xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp (revision bda3dd0d986b33c3a327c0ee0eb8ba43aa140699)
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InterCheckerAPI.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 using namespace clang;
29 using namespace ento;
30 
31 namespace {
32 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
33 class CStringChecker : public Checker< eval::Call,
34                                          check::PreStmt<DeclStmt>,
35                                          check::LiveSymbols,
36                                          check::DeadSymbols,
37                                          check::RegionChanges
38                                          > {
39   mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
40       BT_NotCString, BT_AdditionOverflow;
41 
42   mutable const char *CurrentFunctionDescription;
43 
44 public:
45   /// The filter is used to filter out the diagnostics which are not enabled by
46   /// the user.
47   struct CStringChecksFilter {
48     DefaultBool CheckCStringNullArg;
49     DefaultBool CheckCStringOutOfBounds;
50     DefaultBool CheckCStringBufferOverlap;
51     DefaultBool CheckCStringNotNullTerm;
52 
53     CheckerNameRef CheckNameCStringNullArg;
54     CheckerNameRef CheckNameCStringOutOfBounds;
55     CheckerNameRef CheckNameCStringBufferOverlap;
56     CheckerNameRef CheckNameCStringNotNullTerm;
57   };
58 
59   CStringChecksFilter Filter;
60 
61   static void *getTag() { static int tag; return &tag; }
62 
63   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
64   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
65   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
66   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
67 
68   ProgramStateRef
69     checkRegionChanges(ProgramStateRef state,
70                        const InvalidatedSymbols *,
71                        ArrayRef<const MemRegion *> ExplicitRegions,
72                        ArrayRef<const MemRegion *> Regions,
73                        const LocationContext *LCtx,
74                        const CallEvent *Call) const;
75 
76   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
77                                           const CallExpr *) const;
78   CallDescriptionMap<FnCheck> Callbacks = {
79       {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy},
80       {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy},
81       {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp},
82       {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove},
83       {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset},
84       {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset},
85       {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy},
86       {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy},
87       {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy},
88       {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy},
89       {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat},
90       {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat},
91       {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat},
92       {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength},
93       {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength},
94       {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp},
95       {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp},
96       {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp},
97       {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp},
98       {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep},
99       {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy},
100       {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp},
101       {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero},
102       {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero},
103   };
104 
105   // These require a bit of special handling.
106   CallDescription StdCopy{{"std", "copy"}, 3},
107       StdCopyBackward{{"std", "copy_backward"}, 3};
108 
109   FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
110   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
111   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
112   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
113   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
114   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
115                       ProgramStateRef state,
116                       const Expr *Size,
117                       const Expr *Source,
118                       const Expr *Dest,
119                       bool Restricted = false,
120                       bool IsMempcpy = false) const;
121 
122   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
123 
124   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
125   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
126   void evalstrLengthCommon(CheckerContext &C,
127                            const CallExpr *CE,
128                            bool IsStrnlen = false) const;
129 
130   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
131   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
132   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
133   void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
134   void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd,
135                         bool IsBounded, ConcatFnKind appendK,
136                         bool returnPtr = true) const;
137 
138   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
139   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
140   void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
141 
142   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
143   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
144   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
145   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
146   void evalStrcmpCommon(CheckerContext &C,
147                         const CallExpr *CE,
148                         bool IsBounded = false,
149                         bool IgnoreCase = false) const;
150 
151   void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
152 
153   void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
154   void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
155   void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
156   void evalMemset(CheckerContext &C, const CallExpr *CE) const;
157   void evalBzero(CheckerContext &C, const CallExpr *CE) const;
158 
159   // Utility methods
160   std::pair<ProgramStateRef , ProgramStateRef >
161   static assumeZero(CheckerContext &C,
162                     ProgramStateRef state, SVal V, QualType Ty);
163 
164   static ProgramStateRef setCStringLength(ProgramStateRef state,
165                                               const MemRegion *MR,
166                                               SVal strLength);
167   static SVal getCStringLengthForRegion(CheckerContext &C,
168                                         ProgramStateRef &state,
169                                         const Expr *Ex,
170                                         const MemRegion *MR,
171                                         bool hypothetical);
172   SVal getCStringLength(CheckerContext &C,
173                         ProgramStateRef &state,
174                         const Expr *Ex,
175                         SVal Buf,
176                         bool hypothetical = false) const;
177 
178   const StringLiteral *getCStringLiteral(CheckerContext &C,
179                                          ProgramStateRef &state,
180                                          const Expr *expr,
181                                          SVal val) const;
182 
183   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
184                                           ProgramStateRef state,
185                                           const Expr *Ex, SVal V,
186                                           bool IsSourceBuffer,
187                                           const Expr *Size);
188 
189   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
190                               const MemRegion *MR);
191 
192   static bool memsetAux(const Expr *DstBuffer, SVal CharE,
193                         const Expr *Size, CheckerContext &C,
194                         ProgramStateRef &State);
195 
196   // Re-usable checks
197   ProgramStateRef checkNonNull(CheckerContext &C,
198                                    ProgramStateRef state,
199                                    const Expr *S,
200                                    SVal l,
201                                    unsigned IdxOfArg) const;
202   ProgramStateRef CheckLocation(CheckerContext &C,
203                                     ProgramStateRef state,
204                                     const Expr *S,
205                                     SVal l,
206                                     const char *message = nullptr) const;
207   ProgramStateRef CheckBufferAccess(CheckerContext &C,
208                                         ProgramStateRef state,
209                                         const Expr *Size,
210                                         const Expr *FirstBuf,
211                                         const Expr *SecondBuf,
212                                         const char *firstMessage = nullptr,
213                                         const char *secondMessage = nullptr,
214                                         bool WarnAboutSize = false) const;
215 
216   ProgramStateRef CheckBufferAccess(CheckerContext &C,
217                                         ProgramStateRef state,
218                                         const Expr *Size,
219                                         const Expr *Buf,
220                                         const char *message = nullptr,
221                                         bool WarnAboutSize = false) const {
222     // This is a convenience overload.
223     return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
224                              WarnAboutSize);
225   }
226   ProgramStateRef CheckOverlap(CheckerContext &C,
227                                    ProgramStateRef state,
228                                    const Expr *Size,
229                                    const Expr *First,
230                                    const Expr *Second) const;
231   void emitOverlapBug(CheckerContext &C,
232                       ProgramStateRef state,
233                       const Stmt *First,
234                       const Stmt *Second) const;
235 
236   void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
237                       StringRef WarningMsg) const;
238   void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
239                           const Stmt *S, StringRef WarningMsg) const;
240   void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
241                          const Stmt *S, StringRef WarningMsg) const;
242   void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
243 
244   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
245                                             ProgramStateRef state,
246                                             NonLoc left,
247                                             NonLoc right) const;
248 
249   // Return true if the destination buffer of the copy function may be in bound.
250   // Expects SVal of Size to be positive and unsigned.
251   // Expects SVal of FirstBuf to be a FieldRegion.
252   static bool IsFirstBufInBound(CheckerContext &C,
253                                 ProgramStateRef state,
254                                 const Expr *FirstBuf,
255                                 const Expr *Size);
256 };
257 
258 } //end anonymous namespace
259 
260 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
261 
262 //===----------------------------------------------------------------------===//
263 // Individual checks and utility methods.
264 //===----------------------------------------------------------------------===//
265 
266 std::pair<ProgramStateRef , ProgramStateRef >
267 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
268                            QualType Ty) {
269   Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
270   if (!val)
271     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
272 
273   SValBuilder &svalBuilder = C.getSValBuilder();
274   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
275   return state->assume(svalBuilder.evalEQ(state, *val, zero));
276 }
277 
278 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
279                                             ProgramStateRef state,
280                                             const Expr *S, SVal l,
281                                             unsigned IdxOfArg) const {
282   // If a previous check has failed, propagate the failure.
283   if (!state)
284     return nullptr;
285 
286   ProgramStateRef stateNull, stateNonNull;
287   std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
288 
289   if (stateNull && !stateNonNull) {
290     if (Filter.CheckCStringNullArg) {
291       SmallString<80> buf;
292       llvm::raw_svector_ostream OS(buf);
293       assert(CurrentFunctionDescription);
294       OS << "Null pointer passed as " << IdxOfArg
295          << llvm::getOrdinalSuffix(IdxOfArg) << " argument to "
296          << CurrentFunctionDescription;
297 
298       emitNullArgBug(C, stateNull, S, OS.str());
299     }
300     return nullptr;
301   }
302 
303   // From here on, assume that the value is non-null.
304   assert(stateNonNull);
305   return stateNonNull;
306 }
307 
308 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
309 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
310                                              ProgramStateRef state,
311                                              const Expr *S, SVal l,
312                                              const char *warningMsg) const {
313   // If a previous check has failed, propagate the failure.
314   if (!state)
315     return nullptr;
316 
317   // Check for out of bound array element access.
318   const MemRegion *R = l.getAsRegion();
319   if (!R)
320     return state;
321 
322   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
323   if (!ER)
324     return state;
325 
326   if (ER->getValueType() != C.getASTContext().CharTy)
327     return state;
328 
329   // Get the size of the array.
330   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
331   DefinedOrUnknownSVal Size =
332       getDynamicSize(state, superReg, C.getSValBuilder());
333 
334   // Get the index of the accessed element.
335   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
336 
337   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
338   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
339   if (StOutBound && !StInBound) {
340     // These checks are either enabled by the CString out-of-bounds checker
341     // explicitly or implicitly by the Malloc checker.
342     // In the latter case we only do modeling but do not emit warning.
343     if (!Filter.CheckCStringOutOfBounds)
344       return nullptr;
345     // Emit a bug report.
346     if (warningMsg) {
347       emitOutOfBoundsBug(C, StOutBound, S, warningMsg);
348     } else {
349       assert(CurrentFunctionDescription);
350       assert(CurrentFunctionDescription[0] != '\0');
351 
352       SmallString<80> buf;
353       llvm::raw_svector_ostream os(buf);
354       os << toUppercase(CurrentFunctionDescription[0])
355          << &CurrentFunctionDescription[1]
356          << " accesses out-of-bound array element";
357       emitOutOfBoundsBug(C, StOutBound, S, os.str());
358     }
359     return nullptr;
360   }
361 
362   // Array bound check succeeded.  From this point forward the array bound
363   // should always succeed.
364   return StInBound;
365 }
366 
367 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
368                                                  ProgramStateRef state,
369                                                  const Expr *Size,
370                                                  const Expr *FirstBuf,
371                                                  const Expr *SecondBuf,
372                                                  const char *firstMessage,
373                                                  const char *secondMessage,
374                                                  bool WarnAboutSize) const {
375   // If a previous check has failed, propagate the failure.
376   if (!state)
377     return nullptr;
378 
379   SValBuilder &svalBuilder = C.getSValBuilder();
380   ASTContext &Ctx = svalBuilder.getContext();
381   const LocationContext *LCtx = C.getLocationContext();
382 
383   QualType sizeTy = Size->getType();
384   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
385 
386   // Check that the first buffer is non-null.
387   SVal BufVal = C.getSVal(FirstBuf);
388   state = checkNonNull(C, state, FirstBuf, BufVal, 1);
389   if (!state)
390     return nullptr;
391 
392   // If out-of-bounds checking is turned off, skip the rest.
393   if (!Filter.CheckCStringOutOfBounds)
394     return state;
395 
396   // Get the access length and make sure it is known.
397   // FIXME: This assumes the caller has already checked that the access length
398   // is positive. And that it's unsigned.
399   SVal LengthVal = C.getSVal(Size);
400   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
401   if (!Length)
402     return state;
403 
404   // Compute the offset of the last element to be accessed: size-1.
405   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
406   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
407   if (Offset.isUnknown())
408     return nullptr;
409   NonLoc LastOffset = Offset.castAs<NonLoc>();
410 
411   // Check that the first buffer is sufficiently long.
412   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
413   if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
414     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
415 
416     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
417                                           LastOffset, PtrTy);
418     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
419 
420     // If the buffer isn't large enough, abort.
421     if (!state)
422       return nullptr;
423   }
424 
425   // If there's a second buffer, check it as well.
426   if (SecondBuf) {
427     BufVal = state->getSVal(SecondBuf, LCtx);
428     state = checkNonNull(C, state, SecondBuf, BufVal, 2);
429     if (!state)
430       return nullptr;
431 
432     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
433     if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
434       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
435 
436       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
437                                             LastOffset, PtrTy);
438       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
439     }
440   }
441 
442   // Large enough or not, return this state!
443   return state;
444 }
445 
446 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
447                                             ProgramStateRef state,
448                                             const Expr *Size,
449                                             const Expr *First,
450                                             const Expr *Second) const {
451   if (!Filter.CheckCStringBufferOverlap)
452     return state;
453 
454   // Do a simple check for overlap: if the two arguments are from the same
455   // buffer, see if the end of the first is greater than the start of the second
456   // or vice versa.
457 
458   // If a previous check has failed, propagate the failure.
459   if (!state)
460     return nullptr;
461 
462   ProgramStateRef stateTrue, stateFalse;
463 
464   // Get the buffer values and make sure they're known locations.
465   const LocationContext *LCtx = C.getLocationContext();
466   SVal firstVal = state->getSVal(First, LCtx);
467   SVal secondVal = state->getSVal(Second, LCtx);
468 
469   Optional<Loc> firstLoc = firstVal.getAs<Loc>();
470   if (!firstLoc)
471     return state;
472 
473   Optional<Loc> secondLoc = secondVal.getAs<Loc>();
474   if (!secondLoc)
475     return state;
476 
477   // Are the two values the same?
478   SValBuilder &svalBuilder = C.getSValBuilder();
479   std::tie(stateTrue, stateFalse) =
480     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
481 
482   if (stateTrue && !stateFalse) {
483     // If the values are known to be equal, that's automatically an overlap.
484     emitOverlapBug(C, stateTrue, First, Second);
485     return nullptr;
486   }
487 
488   // assume the two expressions are not equal.
489   assert(stateFalse);
490   state = stateFalse;
491 
492   // Which value comes first?
493   QualType cmpTy = svalBuilder.getConditionType();
494   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
495                                          *firstLoc, *secondLoc, cmpTy);
496   Optional<DefinedOrUnknownSVal> reverseTest =
497       reverse.getAs<DefinedOrUnknownSVal>();
498   if (!reverseTest)
499     return state;
500 
501   std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
502   if (stateTrue) {
503     if (stateFalse) {
504       // If we don't know which one comes first, we can't perform this test.
505       return state;
506     } else {
507       // Switch the values so that firstVal is before secondVal.
508       std::swap(firstLoc, secondLoc);
509 
510       // Switch the Exprs as well, so that they still correspond.
511       std::swap(First, Second);
512     }
513   }
514 
515   // Get the length, and make sure it too is known.
516   SVal LengthVal = state->getSVal(Size, LCtx);
517   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
518   if (!Length)
519     return state;
520 
521   // Convert the first buffer's start address to char*.
522   // Bail out if the cast fails.
523   ASTContext &Ctx = svalBuilder.getContext();
524   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
525   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
526                                          First->getType());
527   Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
528   if (!FirstStartLoc)
529     return state;
530 
531   // Compute the end of the first buffer. Bail out if THAT fails.
532   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
533                                  *FirstStartLoc, *Length, CharPtrTy);
534   Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
535   if (!FirstEndLoc)
536     return state;
537 
538   // Is the end of the first buffer past the start of the second buffer?
539   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
540                                 *FirstEndLoc, *secondLoc, cmpTy);
541   Optional<DefinedOrUnknownSVal> OverlapTest =
542       Overlap.getAs<DefinedOrUnknownSVal>();
543   if (!OverlapTest)
544     return state;
545 
546   std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
547 
548   if (stateTrue && !stateFalse) {
549     // Overlap!
550     emitOverlapBug(C, stateTrue, First, Second);
551     return nullptr;
552   }
553 
554   // assume the two expressions don't overlap.
555   assert(stateFalse);
556   return stateFalse;
557 }
558 
559 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
560                                   const Stmt *First, const Stmt *Second) const {
561   ExplodedNode *N = C.generateErrorNode(state);
562   if (!N)
563     return;
564 
565   if (!BT_Overlap)
566     BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
567                                  categories::UnixAPI, "Improper arguments"));
568 
569   // Generate a report for this bug.
570   auto report = std::make_unique<PathSensitiveBugReport>(
571       *BT_Overlap, "Arguments must not be overlapping buffers", N);
572   report->addRange(First->getSourceRange());
573   report->addRange(Second->getSourceRange());
574 
575   C.emitReport(std::move(report));
576 }
577 
578 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
579                                     const Stmt *S, StringRef WarningMsg) const {
580   if (ExplodedNode *N = C.generateErrorNode(State)) {
581     if (!BT_Null)
582       BT_Null.reset(new BuiltinBug(
583           Filter.CheckNameCStringNullArg, categories::UnixAPI,
584           "Null pointer argument in call to byte string function"));
585 
586     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
587     auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
588     Report->addRange(S->getSourceRange());
589     if (const auto *Ex = dyn_cast<Expr>(S))
590       bugreporter::trackExpressionValue(N, Ex, *Report);
591     C.emitReport(std::move(Report));
592   }
593 }
594 
595 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
596                                         ProgramStateRef State, const Stmt *S,
597                                         StringRef WarningMsg) const {
598   if (ExplodedNode *N = C.generateErrorNode(State)) {
599     if (!BT_Bounds)
600       BT_Bounds.reset(new BuiltinBug(
601           Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
602                                          : Filter.CheckNameCStringNullArg,
603           "Out-of-bound array access",
604           "Byte string function accesses out-of-bound array element"));
605 
606     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
607 
608     // FIXME: It would be nice to eventually make this diagnostic more clear,
609     // e.g., by referencing the original declaration or by saying *why* this
610     // reference is outside the range.
611     auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N);
612     Report->addRange(S->getSourceRange());
613     C.emitReport(std::move(Report));
614   }
615 }
616 
617 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
618                                        const Stmt *S,
619                                        StringRef WarningMsg) const {
620   if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
621     if (!BT_NotCString)
622       BT_NotCString.reset(new BuiltinBug(
623           Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
624           "Argument is not a null-terminated string."));
625 
626     auto Report =
627         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
628 
629     Report->addRange(S->getSourceRange());
630     C.emitReport(std::move(Report));
631   }
632 }
633 
634 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
635                                              ProgramStateRef State) const {
636   if (ExplodedNode *N = C.generateErrorNode(State)) {
637     if (!BT_NotCString)
638       BT_NotCString.reset(
639           new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
640                          "Sum of expressions causes overflow."));
641 
642     // This isn't a great error message, but this should never occur in real
643     // code anyway -- you'd have to create a buffer longer than a size_t can
644     // represent, which is sort of a contradiction.
645     const char *WarningMsg =
646         "This expression will create a string whose length is too big to "
647         "be represented as a size_t";
648 
649     auto Report =
650         std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
651     C.emitReport(std::move(Report));
652   }
653 }
654 
655 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
656                                                      ProgramStateRef state,
657                                                      NonLoc left,
658                                                      NonLoc right) const {
659   // If out-of-bounds checking is turned off, skip the rest.
660   if (!Filter.CheckCStringOutOfBounds)
661     return state;
662 
663   // If a previous check has failed, propagate the failure.
664   if (!state)
665     return nullptr;
666 
667   SValBuilder &svalBuilder = C.getSValBuilder();
668   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
669 
670   QualType sizeTy = svalBuilder.getContext().getSizeType();
671   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
672   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
673 
674   SVal maxMinusRight;
675   if (right.getAs<nonloc::ConcreteInt>()) {
676     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
677                                                  sizeTy);
678   } else {
679     // Try switching the operands. (The order of these two assignments is
680     // important!)
681     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
682                                             sizeTy);
683     left = right;
684   }
685 
686   if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
687     QualType cmpTy = svalBuilder.getConditionType();
688     // If left > max - right, we have an overflow.
689     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
690                                                 *maxMinusRightNL, cmpTy);
691 
692     ProgramStateRef stateOverflow, stateOkay;
693     std::tie(stateOverflow, stateOkay) =
694       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
695 
696     if (stateOverflow && !stateOkay) {
697       // We have an overflow. Emit a bug report.
698       emitAdditionOverflowBug(C, stateOverflow);
699       return nullptr;
700     }
701 
702     // From now on, assume an overflow didn't occur.
703     assert(stateOkay);
704     state = stateOkay;
705   }
706 
707   return state;
708 }
709 
710 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
711                                                 const MemRegion *MR,
712                                                 SVal strLength) {
713   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
714 
715   MR = MR->StripCasts();
716 
717   switch (MR->getKind()) {
718   case MemRegion::StringRegionKind:
719     // FIXME: This can happen if we strcpy() into a string region. This is
720     // undefined [C99 6.4.5p6], but we should still warn about it.
721     return state;
722 
723   case MemRegion::SymbolicRegionKind:
724   case MemRegion::AllocaRegionKind:
725   case MemRegion::VarRegionKind:
726   case MemRegion::FieldRegionKind:
727   case MemRegion::ObjCIvarRegionKind:
728     // These are the types we can currently track string lengths for.
729     break;
730 
731   case MemRegion::ElementRegionKind:
732     // FIXME: Handle element regions by upper-bounding the parent region's
733     // string length.
734     return state;
735 
736   default:
737     // Other regions (mostly non-data) can't have a reliable C string length.
738     // For now, just ignore the change.
739     // FIXME: These are rare but not impossible. We should output some kind of
740     // warning for things like strcpy((char[]){'a', 0}, "b");
741     return state;
742   }
743 
744   if (strLength.isUnknown())
745     return state->remove<CStringLength>(MR);
746 
747   return state->set<CStringLength>(MR, strLength);
748 }
749 
750 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
751                                                ProgramStateRef &state,
752                                                const Expr *Ex,
753                                                const MemRegion *MR,
754                                                bool hypothetical) {
755   if (!hypothetical) {
756     // If there's a recorded length, go ahead and return it.
757     const SVal *Recorded = state->get<CStringLength>(MR);
758     if (Recorded)
759       return *Recorded;
760   }
761 
762   // Otherwise, get a new symbol and update the state.
763   SValBuilder &svalBuilder = C.getSValBuilder();
764   QualType sizeTy = svalBuilder.getContext().getSizeType();
765   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
766                                                     MR, Ex, sizeTy,
767                                                     C.getLocationContext(),
768                                                     C.blockCount());
769 
770   if (!hypothetical) {
771     if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
772       // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
773       BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
774       const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
775       llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
776       const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
777                                                         fourInt);
778       NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
779       SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
780                                                 maxLength, sizeTy);
781       state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
782     }
783     state = state->set<CStringLength>(MR, strLength);
784   }
785 
786   return strLength;
787 }
788 
789 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
790                                       const Expr *Ex, SVal Buf,
791                                       bool hypothetical) const {
792   const MemRegion *MR = Buf.getAsRegion();
793   if (!MR) {
794     // If we can't get a region, see if it's something we /know/ isn't a
795     // C string. In the context of locations, the only time we can issue such
796     // a warning is for labels.
797     if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
798       if (Filter.CheckCStringNotNullTerm) {
799         SmallString<120> buf;
800         llvm::raw_svector_ostream os(buf);
801         assert(CurrentFunctionDescription);
802         os << "Argument to " << CurrentFunctionDescription
803            << " is the address of the label '" << Label->getLabel()->getName()
804            << "', which is not a null-terminated string";
805 
806         emitNotCStringBug(C, state, Ex, os.str());
807       }
808       return UndefinedVal();
809     }
810 
811     // If it's not a region and not a label, give up.
812     return UnknownVal();
813   }
814 
815   // If we have a region, strip casts from it and see if we can figure out
816   // its length. For anything we can't figure out, just return UnknownVal.
817   MR = MR->StripCasts();
818 
819   switch (MR->getKind()) {
820   case MemRegion::StringRegionKind: {
821     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
822     // so we can assume that the byte length is the correct C string length.
823     SValBuilder &svalBuilder = C.getSValBuilder();
824     QualType sizeTy = svalBuilder.getContext().getSizeType();
825     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
826     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
827   }
828   case MemRegion::SymbolicRegionKind:
829   case MemRegion::AllocaRegionKind:
830   case MemRegion::VarRegionKind:
831   case MemRegion::FieldRegionKind:
832   case MemRegion::ObjCIvarRegionKind:
833     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
834   case MemRegion::CompoundLiteralRegionKind:
835     // FIXME: Can we track this? Is it necessary?
836     return UnknownVal();
837   case MemRegion::ElementRegionKind:
838     // FIXME: How can we handle this? It's not good enough to subtract the
839     // offset from the base string length; consider "123\x00567" and &a[5].
840     return UnknownVal();
841   default:
842     // Other regions (mostly non-data) can't have a reliable C string length.
843     // In this case, an error is emitted and UndefinedVal is returned.
844     // The caller should always be prepared to handle this case.
845     if (Filter.CheckCStringNotNullTerm) {
846       SmallString<120> buf;
847       llvm::raw_svector_ostream os(buf);
848 
849       assert(CurrentFunctionDescription);
850       os << "Argument to " << CurrentFunctionDescription << " is ";
851 
852       if (SummarizeRegion(os, C.getASTContext(), MR))
853         os << ", which is not a null-terminated string";
854       else
855         os << "not a null-terminated string";
856 
857       emitNotCStringBug(C, state, Ex, os.str());
858     }
859     return UndefinedVal();
860   }
861 }
862 
863 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
864   ProgramStateRef &state, const Expr *expr, SVal val) const {
865 
866   // Get the memory region pointed to by the val.
867   const MemRegion *bufRegion = val.getAsRegion();
868   if (!bufRegion)
869     return nullptr;
870 
871   // Strip casts off the memory region.
872   bufRegion = bufRegion->StripCasts();
873 
874   // Cast the memory region to a string region.
875   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
876   if (!strRegion)
877     return nullptr;
878 
879   // Return the actual string in the string region.
880   return strRegion->getStringLiteral();
881 }
882 
883 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
884                                        ProgramStateRef state,
885                                        const Expr *FirstBuf,
886                                        const Expr *Size) {
887   // If we do not know that the buffer is long enough we return 'true'.
888   // Otherwise the parent region of this field region would also get
889   // invalidated, which would lead to warnings based on an unknown state.
890 
891   // Originally copied from CheckBufferAccess and CheckLocation.
892   SValBuilder &svalBuilder = C.getSValBuilder();
893   ASTContext &Ctx = svalBuilder.getContext();
894   const LocationContext *LCtx = C.getLocationContext();
895 
896   QualType sizeTy = Size->getType();
897   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
898   SVal BufVal = state->getSVal(FirstBuf, LCtx);
899 
900   SVal LengthVal = state->getSVal(Size, LCtx);
901   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
902   if (!Length)
903     return true; // cf top comment.
904 
905   // Compute the offset of the last element to be accessed: size-1.
906   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
907   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
908   if (Offset.isUnknown())
909     return true; // cf top comment
910   NonLoc LastOffset = Offset.castAs<NonLoc>();
911 
912   // Check that the first buffer is sufficiently long.
913   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
914   Optional<Loc> BufLoc = BufStart.getAs<Loc>();
915   if (!BufLoc)
916     return true; // cf top comment.
917 
918   SVal BufEnd =
919       svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
920 
921   // Check for out of bound array element access.
922   const MemRegion *R = BufEnd.getAsRegion();
923   if (!R)
924     return true; // cf top comment.
925 
926   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
927   if (!ER)
928     return true; // cf top comment.
929 
930   // FIXME: Does this crash when a non-standard definition
931   // of a library function is encountered?
932   assert(ER->getValueType() == C.getASTContext().CharTy &&
933          "IsFirstBufInBound should only be called with char* ElementRegions");
934 
935   // Get the size of the array.
936   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
937   DefinedOrUnknownSVal SizeDV = getDynamicSize(state, superReg, svalBuilder);
938 
939   // Get the index of the accessed element.
940   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
941 
942   ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true);
943 
944   return static_cast<bool>(StInBound);
945 }
946 
947 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
948                                                  ProgramStateRef state,
949                                                  const Expr *E, SVal V,
950                                                  bool IsSourceBuffer,
951                                                  const Expr *Size) {
952   Optional<Loc> L = V.getAs<Loc>();
953   if (!L)
954     return state;
955 
956   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
957   // some assumptions about the value that CFRefCount can't. Even so, it should
958   // probably be refactored.
959   if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
960     const MemRegion *R = MR->getRegion()->StripCasts();
961 
962     // Are we dealing with an ElementRegion?  If so, we should be invalidating
963     // the super-region.
964     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
965       R = ER->getSuperRegion();
966       // FIXME: What about layers of ElementRegions?
967     }
968 
969     // Invalidate this region.
970     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
971 
972     bool CausesPointerEscape = false;
973     RegionAndSymbolInvalidationTraits ITraits;
974     // Invalidate and escape only indirect regions accessible through the source
975     // buffer.
976     if (IsSourceBuffer) {
977       ITraits.setTrait(R->getBaseRegion(),
978                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
979       ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
980       CausesPointerEscape = true;
981     } else {
982       const MemRegion::Kind& K = R->getKind();
983       if (K == MemRegion::FieldRegionKind)
984         if (Size && IsFirstBufInBound(C, state, E, Size)) {
985           // If destination buffer is a field region and access is in bound,
986           // do not invalidate its super region.
987           ITraits.setTrait(
988               R,
989               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
990         }
991     }
992 
993     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
994                                     CausesPointerEscape, nullptr, nullptr,
995                                     &ITraits);
996   }
997 
998   // If we have a non-region value by chance, just remove the binding.
999   // FIXME: is this necessary or correct? This handles the non-Region
1000   //  cases.  Is it ever valid to store to these?
1001   return state->killBinding(*L);
1002 }
1003 
1004 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1005                                      const MemRegion *MR) {
1006   switch (MR->getKind()) {
1007   case MemRegion::FunctionCodeRegionKind: {
1008     if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1009       os << "the address of the function '" << *FD << '\'';
1010     else
1011       os << "the address of a function";
1012     return true;
1013   }
1014   case MemRegion::BlockCodeRegionKind:
1015     os << "block text";
1016     return true;
1017   case MemRegion::BlockDataRegionKind:
1018     os << "a block";
1019     return true;
1020   case MemRegion::CXXThisRegionKind:
1021   case MemRegion::CXXTempObjectRegionKind:
1022     os << "a C++ temp object of type "
1023        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1024     return true;
1025   case MemRegion::VarRegionKind:
1026     os << "a variable of type"
1027        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1028     return true;
1029   case MemRegion::FieldRegionKind:
1030     os << "a field of type "
1031        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1032     return true;
1033   case MemRegion::ObjCIvarRegionKind:
1034     os << "an instance variable of type "
1035        << cast<TypedValueRegion>(MR)->getValueType().getAsString();
1036     return true;
1037   default:
1038     return false;
1039   }
1040 }
1041 
1042 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1043                                const Expr *Size, CheckerContext &C,
1044                                ProgramStateRef &State) {
1045   SVal MemVal = C.getSVal(DstBuffer);
1046   SVal SizeVal = C.getSVal(Size);
1047   const MemRegion *MR = MemVal.getAsRegion();
1048   if (!MR)
1049     return false;
1050 
1051   // We're about to model memset by producing a "default binding" in the Store.
1052   // Our current implementation - RegionStore - doesn't support default bindings
1053   // that don't cover the whole base region. So we should first get the offset
1054   // and the base region to figure out whether the offset of buffer is 0.
1055   RegionOffset Offset = MR->getAsOffset();
1056   const MemRegion *BR = Offset.getRegion();
1057 
1058   Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1059   if (!SizeNL)
1060     return false;
1061 
1062   SValBuilder &svalBuilder = C.getSValBuilder();
1063   ASTContext &Ctx = C.getASTContext();
1064 
1065   // void *memset(void *dest, int ch, size_t count);
1066   // For now we can only handle the case of offset is 0 and concrete char value.
1067   if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1068       Offset.getOffset() == 0) {
1069     // Get the base region's size.
1070     DefinedOrUnknownSVal SizeDV = getDynamicSize(State, BR, svalBuilder);
1071 
1072     ProgramStateRef StateWholeReg, StateNotWholeReg;
1073     std::tie(StateWholeReg, StateNotWholeReg) =
1074         State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1075 
1076     // With the semantic of 'memset()', we should convert the CharVal to
1077     // unsigned char.
1078     CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1079 
1080     ProgramStateRef StateNullChar, StateNonNullChar;
1081     std::tie(StateNullChar, StateNonNullChar) =
1082         assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1083 
1084     if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1085         !StateNonNullChar) {
1086       // If the 'memset()' acts on the whole region of destination buffer and
1087       // the value of the second argument of 'memset()' is zero, bind the second
1088       // argument's value to the destination buffer with 'default binding'.
1089       // FIXME: Since there is no perfect way to bind the non-zero character, we
1090       // can only deal with zero value here. In the future, we need to deal with
1091       // the binding of non-zero value in the case of whole region.
1092       State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1093                                      C.getLocationContext());
1094     } else {
1095       // If the destination buffer's extent is not equal to the value of
1096       // third argument, just invalidate buffer.
1097       State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1098                                /*IsSourceBuffer*/ false, Size);
1099     }
1100 
1101     if (StateNullChar && !StateNonNullChar) {
1102       // If the value of the second argument of 'memset()' is zero, set the
1103       // string length of destination buffer to 0 directly.
1104       State = setCStringLength(State, MR,
1105                                svalBuilder.makeZeroVal(Ctx.getSizeType()));
1106     } else if (!StateNullChar && StateNonNullChar) {
1107       SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1108           CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1109           C.getLocationContext(), C.blockCount());
1110 
1111       // If the value of second argument is not zero, then the string length
1112       // is at least the size argument.
1113       SVal NewStrLenGESize = svalBuilder.evalBinOp(
1114           State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1115 
1116       State = setCStringLength(
1117           State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1118           MR, NewStrLen);
1119     }
1120   } else {
1121     // If the offset is not zero and char value is not concrete, we can do
1122     // nothing but invalidate the buffer.
1123     State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1124                              /*IsSourceBuffer*/ false, Size);
1125   }
1126   return true;
1127 }
1128 
1129 //===----------------------------------------------------------------------===//
1130 // evaluation of individual function calls.
1131 //===----------------------------------------------------------------------===//
1132 
1133 void CStringChecker::evalCopyCommon(CheckerContext &C,
1134                                     const CallExpr *CE,
1135                                     ProgramStateRef state,
1136                                     const Expr *Size, const Expr *Dest,
1137                                     const Expr *Source, bool Restricted,
1138                                     bool IsMempcpy) const {
1139   CurrentFunctionDescription = "memory copy function";
1140 
1141   // See if the size argument is zero.
1142   const LocationContext *LCtx = C.getLocationContext();
1143   SVal sizeVal = state->getSVal(Size, LCtx);
1144   QualType sizeTy = Size->getType();
1145 
1146   ProgramStateRef stateZeroSize, stateNonZeroSize;
1147   std::tie(stateZeroSize, stateNonZeroSize) =
1148     assumeZero(C, state, sizeVal, sizeTy);
1149 
1150   // Get the value of the Dest.
1151   SVal destVal = state->getSVal(Dest, LCtx);
1152 
1153   // If the size is zero, there won't be any actual memory access, so
1154   // just bind the return value to the destination buffer and return.
1155   if (stateZeroSize && !stateNonZeroSize) {
1156     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1157     C.addTransition(stateZeroSize);
1158     return;
1159   }
1160 
1161   // If the size can be nonzero, we have to check the other arguments.
1162   if (stateNonZeroSize) {
1163     state = stateNonZeroSize;
1164 
1165     // Ensure the destination is not null. If it is NULL there will be a
1166     // NULL pointer dereference.
1167     state = checkNonNull(C, state, Dest, destVal, 1);
1168     if (!state)
1169       return;
1170 
1171     // Get the value of the Src.
1172     SVal srcVal = state->getSVal(Source, LCtx);
1173 
1174     // Ensure the source is not null. If it is NULL there will be a
1175     // NULL pointer dereference.
1176     state = checkNonNull(C, state, Source, srcVal, 2);
1177     if (!state)
1178       return;
1179 
1180     // Ensure the accesses are valid and that the buffers do not overlap.
1181     const char * const writeWarning =
1182       "Memory copy function overflows destination buffer";
1183     state = CheckBufferAccess(C, state, Size, Dest, Source,
1184                               writeWarning, /* sourceWarning = */ nullptr);
1185     if (Restricted)
1186       state = CheckOverlap(C, state, Size, Dest, Source);
1187 
1188     if (!state)
1189       return;
1190 
1191     // If this is mempcpy, get the byte after the last byte copied and
1192     // bind the expr.
1193     if (IsMempcpy) {
1194       // Get the byte after the last byte copied.
1195       SValBuilder &SvalBuilder = C.getSValBuilder();
1196       ASTContext &Ctx = SvalBuilder.getContext();
1197       QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1198       SVal DestRegCharVal =
1199           SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType());
1200       SVal lastElement = C.getSValBuilder().evalBinOp(
1201           state, BO_Add, DestRegCharVal, sizeVal, Dest->getType());
1202       // If we don't know how much we copied, we can at least
1203       // conjure a return value for later.
1204       if (lastElement.isUnknown())
1205         lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1206                                                           C.blockCount());
1207 
1208       // The byte after the last byte copied is the return value.
1209       state = state->BindExpr(CE, LCtx, lastElement);
1210     } else {
1211       // All other copies return the destination buffer.
1212       // (Well, bcopy() has a void return type, but this won't hurt.)
1213       state = state->BindExpr(CE, LCtx, destVal);
1214     }
1215 
1216     // Invalidate the destination (regular invalidation without pointer-escaping
1217     // the address of the top-level region).
1218     // FIXME: Even if we can't perfectly model the copy, we should see if we
1219     // can use LazyCompoundVals to copy the source values into the destination.
1220     // This would probably remove any existing bindings past the end of the
1221     // copied region, but that's still an improvement over blank invalidation.
1222     state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
1223                              /*IsSourceBuffer*/false, Size);
1224 
1225     // Invalidate the source (const-invalidation without const-pointer-escaping
1226     // the address of the top-level region).
1227     state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
1228                              /*IsSourceBuffer*/true, nullptr);
1229 
1230     C.addTransition(state);
1231   }
1232 }
1233 
1234 
1235 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1236   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1237   // The return value is the address of the destination buffer.
1238   const Expr *Dest = CE->getArg(0);
1239   ProgramStateRef state = C.getState();
1240 
1241   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
1242 }
1243 
1244 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1245   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1246   // The return value is a pointer to the byte following the last written byte.
1247   const Expr *Dest = CE->getArg(0);
1248   ProgramStateRef state = C.getState();
1249 
1250   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1251 }
1252 
1253 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1254   // void *memmove(void *dst, const void *src, size_t n);
1255   // The return value is the address of the destination buffer.
1256   const Expr *Dest = CE->getArg(0);
1257   ProgramStateRef state = C.getState();
1258 
1259   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1260 }
1261 
1262 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1263   // void bcopy(const void *src, void *dst, size_t n);
1264   evalCopyCommon(C, CE, C.getState(),
1265                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1266 }
1267 
1268 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1269   // int memcmp(const void *s1, const void *s2, size_t n);
1270   CurrentFunctionDescription = "memory comparison function";
1271 
1272   const Expr *Left = CE->getArg(0);
1273   const Expr *Right = CE->getArg(1);
1274   const Expr *Size = CE->getArg(2);
1275 
1276   ProgramStateRef state = C.getState();
1277   SValBuilder &svalBuilder = C.getSValBuilder();
1278 
1279   // See if the size argument is zero.
1280   const LocationContext *LCtx = C.getLocationContext();
1281   SVal sizeVal = state->getSVal(Size, LCtx);
1282   QualType sizeTy = Size->getType();
1283 
1284   ProgramStateRef stateZeroSize, stateNonZeroSize;
1285   std::tie(stateZeroSize, stateNonZeroSize) =
1286     assumeZero(C, state, sizeVal, sizeTy);
1287 
1288   // If the size can be zero, the result will be 0 in that case, and we don't
1289   // have to check either of the buffers.
1290   if (stateZeroSize) {
1291     state = stateZeroSize;
1292     state = state->BindExpr(CE, LCtx,
1293                             svalBuilder.makeZeroVal(CE->getType()));
1294     C.addTransition(state);
1295   }
1296 
1297   // If the size can be nonzero, we have to check the other arguments.
1298   if (stateNonZeroSize) {
1299     state = stateNonZeroSize;
1300     // If we know the two buffers are the same, we know the result is 0.
1301     // First, get the two buffers' addresses. Another checker will have already
1302     // made sure they're not undefined.
1303     DefinedOrUnknownSVal LV =
1304         state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1305     DefinedOrUnknownSVal RV =
1306         state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1307 
1308     // See if they are the same.
1309     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1310     ProgramStateRef StSameBuf, StNotSameBuf;
1311     std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1312 
1313     // If the two arguments are the same buffer, we know the result is 0,
1314     // and we only need to check one size.
1315     if (StSameBuf && !StNotSameBuf) {
1316       state = StSameBuf;
1317       state = CheckBufferAccess(C, state, Size, Left);
1318       if (state) {
1319         state = StSameBuf->BindExpr(CE, LCtx,
1320                                     svalBuilder.makeZeroVal(CE->getType()));
1321         C.addTransition(state);
1322       }
1323       return;
1324     }
1325 
1326     // If the two arguments might be different buffers, we have to check
1327     // the size of both of them.
1328     assert(StNotSameBuf);
1329     state = CheckBufferAccess(C, state, Size, Left, Right);
1330     if (state) {
1331       // The return value is the comparison result, which we don't know.
1332       SVal CmpV =
1333           svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1334       state = state->BindExpr(CE, LCtx, CmpV);
1335       C.addTransition(state);
1336     }
1337   }
1338 }
1339 
1340 void CStringChecker::evalstrLength(CheckerContext &C,
1341                                    const CallExpr *CE) const {
1342   // size_t strlen(const char *s);
1343   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1344 }
1345 
1346 void CStringChecker::evalstrnLength(CheckerContext &C,
1347                                     const CallExpr *CE) const {
1348   // size_t strnlen(const char *s, size_t maxlen);
1349   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1350 }
1351 
1352 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1353                                          bool IsStrnlen) const {
1354   CurrentFunctionDescription = "string length function";
1355   ProgramStateRef state = C.getState();
1356   const LocationContext *LCtx = C.getLocationContext();
1357 
1358   if (IsStrnlen) {
1359     const Expr *maxlenExpr = CE->getArg(1);
1360     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1361 
1362     ProgramStateRef stateZeroSize, stateNonZeroSize;
1363     std::tie(stateZeroSize, stateNonZeroSize) =
1364       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1365 
1366     // If the size can be zero, the result will be 0 in that case, and we don't
1367     // have to check the string itself.
1368     if (stateZeroSize) {
1369       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1370       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1371       C.addTransition(stateZeroSize);
1372     }
1373 
1374     // If the size is GUARANTEED to be zero, we're done!
1375     if (!stateNonZeroSize)
1376       return;
1377 
1378     // Otherwise, record the assumption that the size is nonzero.
1379     state = stateNonZeroSize;
1380   }
1381 
1382   // Check that the string argument is non-null.
1383   const Expr *Arg = CE->getArg(0);
1384   SVal ArgVal = state->getSVal(Arg, LCtx);
1385 
1386   state = checkNonNull(C, state, Arg, ArgVal, 1);
1387 
1388   if (!state)
1389     return;
1390 
1391   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1392 
1393   // If the argument isn't a valid C string, there's no valid state to
1394   // transition to.
1395   if (strLength.isUndef())
1396     return;
1397 
1398   DefinedOrUnknownSVal result = UnknownVal();
1399 
1400   // If the check is for strnlen() then bind the return value to no more than
1401   // the maxlen value.
1402   if (IsStrnlen) {
1403     QualType cmpTy = C.getSValBuilder().getConditionType();
1404 
1405     // It's a little unfortunate to be getting this again,
1406     // but it's not that expensive...
1407     const Expr *maxlenExpr = CE->getArg(1);
1408     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1409 
1410     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1411     Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1412 
1413     if (strLengthNL && maxlenValNL) {
1414       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1415 
1416       // Check if the strLength is greater than the maxlen.
1417       std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1418           C.getSValBuilder()
1419               .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1420               .castAs<DefinedOrUnknownSVal>());
1421 
1422       if (stateStringTooLong && !stateStringNotTooLong) {
1423         // If the string is longer than maxlen, return maxlen.
1424         result = *maxlenValNL;
1425       } else if (stateStringNotTooLong && !stateStringTooLong) {
1426         // If the string is shorter than maxlen, return its length.
1427         result = *strLengthNL;
1428       }
1429     }
1430 
1431     if (result.isUnknown()) {
1432       // If we don't have enough information for a comparison, there's
1433       // no guarantee the full string length will actually be returned.
1434       // All we know is the return value is the min of the string length
1435       // and the limit. This is better than nothing.
1436       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1437                                                    C.blockCount());
1438       NonLoc resultNL = result.castAs<NonLoc>();
1439 
1440       if (strLengthNL) {
1441         state = state->assume(C.getSValBuilder().evalBinOpNN(
1442                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
1443                                   .castAs<DefinedOrUnknownSVal>(), true);
1444       }
1445 
1446       if (maxlenValNL) {
1447         state = state->assume(C.getSValBuilder().evalBinOpNN(
1448                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1449                                   .castAs<DefinedOrUnknownSVal>(), true);
1450       }
1451     }
1452 
1453   } else {
1454     // This is a plain strlen(), not strnlen().
1455     result = strLength.castAs<DefinedOrUnknownSVal>();
1456 
1457     // If we don't know the length of the string, conjure a return
1458     // value, so it can be used in constraints, at least.
1459     if (result.isUnknown()) {
1460       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1461                                                    C.blockCount());
1462     }
1463   }
1464 
1465   // Bind the return value.
1466   assert(!result.isUnknown() && "Should have conjured a value by now");
1467   state = state->BindExpr(CE, LCtx, result);
1468   C.addTransition(state);
1469 }
1470 
1471 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1472   // char *strcpy(char *restrict dst, const char *restrict src);
1473   evalStrcpyCommon(C, CE,
1474                    /* ReturnEnd = */ false,
1475                    /* IsBounded = */ false,
1476                    /* appendK = */ ConcatFnKind::none);
1477 }
1478 
1479 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1480   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1481   evalStrcpyCommon(C, CE,
1482                    /* ReturnEnd = */ false,
1483                    /* IsBounded = */ true,
1484                    /* appendK = */ ConcatFnKind::none);
1485 }
1486 
1487 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1488   // char *stpcpy(char *restrict dst, const char *restrict src);
1489   evalStrcpyCommon(C, CE,
1490                    /* ReturnEnd = */ true,
1491                    /* IsBounded = */ false,
1492                    /* appendK = */ ConcatFnKind::none);
1493 }
1494 
1495 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1496   // size_t strlcpy(char *dest, const char *src, size_t size);
1497   evalStrcpyCommon(C, CE,
1498                    /* ReturnEnd = */ true,
1499                    /* IsBounded = */ true,
1500                    /* appendK = */ ConcatFnKind::none,
1501                    /* returnPtr = */ false);
1502 }
1503 
1504 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1505   // char *strcat(char *restrict s1, const char *restrict s2);
1506   evalStrcpyCommon(C, CE,
1507                    /* ReturnEnd = */ false,
1508                    /* IsBounded = */ false,
1509                    /* appendK = */ ConcatFnKind::strcat);
1510 }
1511 
1512 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1513   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1514   evalStrcpyCommon(C, CE,
1515                    /* ReturnEnd = */ false,
1516                    /* IsBounded = */ true,
1517                    /* appendK = */ ConcatFnKind::strcat);
1518 }
1519 
1520 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1521   // size_t strlcat(char *dst, const char *src, size_t size);
1522   // It will append at most size - strlen(dst) - 1 bytes,
1523   // NULL-terminating the result.
1524   evalStrcpyCommon(C, CE,
1525                    /* ReturnEnd = */ false,
1526                    /* IsBounded = */ true,
1527                    /* appendK = */ ConcatFnKind::strlcat,
1528                    /* returnPtr = */ false);
1529 }
1530 
1531 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1532                                       bool ReturnEnd, bool IsBounded,
1533                                       ConcatFnKind appendK,
1534                                       bool returnPtr) const {
1535   if (appendK == ConcatFnKind::none)
1536     CurrentFunctionDescription = "string copy function";
1537   else
1538     CurrentFunctionDescription = "string concatenation function";
1539   ProgramStateRef state = C.getState();
1540   const LocationContext *LCtx = C.getLocationContext();
1541 
1542   // Check that the destination is non-null.
1543   const Expr *Dst = CE->getArg(0);
1544   SVal DstVal = state->getSVal(Dst, LCtx);
1545 
1546   state = checkNonNull(C, state, Dst, DstVal, 1);
1547   if (!state)
1548     return;
1549 
1550   // Check that the source is non-null.
1551   const Expr *srcExpr = CE->getArg(1);
1552   SVal srcVal = state->getSVal(srcExpr, LCtx);
1553   state = checkNonNull(C, state, srcExpr, srcVal, 2);
1554   if (!state)
1555     return;
1556 
1557   // Get the string length of the source.
1558   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1559   Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1560 
1561   // Get the string length of the destination buffer.
1562   SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1563   Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1564 
1565   // If the source isn't a valid C string, give up.
1566   if (strLength.isUndef())
1567     return;
1568 
1569   SValBuilder &svalBuilder = C.getSValBuilder();
1570   QualType cmpTy = svalBuilder.getConditionType();
1571   QualType sizeTy = svalBuilder.getContext().getSizeType();
1572 
1573   // These two values allow checking two kinds of errors:
1574   // - actual overflows caused by a source that doesn't fit in the destination
1575   // - potential overflows caused by a bound that could exceed the destination
1576   SVal amountCopied = UnknownVal();
1577   SVal maxLastElementIndex = UnknownVal();
1578   const char *boundWarning = nullptr;
1579 
1580   state = CheckOverlap(C, state, IsBounded ? CE->getArg(2) : CE->getArg(1), Dst,
1581                        srcExpr);
1582 
1583   if (!state)
1584     return;
1585 
1586   // If the function is strncpy, strncat, etc... it is bounded.
1587   if (IsBounded) {
1588     // Get the max number of characters to copy.
1589     const Expr *lenExpr = CE->getArg(2);
1590     SVal lenVal = state->getSVal(lenExpr, LCtx);
1591 
1592     // Protect against misdeclared strncpy().
1593     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1594 
1595     Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1596 
1597     // If we know both values, we might be able to figure out how much
1598     // we're copying.
1599     if (strLengthNL && lenValNL) {
1600       switch (appendK) {
1601       case ConcatFnKind::none:
1602       case ConcatFnKind::strcat: {
1603         ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1604         // Check if the max number to copy is less than the length of the src.
1605         // If the bound is equal to the source length, strncpy won't null-
1606         // terminate the result!
1607         std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1608             svalBuilder
1609                 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1610                 .castAs<DefinedOrUnknownSVal>());
1611 
1612         if (stateSourceTooLong && !stateSourceNotTooLong) {
1613           // Max number to copy is less than the length of the src, so the
1614           // actual strLength copied is the max number arg.
1615           state = stateSourceTooLong;
1616           amountCopied = lenVal;
1617 
1618         } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1619           // The source buffer entirely fits in the bound.
1620           state = stateSourceNotTooLong;
1621           amountCopied = strLength;
1622         }
1623         break;
1624       }
1625       case ConcatFnKind::strlcat:
1626         if (!dstStrLengthNL)
1627           return;
1628 
1629         // amountCopied = min (size - dstLen - 1 , srcLen)
1630         SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1631                                                  *dstStrLengthNL, sizeTy);
1632         if (!freeSpace.getAs<NonLoc>())
1633           return;
1634         freeSpace =
1635             svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1636                                   svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1637         Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1638 
1639         // While unlikely, it is possible that the subtraction is
1640         // too complex to compute, let's check whether it succeeded.
1641         if (!freeSpaceNL)
1642           return;
1643         SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1644             state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1645 
1646         ProgramStateRef TrueState, FalseState;
1647         std::tie(TrueState, FalseState) =
1648             state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1649 
1650         // srcStrLength <= size - dstStrLength -1
1651         if (TrueState && !FalseState) {
1652           amountCopied = strLength;
1653         }
1654 
1655         // srcStrLength > size - dstStrLength -1
1656         if (!TrueState && FalseState) {
1657           amountCopied = freeSpace;
1658         }
1659 
1660         if (TrueState && FalseState)
1661           amountCopied = UnknownVal();
1662         break;
1663       }
1664     }
1665     // We still want to know if the bound is known to be too large.
1666     if (lenValNL) {
1667       switch (appendK) {
1668       case ConcatFnKind::strcat:
1669         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1670 
1671         // Get the string length of the destination. If the destination is
1672         // memory that can't have a string length, we shouldn't be copying
1673         // into it anyway.
1674         if (dstStrLength.isUndef())
1675           return;
1676 
1677         if (dstStrLengthNL) {
1678           maxLastElementIndex = svalBuilder.evalBinOpNN(
1679               state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
1680 
1681           boundWarning = "Size argument is greater than the free space in the "
1682                          "destination buffer";
1683         }
1684         break;
1685       case ConcatFnKind::none:
1686       case ConcatFnKind::strlcat:
1687         // For strncpy and strlcat, this is just checking
1688         //  that lenVal <= sizeof(dst).
1689         // (Yes, strncpy and strncat differ in how they treat termination.
1690         // strncat ALWAYS terminates, but strncpy doesn't.)
1691 
1692         // We need a special case for when the copy size is zero, in which
1693         // case strncpy will do no work at all. Our bounds check uses n-1
1694         // as the last element accessed, so n == 0 is problematic.
1695         ProgramStateRef StateZeroSize, StateNonZeroSize;
1696         std::tie(StateZeroSize, StateNonZeroSize) =
1697             assumeZero(C, state, *lenValNL, sizeTy);
1698 
1699         // If the size is known to be zero, we're done.
1700         if (StateZeroSize && !StateNonZeroSize) {
1701           if (returnPtr) {
1702             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1703           } else {
1704             if (appendK == ConcatFnKind::none) {
1705               // strlcpy returns strlen(src)
1706               StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength);
1707             } else {
1708               // strlcat returns strlen(src) + strlen(dst)
1709               SVal retSize = svalBuilder.evalBinOp(
1710                   state, BO_Add, strLength, dstStrLength, sizeTy);
1711               StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize);
1712             }
1713           }
1714           C.addTransition(StateZeroSize);
1715           return;
1716         }
1717 
1718         // Otherwise, go ahead and figure out the last element we'll touch.
1719         // We don't record the non-zero assumption here because we can't
1720         // be sure. We won't warn on a possible zero.
1721         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1722         maxLastElementIndex =
1723             svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
1724         boundWarning = "Size argument is greater than the length of the "
1725                        "destination buffer";
1726         break;
1727       }
1728     }
1729   } else {
1730     // The function isn't bounded. The amount copied should match the length
1731     // of the source buffer.
1732     amountCopied = strLength;
1733   }
1734 
1735   assert(state);
1736 
1737   // This represents the number of characters copied into the destination
1738   // buffer. (It may not actually be the strlen if the destination buffer
1739   // is not terminated.)
1740   SVal finalStrLength = UnknownVal();
1741   SVal strlRetVal = UnknownVal();
1742 
1743   if (appendK == ConcatFnKind::none && !returnPtr) {
1744     // strlcpy returns the sizeof(src)
1745     strlRetVal = strLength;
1746   }
1747 
1748   // If this is an appending function (strcat, strncat...) then set the
1749   // string length to strlen(src) + strlen(dst) since the buffer will
1750   // ultimately contain both.
1751   if (appendK != ConcatFnKind::none) {
1752     // Get the string length of the destination. If the destination is memory
1753     // that can't have a string length, we shouldn't be copying into it anyway.
1754     if (dstStrLength.isUndef())
1755       return;
1756 
1757     if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
1758       strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
1759                                            *dstStrLengthNL, sizeTy);
1760     }
1761 
1762     Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
1763 
1764     // If we know both string lengths, we might know the final string length.
1765     if (amountCopiedNL && dstStrLengthNL) {
1766       // Make sure the two lengths together don't overflow a size_t.
1767       state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
1768       if (!state)
1769         return;
1770 
1771       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
1772                                                *dstStrLengthNL, sizeTy);
1773     }
1774 
1775     // If we couldn't get a single value for the final string length,
1776     // we can at least bound it by the individual lengths.
1777     if (finalStrLength.isUnknown()) {
1778       // Try to get a "hypothetical" string length symbol, which we can later
1779       // set as a real value if that turns out to be the case.
1780       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1781       assert(!finalStrLength.isUndef());
1782 
1783       if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1784         if (amountCopiedNL && appendK == ConcatFnKind::none) {
1785           // we overwrite dst string with the src
1786           // finalStrLength >= srcStrLength
1787           SVal sourceInResult = svalBuilder.evalBinOpNN(
1788               state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
1789           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1790                                 true);
1791           if (!state)
1792             return;
1793         }
1794 
1795         if (dstStrLengthNL && appendK != ConcatFnKind::none) {
1796           // we extend the dst string with the src
1797           // finalStrLength >= dstStrLength
1798           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1799                                                       *finalStrLengthNL,
1800                                                       *dstStrLengthNL,
1801                                                       cmpTy);
1802           state =
1803               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1804           if (!state)
1805             return;
1806         }
1807       }
1808     }
1809 
1810   } else {
1811     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1812     // the final string length will match the input string length.
1813     finalStrLength = amountCopied;
1814   }
1815 
1816   SVal Result;
1817 
1818   if (returnPtr) {
1819     // The final result of the function will either be a pointer past the last
1820     // copied element, or a pointer to the start of the destination buffer.
1821     Result = (ReturnEnd ? UnknownVal() : DstVal);
1822   } else {
1823     if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
1824       //strlcpy, strlcat
1825       Result = strlRetVal;
1826     else
1827       Result = finalStrLength;
1828   }
1829 
1830   assert(state);
1831 
1832   // If the destination is a MemRegion, try to check for a buffer overflow and
1833   // record the new string length.
1834   if (Optional<loc::MemRegionVal> dstRegVal =
1835       DstVal.getAs<loc::MemRegionVal>()) {
1836     QualType ptrTy = Dst->getType();
1837 
1838     // If we have an exact value on a bounded copy, use that to check for
1839     // overflows, rather than our estimate about how much is actually copied.
1840     if (boundWarning) {
1841       if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1842         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1843             *maxLastNL, ptrTy);
1844         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1845             boundWarning);
1846         if (!state)
1847           return;
1848       }
1849     }
1850 
1851     // Then, if the final length is known...
1852     if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1853       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1854           *knownStrLength, ptrTy);
1855 
1856       // ...and we haven't checked the bound, we'll check the actual copy.
1857       if (!boundWarning) {
1858         const char * const warningMsg =
1859           "String copy function overflows destination buffer";
1860         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1861         if (!state)
1862           return;
1863       }
1864 
1865       // If this is a stpcpy-style copy, the last element is the return value.
1866       if (returnPtr && ReturnEnd)
1867         Result = lastElement;
1868     }
1869 
1870     // Invalidate the destination (regular invalidation without pointer-escaping
1871     // the address of the top-level region). This must happen before we set the
1872     // C string length because invalidation will clear the length.
1873     // FIXME: Even if we can't perfectly model the copy, we should see if we
1874     // can use LazyCompoundVals to copy the source values into the destination.
1875     // This would probably remove any existing bindings past the end of the
1876     // string, but that's still an improvement over blank invalidation.
1877     state = InvalidateBuffer(C, state, Dst, *dstRegVal,
1878         /*IsSourceBuffer*/false, nullptr);
1879 
1880     // Invalidate the source (const-invalidation without const-pointer-escaping
1881     // the address of the top-level region).
1882     state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
1883         nullptr);
1884 
1885     // Set the C string length of the destination, if we know it.
1886     if (IsBounded && (appendK == ConcatFnKind::none)) {
1887       // strncpy is annoying in that it doesn't guarantee to null-terminate
1888       // the result string. If the original string didn't fit entirely inside
1889       // the bound (including the null-terminator), we don't know how long the
1890       // result is.
1891       if (amountCopied != strLength)
1892         finalStrLength = UnknownVal();
1893     }
1894     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1895   }
1896 
1897   assert(state);
1898 
1899   if (returnPtr) {
1900     // If this is a stpcpy-style copy, but we were unable to check for a buffer
1901     // overflow, we still need a result. Conjure a return value.
1902     if (ReturnEnd && Result.isUnknown()) {
1903       Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1904     }
1905   }
1906   // Set the return value.
1907   state = state->BindExpr(CE, LCtx, Result);
1908   C.addTransition(state);
1909 }
1910 
1911 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1912   //int strcmp(const char *s1, const char *s2);
1913   evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false);
1914 }
1915 
1916 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1917   //int strncmp(const char *s1, const char *s2, size_t n);
1918   evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false);
1919 }
1920 
1921 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1922     const CallExpr *CE) const {
1923   //int strcasecmp(const char *s1, const char *s2);
1924   evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true);
1925 }
1926 
1927 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1928     const CallExpr *CE) const {
1929   //int strncasecmp(const char *s1, const char *s2, size_t n);
1930   evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true);
1931 }
1932 
1933 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1934     bool IsBounded, bool IgnoreCase) const {
1935   CurrentFunctionDescription = "string comparison function";
1936   ProgramStateRef state = C.getState();
1937   const LocationContext *LCtx = C.getLocationContext();
1938 
1939   // Check that the first string is non-null
1940   const Expr *s1 = CE->getArg(0);
1941   SVal s1Val = state->getSVal(s1, LCtx);
1942   state = checkNonNull(C, state, s1, s1Val, 1);
1943   if (!state)
1944     return;
1945 
1946   // Check that the second string is non-null.
1947   const Expr *s2 = CE->getArg(1);
1948   SVal s2Val = state->getSVal(s2, LCtx);
1949   state = checkNonNull(C, state, s2, s2Val, 2);
1950   if (!state)
1951     return;
1952 
1953   // Get the string length of the first string or give up.
1954   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1955   if (s1Length.isUndef())
1956     return;
1957 
1958   // Get the string length of the second string or give up.
1959   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1960   if (s2Length.isUndef())
1961     return;
1962 
1963   // If we know the two buffers are the same, we know the result is 0.
1964   // First, get the two buffers' addresses. Another checker will have already
1965   // made sure they're not undefined.
1966   DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1967   DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1968 
1969   // See if they are the same.
1970   SValBuilder &svalBuilder = C.getSValBuilder();
1971   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1972   ProgramStateRef StSameBuf, StNotSameBuf;
1973   std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1974 
1975   // If the two arguments might be the same buffer, we know the result is 0,
1976   // and we only need to check one size.
1977   if (StSameBuf) {
1978     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1979         svalBuilder.makeZeroVal(CE->getType()));
1980     C.addTransition(StSameBuf);
1981 
1982     // If the two arguments are GUARANTEED to be the same, we're done!
1983     if (!StNotSameBuf)
1984       return;
1985   }
1986 
1987   assert(StNotSameBuf);
1988   state = StNotSameBuf;
1989 
1990   // At this point we can go about comparing the two buffers.
1991   // For now, we only do this if they're both known string literals.
1992 
1993   // Attempt to extract string literals from both expressions.
1994   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1995   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1996   bool canComputeResult = false;
1997   SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1998       C.blockCount());
1999 
2000   if (s1StrLiteral && s2StrLiteral) {
2001     StringRef s1StrRef = s1StrLiteral->getString();
2002     StringRef s2StrRef = s2StrLiteral->getString();
2003 
2004     if (IsBounded) {
2005       // Get the max number of characters to compare.
2006       const Expr *lenExpr = CE->getArg(2);
2007       SVal lenVal = state->getSVal(lenExpr, LCtx);
2008 
2009       // If the length is known, we can get the right substrings.
2010       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2011         // Create substrings of each to compare the prefix.
2012         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
2013         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
2014         canComputeResult = true;
2015       }
2016     } else {
2017       // This is a normal, unbounded strcmp.
2018       canComputeResult = true;
2019     }
2020 
2021     if (canComputeResult) {
2022       // Real strcmp stops at null characters.
2023       size_t s1Term = s1StrRef.find('\0');
2024       if (s1Term != StringRef::npos)
2025         s1StrRef = s1StrRef.substr(0, s1Term);
2026 
2027       size_t s2Term = s2StrRef.find('\0');
2028       if (s2Term != StringRef::npos)
2029         s2StrRef = s2StrRef.substr(0, s2Term);
2030 
2031       // Use StringRef's comparison methods to compute the actual result.
2032       int compareRes = IgnoreCase ? s1StrRef.compare_lower(s2StrRef)
2033         : s1StrRef.compare(s2StrRef);
2034 
2035       // The strcmp function returns an integer greater than, equal to, or less
2036       // than zero, [c11, p7.24.4.2].
2037       if (compareRes == 0) {
2038         resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2039       }
2040       else {
2041         DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2042         // Constrain strcmp's result range based on the result of StringRef's
2043         // comparison methods.
2044         BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2045         SVal compareWithZero =
2046           svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2047               svalBuilder.getConditionType());
2048         DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2049         state = state->assume(compareWithZeroVal, true);
2050       }
2051     }
2052   }
2053 
2054   state = state->BindExpr(CE, LCtx, resultVal);
2055 
2056   // Record this as a possible path.
2057   C.addTransition(state);
2058 }
2059 
2060 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2061   //char *strsep(char **stringp, const char *delim);
2062   // Sanity: does the search string parameter match the return type?
2063   const Expr *SearchStrPtr = CE->getArg(0);
2064   QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
2065   if (CharPtrTy.isNull() ||
2066       CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2067     return;
2068 
2069   CurrentFunctionDescription = "strsep()";
2070   ProgramStateRef State = C.getState();
2071   const LocationContext *LCtx = C.getLocationContext();
2072 
2073   // Check that the search string pointer is non-null (though it may point to
2074   // a null string).
2075   SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
2076   State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1);
2077   if (!State)
2078     return;
2079 
2080   // Check that the delimiter string is non-null.
2081   const Expr *DelimStr = CE->getArg(1);
2082   SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
2083   State = checkNonNull(C, State, DelimStr, DelimStrVal, 2);
2084   if (!State)
2085     return;
2086 
2087   SValBuilder &SVB = C.getSValBuilder();
2088   SVal Result;
2089   if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2090     // Get the current value of the search string pointer, as a char*.
2091     Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2092 
2093     // Invalidate the search string, representing the change of one delimiter
2094     // character to NUL.
2095     State = InvalidateBuffer(C, State, SearchStrPtr, Result,
2096         /*IsSourceBuffer*/false, nullptr);
2097 
2098     // Overwrite the search string pointer. The new value is either an address
2099     // further along in the same string, or NULL if there are no more tokens.
2100     State = State->bindLoc(*SearchStrLoc,
2101         SVB.conjureSymbolVal(getTag(),
2102           CE,
2103           LCtx,
2104           CharPtrTy,
2105           C.blockCount()),
2106         LCtx);
2107   } else {
2108     assert(SearchStrVal.isUnknown());
2109     // Conjure a symbolic value. It's the best we can do.
2110     Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2111   }
2112 
2113   // Set the return value, and finish.
2114   State = State->BindExpr(CE, LCtx, Result);
2115   C.addTransition(State);
2116 }
2117 
2118 // These should probably be moved into a C++ standard library checker.
2119 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2120   evalStdCopyCommon(C, CE);
2121 }
2122 
2123 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2124     const CallExpr *CE) const {
2125   evalStdCopyCommon(C, CE);
2126 }
2127 
2128 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2129     const CallExpr *CE) const {
2130   if (!CE->getArg(2)->getType()->isPointerType())
2131     return;
2132 
2133   ProgramStateRef State = C.getState();
2134 
2135   const LocationContext *LCtx = C.getLocationContext();
2136 
2137   // template <class _InputIterator, class _OutputIterator>
2138   // _OutputIterator
2139   // copy(_InputIterator __first, _InputIterator __last,
2140   //        _OutputIterator __result)
2141 
2142   // Invalidate the destination buffer
2143   const Expr *Dst = CE->getArg(2);
2144   SVal DstVal = State->getSVal(Dst, LCtx);
2145   State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2146       /*Size=*/nullptr);
2147 
2148   SValBuilder &SVB = C.getSValBuilder();
2149 
2150   SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2151   State = State->BindExpr(CE, LCtx, ResultVal);
2152 
2153   C.addTransition(State);
2154 }
2155 
2156 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2157   CurrentFunctionDescription = "memory set function";
2158 
2159   const Expr *Mem = CE->getArg(0);
2160   const Expr *CharE = CE->getArg(1);
2161   const Expr *Size = CE->getArg(2);
2162   ProgramStateRef State = C.getState();
2163 
2164   // See if the size argument is zero.
2165   const LocationContext *LCtx = C.getLocationContext();
2166   SVal SizeVal = State->getSVal(Size, LCtx);
2167   QualType SizeTy = Size->getType();
2168 
2169   ProgramStateRef StateZeroSize, StateNonZeroSize;
2170   std::tie(StateZeroSize, StateNonZeroSize) =
2171     assumeZero(C, State, SizeVal, SizeTy);
2172 
2173   // Get the value of the memory area.
2174   SVal MemVal = State->getSVal(Mem, LCtx);
2175 
2176   // If the size is zero, there won't be any actual memory access, so
2177   // just bind the return value to the Mem buffer and return.
2178   if (StateZeroSize && !StateNonZeroSize) {
2179     StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal);
2180     C.addTransition(StateZeroSize);
2181     return;
2182   }
2183 
2184   // Ensure the memory area is not null.
2185   // If it is NULL there will be a NULL pointer dereference.
2186   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1);
2187   if (!State)
2188     return;
2189 
2190   State = CheckBufferAccess(C, State, Size, Mem);
2191   if (!State)
2192     return;
2193 
2194   // According to the values of the arguments, bind the value of the second
2195   // argument to the destination buffer and set string length, or just
2196   // invalidate the destination buffer.
2197   if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State))
2198     return;
2199 
2200   State = State->BindExpr(CE, LCtx, MemVal);
2201   C.addTransition(State);
2202 }
2203 
2204 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2205   CurrentFunctionDescription = "memory clearance function";
2206 
2207   const Expr *Mem = CE->getArg(0);
2208   const Expr *Size = CE->getArg(1);
2209   SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2210 
2211   ProgramStateRef State = C.getState();
2212 
2213   // See if the size argument is zero.
2214   SVal SizeVal = C.getSVal(Size);
2215   QualType SizeTy = Size->getType();
2216 
2217   ProgramStateRef StateZeroSize, StateNonZeroSize;
2218   std::tie(StateZeroSize, StateNonZeroSize) =
2219     assumeZero(C, State, SizeVal, SizeTy);
2220 
2221   // If the size is zero, there won't be any actual memory access,
2222   // In this case we just return.
2223   if (StateZeroSize && !StateNonZeroSize) {
2224     C.addTransition(StateZeroSize);
2225     return;
2226   }
2227 
2228   // Get the value of the memory area.
2229   SVal MemVal = C.getSVal(Mem);
2230 
2231   // Ensure the memory area is not null.
2232   // If it is NULL there will be a NULL pointer dereference.
2233   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1);
2234   if (!State)
2235     return;
2236 
2237   State = CheckBufferAccess(C, State, Size, Mem);
2238   if (!State)
2239     return;
2240 
2241   if (!memsetAux(Mem, Zero, Size, C, State))
2242     return;
2243 
2244   C.addTransition(State);
2245 }
2246 
2247 //===----------------------------------------------------------------------===//
2248 // The driver method, and other Checker callbacks.
2249 //===----------------------------------------------------------------------===//
2250 
2251 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2252                                                      CheckerContext &C) const {
2253   const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2254   if (!CE)
2255     return nullptr;
2256 
2257   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2258   if (!FD)
2259     return nullptr;
2260 
2261   if (Call.isCalled(StdCopy)) {
2262     return &CStringChecker::evalStdCopy;
2263   } else if (Call.isCalled(StdCopyBackward)) {
2264     return &CStringChecker::evalStdCopyBackward;
2265   }
2266 
2267   // Pro-actively check that argument types are safe to do arithmetic upon.
2268   // We do not want to crash if someone accidentally passes a structure
2269   // into, say, a C++ overload of any of these functions. We could not check
2270   // that for std::copy because they may have arguments of other types.
2271   for (auto I : CE->arguments()) {
2272     QualType T = I->getType();
2273     if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2274       return nullptr;
2275   }
2276 
2277   const FnCheck *Callback = Callbacks.lookup(Call);
2278   if (Callback)
2279     return *Callback;
2280 
2281   return nullptr;
2282 }
2283 
2284 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2285   FnCheck Callback = identifyCall(Call, C);
2286 
2287   // If the callee isn't a string function, let another checker handle it.
2288   if (!Callback)
2289     return false;
2290 
2291   // Check and evaluate the call.
2292   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2293   (this->*Callback)(C, CE);
2294 
2295   // If the evaluate call resulted in no change, chain to the next eval call
2296   // handler.
2297   // Note, the custom CString evaluation calls assume that basic safety
2298   // properties are held. However, if the user chooses to turn off some of these
2299   // checks, we ignore the issues and leave the call evaluation to a generic
2300   // handler.
2301   return C.isDifferent();
2302 }
2303 
2304 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2305   // Record string length for char a[] = "abc";
2306   ProgramStateRef state = C.getState();
2307 
2308   for (const auto *I : DS->decls()) {
2309     const VarDecl *D = dyn_cast<VarDecl>(I);
2310     if (!D)
2311       continue;
2312 
2313     // FIXME: Handle array fields of structs.
2314     if (!D->getType()->isArrayType())
2315       continue;
2316 
2317     const Expr *Init = D->getInit();
2318     if (!Init)
2319       continue;
2320     if (!isa<StringLiteral>(Init))
2321       continue;
2322 
2323     Loc VarLoc = state->getLValue(D, C.getLocationContext());
2324     const MemRegion *MR = VarLoc.getAsRegion();
2325     if (!MR)
2326       continue;
2327 
2328     SVal StrVal = C.getSVal(Init);
2329     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2330     DefinedOrUnknownSVal strLength =
2331       getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2332 
2333     state = state->set<CStringLength>(MR, strLength);
2334   }
2335 
2336   C.addTransition(state);
2337 }
2338 
2339 ProgramStateRef
2340 CStringChecker::checkRegionChanges(ProgramStateRef state,
2341     const InvalidatedSymbols *,
2342     ArrayRef<const MemRegion *> ExplicitRegions,
2343     ArrayRef<const MemRegion *> Regions,
2344     const LocationContext *LCtx,
2345     const CallEvent *Call) const {
2346   CStringLengthTy Entries = state->get<CStringLength>();
2347   if (Entries.isEmpty())
2348     return state;
2349 
2350   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2351   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2352 
2353   // First build sets for the changed regions and their super-regions.
2354   for (ArrayRef<const MemRegion *>::iterator
2355       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2356     const MemRegion *MR = *I;
2357     Invalidated.insert(MR);
2358 
2359     SuperRegions.insert(MR);
2360     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2361       MR = SR->getSuperRegion();
2362       SuperRegions.insert(MR);
2363     }
2364   }
2365 
2366   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2367 
2368   // Then loop over the entries in the current state.
2369   for (CStringLengthTy::iterator I = Entries.begin(),
2370       E = Entries.end(); I != E; ++I) {
2371     const MemRegion *MR = I.getKey();
2372 
2373     // Is this entry for a super-region of a changed region?
2374     if (SuperRegions.count(MR)) {
2375       Entries = F.remove(Entries, MR);
2376       continue;
2377     }
2378 
2379     // Is this entry for a sub-region of a changed region?
2380     const MemRegion *Super = MR;
2381     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2382       Super = SR->getSuperRegion();
2383       if (Invalidated.count(Super)) {
2384         Entries = F.remove(Entries, MR);
2385         break;
2386       }
2387     }
2388   }
2389 
2390   return state->set<CStringLength>(Entries);
2391 }
2392 
2393 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2394     SymbolReaper &SR) const {
2395   // Mark all symbols in our string length map as valid.
2396   CStringLengthTy Entries = state->get<CStringLength>();
2397 
2398   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2399       I != E; ++I) {
2400     SVal Len = I.getData();
2401 
2402     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2403         se = Len.symbol_end(); si != se; ++si)
2404       SR.markInUse(*si);
2405   }
2406 }
2407 
2408 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2409     CheckerContext &C) const {
2410   ProgramStateRef state = C.getState();
2411   CStringLengthTy Entries = state->get<CStringLength>();
2412   if (Entries.isEmpty())
2413     return;
2414 
2415   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2416   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2417       I != E; ++I) {
2418     SVal Len = I.getData();
2419     if (SymbolRef Sym = Len.getAsSymbol()) {
2420       if (SR.isDead(Sym))
2421         Entries = F.remove(Entries, I.getKey());
2422     }
2423   }
2424 
2425   state = state->set<CStringLength>(Entries);
2426   C.addTransition(state);
2427 }
2428 
2429 void ento::registerCStringModeling(CheckerManager &Mgr) {
2430   Mgr.registerChecker<CStringChecker>();
2431 }
2432 
2433 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2434   return true;
2435 }
2436 
2437 #define REGISTER_CHECKER(name)                                                 \
2438   void ento::register##name(CheckerManager &mgr) {                             \
2439     CStringChecker *checker = mgr.getChecker<CStringChecker>();                \
2440     checker->Filter.Check##name = true;                                        \
2441     checker->Filter.CheckName##name = mgr.getCurrentCheckerName();             \
2442   }                                                                            \
2443                                                                                \
2444   bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2445 
2446 REGISTER_CHECKER(CStringNullArg)
2447 REGISTER_CHECKER(CStringOutOfBounds)
2448 REGISTER_CHECKER(CStringBufferOverlap)
2449 REGISTER_CHECKER(CStringNotNullTerm)
2450