1 //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Defines a modeling-checker for modeling STL iterator-like iterators. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // In the code, iterator can be represented as a: 14 // * type-I: typedef-ed pointer. Operations over such iterator, such as 15 // comparisons or increments, are modeled straightforwardly by the 16 // analyzer. 17 // * type-II: structure with its method bodies available. Operations over such 18 // iterator are inlined by the analyzer, and results of modeling 19 // these operations are exposing implementation details of the 20 // iterators, which is not necessarily helping. 21 // * type-III: completely opaque structure. Operations over such iterator are 22 // modeled conservatively, producing conjured symbols everywhere. 23 // 24 // To handle all these types in a common way we introduce a structure called 25 // IteratorPosition which is an abstraction of the position the iterator 26 // represents using symbolic expressions. The checker handles all the 27 // operations on this structure. 28 // 29 // Additionally, depending on the circumstances, operators of types II and III 30 // can be represented as: 31 // * type-IIa, type-IIIa: conjured structure symbols - when returned by value 32 // from conservatively evaluated methods such as 33 // `.begin()`. 34 // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as 35 // variables or temporaries, when the iterator object is 36 // currently treated as an lvalue. 37 // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the 38 // iterator object is treated as an rvalue taken of a 39 // particular lvalue, eg. a copy of "type-a" iterator 40 // object, or an iterator that existed before the 41 // analysis has started. 42 // 43 // To handle any of these three different representations stored in an SVal we 44 // use setter and getters functions which separate the three cases. To store 45 // them we use a pointer union of symbol and memory region. 46 // 47 // The checker works the following way: We record the begin and the 48 // past-end iterator for all containers whenever their `.begin()` and `.end()` 49 // are called. Since the Constraint Manager cannot handle such SVals we need 50 // to take over its role. We post-check equality and non-equality comparisons 51 // and record that the two sides are equal if we are in the 'equal' branch 52 // (true-branch for `==` and false-branch for `!=`). 53 // 54 // In case of type-I or type-II iterators we get a concrete integer as a result 55 // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In 56 // this latter case we record the symbol and reload it in evalAssume() and do 57 // the propagation there. We also handle (maybe double) negated comparisons 58 // which are represented in the form of (x == 0 or x != 0) where x is the 59 // comparison itself. 60 // 61 // Since `SimpleConstraintManager` cannot handle complex symbolic expressions 62 // we only use expressions of the format S, S+n or S-n for iterator positions 63 // where S is a conjured symbol and n is an unsigned concrete integer. When 64 // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as 65 // a constraint which we later retrieve when doing an actual comparison. 66 67 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 68 #include "clang/AST/DeclTemplate.h" 69 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 70 #include "clang/StaticAnalyzer/Core/Checker.h" 71 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 72 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 73 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" 74 75 #include "Iterator.h" 76 77 #include <utility> 78 79 using namespace clang; 80 using namespace ento; 81 using namespace iterator; 82 83 namespace { 84 85 class IteratorModeling 86 : public Checker<check::PostCall, check::PostStmt<UnaryOperator>, 87 check::PostStmt<BinaryOperator>, 88 check::PostStmt<MaterializeTemporaryExpr>, 89 check::Bind, check::LiveSymbols, check::DeadSymbols> { 90 91 using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *, 92 SVal, SVal, SVal) const; 93 94 void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call, 95 OverloadedOperatorKind Op) const; 96 void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call, 97 const Expr *OrigExpr, 98 const AdvanceFn *Handler) const; 99 100 void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal, 101 const SVal &LVal, const SVal &RVal, 102 OverloadedOperatorKind Op) const; 103 void processComparison(CheckerContext &C, ProgramStateRef State, 104 SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal, 105 OverloadedOperatorKind Op) const; 106 void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter, 107 bool Postfix) const; 108 void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter, 109 bool Postfix) const; 110 void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE, 111 OverloadedOperatorKind Op, const SVal &RetVal, 112 const SVal &LHS, const SVal &RHS) const; 113 void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator, 114 OverloadedOperatorKind OK, SVal Offset) const; 115 void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, 116 SVal Amount) const; 117 void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, 118 SVal Amount) const; 119 void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter, 120 SVal Amount) const; 121 void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal, 122 const MemRegion *Cont) const; 123 bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const; 124 void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, 125 const char *Sep) const override; 126 127 // std::advance, std::prev & std::next 128 CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = { 129 // template<class InputIt, class Distance> 130 // void advance(InputIt& it, Distance n); 131 {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance}, 132 133 // template<class BidirIt> 134 // BidirIt prev( 135 // BidirIt it, 136 // typename std::iterator_traits<BidirIt>::difference_type n = 1); 137 {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev}, 138 139 // template<class ForwardIt> 140 // ForwardIt next( 141 // ForwardIt it, 142 // typename std::iterator_traits<ForwardIt>::difference_type n = 1); 143 {{{"std", "next"}, 2}, &IteratorModeling::handleNext}, 144 }; 145 146 public: 147 IteratorModeling() = default; 148 149 void checkPostCall(const CallEvent &Call, CheckerContext &C) const; 150 void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const; 151 void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const; 152 void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const; 153 void checkPostStmt(const CXXConstructExpr *CCE, CheckerContext &C) const; 154 void checkPostStmt(const DeclStmt *DS, CheckerContext &C) const; 155 void checkPostStmt(const MaterializeTemporaryExpr *MTE, 156 CheckerContext &C) const; 157 void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const; 158 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 159 }; 160 161 bool isSimpleComparisonOperator(OverloadedOperatorKind OK); 162 bool isSimpleComparisonOperator(BinaryOperatorKind OK); 163 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val); 164 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, 165 SymbolRef Sym2, bool Equal); 166 bool isBoundThroughLazyCompoundVal(const Environment &Env, 167 const MemRegion *Reg); 168 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call); 169 170 } // namespace 171 172 void IteratorModeling::checkPostCall(const CallEvent &Call, 173 CheckerContext &C) const { 174 // Record new iterator positions and iterator position changes 175 const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 176 if (!Func) 177 return; 178 179 if (Func->isOverloadedOperator()) { 180 const auto Op = Func->getOverloadedOperator(); 181 handleOverloadedOperator(C, Call, Op); 182 return; 183 } 184 185 const auto *OrigExpr = Call.getOriginExpr(); 186 if (!OrigExpr) 187 return; 188 189 const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call); 190 if (Handler) { 191 handleAdvanceLikeFunction(C, Call, OrigExpr, Handler); 192 return; 193 } 194 195 if (!isIteratorType(Call.getResultType())) 196 return; 197 198 auto State = C.getState(); 199 200 // Already bound to container? 201 if (getIteratorPosition(State, Call.getReturnValue())) 202 return; 203 204 // Copy-like and move constructors 205 if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) { 206 if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) { 207 State = setIteratorPosition(State, Call.getReturnValue(), *Pos); 208 if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) { 209 State = removeIteratorPosition(State, Call.getArgSVal(0)); 210 } 211 C.addTransition(State); 212 return; 213 } 214 } 215 216 // Assumption: if return value is an iterator which is not yet bound to a 217 // container, then look for the first iterator argument of the 218 // same type as the return value and bind the return value to 219 // the same container. This approach works for STL algorithms. 220 // FIXME: Add a more conservative mode 221 for (unsigned i = 0; i < Call.getNumArgs(); ++i) { 222 if (isIteratorType(Call.getArgExpr(i)->getType()) && 223 Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType( 224 C.getASTContext()).getTypePtr() == 225 Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) { 226 if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) { 227 assignToContainer(C, OrigExpr, Call.getReturnValue(), 228 Pos->getContainer()); 229 return; 230 } 231 } 232 } 233 } 234 235 void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S, 236 CheckerContext &C) const { 237 auto State = C.getState(); 238 const auto *Pos = getIteratorPosition(State, Val); 239 if (Pos) { 240 State = setIteratorPosition(State, Loc, *Pos); 241 C.addTransition(State); 242 } else { 243 const auto *OldPos = getIteratorPosition(State, Loc); 244 if (OldPos) { 245 State = removeIteratorPosition(State, Loc); 246 C.addTransition(State); 247 } 248 } 249 } 250 251 void IteratorModeling::checkPostStmt(const UnaryOperator *UO, 252 CheckerContext &C) const { 253 UnaryOperatorKind OK = UO->getOpcode(); 254 if (!isIncrementOperator(OK) && !isDecrementOperator(OK)) 255 return; 256 257 auto &SVB = C.getSValBuilder(); 258 handlePtrIncrOrDecr(C, UO->getSubExpr(), 259 isIncrementOperator(OK) ? OO_Plus : OO_Minus, 260 SVB.makeArrayIndex(1)); 261 } 262 263 void IteratorModeling::checkPostStmt(const BinaryOperator *BO, 264 CheckerContext &C) const { 265 ProgramStateRef State = C.getState(); 266 BinaryOperatorKind OK = BO->getOpcode(); 267 SVal RVal = State->getSVal(BO->getRHS(), C.getLocationContext()); 268 269 if (isSimpleComparisonOperator(BO->getOpcode())) { 270 SVal LVal = State->getSVal(BO->getLHS(), C.getLocationContext()); 271 SVal Result = State->getSVal(BO, C.getLocationContext()); 272 handleComparison(C, BO, Result, LVal, RVal, 273 BinaryOperator::getOverloadedOperator(OK)); 274 } else if (isRandomIncrOrDecrOperator(OK)) { 275 if (!BO->getRHS()->getType()->isIntegralOrEnumerationType()) 276 return; 277 handlePtrIncrOrDecr(C, BO->getLHS(), 278 BinaryOperator::getOverloadedOperator(OK), RVal); 279 } 280 } 281 282 void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE, 283 CheckerContext &C) const { 284 /* Transfer iterator state to temporary objects */ 285 auto State = C.getState(); 286 const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr())); 287 if (!Pos) 288 return; 289 State = setIteratorPosition(State, C.getSVal(MTE), *Pos); 290 C.addTransition(State); 291 } 292 293 void IteratorModeling::checkLiveSymbols(ProgramStateRef State, 294 SymbolReaper &SR) const { 295 // Keep symbolic expressions of iterator positions alive 296 auto RegionMap = State->get<IteratorRegionMap>(); 297 for (const auto &Reg : RegionMap) { 298 const auto Offset = Reg.second.getOffset(); 299 for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i) 300 if (isa<SymbolData>(*i)) 301 SR.markLive(*i); 302 } 303 304 auto SymbolMap = State->get<IteratorSymbolMap>(); 305 for (const auto &Sym : SymbolMap) { 306 const auto Offset = Sym.second.getOffset(); 307 for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i) 308 if (isa<SymbolData>(*i)) 309 SR.markLive(*i); 310 } 311 312 } 313 314 void IteratorModeling::checkDeadSymbols(SymbolReaper &SR, 315 CheckerContext &C) const { 316 // Cleanup 317 auto State = C.getState(); 318 319 auto RegionMap = State->get<IteratorRegionMap>(); 320 for (const auto &Reg : RegionMap) { 321 if (!SR.isLiveRegion(Reg.first)) { 322 // The region behind the `LazyCompoundVal` is often cleaned up before 323 // the `LazyCompoundVal` itself. If there are iterator positions keyed 324 // by these regions their cleanup must be deferred. 325 if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) { 326 State = State->remove<IteratorRegionMap>(Reg.first); 327 } 328 } 329 } 330 331 auto SymbolMap = State->get<IteratorSymbolMap>(); 332 for (const auto &Sym : SymbolMap) { 333 if (!SR.isLive(Sym.first)) { 334 State = State->remove<IteratorSymbolMap>(Sym.first); 335 } 336 } 337 338 C.addTransition(State); 339 } 340 341 void 342 IteratorModeling::handleOverloadedOperator(CheckerContext &C, 343 const CallEvent &Call, 344 OverloadedOperatorKind Op) const { 345 if (isSimpleComparisonOperator(Op)) { 346 const auto *OrigExpr = Call.getOriginExpr(); 347 if (!OrigExpr) 348 return; 349 350 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { 351 handleComparison(C, OrigExpr, Call.getReturnValue(), 352 InstCall->getCXXThisVal(), Call.getArgSVal(0), Op); 353 return; 354 } 355 356 handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0), 357 Call.getArgSVal(1), Op); 358 return; 359 } else if (isRandomIncrOrDecrOperator(Op)) { 360 const auto *OrigExpr = Call.getOriginExpr(); 361 if (!OrigExpr) 362 return; 363 364 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { 365 if (Call.getNumArgs() >= 1 && 366 Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) { 367 handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(), 368 InstCall->getCXXThisVal(), Call.getArgSVal(0)); 369 return; 370 } 371 } else { 372 if (Call.getNumArgs() >= 2 && 373 Call.getArgExpr(1)->getType()->isIntegralOrEnumerationType()) { 374 handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(), 375 Call.getArgSVal(0), Call.getArgSVal(1)); 376 return; 377 } 378 } 379 } else if (isIncrementOperator(Op)) { 380 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { 381 handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(), 382 Call.getNumArgs()); 383 return; 384 } 385 386 handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0), 387 Call.getNumArgs()); 388 return; 389 } else if (isDecrementOperator(Op)) { 390 if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) { 391 handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(), 392 Call.getNumArgs()); 393 return; 394 } 395 396 handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0), 397 Call.getNumArgs()); 398 return; 399 } 400 } 401 402 void 403 IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C, 404 const CallEvent &Call, 405 const Expr *OrigExpr, 406 const AdvanceFn *Handler) const { 407 if (!C.wasInlined) { 408 (this->**Handler)(C, OrigExpr, Call.getReturnValue(), 409 Call.getArgSVal(0), Call.getArgSVal(1)); 410 return; 411 } 412 413 // If std::advance() was inlined, but a non-standard function it calls inside 414 // was not, then we have to model it explicitly 415 const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier(); 416 if (IdInfo) { 417 if (IdInfo->getName() == "advance") { 418 if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) { 419 (this->**Handler)(C, OrigExpr, Call.getReturnValue(), 420 Call.getArgSVal(0), Call.getArgSVal(1)); 421 } 422 } 423 } 424 } 425 426 void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE, 427 SVal RetVal, const SVal &LVal, 428 const SVal &RVal, 429 OverloadedOperatorKind Op) const { 430 // Record the operands and the operator of the comparison for the next 431 // evalAssume, if the result is a symbolic expression. If it is a concrete 432 // value (only one branch is possible), then transfer the state between 433 // the operands according to the operator and the result 434 auto State = C.getState(); 435 const auto *LPos = getIteratorPosition(State, LVal); 436 const auto *RPos = getIteratorPosition(State, RVal); 437 const MemRegion *Cont = nullptr; 438 if (LPos) { 439 Cont = LPos->getContainer(); 440 } else if (RPos) { 441 Cont = RPos->getContainer(); 442 } 443 if (!Cont) 444 return; 445 446 // At least one of the iterators has recorded positions. If one of them does 447 // not then create a new symbol for the offset. 448 SymbolRef Sym; 449 if (!LPos || !RPos) { 450 auto &SymMgr = C.getSymbolManager(); 451 Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(), 452 C.getASTContext().LongTy, C.blockCount()); 453 State = assumeNoOverflow(State, Sym, 4); 454 } 455 456 if (!LPos) { 457 State = setIteratorPosition(State, LVal, 458 IteratorPosition::getPosition(Cont, Sym)); 459 LPos = getIteratorPosition(State, LVal); 460 } else if (!RPos) { 461 State = setIteratorPosition(State, RVal, 462 IteratorPosition::getPosition(Cont, Sym)); 463 RPos = getIteratorPosition(State, RVal); 464 } 465 466 // If the value for which we just tried to set a new iterator position is 467 // an `SVal`for which no iterator position can be set then the setting was 468 // unsuccessful. We cannot handle the comparison in this case. 469 if (!LPos || !RPos) 470 return; 471 472 // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol 473 // instead. 474 if (RetVal.isUnknown()) { 475 auto &SymMgr = C.getSymbolManager(); 476 auto *LCtx = C.getLocationContext(); 477 RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol( 478 CE, LCtx, C.getASTContext().BoolTy, C.blockCount())); 479 State = State->BindExpr(CE, LCtx, RetVal); 480 } 481 482 processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op); 483 } 484 485 void IteratorModeling::processComparison(CheckerContext &C, 486 ProgramStateRef State, SymbolRef Sym1, 487 SymbolRef Sym2, const SVal &RetVal, 488 OverloadedOperatorKind Op) const { 489 if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) { 490 if ((State = relateSymbols(State, Sym1, Sym2, 491 (Op == OO_EqualEqual) == 492 (TruthVal->getValue() != 0)))) { 493 C.addTransition(State); 494 } else { 495 C.generateSink(State, C.getPredecessor()); 496 } 497 return; 498 } 499 500 const auto ConditionVal = RetVal.getAs<DefinedSVal>(); 501 if (!ConditionVal) 502 return; 503 504 if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) { 505 StateTrue = StateTrue->assume(*ConditionVal, true); 506 C.addTransition(StateTrue); 507 } 508 509 if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) { 510 StateFalse = StateFalse->assume(*ConditionVal, false); 511 C.addTransition(StateFalse); 512 } 513 } 514 515 void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal, 516 const SVal &Iter, bool Postfix) const { 517 // Increment the symbolic expressions which represents the position of the 518 // iterator 519 auto State = C.getState(); 520 auto &BVF = C.getSymbolManager().getBasicVals(); 521 522 const auto *Pos = getIteratorPosition(State, Iter); 523 if (!Pos) 524 return; 525 526 auto NewState = 527 advancePosition(State, Iter, OO_Plus, 528 nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1)))); 529 assert(NewState && 530 "Advancing position by concrete int should always be successful"); 531 532 const auto *NewPos = getIteratorPosition(NewState, Iter); 533 assert(NewPos && 534 "Iterator should have position after successful advancement"); 535 536 State = setIteratorPosition(State, Iter, *NewPos); 537 State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos); 538 C.addTransition(State); 539 } 540 541 void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal, 542 const SVal &Iter, bool Postfix) const { 543 // Decrement the symbolic expressions which represents the position of the 544 // iterator 545 auto State = C.getState(); 546 auto &BVF = C.getSymbolManager().getBasicVals(); 547 548 const auto *Pos = getIteratorPosition(State, Iter); 549 if (!Pos) 550 return; 551 552 auto NewState = 553 advancePosition(State, Iter, OO_Minus, 554 nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1)))); 555 assert(NewState && 556 "Advancing position by concrete int should always be successful"); 557 558 const auto *NewPos = getIteratorPosition(NewState, Iter); 559 assert(NewPos && 560 "Iterator should have position after successful advancement"); 561 562 State = setIteratorPosition(State, Iter, *NewPos); 563 State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos); 564 C.addTransition(State); 565 } 566 567 void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, 568 const Expr *CE, 569 OverloadedOperatorKind Op, 570 const SVal &RetVal, 571 const SVal &LHS, 572 const SVal &RHS) const { 573 // Increment or decrement the symbolic expressions which represents the 574 // position of the iterator 575 auto State = C.getState(); 576 577 const auto *Pos = getIteratorPosition(State, LHS); 578 if (!Pos) 579 return; 580 581 const auto *value = &RHS; 582 SVal val; 583 if (auto loc = RHS.getAs<Loc>()) { 584 val = State->getRawSVal(*loc); 585 value = &val; 586 } 587 588 auto &TgtVal = (Op == OO_PlusEqual || Op == OO_MinusEqual) ? LHS : RetVal; 589 590 // `AdvancedState` is a state where the position of `LHS` is advanced. We 591 // only need this state to retrieve the new position, but we do not want 592 // to change the position of `LHS` (in every case). 593 auto AdvancedState = advancePosition(State, LHS, Op, *value); 594 if (AdvancedState) { 595 const auto *NewPos = getIteratorPosition(AdvancedState, LHS); 596 assert(NewPos && 597 "Iterator should have position after successful advancement"); 598 599 State = setIteratorPosition(State, TgtVal, *NewPos); 600 C.addTransition(State); 601 } else { 602 assignToContainer(C, CE, TgtVal, Pos->getContainer()); 603 } 604 } 605 606 void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C, 607 const Expr *Iterator, 608 OverloadedOperatorKind OK, 609 SVal Offset) const { 610 if (!Offset.getAs<DefinedSVal>()) 611 return; 612 613 QualType PtrType = Iterator->getType(); 614 if (!PtrType->isPointerType()) 615 return; 616 QualType ElementType = PtrType->getPointeeType(); 617 618 ProgramStateRef State = C.getState(); 619 SVal OldVal = State->getSVal(Iterator, C.getLocationContext()); 620 621 const IteratorPosition *OldPos = getIteratorPosition(State, OldVal); 622 if (!OldPos) 623 return; 624 625 SVal NewVal; 626 if (OK == OO_Plus || OK == OO_PlusEqual) { 627 NewVal = State->getLValue(ElementType, Offset, OldVal); 628 } else { 629 auto &SVB = C.getSValBuilder(); 630 SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>()); 631 NewVal = State->getLValue(ElementType, NegatedOffset, OldVal); 632 } 633 634 // `AdvancedState` is a state where the position of `Old` is advanced. We 635 // only need this state to retrieve the new position, but we do not want 636 // ever to change the position of `OldVal`. 637 auto AdvancedState = advancePosition(State, OldVal, OK, Offset); 638 if (AdvancedState) { 639 const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal); 640 assert(NewPos && 641 "Iterator should have position after successful advancement"); 642 643 ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos); 644 C.addTransition(NewState); 645 } else { 646 assignToContainer(C, Iterator, NewVal, OldPos->getContainer()); 647 } 648 } 649 650 void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE, 651 SVal RetVal, SVal Iter, 652 SVal Amount) const { 653 handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount); 654 } 655 656 void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE, 657 SVal RetVal, SVal Iter, SVal Amount) const { 658 handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount); 659 } 660 661 void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE, 662 SVal RetVal, SVal Iter, SVal Amount) const { 663 handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount); 664 } 665 666 void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE, 667 const SVal &RetVal, 668 const MemRegion *Cont) const { 669 Cont = Cont->getMostDerivedObjectRegion(); 670 671 auto State = C.getState(); 672 const auto *LCtx = C.getLocationContext(); 673 State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount()); 674 675 C.addTransition(State); 676 } 677 678 bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter, 679 const Expr *CE) const { 680 // Compare the iterator position before and after the call. (To be called 681 // from `checkPostCall()`.) 682 const auto StateAfter = C.getState(); 683 684 const auto *PosAfter = getIteratorPosition(StateAfter, Iter); 685 // If we have no position after the call of `std::advance`, then we are not 686 // interested. (Modeling of an inlined `std::advance()` should not remove the 687 // position in any case.) 688 if (!PosAfter) 689 return false; 690 691 const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE); 692 assert(N && "Any call should have a `CallEnter` node."); 693 694 const auto StateBefore = N->getState(); 695 const auto *PosBefore = getIteratorPosition(StateBefore, Iter); 696 // FIXME: `std::advance()` should not create a new iterator position but 697 // change existing ones. However, in case of iterators implemented as 698 // pointers the handling of parameters in `std::advance()`-like 699 // functions is still incomplete which may result in cases where 700 // the new position is assigned to the wrong pointer. This causes 701 // crash if we use an assertion here. 702 if (!PosBefore) 703 return false; 704 705 return PosBefore->getOffset() == PosAfter->getOffset(); 706 } 707 708 void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State, 709 const char *NL, const char *Sep) const { 710 auto SymbolMap = State->get<IteratorSymbolMap>(); 711 auto RegionMap = State->get<IteratorRegionMap>(); 712 // Use a counter to add newlines before every line except the first one. 713 unsigned Count = 0; 714 715 if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) { 716 Out << Sep << "Iterator Positions :" << NL; 717 for (const auto &Sym : SymbolMap) { 718 if (Count++) 719 Out << NL; 720 721 Sym.first->dumpToStream(Out); 722 Out << " : "; 723 const auto Pos = Sym.second; 724 Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == "; 725 Pos.getContainer()->dumpToStream(Out); 726 Out<<" ; Offset == "; 727 Pos.getOffset()->dumpToStream(Out); 728 } 729 730 for (const auto &Reg : RegionMap) { 731 if (Count++) 732 Out << NL; 733 734 Reg.first->dumpToStream(Out); 735 Out << " : "; 736 const auto Pos = Reg.second; 737 Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == "; 738 Pos.getContainer()->dumpToStream(Out); 739 Out<<" ; Offset == "; 740 Pos.getOffset()->dumpToStream(Out); 741 } 742 } 743 } 744 745 namespace { 746 747 bool isSimpleComparisonOperator(OverloadedOperatorKind OK) { 748 return OK == OO_EqualEqual || OK == OO_ExclaimEqual; 749 } 750 751 bool isSimpleComparisonOperator(BinaryOperatorKind OK) { 752 return OK == BO_EQ || OK == BO_NE; 753 } 754 755 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) { 756 if (auto Reg = Val.getAsRegion()) { 757 Reg = Reg->getMostDerivedObjectRegion(); 758 return State->remove<IteratorRegionMap>(Reg); 759 } else if (const auto Sym = Val.getAsSymbol()) { 760 return State->remove<IteratorSymbolMap>(Sym); 761 } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) { 762 return State->remove<IteratorRegionMap>(LCVal->getRegion()); 763 } 764 return nullptr; 765 } 766 767 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1, 768 SymbolRef Sym2, bool Equal) { 769 auto &SVB = State->getStateManager().getSValBuilder(); 770 771 // FIXME: This code should be reworked as follows: 772 // 1. Subtract the operands using evalBinOp(). 773 // 2. Assume that the result doesn't overflow. 774 // 3. Compare the result to 0. 775 // 4. Assume the result of the comparison. 776 const auto comparison = 777 SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1), 778 nonloc::SymbolVal(Sym2), SVB.getConditionType()); 779 780 assert(comparison.getAs<DefinedSVal>() && 781 "Symbol comparison must be a `DefinedSVal`"); 782 783 auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal); 784 if (!NewState) 785 return nullptr; 786 787 if (const auto CompSym = comparison.getAsSymbol()) { 788 assert(isa<SymIntExpr>(CompSym) && 789 "Symbol comparison must be a `SymIntExpr`"); 790 assert(BinaryOperator::isComparisonOp( 791 cast<SymIntExpr>(CompSym)->getOpcode()) && 792 "Symbol comparison must be a comparison"); 793 return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2); 794 } 795 796 return NewState; 797 } 798 799 bool isBoundThroughLazyCompoundVal(const Environment &Env, 800 const MemRegion *Reg) { 801 for (const auto &Binding : Env) { 802 if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) { 803 if (LCVal->getRegion() == Reg) 804 return true; 805 } 806 } 807 808 return false; 809 } 810 811 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) { 812 while (Node) { 813 ProgramPoint PP = Node->getLocation(); 814 if (auto Enter = PP.getAs<CallEnter>()) { 815 if (Enter->getCallExpr() == Call) 816 break; 817 } 818 819 Node = Node->getFirstPred(); 820 } 821 822 return Node; 823 } 824 825 } // namespace 826 827 void ento::registerIteratorModeling(CheckerManager &mgr) { 828 mgr.registerChecker<IteratorModeling>(); 829 } 830 831 bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) { 832 return true; 833 } 834