xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp (revision e10d5a7659ec3458545e4274dcc57136d6151d05)
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This defines CStringChecker, which is an assortment of checks on calls
11 // to functions in <string.h>.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/StaticAnalyzer/Core/Checker.h"
18 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
19 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
20 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSwitch.h"
25 
26 using namespace clang;
27 using namespace ento;
28 
29 namespace {
30 class CStringChecker : public Checker< eval::Call,
31                                          check::PreStmt<DeclStmt>,
32                                          check::LiveSymbols,
33                                          check::DeadSymbols,
34                                          check::RegionChanges
35                                          > {
36   mutable OwningPtr<BugType> BT_Null,
37                              BT_Bounds,
38                              BT_Overlap,
39                              BT_NotCString,
40                              BT_AdditionOverflow;
41 
42   mutable const char *CurrentFunctionDescription;
43 
44 public:
45   /// The filter is used to filter out the diagnostics which are not enabled by
46   /// the user.
47   struct CStringChecksFilter {
48     DefaultBool CheckCStringNullArg;
49     DefaultBool CheckCStringOutOfBounds;
50     DefaultBool CheckCStringBufferOverlap;
51     DefaultBool CheckCStringNotNullTerm;
52   };
53 
54   CStringChecksFilter Filter;
55 
56   static void *getTag() { static int tag; return &tag; }
57 
58   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
59   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
60   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
61   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
62   bool wantsRegionChangeUpdate(ProgramStateRef state) const;
63 
64   ProgramStateRef
65     checkRegionChanges(ProgramStateRef state,
66                        const StoreManager::InvalidatedSymbols *,
67                        ArrayRef<const MemRegion *> ExplicitRegions,
68                        ArrayRef<const MemRegion *> Regions,
69                        const CallEvent *Call) const;
70 
71   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
72                                           const CallExpr *) const;
73 
74   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
75   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
76   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
77   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
78   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
79                       ProgramStateRef state,
80                       const Expr *Size,
81                       const Expr *Source,
82                       const Expr *Dest,
83                       bool Restricted = false,
84                       bool IsMempcpy = false) const;
85 
86   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
87 
88   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
89   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
90   void evalstrLengthCommon(CheckerContext &C,
91                            const CallExpr *CE,
92                            bool IsStrnlen = false) const;
93 
94   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
95   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
96   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
97   void evalStrcpyCommon(CheckerContext &C,
98                         const CallExpr *CE,
99                         bool returnEnd,
100                         bool isBounded,
101                         bool isAppending) const;
102 
103   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
104   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
105 
106   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
107   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
108   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
109   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
110   void evalStrcmpCommon(CheckerContext &C,
111                         const CallExpr *CE,
112                         bool isBounded = false,
113                         bool ignoreCase = false) const;
114 
115   // Utility methods
116   std::pair<ProgramStateRef , ProgramStateRef >
117   static assumeZero(CheckerContext &C,
118                     ProgramStateRef state, SVal V, QualType Ty);
119 
120   static ProgramStateRef setCStringLength(ProgramStateRef state,
121                                               const MemRegion *MR,
122                                               SVal strLength);
123   static SVal getCStringLengthForRegion(CheckerContext &C,
124                                         ProgramStateRef &state,
125                                         const Expr *Ex,
126                                         const MemRegion *MR,
127                                         bool hypothetical);
128   SVal getCStringLength(CheckerContext &C,
129                         ProgramStateRef &state,
130                         const Expr *Ex,
131                         SVal Buf,
132                         bool hypothetical = false) const;
133 
134   const StringLiteral *getCStringLiteral(CheckerContext &C,
135                                          ProgramStateRef &state,
136                                          const Expr *expr,
137                                          SVal val) const;
138 
139   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
140                                               ProgramStateRef state,
141                                               const Expr *Ex, SVal V);
142 
143   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
144                               const MemRegion *MR);
145 
146   // Re-usable checks
147   ProgramStateRef checkNonNull(CheckerContext &C,
148                                    ProgramStateRef state,
149                                    const Expr *S,
150                                    SVal l) const;
151   ProgramStateRef CheckLocation(CheckerContext &C,
152                                     ProgramStateRef state,
153                                     const Expr *S,
154                                     SVal l,
155                                     const char *message = NULL) const;
156   ProgramStateRef CheckBufferAccess(CheckerContext &C,
157                                         ProgramStateRef state,
158                                         const Expr *Size,
159                                         const Expr *FirstBuf,
160                                         const Expr *SecondBuf,
161                                         const char *firstMessage = NULL,
162                                         const char *secondMessage = NULL,
163                                         bool WarnAboutSize = false) const;
164 
165   ProgramStateRef CheckBufferAccess(CheckerContext &C,
166                                         ProgramStateRef state,
167                                         const Expr *Size,
168                                         const Expr *Buf,
169                                         const char *message = NULL,
170                                         bool WarnAboutSize = false) const {
171     // This is a convenience override.
172     return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL,
173                              WarnAboutSize);
174   }
175   ProgramStateRef CheckOverlap(CheckerContext &C,
176                                    ProgramStateRef state,
177                                    const Expr *Size,
178                                    const Expr *First,
179                                    const Expr *Second) const;
180   void emitOverlapBug(CheckerContext &C,
181                       ProgramStateRef state,
182                       const Stmt *First,
183                       const Stmt *Second) const;
184 
185   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
186                                             ProgramStateRef state,
187                                             NonLoc left,
188                                             NonLoc right) const;
189 };
190 
191 class CStringLength {
192 public:
193   typedef llvm::ImmutableMap<const MemRegion *, SVal> EntryMap;
194 };
195 } //end anonymous namespace
196 
197 namespace clang {
198 namespace ento {
199   template <>
200   struct ProgramStateTrait<CStringLength>
201     : public ProgramStatePartialTrait<CStringLength::EntryMap> {
202     static void *GDMIndex() { return CStringChecker::getTag(); }
203   };
204 }
205 }
206 
207 //===----------------------------------------------------------------------===//
208 // Individual checks and utility methods.
209 //===----------------------------------------------------------------------===//
210 
211 std::pair<ProgramStateRef , ProgramStateRef >
212 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
213                            QualType Ty) {
214   DefinedSVal *val = dyn_cast<DefinedSVal>(&V);
215   if (!val)
216     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
217 
218   SValBuilder &svalBuilder = C.getSValBuilder();
219   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
220   return state->assume(svalBuilder.evalEQ(state, *val, zero));
221 }
222 
223 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
224                                             ProgramStateRef state,
225                                             const Expr *S, SVal l) const {
226   // If a previous check has failed, propagate the failure.
227   if (!state)
228     return NULL;
229 
230   ProgramStateRef stateNull, stateNonNull;
231   llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
232 
233   if (stateNull && !stateNonNull) {
234     if (!Filter.CheckCStringNullArg)
235       return NULL;
236 
237     ExplodedNode *N = C.generateSink(stateNull);
238     if (!N)
239       return NULL;
240 
241     if (!BT_Null)
242       BT_Null.reset(new BuiltinBug("Unix API",
243         "Null pointer argument in call to byte string function"));
244 
245     SmallString<80> buf;
246     llvm::raw_svector_ostream os(buf);
247     assert(CurrentFunctionDescription);
248     os << "Null pointer argument in call to " << CurrentFunctionDescription;
249 
250     // Generate a report for this bug.
251     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
252     BugReport *report = new BugReport(*BT, os.str(), N);
253 
254     report->addRange(S->getSourceRange());
255     bugreporter::trackNullOrUndefValue(N, S, *report);
256     C.emitReport(report);
257     return NULL;
258   }
259 
260   // From here on, assume that the value is non-null.
261   assert(stateNonNull);
262   return stateNonNull;
263 }
264 
265 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
266 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
267                                              ProgramStateRef state,
268                                              const Expr *S, SVal l,
269                                              const char *warningMsg) const {
270   // If a previous check has failed, propagate the failure.
271   if (!state)
272     return NULL;
273 
274   // Check for out of bound array element access.
275   const MemRegion *R = l.getAsRegion();
276   if (!R)
277     return state;
278 
279   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
280   if (!ER)
281     return state;
282 
283   assert(ER->getValueType() == C.getASTContext().CharTy &&
284     "CheckLocation should only be called with char* ElementRegions");
285 
286   // Get the size of the array.
287   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
288   SValBuilder &svalBuilder = C.getSValBuilder();
289   SVal Extent =
290     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
291   DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
292 
293   // Get the index of the accessed element.
294   DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
295 
296   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
297   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
298   if (StOutBound && !StInBound) {
299     ExplodedNode *N = C.generateSink(StOutBound);
300     if (!N)
301       return NULL;
302 
303     if (!BT_Bounds) {
304       BT_Bounds.reset(new BuiltinBug("Out-of-bound array access",
305         "Byte string function accesses out-of-bound array element"));
306     }
307     BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
308 
309     // Generate a report for this bug.
310     BugReport *report;
311     if (warningMsg) {
312       report = new BugReport(*BT, warningMsg, N);
313     } else {
314       assert(CurrentFunctionDescription);
315       assert(CurrentFunctionDescription[0] != '\0');
316 
317       SmallString<80> buf;
318       llvm::raw_svector_ostream os(buf);
319       os << (char)toupper(CurrentFunctionDescription[0])
320          << &CurrentFunctionDescription[1]
321          << " accesses out-of-bound array element";
322       report = new BugReport(*BT, os.str(), N);
323     }
324 
325     // FIXME: It would be nice to eventually make this diagnostic more clear,
326     // e.g., by referencing the original declaration or by saying *why* this
327     // reference is outside the range.
328 
329     report->addRange(S->getSourceRange());
330     C.emitReport(report);
331     return NULL;
332   }
333 
334   // Array bound check succeeded.  From this point forward the array bound
335   // should always succeed.
336   return StInBound;
337 }
338 
339 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
340                                                  ProgramStateRef state,
341                                                  const Expr *Size,
342                                                  const Expr *FirstBuf,
343                                                  const Expr *SecondBuf,
344                                                  const char *firstMessage,
345                                                  const char *secondMessage,
346                                                  bool WarnAboutSize) const {
347   // If a previous check has failed, propagate the failure.
348   if (!state)
349     return NULL;
350 
351   SValBuilder &svalBuilder = C.getSValBuilder();
352   ASTContext &Ctx = svalBuilder.getContext();
353   const LocationContext *LCtx = C.getLocationContext();
354 
355   QualType sizeTy = Size->getType();
356   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
357 
358   // Check that the first buffer is non-null.
359   SVal BufVal = state->getSVal(FirstBuf, LCtx);
360   state = checkNonNull(C, state, FirstBuf, BufVal);
361   if (!state)
362     return NULL;
363 
364   // If out-of-bounds checking is turned off, skip the rest.
365   if (!Filter.CheckCStringOutOfBounds)
366     return state;
367 
368   // Get the access length and make sure it is known.
369   // FIXME: This assumes the caller has already checked that the access length
370   // is positive. And that it's unsigned.
371   SVal LengthVal = state->getSVal(Size, LCtx);
372   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
373   if (!Length)
374     return state;
375 
376   // Compute the offset of the last element to be accessed: size-1.
377   NonLoc One = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
378   NonLoc LastOffset = cast<NonLoc>(svalBuilder.evalBinOpNN(state, BO_Sub,
379                                                     *Length, One, sizeTy));
380 
381   // Check that the first buffer is sufficiently long.
382   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
383   if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
384     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
385 
386     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
387                                           LastOffset, PtrTy);
388     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
389 
390     // If the buffer isn't large enough, abort.
391     if (!state)
392       return NULL;
393   }
394 
395   // If there's a second buffer, check it as well.
396   if (SecondBuf) {
397     BufVal = state->getSVal(SecondBuf, LCtx);
398     state = checkNonNull(C, state, SecondBuf, BufVal);
399     if (!state)
400       return NULL;
401 
402     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
403     if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
404       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
405 
406       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
407                                             LastOffset, PtrTy);
408       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
409     }
410   }
411 
412   // Large enough or not, return this state!
413   return state;
414 }
415 
416 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
417                                             ProgramStateRef state,
418                                             const Expr *Size,
419                                             const Expr *First,
420                                             const Expr *Second) const {
421   if (!Filter.CheckCStringBufferOverlap)
422     return state;
423 
424   // Do a simple check for overlap: if the two arguments are from the same
425   // buffer, see if the end of the first is greater than the start of the second
426   // or vice versa.
427 
428   // If a previous check has failed, propagate the failure.
429   if (!state)
430     return NULL;
431 
432   ProgramStateRef stateTrue, stateFalse;
433 
434   // Get the buffer values and make sure they're known locations.
435   const LocationContext *LCtx = C.getLocationContext();
436   SVal firstVal = state->getSVal(First, LCtx);
437   SVal secondVal = state->getSVal(Second, LCtx);
438 
439   Loc *firstLoc = dyn_cast<Loc>(&firstVal);
440   if (!firstLoc)
441     return state;
442 
443   Loc *secondLoc = dyn_cast<Loc>(&secondVal);
444   if (!secondLoc)
445     return state;
446 
447   // Are the two values the same?
448   SValBuilder &svalBuilder = C.getSValBuilder();
449   llvm::tie(stateTrue, stateFalse) =
450     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
451 
452   if (stateTrue && !stateFalse) {
453     // If the values are known to be equal, that's automatically an overlap.
454     emitOverlapBug(C, stateTrue, First, Second);
455     return NULL;
456   }
457 
458   // assume the two expressions are not equal.
459   assert(stateFalse);
460   state = stateFalse;
461 
462   // Which value comes first?
463   QualType cmpTy = svalBuilder.getConditionType();
464   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
465                                          *firstLoc, *secondLoc, cmpTy);
466   DefinedOrUnknownSVal *reverseTest = dyn_cast<DefinedOrUnknownSVal>(&reverse);
467   if (!reverseTest)
468     return state;
469 
470   llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
471   if (stateTrue) {
472     if (stateFalse) {
473       // If we don't know which one comes first, we can't perform this test.
474       return state;
475     } else {
476       // Switch the values so that firstVal is before secondVal.
477       Loc *tmpLoc = firstLoc;
478       firstLoc = secondLoc;
479       secondLoc = tmpLoc;
480 
481       // Switch the Exprs as well, so that they still correspond.
482       const Expr *tmpExpr = First;
483       First = Second;
484       Second = tmpExpr;
485     }
486   }
487 
488   // Get the length, and make sure it too is known.
489   SVal LengthVal = state->getSVal(Size, LCtx);
490   NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
491   if (!Length)
492     return state;
493 
494   // Convert the first buffer's start address to char*.
495   // Bail out if the cast fails.
496   ASTContext &Ctx = svalBuilder.getContext();
497   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
498   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
499                                          First->getType());
500   Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
501   if (!FirstStartLoc)
502     return state;
503 
504   // Compute the end of the first buffer. Bail out if THAT fails.
505   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
506                                  *FirstStartLoc, *Length, CharPtrTy);
507   Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
508   if (!FirstEndLoc)
509     return state;
510 
511   // Is the end of the first buffer past the start of the second buffer?
512   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
513                                 *FirstEndLoc, *secondLoc, cmpTy);
514   DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
515   if (!OverlapTest)
516     return state;
517 
518   llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
519 
520   if (stateTrue && !stateFalse) {
521     // Overlap!
522     emitOverlapBug(C, stateTrue, First, Second);
523     return NULL;
524   }
525 
526   // assume the two expressions don't overlap.
527   assert(stateFalse);
528   return stateFalse;
529 }
530 
531 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
532                                   const Stmt *First, const Stmt *Second) const {
533   ExplodedNode *N = C.generateSink(state);
534   if (!N)
535     return;
536 
537   if (!BT_Overlap)
538     BT_Overlap.reset(new BugType("Unix API", "Improper arguments"));
539 
540   // Generate a report for this bug.
541   BugReport *report =
542     new BugReport(*BT_Overlap,
543       "Arguments must not be overlapping buffers", N);
544   report->addRange(First->getSourceRange());
545   report->addRange(Second->getSourceRange());
546 
547   C.emitReport(report);
548 }
549 
550 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
551                                                      ProgramStateRef state,
552                                                      NonLoc left,
553                                                      NonLoc right) const {
554   // If out-of-bounds checking is turned off, skip the rest.
555   if (!Filter.CheckCStringOutOfBounds)
556     return state;
557 
558   // If a previous check has failed, propagate the failure.
559   if (!state)
560     return NULL;
561 
562   SValBuilder &svalBuilder = C.getSValBuilder();
563   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
564 
565   QualType sizeTy = svalBuilder.getContext().getSizeType();
566   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
567   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
568 
569   SVal maxMinusRight;
570   if (isa<nonloc::ConcreteInt>(right)) {
571     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
572                                                  sizeTy);
573   } else {
574     // Try switching the operands. (The order of these two assignments is
575     // important!)
576     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
577                                             sizeTy);
578     left = right;
579   }
580 
581   if (NonLoc *maxMinusRightNL = dyn_cast<NonLoc>(&maxMinusRight)) {
582     QualType cmpTy = svalBuilder.getConditionType();
583     // If left > max - right, we have an overflow.
584     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
585                                                 *maxMinusRightNL, cmpTy);
586 
587     ProgramStateRef stateOverflow, stateOkay;
588     llvm::tie(stateOverflow, stateOkay) =
589       state->assume(cast<DefinedOrUnknownSVal>(willOverflow));
590 
591     if (stateOverflow && !stateOkay) {
592       // We have an overflow. Emit a bug report.
593       ExplodedNode *N = C.generateSink(stateOverflow);
594       if (!N)
595         return NULL;
596 
597       if (!BT_AdditionOverflow)
598         BT_AdditionOverflow.reset(new BuiltinBug("API",
599           "Sum of expressions causes overflow"));
600 
601       // This isn't a great error message, but this should never occur in real
602       // code anyway -- you'd have to create a buffer longer than a size_t can
603       // represent, which is sort of a contradiction.
604       const char *warning =
605         "This expression will create a string whose length is too big to "
606         "be represented as a size_t";
607 
608       // Generate a report for this bug.
609       BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N);
610       C.emitReport(report);
611 
612       return NULL;
613     }
614 
615     // From now on, assume an overflow didn't occur.
616     assert(stateOkay);
617     state = stateOkay;
618   }
619 
620   return state;
621 }
622 
623 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
624                                                 const MemRegion *MR,
625                                                 SVal strLength) {
626   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
627 
628   MR = MR->StripCasts();
629 
630   switch (MR->getKind()) {
631   case MemRegion::StringRegionKind:
632     // FIXME: This can happen if we strcpy() into a string region. This is
633     // undefined [C99 6.4.5p6], but we should still warn about it.
634     return state;
635 
636   case MemRegion::SymbolicRegionKind:
637   case MemRegion::AllocaRegionKind:
638   case MemRegion::VarRegionKind:
639   case MemRegion::FieldRegionKind:
640   case MemRegion::ObjCIvarRegionKind:
641     // These are the types we can currently track string lengths for.
642     break;
643 
644   case MemRegion::ElementRegionKind:
645     // FIXME: Handle element regions by upper-bounding the parent region's
646     // string length.
647     return state;
648 
649   default:
650     // Other regions (mostly non-data) can't have a reliable C string length.
651     // For now, just ignore the change.
652     // FIXME: These are rare but not impossible. We should output some kind of
653     // warning for things like strcpy((char[]){'a', 0}, "b");
654     return state;
655   }
656 
657   if (strLength.isUnknown())
658     return state->remove<CStringLength>(MR);
659 
660   return state->set<CStringLength>(MR, strLength);
661 }
662 
663 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
664                                                ProgramStateRef &state,
665                                                const Expr *Ex,
666                                                const MemRegion *MR,
667                                                bool hypothetical) {
668   if (!hypothetical) {
669     // If there's a recorded length, go ahead and return it.
670     const SVal *Recorded = state->get<CStringLength>(MR);
671     if (Recorded)
672       return *Recorded;
673   }
674 
675   // Otherwise, get a new symbol and update the state.
676   SValBuilder &svalBuilder = C.getSValBuilder();
677   QualType sizeTy = svalBuilder.getContext().getSizeType();
678   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
679                                                     MR, Ex, sizeTy,
680                                                     C.blockCount());
681 
682   if (!hypothetical)
683     state = state->set<CStringLength>(MR, strLength);
684 
685   return strLength;
686 }
687 
688 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
689                                       const Expr *Ex, SVal Buf,
690                                       bool hypothetical) const {
691   const MemRegion *MR = Buf.getAsRegion();
692   if (!MR) {
693     // If we can't get a region, see if it's something we /know/ isn't a
694     // C string. In the context of locations, the only time we can issue such
695     // a warning is for labels.
696     if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
697       if (!Filter.CheckCStringNotNullTerm)
698         return UndefinedVal();
699 
700       if (ExplodedNode *N = C.addTransition(state)) {
701         if (!BT_NotCString)
702           BT_NotCString.reset(new BuiltinBug("Unix API",
703             "Argument is not a null-terminated string."));
704 
705         SmallString<120> buf;
706         llvm::raw_svector_ostream os(buf);
707         assert(CurrentFunctionDescription);
708         os << "Argument to " << CurrentFunctionDescription
709            << " is the address of the label '" << Label->getLabel()->getName()
710            << "', which is not a null-terminated string";
711 
712         // Generate a report for this bug.
713         BugReport *report = new BugReport(*BT_NotCString,
714                                                           os.str(), N);
715 
716         report->addRange(Ex->getSourceRange());
717         C.emitReport(report);
718       }
719       return UndefinedVal();
720 
721     }
722 
723     // If it's not a region and not a label, give up.
724     return UnknownVal();
725   }
726 
727   // If we have a region, strip casts from it and see if we can figure out
728   // its length. For anything we can't figure out, just return UnknownVal.
729   MR = MR->StripCasts();
730 
731   switch (MR->getKind()) {
732   case MemRegion::StringRegionKind: {
733     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
734     // so we can assume that the byte length is the correct C string length.
735     SValBuilder &svalBuilder = C.getSValBuilder();
736     QualType sizeTy = svalBuilder.getContext().getSizeType();
737     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
738     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
739   }
740   case MemRegion::SymbolicRegionKind:
741   case MemRegion::AllocaRegionKind:
742   case MemRegion::VarRegionKind:
743   case MemRegion::FieldRegionKind:
744   case MemRegion::ObjCIvarRegionKind:
745     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
746   case MemRegion::CompoundLiteralRegionKind:
747     // FIXME: Can we track this? Is it necessary?
748     return UnknownVal();
749   case MemRegion::ElementRegionKind:
750     // FIXME: How can we handle this? It's not good enough to subtract the
751     // offset from the base string length; consider "123\x00567" and &a[5].
752     return UnknownVal();
753   default:
754     // Other regions (mostly non-data) can't have a reliable C string length.
755     // In this case, an error is emitted and UndefinedVal is returned.
756     // The caller should always be prepared to handle this case.
757     if (!Filter.CheckCStringNotNullTerm)
758       return UndefinedVal();
759 
760     if (ExplodedNode *N = C.addTransition(state)) {
761       if (!BT_NotCString)
762         BT_NotCString.reset(new BuiltinBug("Unix API",
763           "Argument is not a null-terminated string."));
764 
765       SmallString<120> buf;
766       llvm::raw_svector_ostream os(buf);
767 
768       assert(CurrentFunctionDescription);
769       os << "Argument to " << CurrentFunctionDescription << " is ";
770 
771       if (SummarizeRegion(os, C.getASTContext(), MR))
772         os << ", which is not a null-terminated string";
773       else
774         os << "not a null-terminated string";
775 
776       // Generate a report for this bug.
777       BugReport *report = new BugReport(*BT_NotCString,
778                                                         os.str(), N);
779 
780       report->addRange(Ex->getSourceRange());
781       C.emitReport(report);
782     }
783 
784     return UndefinedVal();
785   }
786 }
787 
788 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
789   ProgramStateRef &state, const Expr *expr, SVal val) const {
790 
791   // Get the memory region pointed to by the val.
792   const MemRegion *bufRegion = val.getAsRegion();
793   if (!bufRegion)
794     return NULL;
795 
796   // Strip casts off the memory region.
797   bufRegion = bufRegion->StripCasts();
798 
799   // Cast the memory region to a string region.
800   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
801   if (!strRegion)
802     return NULL;
803 
804   // Return the actual string in the string region.
805   return strRegion->getStringLiteral();
806 }
807 
808 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
809                                                 ProgramStateRef state,
810                                                 const Expr *E, SVal V) {
811   Loc *L = dyn_cast<Loc>(&V);
812   if (!L)
813     return state;
814 
815   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
816   // some assumptions about the value that CFRefCount can't. Even so, it should
817   // probably be refactored.
818   if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) {
819     const MemRegion *R = MR->getRegion()->StripCasts();
820 
821     // Are we dealing with an ElementRegion?  If so, we should be invalidating
822     // the super-region.
823     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
824       R = ER->getSuperRegion();
825       // FIXME: What about layers of ElementRegions?
826     }
827 
828     // Invalidate this region.
829     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
830     return state->invalidateRegions(R, E, C.blockCount(), LCtx);
831   }
832 
833   // If we have a non-region value by chance, just remove the binding.
834   // FIXME: is this necessary or correct? This handles the non-Region
835   //  cases.  Is it ever valid to store to these?
836   return state->killBinding(*L);
837 }
838 
839 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
840                                      const MemRegion *MR) {
841   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
842 
843   switch (MR->getKind()) {
844   case MemRegion::FunctionTextRegionKind: {
845     const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
846     if (FD)
847       os << "the address of the function '" << *FD << '\'';
848     else
849       os << "the address of a function";
850     return true;
851   }
852   case MemRegion::BlockTextRegionKind:
853     os << "block text";
854     return true;
855   case MemRegion::BlockDataRegionKind:
856     os << "a block";
857     return true;
858   case MemRegion::CXXThisRegionKind:
859   case MemRegion::CXXTempObjectRegionKind:
860     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
861     return true;
862   case MemRegion::VarRegionKind:
863     os << "a variable of type" << TVR->getValueType().getAsString();
864     return true;
865   case MemRegion::FieldRegionKind:
866     os << "a field of type " << TVR->getValueType().getAsString();
867     return true;
868   case MemRegion::ObjCIvarRegionKind:
869     os << "an instance variable of type " << TVR->getValueType().getAsString();
870     return true;
871   default:
872     return false;
873   }
874 }
875 
876 //===----------------------------------------------------------------------===//
877 // evaluation of individual function calls.
878 //===----------------------------------------------------------------------===//
879 
880 void CStringChecker::evalCopyCommon(CheckerContext &C,
881                                     const CallExpr *CE,
882                                     ProgramStateRef state,
883                                     const Expr *Size, const Expr *Dest,
884                                     const Expr *Source, bool Restricted,
885                                     bool IsMempcpy) const {
886   CurrentFunctionDescription = "memory copy function";
887 
888   // See if the size argument is zero.
889   const LocationContext *LCtx = C.getLocationContext();
890   SVal sizeVal = state->getSVal(Size, LCtx);
891   QualType sizeTy = Size->getType();
892 
893   ProgramStateRef stateZeroSize, stateNonZeroSize;
894   llvm::tie(stateZeroSize, stateNonZeroSize) =
895     assumeZero(C, state, sizeVal, sizeTy);
896 
897   // Get the value of the Dest.
898   SVal destVal = state->getSVal(Dest, LCtx);
899 
900   // If the size is zero, there won't be any actual memory access, so
901   // just bind the return value to the destination buffer and return.
902   if (stateZeroSize && !stateNonZeroSize) {
903     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
904     C.addTransition(stateZeroSize);
905     return;
906   }
907 
908   // If the size can be nonzero, we have to check the other arguments.
909   if (stateNonZeroSize) {
910     state = stateNonZeroSize;
911 
912     // Ensure the destination is not null. If it is NULL there will be a
913     // NULL pointer dereference.
914     state = checkNonNull(C, state, Dest, destVal);
915     if (!state)
916       return;
917 
918     // Get the value of the Src.
919     SVal srcVal = state->getSVal(Source, LCtx);
920 
921     // Ensure the source is not null. If it is NULL there will be a
922     // NULL pointer dereference.
923     state = checkNonNull(C, state, Source, srcVal);
924     if (!state)
925       return;
926 
927     // Ensure the accesses are valid and that the buffers do not overlap.
928     const char * const writeWarning =
929       "Memory copy function overflows destination buffer";
930     state = CheckBufferAccess(C, state, Size, Dest, Source,
931                               writeWarning, /* sourceWarning = */ NULL);
932     if (Restricted)
933       state = CheckOverlap(C, state, Size, Dest, Source);
934 
935     if (!state)
936       return;
937 
938     // If this is mempcpy, get the byte after the last byte copied and
939     // bind the expr.
940     if (IsMempcpy) {
941       loc::MemRegionVal *destRegVal = dyn_cast<loc::MemRegionVal>(&destVal);
942       assert(destRegVal && "Destination should be a known MemRegionVal here");
943 
944       // Get the length to copy.
945       NonLoc *lenValNonLoc = dyn_cast<NonLoc>(&sizeVal);
946 
947       if (lenValNonLoc) {
948         // Get the byte after the last byte copied.
949         SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
950                                                           *destRegVal,
951                                                           *lenValNonLoc,
952                                                           Dest->getType());
953 
954         // The byte after the last byte copied is the return value.
955         state = state->BindExpr(CE, LCtx, lastElement);
956       } else {
957         // If we don't know how much we copied, we can at least
958         // conjure a return value for later.
959         SVal result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx,
960                                                           C.blockCount());
961         state = state->BindExpr(CE, LCtx, result);
962       }
963 
964     } else {
965       // All other copies return the destination buffer.
966       // (Well, bcopy() has a void return type, but this won't hurt.)
967       state = state->BindExpr(CE, LCtx, destVal);
968     }
969 
970     // Invalidate the destination.
971     // FIXME: Even if we can't perfectly model the copy, we should see if we
972     // can use LazyCompoundVals to copy the source values into the destination.
973     // This would probably remove any existing bindings past the end of the
974     // copied region, but that's still an improvement over blank invalidation.
975     state = InvalidateBuffer(C, state, Dest,
976                              state->getSVal(Dest, C.getLocationContext()));
977     C.addTransition(state);
978   }
979 }
980 
981 
982 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
983   if (CE->getNumArgs() < 3)
984     return;
985 
986   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
987   // The return value is the address of the destination buffer.
988   const Expr *Dest = CE->getArg(0);
989   ProgramStateRef state = C.getState();
990 
991   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
992 }
993 
994 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
995   if (CE->getNumArgs() < 3)
996     return;
997 
998   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
999   // The return value is a pointer to the byte following the last written byte.
1000   const Expr *Dest = CE->getArg(0);
1001   ProgramStateRef state = C.getState();
1002 
1003   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1004 }
1005 
1006 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1007   if (CE->getNumArgs() < 3)
1008     return;
1009 
1010   // void *memmove(void *dst, const void *src, size_t n);
1011   // The return value is the address of the destination buffer.
1012   const Expr *Dest = CE->getArg(0);
1013   ProgramStateRef state = C.getState();
1014 
1015   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1016 }
1017 
1018 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1019   if (CE->getNumArgs() < 3)
1020     return;
1021 
1022   // void bcopy(const void *src, void *dst, size_t n);
1023   evalCopyCommon(C, CE, C.getState(),
1024                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1025 }
1026 
1027 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1028   if (CE->getNumArgs() < 3)
1029     return;
1030 
1031   // int memcmp(const void *s1, const void *s2, size_t n);
1032   CurrentFunctionDescription = "memory comparison function";
1033 
1034   const Expr *Left = CE->getArg(0);
1035   const Expr *Right = CE->getArg(1);
1036   const Expr *Size = CE->getArg(2);
1037 
1038   ProgramStateRef state = C.getState();
1039   SValBuilder &svalBuilder = C.getSValBuilder();
1040 
1041   // See if the size argument is zero.
1042   const LocationContext *LCtx = C.getLocationContext();
1043   SVal sizeVal = state->getSVal(Size, LCtx);
1044   QualType sizeTy = Size->getType();
1045 
1046   ProgramStateRef stateZeroSize, stateNonZeroSize;
1047   llvm::tie(stateZeroSize, stateNonZeroSize) =
1048     assumeZero(C, state, sizeVal, sizeTy);
1049 
1050   // If the size can be zero, the result will be 0 in that case, and we don't
1051   // have to check either of the buffers.
1052   if (stateZeroSize) {
1053     state = stateZeroSize;
1054     state = state->BindExpr(CE, LCtx,
1055                             svalBuilder.makeZeroVal(CE->getType()));
1056     C.addTransition(state);
1057   }
1058 
1059   // If the size can be nonzero, we have to check the other arguments.
1060   if (stateNonZeroSize) {
1061     state = stateNonZeroSize;
1062     // If we know the two buffers are the same, we know the result is 0.
1063     // First, get the two buffers' addresses. Another checker will have already
1064     // made sure they're not undefined.
1065     DefinedOrUnknownSVal LV =
1066       cast<DefinedOrUnknownSVal>(state->getSVal(Left, LCtx));
1067     DefinedOrUnknownSVal RV =
1068       cast<DefinedOrUnknownSVal>(state->getSVal(Right, LCtx));
1069 
1070     // See if they are the same.
1071     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1072     ProgramStateRef StSameBuf, StNotSameBuf;
1073     llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1074 
1075     // If the two arguments might be the same buffer, we know the result is 0,
1076     // and we only need to check one size.
1077     if (StSameBuf) {
1078       state = StSameBuf;
1079       state = CheckBufferAccess(C, state, Size, Left);
1080       if (state) {
1081         state = StSameBuf->BindExpr(CE, LCtx,
1082                                     svalBuilder.makeZeroVal(CE->getType()));
1083         C.addTransition(state);
1084       }
1085     }
1086 
1087     // If the two arguments might be different buffers, we have to check the
1088     // size of both of them.
1089     if (StNotSameBuf) {
1090       state = StNotSameBuf;
1091       state = CheckBufferAccess(C, state, Size, Left, Right);
1092       if (state) {
1093         // The return value is the comparison result, which we don't know.
1094         SVal CmpV = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1095         state = state->BindExpr(CE, LCtx, CmpV);
1096         C.addTransition(state);
1097       }
1098     }
1099   }
1100 }
1101 
1102 void CStringChecker::evalstrLength(CheckerContext &C,
1103                                    const CallExpr *CE) const {
1104   if (CE->getNumArgs() < 1)
1105     return;
1106 
1107   // size_t strlen(const char *s);
1108   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1109 }
1110 
1111 void CStringChecker::evalstrnLength(CheckerContext &C,
1112                                     const CallExpr *CE) const {
1113   if (CE->getNumArgs() < 2)
1114     return;
1115 
1116   // size_t strnlen(const char *s, size_t maxlen);
1117   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1118 }
1119 
1120 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1121                                          bool IsStrnlen) const {
1122   CurrentFunctionDescription = "string length function";
1123   ProgramStateRef state = C.getState();
1124   const LocationContext *LCtx = C.getLocationContext();
1125 
1126   if (IsStrnlen) {
1127     const Expr *maxlenExpr = CE->getArg(1);
1128     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1129 
1130     ProgramStateRef stateZeroSize, stateNonZeroSize;
1131     llvm::tie(stateZeroSize, stateNonZeroSize) =
1132       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1133 
1134     // If the size can be zero, the result will be 0 in that case, and we don't
1135     // have to check the string itself.
1136     if (stateZeroSize) {
1137       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1138       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1139       C.addTransition(stateZeroSize);
1140     }
1141 
1142     // If the size is GUARANTEED to be zero, we're done!
1143     if (!stateNonZeroSize)
1144       return;
1145 
1146     // Otherwise, record the assumption that the size is nonzero.
1147     state = stateNonZeroSize;
1148   }
1149 
1150   // Check that the string argument is non-null.
1151   const Expr *Arg = CE->getArg(0);
1152   SVal ArgVal = state->getSVal(Arg, LCtx);
1153 
1154   state = checkNonNull(C, state, Arg, ArgVal);
1155 
1156   if (!state)
1157     return;
1158 
1159   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1160 
1161   // If the argument isn't a valid C string, there's no valid state to
1162   // transition to.
1163   if (strLength.isUndef())
1164     return;
1165 
1166   DefinedOrUnknownSVal result = UnknownVal();
1167 
1168   // If the check is for strnlen() then bind the return value to no more than
1169   // the maxlen value.
1170   if (IsStrnlen) {
1171     QualType cmpTy = C.getSValBuilder().getConditionType();
1172 
1173     // It's a little unfortunate to be getting this again,
1174     // but it's not that expensive...
1175     const Expr *maxlenExpr = CE->getArg(1);
1176     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1177 
1178     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
1179     NonLoc *maxlenValNL = dyn_cast<NonLoc>(&maxlenVal);
1180 
1181     if (strLengthNL && maxlenValNL) {
1182       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1183 
1184       // Check if the strLength is greater than the maxlen.
1185       llvm::tie(stateStringTooLong, stateStringNotTooLong) =
1186         state->assume(cast<DefinedOrUnknownSVal>
1187                       (C.getSValBuilder().evalBinOpNN(state, BO_GT,
1188                                                       *strLengthNL,
1189                                                       *maxlenValNL,
1190                                                       cmpTy)));
1191 
1192       if (stateStringTooLong && !stateStringNotTooLong) {
1193         // If the string is longer than maxlen, return maxlen.
1194         result = *maxlenValNL;
1195       } else if (stateStringNotTooLong && !stateStringTooLong) {
1196         // If the string is shorter than maxlen, return its length.
1197         result = *strLengthNL;
1198       }
1199     }
1200 
1201     if (result.isUnknown()) {
1202       // If we don't have enough information for a comparison, there's
1203       // no guarantee the full string length will actually be returned.
1204       // All we know is the return value is the min of the string length
1205       // and the limit. This is better than nothing.
1206       result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1207       NonLoc *resultNL = cast<NonLoc>(&result);
1208 
1209       if (strLengthNL) {
1210         state = state->assume(cast<DefinedOrUnknownSVal>
1211                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
1212                                                               *resultNL,
1213                                                               *strLengthNL,
1214                                                               cmpTy)), true);
1215       }
1216 
1217       if (maxlenValNL) {
1218         state = state->assume(cast<DefinedOrUnknownSVal>
1219                               (C.getSValBuilder().evalBinOpNN(state, BO_LE,
1220                                                               *resultNL,
1221                                                               *maxlenValNL,
1222                                                               cmpTy)), true);
1223       }
1224     }
1225 
1226   } else {
1227     // This is a plain strlen(), not strnlen().
1228     result = cast<DefinedOrUnknownSVal>(strLength);
1229 
1230     // If we don't know the length of the string, conjure a return
1231     // value, so it can be used in constraints, at least.
1232     if (result.isUnknown()) {
1233       result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount());
1234     }
1235   }
1236 
1237   // Bind the return value.
1238   assert(!result.isUnknown() && "Should have conjured a value by now");
1239   state = state->BindExpr(CE, LCtx, result);
1240   C.addTransition(state);
1241 }
1242 
1243 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1244   if (CE->getNumArgs() < 2)
1245     return;
1246 
1247   // char *strcpy(char *restrict dst, const char *restrict src);
1248   evalStrcpyCommon(C, CE,
1249                    /* returnEnd = */ false,
1250                    /* isBounded = */ false,
1251                    /* isAppending = */ false);
1252 }
1253 
1254 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1255   if (CE->getNumArgs() < 3)
1256     return;
1257 
1258   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1259   evalStrcpyCommon(C, CE,
1260                    /* returnEnd = */ false,
1261                    /* isBounded = */ true,
1262                    /* isAppending = */ false);
1263 }
1264 
1265 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1266   if (CE->getNumArgs() < 2)
1267     return;
1268 
1269   // char *stpcpy(char *restrict dst, const char *restrict src);
1270   evalStrcpyCommon(C, CE,
1271                    /* returnEnd = */ true,
1272                    /* isBounded = */ false,
1273                    /* isAppending = */ false);
1274 }
1275 
1276 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1277   if (CE->getNumArgs() < 2)
1278     return;
1279 
1280   //char *strcat(char *restrict s1, const char *restrict s2);
1281   evalStrcpyCommon(C, CE,
1282                    /* returnEnd = */ false,
1283                    /* isBounded = */ false,
1284                    /* isAppending = */ true);
1285 }
1286 
1287 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1288   if (CE->getNumArgs() < 3)
1289     return;
1290 
1291   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1292   evalStrcpyCommon(C, CE,
1293                    /* returnEnd = */ false,
1294                    /* isBounded = */ true,
1295                    /* isAppending = */ true);
1296 }
1297 
1298 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1299                                       bool returnEnd, bool isBounded,
1300                                       bool isAppending) const {
1301   CurrentFunctionDescription = "string copy function";
1302   ProgramStateRef state = C.getState();
1303   const LocationContext *LCtx = C.getLocationContext();
1304 
1305   // Check that the destination is non-null.
1306   const Expr *Dst = CE->getArg(0);
1307   SVal DstVal = state->getSVal(Dst, LCtx);
1308 
1309   state = checkNonNull(C, state, Dst, DstVal);
1310   if (!state)
1311     return;
1312 
1313   // Check that the source is non-null.
1314   const Expr *srcExpr = CE->getArg(1);
1315   SVal srcVal = state->getSVal(srcExpr, LCtx);
1316   state = checkNonNull(C, state, srcExpr, srcVal);
1317   if (!state)
1318     return;
1319 
1320   // Get the string length of the source.
1321   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1322 
1323   // If the source isn't a valid C string, give up.
1324   if (strLength.isUndef())
1325     return;
1326 
1327   SValBuilder &svalBuilder = C.getSValBuilder();
1328   QualType cmpTy = svalBuilder.getConditionType();
1329   QualType sizeTy = svalBuilder.getContext().getSizeType();
1330 
1331   // These two values allow checking two kinds of errors:
1332   // - actual overflows caused by a source that doesn't fit in the destination
1333   // - potential overflows caused by a bound that could exceed the destination
1334   SVal amountCopied = UnknownVal();
1335   SVal maxLastElementIndex = UnknownVal();
1336   const char *boundWarning = NULL;
1337 
1338   // If the function is strncpy, strncat, etc... it is bounded.
1339   if (isBounded) {
1340     // Get the max number of characters to copy.
1341     const Expr *lenExpr = CE->getArg(2);
1342     SVal lenVal = state->getSVal(lenExpr, LCtx);
1343 
1344     // Protect against misdeclared strncpy().
1345     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1346 
1347     NonLoc *strLengthNL = dyn_cast<NonLoc>(&strLength);
1348     NonLoc *lenValNL = dyn_cast<NonLoc>(&lenVal);
1349 
1350     // If we know both values, we might be able to figure out how much
1351     // we're copying.
1352     if (strLengthNL && lenValNL) {
1353       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1354 
1355       // Check if the max number to copy is less than the length of the src.
1356       // If the bound is equal to the source length, strncpy won't null-
1357       // terminate the result!
1358       llvm::tie(stateSourceTooLong, stateSourceNotTooLong) =
1359         state->assume(cast<DefinedOrUnknownSVal>
1360                       (svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL,
1361                                                *lenValNL, cmpTy)));
1362 
1363       if (stateSourceTooLong && !stateSourceNotTooLong) {
1364         // Max number to copy is less than the length of the src, so the actual
1365         // strLength copied is the max number arg.
1366         state = stateSourceTooLong;
1367         amountCopied = lenVal;
1368 
1369       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1370         // The source buffer entirely fits in the bound.
1371         state = stateSourceNotTooLong;
1372         amountCopied = strLength;
1373       }
1374     }
1375 
1376     // We still want to know if the bound is known to be too large.
1377     if (lenValNL) {
1378       if (isAppending) {
1379         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1380 
1381         // Get the string length of the destination. If the destination is
1382         // memory that can't have a string length, we shouldn't be copying
1383         // into it anyway.
1384         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1385         if (dstStrLength.isUndef())
1386           return;
1387 
1388         if (NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength)) {
1389           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1390                                                         *lenValNL,
1391                                                         *dstStrLengthNL,
1392                                                         sizeTy);
1393           boundWarning = "Size argument is greater than the free space in the "
1394                          "destination buffer";
1395         }
1396 
1397       } else {
1398         // For strncpy, this is just checking that lenVal <= sizeof(dst)
1399         // (Yes, strncpy and strncat differ in how they treat termination.
1400         // strncat ALWAYS terminates, but strncpy doesn't.)
1401 
1402         // We need a special case for when the copy size is zero, in which
1403         // case strncpy will do no work at all. Our bounds check uses n-1
1404         // as the last element accessed, so n == 0 is problematic.
1405         ProgramStateRef StateZeroSize, StateNonZeroSize;
1406         llvm::tie(StateZeroSize, StateNonZeroSize) =
1407           assumeZero(C, state, *lenValNL, sizeTy);
1408 
1409         // If the size is known to be zero, we're done.
1410         if (StateZeroSize && !StateNonZeroSize) {
1411           StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1412           C.addTransition(StateZeroSize);
1413           return;
1414         }
1415 
1416         // Otherwise, go ahead and figure out the last element we'll touch.
1417         // We don't record the non-zero assumption here because we can't
1418         // be sure. We won't warn on a possible zero.
1419         NonLoc one = cast<NonLoc>(svalBuilder.makeIntVal(1, sizeTy));
1420         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1421                                                       one, sizeTy);
1422         boundWarning = "Size argument is greater than the length of the "
1423                        "destination buffer";
1424       }
1425     }
1426 
1427     // If we couldn't pin down the copy length, at least bound it.
1428     // FIXME: We should actually run this code path for append as well, but
1429     // right now it creates problems with constraints (since we can end up
1430     // trying to pass constraints from symbol to symbol).
1431     if (amountCopied.isUnknown() && !isAppending) {
1432       // Try to get a "hypothetical" string length symbol, which we can later
1433       // set as a real value if that turns out to be the case.
1434       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1435       assert(!amountCopied.isUndef());
1436 
1437       if (NonLoc *amountCopiedNL = dyn_cast<NonLoc>(&amountCopied)) {
1438         if (lenValNL) {
1439           // amountCopied <= lenVal
1440           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1441                                                              *amountCopiedNL,
1442                                                              *lenValNL,
1443                                                              cmpTy);
1444           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanBound),
1445                                 true);
1446           if (!state)
1447             return;
1448         }
1449 
1450         if (strLengthNL) {
1451           // amountCopied <= strlen(source)
1452           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1453                                                            *amountCopiedNL,
1454                                                            *strLengthNL,
1455                                                            cmpTy);
1456           state = state->assume(cast<DefinedOrUnknownSVal>(copiedLessThanSrc),
1457                                 true);
1458           if (!state)
1459             return;
1460         }
1461       }
1462     }
1463 
1464   } else {
1465     // The function isn't bounded. The amount copied should match the length
1466     // of the source buffer.
1467     amountCopied = strLength;
1468   }
1469 
1470   assert(state);
1471 
1472   // This represents the number of characters copied into the destination
1473   // buffer. (It may not actually be the strlen if the destination buffer
1474   // is not terminated.)
1475   SVal finalStrLength = UnknownVal();
1476 
1477   // If this is an appending function (strcat, strncat...) then set the
1478   // string length to strlen(src) + strlen(dst) since the buffer will
1479   // ultimately contain both.
1480   if (isAppending) {
1481     // Get the string length of the destination. If the destination is memory
1482     // that can't have a string length, we shouldn't be copying into it anyway.
1483     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1484     if (dstStrLength.isUndef())
1485       return;
1486 
1487     NonLoc *srcStrLengthNL = dyn_cast<NonLoc>(&amountCopied);
1488     NonLoc *dstStrLengthNL = dyn_cast<NonLoc>(&dstStrLength);
1489 
1490     // If we know both string lengths, we might know the final string length.
1491     if (srcStrLengthNL && dstStrLengthNL) {
1492       // Make sure the two lengths together don't overflow a size_t.
1493       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1494       if (!state)
1495         return;
1496 
1497       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1498                                                *dstStrLengthNL, sizeTy);
1499     }
1500 
1501     // If we couldn't get a single value for the final string length,
1502     // we can at least bound it by the individual lengths.
1503     if (finalStrLength.isUnknown()) {
1504       // Try to get a "hypothetical" string length symbol, which we can later
1505       // set as a real value if that turns out to be the case.
1506       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1507       assert(!finalStrLength.isUndef());
1508 
1509       if (NonLoc *finalStrLengthNL = dyn_cast<NonLoc>(&finalStrLength)) {
1510         if (srcStrLengthNL) {
1511           // finalStrLength >= srcStrLength
1512           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1513                                                         *finalStrLengthNL,
1514                                                         *srcStrLengthNL,
1515                                                         cmpTy);
1516           state = state->assume(cast<DefinedOrUnknownSVal>(sourceInResult),
1517                                 true);
1518           if (!state)
1519             return;
1520         }
1521 
1522         if (dstStrLengthNL) {
1523           // finalStrLength >= dstStrLength
1524           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1525                                                       *finalStrLengthNL,
1526                                                       *dstStrLengthNL,
1527                                                       cmpTy);
1528           state = state->assume(cast<DefinedOrUnknownSVal>(destInResult),
1529                                 true);
1530           if (!state)
1531             return;
1532         }
1533       }
1534     }
1535 
1536   } else {
1537     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1538     // the final string length will match the input string length.
1539     finalStrLength = amountCopied;
1540   }
1541 
1542   // The final result of the function will either be a pointer past the last
1543   // copied element, or a pointer to the start of the destination buffer.
1544   SVal Result = (returnEnd ? UnknownVal() : DstVal);
1545 
1546   assert(state);
1547 
1548   // If the destination is a MemRegion, try to check for a buffer overflow and
1549   // record the new string length.
1550   if (loc::MemRegionVal *dstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) {
1551     QualType ptrTy = Dst->getType();
1552 
1553     // If we have an exact value on a bounded copy, use that to check for
1554     // overflows, rather than our estimate about how much is actually copied.
1555     if (boundWarning) {
1556       if (NonLoc *maxLastNL = dyn_cast<NonLoc>(&maxLastElementIndex)) {
1557         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1558                                                       *maxLastNL, ptrTy);
1559         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1560                               boundWarning);
1561         if (!state)
1562           return;
1563       }
1564     }
1565 
1566     // Then, if the final length is known...
1567     if (NonLoc *knownStrLength = dyn_cast<NonLoc>(&finalStrLength)) {
1568       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1569                                                  *knownStrLength, ptrTy);
1570 
1571       // ...and we haven't checked the bound, we'll check the actual copy.
1572       if (!boundWarning) {
1573         const char * const warningMsg =
1574           "String copy function overflows destination buffer";
1575         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1576         if (!state)
1577           return;
1578       }
1579 
1580       // If this is a stpcpy-style copy, the last element is the return value.
1581       if (returnEnd)
1582         Result = lastElement;
1583     }
1584 
1585     // Invalidate the destination. This must happen before we set the C string
1586     // length because invalidation will clear the length.
1587     // FIXME: Even if we can't perfectly model the copy, we should see if we
1588     // can use LazyCompoundVals to copy the source values into the destination.
1589     // This would probably remove any existing bindings past the end of the
1590     // string, but that's still an improvement over blank invalidation.
1591     state = InvalidateBuffer(C, state, Dst, *dstRegVal);
1592 
1593     // Set the C string length of the destination, if we know it.
1594     if (isBounded && !isAppending) {
1595       // strncpy is annoying in that it doesn't guarantee to null-terminate
1596       // the result string. If the original string didn't fit entirely inside
1597       // the bound (including the null-terminator), we don't know how long the
1598       // result is.
1599       if (amountCopied != strLength)
1600         finalStrLength = UnknownVal();
1601     }
1602     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1603   }
1604 
1605   assert(state);
1606 
1607   // If this is a stpcpy-style copy, but we were unable to check for a buffer
1608   // overflow, we still need a result. Conjure a return value.
1609   if (returnEnd && Result.isUnknown()) {
1610     Result = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1611   }
1612 
1613   // Set the return value.
1614   state = state->BindExpr(CE, LCtx, Result);
1615   C.addTransition(state);
1616 }
1617 
1618 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1619   if (CE->getNumArgs() < 2)
1620     return;
1621 
1622   //int strcmp(const char *s1, const char *s2);
1623   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1624 }
1625 
1626 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1627   if (CE->getNumArgs() < 3)
1628     return;
1629 
1630   //int strncmp(const char *s1, const char *s2, size_t n);
1631   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1632 }
1633 
1634 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1635                                     const CallExpr *CE) const {
1636   if (CE->getNumArgs() < 2)
1637     return;
1638 
1639   //int strcasecmp(const char *s1, const char *s2);
1640   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1641 }
1642 
1643 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1644                                      const CallExpr *CE) const {
1645   if (CE->getNumArgs() < 3)
1646     return;
1647 
1648   //int strncasecmp(const char *s1, const char *s2, size_t n);
1649   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1650 }
1651 
1652 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1653                                       bool isBounded, bool ignoreCase) const {
1654   CurrentFunctionDescription = "string comparison function";
1655   ProgramStateRef state = C.getState();
1656   const LocationContext *LCtx = C.getLocationContext();
1657 
1658   // Check that the first string is non-null
1659   const Expr *s1 = CE->getArg(0);
1660   SVal s1Val = state->getSVal(s1, LCtx);
1661   state = checkNonNull(C, state, s1, s1Val);
1662   if (!state)
1663     return;
1664 
1665   // Check that the second string is non-null.
1666   const Expr *s2 = CE->getArg(1);
1667   SVal s2Val = state->getSVal(s2, LCtx);
1668   state = checkNonNull(C, state, s2, s2Val);
1669   if (!state)
1670     return;
1671 
1672   // Get the string length of the first string or give up.
1673   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1674   if (s1Length.isUndef())
1675     return;
1676 
1677   // Get the string length of the second string or give up.
1678   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1679   if (s2Length.isUndef())
1680     return;
1681 
1682   // If we know the two buffers are the same, we know the result is 0.
1683   // First, get the two buffers' addresses. Another checker will have already
1684   // made sure they're not undefined.
1685   DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(s1Val);
1686   DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(s2Val);
1687 
1688   // See if they are the same.
1689   SValBuilder &svalBuilder = C.getSValBuilder();
1690   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1691   ProgramStateRef StSameBuf, StNotSameBuf;
1692   llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1693 
1694   // If the two arguments might be the same buffer, we know the result is 0,
1695   // and we only need to check one size.
1696   if (StSameBuf) {
1697     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1698                                     svalBuilder.makeZeroVal(CE->getType()));
1699     C.addTransition(StSameBuf);
1700 
1701     // If the two arguments are GUARANTEED to be the same, we're done!
1702     if (!StNotSameBuf)
1703       return;
1704   }
1705 
1706   assert(StNotSameBuf);
1707   state = StNotSameBuf;
1708 
1709   // At this point we can go about comparing the two buffers.
1710   // For now, we only do this if they're both known string literals.
1711 
1712   // Attempt to extract string literals from both expressions.
1713   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1714   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1715   bool canComputeResult = false;
1716 
1717   if (s1StrLiteral && s2StrLiteral) {
1718     StringRef s1StrRef = s1StrLiteral->getString();
1719     StringRef s2StrRef = s2StrLiteral->getString();
1720 
1721     if (isBounded) {
1722       // Get the max number of characters to compare.
1723       const Expr *lenExpr = CE->getArg(2);
1724       SVal lenVal = state->getSVal(lenExpr, LCtx);
1725 
1726       // If the length is known, we can get the right substrings.
1727       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1728         // Create substrings of each to compare the prefix.
1729         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1730         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1731         canComputeResult = true;
1732       }
1733     } else {
1734       // This is a normal, unbounded strcmp.
1735       canComputeResult = true;
1736     }
1737 
1738     if (canComputeResult) {
1739       // Real strcmp stops at null characters.
1740       size_t s1Term = s1StrRef.find('\0');
1741       if (s1Term != StringRef::npos)
1742         s1StrRef = s1StrRef.substr(0, s1Term);
1743 
1744       size_t s2Term = s2StrRef.find('\0');
1745       if (s2Term != StringRef::npos)
1746         s2StrRef = s2StrRef.substr(0, s2Term);
1747 
1748       // Use StringRef's comparison methods to compute the actual result.
1749       int result;
1750 
1751       if (ignoreCase) {
1752         // Compare string 1 to string 2 the same way strcasecmp() does.
1753         result = s1StrRef.compare_lower(s2StrRef);
1754       } else {
1755         // Compare string 1 to string 2 the same way strcmp() does.
1756         result = s1StrRef.compare(s2StrRef);
1757       }
1758 
1759       // Build the SVal of the comparison and bind the return value.
1760       SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1761       state = state->BindExpr(CE, LCtx, resultVal);
1762     }
1763   }
1764 
1765   if (!canComputeResult) {
1766     // Conjure a symbolic value. It's the best we can do.
1767     SVal resultVal = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount());
1768     state = state->BindExpr(CE, LCtx, resultVal);
1769   }
1770 
1771   // Record this as a possible path.
1772   C.addTransition(state);
1773 }
1774 
1775 //===----------------------------------------------------------------------===//
1776 // The driver method, and other Checker callbacks.
1777 //===----------------------------------------------------------------------===//
1778 
1779 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1780   const FunctionDecl *FDecl = C.getCalleeDecl(CE);
1781 
1782   if (!FDecl)
1783     return false;
1784 
1785   FnCheck evalFunction = 0;
1786   if (C.isCLibraryFunction(FDecl, "memcpy"))
1787     evalFunction =  &CStringChecker::evalMemcpy;
1788   else if (C.isCLibraryFunction(FDecl, "mempcpy"))
1789     evalFunction =  &CStringChecker::evalMempcpy;
1790   else if (C.isCLibraryFunction(FDecl, "memcmp"))
1791     evalFunction =  &CStringChecker::evalMemcmp;
1792   else if (C.isCLibraryFunction(FDecl, "memmove"))
1793     evalFunction =  &CStringChecker::evalMemmove;
1794   else if (C.isCLibraryFunction(FDecl, "strcpy"))
1795     evalFunction =  &CStringChecker::evalStrcpy;
1796   else if (C.isCLibraryFunction(FDecl, "strncpy"))
1797     evalFunction =  &CStringChecker::evalStrncpy;
1798   else if (C.isCLibraryFunction(FDecl, "stpcpy"))
1799     evalFunction =  &CStringChecker::evalStpcpy;
1800   else if (C.isCLibraryFunction(FDecl, "strcat"))
1801     evalFunction =  &CStringChecker::evalStrcat;
1802   else if (C.isCLibraryFunction(FDecl, "strncat"))
1803     evalFunction =  &CStringChecker::evalStrncat;
1804   else if (C.isCLibraryFunction(FDecl, "strlen"))
1805     evalFunction =  &CStringChecker::evalstrLength;
1806   else if (C.isCLibraryFunction(FDecl, "strnlen"))
1807     evalFunction =  &CStringChecker::evalstrnLength;
1808   else if (C.isCLibraryFunction(FDecl, "strcmp"))
1809     evalFunction =  &CStringChecker::evalStrcmp;
1810   else if (C.isCLibraryFunction(FDecl, "strncmp"))
1811     evalFunction =  &CStringChecker::evalStrncmp;
1812   else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
1813     evalFunction =  &CStringChecker::evalStrcasecmp;
1814   else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
1815     evalFunction =  &CStringChecker::evalStrncasecmp;
1816   else if (C.isCLibraryFunction(FDecl, "bcopy"))
1817     evalFunction =  &CStringChecker::evalBcopy;
1818   else if (C.isCLibraryFunction(FDecl, "bcmp"))
1819     evalFunction =  &CStringChecker::evalMemcmp;
1820 
1821   // If the callee isn't a string function, let another checker handle it.
1822   if (!evalFunction)
1823     return false;
1824 
1825   // Make sure each function sets its own description.
1826   // (But don't bother in a release build.)
1827   assert(!(CurrentFunctionDescription = NULL));
1828 
1829   // Check and evaluate the call.
1830   (this->*evalFunction)(C, CE);
1831 
1832   // If the evaluate call resulted in no change, chain to the next eval call
1833   // handler.
1834   // Note, the custom CString evaluation calls assume that basic safety
1835   // properties are held. However, if the user chooses to turn off some of these
1836   // checks, we ignore the issues and leave the call evaluation to a generic
1837   // handler.
1838   if (!C.isDifferent())
1839     return false;
1840 
1841   return true;
1842 }
1843 
1844 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
1845   // Record string length for char a[] = "abc";
1846   ProgramStateRef state = C.getState();
1847 
1848   for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1849        I != E; ++I) {
1850     const VarDecl *D = dyn_cast<VarDecl>(*I);
1851     if (!D)
1852       continue;
1853 
1854     // FIXME: Handle array fields of structs.
1855     if (!D->getType()->isArrayType())
1856       continue;
1857 
1858     const Expr *Init = D->getInit();
1859     if (!Init)
1860       continue;
1861     if (!isa<StringLiteral>(Init))
1862       continue;
1863 
1864     Loc VarLoc = state->getLValue(D, C.getLocationContext());
1865     const MemRegion *MR = VarLoc.getAsRegion();
1866     if (!MR)
1867       continue;
1868 
1869     SVal StrVal = state->getSVal(Init, C.getLocationContext());
1870     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
1871     DefinedOrUnknownSVal strLength
1872       = cast<DefinedOrUnknownSVal>(getCStringLength(C, state, Init, StrVal));
1873 
1874     state = state->set<CStringLength>(MR, strLength);
1875   }
1876 
1877   C.addTransition(state);
1878 }
1879 
1880 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
1881   CStringLength::EntryMap Entries = state->get<CStringLength>();
1882   return !Entries.isEmpty();
1883 }
1884 
1885 ProgramStateRef
1886 CStringChecker::checkRegionChanges(ProgramStateRef state,
1887                                    const StoreManager::InvalidatedSymbols *,
1888                                    ArrayRef<const MemRegion *> ExplicitRegions,
1889                                    ArrayRef<const MemRegion *> Regions,
1890                                    const CallEvent *Call) const {
1891   CStringLength::EntryMap Entries = state->get<CStringLength>();
1892   if (Entries.isEmpty())
1893     return state;
1894 
1895   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
1896   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
1897 
1898   // First build sets for the changed regions and their super-regions.
1899   for (ArrayRef<const MemRegion *>::iterator
1900        I = Regions.begin(), E = Regions.end(); I != E; ++I) {
1901     const MemRegion *MR = *I;
1902     Invalidated.insert(MR);
1903 
1904     SuperRegions.insert(MR);
1905     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
1906       MR = SR->getSuperRegion();
1907       SuperRegions.insert(MR);
1908     }
1909   }
1910 
1911   CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
1912 
1913   // Then loop over the entries in the current state.
1914   for (CStringLength::EntryMap::iterator I = Entries.begin(),
1915        E = Entries.end(); I != E; ++I) {
1916     const MemRegion *MR = I.getKey();
1917 
1918     // Is this entry for a super-region of a changed region?
1919     if (SuperRegions.count(MR)) {
1920       Entries = F.remove(Entries, MR);
1921       continue;
1922     }
1923 
1924     // Is this entry for a sub-region of a changed region?
1925     const MemRegion *Super = MR;
1926     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
1927       Super = SR->getSuperRegion();
1928       if (Invalidated.count(Super)) {
1929         Entries = F.remove(Entries, MR);
1930         break;
1931       }
1932     }
1933   }
1934 
1935   return state->set<CStringLength>(Entries);
1936 }
1937 
1938 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
1939                                       SymbolReaper &SR) const {
1940   // Mark all symbols in our string length map as valid.
1941   CStringLength::EntryMap Entries = state->get<CStringLength>();
1942 
1943   for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
1944        I != E; ++I) {
1945     SVal Len = I.getData();
1946 
1947     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
1948                                   se = Len.symbol_end(); si != se; ++si)
1949       SR.markInUse(*si);
1950   }
1951 }
1952 
1953 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
1954                                       CheckerContext &C) const {
1955   if (!SR.hasDeadSymbols())
1956     return;
1957 
1958   ProgramStateRef state = C.getState();
1959   CStringLength::EntryMap Entries = state->get<CStringLength>();
1960   if (Entries.isEmpty())
1961     return;
1962 
1963   CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
1964   for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
1965        I != E; ++I) {
1966     SVal Len = I.getData();
1967     if (SymbolRef Sym = Len.getAsSymbol()) {
1968       if (SR.isDead(Sym))
1969         Entries = F.remove(Entries, I.getKey());
1970     }
1971   }
1972 
1973   state = state->set<CStringLength>(Entries);
1974   C.addTransition(state);
1975 }
1976 
1977 #define REGISTER_CHECKER(name) \
1978 void ento::register##name(CheckerManager &mgr) {\
1979   static CStringChecker *TheChecker = 0; \
1980   if (TheChecker == 0) \
1981     TheChecker = mgr.registerChecker<CStringChecker>(); \
1982   TheChecker->Filter.Check##name = true; \
1983 }
1984 
1985 REGISTER_CHECKER(CStringNullArg)
1986 REGISTER_CHECKER(CStringOutOfBounds)
1987 REGISTER_CHECKER(CStringBufferOverlap)
1988 REGISTER_CHECKER(CStringNotNullTerm)
1989 
1990 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
1991   registerCStringNullArg(Mgr);
1992 }
1993