) { 3390 if (const auto *AE = dyn_cast<AtomicExpr>(S)) { 3391 AtomicExpr::AtomicOp Op = AE->getOp(); 3392 if (Op == AtomicExpr::AO__c11_atomic_fetch_add || 3393 Op == AtomicExpr::AO__c11_atomic_fetch_sub) { 3394 if (ReleaseDestructorLC == CurrentLC || 3395 ReleaseDestructorLC->isParentOf(CurrentLC)) { 3396 BR.markInvalid(getTag(), S); 3397 } 3398 } 3399 } 3400 } 3401 3402 // FIXME: We will eventually need to handle non-statement-based events 3403 // (__attribute__((cleanup))). 3404 3405 // Find out if this is an interesting point and what is the kind. 3406 StringRef Msg; 3407 std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr; 3408 SmallString<256> Buf; 3409 llvm::raw_svector_ostream OS(Buf); 3410 3411 if (Mode == Normal) { 3412 if (isAllocated(RSCurr, RSPrev, S)) { 3413 Msg = "Memory is allocated"; 3414 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3415 Sym, "Returned allocated memory"); 3416 } else if (isReleased(RSCurr, RSPrev, S)) { 3417 const auto Family = RSCurr->getAllocationFamily(); 3418 switch (Family) { 3419 case AF_Alloca: 3420 case AF_Malloc: 3421 case AF_CXXNew: 3422 case AF_CXXNewArray: 3423 case AF_IfNameIndex: 3424 Msg = "Memory is released"; 3425 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3426 Sym, "Returning; memory was released"); 3427 break; 3428 case AF_InnerBuffer: { 3429 const MemRegion *ObjRegion = 3430 allocation_state::getContainerObjRegion(statePrev, Sym); 3431 const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion); 3432 QualType ObjTy = TypedRegion->getValueType(); 3433 OS << "Inner buffer of '" << ObjTy << "' "; 3434 3435 if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) { 3436 OS << "deallocated by call to destructor"; 3437 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3438 Sym, "Returning; inner buffer was deallocated"); 3439 } else { 3440 OS << "reallocated by call to '"; 3441 const Stmt *S = RSCurr->getStmt(); 3442 if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) { 3443 OS << MemCallE->getMethodDecl()->getDeclName(); 3444 } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) { 3445 OS << OpCallE->getDirectCallee()->getDeclName(); 3446 } else if (const auto *CallE = dyn_cast<CallExpr>(S)) { 3447 auto &CEMgr = BRC.getStateManager().getCallEventManager(); 3448 CallEventRef<> Call = CEMgr.getSimpleCall(CallE, state, CurrentLC); 3449 if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl())) 3450 OS << D->getDeclName(); 3451 else 3452 OS << "unknown"; 3453 } 3454 OS << "'"; 3455 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3456 Sym, "Returning; inner buffer was reallocated"); 3457 } 3458 Msg = OS.str(); 3459 break; 3460 } 3461 case AF_None: 3462 llvm_unreachable("Unhandled allocation family!"); 3463 } 3464 3465 // See if we're releasing memory while inlining a destructor 3466 // (or one of its callees). This turns on various common 3467 // false positive suppressions. 3468 bool FoundAnyDestructor = false; 3469 for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) { 3470 if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) { 3471 if (isReferenceCountingPointerDestructor(DD)) { 3472 // This immediately looks like a reference-counting destructor. 3473 // We're bad at guessing the original reference count of the object, 3474 // so suppress the report for now. 3475 BR.markInvalid(getTag(), DD); 3476 } else if (!FoundAnyDestructor) { 3477 assert(!ReleaseDestructorLC && 3478 "There can be only one release point!"); 3479 // Suspect that it's a reference counting pointer destructor. 3480 // On one of the next nodes might find out that it has atomic 3481 // reference counting operations within it (see the code above), 3482 // and if so, we'd conclude that it likely is a reference counting 3483 // pointer destructor. 3484 ReleaseDestructorLC = LC->getStackFrame(); 3485 // It is unlikely that releasing memory is delegated to a destructor 3486 // inside a destructor of a shared pointer, because it's fairly hard 3487 // to pass the information that the pointer indeed needs to be 3488 // released into it. So we're only interested in the innermost 3489 // destructor. 3490 FoundAnyDestructor = true; 3491 } 3492 } 3493 } 3494 } else if (isRelinquished(RSCurr, RSPrev, S)) { 3495 Msg = "Memory ownership is transferred"; 3496 StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, ""); 3497 } else if (hasReallocFailed(RSCurr, RSPrev, S)) { 3498 Mode = ReallocationFailed; 3499 Msg = "Reallocation failed"; 3500 StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>( 3501 Sym, "Reallocation failed"); 3502 3503 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 3504 // Is it possible to fail two reallocs WITHOUT testing in between? 3505 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 3506 "We only support one failed realloc at a time."); 3507 BR.markInteresting(sym); 3508 FailedReallocSymbol = sym; 3509 } 3510 } 3511 3512 // We are in a special mode if a reallocation failed later in the path. 3513 } else if (Mode == ReallocationFailed) { 3514 assert(FailedReallocSymbol && "No symbol to look for."); 3515 3516 // Is this is the first appearance of the reallocated symbol? 3517 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 3518 // We're at the reallocation point. 3519 Msg = "Attempt to reallocate memory"; 3520 StackHint = std::make_unique<StackHintGeneratorForSymbol>( 3521 Sym, "Returned reallocated memory"); 3522 FailedReallocSymbol = nullptr; 3523 Mode = Normal; 3524 } 3525 } 3526 3527 if (Msg.empty()) { 3528 assert(!StackHint); 3529 return nullptr; 3530 } 3531 3532 assert(StackHint); 3533 3534 // Generate the extra diagnostic. 3535 PathDiagnosticLocation Pos; 3536 if (!S) { 3537 assert(RSCurr->getAllocationFamily() == AF_InnerBuffer); 3538 auto PostImplCall = N->getLocation().getAs<PostImplicitCall>(); 3539 if (!PostImplCall) 3540 return nullptr; 3541 Pos = PathDiagnosticLocation(PostImplCall->getLocation(), 3542 BRC.getSourceManager()); 3543 } else { 3544 Pos = PathDiagnosticLocation(S, BRC.getSourceManager(), 3545 N->getLocationContext()); 3546 } 3547 3548 auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true); 3549 BR.addCallStackHint(P, std::move(StackHint)); 3550 return P; 3551 } 3552 3553 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 3554 const char *NL, const char *Sep) const { 3555 3556 RegionStateTy RS = State->get<RegionState>(); 3557 3558 if (!RS.isEmpty()) { 3559 Out << Sep << "MallocChecker :" << NL; 3560 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 3561 const RefState *RefS = State->get<RegionState>(I.getKey()); 3562 AllocationFamily Family = RefS->getAllocationFamily(); 3563 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 3564 if (!CheckKind) 3565 CheckKind = getCheckIfTracked(Family, true); 3566 3567 I.getKey()->dumpToStream(Out); 3568 Out << " : "; 3569 I.getData().dump(Out); 3570 if (CheckKind) 3571 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 3572 Out << NL; 3573 } 3574 } 3575 } 3576 3577 namespace clang { 3578 namespace ento { 3579 namespace allocation_state { 3580 3581 ProgramStateRef 3582 markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) { 3583 AllocationFamily Family = AF_InnerBuffer; 3584 return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin)); 3585 } 3586 3587 } // end namespace allocation_state 3588 } // end namespace ento 3589 } // end namespace clang 3590 3591 // Intended to be used in InnerPointerChecker to register the part of 3592 // MallocChecker connected to it. 3593 void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) { 3594 MallocChecker *checker = mgr.getChecker<MallocChecker>(); 3595 checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true; 3596 checker->CheckNames[MallocChecker::CK_InnerPointerChecker] = 3597 mgr.getCurrentCheckerName(); 3598 } 3599 3600 void ento::registerDynamicMemoryModeling(CheckerManager &mgr) { 3601 auto *checker = mgr.registerChecker<MallocChecker>(); 3602 checker->ShouldIncludeOwnershipAnnotatedFunctions = 3603 mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic"); 3604 checker->ShouldRegisterNoOwnershipChangeVisitor = 3605 mgr.getAnalyzerOptions().getCheckerBooleanOption( 3606 checker, "AddNoOwnershipChangeNotes"); 3607 } 3608 3609 bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) { 3610 return true; 3611 } 3612 3613 #define REGISTER_CHECKER(name) \ 3614 void ento::register##name(CheckerManager &mgr) { \ 3615 MallocChecker *checker = mgr.getChecker<MallocChecker>(); \ 3616 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 3617 checker->CheckNames[MallocChecker::CK_##name] = \ 3618 mgr.getCurrentCheckerName(); \ 3619 } \ 3620 \ 3621 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 3622 3623 REGISTER_CHECKER(MallocChecker) 3624 REGISTER_CHECKER(NewDeleteChecker) 3625 REGISTER_CHECKER(NewDeleteLeaksChecker) 3626 REGISTER_CHECKER(MismatchedDeallocatorChecker) 3627