1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 using namespace ento; 32 33 namespace { 34 struct AnyArgExpr { 35 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 36 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 37 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 38 const Expr *Expression; 39 unsigned ArgumentIndex; 40 }; 41 42 struct SourceArgExpr : AnyArgExpr { 43 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 44 }; 45 46 struct DestinationArgExpr : AnyArgExpr { 47 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 48 }; 49 50 struct SizeArgExpr : AnyArgExpr { 51 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 52 }; 53 54 using ErrorMessage = SmallString<128>; 55 enum class AccessKind { write, read }; 56 57 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 58 AccessKind Access) { 59 ErrorMessage Message; 60 llvm::raw_svector_ostream Os(Message); 61 62 // Function classification like: Memory copy function 63 Os << toUppercase(FunctionDescription.front()) 64 << &FunctionDescription.data()[1]; 65 66 if (Access == AccessKind::write) { 67 Os << " overflows the destination buffer"; 68 } else { // read access 69 Os << " accesses out-of-bound array element"; 70 } 71 72 return Message; 73 } 74 75 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 76 class CStringChecker : public Checker< eval::Call, 77 check::PreStmt<DeclStmt>, 78 check::LiveSymbols, 79 check::DeadSymbols, 80 check::RegionChanges 81 > { 82 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 83 BT_NotCString, BT_AdditionOverflow, BT_UninitRead; 84 85 mutable const char *CurrentFunctionDescription; 86 87 public: 88 /// The filter is used to filter out the diagnostics which are not enabled by 89 /// the user. 90 struct CStringChecksFilter { 91 bool CheckCStringNullArg = false; 92 bool CheckCStringOutOfBounds = false; 93 bool CheckCStringBufferOverlap = false; 94 bool CheckCStringNotNullTerm = false; 95 bool CheckCStringUninitializedRead = false; 96 97 CheckerNameRef CheckNameCStringNullArg; 98 CheckerNameRef CheckNameCStringOutOfBounds; 99 CheckerNameRef CheckNameCStringBufferOverlap; 100 CheckerNameRef CheckNameCStringNotNullTerm; 101 CheckerNameRef CheckNameCStringUninitializedRead; 102 }; 103 104 CStringChecksFilter Filter; 105 106 static void *getTag() { static int tag; return &tag; } 107 108 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 109 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 110 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 111 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 112 113 ProgramStateRef 114 checkRegionChanges(ProgramStateRef state, 115 const InvalidatedSymbols *, 116 ArrayRef<const MemRegion *> ExplicitRegions, 117 ArrayRef<const MemRegion *> Regions, 118 const LocationContext *LCtx, 119 const CallEvent *Call) const; 120 121 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 122 const CallExpr *) const; 123 CallDescriptionMap<FnCheck> Callbacks = { 124 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 125 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 126 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 127 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 128 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 129 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 130 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 131 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 132 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 133 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 134 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 135 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 136 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 137 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 138 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 139 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 140 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 141 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 142 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 143 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 144 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 145 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 146 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 147 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 148 }; 149 150 // These require a bit of special handling. 151 CallDescription StdCopy{{"std", "copy"}, 3}, 152 StdCopyBackward{{"std", "copy_backward"}, 3}; 153 154 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 155 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 156 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 157 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 158 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 159 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 160 ProgramStateRef state, SizeArgExpr Size, 161 DestinationArgExpr Dest, SourceArgExpr Source, 162 bool Restricted, bool IsMempcpy) const; 163 164 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 165 166 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 167 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 168 void evalstrLengthCommon(CheckerContext &C, 169 const CallExpr *CE, 170 bool IsStrnlen = false) const; 171 172 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 173 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 174 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 175 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 176 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 177 bool IsBounded, ConcatFnKind appendK, 178 bool returnPtr = true) const; 179 180 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 181 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 182 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 183 184 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 185 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 186 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 187 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 188 void evalStrcmpCommon(CheckerContext &C, 189 const CallExpr *CE, 190 bool IsBounded = false, 191 bool IgnoreCase = false) const; 192 193 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 194 195 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 196 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 197 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 198 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 199 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 200 201 // Utility methods 202 std::pair<ProgramStateRef , ProgramStateRef > 203 static assumeZero(CheckerContext &C, 204 ProgramStateRef state, SVal V, QualType Ty); 205 206 static ProgramStateRef setCStringLength(ProgramStateRef state, 207 const MemRegion *MR, 208 SVal strLength); 209 static SVal getCStringLengthForRegion(CheckerContext &C, 210 ProgramStateRef &state, 211 const Expr *Ex, 212 const MemRegion *MR, 213 bool hypothetical); 214 SVal getCStringLength(CheckerContext &C, 215 ProgramStateRef &state, 216 const Expr *Ex, 217 SVal Buf, 218 bool hypothetical = false) const; 219 220 const StringLiteral *getCStringLiteral(CheckerContext &C, 221 ProgramStateRef &state, 222 const Expr *expr, 223 SVal val) const; 224 225 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 226 ProgramStateRef state, 227 const Expr *Ex, SVal V, 228 bool IsSourceBuffer, 229 const Expr *Size); 230 231 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 232 const MemRegion *MR); 233 234 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 235 const Expr *Size, CheckerContext &C, 236 ProgramStateRef &State); 237 238 // Re-usable checks 239 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 240 AnyArgExpr Arg, SVal l) const; 241 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 242 AnyArgExpr Buffer, SVal Element, 243 AccessKind Access) const; 244 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 245 AnyArgExpr Buffer, SizeArgExpr Size, 246 AccessKind Access) const; 247 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 248 SizeArgExpr Size, AnyArgExpr First, 249 AnyArgExpr Second) const; 250 void emitOverlapBug(CheckerContext &C, 251 ProgramStateRef state, 252 const Stmt *First, 253 const Stmt *Second) const; 254 255 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 256 StringRef WarningMsg) const; 257 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 258 const Stmt *S, StringRef WarningMsg) const; 259 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 260 const Stmt *S, StringRef WarningMsg) const; 261 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 262 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State, 263 const Expr *E) const; 264 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 265 ProgramStateRef state, 266 NonLoc left, 267 NonLoc right) const; 268 269 // Return true if the destination buffer of the copy function may be in bound. 270 // Expects SVal of Size to be positive and unsigned. 271 // Expects SVal of FirstBuf to be a FieldRegion. 272 static bool IsFirstBufInBound(CheckerContext &C, 273 ProgramStateRef state, 274 const Expr *FirstBuf, 275 const Expr *Size); 276 }; 277 278 } //end anonymous namespace 279 280 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 281 282 //===----------------------------------------------------------------------===// 283 // Individual checks and utility methods. 284 //===----------------------------------------------------------------------===// 285 286 std::pair<ProgramStateRef , ProgramStateRef > 287 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 288 QualType Ty) { 289 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 290 if (!val) 291 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 292 293 SValBuilder &svalBuilder = C.getSValBuilder(); 294 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 295 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 296 } 297 298 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 299 ProgramStateRef State, 300 AnyArgExpr Arg, SVal l) const { 301 // If a previous check has failed, propagate the failure. 302 if (!State) 303 return nullptr; 304 305 ProgramStateRef stateNull, stateNonNull; 306 std::tie(stateNull, stateNonNull) = 307 assumeZero(C, State, l, Arg.Expression->getType()); 308 309 if (stateNull && !stateNonNull) { 310 if (Filter.CheckCStringNullArg) { 311 SmallString<80> buf; 312 llvm::raw_svector_ostream OS(buf); 313 assert(CurrentFunctionDescription); 314 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 315 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 316 << CurrentFunctionDescription; 317 318 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 319 } 320 return nullptr; 321 } 322 323 // From here on, assume that the value is non-null. 324 assert(stateNonNull); 325 return stateNonNull; 326 } 327 328 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 329 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 330 ProgramStateRef state, 331 AnyArgExpr Buffer, SVal Element, 332 AccessKind Access) const { 333 334 // If a previous check has failed, propagate the failure. 335 if (!state) 336 return nullptr; 337 338 // Check for out of bound array element access. 339 const MemRegion *R = Element.getAsRegion(); 340 if (!R) 341 return state; 342 343 const auto *ER = dyn_cast<ElementRegion>(R); 344 if (!ER) 345 return state; 346 347 if (ER->getValueType() != C.getASTContext().CharTy) 348 return state; 349 350 // Get the size of the array. 351 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 352 DefinedOrUnknownSVal Size = 353 getDynamicExtent(state, superReg, C.getSValBuilder()); 354 355 // Get the index of the accessed element. 356 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 357 358 ProgramStateRef StInBound, StOutBound; 359 std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size); 360 if (StOutBound && !StInBound) { 361 // These checks are either enabled by the CString out-of-bounds checker 362 // explicitly or implicitly by the Malloc checker. 363 // In the latter case we only do modeling but do not emit warning. 364 if (!Filter.CheckCStringOutOfBounds) 365 return nullptr; 366 367 // Emit a bug report. 368 ErrorMessage Message = 369 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 370 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 371 return nullptr; 372 } 373 374 // Ensure that we wouldn't read uninitialized value. 375 if (Access == AccessKind::read) { 376 if (Filter.CheckCStringUninitializedRead && 377 StInBound->getSVal(ER).isUndef()) { 378 emitUninitializedReadBug(C, StInBound, Buffer.Expression); 379 return nullptr; 380 } 381 } 382 383 // Array bound check succeeded. From this point forward the array bound 384 // should always succeed. 385 return StInBound; 386 } 387 388 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 389 ProgramStateRef State, 390 AnyArgExpr Buffer, 391 SizeArgExpr Size, 392 AccessKind Access) const { 393 // If a previous check has failed, propagate the failure. 394 if (!State) 395 return nullptr; 396 397 SValBuilder &svalBuilder = C.getSValBuilder(); 398 ASTContext &Ctx = svalBuilder.getContext(); 399 400 QualType SizeTy = Size.Expression->getType(); 401 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 402 403 // Check that the first buffer is non-null. 404 SVal BufVal = C.getSVal(Buffer.Expression); 405 State = checkNonNull(C, State, Buffer, BufVal); 406 if (!State) 407 return nullptr; 408 409 // If out-of-bounds checking is turned off, skip the rest. 410 if (!Filter.CheckCStringOutOfBounds) 411 return State; 412 413 // Get the access length and make sure it is known. 414 // FIXME: This assumes the caller has already checked that the access length 415 // is positive. And that it's unsigned. 416 SVal LengthVal = C.getSVal(Size.Expression); 417 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 418 if (!Length) 419 return State; 420 421 // Compute the offset of the last element to be accessed: size-1. 422 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 423 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 424 if (Offset.isUnknown()) 425 return nullptr; 426 NonLoc LastOffset = Offset.castAs<NonLoc>(); 427 428 // Check that the first buffer is sufficiently long. 429 SVal BufStart = 430 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 431 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 432 433 SVal BufEnd = 434 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 435 State = CheckLocation(C, State, Buffer, BufEnd, Access); 436 437 // If the buffer isn't large enough, abort. 438 if (!State) 439 return nullptr; 440 } 441 442 // Large enough or not, return this state! 443 return State; 444 } 445 446 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 447 ProgramStateRef state, 448 SizeArgExpr Size, AnyArgExpr First, 449 AnyArgExpr Second) const { 450 if (!Filter.CheckCStringBufferOverlap) 451 return state; 452 453 // Do a simple check for overlap: if the two arguments are from the same 454 // buffer, see if the end of the first is greater than the start of the second 455 // or vice versa. 456 457 // If a previous check has failed, propagate the failure. 458 if (!state) 459 return nullptr; 460 461 ProgramStateRef stateTrue, stateFalse; 462 463 // Assume different address spaces cannot overlap. 464 if (First.Expression->getType()->getPointeeType().getAddressSpace() != 465 Second.Expression->getType()->getPointeeType().getAddressSpace()) 466 return state; 467 468 // Get the buffer values and make sure they're known locations. 469 const LocationContext *LCtx = C.getLocationContext(); 470 SVal firstVal = state->getSVal(First.Expression, LCtx); 471 SVal secondVal = state->getSVal(Second.Expression, LCtx); 472 473 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 474 if (!firstLoc) 475 return state; 476 477 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 478 if (!secondLoc) 479 return state; 480 481 // Are the two values the same? 482 SValBuilder &svalBuilder = C.getSValBuilder(); 483 std::tie(stateTrue, stateFalse) = 484 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 485 486 if (stateTrue && !stateFalse) { 487 // If the values are known to be equal, that's automatically an overlap. 488 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 489 return nullptr; 490 } 491 492 // assume the two expressions are not equal. 493 assert(stateFalse); 494 state = stateFalse; 495 496 // Which value comes first? 497 QualType cmpTy = svalBuilder.getConditionType(); 498 SVal reverse = 499 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 500 Optional<DefinedOrUnknownSVal> reverseTest = 501 reverse.getAs<DefinedOrUnknownSVal>(); 502 if (!reverseTest) 503 return state; 504 505 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 506 if (stateTrue) { 507 if (stateFalse) { 508 // If we don't know which one comes first, we can't perform this test. 509 return state; 510 } else { 511 // Switch the values so that firstVal is before secondVal. 512 std::swap(firstLoc, secondLoc); 513 514 // Switch the Exprs as well, so that they still correspond. 515 std::swap(First, Second); 516 } 517 } 518 519 // Get the length, and make sure it too is known. 520 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 521 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 522 if (!Length) 523 return state; 524 525 // Convert the first buffer's start address to char*. 526 // Bail out if the cast fails. 527 ASTContext &Ctx = svalBuilder.getContext(); 528 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 529 SVal FirstStart = 530 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 531 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 532 if (!FirstStartLoc) 533 return state; 534 535 // Compute the end of the first buffer. Bail out if THAT fails. 536 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 537 *Length, CharPtrTy); 538 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 539 if (!FirstEndLoc) 540 return state; 541 542 // Is the end of the first buffer past the start of the second buffer? 543 SVal Overlap = 544 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 545 Optional<DefinedOrUnknownSVal> OverlapTest = 546 Overlap.getAs<DefinedOrUnknownSVal>(); 547 if (!OverlapTest) 548 return state; 549 550 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 551 552 if (stateTrue && !stateFalse) { 553 // Overlap! 554 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 555 return nullptr; 556 } 557 558 // assume the two expressions don't overlap. 559 assert(stateFalse); 560 return stateFalse; 561 } 562 563 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 564 const Stmt *First, const Stmt *Second) const { 565 ExplodedNode *N = C.generateErrorNode(state); 566 if (!N) 567 return; 568 569 if (!BT_Overlap) 570 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 571 categories::UnixAPI, "Improper arguments")); 572 573 // Generate a report for this bug. 574 auto report = std::make_unique<PathSensitiveBugReport>( 575 *BT_Overlap, "Arguments must not be overlapping buffers", N); 576 report->addRange(First->getSourceRange()); 577 report->addRange(Second->getSourceRange()); 578 579 C.emitReport(std::move(report)); 580 } 581 582 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 583 const Stmt *S, StringRef WarningMsg) const { 584 if (ExplodedNode *N = C.generateErrorNode(State)) { 585 if (!BT_Null) 586 BT_Null.reset(new BuiltinBug( 587 Filter.CheckNameCStringNullArg, categories::UnixAPI, 588 "Null pointer argument in call to byte string function")); 589 590 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 591 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 592 Report->addRange(S->getSourceRange()); 593 if (const auto *Ex = dyn_cast<Expr>(S)) 594 bugreporter::trackExpressionValue(N, Ex, *Report); 595 C.emitReport(std::move(Report)); 596 } 597 } 598 599 void CStringChecker::emitUninitializedReadBug(CheckerContext &C, 600 ProgramStateRef State, 601 const Expr *E) const { 602 if (ExplodedNode *N = C.generateErrorNode(State)) { 603 const char *Msg = 604 "Bytes string function accesses uninitialized/garbage values"; 605 if (!BT_UninitRead) 606 BT_UninitRead.reset( 607 new BuiltinBug(Filter.CheckNameCStringUninitializedRead, 608 "Accessing unitialized/garbage values", Msg)); 609 610 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get()); 611 612 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N); 613 Report->addRange(E->getSourceRange()); 614 bugreporter::trackExpressionValue(N, E, *Report); 615 C.emitReport(std::move(Report)); 616 } 617 } 618 619 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 620 ProgramStateRef State, const Stmt *S, 621 StringRef WarningMsg) const { 622 if (ExplodedNode *N = C.generateErrorNode(State)) { 623 if (!BT_Bounds) 624 BT_Bounds.reset(new BuiltinBug( 625 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 626 : Filter.CheckNameCStringNullArg, 627 "Out-of-bound array access", 628 "Byte string function accesses out-of-bound array element")); 629 630 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 631 632 // FIXME: It would be nice to eventually make this diagnostic more clear, 633 // e.g., by referencing the original declaration or by saying *why* this 634 // reference is outside the range. 635 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 636 Report->addRange(S->getSourceRange()); 637 C.emitReport(std::move(Report)); 638 } 639 } 640 641 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 642 const Stmt *S, 643 StringRef WarningMsg) const { 644 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 645 if (!BT_NotCString) 646 BT_NotCString.reset(new BuiltinBug( 647 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 648 "Argument is not a null-terminated string.")); 649 650 auto Report = 651 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 652 653 Report->addRange(S->getSourceRange()); 654 C.emitReport(std::move(Report)); 655 } 656 } 657 658 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 659 ProgramStateRef State) const { 660 if (ExplodedNode *N = C.generateErrorNode(State)) { 661 if (!BT_AdditionOverflow) 662 BT_AdditionOverflow.reset( 663 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 664 "Sum of expressions causes overflow.")); 665 666 // This isn't a great error message, but this should never occur in real 667 // code anyway -- you'd have to create a buffer longer than a size_t can 668 // represent, which is sort of a contradiction. 669 const char *WarningMsg = 670 "This expression will create a string whose length is too big to " 671 "be represented as a size_t"; 672 673 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow, 674 WarningMsg, N); 675 C.emitReport(std::move(Report)); 676 } 677 } 678 679 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 680 ProgramStateRef state, 681 NonLoc left, 682 NonLoc right) const { 683 // If out-of-bounds checking is turned off, skip the rest. 684 if (!Filter.CheckCStringOutOfBounds) 685 return state; 686 687 // If a previous check has failed, propagate the failure. 688 if (!state) 689 return nullptr; 690 691 SValBuilder &svalBuilder = C.getSValBuilder(); 692 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 693 694 QualType sizeTy = svalBuilder.getContext().getSizeType(); 695 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 696 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 697 698 SVal maxMinusRight; 699 if (isa<nonloc::ConcreteInt>(right)) { 700 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 701 sizeTy); 702 } else { 703 // Try switching the operands. (The order of these two assignments is 704 // important!) 705 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 706 sizeTy); 707 left = right; 708 } 709 710 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 711 QualType cmpTy = svalBuilder.getConditionType(); 712 // If left > max - right, we have an overflow. 713 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 714 *maxMinusRightNL, cmpTy); 715 716 ProgramStateRef stateOverflow, stateOkay; 717 std::tie(stateOverflow, stateOkay) = 718 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 719 720 if (stateOverflow && !stateOkay) { 721 // We have an overflow. Emit a bug report. 722 emitAdditionOverflowBug(C, stateOverflow); 723 return nullptr; 724 } 725 726 // From now on, assume an overflow didn't occur. 727 assert(stateOkay); 728 state = stateOkay; 729 } 730 731 return state; 732 } 733 734 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 735 const MemRegion *MR, 736 SVal strLength) { 737 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 738 739 MR = MR->StripCasts(); 740 741 switch (MR->getKind()) { 742 case MemRegion::StringRegionKind: 743 // FIXME: This can happen if we strcpy() into a string region. This is 744 // undefined [C99 6.4.5p6], but we should still warn about it. 745 return state; 746 747 case MemRegion::SymbolicRegionKind: 748 case MemRegion::AllocaRegionKind: 749 case MemRegion::NonParamVarRegionKind: 750 case MemRegion::ParamVarRegionKind: 751 case MemRegion::FieldRegionKind: 752 case MemRegion::ObjCIvarRegionKind: 753 // These are the types we can currently track string lengths for. 754 break; 755 756 case MemRegion::ElementRegionKind: 757 // FIXME: Handle element regions by upper-bounding the parent region's 758 // string length. 759 return state; 760 761 default: 762 // Other regions (mostly non-data) can't have a reliable C string length. 763 // For now, just ignore the change. 764 // FIXME: These are rare but not impossible. We should output some kind of 765 // warning for things like strcpy((char[]){'a', 0}, "b"); 766 return state; 767 } 768 769 if (strLength.isUnknown()) 770 return state->remove<CStringLength>(MR); 771 772 return state->set<CStringLength>(MR, strLength); 773 } 774 775 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 776 ProgramStateRef &state, 777 const Expr *Ex, 778 const MemRegion *MR, 779 bool hypothetical) { 780 if (!hypothetical) { 781 // If there's a recorded length, go ahead and return it. 782 const SVal *Recorded = state->get<CStringLength>(MR); 783 if (Recorded) 784 return *Recorded; 785 } 786 787 // Otherwise, get a new symbol and update the state. 788 SValBuilder &svalBuilder = C.getSValBuilder(); 789 QualType sizeTy = svalBuilder.getContext().getSizeType(); 790 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 791 MR, Ex, sizeTy, 792 C.getLocationContext(), 793 C.blockCount()); 794 795 if (!hypothetical) { 796 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 797 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 798 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 799 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 800 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 801 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 802 fourInt); 803 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 804 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 805 maxLength, sizeTy); 806 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 807 } 808 state = state->set<CStringLength>(MR, strLength); 809 } 810 811 return strLength; 812 } 813 814 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 815 const Expr *Ex, SVal Buf, 816 bool hypothetical) const { 817 const MemRegion *MR = Buf.getAsRegion(); 818 if (!MR) { 819 // If we can't get a region, see if it's something we /know/ isn't a 820 // C string. In the context of locations, the only time we can issue such 821 // a warning is for labels. 822 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 823 if (Filter.CheckCStringNotNullTerm) { 824 SmallString<120> buf; 825 llvm::raw_svector_ostream os(buf); 826 assert(CurrentFunctionDescription); 827 os << "Argument to " << CurrentFunctionDescription 828 << " is the address of the label '" << Label->getLabel()->getName() 829 << "', which is not a null-terminated string"; 830 831 emitNotCStringBug(C, state, Ex, os.str()); 832 } 833 return UndefinedVal(); 834 } 835 836 // If it's not a region and not a label, give up. 837 return UnknownVal(); 838 } 839 840 // If we have a region, strip casts from it and see if we can figure out 841 // its length. For anything we can't figure out, just return UnknownVal. 842 MR = MR->StripCasts(); 843 844 switch (MR->getKind()) { 845 case MemRegion::StringRegionKind: { 846 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 847 // so we can assume that the byte length is the correct C string length. 848 SValBuilder &svalBuilder = C.getSValBuilder(); 849 QualType sizeTy = svalBuilder.getContext().getSizeType(); 850 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 851 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 852 } 853 case MemRegion::SymbolicRegionKind: 854 case MemRegion::AllocaRegionKind: 855 case MemRegion::NonParamVarRegionKind: 856 case MemRegion::ParamVarRegionKind: 857 case MemRegion::FieldRegionKind: 858 case MemRegion::ObjCIvarRegionKind: 859 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 860 case MemRegion::CompoundLiteralRegionKind: 861 // FIXME: Can we track this? Is it necessary? 862 return UnknownVal(); 863 case MemRegion::ElementRegionKind: 864 // FIXME: How can we handle this? It's not good enough to subtract the 865 // offset from the base string length; consider "123\x00567" and &a[5]. 866 return UnknownVal(); 867 default: 868 // Other regions (mostly non-data) can't have a reliable C string length. 869 // In this case, an error is emitted and UndefinedVal is returned. 870 // The caller should always be prepared to handle this case. 871 if (Filter.CheckCStringNotNullTerm) { 872 SmallString<120> buf; 873 llvm::raw_svector_ostream os(buf); 874 875 assert(CurrentFunctionDescription); 876 os << "Argument to " << CurrentFunctionDescription << " is "; 877 878 if (SummarizeRegion(os, C.getASTContext(), MR)) 879 os << ", which is not a null-terminated string"; 880 else 881 os << "not a null-terminated string"; 882 883 emitNotCStringBug(C, state, Ex, os.str()); 884 } 885 return UndefinedVal(); 886 } 887 } 888 889 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 890 ProgramStateRef &state, const Expr *expr, SVal val) const { 891 892 // Get the memory region pointed to by the val. 893 const MemRegion *bufRegion = val.getAsRegion(); 894 if (!bufRegion) 895 return nullptr; 896 897 // Strip casts off the memory region. 898 bufRegion = bufRegion->StripCasts(); 899 900 // Cast the memory region to a string region. 901 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 902 if (!strRegion) 903 return nullptr; 904 905 // Return the actual string in the string region. 906 return strRegion->getStringLiteral(); 907 } 908 909 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 910 ProgramStateRef state, 911 const Expr *FirstBuf, 912 const Expr *Size) { 913 // If we do not know that the buffer is long enough we return 'true'. 914 // Otherwise the parent region of this field region would also get 915 // invalidated, which would lead to warnings based on an unknown state. 916 917 // Originally copied from CheckBufferAccess and CheckLocation. 918 SValBuilder &svalBuilder = C.getSValBuilder(); 919 ASTContext &Ctx = svalBuilder.getContext(); 920 const LocationContext *LCtx = C.getLocationContext(); 921 922 QualType sizeTy = Size->getType(); 923 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 924 SVal BufVal = state->getSVal(FirstBuf, LCtx); 925 926 SVal LengthVal = state->getSVal(Size, LCtx); 927 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 928 if (!Length) 929 return true; // cf top comment. 930 931 // Compute the offset of the last element to be accessed: size-1. 932 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 933 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 934 if (Offset.isUnknown()) 935 return true; // cf top comment 936 NonLoc LastOffset = Offset.castAs<NonLoc>(); 937 938 // Check that the first buffer is sufficiently long. 939 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 940 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 941 if (!BufLoc) 942 return true; // cf top comment. 943 944 SVal BufEnd = 945 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 946 947 // Check for out of bound array element access. 948 const MemRegion *R = BufEnd.getAsRegion(); 949 if (!R) 950 return true; // cf top comment. 951 952 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 953 if (!ER) 954 return true; // cf top comment. 955 956 // FIXME: Does this crash when a non-standard definition 957 // of a library function is encountered? 958 assert(ER->getValueType() == C.getASTContext().CharTy && 959 "IsFirstBufInBound should only be called with char* ElementRegions"); 960 961 // Get the size of the array. 962 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 963 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 964 965 // Get the index of the accessed element. 966 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 967 968 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 969 970 return static_cast<bool>(StInBound); 971 } 972 973 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 974 ProgramStateRef state, 975 const Expr *E, SVal V, 976 bool IsSourceBuffer, 977 const Expr *Size) { 978 Optional<Loc> L = V.getAs<Loc>(); 979 if (!L) 980 return state; 981 982 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 983 // some assumptions about the value that CFRefCount can't. Even so, it should 984 // probably be refactored. 985 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 986 const MemRegion *R = MR->getRegion()->StripCasts(); 987 988 // Are we dealing with an ElementRegion? If so, we should be invalidating 989 // the super-region. 990 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 991 R = ER->getSuperRegion(); 992 // FIXME: What about layers of ElementRegions? 993 } 994 995 // Invalidate this region. 996 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 997 998 bool CausesPointerEscape = false; 999 RegionAndSymbolInvalidationTraits ITraits; 1000 // Invalidate and escape only indirect regions accessible through the source 1001 // buffer. 1002 if (IsSourceBuffer) { 1003 ITraits.setTrait(R->getBaseRegion(), 1004 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1005 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 1006 CausesPointerEscape = true; 1007 } else { 1008 const MemRegion::Kind& K = R->getKind(); 1009 if (K == MemRegion::FieldRegionKind) 1010 if (Size && IsFirstBufInBound(C, state, E, Size)) { 1011 // If destination buffer is a field region and access is in bound, 1012 // do not invalidate its super region. 1013 ITraits.setTrait( 1014 R, 1015 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1016 } 1017 } 1018 1019 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 1020 CausesPointerEscape, nullptr, nullptr, 1021 &ITraits); 1022 } 1023 1024 // If we have a non-region value by chance, just remove the binding. 1025 // FIXME: is this necessary or correct? This handles the non-Region 1026 // cases. Is it ever valid to store to these? 1027 return state->killBinding(*L); 1028 } 1029 1030 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1031 const MemRegion *MR) { 1032 switch (MR->getKind()) { 1033 case MemRegion::FunctionCodeRegionKind: { 1034 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1035 os << "the address of the function '" << *FD << '\''; 1036 else 1037 os << "the address of a function"; 1038 return true; 1039 } 1040 case MemRegion::BlockCodeRegionKind: 1041 os << "block text"; 1042 return true; 1043 case MemRegion::BlockDataRegionKind: 1044 os << "a block"; 1045 return true; 1046 case MemRegion::CXXThisRegionKind: 1047 case MemRegion::CXXTempObjectRegionKind: 1048 os << "a C++ temp object of type " 1049 << cast<TypedValueRegion>(MR)->getValueType(); 1050 return true; 1051 case MemRegion::NonParamVarRegionKind: 1052 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType(); 1053 return true; 1054 case MemRegion::ParamVarRegionKind: 1055 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType(); 1056 return true; 1057 case MemRegion::FieldRegionKind: 1058 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType(); 1059 return true; 1060 case MemRegion::ObjCIvarRegionKind: 1061 os << "an instance variable of type " 1062 << cast<TypedValueRegion>(MR)->getValueType(); 1063 return true; 1064 default: 1065 return false; 1066 } 1067 } 1068 1069 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1070 const Expr *Size, CheckerContext &C, 1071 ProgramStateRef &State) { 1072 SVal MemVal = C.getSVal(DstBuffer); 1073 SVal SizeVal = C.getSVal(Size); 1074 const MemRegion *MR = MemVal.getAsRegion(); 1075 if (!MR) 1076 return false; 1077 1078 // We're about to model memset by producing a "default binding" in the Store. 1079 // Our current implementation - RegionStore - doesn't support default bindings 1080 // that don't cover the whole base region. So we should first get the offset 1081 // and the base region to figure out whether the offset of buffer is 0. 1082 RegionOffset Offset = MR->getAsOffset(); 1083 const MemRegion *BR = Offset.getRegion(); 1084 1085 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1086 if (!SizeNL) 1087 return false; 1088 1089 SValBuilder &svalBuilder = C.getSValBuilder(); 1090 ASTContext &Ctx = C.getASTContext(); 1091 1092 // void *memset(void *dest, int ch, size_t count); 1093 // For now we can only handle the case of offset is 0 and concrete char value. 1094 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1095 Offset.getOffset() == 0) { 1096 // Get the base region's size. 1097 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1098 1099 ProgramStateRef StateWholeReg, StateNotWholeReg; 1100 std::tie(StateWholeReg, StateNotWholeReg) = 1101 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1102 1103 // With the semantic of 'memset()', we should convert the CharVal to 1104 // unsigned char. 1105 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1106 1107 ProgramStateRef StateNullChar, StateNonNullChar; 1108 std::tie(StateNullChar, StateNonNullChar) = 1109 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1110 1111 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1112 !StateNonNullChar) { 1113 // If the 'memset()' acts on the whole region of destination buffer and 1114 // the value of the second argument of 'memset()' is zero, bind the second 1115 // argument's value to the destination buffer with 'default binding'. 1116 // FIXME: Since there is no perfect way to bind the non-zero character, we 1117 // can only deal with zero value here. In the future, we need to deal with 1118 // the binding of non-zero value in the case of whole region. 1119 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1120 C.getLocationContext()); 1121 } else { 1122 // If the destination buffer's extent is not equal to the value of 1123 // third argument, just invalidate buffer. 1124 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1125 /*IsSourceBuffer*/ false, Size); 1126 } 1127 1128 if (StateNullChar && !StateNonNullChar) { 1129 // If the value of the second argument of 'memset()' is zero, set the 1130 // string length of destination buffer to 0 directly. 1131 State = setCStringLength(State, MR, 1132 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1133 } else if (!StateNullChar && StateNonNullChar) { 1134 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1135 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1136 C.getLocationContext(), C.blockCount()); 1137 1138 // If the value of second argument is not zero, then the string length 1139 // is at least the size argument. 1140 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1141 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1142 1143 State = setCStringLength( 1144 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1145 MR, NewStrLen); 1146 } 1147 } else { 1148 // If the offset is not zero and char value is not concrete, we can do 1149 // nothing but invalidate the buffer. 1150 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1151 /*IsSourceBuffer*/ false, Size); 1152 } 1153 return true; 1154 } 1155 1156 //===----------------------------------------------------------------------===// 1157 // evaluation of individual function calls. 1158 //===----------------------------------------------------------------------===// 1159 1160 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1161 ProgramStateRef state, SizeArgExpr Size, 1162 DestinationArgExpr Dest, 1163 SourceArgExpr Source, bool Restricted, 1164 bool IsMempcpy) const { 1165 CurrentFunctionDescription = "memory copy function"; 1166 1167 // See if the size argument is zero. 1168 const LocationContext *LCtx = C.getLocationContext(); 1169 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1170 QualType sizeTy = Size.Expression->getType(); 1171 1172 ProgramStateRef stateZeroSize, stateNonZeroSize; 1173 std::tie(stateZeroSize, stateNonZeroSize) = 1174 assumeZero(C, state, sizeVal, sizeTy); 1175 1176 // Get the value of the Dest. 1177 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1178 1179 // If the size is zero, there won't be any actual memory access, so 1180 // just bind the return value to the destination buffer and return. 1181 if (stateZeroSize && !stateNonZeroSize) { 1182 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1183 C.addTransition(stateZeroSize); 1184 return; 1185 } 1186 1187 // If the size can be nonzero, we have to check the other arguments. 1188 if (stateNonZeroSize) { 1189 state = stateNonZeroSize; 1190 1191 // Ensure the destination is not null. If it is NULL there will be a 1192 // NULL pointer dereference. 1193 state = checkNonNull(C, state, Dest, destVal); 1194 if (!state) 1195 return; 1196 1197 // Get the value of the Src. 1198 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1199 1200 // Ensure the source is not null. If it is NULL there will be a 1201 // NULL pointer dereference. 1202 state = checkNonNull(C, state, Source, srcVal); 1203 if (!state) 1204 return; 1205 1206 // Ensure the accesses are valid and that the buffers do not overlap. 1207 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write); 1208 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read); 1209 1210 if (Restricted) 1211 state = CheckOverlap(C, state, Size, Dest, Source); 1212 1213 if (!state) 1214 return; 1215 1216 // If this is mempcpy, get the byte after the last byte copied and 1217 // bind the expr. 1218 if (IsMempcpy) { 1219 // Get the byte after the last byte copied. 1220 SValBuilder &SvalBuilder = C.getSValBuilder(); 1221 ASTContext &Ctx = SvalBuilder.getContext(); 1222 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1223 SVal DestRegCharVal = 1224 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1225 SVal lastElement = C.getSValBuilder().evalBinOp( 1226 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1227 // If we don't know how much we copied, we can at least 1228 // conjure a return value for later. 1229 if (lastElement.isUnknown()) 1230 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1231 C.blockCount()); 1232 1233 // The byte after the last byte copied is the return value. 1234 state = state->BindExpr(CE, LCtx, lastElement); 1235 } else { 1236 // All other copies return the destination buffer. 1237 // (Well, bcopy() has a void return type, but this won't hurt.) 1238 state = state->BindExpr(CE, LCtx, destVal); 1239 } 1240 1241 // Invalidate the destination (regular invalidation without pointer-escaping 1242 // the address of the top-level region). 1243 // FIXME: Even if we can't perfectly model the copy, we should see if we 1244 // can use LazyCompoundVals to copy the source values into the destination. 1245 // This would probably remove any existing bindings past the end of the 1246 // copied region, but that's still an improvement over blank invalidation. 1247 state = 1248 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1249 /*IsSourceBuffer*/ false, Size.Expression); 1250 1251 // Invalidate the source (const-invalidation without const-pointer-escaping 1252 // the address of the top-level region). 1253 state = InvalidateBuffer(C, state, Source.Expression, 1254 C.getSVal(Source.Expression), 1255 /*IsSourceBuffer*/ true, nullptr); 1256 1257 C.addTransition(state); 1258 } 1259 } 1260 1261 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1262 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1263 // The return value is the address of the destination buffer. 1264 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1265 SourceArgExpr Src = {CE->getArg(1), 1}; 1266 SizeArgExpr Size = {CE->getArg(2), 2}; 1267 1268 ProgramStateRef State = C.getState(); 1269 1270 constexpr bool IsRestricted = true; 1271 constexpr bool IsMempcpy = false; 1272 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy); 1273 } 1274 1275 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1276 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1277 // The return value is a pointer to the byte following the last written byte. 1278 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1279 SourceArgExpr Src = {CE->getArg(1), 1}; 1280 SizeArgExpr Size = {CE->getArg(2), 2}; 1281 1282 constexpr bool IsRestricted = true; 1283 constexpr bool IsMempcpy = true; 1284 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1285 } 1286 1287 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1288 // void *memmove(void *dst, const void *src, size_t n); 1289 // The return value is the address of the destination buffer. 1290 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1291 SourceArgExpr Src = {CE->getArg(1), 1}; 1292 SizeArgExpr Size = {CE->getArg(2), 2}; 1293 1294 constexpr bool IsRestricted = false; 1295 constexpr bool IsMempcpy = false; 1296 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1297 } 1298 1299 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1300 // void bcopy(const void *src, void *dst, size_t n); 1301 SourceArgExpr Src(CE->getArg(0), 0); 1302 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1303 SizeArgExpr Size = {CE->getArg(2), 2}; 1304 1305 constexpr bool IsRestricted = false; 1306 constexpr bool IsMempcpy = false; 1307 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy); 1308 } 1309 1310 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1311 // int memcmp(const void *s1, const void *s2, size_t n); 1312 CurrentFunctionDescription = "memory comparison function"; 1313 1314 AnyArgExpr Left = {CE->getArg(0), 0}; 1315 AnyArgExpr Right = {CE->getArg(1), 1}; 1316 SizeArgExpr Size = {CE->getArg(2), 2}; 1317 1318 ProgramStateRef State = C.getState(); 1319 SValBuilder &Builder = C.getSValBuilder(); 1320 const LocationContext *LCtx = C.getLocationContext(); 1321 1322 // See if the size argument is zero. 1323 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1324 QualType sizeTy = Size.Expression->getType(); 1325 1326 ProgramStateRef stateZeroSize, stateNonZeroSize; 1327 std::tie(stateZeroSize, stateNonZeroSize) = 1328 assumeZero(C, State, sizeVal, sizeTy); 1329 1330 // If the size can be zero, the result will be 0 in that case, and we don't 1331 // have to check either of the buffers. 1332 if (stateZeroSize) { 1333 State = stateZeroSize; 1334 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1335 C.addTransition(State); 1336 } 1337 1338 // If the size can be nonzero, we have to check the other arguments. 1339 if (stateNonZeroSize) { 1340 State = stateNonZeroSize; 1341 // If we know the two buffers are the same, we know the result is 0. 1342 // First, get the two buffers' addresses. Another checker will have already 1343 // made sure they're not undefined. 1344 DefinedOrUnknownSVal LV = 1345 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1346 DefinedOrUnknownSVal RV = 1347 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1348 1349 // See if they are the same. 1350 ProgramStateRef SameBuffer, NotSameBuffer; 1351 std::tie(SameBuffer, NotSameBuffer) = 1352 State->assume(Builder.evalEQ(State, LV, RV)); 1353 1354 // If the two arguments are the same buffer, we know the result is 0, 1355 // and we only need to check one size. 1356 if (SameBuffer && !NotSameBuffer) { 1357 State = SameBuffer; 1358 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1359 if (State) { 1360 State = 1361 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1362 C.addTransition(State); 1363 } 1364 return; 1365 } 1366 1367 // If the two arguments might be different buffers, we have to check 1368 // the size of both of them. 1369 assert(NotSameBuffer); 1370 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read); 1371 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1372 if (State) { 1373 // The return value is the comparison result, which we don't know. 1374 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1375 State = State->BindExpr(CE, LCtx, CmpV); 1376 C.addTransition(State); 1377 } 1378 } 1379 } 1380 1381 void CStringChecker::evalstrLength(CheckerContext &C, 1382 const CallExpr *CE) const { 1383 // size_t strlen(const char *s); 1384 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1385 } 1386 1387 void CStringChecker::evalstrnLength(CheckerContext &C, 1388 const CallExpr *CE) const { 1389 // size_t strnlen(const char *s, size_t maxlen); 1390 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1391 } 1392 1393 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1394 bool IsStrnlen) const { 1395 CurrentFunctionDescription = "string length function"; 1396 ProgramStateRef state = C.getState(); 1397 const LocationContext *LCtx = C.getLocationContext(); 1398 1399 if (IsStrnlen) { 1400 const Expr *maxlenExpr = CE->getArg(1); 1401 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1402 1403 ProgramStateRef stateZeroSize, stateNonZeroSize; 1404 std::tie(stateZeroSize, stateNonZeroSize) = 1405 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1406 1407 // If the size can be zero, the result will be 0 in that case, and we don't 1408 // have to check the string itself. 1409 if (stateZeroSize) { 1410 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1411 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1412 C.addTransition(stateZeroSize); 1413 } 1414 1415 // If the size is GUARANTEED to be zero, we're done! 1416 if (!stateNonZeroSize) 1417 return; 1418 1419 // Otherwise, record the assumption that the size is nonzero. 1420 state = stateNonZeroSize; 1421 } 1422 1423 // Check that the string argument is non-null. 1424 AnyArgExpr Arg = {CE->getArg(0), 0}; 1425 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1426 state = checkNonNull(C, state, Arg, ArgVal); 1427 1428 if (!state) 1429 return; 1430 1431 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1432 1433 // If the argument isn't a valid C string, there's no valid state to 1434 // transition to. 1435 if (strLength.isUndef()) 1436 return; 1437 1438 DefinedOrUnknownSVal result = UnknownVal(); 1439 1440 // If the check is for strnlen() then bind the return value to no more than 1441 // the maxlen value. 1442 if (IsStrnlen) { 1443 QualType cmpTy = C.getSValBuilder().getConditionType(); 1444 1445 // It's a little unfortunate to be getting this again, 1446 // but it's not that expensive... 1447 const Expr *maxlenExpr = CE->getArg(1); 1448 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1449 1450 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1451 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1452 1453 if (strLengthNL && maxlenValNL) { 1454 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1455 1456 // Check if the strLength is greater than the maxlen. 1457 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1458 C.getSValBuilder() 1459 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1460 .castAs<DefinedOrUnknownSVal>()); 1461 1462 if (stateStringTooLong && !stateStringNotTooLong) { 1463 // If the string is longer than maxlen, return maxlen. 1464 result = *maxlenValNL; 1465 } else if (stateStringNotTooLong && !stateStringTooLong) { 1466 // If the string is shorter than maxlen, return its length. 1467 result = *strLengthNL; 1468 } 1469 } 1470 1471 if (result.isUnknown()) { 1472 // If we don't have enough information for a comparison, there's 1473 // no guarantee the full string length will actually be returned. 1474 // All we know is the return value is the min of the string length 1475 // and the limit. This is better than nothing. 1476 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1477 C.blockCount()); 1478 NonLoc resultNL = result.castAs<NonLoc>(); 1479 1480 if (strLengthNL) { 1481 state = state->assume(C.getSValBuilder().evalBinOpNN( 1482 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1483 .castAs<DefinedOrUnknownSVal>(), true); 1484 } 1485 1486 if (maxlenValNL) { 1487 state = state->assume(C.getSValBuilder().evalBinOpNN( 1488 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1489 .castAs<DefinedOrUnknownSVal>(), true); 1490 } 1491 } 1492 1493 } else { 1494 // This is a plain strlen(), not strnlen(). 1495 result = strLength.castAs<DefinedOrUnknownSVal>(); 1496 1497 // If we don't know the length of the string, conjure a return 1498 // value, so it can be used in constraints, at least. 1499 if (result.isUnknown()) { 1500 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1501 C.blockCount()); 1502 } 1503 } 1504 1505 // Bind the return value. 1506 assert(!result.isUnknown() && "Should have conjured a value by now"); 1507 state = state->BindExpr(CE, LCtx, result); 1508 C.addTransition(state); 1509 } 1510 1511 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1512 // char *strcpy(char *restrict dst, const char *restrict src); 1513 evalStrcpyCommon(C, CE, 1514 /* ReturnEnd = */ false, 1515 /* IsBounded = */ false, 1516 /* appendK = */ ConcatFnKind::none); 1517 } 1518 1519 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1520 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1521 evalStrcpyCommon(C, CE, 1522 /* ReturnEnd = */ false, 1523 /* IsBounded = */ true, 1524 /* appendK = */ ConcatFnKind::none); 1525 } 1526 1527 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1528 // char *stpcpy(char *restrict dst, const char *restrict src); 1529 evalStrcpyCommon(C, CE, 1530 /* ReturnEnd = */ true, 1531 /* IsBounded = */ false, 1532 /* appendK = */ ConcatFnKind::none); 1533 } 1534 1535 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1536 // size_t strlcpy(char *dest, const char *src, size_t size); 1537 evalStrcpyCommon(C, CE, 1538 /* ReturnEnd = */ true, 1539 /* IsBounded = */ true, 1540 /* appendK = */ ConcatFnKind::none, 1541 /* returnPtr = */ false); 1542 } 1543 1544 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1545 // char *strcat(char *restrict s1, const char *restrict s2); 1546 evalStrcpyCommon(C, CE, 1547 /* ReturnEnd = */ false, 1548 /* IsBounded = */ false, 1549 /* appendK = */ ConcatFnKind::strcat); 1550 } 1551 1552 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1553 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1554 evalStrcpyCommon(C, CE, 1555 /* ReturnEnd = */ false, 1556 /* IsBounded = */ true, 1557 /* appendK = */ ConcatFnKind::strcat); 1558 } 1559 1560 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1561 // size_t strlcat(char *dst, const char *src, size_t size); 1562 // It will append at most size - strlen(dst) - 1 bytes, 1563 // NULL-terminating the result. 1564 evalStrcpyCommon(C, CE, 1565 /* ReturnEnd = */ false, 1566 /* IsBounded = */ true, 1567 /* appendK = */ ConcatFnKind::strlcat, 1568 /* returnPtr = */ false); 1569 } 1570 1571 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1572 bool ReturnEnd, bool IsBounded, 1573 ConcatFnKind appendK, 1574 bool returnPtr) const { 1575 if (appendK == ConcatFnKind::none) 1576 CurrentFunctionDescription = "string copy function"; 1577 else 1578 CurrentFunctionDescription = "string concatenation function"; 1579 1580 ProgramStateRef state = C.getState(); 1581 const LocationContext *LCtx = C.getLocationContext(); 1582 1583 // Check that the destination is non-null. 1584 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1585 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1586 state = checkNonNull(C, state, Dst, DstVal); 1587 if (!state) 1588 return; 1589 1590 // Check that the source is non-null. 1591 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1592 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1593 state = checkNonNull(C, state, srcExpr, srcVal); 1594 if (!state) 1595 return; 1596 1597 // Get the string length of the source. 1598 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1599 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1600 1601 // Get the string length of the destination buffer. 1602 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1603 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1604 1605 // If the source isn't a valid C string, give up. 1606 if (strLength.isUndef()) 1607 return; 1608 1609 SValBuilder &svalBuilder = C.getSValBuilder(); 1610 QualType cmpTy = svalBuilder.getConditionType(); 1611 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1612 1613 // These two values allow checking two kinds of errors: 1614 // - actual overflows caused by a source that doesn't fit in the destination 1615 // - potential overflows caused by a bound that could exceed the destination 1616 SVal amountCopied = UnknownVal(); 1617 SVal maxLastElementIndex = UnknownVal(); 1618 const char *boundWarning = nullptr; 1619 1620 // FIXME: Why do we choose the srcExpr if the access has no size? 1621 // Note that the 3rd argument of the call would be the size parameter. 1622 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1623 state = CheckOverlap( 1624 C, state, 1625 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1626 srcExpr); 1627 1628 if (!state) 1629 return; 1630 1631 // If the function is strncpy, strncat, etc... it is bounded. 1632 if (IsBounded) { 1633 // Get the max number of characters to copy. 1634 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1635 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1636 1637 // Protect against misdeclared strncpy(). 1638 lenVal = 1639 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1640 1641 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1642 1643 // If we know both values, we might be able to figure out how much 1644 // we're copying. 1645 if (strLengthNL && lenValNL) { 1646 switch (appendK) { 1647 case ConcatFnKind::none: 1648 case ConcatFnKind::strcat: { 1649 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1650 // Check if the max number to copy is less than the length of the src. 1651 // If the bound is equal to the source length, strncpy won't null- 1652 // terminate the result! 1653 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1654 svalBuilder 1655 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1656 .castAs<DefinedOrUnknownSVal>()); 1657 1658 if (stateSourceTooLong && !stateSourceNotTooLong) { 1659 // Max number to copy is less than the length of the src, so the 1660 // actual strLength copied is the max number arg. 1661 state = stateSourceTooLong; 1662 amountCopied = lenVal; 1663 1664 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1665 // The source buffer entirely fits in the bound. 1666 state = stateSourceNotTooLong; 1667 amountCopied = strLength; 1668 } 1669 break; 1670 } 1671 case ConcatFnKind::strlcat: 1672 if (!dstStrLengthNL) 1673 return; 1674 1675 // amountCopied = min (size - dstLen - 1 , srcLen) 1676 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1677 *dstStrLengthNL, sizeTy); 1678 if (!isa<NonLoc>(freeSpace)) 1679 return; 1680 freeSpace = 1681 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1682 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1683 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1684 1685 // While unlikely, it is possible that the subtraction is 1686 // too complex to compute, let's check whether it succeeded. 1687 if (!freeSpaceNL) 1688 return; 1689 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1690 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1691 1692 ProgramStateRef TrueState, FalseState; 1693 std::tie(TrueState, FalseState) = 1694 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1695 1696 // srcStrLength <= size - dstStrLength -1 1697 if (TrueState && !FalseState) { 1698 amountCopied = strLength; 1699 } 1700 1701 // srcStrLength > size - dstStrLength -1 1702 if (!TrueState && FalseState) { 1703 amountCopied = freeSpace; 1704 } 1705 1706 if (TrueState && FalseState) 1707 amountCopied = UnknownVal(); 1708 break; 1709 } 1710 } 1711 // We still want to know if the bound is known to be too large. 1712 if (lenValNL) { 1713 switch (appendK) { 1714 case ConcatFnKind::strcat: 1715 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1716 1717 // Get the string length of the destination. If the destination is 1718 // memory that can't have a string length, we shouldn't be copying 1719 // into it anyway. 1720 if (dstStrLength.isUndef()) 1721 return; 1722 1723 if (dstStrLengthNL) { 1724 maxLastElementIndex = svalBuilder.evalBinOpNN( 1725 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1726 1727 boundWarning = "Size argument is greater than the free space in the " 1728 "destination buffer"; 1729 } 1730 break; 1731 case ConcatFnKind::none: 1732 case ConcatFnKind::strlcat: 1733 // For strncpy and strlcat, this is just checking 1734 // that lenVal <= sizeof(dst). 1735 // (Yes, strncpy and strncat differ in how they treat termination. 1736 // strncat ALWAYS terminates, but strncpy doesn't.) 1737 1738 // We need a special case for when the copy size is zero, in which 1739 // case strncpy will do no work at all. Our bounds check uses n-1 1740 // as the last element accessed, so n == 0 is problematic. 1741 ProgramStateRef StateZeroSize, StateNonZeroSize; 1742 std::tie(StateZeroSize, StateNonZeroSize) = 1743 assumeZero(C, state, *lenValNL, sizeTy); 1744 1745 // If the size is known to be zero, we're done. 1746 if (StateZeroSize && !StateNonZeroSize) { 1747 if (returnPtr) { 1748 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1749 } else { 1750 if (appendK == ConcatFnKind::none) { 1751 // strlcpy returns strlen(src) 1752 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1753 } else { 1754 // strlcat returns strlen(src) + strlen(dst) 1755 SVal retSize = svalBuilder.evalBinOp( 1756 state, BO_Add, strLength, dstStrLength, sizeTy); 1757 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1758 } 1759 } 1760 C.addTransition(StateZeroSize); 1761 return; 1762 } 1763 1764 // Otherwise, go ahead and figure out the last element we'll touch. 1765 // We don't record the non-zero assumption here because we can't 1766 // be sure. We won't warn on a possible zero. 1767 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1768 maxLastElementIndex = 1769 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1770 boundWarning = "Size argument is greater than the length of the " 1771 "destination buffer"; 1772 break; 1773 } 1774 } 1775 } else { 1776 // The function isn't bounded. The amount copied should match the length 1777 // of the source buffer. 1778 amountCopied = strLength; 1779 } 1780 1781 assert(state); 1782 1783 // This represents the number of characters copied into the destination 1784 // buffer. (It may not actually be the strlen if the destination buffer 1785 // is not terminated.) 1786 SVal finalStrLength = UnknownVal(); 1787 SVal strlRetVal = UnknownVal(); 1788 1789 if (appendK == ConcatFnKind::none && !returnPtr) { 1790 // strlcpy returns the sizeof(src) 1791 strlRetVal = strLength; 1792 } 1793 1794 // If this is an appending function (strcat, strncat...) then set the 1795 // string length to strlen(src) + strlen(dst) since the buffer will 1796 // ultimately contain both. 1797 if (appendK != ConcatFnKind::none) { 1798 // Get the string length of the destination. If the destination is memory 1799 // that can't have a string length, we shouldn't be copying into it anyway. 1800 if (dstStrLength.isUndef()) 1801 return; 1802 1803 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1804 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1805 *dstStrLengthNL, sizeTy); 1806 } 1807 1808 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1809 1810 // If we know both string lengths, we might know the final string length. 1811 if (amountCopiedNL && dstStrLengthNL) { 1812 // Make sure the two lengths together don't overflow a size_t. 1813 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1814 if (!state) 1815 return; 1816 1817 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1818 *dstStrLengthNL, sizeTy); 1819 } 1820 1821 // If we couldn't get a single value for the final string length, 1822 // we can at least bound it by the individual lengths. 1823 if (finalStrLength.isUnknown()) { 1824 // Try to get a "hypothetical" string length symbol, which we can later 1825 // set as a real value if that turns out to be the case. 1826 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1827 assert(!finalStrLength.isUndef()); 1828 1829 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1830 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1831 // we overwrite dst string with the src 1832 // finalStrLength >= srcStrLength 1833 SVal sourceInResult = svalBuilder.evalBinOpNN( 1834 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1835 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1836 true); 1837 if (!state) 1838 return; 1839 } 1840 1841 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1842 // we extend the dst string with the src 1843 // finalStrLength >= dstStrLength 1844 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1845 *finalStrLengthNL, 1846 *dstStrLengthNL, 1847 cmpTy); 1848 state = 1849 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1850 if (!state) 1851 return; 1852 } 1853 } 1854 } 1855 1856 } else { 1857 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1858 // the final string length will match the input string length. 1859 finalStrLength = amountCopied; 1860 } 1861 1862 SVal Result; 1863 1864 if (returnPtr) { 1865 // The final result of the function will either be a pointer past the last 1866 // copied element, or a pointer to the start of the destination buffer. 1867 Result = (ReturnEnd ? UnknownVal() : DstVal); 1868 } else { 1869 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1870 //strlcpy, strlcat 1871 Result = strlRetVal; 1872 else 1873 Result = finalStrLength; 1874 } 1875 1876 assert(state); 1877 1878 // If the destination is a MemRegion, try to check for a buffer overflow and 1879 // record the new string length. 1880 if (Optional<loc::MemRegionVal> dstRegVal = 1881 DstVal.getAs<loc::MemRegionVal>()) { 1882 QualType ptrTy = Dst.Expression->getType(); 1883 1884 // If we have an exact value on a bounded copy, use that to check for 1885 // overflows, rather than our estimate about how much is actually copied. 1886 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1887 SVal maxLastElement = 1888 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1889 1890 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1891 if (!state) 1892 return; 1893 } 1894 1895 // Then, if the final length is known... 1896 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1897 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1898 *knownStrLength, ptrTy); 1899 1900 // ...and we haven't checked the bound, we'll check the actual copy. 1901 if (!boundWarning) { 1902 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1903 if (!state) 1904 return; 1905 } 1906 1907 // If this is a stpcpy-style copy, the last element is the return value. 1908 if (returnPtr && ReturnEnd) 1909 Result = lastElement; 1910 } 1911 1912 // Invalidate the destination (regular invalidation without pointer-escaping 1913 // the address of the top-level region). This must happen before we set the 1914 // C string length because invalidation will clear the length. 1915 // FIXME: Even if we can't perfectly model the copy, we should see if we 1916 // can use LazyCompoundVals to copy the source values into the destination. 1917 // This would probably remove any existing bindings past the end of the 1918 // string, but that's still an improvement over blank invalidation. 1919 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1920 /*IsSourceBuffer*/ false, nullptr); 1921 1922 // Invalidate the source (const-invalidation without const-pointer-escaping 1923 // the address of the top-level region). 1924 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1925 /*IsSourceBuffer*/ true, nullptr); 1926 1927 // Set the C string length of the destination, if we know it. 1928 if (IsBounded && (appendK == ConcatFnKind::none)) { 1929 // strncpy is annoying in that it doesn't guarantee to null-terminate 1930 // the result string. If the original string didn't fit entirely inside 1931 // the bound (including the null-terminator), we don't know how long the 1932 // result is. 1933 if (amountCopied != strLength) 1934 finalStrLength = UnknownVal(); 1935 } 1936 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1937 } 1938 1939 assert(state); 1940 1941 if (returnPtr) { 1942 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1943 // overflow, we still need a result. Conjure a return value. 1944 if (ReturnEnd && Result.isUnknown()) { 1945 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1946 } 1947 } 1948 // Set the return value. 1949 state = state->BindExpr(CE, LCtx, Result); 1950 C.addTransition(state); 1951 } 1952 1953 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1954 //int strcmp(const char *s1, const char *s2); 1955 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 1956 } 1957 1958 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1959 //int strncmp(const char *s1, const char *s2, size_t n); 1960 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 1961 } 1962 1963 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1964 const CallExpr *CE) const { 1965 //int strcasecmp(const char *s1, const char *s2); 1966 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 1967 } 1968 1969 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1970 const CallExpr *CE) const { 1971 //int strncasecmp(const char *s1, const char *s2, size_t n); 1972 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 1973 } 1974 1975 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1976 bool IsBounded, bool IgnoreCase) const { 1977 CurrentFunctionDescription = "string comparison function"; 1978 ProgramStateRef state = C.getState(); 1979 const LocationContext *LCtx = C.getLocationContext(); 1980 1981 // Check that the first string is non-null 1982 AnyArgExpr Left = {CE->getArg(0), 0}; 1983 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 1984 state = checkNonNull(C, state, Left, LeftVal); 1985 if (!state) 1986 return; 1987 1988 // Check that the second string is non-null. 1989 AnyArgExpr Right = {CE->getArg(1), 1}; 1990 SVal RightVal = state->getSVal(Right.Expression, LCtx); 1991 state = checkNonNull(C, state, Right, RightVal); 1992 if (!state) 1993 return; 1994 1995 // Get the string length of the first string or give up. 1996 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 1997 if (LeftLength.isUndef()) 1998 return; 1999 2000 // Get the string length of the second string or give up. 2001 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 2002 if (RightLength.isUndef()) 2003 return; 2004 2005 // If we know the two buffers are the same, we know the result is 0. 2006 // First, get the two buffers' addresses. Another checker will have already 2007 // made sure they're not undefined. 2008 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 2009 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 2010 2011 // See if they are the same. 2012 SValBuilder &svalBuilder = C.getSValBuilder(); 2013 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 2014 ProgramStateRef StSameBuf, StNotSameBuf; 2015 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 2016 2017 // If the two arguments might be the same buffer, we know the result is 0, 2018 // and we only need to check one size. 2019 if (StSameBuf) { 2020 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 2021 svalBuilder.makeZeroVal(CE->getType())); 2022 C.addTransition(StSameBuf); 2023 2024 // If the two arguments are GUARANTEED to be the same, we're done! 2025 if (!StNotSameBuf) 2026 return; 2027 } 2028 2029 assert(StNotSameBuf); 2030 state = StNotSameBuf; 2031 2032 // At this point we can go about comparing the two buffers. 2033 // For now, we only do this if they're both known string literals. 2034 2035 // Attempt to extract string literals from both expressions. 2036 const StringLiteral *LeftStrLiteral = 2037 getCStringLiteral(C, state, Left.Expression, LeftVal); 2038 const StringLiteral *RightStrLiteral = 2039 getCStringLiteral(C, state, Right.Expression, RightVal); 2040 bool canComputeResult = false; 2041 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2042 C.blockCount()); 2043 2044 if (LeftStrLiteral && RightStrLiteral) { 2045 StringRef LeftStrRef = LeftStrLiteral->getString(); 2046 StringRef RightStrRef = RightStrLiteral->getString(); 2047 2048 if (IsBounded) { 2049 // Get the max number of characters to compare. 2050 const Expr *lenExpr = CE->getArg(2); 2051 SVal lenVal = state->getSVal(lenExpr, LCtx); 2052 2053 // If the length is known, we can get the right substrings. 2054 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2055 // Create substrings of each to compare the prefix. 2056 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2057 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2058 canComputeResult = true; 2059 } 2060 } else { 2061 // This is a normal, unbounded strcmp. 2062 canComputeResult = true; 2063 } 2064 2065 if (canComputeResult) { 2066 // Real strcmp stops at null characters. 2067 size_t s1Term = LeftStrRef.find('\0'); 2068 if (s1Term != StringRef::npos) 2069 LeftStrRef = LeftStrRef.substr(0, s1Term); 2070 2071 size_t s2Term = RightStrRef.find('\0'); 2072 if (s2Term != StringRef::npos) 2073 RightStrRef = RightStrRef.substr(0, s2Term); 2074 2075 // Use StringRef's comparison methods to compute the actual result. 2076 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2077 : LeftStrRef.compare(RightStrRef); 2078 2079 // The strcmp function returns an integer greater than, equal to, or less 2080 // than zero, [c11, p7.24.4.2]. 2081 if (compareRes == 0) { 2082 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2083 } 2084 else { 2085 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2086 // Constrain strcmp's result range based on the result of StringRef's 2087 // comparison methods. 2088 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2089 SVal compareWithZero = 2090 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2091 svalBuilder.getConditionType()); 2092 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2093 state = state->assume(compareWithZeroVal, true); 2094 } 2095 } 2096 } 2097 2098 state = state->BindExpr(CE, LCtx, resultVal); 2099 2100 // Record this as a possible path. 2101 C.addTransition(state); 2102 } 2103 2104 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2105 // char *strsep(char **stringp, const char *delim); 2106 // Verify whether the search string parameter matches the return type. 2107 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2108 2109 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2110 if (CharPtrTy.isNull() || 2111 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2112 return; 2113 2114 CurrentFunctionDescription = "strsep()"; 2115 ProgramStateRef State = C.getState(); 2116 const LocationContext *LCtx = C.getLocationContext(); 2117 2118 // Check that the search string pointer is non-null (though it may point to 2119 // a null string). 2120 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2121 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2122 if (!State) 2123 return; 2124 2125 // Check that the delimiter string is non-null. 2126 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2127 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2128 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2129 if (!State) 2130 return; 2131 2132 SValBuilder &SVB = C.getSValBuilder(); 2133 SVal Result; 2134 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2135 // Get the current value of the search string pointer, as a char*. 2136 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2137 2138 // Invalidate the search string, representing the change of one delimiter 2139 // character to NUL. 2140 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2141 /*IsSourceBuffer*/ false, nullptr); 2142 2143 // Overwrite the search string pointer. The new value is either an address 2144 // further along in the same string, or NULL if there are no more tokens. 2145 State = State->bindLoc(*SearchStrLoc, 2146 SVB.conjureSymbolVal(getTag(), 2147 CE, 2148 LCtx, 2149 CharPtrTy, 2150 C.blockCount()), 2151 LCtx); 2152 } else { 2153 assert(SearchStrVal.isUnknown()); 2154 // Conjure a symbolic value. It's the best we can do. 2155 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2156 } 2157 2158 // Set the return value, and finish. 2159 State = State->BindExpr(CE, LCtx, Result); 2160 C.addTransition(State); 2161 } 2162 2163 // These should probably be moved into a C++ standard library checker. 2164 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2165 evalStdCopyCommon(C, CE); 2166 } 2167 2168 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2169 const CallExpr *CE) const { 2170 evalStdCopyCommon(C, CE); 2171 } 2172 2173 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2174 const CallExpr *CE) const { 2175 if (!CE->getArg(2)->getType()->isPointerType()) 2176 return; 2177 2178 ProgramStateRef State = C.getState(); 2179 2180 const LocationContext *LCtx = C.getLocationContext(); 2181 2182 // template <class _InputIterator, class _OutputIterator> 2183 // _OutputIterator 2184 // copy(_InputIterator __first, _InputIterator __last, 2185 // _OutputIterator __result) 2186 2187 // Invalidate the destination buffer 2188 const Expr *Dst = CE->getArg(2); 2189 SVal DstVal = State->getSVal(Dst, LCtx); 2190 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2191 /*Size=*/nullptr); 2192 2193 SValBuilder &SVB = C.getSValBuilder(); 2194 2195 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2196 State = State->BindExpr(CE, LCtx, ResultVal); 2197 2198 C.addTransition(State); 2199 } 2200 2201 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2202 // void *memset(void *s, int c, size_t n); 2203 CurrentFunctionDescription = "memory set function"; 2204 2205 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2206 AnyArgExpr CharE = {CE->getArg(1), 1}; 2207 SizeArgExpr Size = {CE->getArg(2), 2}; 2208 2209 ProgramStateRef State = C.getState(); 2210 2211 // See if the size argument is zero. 2212 const LocationContext *LCtx = C.getLocationContext(); 2213 SVal SizeVal = C.getSVal(Size.Expression); 2214 QualType SizeTy = Size.Expression->getType(); 2215 2216 ProgramStateRef ZeroSize, NonZeroSize; 2217 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2218 2219 // Get the value of the memory area. 2220 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2221 2222 // If the size is zero, there won't be any actual memory access, so 2223 // just bind the return value to the buffer and return. 2224 if (ZeroSize && !NonZeroSize) { 2225 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2226 C.addTransition(ZeroSize); 2227 return; 2228 } 2229 2230 // Ensure the memory area is not null. 2231 // If it is NULL there will be a NULL pointer dereference. 2232 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2233 if (!State) 2234 return; 2235 2236 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2237 if (!State) 2238 return; 2239 2240 // According to the values of the arguments, bind the value of the second 2241 // argument to the destination buffer and set string length, or just 2242 // invalidate the destination buffer. 2243 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2244 Size.Expression, C, State)) 2245 return; 2246 2247 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2248 C.addTransition(State); 2249 } 2250 2251 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2252 CurrentFunctionDescription = "memory clearance function"; 2253 2254 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2255 SizeArgExpr Size = {CE->getArg(1), 1}; 2256 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2257 2258 ProgramStateRef State = C.getState(); 2259 2260 // See if the size argument is zero. 2261 SVal SizeVal = C.getSVal(Size.Expression); 2262 QualType SizeTy = Size.Expression->getType(); 2263 2264 ProgramStateRef StateZeroSize, StateNonZeroSize; 2265 std::tie(StateZeroSize, StateNonZeroSize) = 2266 assumeZero(C, State, SizeVal, SizeTy); 2267 2268 // If the size is zero, there won't be any actual memory access, 2269 // In this case we just return. 2270 if (StateZeroSize && !StateNonZeroSize) { 2271 C.addTransition(StateZeroSize); 2272 return; 2273 } 2274 2275 // Get the value of the memory area. 2276 SVal MemVal = C.getSVal(Buffer.Expression); 2277 2278 // Ensure the memory area is not null. 2279 // If it is NULL there will be a NULL pointer dereference. 2280 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2281 if (!State) 2282 return; 2283 2284 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2285 if (!State) 2286 return; 2287 2288 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2289 return; 2290 2291 C.addTransition(State); 2292 } 2293 2294 //===----------------------------------------------------------------------===// 2295 // The driver method, and other Checker callbacks. 2296 //===----------------------------------------------------------------------===// 2297 2298 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2299 CheckerContext &C) const { 2300 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2301 if (!CE) 2302 return nullptr; 2303 2304 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2305 if (!FD) 2306 return nullptr; 2307 2308 if (StdCopy.matches(Call)) 2309 return &CStringChecker::evalStdCopy; 2310 if (StdCopyBackward.matches(Call)) 2311 return &CStringChecker::evalStdCopyBackward; 2312 2313 // Pro-actively check that argument types are safe to do arithmetic upon. 2314 // We do not want to crash if someone accidentally passes a structure 2315 // into, say, a C++ overload of any of these functions. We could not check 2316 // that for std::copy because they may have arguments of other types. 2317 for (auto I : CE->arguments()) { 2318 QualType T = I->getType(); 2319 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2320 return nullptr; 2321 } 2322 2323 const FnCheck *Callback = Callbacks.lookup(Call); 2324 if (Callback) 2325 return *Callback; 2326 2327 return nullptr; 2328 } 2329 2330 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2331 FnCheck Callback = identifyCall(Call, C); 2332 2333 // If the callee isn't a string function, let another checker handle it. 2334 if (!Callback) 2335 return false; 2336 2337 // Check and evaluate the call. 2338 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2339 (this->*Callback)(C, CE); 2340 2341 // If the evaluate call resulted in no change, chain to the next eval call 2342 // handler. 2343 // Note, the custom CString evaluation calls assume that basic safety 2344 // properties are held. However, if the user chooses to turn off some of these 2345 // checks, we ignore the issues and leave the call evaluation to a generic 2346 // handler. 2347 return C.isDifferent(); 2348 } 2349 2350 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2351 // Record string length for char a[] = "abc"; 2352 ProgramStateRef state = C.getState(); 2353 2354 for (const auto *I : DS->decls()) { 2355 const VarDecl *D = dyn_cast<VarDecl>(I); 2356 if (!D) 2357 continue; 2358 2359 // FIXME: Handle array fields of structs. 2360 if (!D->getType()->isArrayType()) 2361 continue; 2362 2363 const Expr *Init = D->getInit(); 2364 if (!Init) 2365 continue; 2366 if (!isa<StringLiteral>(Init)) 2367 continue; 2368 2369 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2370 const MemRegion *MR = VarLoc.getAsRegion(); 2371 if (!MR) 2372 continue; 2373 2374 SVal StrVal = C.getSVal(Init); 2375 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2376 DefinedOrUnknownSVal strLength = 2377 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2378 2379 state = state->set<CStringLength>(MR, strLength); 2380 } 2381 2382 C.addTransition(state); 2383 } 2384 2385 ProgramStateRef 2386 CStringChecker::checkRegionChanges(ProgramStateRef state, 2387 const InvalidatedSymbols *, 2388 ArrayRef<const MemRegion *> ExplicitRegions, 2389 ArrayRef<const MemRegion *> Regions, 2390 const LocationContext *LCtx, 2391 const CallEvent *Call) const { 2392 CStringLengthTy Entries = state->get<CStringLength>(); 2393 if (Entries.isEmpty()) 2394 return state; 2395 2396 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2397 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2398 2399 // First build sets for the changed regions and their super-regions. 2400 for (ArrayRef<const MemRegion *>::iterator 2401 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2402 const MemRegion *MR = *I; 2403 Invalidated.insert(MR); 2404 2405 SuperRegions.insert(MR); 2406 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2407 MR = SR->getSuperRegion(); 2408 SuperRegions.insert(MR); 2409 } 2410 } 2411 2412 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2413 2414 // Then loop over the entries in the current state. 2415 for (CStringLengthTy::iterator I = Entries.begin(), 2416 E = Entries.end(); I != E; ++I) { 2417 const MemRegion *MR = I.getKey(); 2418 2419 // Is this entry for a super-region of a changed region? 2420 if (SuperRegions.count(MR)) { 2421 Entries = F.remove(Entries, MR); 2422 continue; 2423 } 2424 2425 // Is this entry for a sub-region of a changed region? 2426 const MemRegion *Super = MR; 2427 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2428 Super = SR->getSuperRegion(); 2429 if (Invalidated.count(Super)) { 2430 Entries = F.remove(Entries, MR); 2431 break; 2432 } 2433 } 2434 } 2435 2436 return state->set<CStringLength>(Entries); 2437 } 2438 2439 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2440 SymbolReaper &SR) const { 2441 // Mark all symbols in our string length map as valid. 2442 CStringLengthTy Entries = state->get<CStringLength>(); 2443 2444 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2445 I != E; ++I) { 2446 SVal Len = I.getData(); 2447 2448 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2449 se = Len.symbol_end(); si != se; ++si) 2450 SR.markInUse(*si); 2451 } 2452 } 2453 2454 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2455 CheckerContext &C) const { 2456 ProgramStateRef state = C.getState(); 2457 CStringLengthTy Entries = state->get<CStringLength>(); 2458 if (Entries.isEmpty()) 2459 return; 2460 2461 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2462 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2463 I != E; ++I) { 2464 SVal Len = I.getData(); 2465 if (SymbolRef Sym = Len.getAsSymbol()) { 2466 if (SR.isDead(Sym)) 2467 Entries = F.remove(Entries, I.getKey()); 2468 } 2469 } 2470 2471 state = state->set<CStringLength>(Entries); 2472 C.addTransition(state); 2473 } 2474 2475 void ento::registerCStringModeling(CheckerManager &Mgr) { 2476 Mgr.registerChecker<CStringChecker>(); 2477 } 2478 2479 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2480 return true; 2481 } 2482 2483 #define REGISTER_CHECKER(name) \ 2484 void ento::register##name(CheckerManager &mgr) { \ 2485 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2486 checker->Filter.Check##name = true; \ 2487 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2488 } \ 2489 \ 2490 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2491 2492 REGISTER_CHECKER(CStringNullArg) 2493 REGISTER_CHECKER(CStringOutOfBounds) 2494 REGISTER_CHECKER(CStringBufferOverlap) 2495 REGISTER_CHECKER(CStringNotNullTerm) 2496 REGISTER_CHECKER(CStringUninitializedRead) 2497