1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/Support/raw_ostream.h" 25 26 using namespace clang; 27 using namespace ento; 28 29 namespace { 30 class CStringChecker : public Checker< eval::Call, 31 check::PreStmt<DeclStmt>, 32 check::LiveSymbols, 33 check::DeadSymbols, 34 check::RegionChanges 35 > { 36 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 37 BT_NotCString, BT_AdditionOverflow; 38 39 mutable const char *CurrentFunctionDescription; 40 41 public: 42 /// The filter is used to filter out the diagnostics which are not enabled by 43 /// the user. 44 struct CStringChecksFilter { 45 DefaultBool CheckCStringNullArg; 46 DefaultBool CheckCStringOutOfBounds; 47 DefaultBool CheckCStringBufferOverlap; 48 DefaultBool CheckCStringNotNullTerm; 49 50 CheckName CheckNameCStringNullArg; 51 CheckName CheckNameCStringOutOfBounds; 52 CheckName CheckNameCStringBufferOverlap; 53 CheckName CheckNameCStringNotNullTerm; 54 }; 55 56 CStringChecksFilter Filter; 57 58 static void *getTag() { static int tag; return &tag; } 59 60 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 61 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 62 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 63 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 64 65 ProgramStateRef 66 checkRegionChanges(ProgramStateRef state, 67 const InvalidatedSymbols *, 68 ArrayRef<const MemRegion *> ExplicitRegions, 69 ArrayRef<const MemRegion *> Regions, 70 const LocationContext *LCtx, 71 const CallEvent *Call) const; 72 73 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 74 const CallExpr *) const; 75 76 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 77 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 78 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 79 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 80 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 81 ProgramStateRef state, 82 const Expr *Size, 83 const Expr *Source, 84 const Expr *Dest, 85 bool Restricted = false, 86 bool IsMempcpy = false) const; 87 88 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 89 90 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 91 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 92 void evalstrLengthCommon(CheckerContext &C, 93 const CallExpr *CE, 94 bool IsStrnlen = false) const; 95 96 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 97 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 98 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStrcpyCommon(CheckerContext &C, 101 const CallExpr *CE, 102 bool returnEnd, 103 bool isBounded, 104 bool isAppending, 105 bool returnPtr = true) const; 106 107 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 108 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 109 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 110 111 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 112 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 114 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 115 void evalStrcmpCommon(CheckerContext &C, 116 const CallExpr *CE, 117 bool isBounded = false, 118 bool ignoreCase = false) const; 119 120 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 121 122 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 123 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 124 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 125 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 126 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 127 128 // Utility methods 129 std::pair<ProgramStateRef , ProgramStateRef > 130 static assumeZero(CheckerContext &C, 131 ProgramStateRef state, SVal V, QualType Ty); 132 133 static ProgramStateRef setCStringLength(ProgramStateRef state, 134 const MemRegion *MR, 135 SVal strLength); 136 static SVal getCStringLengthForRegion(CheckerContext &C, 137 ProgramStateRef &state, 138 const Expr *Ex, 139 const MemRegion *MR, 140 bool hypothetical); 141 SVal getCStringLength(CheckerContext &C, 142 ProgramStateRef &state, 143 const Expr *Ex, 144 SVal Buf, 145 bool hypothetical = false) const; 146 147 const StringLiteral *getCStringLiteral(CheckerContext &C, 148 ProgramStateRef &state, 149 const Expr *expr, 150 SVal val) const; 151 152 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 153 ProgramStateRef state, 154 const Expr *Ex, SVal V, 155 bool IsSourceBuffer, 156 const Expr *Size); 157 158 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 159 const MemRegion *MR); 160 161 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 162 const Expr *Size, CheckerContext &C, 163 ProgramStateRef &State); 164 165 // Re-usable checks 166 ProgramStateRef checkNonNull(CheckerContext &C, 167 ProgramStateRef state, 168 const Expr *S, 169 SVal l) const; 170 ProgramStateRef CheckLocation(CheckerContext &C, 171 ProgramStateRef state, 172 const Expr *S, 173 SVal l, 174 const char *message = nullptr) const; 175 ProgramStateRef CheckBufferAccess(CheckerContext &C, 176 ProgramStateRef state, 177 const Expr *Size, 178 const Expr *FirstBuf, 179 const Expr *SecondBuf, 180 const char *firstMessage = nullptr, 181 const char *secondMessage = nullptr, 182 bool WarnAboutSize = false) const; 183 184 ProgramStateRef CheckBufferAccess(CheckerContext &C, 185 ProgramStateRef state, 186 const Expr *Size, 187 const Expr *Buf, 188 const char *message = nullptr, 189 bool WarnAboutSize = false) const { 190 // This is a convenience overload. 191 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 192 WarnAboutSize); 193 } 194 ProgramStateRef CheckOverlap(CheckerContext &C, 195 ProgramStateRef state, 196 const Expr *Size, 197 const Expr *First, 198 const Expr *Second) const; 199 void emitOverlapBug(CheckerContext &C, 200 ProgramStateRef state, 201 const Stmt *First, 202 const Stmt *Second) const; 203 204 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 205 StringRef WarningMsg) const; 206 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 207 const Stmt *S, StringRef WarningMsg) const; 208 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 209 const Stmt *S, StringRef WarningMsg) const; 210 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 211 212 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 213 ProgramStateRef state, 214 NonLoc left, 215 NonLoc right) const; 216 217 // Return true if the destination buffer of the copy function may be in bound. 218 // Expects SVal of Size to be positive and unsigned. 219 // Expects SVal of FirstBuf to be a FieldRegion. 220 static bool IsFirstBufInBound(CheckerContext &C, 221 ProgramStateRef state, 222 const Expr *FirstBuf, 223 const Expr *Size); 224 }; 225 226 } //end anonymous namespace 227 228 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 229 230 //===----------------------------------------------------------------------===// 231 // Individual checks and utility methods. 232 //===----------------------------------------------------------------------===// 233 234 std::pair<ProgramStateRef , ProgramStateRef > 235 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 236 QualType Ty) { 237 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 238 if (!val) 239 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 240 241 SValBuilder &svalBuilder = C.getSValBuilder(); 242 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 243 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 244 } 245 246 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 247 ProgramStateRef state, 248 const Expr *S, SVal l) const { 249 // If a previous check has failed, propagate the failure. 250 if (!state) 251 return nullptr; 252 253 ProgramStateRef stateNull, stateNonNull; 254 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 255 256 if (stateNull && !stateNonNull) { 257 if (Filter.CheckCStringNullArg) { 258 SmallString<80> buf; 259 llvm::raw_svector_ostream os(buf); 260 assert(CurrentFunctionDescription); 261 os << "Null pointer argument in call to " << CurrentFunctionDescription; 262 263 emitNullArgBug(C, stateNull, S, os.str()); 264 } 265 return nullptr; 266 } 267 268 // From here on, assume that the value is non-null. 269 assert(stateNonNull); 270 return stateNonNull; 271 } 272 273 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 274 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 275 ProgramStateRef state, 276 const Expr *S, SVal l, 277 const char *warningMsg) const { 278 // If a previous check has failed, propagate the failure. 279 if (!state) 280 return nullptr; 281 282 // Check for out of bound array element access. 283 const MemRegion *R = l.getAsRegion(); 284 if (!R) 285 return state; 286 287 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 288 if (!ER) 289 return state; 290 291 if (ER->getValueType() != C.getASTContext().CharTy) 292 return state; 293 294 // Get the size of the array. 295 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 296 SValBuilder &svalBuilder = C.getSValBuilder(); 297 SVal Extent = 298 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 299 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 300 301 // Get the index of the accessed element. 302 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 303 304 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 305 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 306 if (StOutBound && !StInBound) { 307 // These checks are either enabled by the CString out-of-bounds checker 308 // explicitly or implicitly by the Malloc checker. 309 // In the latter case we only do modeling but do not emit warning. 310 if (!Filter.CheckCStringOutOfBounds) 311 return nullptr; 312 // Emit a bug report. 313 if (warningMsg) { 314 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 315 } else { 316 assert(CurrentFunctionDescription); 317 assert(CurrentFunctionDescription[0] != '\0'); 318 319 SmallString<80> buf; 320 llvm::raw_svector_ostream os(buf); 321 os << toUppercase(CurrentFunctionDescription[0]) 322 << &CurrentFunctionDescription[1] 323 << " accesses out-of-bound array element"; 324 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 325 } 326 return nullptr; 327 } 328 329 // Array bound check succeeded. From this point forward the array bound 330 // should always succeed. 331 return StInBound; 332 } 333 334 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 335 ProgramStateRef state, 336 const Expr *Size, 337 const Expr *FirstBuf, 338 const Expr *SecondBuf, 339 const char *firstMessage, 340 const char *secondMessage, 341 bool WarnAboutSize) const { 342 // If a previous check has failed, propagate the failure. 343 if (!state) 344 return nullptr; 345 346 SValBuilder &svalBuilder = C.getSValBuilder(); 347 ASTContext &Ctx = svalBuilder.getContext(); 348 const LocationContext *LCtx = C.getLocationContext(); 349 350 QualType sizeTy = Size->getType(); 351 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 352 353 // Check that the first buffer is non-null. 354 SVal BufVal = C.getSVal(FirstBuf); 355 state = checkNonNull(C, state, FirstBuf, BufVal); 356 if (!state) 357 return nullptr; 358 359 // If out-of-bounds checking is turned off, skip the rest. 360 if (!Filter.CheckCStringOutOfBounds) 361 return state; 362 363 // Get the access length and make sure it is known. 364 // FIXME: This assumes the caller has already checked that the access length 365 // is positive. And that it's unsigned. 366 SVal LengthVal = C.getSVal(Size); 367 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 368 if (!Length) 369 return state; 370 371 // Compute the offset of the last element to be accessed: size-1. 372 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 373 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 374 if (Offset.isUnknown()) 375 return nullptr; 376 NonLoc LastOffset = Offset.castAs<NonLoc>(); 377 378 // Check that the first buffer is sufficiently long. 379 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 380 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 381 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 382 383 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 384 LastOffset, PtrTy); 385 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 386 387 // If the buffer isn't large enough, abort. 388 if (!state) 389 return nullptr; 390 } 391 392 // If there's a second buffer, check it as well. 393 if (SecondBuf) { 394 BufVal = state->getSVal(SecondBuf, LCtx); 395 state = checkNonNull(C, state, SecondBuf, BufVal); 396 if (!state) 397 return nullptr; 398 399 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 400 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 401 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 402 403 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 404 LastOffset, PtrTy); 405 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 406 } 407 } 408 409 // Large enough or not, return this state! 410 return state; 411 } 412 413 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 414 ProgramStateRef state, 415 const Expr *Size, 416 const Expr *First, 417 const Expr *Second) const { 418 if (!Filter.CheckCStringBufferOverlap) 419 return state; 420 421 // Do a simple check for overlap: if the two arguments are from the same 422 // buffer, see if the end of the first is greater than the start of the second 423 // or vice versa. 424 425 // If a previous check has failed, propagate the failure. 426 if (!state) 427 return nullptr; 428 429 ProgramStateRef stateTrue, stateFalse; 430 431 // Get the buffer values and make sure they're known locations. 432 const LocationContext *LCtx = C.getLocationContext(); 433 SVal firstVal = state->getSVal(First, LCtx); 434 SVal secondVal = state->getSVal(Second, LCtx); 435 436 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 437 if (!firstLoc) 438 return state; 439 440 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 441 if (!secondLoc) 442 return state; 443 444 // Are the two values the same? 445 SValBuilder &svalBuilder = C.getSValBuilder(); 446 std::tie(stateTrue, stateFalse) = 447 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 448 449 if (stateTrue && !stateFalse) { 450 // If the values are known to be equal, that's automatically an overlap. 451 emitOverlapBug(C, stateTrue, First, Second); 452 return nullptr; 453 } 454 455 // assume the two expressions are not equal. 456 assert(stateFalse); 457 state = stateFalse; 458 459 // Which value comes first? 460 QualType cmpTy = svalBuilder.getConditionType(); 461 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 462 *firstLoc, *secondLoc, cmpTy); 463 Optional<DefinedOrUnknownSVal> reverseTest = 464 reverse.getAs<DefinedOrUnknownSVal>(); 465 if (!reverseTest) 466 return state; 467 468 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 469 if (stateTrue) { 470 if (stateFalse) { 471 // If we don't know which one comes first, we can't perform this test. 472 return state; 473 } else { 474 // Switch the values so that firstVal is before secondVal. 475 std::swap(firstLoc, secondLoc); 476 477 // Switch the Exprs as well, so that they still correspond. 478 std::swap(First, Second); 479 } 480 } 481 482 // Get the length, and make sure it too is known. 483 SVal LengthVal = state->getSVal(Size, LCtx); 484 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 485 if (!Length) 486 return state; 487 488 // Convert the first buffer's start address to char*. 489 // Bail out if the cast fails. 490 ASTContext &Ctx = svalBuilder.getContext(); 491 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 492 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 493 First->getType()); 494 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 495 if (!FirstStartLoc) 496 return state; 497 498 // Compute the end of the first buffer. Bail out if THAT fails. 499 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 500 *FirstStartLoc, *Length, CharPtrTy); 501 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 502 if (!FirstEndLoc) 503 return state; 504 505 // Is the end of the first buffer past the start of the second buffer? 506 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 507 *FirstEndLoc, *secondLoc, cmpTy); 508 Optional<DefinedOrUnknownSVal> OverlapTest = 509 Overlap.getAs<DefinedOrUnknownSVal>(); 510 if (!OverlapTest) 511 return state; 512 513 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 514 515 if (stateTrue && !stateFalse) { 516 // Overlap! 517 emitOverlapBug(C, stateTrue, First, Second); 518 return nullptr; 519 } 520 521 // assume the two expressions don't overlap. 522 assert(stateFalse); 523 return stateFalse; 524 } 525 526 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 527 const Stmt *First, const Stmt *Second) const { 528 ExplodedNode *N = C.generateErrorNode(state); 529 if (!N) 530 return; 531 532 if (!BT_Overlap) 533 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 534 categories::UnixAPI, "Improper arguments")); 535 536 // Generate a report for this bug. 537 auto report = llvm::make_unique<BugReport>( 538 *BT_Overlap, "Arguments must not be overlapping buffers", N); 539 report->addRange(First->getSourceRange()); 540 report->addRange(Second->getSourceRange()); 541 542 C.emitReport(std::move(report)); 543 } 544 545 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 546 const Stmt *S, StringRef WarningMsg) const { 547 if (ExplodedNode *N = C.generateErrorNode(State)) { 548 if (!BT_Null) 549 BT_Null.reset(new BuiltinBug( 550 Filter.CheckNameCStringNullArg, categories::UnixAPI, 551 "Null pointer argument in call to byte string function")); 552 553 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 554 auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N); 555 Report->addRange(S->getSourceRange()); 556 if (const auto *Ex = dyn_cast<Expr>(S)) 557 bugreporter::trackExpressionValue(N, Ex, *Report); 558 C.emitReport(std::move(Report)); 559 } 560 } 561 562 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 563 ProgramStateRef State, const Stmt *S, 564 StringRef WarningMsg) const { 565 if (ExplodedNode *N = C.generateErrorNode(State)) { 566 if (!BT_Bounds) 567 BT_Bounds.reset(new BuiltinBug( 568 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 569 : Filter.CheckNameCStringNullArg, 570 "Out-of-bound array access", 571 "Byte string function accesses out-of-bound array element")); 572 573 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 574 575 // FIXME: It would be nice to eventually make this diagnostic more clear, 576 // e.g., by referencing the original declaration or by saying *why* this 577 // reference is outside the range. 578 auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N); 579 Report->addRange(S->getSourceRange()); 580 C.emitReport(std::move(Report)); 581 } 582 } 583 584 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 585 const Stmt *S, 586 StringRef WarningMsg) const { 587 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 588 if (!BT_NotCString) 589 BT_NotCString.reset(new BuiltinBug( 590 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 591 "Argument is not a null-terminated string.")); 592 593 auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 594 595 Report->addRange(S->getSourceRange()); 596 C.emitReport(std::move(Report)); 597 } 598 } 599 600 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 601 ProgramStateRef State) const { 602 if (ExplodedNode *N = C.generateErrorNode(State)) { 603 if (!BT_NotCString) 604 BT_NotCString.reset( 605 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 606 "Sum of expressions causes overflow.")); 607 608 // This isn't a great error message, but this should never occur in real 609 // code anyway -- you'd have to create a buffer longer than a size_t can 610 // represent, which is sort of a contradiction. 611 const char *WarningMsg = 612 "This expression will create a string whose length is too big to " 613 "be represented as a size_t"; 614 615 auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 616 C.emitReport(std::move(Report)); 617 } 618 } 619 620 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 621 ProgramStateRef state, 622 NonLoc left, 623 NonLoc right) const { 624 // If out-of-bounds checking is turned off, skip the rest. 625 if (!Filter.CheckCStringOutOfBounds) 626 return state; 627 628 // If a previous check has failed, propagate the failure. 629 if (!state) 630 return nullptr; 631 632 SValBuilder &svalBuilder = C.getSValBuilder(); 633 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 634 635 QualType sizeTy = svalBuilder.getContext().getSizeType(); 636 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 637 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 638 639 SVal maxMinusRight; 640 if (right.getAs<nonloc::ConcreteInt>()) { 641 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 642 sizeTy); 643 } else { 644 // Try switching the operands. (The order of these two assignments is 645 // important!) 646 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 647 sizeTy); 648 left = right; 649 } 650 651 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 652 QualType cmpTy = svalBuilder.getConditionType(); 653 // If left > max - right, we have an overflow. 654 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 655 *maxMinusRightNL, cmpTy); 656 657 ProgramStateRef stateOverflow, stateOkay; 658 std::tie(stateOverflow, stateOkay) = 659 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 660 661 if (stateOverflow && !stateOkay) { 662 // We have an overflow. Emit a bug report. 663 emitAdditionOverflowBug(C, stateOverflow); 664 return nullptr; 665 } 666 667 // From now on, assume an overflow didn't occur. 668 assert(stateOkay); 669 state = stateOkay; 670 } 671 672 return state; 673 } 674 675 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 676 const MemRegion *MR, 677 SVal strLength) { 678 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 679 680 MR = MR->StripCasts(); 681 682 switch (MR->getKind()) { 683 case MemRegion::StringRegionKind: 684 // FIXME: This can happen if we strcpy() into a string region. This is 685 // undefined [C99 6.4.5p6], but we should still warn about it. 686 return state; 687 688 case MemRegion::SymbolicRegionKind: 689 case MemRegion::AllocaRegionKind: 690 case MemRegion::VarRegionKind: 691 case MemRegion::FieldRegionKind: 692 case MemRegion::ObjCIvarRegionKind: 693 // These are the types we can currently track string lengths for. 694 break; 695 696 case MemRegion::ElementRegionKind: 697 // FIXME: Handle element regions by upper-bounding the parent region's 698 // string length. 699 return state; 700 701 default: 702 // Other regions (mostly non-data) can't have a reliable C string length. 703 // For now, just ignore the change. 704 // FIXME: These are rare but not impossible. We should output some kind of 705 // warning for things like strcpy((char[]){'a', 0}, "b"); 706 return state; 707 } 708 709 if (strLength.isUnknown()) 710 return state->remove<CStringLength>(MR); 711 712 return state->set<CStringLength>(MR, strLength); 713 } 714 715 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 716 ProgramStateRef &state, 717 const Expr *Ex, 718 const MemRegion *MR, 719 bool hypothetical) { 720 if (!hypothetical) { 721 // If there's a recorded length, go ahead and return it. 722 const SVal *Recorded = state->get<CStringLength>(MR); 723 if (Recorded) 724 return *Recorded; 725 } 726 727 // Otherwise, get a new symbol and update the state. 728 SValBuilder &svalBuilder = C.getSValBuilder(); 729 QualType sizeTy = svalBuilder.getContext().getSizeType(); 730 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 731 MR, Ex, sizeTy, 732 C.getLocationContext(), 733 C.blockCount()); 734 735 if (!hypothetical) { 736 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 737 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 738 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 739 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 740 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 741 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 742 fourInt); 743 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 744 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 745 maxLength, sizeTy); 746 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 747 } 748 state = state->set<CStringLength>(MR, strLength); 749 } 750 751 return strLength; 752 } 753 754 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 755 const Expr *Ex, SVal Buf, 756 bool hypothetical) const { 757 const MemRegion *MR = Buf.getAsRegion(); 758 if (!MR) { 759 // If we can't get a region, see if it's something we /know/ isn't a 760 // C string. In the context of locations, the only time we can issue such 761 // a warning is for labels. 762 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 763 if (Filter.CheckCStringNotNullTerm) { 764 SmallString<120> buf; 765 llvm::raw_svector_ostream os(buf); 766 assert(CurrentFunctionDescription); 767 os << "Argument to " << CurrentFunctionDescription 768 << " is the address of the label '" << Label->getLabel()->getName() 769 << "', which is not a null-terminated string"; 770 771 emitNotCStringBug(C, state, Ex, os.str()); 772 } 773 return UndefinedVal(); 774 } 775 776 // If it's not a region and not a label, give up. 777 return UnknownVal(); 778 } 779 780 // If we have a region, strip casts from it and see if we can figure out 781 // its length. For anything we can't figure out, just return UnknownVal. 782 MR = MR->StripCasts(); 783 784 switch (MR->getKind()) { 785 case MemRegion::StringRegionKind: { 786 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 787 // so we can assume that the byte length is the correct C string length. 788 SValBuilder &svalBuilder = C.getSValBuilder(); 789 QualType sizeTy = svalBuilder.getContext().getSizeType(); 790 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 791 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 792 } 793 case MemRegion::SymbolicRegionKind: 794 case MemRegion::AllocaRegionKind: 795 case MemRegion::VarRegionKind: 796 case MemRegion::FieldRegionKind: 797 case MemRegion::ObjCIvarRegionKind: 798 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 799 case MemRegion::CompoundLiteralRegionKind: 800 // FIXME: Can we track this? Is it necessary? 801 return UnknownVal(); 802 case MemRegion::ElementRegionKind: 803 // FIXME: How can we handle this? It's not good enough to subtract the 804 // offset from the base string length; consider "123\x00567" and &a[5]. 805 return UnknownVal(); 806 default: 807 // Other regions (mostly non-data) can't have a reliable C string length. 808 // In this case, an error is emitted and UndefinedVal is returned. 809 // The caller should always be prepared to handle this case. 810 if (Filter.CheckCStringNotNullTerm) { 811 SmallString<120> buf; 812 llvm::raw_svector_ostream os(buf); 813 814 assert(CurrentFunctionDescription); 815 os << "Argument to " << CurrentFunctionDescription << " is "; 816 817 if (SummarizeRegion(os, C.getASTContext(), MR)) 818 os << ", which is not a null-terminated string"; 819 else 820 os << "not a null-terminated string"; 821 822 emitNotCStringBug(C, state, Ex, os.str()); 823 } 824 return UndefinedVal(); 825 } 826 } 827 828 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 829 ProgramStateRef &state, const Expr *expr, SVal val) const { 830 831 // Get the memory region pointed to by the val. 832 const MemRegion *bufRegion = val.getAsRegion(); 833 if (!bufRegion) 834 return nullptr; 835 836 // Strip casts off the memory region. 837 bufRegion = bufRegion->StripCasts(); 838 839 // Cast the memory region to a string region. 840 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 841 if (!strRegion) 842 return nullptr; 843 844 // Return the actual string in the string region. 845 return strRegion->getStringLiteral(); 846 } 847 848 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 849 ProgramStateRef state, 850 const Expr *FirstBuf, 851 const Expr *Size) { 852 // If we do not know that the buffer is long enough we return 'true'. 853 // Otherwise the parent region of this field region would also get 854 // invalidated, which would lead to warnings based on an unknown state. 855 856 // Originally copied from CheckBufferAccess and CheckLocation. 857 SValBuilder &svalBuilder = C.getSValBuilder(); 858 ASTContext &Ctx = svalBuilder.getContext(); 859 const LocationContext *LCtx = C.getLocationContext(); 860 861 QualType sizeTy = Size->getType(); 862 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 863 SVal BufVal = state->getSVal(FirstBuf, LCtx); 864 865 SVal LengthVal = state->getSVal(Size, LCtx); 866 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 867 if (!Length) 868 return true; // cf top comment. 869 870 // Compute the offset of the last element to be accessed: size-1. 871 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 872 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 873 if (Offset.isUnknown()) 874 return true; // cf top comment 875 NonLoc LastOffset = Offset.castAs<NonLoc>(); 876 877 // Check that the first buffer is sufficiently long. 878 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 879 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 880 if (!BufLoc) 881 return true; // cf top comment. 882 883 SVal BufEnd = 884 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 885 886 // Check for out of bound array element access. 887 const MemRegion *R = BufEnd.getAsRegion(); 888 if (!R) 889 return true; // cf top comment. 890 891 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 892 if (!ER) 893 return true; // cf top comment. 894 895 // FIXME: Does this crash when a non-standard definition 896 // of a library function is encountered? 897 assert(ER->getValueType() == C.getASTContext().CharTy && 898 "IsFirstBufInBound should only be called with char* ElementRegions"); 899 900 // Get the size of the array. 901 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 902 SVal Extent = 903 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 904 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 905 906 // Get the index of the accessed element. 907 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 908 909 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 910 911 return static_cast<bool>(StInBound); 912 } 913 914 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 915 ProgramStateRef state, 916 const Expr *E, SVal V, 917 bool IsSourceBuffer, 918 const Expr *Size) { 919 Optional<Loc> L = V.getAs<Loc>(); 920 if (!L) 921 return state; 922 923 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 924 // some assumptions about the value that CFRefCount can't. Even so, it should 925 // probably be refactored. 926 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 927 const MemRegion *R = MR->getRegion()->StripCasts(); 928 929 // Are we dealing with an ElementRegion? If so, we should be invalidating 930 // the super-region. 931 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 932 R = ER->getSuperRegion(); 933 // FIXME: What about layers of ElementRegions? 934 } 935 936 // Invalidate this region. 937 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 938 939 bool CausesPointerEscape = false; 940 RegionAndSymbolInvalidationTraits ITraits; 941 // Invalidate and escape only indirect regions accessible through the source 942 // buffer. 943 if (IsSourceBuffer) { 944 ITraits.setTrait(R->getBaseRegion(), 945 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 946 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 947 CausesPointerEscape = true; 948 } else { 949 const MemRegion::Kind& K = R->getKind(); 950 if (K == MemRegion::FieldRegionKind) 951 if (Size && IsFirstBufInBound(C, state, E, Size)) { 952 // If destination buffer is a field region and access is in bound, 953 // do not invalidate its super region. 954 ITraits.setTrait( 955 R, 956 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 957 } 958 } 959 960 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 961 CausesPointerEscape, nullptr, nullptr, 962 &ITraits); 963 } 964 965 // If we have a non-region value by chance, just remove the binding. 966 // FIXME: is this necessary or correct? This handles the non-Region 967 // cases. Is it ever valid to store to these? 968 return state->killBinding(*L); 969 } 970 971 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 972 const MemRegion *MR) { 973 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 974 975 switch (MR->getKind()) { 976 case MemRegion::FunctionCodeRegionKind: { 977 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 978 if (FD) 979 os << "the address of the function '" << *FD << '\''; 980 else 981 os << "the address of a function"; 982 return true; 983 } 984 case MemRegion::BlockCodeRegionKind: 985 os << "block text"; 986 return true; 987 case MemRegion::BlockDataRegionKind: 988 os << "a block"; 989 return true; 990 case MemRegion::CXXThisRegionKind: 991 case MemRegion::CXXTempObjectRegionKind: 992 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 993 return true; 994 case MemRegion::VarRegionKind: 995 os << "a variable of type" << TVR->getValueType().getAsString(); 996 return true; 997 case MemRegion::FieldRegionKind: 998 os << "a field of type " << TVR->getValueType().getAsString(); 999 return true; 1000 case MemRegion::ObjCIvarRegionKind: 1001 os << "an instance variable of type " << TVR->getValueType().getAsString(); 1002 return true; 1003 default: 1004 return false; 1005 } 1006 } 1007 1008 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1009 const Expr *Size, CheckerContext &C, 1010 ProgramStateRef &State) { 1011 SVal MemVal = C.getSVal(DstBuffer); 1012 SVal SizeVal = C.getSVal(Size); 1013 const MemRegion *MR = MemVal.getAsRegion(); 1014 if (!MR) 1015 return false; 1016 1017 // We're about to model memset by producing a "default binding" in the Store. 1018 // Our current implementation - RegionStore - doesn't support default bindings 1019 // that don't cover the whole base region. So we should first get the offset 1020 // and the base region to figure out whether the offset of buffer is 0. 1021 RegionOffset Offset = MR->getAsOffset(); 1022 const MemRegion *BR = Offset.getRegion(); 1023 1024 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1025 if (!SizeNL) 1026 return false; 1027 1028 SValBuilder &svalBuilder = C.getSValBuilder(); 1029 ASTContext &Ctx = C.getASTContext(); 1030 1031 // void *memset(void *dest, int ch, size_t count); 1032 // For now we can only handle the case of offset is 0 and concrete char value. 1033 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1034 Offset.getOffset() == 0) { 1035 // Get the base region's extent. 1036 auto *SubReg = cast<SubRegion>(BR); 1037 DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); 1038 1039 ProgramStateRef StateWholeReg, StateNotWholeReg; 1040 std::tie(StateWholeReg, StateNotWholeReg) = 1041 State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); 1042 1043 // With the semantic of 'memset()', we should convert the CharVal to 1044 // unsigned char. 1045 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1046 1047 ProgramStateRef StateNullChar, StateNonNullChar; 1048 std::tie(StateNullChar, StateNonNullChar) = 1049 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1050 1051 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1052 !StateNonNullChar) { 1053 // If the 'memset()' acts on the whole region of destination buffer and 1054 // the value of the second argument of 'memset()' is zero, bind the second 1055 // argument's value to the destination buffer with 'default binding'. 1056 // FIXME: Since there is no perfect way to bind the non-zero character, we 1057 // can only deal with zero value here. In the future, we need to deal with 1058 // the binding of non-zero value in the case of whole region. 1059 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1060 C.getLocationContext()); 1061 } else { 1062 // If the destination buffer's extent is not equal to the value of 1063 // third argument, just invalidate buffer. 1064 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1065 /*IsSourceBuffer*/ false, Size); 1066 } 1067 1068 if (StateNullChar && !StateNonNullChar) { 1069 // If the value of the second argument of 'memset()' is zero, set the 1070 // string length of destination buffer to 0 directly. 1071 State = setCStringLength(State, MR, 1072 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1073 } else if (!StateNullChar && StateNonNullChar) { 1074 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1075 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1076 C.getLocationContext(), C.blockCount()); 1077 1078 // If the value of second argument is not zero, then the string length 1079 // is at least the size argument. 1080 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1081 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1082 1083 State = setCStringLength( 1084 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1085 MR, NewStrLen); 1086 } 1087 } else { 1088 // If the offset is not zero and char value is not concrete, we can do 1089 // nothing but invalidate the buffer. 1090 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1091 /*IsSourceBuffer*/ false, Size); 1092 } 1093 return true; 1094 } 1095 1096 //===----------------------------------------------------------------------===// 1097 // evaluation of individual function calls. 1098 //===----------------------------------------------------------------------===// 1099 1100 void CStringChecker::evalCopyCommon(CheckerContext &C, 1101 const CallExpr *CE, 1102 ProgramStateRef state, 1103 const Expr *Size, const Expr *Dest, 1104 const Expr *Source, bool Restricted, 1105 bool IsMempcpy) const { 1106 CurrentFunctionDescription = "memory copy function"; 1107 1108 // See if the size argument is zero. 1109 const LocationContext *LCtx = C.getLocationContext(); 1110 SVal sizeVal = state->getSVal(Size, LCtx); 1111 QualType sizeTy = Size->getType(); 1112 1113 ProgramStateRef stateZeroSize, stateNonZeroSize; 1114 std::tie(stateZeroSize, stateNonZeroSize) = 1115 assumeZero(C, state, sizeVal, sizeTy); 1116 1117 // Get the value of the Dest. 1118 SVal destVal = state->getSVal(Dest, LCtx); 1119 1120 // If the size is zero, there won't be any actual memory access, so 1121 // just bind the return value to the destination buffer and return. 1122 if (stateZeroSize && !stateNonZeroSize) { 1123 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1124 C.addTransition(stateZeroSize); 1125 return; 1126 } 1127 1128 // If the size can be nonzero, we have to check the other arguments. 1129 if (stateNonZeroSize) { 1130 state = stateNonZeroSize; 1131 1132 // Ensure the destination is not null. If it is NULL there will be a 1133 // NULL pointer dereference. 1134 state = checkNonNull(C, state, Dest, destVal); 1135 if (!state) 1136 return; 1137 1138 // Get the value of the Src. 1139 SVal srcVal = state->getSVal(Source, LCtx); 1140 1141 // Ensure the source is not null. If it is NULL there will be a 1142 // NULL pointer dereference. 1143 state = checkNonNull(C, state, Source, srcVal); 1144 if (!state) 1145 return; 1146 1147 // Ensure the accesses are valid and that the buffers do not overlap. 1148 const char * const writeWarning = 1149 "Memory copy function overflows destination buffer"; 1150 state = CheckBufferAccess(C, state, Size, Dest, Source, 1151 writeWarning, /* sourceWarning = */ nullptr); 1152 if (Restricted) 1153 state = CheckOverlap(C, state, Size, Dest, Source); 1154 1155 if (!state) 1156 return; 1157 1158 // If this is mempcpy, get the byte after the last byte copied and 1159 // bind the expr. 1160 if (IsMempcpy) { 1161 // Get the byte after the last byte copied. 1162 SValBuilder &SvalBuilder = C.getSValBuilder(); 1163 ASTContext &Ctx = SvalBuilder.getContext(); 1164 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1165 SVal DestRegCharVal = 1166 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1167 SVal lastElement = C.getSValBuilder().evalBinOp( 1168 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1169 // If we don't know how much we copied, we can at least 1170 // conjure a return value for later. 1171 if (lastElement.isUnknown()) 1172 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1173 C.blockCount()); 1174 1175 // The byte after the last byte copied is the return value. 1176 state = state->BindExpr(CE, LCtx, lastElement); 1177 } else { 1178 // All other copies return the destination buffer. 1179 // (Well, bcopy() has a void return type, but this won't hurt.) 1180 state = state->BindExpr(CE, LCtx, destVal); 1181 } 1182 1183 // Invalidate the destination (regular invalidation without pointer-escaping 1184 // the address of the top-level region). 1185 // FIXME: Even if we can't perfectly model the copy, we should see if we 1186 // can use LazyCompoundVals to copy the source values into the destination. 1187 // This would probably remove any existing bindings past the end of the 1188 // copied region, but that's still an improvement over blank invalidation. 1189 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1190 /*IsSourceBuffer*/false, Size); 1191 1192 // Invalidate the source (const-invalidation without const-pointer-escaping 1193 // the address of the top-level region). 1194 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1195 /*IsSourceBuffer*/true, nullptr); 1196 1197 C.addTransition(state); 1198 } 1199 } 1200 1201 1202 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1203 if (CE->getNumArgs() < 3) 1204 return; 1205 1206 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1207 // The return value is the address of the destination buffer. 1208 const Expr *Dest = CE->getArg(0); 1209 ProgramStateRef state = C.getState(); 1210 1211 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1212 } 1213 1214 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1215 if (CE->getNumArgs() < 3) 1216 return; 1217 1218 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1219 // The return value is a pointer to the byte following the last written byte. 1220 const Expr *Dest = CE->getArg(0); 1221 ProgramStateRef state = C.getState(); 1222 1223 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1224 } 1225 1226 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1227 if (CE->getNumArgs() < 3) 1228 return; 1229 1230 // void *memmove(void *dst, const void *src, size_t n); 1231 // The return value is the address of the destination buffer. 1232 const Expr *Dest = CE->getArg(0); 1233 ProgramStateRef state = C.getState(); 1234 1235 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1236 } 1237 1238 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1239 if (CE->getNumArgs() < 3) 1240 return; 1241 1242 // void bcopy(const void *src, void *dst, size_t n); 1243 evalCopyCommon(C, CE, C.getState(), 1244 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1245 } 1246 1247 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1248 if (CE->getNumArgs() < 3) 1249 return; 1250 1251 // int memcmp(const void *s1, const void *s2, size_t n); 1252 CurrentFunctionDescription = "memory comparison function"; 1253 1254 const Expr *Left = CE->getArg(0); 1255 const Expr *Right = CE->getArg(1); 1256 const Expr *Size = CE->getArg(2); 1257 1258 ProgramStateRef state = C.getState(); 1259 SValBuilder &svalBuilder = C.getSValBuilder(); 1260 1261 // See if the size argument is zero. 1262 const LocationContext *LCtx = C.getLocationContext(); 1263 SVal sizeVal = state->getSVal(Size, LCtx); 1264 QualType sizeTy = Size->getType(); 1265 1266 ProgramStateRef stateZeroSize, stateNonZeroSize; 1267 std::tie(stateZeroSize, stateNonZeroSize) = 1268 assumeZero(C, state, sizeVal, sizeTy); 1269 1270 // If the size can be zero, the result will be 0 in that case, and we don't 1271 // have to check either of the buffers. 1272 if (stateZeroSize) { 1273 state = stateZeroSize; 1274 state = state->BindExpr(CE, LCtx, 1275 svalBuilder.makeZeroVal(CE->getType())); 1276 C.addTransition(state); 1277 } 1278 1279 // If the size can be nonzero, we have to check the other arguments. 1280 if (stateNonZeroSize) { 1281 state = stateNonZeroSize; 1282 // If we know the two buffers are the same, we know the result is 0. 1283 // First, get the two buffers' addresses. Another checker will have already 1284 // made sure they're not undefined. 1285 DefinedOrUnknownSVal LV = 1286 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1287 DefinedOrUnknownSVal RV = 1288 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1289 1290 // See if they are the same. 1291 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1292 ProgramStateRef StSameBuf, StNotSameBuf; 1293 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1294 1295 // If the two arguments might be the same buffer, we know the result is 0, 1296 // and we only need to check one size. 1297 if (StSameBuf) { 1298 state = StSameBuf; 1299 state = CheckBufferAccess(C, state, Size, Left); 1300 if (state) { 1301 state = StSameBuf->BindExpr(CE, LCtx, 1302 svalBuilder.makeZeroVal(CE->getType())); 1303 C.addTransition(state); 1304 } 1305 } 1306 1307 // If the two arguments might be different buffers, we have to check the 1308 // size of both of them. 1309 if (StNotSameBuf) { 1310 state = StNotSameBuf; 1311 state = CheckBufferAccess(C, state, Size, Left, Right); 1312 if (state) { 1313 // The return value is the comparison result, which we don't know. 1314 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1315 C.blockCount()); 1316 state = state->BindExpr(CE, LCtx, CmpV); 1317 C.addTransition(state); 1318 } 1319 } 1320 } 1321 } 1322 1323 void CStringChecker::evalstrLength(CheckerContext &C, 1324 const CallExpr *CE) const { 1325 if (CE->getNumArgs() < 1) 1326 return; 1327 1328 // size_t strlen(const char *s); 1329 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1330 } 1331 1332 void CStringChecker::evalstrnLength(CheckerContext &C, 1333 const CallExpr *CE) const { 1334 if (CE->getNumArgs() < 2) 1335 return; 1336 1337 // size_t strnlen(const char *s, size_t maxlen); 1338 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1339 } 1340 1341 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1342 bool IsStrnlen) const { 1343 CurrentFunctionDescription = "string length function"; 1344 ProgramStateRef state = C.getState(); 1345 const LocationContext *LCtx = C.getLocationContext(); 1346 1347 if (IsStrnlen) { 1348 const Expr *maxlenExpr = CE->getArg(1); 1349 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1350 1351 ProgramStateRef stateZeroSize, stateNonZeroSize; 1352 std::tie(stateZeroSize, stateNonZeroSize) = 1353 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1354 1355 // If the size can be zero, the result will be 0 in that case, and we don't 1356 // have to check the string itself. 1357 if (stateZeroSize) { 1358 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1359 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1360 C.addTransition(stateZeroSize); 1361 } 1362 1363 // If the size is GUARANTEED to be zero, we're done! 1364 if (!stateNonZeroSize) 1365 return; 1366 1367 // Otherwise, record the assumption that the size is nonzero. 1368 state = stateNonZeroSize; 1369 } 1370 1371 // Check that the string argument is non-null. 1372 const Expr *Arg = CE->getArg(0); 1373 SVal ArgVal = state->getSVal(Arg, LCtx); 1374 1375 state = checkNonNull(C, state, Arg, ArgVal); 1376 1377 if (!state) 1378 return; 1379 1380 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1381 1382 // If the argument isn't a valid C string, there's no valid state to 1383 // transition to. 1384 if (strLength.isUndef()) 1385 return; 1386 1387 DefinedOrUnknownSVal result = UnknownVal(); 1388 1389 // If the check is for strnlen() then bind the return value to no more than 1390 // the maxlen value. 1391 if (IsStrnlen) { 1392 QualType cmpTy = C.getSValBuilder().getConditionType(); 1393 1394 // It's a little unfortunate to be getting this again, 1395 // but it's not that expensive... 1396 const Expr *maxlenExpr = CE->getArg(1); 1397 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1398 1399 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1400 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1401 1402 if (strLengthNL && maxlenValNL) { 1403 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1404 1405 // Check if the strLength is greater than the maxlen. 1406 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1407 C.getSValBuilder() 1408 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1409 .castAs<DefinedOrUnknownSVal>()); 1410 1411 if (stateStringTooLong && !stateStringNotTooLong) { 1412 // If the string is longer than maxlen, return maxlen. 1413 result = *maxlenValNL; 1414 } else if (stateStringNotTooLong && !stateStringTooLong) { 1415 // If the string is shorter than maxlen, return its length. 1416 result = *strLengthNL; 1417 } 1418 } 1419 1420 if (result.isUnknown()) { 1421 // If we don't have enough information for a comparison, there's 1422 // no guarantee the full string length will actually be returned. 1423 // All we know is the return value is the min of the string length 1424 // and the limit. This is better than nothing. 1425 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1426 C.blockCount()); 1427 NonLoc resultNL = result.castAs<NonLoc>(); 1428 1429 if (strLengthNL) { 1430 state = state->assume(C.getSValBuilder().evalBinOpNN( 1431 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1432 .castAs<DefinedOrUnknownSVal>(), true); 1433 } 1434 1435 if (maxlenValNL) { 1436 state = state->assume(C.getSValBuilder().evalBinOpNN( 1437 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1438 .castAs<DefinedOrUnknownSVal>(), true); 1439 } 1440 } 1441 1442 } else { 1443 // This is a plain strlen(), not strnlen(). 1444 result = strLength.castAs<DefinedOrUnknownSVal>(); 1445 1446 // If we don't know the length of the string, conjure a return 1447 // value, so it can be used in constraints, at least. 1448 if (result.isUnknown()) { 1449 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1450 C.blockCount()); 1451 } 1452 } 1453 1454 // Bind the return value. 1455 assert(!result.isUnknown() && "Should have conjured a value by now"); 1456 state = state->BindExpr(CE, LCtx, result); 1457 C.addTransition(state); 1458 } 1459 1460 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1461 if (CE->getNumArgs() < 2) 1462 return; 1463 1464 // char *strcpy(char *restrict dst, const char *restrict src); 1465 evalStrcpyCommon(C, CE, 1466 /* returnEnd = */ false, 1467 /* isBounded = */ false, 1468 /* isAppending = */ false); 1469 } 1470 1471 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1472 if (CE->getNumArgs() < 3) 1473 return; 1474 1475 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1476 evalStrcpyCommon(C, CE, 1477 /* returnEnd = */ false, 1478 /* isBounded = */ true, 1479 /* isAppending = */ false); 1480 } 1481 1482 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1483 if (CE->getNumArgs() < 2) 1484 return; 1485 1486 // char *stpcpy(char *restrict dst, const char *restrict src); 1487 evalStrcpyCommon(C, CE, 1488 /* returnEnd = */ true, 1489 /* isBounded = */ false, 1490 /* isAppending = */ false); 1491 } 1492 1493 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1494 if (CE->getNumArgs() < 3) 1495 return; 1496 1497 // char *strlcpy(char *dst, const char *src, size_t n); 1498 evalStrcpyCommon(C, CE, 1499 /* returnEnd = */ true, 1500 /* isBounded = */ true, 1501 /* isAppending = */ false, 1502 /* returnPtr = */ false); 1503 } 1504 1505 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1506 if (CE->getNumArgs() < 2) 1507 return; 1508 1509 //char *strcat(char *restrict s1, const char *restrict s2); 1510 evalStrcpyCommon(C, CE, 1511 /* returnEnd = */ false, 1512 /* isBounded = */ false, 1513 /* isAppending = */ true); 1514 } 1515 1516 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1517 if (CE->getNumArgs() < 3) 1518 return; 1519 1520 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1521 evalStrcpyCommon(C, CE, 1522 /* returnEnd = */ false, 1523 /* isBounded = */ true, 1524 /* isAppending = */ true); 1525 } 1526 1527 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1528 if (CE->getNumArgs() < 3) 1529 return; 1530 1531 // FIXME: strlcat() uses a different rule for bound checking, i.e. 'n' means 1532 // a different thing as compared to strncat(). This currently causes 1533 // false positives in the alpha string bound checker. 1534 1535 //char *strlcat(char *s1, const char *s2, size_t n); 1536 evalStrcpyCommon(C, CE, 1537 /* returnEnd = */ false, 1538 /* isBounded = */ true, 1539 /* isAppending = */ true, 1540 /* returnPtr = */ false); 1541 } 1542 1543 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1544 bool returnEnd, bool isBounded, 1545 bool isAppending, bool returnPtr) const { 1546 CurrentFunctionDescription = "string copy function"; 1547 ProgramStateRef state = C.getState(); 1548 const LocationContext *LCtx = C.getLocationContext(); 1549 1550 // Check that the destination is non-null. 1551 const Expr *Dst = CE->getArg(0); 1552 SVal DstVal = state->getSVal(Dst, LCtx); 1553 1554 state = checkNonNull(C, state, Dst, DstVal); 1555 if (!state) 1556 return; 1557 1558 // Check that the source is non-null. 1559 const Expr *srcExpr = CE->getArg(1); 1560 SVal srcVal = state->getSVal(srcExpr, LCtx); 1561 state = checkNonNull(C, state, srcExpr, srcVal); 1562 if (!state) 1563 return; 1564 1565 // Get the string length of the source. 1566 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1567 1568 // If the source isn't a valid C string, give up. 1569 if (strLength.isUndef()) 1570 return; 1571 1572 SValBuilder &svalBuilder = C.getSValBuilder(); 1573 QualType cmpTy = svalBuilder.getConditionType(); 1574 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1575 1576 // These two values allow checking two kinds of errors: 1577 // - actual overflows caused by a source that doesn't fit in the destination 1578 // - potential overflows caused by a bound that could exceed the destination 1579 SVal amountCopied = UnknownVal(); 1580 SVal maxLastElementIndex = UnknownVal(); 1581 const char *boundWarning = nullptr; 1582 1583 state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr); 1584 1585 if (!state) 1586 return; 1587 1588 // If the function is strncpy, strncat, etc... it is bounded. 1589 if (isBounded) { 1590 // Get the max number of characters to copy. 1591 const Expr *lenExpr = CE->getArg(2); 1592 SVal lenVal = state->getSVal(lenExpr, LCtx); 1593 1594 // Protect against misdeclared strncpy(). 1595 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1596 1597 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1598 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1599 1600 // If we know both values, we might be able to figure out how much 1601 // we're copying. 1602 if (strLengthNL && lenValNL) { 1603 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1604 1605 // Check if the max number to copy is less than the length of the src. 1606 // If the bound is equal to the source length, strncpy won't null- 1607 // terminate the result! 1608 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1609 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1610 .castAs<DefinedOrUnknownSVal>()); 1611 1612 if (stateSourceTooLong && !stateSourceNotTooLong) { 1613 // Max number to copy is less than the length of the src, so the actual 1614 // strLength copied is the max number arg. 1615 state = stateSourceTooLong; 1616 amountCopied = lenVal; 1617 1618 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1619 // The source buffer entirely fits in the bound. 1620 state = stateSourceNotTooLong; 1621 amountCopied = strLength; 1622 } 1623 } 1624 1625 // We still want to know if the bound is known to be too large. 1626 if (lenValNL) { 1627 if (isAppending) { 1628 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1629 1630 // Get the string length of the destination. If the destination is 1631 // memory that can't have a string length, we shouldn't be copying 1632 // into it anyway. 1633 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1634 if (dstStrLength.isUndef()) 1635 return; 1636 1637 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1638 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1639 *lenValNL, 1640 *dstStrLengthNL, 1641 sizeTy); 1642 boundWarning = "Size argument is greater than the free space in the " 1643 "destination buffer"; 1644 } 1645 1646 } else { 1647 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1648 // (Yes, strncpy and strncat differ in how they treat termination. 1649 // strncat ALWAYS terminates, but strncpy doesn't.) 1650 1651 // We need a special case for when the copy size is zero, in which 1652 // case strncpy will do no work at all. Our bounds check uses n-1 1653 // as the last element accessed, so n == 0 is problematic. 1654 ProgramStateRef StateZeroSize, StateNonZeroSize; 1655 std::tie(StateZeroSize, StateNonZeroSize) = 1656 assumeZero(C, state, *lenValNL, sizeTy); 1657 1658 // If the size is known to be zero, we're done. 1659 if (StateZeroSize && !StateNonZeroSize) { 1660 if (returnPtr) { 1661 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1662 } else { 1663 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL); 1664 } 1665 C.addTransition(StateZeroSize); 1666 return; 1667 } 1668 1669 // Otherwise, go ahead and figure out the last element we'll touch. 1670 // We don't record the non-zero assumption here because we can't 1671 // be sure. We won't warn on a possible zero. 1672 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1673 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1674 one, sizeTy); 1675 boundWarning = "Size argument is greater than the length of the " 1676 "destination buffer"; 1677 } 1678 } 1679 1680 // If we couldn't pin down the copy length, at least bound it. 1681 // FIXME: We should actually run this code path for append as well, but 1682 // right now it creates problems with constraints (since we can end up 1683 // trying to pass constraints from symbol to symbol). 1684 if (amountCopied.isUnknown() && !isAppending) { 1685 // Try to get a "hypothetical" string length symbol, which we can later 1686 // set as a real value if that turns out to be the case. 1687 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1688 assert(!amountCopied.isUndef()); 1689 1690 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1691 if (lenValNL) { 1692 // amountCopied <= lenVal 1693 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1694 *amountCopiedNL, 1695 *lenValNL, 1696 cmpTy); 1697 state = state->assume( 1698 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1699 if (!state) 1700 return; 1701 } 1702 1703 if (strLengthNL) { 1704 // amountCopied <= strlen(source) 1705 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1706 *amountCopiedNL, 1707 *strLengthNL, 1708 cmpTy); 1709 state = state->assume( 1710 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1711 if (!state) 1712 return; 1713 } 1714 } 1715 } 1716 1717 } else { 1718 // The function isn't bounded. The amount copied should match the length 1719 // of the source buffer. 1720 amountCopied = strLength; 1721 } 1722 1723 assert(state); 1724 1725 // This represents the number of characters copied into the destination 1726 // buffer. (It may not actually be the strlen if the destination buffer 1727 // is not terminated.) 1728 SVal finalStrLength = UnknownVal(); 1729 1730 // If this is an appending function (strcat, strncat...) then set the 1731 // string length to strlen(src) + strlen(dst) since the buffer will 1732 // ultimately contain both. 1733 if (isAppending) { 1734 // Get the string length of the destination. If the destination is memory 1735 // that can't have a string length, we shouldn't be copying into it anyway. 1736 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1737 if (dstStrLength.isUndef()) 1738 return; 1739 1740 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1741 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1742 1743 // If we know both string lengths, we might know the final string length. 1744 if (srcStrLengthNL && dstStrLengthNL) { 1745 // Make sure the two lengths together don't overflow a size_t. 1746 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1747 if (!state) 1748 return; 1749 1750 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1751 *dstStrLengthNL, sizeTy); 1752 } 1753 1754 // If we couldn't get a single value for the final string length, 1755 // we can at least bound it by the individual lengths. 1756 if (finalStrLength.isUnknown()) { 1757 // Try to get a "hypothetical" string length symbol, which we can later 1758 // set as a real value if that turns out to be the case. 1759 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1760 assert(!finalStrLength.isUndef()); 1761 1762 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1763 if (srcStrLengthNL) { 1764 // finalStrLength >= srcStrLength 1765 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1766 *finalStrLengthNL, 1767 *srcStrLengthNL, 1768 cmpTy); 1769 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1770 true); 1771 if (!state) 1772 return; 1773 } 1774 1775 if (dstStrLengthNL) { 1776 // finalStrLength >= dstStrLength 1777 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1778 *finalStrLengthNL, 1779 *dstStrLengthNL, 1780 cmpTy); 1781 state = 1782 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1783 if (!state) 1784 return; 1785 } 1786 } 1787 } 1788 1789 } else { 1790 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1791 // the final string length will match the input string length. 1792 finalStrLength = amountCopied; 1793 } 1794 1795 SVal Result; 1796 1797 if (returnPtr) { 1798 // The final result of the function will either be a pointer past the last 1799 // copied element, or a pointer to the start of the destination buffer. 1800 Result = (returnEnd ? UnknownVal() : DstVal); 1801 } else { 1802 Result = finalStrLength; 1803 } 1804 1805 assert(state); 1806 1807 // If the destination is a MemRegion, try to check for a buffer overflow and 1808 // record the new string length. 1809 if (Optional<loc::MemRegionVal> dstRegVal = 1810 DstVal.getAs<loc::MemRegionVal>()) { 1811 QualType ptrTy = Dst->getType(); 1812 1813 // If we have an exact value on a bounded copy, use that to check for 1814 // overflows, rather than our estimate about how much is actually copied. 1815 if (boundWarning) { 1816 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1817 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1818 *maxLastNL, ptrTy); 1819 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1820 boundWarning); 1821 if (!state) 1822 return; 1823 } 1824 } 1825 1826 // Then, if the final length is known... 1827 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1828 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1829 *knownStrLength, ptrTy); 1830 1831 // ...and we haven't checked the bound, we'll check the actual copy. 1832 if (!boundWarning) { 1833 const char * const warningMsg = 1834 "String copy function overflows destination buffer"; 1835 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1836 if (!state) 1837 return; 1838 } 1839 1840 // If this is a stpcpy-style copy, the last element is the return value. 1841 if (returnPtr && returnEnd) 1842 Result = lastElement; 1843 } 1844 1845 // Invalidate the destination (regular invalidation without pointer-escaping 1846 // the address of the top-level region). This must happen before we set the 1847 // C string length because invalidation will clear the length. 1848 // FIXME: Even if we can't perfectly model the copy, we should see if we 1849 // can use LazyCompoundVals to copy the source values into the destination. 1850 // This would probably remove any existing bindings past the end of the 1851 // string, but that's still an improvement over blank invalidation. 1852 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1853 /*IsSourceBuffer*/false, nullptr); 1854 1855 // Invalidate the source (const-invalidation without const-pointer-escaping 1856 // the address of the top-level region). 1857 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1858 nullptr); 1859 1860 // Set the C string length of the destination, if we know it. 1861 if (isBounded && !isAppending) { 1862 // strncpy is annoying in that it doesn't guarantee to null-terminate 1863 // the result string. If the original string didn't fit entirely inside 1864 // the bound (including the null-terminator), we don't know how long the 1865 // result is. 1866 if (amountCopied != strLength) 1867 finalStrLength = UnknownVal(); 1868 } 1869 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1870 } 1871 1872 assert(state); 1873 1874 if (returnPtr) { 1875 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1876 // overflow, we still need a result. Conjure a return value. 1877 if (returnEnd && Result.isUnknown()) { 1878 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1879 } 1880 } 1881 // Set the return value. 1882 state = state->BindExpr(CE, LCtx, Result); 1883 C.addTransition(state); 1884 } 1885 1886 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1887 if (CE->getNumArgs() < 2) 1888 return; 1889 1890 //int strcmp(const char *s1, const char *s2); 1891 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1892 } 1893 1894 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1895 if (CE->getNumArgs() < 3) 1896 return; 1897 1898 //int strncmp(const char *s1, const char *s2, size_t n); 1899 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1900 } 1901 1902 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1903 const CallExpr *CE) const { 1904 if (CE->getNumArgs() < 2) 1905 return; 1906 1907 //int strcasecmp(const char *s1, const char *s2); 1908 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1909 } 1910 1911 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1912 const CallExpr *CE) const { 1913 if (CE->getNumArgs() < 3) 1914 return; 1915 1916 //int strncasecmp(const char *s1, const char *s2, size_t n); 1917 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1918 } 1919 1920 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1921 bool isBounded, bool ignoreCase) const { 1922 CurrentFunctionDescription = "string comparison function"; 1923 ProgramStateRef state = C.getState(); 1924 const LocationContext *LCtx = C.getLocationContext(); 1925 1926 // Check that the first string is non-null 1927 const Expr *s1 = CE->getArg(0); 1928 SVal s1Val = state->getSVal(s1, LCtx); 1929 state = checkNonNull(C, state, s1, s1Val); 1930 if (!state) 1931 return; 1932 1933 // Check that the second string is non-null. 1934 const Expr *s2 = CE->getArg(1); 1935 SVal s2Val = state->getSVal(s2, LCtx); 1936 state = checkNonNull(C, state, s2, s2Val); 1937 if (!state) 1938 return; 1939 1940 // Get the string length of the first string or give up. 1941 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1942 if (s1Length.isUndef()) 1943 return; 1944 1945 // Get the string length of the second string or give up. 1946 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1947 if (s2Length.isUndef()) 1948 return; 1949 1950 // If we know the two buffers are the same, we know the result is 0. 1951 // First, get the two buffers' addresses. Another checker will have already 1952 // made sure they're not undefined. 1953 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1954 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1955 1956 // See if they are the same. 1957 SValBuilder &svalBuilder = C.getSValBuilder(); 1958 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1959 ProgramStateRef StSameBuf, StNotSameBuf; 1960 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1961 1962 // If the two arguments might be the same buffer, we know the result is 0, 1963 // and we only need to check one size. 1964 if (StSameBuf) { 1965 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1966 svalBuilder.makeZeroVal(CE->getType())); 1967 C.addTransition(StSameBuf); 1968 1969 // If the two arguments are GUARANTEED to be the same, we're done! 1970 if (!StNotSameBuf) 1971 return; 1972 } 1973 1974 assert(StNotSameBuf); 1975 state = StNotSameBuf; 1976 1977 // At this point we can go about comparing the two buffers. 1978 // For now, we only do this if they're both known string literals. 1979 1980 // Attempt to extract string literals from both expressions. 1981 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1982 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1983 bool canComputeResult = false; 1984 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1985 C.blockCount()); 1986 1987 if (s1StrLiteral && s2StrLiteral) { 1988 StringRef s1StrRef = s1StrLiteral->getString(); 1989 StringRef s2StrRef = s2StrLiteral->getString(); 1990 1991 if (isBounded) { 1992 // Get the max number of characters to compare. 1993 const Expr *lenExpr = CE->getArg(2); 1994 SVal lenVal = state->getSVal(lenExpr, LCtx); 1995 1996 // If the length is known, we can get the right substrings. 1997 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1998 // Create substrings of each to compare the prefix. 1999 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 2000 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 2001 canComputeResult = true; 2002 } 2003 } else { 2004 // This is a normal, unbounded strcmp. 2005 canComputeResult = true; 2006 } 2007 2008 if (canComputeResult) { 2009 // Real strcmp stops at null characters. 2010 size_t s1Term = s1StrRef.find('\0'); 2011 if (s1Term != StringRef::npos) 2012 s1StrRef = s1StrRef.substr(0, s1Term); 2013 2014 size_t s2Term = s2StrRef.find('\0'); 2015 if (s2Term != StringRef::npos) 2016 s2StrRef = s2StrRef.substr(0, s2Term); 2017 2018 // Use StringRef's comparison methods to compute the actual result. 2019 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 2020 : s1StrRef.compare(s2StrRef); 2021 2022 // The strcmp function returns an integer greater than, equal to, or less 2023 // than zero, [c11, p7.24.4.2]. 2024 if (compareRes == 0) { 2025 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2026 } 2027 else { 2028 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2029 // Constrain strcmp's result range based on the result of StringRef's 2030 // comparison methods. 2031 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2032 SVal compareWithZero = 2033 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2034 svalBuilder.getConditionType()); 2035 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2036 state = state->assume(compareWithZeroVal, true); 2037 } 2038 } 2039 } 2040 2041 state = state->BindExpr(CE, LCtx, resultVal); 2042 2043 // Record this as a possible path. 2044 C.addTransition(state); 2045 } 2046 2047 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2048 //char *strsep(char **stringp, const char *delim); 2049 if (CE->getNumArgs() < 2) 2050 return; 2051 2052 // Sanity: does the search string parameter match the return type? 2053 const Expr *SearchStrPtr = CE->getArg(0); 2054 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2055 if (CharPtrTy.isNull() || 2056 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2057 return; 2058 2059 CurrentFunctionDescription = "strsep()"; 2060 ProgramStateRef State = C.getState(); 2061 const LocationContext *LCtx = C.getLocationContext(); 2062 2063 // Check that the search string pointer is non-null (though it may point to 2064 // a null string). 2065 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2066 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2067 if (!State) 2068 return; 2069 2070 // Check that the delimiter string is non-null. 2071 const Expr *DelimStr = CE->getArg(1); 2072 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2073 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2074 if (!State) 2075 return; 2076 2077 SValBuilder &SVB = C.getSValBuilder(); 2078 SVal Result; 2079 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2080 // Get the current value of the search string pointer, as a char*. 2081 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2082 2083 // Invalidate the search string, representing the change of one delimiter 2084 // character to NUL. 2085 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2086 /*IsSourceBuffer*/false, nullptr); 2087 2088 // Overwrite the search string pointer. The new value is either an address 2089 // further along in the same string, or NULL if there are no more tokens. 2090 State = State->bindLoc(*SearchStrLoc, 2091 SVB.conjureSymbolVal(getTag(), 2092 CE, 2093 LCtx, 2094 CharPtrTy, 2095 C.blockCount()), 2096 LCtx); 2097 } else { 2098 assert(SearchStrVal.isUnknown()); 2099 // Conjure a symbolic value. It's the best we can do. 2100 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2101 } 2102 2103 // Set the return value, and finish. 2104 State = State->BindExpr(CE, LCtx, Result); 2105 C.addTransition(State); 2106 } 2107 2108 // These should probably be moved into a C++ standard library checker. 2109 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2110 evalStdCopyCommon(C, CE); 2111 } 2112 2113 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2114 const CallExpr *CE) const { 2115 evalStdCopyCommon(C, CE); 2116 } 2117 2118 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2119 const CallExpr *CE) const { 2120 if (CE->getNumArgs() < 3) 2121 return; 2122 2123 ProgramStateRef State = C.getState(); 2124 2125 const LocationContext *LCtx = C.getLocationContext(); 2126 2127 // template <class _InputIterator, class _OutputIterator> 2128 // _OutputIterator 2129 // copy(_InputIterator __first, _InputIterator __last, 2130 // _OutputIterator __result) 2131 2132 // Invalidate the destination buffer 2133 const Expr *Dst = CE->getArg(2); 2134 SVal DstVal = State->getSVal(Dst, LCtx); 2135 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2136 /*Size=*/nullptr); 2137 2138 SValBuilder &SVB = C.getSValBuilder(); 2139 2140 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2141 State = State->BindExpr(CE, LCtx, ResultVal); 2142 2143 C.addTransition(State); 2144 } 2145 2146 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2147 if (CE->getNumArgs() != 3) 2148 return; 2149 2150 CurrentFunctionDescription = "memory set function"; 2151 2152 const Expr *Mem = CE->getArg(0); 2153 const Expr *CharE = CE->getArg(1); 2154 const Expr *Size = CE->getArg(2); 2155 ProgramStateRef State = C.getState(); 2156 2157 // See if the size argument is zero. 2158 const LocationContext *LCtx = C.getLocationContext(); 2159 SVal SizeVal = State->getSVal(Size, LCtx); 2160 QualType SizeTy = Size->getType(); 2161 2162 ProgramStateRef StateZeroSize, StateNonZeroSize; 2163 std::tie(StateZeroSize, StateNonZeroSize) = 2164 assumeZero(C, State, SizeVal, SizeTy); 2165 2166 // Get the value of the memory area. 2167 SVal MemVal = State->getSVal(Mem, LCtx); 2168 2169 // If the size is zero, there won't be any actual memory access, so 2170 // just bind the return value to the Mem buffer and return. 2171 if (StateZeroSize && !StateNonZeroSize) { 2172 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2173 C.addTransition(StateZeroSize); 2174 return; 2175 } 2176 2177 // Ensure the memory area is not null. 2178 // If it is NULL there will be a NULL pointer dereference. 2179 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2180 if (!State) 2181 return; 2182 2183 State = CheckBufferAccess(C, State, Size, Mem); 2184 if (!State) 2185 return; 2186 2187 // According to the values of the arguments, bind the value of the second 2188 // argument to the destination buffer and set string length, or just 2189 // invalidate the destination buffer. 2190 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2191 return; 2192 2193 State = State->BindExpr(CE, LCtx, MemVal); 2194 C.addTransition(State); 2195 } 2196 2197 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2198 if (CE->getNumArgs() != 2) 2199 return; 2200 2201 CurrentFunctionDescription = "memory clearance function"; 2202 2203 const Expr *Mem = CE->getArg(0); 2204 const Expr *Size = CE->getArg(1); 2205 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2206 2207 ProgramStateRef State = C.getState(); 2208 2209 // See if the size argument is zero. 2210 SVal SizeVal = C.getSVal(Size); 2211 QualType SizeTy = Size->getType(); 2212 2213 ProgramStateRef StateZeroSize, StateNonZeroSize; 2214 std::tie(StateZeroSize, StateNonZeroSize) = 2215 assumeZero(C, State, SizeVal, SizeTy); 2216 2217 // If the size is zero, there won't be any actual memory access, 2218 // In this case we just return. 2219 if (StateZeroSize && !StateNonZeroSize) { 2220 C.addTransition(StateZeroSize); 2221 return; 2222 } 2223 2224 // Get the value of the memory area. 2225 SVal MemVal = C.getSVal(Mem); 2226 2227 // Ensure the memory area is not null. 2228 // If it is NULL there will be a NULL pointer dereference. 2229 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2230 if (!State) 2231 return; 2232 2233 State = CheckBufferAccess(C, State, Size, Mem); 2234 if (!State) 2235 return; 2236 2237 if (!memsetAux(Mem, Zero, Size, C, State)) 2238 return; 2239 2240 C.addTransition(State); 2241 } 2242 2243 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) { 2244 IdentifierInfo *II = FD->getIdentifier(); 2245 if (!II) 2246 return false; 2247 2248 if (!AnalysisDeclContext::isInStdNamespace(FD)) 2249 return false; 2250 2251 if (II->getName().equals(Name)) 2252 return true; 2253 2254 return false; 2255 } 2256 //===----------------------------------------------------------------------===// 2257 // The driver method, and other Checker callbacks. 2258 //===----------------------------------------------------------------------===// 2259 2260 static CStringChecker::FnCheck identifyCall(const CallExpr *CE, 2261 CheckerContext &C) { 2262 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 2263 if (!FDecl) 2264 return nullptr; 2265 2266 // Pro-actively check that argument types are safe to do arithmetic upon. 2267 // We do not want to crash if someone accidentally passes a structure 2268 // into, say, a C++ overload of any of these functions. 2269 if (isCPPStdLibraryFunction(FDecl, "copy")) { 2270 if (CE->getNumArgs() < 3 || !CE->getArg(2)->getType()->isPointerType()) 2271 return nullptr; 2272 return &CStringChecker::evalStdCopy; 2273 } else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) { 2274 if (CE->getNumArgs() < 3 || !CE->getArg(2)->getType()->isPointerType()) 2275 return nullptr; 2276 return &CStringChecker::evalStdCopyBackward; 2277 } else { 2278 // An umbrella check for all C library functions. 2279 for (auto I: CE->arguments()) { 2280 QualType T = I->getType(); 2281 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2282 return nullptr; 2283 } 2284 } 2285 2286 // FIXME: Poorly-factored string switches are slow. 2287 if (C.isCLibraryFunction(FDecl, "memcpy")) 2288 return &CStringChecker::evalMemcpy; 2289 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 2290 return &CStringChecker::evalMempcpy; 2291 else if (C.isCLibraryFunction(FDecl, "memcmp")) 2292 return &CStringChecker::evalMemcmp; 2293 else if (C.isCLibraryFunction(FDecl, "memmove")) 2294 return &CStringChecker::evalMemmove; 2295 else if (C.isCLibraryFunction(FDecl, "memset") || 2296 C.isCLibraryFunction(FDecl, "explicit_memset")) 2297 return &CStringChecker::evalMemset; 2298 else if (C.isCLibraryFunction(FDecl, "strcpy")) 2299 return &CStringChecker::evalStrcpy; 2300 else if (C.isCLibraryFunction(FDecl, "strncpy")) 2301 return &CStringChecker::evalStrncpy; 2302 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 2303 return &CStringChecker::evalStpcpy; 2304 else if (C.isCLibraryFunction(FDecl, "strlcpy")) 2305 return &CStringChecker::evalStrlcpy; 2306 else if (C.isCLibraryFunction(FDecl, "strcat")) 2307 return &CStringChecker::evalStrcat; 2308 else if (C.isCLibraryFunction(FDecl, "strncat")) 2309 return &CStringChecker::evalStrncat; 2310 else if (C.isCLibraryFunction(FDecl, "strlcat")) 2311 return &CStringChecker::evalStrlcat; 2312 else if (C.isCLibraryFunction(FDecl, "strlen")) 2313 return &CStringChecker::evalstrLength; 2314 else if (C.isCLibraryFunction(FDecl, "strnlen")) 2315 return &CStringChecker::evalstrnLength; 2316 else if (C.isCLibraryFunction(FDecl, "strcmp")) 2317 return &CStringChecker::evalStrcmp; 2318 else if (C.isCLibraryFunction(FDecl, "strncmp")) 2319 return &CStringChecker::evalStrncmp; 2320 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 2321 return &CStringChecker::evalStrcasecmp; 2322 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 2323 return &CStringChecker::evalStrncasecmp; 2324 else if (C.isCLibraryFunction(FDecl, "strsep")) 2325 return &CStringChecker::evalStrsep; 2326 else if (C.isCLibraryFunction(FDecl, "bcopy")) 2327 return &CStringChecker::evalBcopy; 2328 else if (C.isCLibraryFunction(FDecl, "bcmp")) 2329 return &CStringChecker::evalMemcmp; 2330 else if (C.isCLibraryFunction(FDecl, "bzero") || 2331 C.isCLibraryFunction(FDecl, "explicit_bzero")) 2332 return &CStringChecker::evalBzero; 2333 2334 return nullptr; 2335 } 2336 2337 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 2338 2339 FnCheck evalFunction = identifyCall(CE, C); 2340 2341 // If the callee isn't a string function, let another checker handle it. 2342 if (!evalFunction) 2343 return false; 2344 2345 // Check and evaluate the call. 2346 (this->*evalFunction)(C, CE); 2347 2348 // If the evaluate call resulted in no change, chain to the next eval call 2349 // handler. 2350 // Note, the custom CString evaluation calls assume that basic safety 2351 // properties are held. However, if the user chooses to turn off some of these 2352 // checks, we ignore the issues and leave the call evaluation to a generic 2353 // handler. 2354 return C.isDifferent(); 2355 } 2356 2357 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2358 // Record string length for char a[] = "abc"; 2359 ProgramStateRef state = C.getState(); 2360 2361 for (const auto *I : DS->decls()) { 2362 const VarDecl *D = dyn_cast<VarDecl>(I); 2363 if (!D) 2364 continue; 2365 2366 // FIXME: Handle array fields of structs. 2367 if (!D->getType()->isArrayType()) 2368 continue; 2369 2370 const Expr *Init = D->getInit(); 2371 if (!Init) 2372 continue; 2373 if (!isa<StringLiteral>(Init)) 2374 continue; 2375 2376 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2377 const MemRegion *MR = VarLoc.getAsRegion(); 2378 if (!MR) 2379 continue; 2380 2381 SVal StrVal = C.getSVal(Init); 2382 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2383 DefinedOrUnknownSVal strLength = 2384 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2385 2386 state = state->set<CStringLength>(MR, strLength); 2387 } 2388 2389 C.addTransition(state); 2390 } 2391 2392 ProgramStateRef 2393 CStringChecker::checkRegionChanges(ProgramStateRef state, 2394 const InvalidatedSymbols *, 2395 ArrayRef<const MemRegion *> ExplicitRegions, 2396 ArrayRef<const MemRegion *> Regions, 2397 const LocationContext *LCtx, 2398 const CallEvent *Call) const { 2399 CStringLengthTy Entries = state->get<CStringLength>(); 2400 if (Entries.isEmpty()) 2401 return state; 2402 2403 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2404 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2405 2406 // First build sets for the changed regions and their super-regions. 2407 for (ArrayRef<const MemRegion *>::iterator 2408 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2409 const MemRegion *MR = *I; 2410 Invalidated.insert(MR); 2411 2412 SuperRegions.insert(MR); 2413 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2414 MR = SR->getSuperRegion(); 2415 SuperRegions.insert(MR); 2416 } 2417 } 2418 2419 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2420 2421 // Then loop over the entries in the current state. 2422 for (CStringLengthTy::iterator I = Entries.begin(), 2423 E = Entries.end(); I != E; ++I) { 2424 const MemRegion *MR = I.getKey(); 2425 2426 // Is this entry for a super-region of a changed region? 2427 if (SuperRegions.count(MR)) { 2428 Entries = F.remove(Entries, MR); 2429 continue; 2430 } 2431 2432 // Is this entry for a sub-region of a changed region? 2433 const MemRegion *Super = MR; 2434 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2435 Super = SR->getSuperRegion(); 2436 if (Invalidated.count(Super)) { 2437 Entries = F.remove(Entries, MR); 2438 break; 2439 } 2440 } 2441 } 2442 2443 return state->set<CStringLength>(Entries); 2444 } 2445 2446 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2447 SymbolReaper &SR) const { 2448 // Mark all symbols in our string length map as valid. 2449 CStringLengthTy Entries = state->get<CStringLength>(); 2450 2451 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2452 I != E; ++I) { 2453 SVal Len = I.getData(); 2454 2455 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2456 se = Len.symbol_end(); si != se; ++si) 2457 SR.markInUse(*si); 2458 } 2459 } 2460 2461 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2462 CheckerContext &C) const { 2463 ProgramStateRef state = C.getState(); 2464 CStringLengthTy Entries = state->get<CStringLength>(); 2465 if (Entries.isEmpty()) 2466 return; 2467 2468 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2469 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2470 I != E; ++I) { 2471 SVal Len = I.getData(); 2472 if (SymbolRef Sym = Len.getAsSymbol()) { 2473 if (SR.isDead(Sym)) 2474 Entries = F.remove(Entries, I.getKey()); 2475 } 2476 } 2477 2478 state = state->set<CStringLength>(Entries); 2479 C.addTransition(state); 2480 } 2481 2482 void ento::registerCStringModeling(CheckerManager &Mgr) { 2483 Mgr.registerChecker<CStringChecker>(); 2484 } 2485 2486 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) { 2487 return true; 2488 } 2489 2490 #define REGISTER_CHECKER(name) \ 2491 void ento::register##name(CheckerManager &mgr) { \ 2492 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2493 checker->Filter.Check##name = true; \ 2494 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2495 } \ 2496 \ 2497 bool ento::shouldRegister##name(const LangOptions &LO) { \ 2498 return true; \ 2499 } 2500 2501 REGISTER_CHECKER(CStringNullArg) 2502 REGISTER_CHECKER(CStringOutOfBounds) 2503 REGISTER_CHECKER(CStringBufferOverlap) 2504 REGISTER_CHECKER(CStringNotNullTerm) 2505