1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InterCheckerAPI.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <functional> 30 31 using namespace clang; 32 using namespace ento; 33 using namespace std::placeholders; 34 35 namespace { 36 struct AnyArgExpr { 37 // FIXME: Remove constructor in C++17 to turn it into an aggregate. 38 AnyArgExpr(const Expr *Expression, unsigned ArgumentIndex) 39 : Expression{Expression}, ArgumentIndex{ArgumentIndex} {} 40 const Expr *Expression; 41 unsigned ArgumentIndex; 42 }; 43 44 struct SourceArgExpr : AnyArgExpr { 45 using AnyArgExpr::AnyArgExpr; // FIXME: Remove using in C++17. 46 }; 47 48 struct DestinationArgExpr : AnyArgExpr { 49 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 50 }; 51 52 struct SizeArgExpr : AnyArgExpr { 53 using AnyArgExpr::AnyArgExpr; // FIXME: Same. 54 }; 55 56 using ErrorMessage = SmallString<128>; 57 enum class AccessKind { write, read }; 58 59 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, 60 AccessKind Access) { 61 ErrorMessage Message; 62 llvm::raw_svector_ostream Os(Message); 63 64 // Function classification like: Memory copy function 65 Os << toUppercase(FunctionDescription.front()) 66 << &FunctionDescription.data()[1]; 67 68 if (Access == AccessKind::write) { 69 Os << " overflows the destination buffer"; 70 } else { // read access 71 Os << " accesses out-of-bound array element"; 72 } 73 74 return Message; 75 } 76 77 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; 78 79 enum class CharKind { Regular = 0, Wide }; 80 constexpr CharKind CK_Regular = CharKind::Regular; 81 constexpr CharKind CK_Wide = CharKind::Wide; 82 83 static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) { 84 return Ctx.getPointerType(CK == CharKind::Regular ? Ctx.CharTy 85 : Ctx.WideCharTy); 86 } 87 88 class CStringChecker : public Checker< eval::Call, 89 check::PreStmt<DeclStmt>, 90 check::LiveSymbols, 91 check::DeadSymbols, 92 check::RegionChanges 93 > { 94 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 95 BT_NotCString, BT_AdditionOverflow, BT_UninitRead; 96 97 mutable const char *CurrentFunctionDescription; 98 99 public: 100 /// The filter is used to filter out the diagnostics which are not enabled by 101 /// the user. 102 struct CStringChecksFilter { 103 bool CheckCStringNullArg = false; 104 bool CheckCStringOutOfBounds = false; 105 bool CheckCStringBufferOverlap = false; 106 bool CheckCStringNotNullTerm = false; 107 bool CheckCStringUninitializedRead = false; 108 109 CheckerNameRef CheckNameCStringNullArg; 110 CheckerNameRef CheckNameCStringOutOfBounds; 111 CheckerNameRef CheckNameCStringBufferOverlap; 112 CheckerNameRef CheckNameCStringNotNullTerm; 113 CheckerNameRef CheckNameCStringUninitializedRead; 114 }; 115 116 CStringChecksFilter Filter; 117 118 static void *getTag() { static int tag; return &tag; } 119 120 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 121 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 122 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 123 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 124 125 ProgramStateRef 126 checkRegionChanges(ProgramStateRef state, 127 const InvalidatedSymbols *, 128 ArrayRef<const MemRegion *> ExplicitRegions, 129 ArrayRef<const MemRegion *> Regions, 130 const LocationContext *LCtx, 131 const CallEvent *Call) const; 132 133 using FnCheck = std::function<void(const CStringChecker *, CheckerContext &, 134 const CallExpr *)>; 135 136 CallDescriptionMap<FnCheck> Callbacks = { 137 {{CDF_MaybeBuiltin, {"memcpy"}, 3}, 138 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Regular)}, 139 {{CDF_MaybeBuiltin, {"wmemcpy"}, 3}, 140 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Wide)}, 141 {{CDF_MaybeBuiltin, {"mempcpy"}, 3}, 142 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Regular)}, 143 {{CDF_None, {"wmempcpy"}, 3}, 144 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Wide)}, 145 {{CDF_MaybeBuiltin, {"memcmp"}, 3}, 146 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)}, 147 {{CDF_MaybeBuiltin, {"wmemcmp"}, 3}, 148 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Wide)}, 149 {{CDF_MaybeBuiltin, {"memmove"}, 3}, 150 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Regular)}, 151 {{CDF_MaybeBuiltin, {"wmemmove"}, 3}, 152 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Wide)}, 153 {{CDF_MaybeBuiltin, {"memset"}, 3}, &CStringChecker::evalMemset}, 154 {{CDF_MaybeBuiltin, {"explicit_memset"}, 3}, &CStringChecker::evalMemset}, 155 {{CDF_MaybeBuiltin, {"strcpy"}, 2}, &CStringChecker::evalStrcpy}, 156 {{CDF_MaybeBuiltin, {"strncpy"}, 3}, &CStringChecker::evalStrncpy}, 157 {{CDF_MaybeBuiltin, {"stpcpy"}, 2}, &CStringChecker::evalStpcpy}, 158 {{CDF_MaybeBuiltin, {"strlcpy"}, 3}, &CStringChecker::evalStrlcpy}, 159 {{CDF_MaybeBuiltin, {"strcat"}, 2}, &CStringChecker::evalStrcat}, 160 {{CDF_MaybeBuiltin, {"strncat"}, 3}, &CStringChecker::evalStrncat}, 161 {{CDF_MaybeBuiltin, {"strlcat"}, 3}, &CStringChecker::evalStrlcat}, 162 {{CDF_MaybeBuiltin, {"strlen"}, 1}, &CStringChecker::evalstrLength}, 163 {{CDF_MaybeBuiltin, {"wcslen"}, 1}, &CStringChecker::evalstrLength}, 164 {{CDF_MaybeBuiltin, {"strnlen"}, 2}, &CStringChecker::evalstrnLength}, 165 {{CDF_MaybeBuiltin, {"wcsnlen"}, 2}, &CStringChecker::evalstrnLength}, 166 {{CDF_MaybeBuiltin, {"strcmp"}, 2}, &CStringChecker::evalStrcmp}, 167 {{CDF_MaybeBuiltin, {"strncmp"}, 3}, &CStringChecker::evalStrncmp}, 168 {{CDF_MaybeBuiltin, {"strcasecmp"}, 2}, &CStringChecker::evalStrcasecmp}, 169 {{CDF_MaybeBuiltin, {"strncasecmp"}, 3}, 170 &CStringChecker::evalStrncasecmp}, 171 {{CDF_MaybeBuiltin, {"strsep"}, 2}, &CStringChecker::evalStrsep}, 172 {{CDF_MaybeBuiltin, {"bcopy"}, 3}, &CStringChecker::evalBcopy}, 173 {{CDF_MaybeBuiltin, {"bcmp"}, 3}, 174 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)}, 175 {{CDF_MaybeBuiltin, {"bzero"}, 2}, &CStringChecker::evalBzero}, 176 {{CDF_MaybeBuiltin, {"explicit_bzero"}, 2}, &CStringChecker::evalBzero}, 177 }; 178 179 // These require a bit of special handling. 180 CallDescription StdCopy{{"std", "copy"}, 3}, 181 StdCopyBackward{{"std", "copy_backward"}, 3}; 182 183 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 184 void evalMemcpy(CheckerContext &C, const CallExpr *CE, CharKind CK) const; 185 void evalMempcpy(CheckerContext &C, const CallExpr *CE, CharKind CK) const; 186 void evalMemmove(CheckerContext &C, const CallExpr *CE, CharKind CK) const; 187 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 188 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 189 ProgramStateRef state, SizeArgExpr Size, 190 DestinationArgExpr Dest, SourceArgExpr Source, 191 bool Restricted, bool IsMempcpy, CharKind CK) const; 192 193 void evalMemcmp(CheckerContext &C, const CallExpr *CE, CharKind CK) const; 194 195 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 196 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 197 void evalstrLengthCommon(CheckerContext &C, 198 const CallExpr *CE, 199 bool IsStrnlen = false) const; 200 201 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 202 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 203 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 204 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 205 void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd, 206 bool IsBounded, ConcatFnKind appendK, 207 bool returnPtr = true) const; 208 209 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 210 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 211 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 212 213 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 214 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 215 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 216 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 217 void evalStrcmpCommon(CheckerContext &C, 218 const CallExpr *CE, 219 bool IsBounded = false, 220 bool IgnoreCase = false) const; 221 222 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 223 224 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 225 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 226 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 227 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 228 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 229 230 // Utility methods 231 std::pair<ProgramStateRef , ProgramStateRef > 232 static assumeZero(CheckerContext &C, 233 ProgramStateRef state, SVal V, QualType Ty); 234 235 static ProgramStateRef setCStringLength(ProgramStateRef state, 236 const MemRegion *MR, 237 SVal strLength); 238 static SVal getCStringLengthForRegion(CheckerContext &C, 239 ProgramStateRef &state, 240 const Expr *Ex, 241 const MemRegion *MR, 242 bool hypothetical); 243 SVal getCStringLength(CheckerContext &C, 244 ProgramStateRef &state, 245 const Expr *Ex, 246 SVal Buf, 247 bool hypothetical = false) const; 248 249 const StringLiteral *getCStringLiteral(CheckerContext &C, 250 ProgramStateRef &state, 251 const Expr *expr, 252 SVal val) const; 253 254 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 255 ProgramStateRef state, 256 const Expr *Ex, SVal V, 257 bool IsSourceBuffer, 258 const Expr *Size); 259 260 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 261 const MemRegion *MR); 262 263 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 264 const Expr *Size, CheckerContext &C, 265 ProgramStateRef &State); 266 267 // Re-usable checks 268 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, 269 AnyArgExpr Arg, SVal l) const; 270 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, 271 AnyArgExpr Buffer, SVal Element, 272 AccessKind Access, 273 CharKind CK = CharKind::Regular) const; 274 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 275 AnyArgExpr Buffer, SizeArgExpr Size, 276 AccessKind Access, 277 CharKind CK = CharKind::Regular) const; 278 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, 279 SizeArgExpr Size, AnyArgExpr First, 280 AnyArgExpr Second, 281 CharKind CK = CharKind::Regular) const; 282 void emitOverlapBug(CheckerContext &C, 283 ProgramStateRef state, 284 const Stmt *First, 285 const Stmt *Second) const; 286 287 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 288 StringRef WarningMsg) const; 289 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 290 const Stmt *S, StringRef WarningMsg) const; 291 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 292 const Stmt *S, StringRef WarningMsg) const; 293 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 294 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State, 295 const Expr *E) const; 296 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 297 ProgramStateRef state, 298 NonLoc left, 299 NonLoc right) const; 300 301 // Return true if the destination buffer of the copy function may be in bound. 302 // Expects SVal of Size to be positive and unsigned. 303 // Expects SVal of FirstBuf to be a FieldRegion. 304 static bool IsFirstBufInBound(CheckerContext &C, 305 ProgramStateRef state, 306 const Expr *FirstBuf, 307 const Expr *Size); 308 }; 309 310 } //end anonymous namespace 311 312 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 313 314 //===----------------------------------------------------------------------===// 315 // Individual checks and utility methods. 316 //===----------------------------------------------------------------------===// 317 318 std::pair<ProgramStateRef , ProgramStateRef > 319 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 320 QualType Ty) { 321 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 322 if (!val) 323 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 324 325 SValBuilder &svalBuilder = C.getSValBuilder(); 326 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 327 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 328 } 329 330 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 331 ProgramStateRef State, 332 AnyArgExpr Arg, SVal l) const { 333 // If a previous check has failed, propagate the failure. 334 if (!State) 335 return nullptr; 336 337 ProgramStateRef stateNull, stateNonNull; 338 std::tie(stateNull, stateNonNull) = 339 assumeZero(C, State, l, Arg.Expression->getType()); 340 341 if (stateNull && !stateNonNull) { 342 if (Filter.CheckCStringNullArg) { 343 SmallString<80> buf; 344 llvm::raw_svector_ostream OS(buf); 345 assert(CurrentFunctionDescription); 346 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) 347 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to " 348 << CurrentFunctionDescription; 349 350 emitNullArgBug(C, stateNull, Arg.Expression, OS.str()); 351 } 352 return nullptr; 353 } 354 355 // From here on, assume that the value is non-null. 356 assert(stateNonNull); 357 return stateNonNull; 358 } 359 360 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 361 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 362 ProgramStateRef state, 363 AnyArgExpr Buffer, SVal Element, 364 AccessKind Access, 365 CharKind CK) const { 366 367 // If a previous check has failed, propagate the failure. 368 if (!state) 369 return nullptr; 370 371 // Check for out of bound array element access. 372 const MemRegion *R = Element.getAsRegion(); 373 if (!R) 374 return state; 375 376 const auto *ER = dyn_cast<ElementRegion>(R); 377 if (!ER) 378 return state; 379 380 SValBuilder &svalBuilder = C.getSValBuilder(); 381 ASTContext &Ctx = svalBuilder.getContext(); 382 383 // Get the index of the accessed element. 384 NonLoc Idx = ER->getIndex(); 385 386 if (CK == CharKind::Regular) { 387 if (ER->getValueType() != Ctx.CharTy) 388 return state; 389 } else { 390 if (ER->getValueType() != Ctx.WideCharTy) 391 return state; 392 393 QualType SizeTy = Ctx.getSizeType(); 394 NonLoc WideSize = 395 svalBuilder 396 .makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(), 397 SizeTy) 398 .castAs<NonLoc>(); 399 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Mul, Idx, WideSize, SizeTy); 400 if (Offset.isUnknown()) 401 return state; 402 Idx = Offset.castAs<NonLoc>(); 403 } 404 405 // Get the size of the array. 406 const auto *superReg = cast<SubRegion>(ER->getSuperRegion()); 407 DefinedOrUnknownSVal Size = 408 getDynamicExtent(state, superReg, C.getSValBuilder()); 409 410 ProgramStateRef StInBound, StOutBound; 411 std::tie(StInBound, StOutBound) = state->assumeInBoundDual(Idx, Size); 412 if (StOutBound && !StInBound) { 413 // These checks are either enabled by the CString out-of-bounds checker 414 // explicitly or implicitly by the Malloc checker. 415 // In the latter case we only do modeling but do not emit warning. 416 if (!Filter.CheckCStringOutOfBounds) 417 return nullptr; 418 419 // Emit a bug report. 420 ErrorMessage Message = 421 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access); 422 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message); 423 return nullptr; 424 } 425 426 // Ensure that we wouldn't read uninitialized value. 427 if (Access == AccessKind::read) { 428 if (Filter.CheckCStringUninitializedRead && 429 StInBound->getSVal(ER).isUndef()) { 430 emitUninitializedReadBug(C, StInBound, Buffer.Expression); 431 return nullptr; 432 } 433 } 434 435 // Array bound check succeeded. From this point forward the array bound 436 // should always succeed. 437 return StInBound; 438 } 439 440 ProgramStateRef 441 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State, 442 AnyArgExpr Buffer, SizeArgExpr Size, 443 AccessKind Access, CharKind CK) const { 444 // If a previous check has failed, propagate the failure. 445 if (!State) 446 return nullptr; 447 448 SValBuilder &svalBuilder = C.getSValBuilder(); 449 ASTContext &Ctx = svalBuilder.getContext(); 450 451 QualType SizeTy = Size.Expression->getType(); 452 QualType PtrTy = getCharPtrType(Ctx, CK); 453 454 // Check that the first buffer is non-null. 455 SVal BufVal = C.getSVal(Buffer.Expression); 456 State = checkNonNull(C, State, Buffer, BufVal); 457 if (!State) 458 return nullptr; 459 460 // If out-of-bounds checking is turned off, skip the rest. 461 if (!Filter.CheckCStringOutOfBounds) 462 return State; 463 464 // Get the access length and make sure it is known. 465 // FIXME: This assumes the caller has already checked that the access length 466 // is positive. And that it's unsigned. 467 SVal LengthVal = C.getSVal(Size.Expression); 468 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 469 if (!Length) 470 return State; 471 472 // Compute the offset of the last element to be accessed: size-1. 473 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>(); 474 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy); 475 if (Offset.isUnknown()) 476 return nullptr; 477 NonLoc LastOffset = Offset.castAs<NonLoc>(); 478 479 // Check that the first buffer is sufficiently long. 480 SVal BufStart = 481 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType()); 482 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 483 484 SVal BufEnd = 485 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy); 486 State = CheckLocation(C, State, Buffer, BufEnd, Access, CK); 487 488 // If the buffer isn't large enough, abort. 489 if (!State) 490 return nullptr; 491 } 492 493 // Large enough or not, return this state! 494 return State; 495 } 496 497 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 498 ProgramStateRef state, 499 SizeArgExpr Size, AnyArgExpr First, 500 AnyArgExpr Second, 501 CharKind CK) const { 502 if (!Filter.CheckCStringBufferOverlap) 503 return state; 504 505 // Do a simple check for overlap: if the two arguments are from the same 506 // buffer, see if the end of the first is greater than the start of the second 507 // or vice versa. 508 509 // If a previous check has failed, propagate the failure. 510 if (!state) 511 return nullptr; 512 513 ProgramStateRef stateTrue, stateFalse; 514 515 // Assume different address spaces cannot overlap. 516 if (First.Expression->getType()->getPointeeType().getAddressSpace() != 517 Second.Expression->getType()->getPointeeType().getAddressSpace()) 518 return state; 519 520 // Get the buffer values and make sure they're known locations. 521 const LocationContext *LCtx = C.getLocationContext(); 522 SVal firstVal = state->getSVal(First.Expression, LCtx); 523 SVal secondVal = state->getSVal(Second.Expression, LCtx); 524 525 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 526 if (!firstLoc) 527 return state; 528 529 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 530 if (!secondLoc) 531 return state; 532 533 // Are the two values the same? 534 SValBuilder &svalBuilder = C.getSValBuilder(); 535 std::tie(stateTrue, stateFalse) = 536 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 537 538 if (stateTrue && !stateFalse) { 539 // If the values are known to be equal, that's automatically an overlap. 540 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 541 return nullptr; 542 } 543 544 // assume the two expressions are not equal. 545 assert(stateFalse); 546 state = stateFalse; 547 548 // Which value comes first? 549 QualType cmpTy = svalBuilder.getConditionType(); 550 SVal reverse = 551 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); 552 Optional<DefinedOrUnknownSVal> reverseTest = 553 reverse.getAs<DefinedOrUnknownSVal>(); 554 if (!reverseTest) 555 return state; 556 557 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 558 if (stateTrue) { 559 if (stateFalse) { 560 // If we don't know which one comes first, we can't perform this test. 561 return state; 562 } else { 563 // Switch the values so that firstVal is before secondVal. 564 std::swap(firstLoc, secondLoc); 565 566 // Switch the Exprs as well, so that they still correspond. 567 std::swap(First, Second); 568 } 569 } 570 571 // Get the length, and make sure it too is known. 572 SVal LengthVal = state->getSVal(Size.Expression, LCtx); 573 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 574 if (!Length) 575 return state; 576 577 // Convert the first buffer's start address to char*. 578 // Bail out if the cast fails. 579 ASTContext &Ctx = svalBuilder.getContext(); 580 QualType CharPtrTy = getCharPtrType(Ctx, CK); 581 SVal FirstStart = 582 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType()); 583 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 584 if (!FirstStartLoc) 585 return state; 586 587 // Compute the end of the first buffer. Bail out if THAT fails. 588 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, 589 *Length, CharPtrTy); 590 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 591 if (!FirstEndLoc) 592 return state; 593 594 // Is the end of the first buffer past the start of the second buffer? 595 SVal Overlap = 596 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); 597 Optional<DefinedOrUnknownSVal> OverlapTest = 598 Overlap.getAs<DefinedOrUnknownSVal>(); 599 if (!OverlapTest) 600 return state; 601 602 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 603 604 if (stateTrue && !stateFalse) { 605 // Overlap! 606 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression); 607 return nullptr; 608 } 609 610 // assume the two expressions don't overlap. 611 assert(stateFalse); 612 return stateFalse; 613 } 614 615 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 616 const Stmt *First, const Stmt *Second) const { 617 ExplodedNode *N = C.generateErrorNode(state); 618 if (!N) 619 return; 620 621 if (!BT_Overlap) 622 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 623 categories::UnixAPI, "Improper arguments")); 624 625 // Generate a report for this bug. 626 auto report = std::make_unique<PathSensitiveBugReport>( 627 *BT_Overlap, "Arguments must not be overlapping buffers", N); 628 report->addRange(First->getSourceRange()); 629 report->addRange(Second->getSourceRange()); 630 631 C.emitReport(std::move(report)); 632 } 633 634 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 635 const Stmt *S, StringRef WarningMsg) const { 636 if (ExplodedNode *N = C.generateErrorNode(State)) { 637 if (!BT_Null) 638 BT_Null.reset(new BuiltinBug( 639 Filter.CheckNameCStringNullArg, categories::UnixAPI, 640 "Null pointer argument in call to byte string function")); 641 642 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 643 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 644 Report->addRange(S->getSourceRange()); 645 if (const auto *Ex = dyn_cast<Expr>(S)) 646 bugreporter::trackExpressionValue(N, Ex, *Report); 647 C.emitReport(std::move(Report)); 648 } 649 } 650 651 void CStringChecker::emitUninitializedReadBug(CheckerContext &C, 652 ProgramStateRef State, 653 const Expr *E) const { 654 if (ExplodedNode *N = C.generateErrorNode(State)) { 655 const char *Msg = 656 "Bytes string function accesses uninitialized/garbage values"; 657 if (!BT_UninitRead) 658 BT_UninitRead.reset( 659 new BuiltinBug(Filter.CheckNameCStringUninitializedRead, 660 "Accessing unitialized/garbage values", Msg)); 661 662 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_UninitRead.get()); 663 664 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N); 665 Report->addRange(E->getSourceRange()); 666 bugreporter::trackExpressionValue(N, E, *Report); 667 C.emitReport(std::move(Report)); 668 } 669 } 670 671 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 672 ProgramStateRef State, const Stmt *S, 673 StringRef WarningMsg) const { 674 if (ExplodedNode *N = C.generateErrorNode(State)) { 675 if (!BT_Bounds) 676 BT_Bounds.reset(new BuiltinBug( 677 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 678 : Filter.CheckNameCStringNullArg, 679 "Out-of-bound array access", 680 "Byte string function accesses out-of-bound array element")); 681 682 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 683 684 // FIXME: It would be nice to eventually make this diagnostic more clear, 685 // e.g., by referencing the original declaration or by saying *why* this 686 // reference is outside the range. 687 auto Report = std::make_unique<PathSensitiveBugReport>(*BT, WarningMsg, N); 688 Report->addRange(S->getSourceRange()); 689 C.emitReport(std::move(Report)); 690 } 691 } 692 693 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 694 const Stmt *S, 695 StringRef WarningMsg) const { 696 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 697 if (!BT_NotCString) 698 BT_NotCString.reset(new BuiltinBug( 699 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 700 "Argument is not a null-terminated string.")); 701 702 auto Report = 703 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N); 704 705 Report->addRange(S->getSourceRange()); 706 C.emitReport(std::move(Report)); 707 } 708 } 709 710 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 711 ProgramStateRef State) const { 712 if (ExplodedNode *N = C.generateErrorNode(State)) { 713 if (!BT_AdditionOverflow) 714 BT_AdditionOverflow.reset( 715 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 716 "Sum of expressions causes overflow.")); 717 718 // This isn't a great error message, but this should never occur in real 719 // code anyway -- you'd have to create a buffer longer than a size_t can 720 // represent, which is sort of a contradiction. 721 const char *WarningMsg = 722 "This expression will create a string whose length is too big to " 723 "be represented as a size_t"; 724 725 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow, 726 WarningMsg, N); 727 C.emitReport(std::move(Report)); 728 } 729 } 730 731 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 732 ProgramStateRef state, 733 NonLoc left, 734 NonLoc right) const { 735 // If out-of-bounds checking is turned off, skip the rest. 736 if (!Filter.CheckCStringOutOfBounds) 737 return state; 738 739 // If a previous check has failed, propagate the failure. 740 if (!state) 741 return nullptr; 742 743 SValBuilder &svalBuilder = C.getSValBuilder(); 744 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 745 746 QualType sizeTy = svalBuilder.getContext().getSizeType(); 747 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 748 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 749 750 SVal maxMinusRight; 751 if (isa<nonloc::ConcreteInt>(right)) { 752 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 753 sizeTy); 754 } else { 755 // Try switching the operands. (The order of these two assignments is 756 // important!) 757 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 758 sizeTy); 759 left = right; 760 } 761 762 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 763 QualType cmpTy = svalBuilder.getConditionType(); 764 // If left > max - right, we have an overflow. 765 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 766 *maxMinusRightNL, cmpTy); 767 768 ProgramStateRef stateOverflow, stateOkay; 769 std::tie(stateOverflow, stateOkay) = 770 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 771 772 if (stateOverflow && !stateOkay) { 773 // We have an overflow. Emit a bug report. 774 emitAdditionOverflowBug(C, stateOverflow); 775 return nullptr; 776 } 777 778 // From now on, assume an overflow didn't occur. 779 assert(stateOkay); 780 state = stateOkay; 781 } 782 783 return state; 784 } 785 786 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 787 const MemRegion *MR, 788 SVal strLength) { 789 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 790 791 MR = MR->StripCasts(); 792 793 switch (MR->getKind()) { 794 case MemRegion::StringRegionKind: 795 // FIXME: This can happen if we strcpy() into a string region. This is 796 // undefined [C99 6.4.5p6], but we should still warn about it. 797 return state; 798 799 case MemRegion::SymbolicRegionKind: 800 case MemRegion::AllocaRegionKind: 801 case MemRegion::NonParamVarRegionKind: 802 case MemRegion::ParamVarRegionKind: 803 case MemRegion::FieldRegionKind: 804 case MemRegion::ObjCIvarRegionKind: 805 // These are the types we can currently track string lengths for. 806 break; 807 808 case MemRegion::ElementRegionKind: 809 // FIXME: Handle element regions by upper-bounding the parent region's 810 // string length. 811 return state; 812 813 default: 814 // Other regions (mostly non-data) can't have a reliable C string length. 815 // For now, just ignore the change. 816 // FIXME: These are rare but not impossible. We should output some kind of 817 // warning for things like strcpy((char[]){'a', 0}, "b"); 818 return state; 819 } 820 821 if (strLength.isUnknown()) 822 return state->remove<CStringLength>(MR); 823 824 return state->set<CStringLength>(MR, strLength); 825 } 826 827 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 828 ProgramStateRef &state, 829 const Expr *Ex, 830 const MemRegion *MR, 831 bool hypothetical) { 832 if (!hypothetical) { 833 // If there's a recorded length, go ahead and return it. 834 const SVal *Recorded = state->get<CStringLength>(MR); 835 if (Recorded) 836 return *Recorded; 837 } 838 839 // Otherwise, get a new symbol and update the state. 840 SValBuilder &svalBuilder = C.getSValBuilder(); 841 QualType sizeTy = svalBuilder.getContext().getSizeType(); 842 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 843 MR, Ex, sizeTy, 844 C.getLocationContext(), 845 C.blockCount()); 846 847 if (!hypothetical) { 848 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 849 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 850 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 851 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 852 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 853 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 854 fourInt); 855 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 856 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 857 maxLength, sizeTy); 858 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 859 } 860 state = state->set<CStringLength>(MR, strLength); 861 } 862 863 return strLength; 864 } 865 866 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 867 const Expr *Ex, SVal Buf, 868 bool hypothetical) const { 869 const MemRegion *MR = Buf.getAsRegion(); 870 if (!MR) { 871 // If we can't get a region, see if it's something we /know/ isn't a 872 // C string. In the context of locations, the only time we can issue such 873 // a warning is for labels. 874 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 875 if (Filter.CheckCStringNotNullTerm) { 876 SmallString<120> buf; 877 llvm::raw_svector_ostream os(buf); 878 assert(CurrentFunctionDescription); 879 os << "Argument to " << CurrentFunctionDescription 880 << " is the address of the label '" << Label->getLabel()->getName() 881 << "', which is not a null-terminated string"; 882 883 emitNotCStringBug(C, state, Ex, os.str()); 884 } 885 return UndefinedVal(); 886 } 887 888 // If it's not a region and not a label, give up. 889 return UnknownVal(); 890 } 891 892 // If we have a region, strip casts from it and see if we can figure out 893 // its length. For anything we can't figure out, just return UnknownVal. 894 MR = MR->StripCasts(); 895 896 switch (MR->getKind()) { 897 case MemRegion::StringRegionKind: { 898 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 899 // so we can assume that the byte length is the correct C string length. 900 SValBuilder &svalBuilder = C.getSValBuilder(); 901 QualType sizeTy = svalBuilder.getContext().getSizeType(); 902 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 903 return svalBuilder.makeIntVal(strLit->getLength(), sizeTy); 904 } 905 case MemRegion::SymbolicRegionKind: 906 case MemRegion::AllocaRegionKind: 907 case MemRegion::NonParamVarRegionKind: 908 case MemRegion::ParamVarRegionKind: 909 case MemRegion::FieldRegionKind: 910 case MemRegion::ObjCIvarRegionKind: 911 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 912 case MemRegion::CompoundLiteralRegionKind: 913 // FIXME: Can we track this? Is it necessary? 914 return UnknownVal(); 915 case MemRegion::ElementRegionKind: 916 // FIXME: How can we handle this? It's not good enough to subtract the 917 // offset from the base string length; consider "123\x00567" and &a[5]. 918 return UnknownVal(); 919 default: 920 // Other regions (mostly non-data) can't have a reliable C string length. 921 // In this case, an error is emitted and UndefinedVal is returned. 922 // The caller should always be prepared to handle this case. 923 if (Filter.CheckCStringNotNullTerm) { 924 SmallString<120> buf; 925 llvm::raw_svector_ostream os(buf); 926 927 assert(CurrentFunctionDescription); 928 os << "Argument to " << CurrentFunctionDescription << " is "; 929 930 if (SummarizeRegion(os, C.getASTContext(), MR)) 931 os << ", which is not a null-terminated string"; 932 else 933 os << "not a null-terminated string"; 934 935 emitNotCStringBug(C, state, Ex, os.str()); 936 } 937 return UndefinedVal(); 938 } 939 } 940 941 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 942 ProgramStateRef &state, const Expr *expr, SVal val) const { 943 944 // Get the memory region pointed to by the val. 945 const MemRegion *bufRegion = val.getAsRegion(); 946 if (!bufRegion) 947 return nullptr; 948 949 // Strip casts off the memory region. 950 bufRegion = bufRegion->StripCasts(); 951 952 // Cast the memory region to a string region. 953 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 954 if (!strRegion) 955 return nullptr; 956 957 // Return the actual string in the string region. 958 return strRegion->getStringLiteral(); 959 } 960 961 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 962 ProgramStateRef state, 963 const Expr *FirstBuf, 964 const Expr *Size) { 965 // If we do not know that the buffer is long enough we return 'true'. 966 // Otherwise the parent region of this field region would also get 967 // invalidated, which would lead to warnings based on an unknown state. 968 969 // Originally copied from CheckBufferAccess and CheckLocation. 970 SValBuilder &svalBuilder = C.getSValBuilder(); 971 ASTContext &Ctx = svalBuilder.getContext(); 972 const LocationContext *LCtx = C.getLocationContext(); 973 974 QualType sizeTy = Size->getType(); 975 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 976 SVal BufVal = state->getSVal(FirstBuf, LCtx); 977 978 SVal LengthVal = state->getSVal(Size, LCtx); 979 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 980 if (!Length) 981 return true; // cf top comment. 982 983 // Compute the offset of the last element to be accessed: size-1. 984 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 985 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 986 if (Offset.isUnknown()) 987 return true; // cf top comment 988 NonLoc LastOffset = Offset.castAs<NonLoc>(); 989 990 // Check that the first buffer is sufficiently long. 991 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 992 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 993 if (!BufLoc) 994 return true; // cf top comment. 995 996 SVal BufEnd = 997 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 998 999 // Check for out of bound array element access. 1000 const MemRegion *R = BufEnd.getAsRegion(); 1001 if (!R) 1002 return true; // cf top comment. 1003 1004 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 1005 if (!ER) 1006 return true; // cf top comment. 1007 1008 // FIXME: Does this crash when a non-standard definition 1009 // of a library function is encountered? 1010 assert(ER->getValueType() == C.getASTContext().CharTy && 1011 "IsFirstBufInBound should only be called with char* ElementRegions"); 1012 1013 // Get the size of the array. 1014 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 1015 DefinedOrUnknownSVal SizeDV = getDynamicExtent(state, superReg, svalBuilder); 1016 1017 // Get the index of the accessed element. 1018 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 1019 1020 ProgramStateRef StInBound = state->assumeInBound(Idx, SizeDV, true); 1021 1022 return static_cast<bool>(StInBound); 1023 } 1024 1025 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 1026 ProgramStateRef state, 1027 const Expr *E, SVal V, 1028 bool IsSourceBuffer, 1029 const Expr *Size) { 1030 Optional<Loc> L = V.getAs<Loc>(); 1031 if (!L) 1032 return state; 1033 1034 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 1035 // some assumptions about the value that CFRefCount can't. Even so, it should 1036 // probably be refactored. 1037 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 1038 const MemRegion *R = MR->getRegion()->StripCasts(); 1039 1040 // Are we dealing with an ElementRegion? If so, we should be invalidating 1041 // the super-region. 1042 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 1043 R = ER->getSuperRegion(); 1044 // FIXME: What about layers of ElementRegions? 1045 } 1046 1047 // Invalidate this region. 1048 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1049 1050 bool CausesPointerEscape = false; 1051 RegionAndSymbolInvalidationTraits ITraits; 1052 // Invalidate and escape only indirect regions accessible through the source 1053 // buffer. 1054 if (IsSourceBuffer) { 1055 ITraits.setTrait(R->getBaseRegion(), 1056 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 1057 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 1058 CausesPointerEscape = true; 1059 } else { 1060 const MemRegion::Kind& K = R->getKind(); 1061 if (K == MemRegion::FieldRegionKind) 1062 if (Size && IsFirstBufInBound(C, state, E, Size)) { 1063 // If destination buffer is a field region and access is in bound, 1064 // do not invalidate its super region. 1065 ITraits.setTrait( 1066 R, 1067 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 1068 } 1069 } 1070 1071 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 1072 CausesPointerEscape, nullptr, nullptr, 1073 &ITraits); 1074 } 1075 1076 // If we have a non-region value by chance, just remove the binding. 1077 // FIXME: is this necessary or correct? This handles the non-Region 1078 // cases. Is it ever valid to store to these? 1079 return state->killBinding(*L); 1080 } 1081 1082 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1083 const MemRegion *MR) { 1084 switch (MR->getKind()) { 1085 case MemRegion::FunctionCodeRegionKind: { 1086 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl()) 1087 os << "the address of the function '" << *FD << '\''; 1088 else 1089 os << "the address of a function"; 1090 return true; 1091 } 1092 case MemRegion::BlockCodeRegionKind: 1093 os << "block text"; 1094 return true; 1095 case MemRegion::BlockDataRegionKind: 1096 os << "a block"; 1097 return true; 1098 case MemRegion::CXXThisRegionKind: 1099 case MemRegion::CXXTempObjectRegionKind: 1100 os << "a C++ temp object of type " 1101 << cast<TypedValueRegion>(MR)->getValueType(); 1102 return true; 1103 case MemRegion::NonParamVarRegionKind: 1104 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType(); 1105 return true; 1106 case MemRegion::ParamVarRegionKind: 1107 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType(); 1108 return true; 1109 case MemRegion::FieldRegionKind: 1110 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType(); 1111 return true; 1112 case MemRegion::ObjCIvarRegionKind: 1113 os << "an instance variable of type " 1114 << cast<TypedValueRegion>(MR)->getValueType(); 1115 return true; 1116 default: 1117 return false; 1118 } 1119 } 1120 1121 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1122 const Expr *Size, CheckerContext &C, 1123 ProgramStateRef &State) { 1124 SVal MemVal = C.getSVal(DstBuffer); 1125 SVal SizeVal = C.getSVal(Size); 1126 const MemRegion *MR = MemVal.getAsRegion(); 1127 if (!MR) 1128 return false; 1129 1130 // We're about to model memset by producing a "default binding" in the Store. 1131 // Our current implementation - RegionStore - doesn't support default bindings 1132 // that don't cover the whole base region. So we should first get the offset 1133 // and the base region to figure out whether the offset of buffer is 0. 1134 RegionOffset Offset = MR->getAsOffset(); 1135 const MemRegion *BR = Offset.getRegion(); 1136 1137 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1138 if (!SizeNL) 1139 return false; 1140 1141 SValBuilder &svalBuilder = C.getSValBuilder(); 1142 ASTContext &Ctx = C.getASTContext(); 1143 1144 // void *memset(void *dest, int ch, size_t count); 1145 // For now we can only handle the case of offset is 0 and concrete char value. 1146 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1147 Offset.getOffset() == 0) { 1148 // Get the base region's size. 1149 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder); 1150 1151 ProgramStateRef StateWholeReg, StateNotWholeReg; 1152 std::tie(StateWholeReg, StateNotWholeReg) = 1153 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL)); 1154 1155 // With the semantic of 'memset()', we should convert the CharVal to 1156 // unsigned char. 1157 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1158 1159 ProgramStateRef StateNullChar, StateNonNullChar; 1160 std::tie(StateNullChar, StateNonNullChar) = 1161 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1162 1163 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1164 !StateNonNullChar) { 1165 // If the 'memset()' acts on the whole region of destination buffer and 1166 // the value of the second argument of 'memset()' is zero, bind the second 1167 // argument's value to the destination buffer with 'default binding'. 1168 // FIXME: Since there is no perfect way to bind the non-zero character, we 1169 // can only deal with zero value here. In the future, we need to deal with 1170 // the binding of non-zero value in the case of whole region. 1171 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1172 C.getLocationContext()); 1173 } else { 1174 // If the destination buffer's extent is not equal to the value of 1175 // third argument, just invalidate buffer. 1176 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1177 /*IsSourceBuffer*/ false, Size); 1178 } 1179 1180 if (StateNullChar && !StateNonNullChar) { 1181 // If the value of the second argument of 'memset()' is zero, set the 1182 // string length of destination buffer to 0 directly. 1183 State = setCStringLength(State, MR, 1184 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1185 } else if (!StateNullChar && StateNonNullChar) { 1186 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1187 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1188 C.getLocationContext(), C.blockCount()); 1189 1190 // If the value of second argument is not zero, then the string length 1191 // is at least the size argument. 1192 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1193 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1194 1195 State = setCStringLength( 1196 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1197 MR, NewStrLen); 1198 } 1199 } else { 1200 // If the offset is not zero and char value is not concrete, we can do 1201 // nothing but invalidate the buffer. 1202 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1203 /*IsSourceBuffer*/ false, Size); 1204 } 1205 return true; 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // evaluation of individual function calls. 1210 //===----------------------------------------------------------------------===// 1211 1212 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, 1213 ProgramStateRef state, SizeArgExpr Size, 1214 DestinationArgExpr Dest, 1215 SourceArgExpr Source, bool Restricted, 1216 bool IsMempcpy, CharKind CK) const { 1217 CurrentFunctionDescription = "memory copy function"; 1218 1219 // See if the size argument is zero. 1220 const LocationContext *LCtx = C.getLocationContext(); 1221 SVal sizeVal = state->getSVal(Size.Expression, LCtx); 1222 QualType sizeTy = Size.Expression->getType(); 1223 1224 ProgramStateRef stateZeroSize, stateNonZeroSize; 1225 std::tie(stateZeroSize, stateNonZeroSize) = 1226 assumeZero(C, state, sizeVal, sizeTy); 1227 1228 // Get the value of the Dest. 1229 SVal destVal = state->getSVal(Dest.Expression, LCtx); 1230 1231 // If the size is zero, there won't be any actual memory access, so 1232 // just bind the return value to the destination buffer and return. 1233 if (stateZeroSize && !stateNonZeroSize) { 1234 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1235 C.addTransition(stateZeroSize); 1236 return; 1237 } 1238 1239 // If the size can be nonzero, we have to check the other arguments. 1240 if (stateNonZeroSize) { 1241 state = stateNonZeroSize; 1242 1243 // Ensure the destination is not null. If it is NULL there will be a 1244 // NULL pointer dereference. 1245 state = checkNonNull(C, state, Dest, destVal); 1246 if (!state) 1247 return; 1248 1249 // Get the value of the Src. 1250 SVal srcVal = state->getSVal(Source.Expression, LCtx); 1251 1252 // Ensure the source is not null. If it is NULL there will be a 1253 // NULL pointer dereference. 1254 state = checkNonNull(C, state, Source, srcVal); 1255 if (!state) 1256 return; 1257 1258 // Ensure the accesses are valid and that the buffers do not overlap. 1259 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, CK); 1260 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, CK); 1261 1262 if (Restricted) 1263 state = CheckOverlap(C, state, Size, Dest, Source, CK); 1264 1265 if (!state) 1266 return; 1267 1268 // If this is mempcpy, get the byte after the last byte copied and 1269 // bind the expr. 1270 if (IsMempcpy) { 1271 // Get the byte after the last byte copied. 1272 SValBuilder &SvalBuilder = C.getSValBuilder(); 1273 ASTContext &Ctx = SvalBuilder.getContext(); 1274 QualType CharPtrTy = getCharPtrType(Ctx, CK); 1275 SVal DestRegCharVal = 1276 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType()); 1277 SVal lastElement = C.getSValBuilder().evalBinOp( 1278 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType()); 1279 // If we don't know how much we copied, we can at least 1280 // conjure a return value for later. 1281 if (lastElement.isUnknown()) 1282 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1283 C.blockCount()); 1284 1285 // The byte after the last byte copied is the return value. 1286 state = state->BindExpr(CE, LCtx, lastElement); 1287 } else { 1288 // All other copies return the destination buffer. 1289 // (Well, bcopy() has a void return type, but this won't hurt.) 1290 state = state->BindExpr(CE, LCtx, destVal); 1291 } 1292 1293 // Invalidate the destination (regular invalidation without pointer-escaping 1294 // the address of the top-level region). 1295 // FIXME: Even if we can't perfectly model the copy, we should see if we 1296 // can use LazyCompoundVals to copy the source values into the destination. 1297 // This would probably remove any existing bindings past the end of the 1298 // copied region, but that's still an improvement over blank invalidation. 1299 state = 1300 InvalidateBuffer(C, state, Dest.Expression, C.getSVal(Dest.Expression), 1301 /*IsSourceBuffer*/ false, Size.Expression); 1302 1303 // Invalidate the source (const-invalidation without const-pointer-escaping 1304 // the address of the top-level region). 1305 state = InvalidateBuffer(C, state, Source.Expression, 1306 C.getSVal(Source.Expression), 1307 /*IsSourceBuffer*/ true, nullptr); 1308 1309 C.addTransition(state); 1310 } 1311 } 1312 1313 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE, 1314 CharKind CK) const { 1315 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1316 // The return value is the address of the destination buffer. 1317 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1318 SourceArgExpr Src = {CE->getArg(1), 1}; 1319 SizeArgExpr Size = {CE->getArg(2), 2}; 1320 1321 ProgramStateRef State = C.getState(); 1322 1323 constexpr bool IsRestricted = true; 1324 constexpr bool IsMempcpy = false; 1325 evalCopyCommon(C, CE, State, Size, Dest, Src, IsRestricted, IsMempcpy, CK); 1326 } 1327 1328 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE, 1329 CharKind CK) const { 1330 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1331 // The return value is a pointer to the byte following the last written byte. 1332 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1333 SourceArgExpr Src = {CE->getArg(1), 1}; 1334 SizeArgExpr Size = {CE->getArg(2), 2}; 1335 1336 constexpr bool IsRestricted = true; 1337 constexpr bool IsMempcpy = true; 1338 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy, 1339 CK); 1340 } 1341 1342 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE, 1343 CharKind CK) const { 1344 // void *memmove(void *dst, const void *src, size_t n); 1345 // The return value is the address of the destination buffer. 1346 DestinationArgExpr Dest = {CE->getArg(0), 0}; 1347 SourceArgExpr Src = {CE->getArg(1), 1}; 1348 SizeArgExpr Size = {CE->getArg(2), 2}; 1349 1350 constexpr bool IsRestricted = false; 1351 constexpr bool IsMempcpy = false; 1352 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy, 1353 CK); 1354 } 1355 1356 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1357 // void bcopy(const void *src, void *dst, size_t n); 1358 SourceArgExpr Src(CE->getArg(0), 0); 1359 DestinationArgExpr Dest = {CE->getArg(1), 1}; 1360 SizeArgExpr Size = {CE->getArg(2), 2}; 1361 1362 constexpr bool IsRestricted = false; 1363 constexpr bool IsMempcpy = false; 1364 evalCopyCommon(C, CE, C.getState(), Size, Dest, Src, IsRestricted, IsMempcpy, 1365 CharKind::Regular); 1366 } 1367 1368 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE, 1369 CharKind CK) const { 1370 // int memcmp(const void *s1, const void *s2, size_t n); 1371 CurrentFunctionDescription = "memory comparison function"; 1372 1373 AnyArgExpr Left = {CE->getArg(0), 0}; 1374 AnyArgExpr Right = {CE->getArg(1), 1}; 1375 SizeArgExpr Size = {CE->getArg(2), 2}; 1376 1377 ProgramStateRef State = C.getState(); 1378 SValBuilder &Builder = C.getSValBuilder(); 1379 const LocationContext *LCtx = C.getLocationContext(); 1380 1381 // See if the size argument is zero. 1382 SVal sizeVal = State->getSVal(Size.Expression, LCtx); 1383 QualType sizeTy = Size.Expression->getType(); 1384 1385 ProgramStateRef stateZeroSize, stateNonZeroSize; 1386 std::tie(stateZeroSize, stateNonZeroSize) = 1387 assumeZero(C, State, sizeVal, sizeTy); 1388 1389 // If the size can be zero, the result will be 0 in that case, and we don't 1390 // have to check either of the buffers. 1391 if (stateZeroSize) { 1392 State = stateZeroSize; 1393 State = State->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1394 C.addTransition(State); 1395 } 1396 1397 // If the size can be nonzero, we have to check the other arguments. 1398 if (stateNonZeroSize) { 1399 State = stateNonZeroSize; 1400 // If we know the two buffers are the same, we know the result is 0. 1401 // First, get the two buffers' addresses. Another checker will have already 1402 // made sure they're not undefined. 1403 DefinedOrUnknownSVal LV = 1404 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1405 DefinedOrUnknownSVal RV = 1406 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); 1407 1408 // See if they are the same. 1409 ProgramStateRef SameBuffer, NotSameBuffer; 1410 std::tie(SameBuffer, NotSameBuffer) = 1411 State->assume(Builder.evalEQ(State, LV, RV)); 1412 1413 // If the two arguments are the same buffer, we know the result is 0, 1414 // and we only need to check one size. 1415 if (SameBuffer && !NotSameBuffer) { 1416 State = SameBuffer; 1417 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read); 1418 if (State) { 1419 State = 1420 SameBuffer->BindExpr(CE, LCtx, Builder.makeZeroVal(CE->getType())); 1421 C.addTransition(State); 1422 } 1423 return; 1424 } 1425 1426 // If the two arguments might be different buffers, we have to check 1427 // the size of both of them. 1428 assert(NotSameBuffer); 1429 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read, CK); 1430 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read, CK); 1431 if (State) { 1432 // The return value is the comparison result, which we don't know. 1433 SVal CmpV = Builder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1434 State = State->BindExpr(CE, LCtx, CmpV); 1435 C.addTransition(State); 1436 } 1437 } 1438 } 1439 1440 void CStringChecker::evalstrLength(CheckerContext &C, 1441 const CallExpr *CE) const { 1442 // size_t strlen(const char *s); 1443 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1444 } 1445 1446 void CStringChecker::evalstrnLength(CheckerContext &C, 1447 const CallExpr *CE) const { 1448 // size_t strnlen(const char *s, size_t maxlen); 1449 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1450 } 1451 1452 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1453 bool IsStrnlen) const { 1454 CurrentFunctionDescription = "string length function"; 1455 ProgramStateRef state = C.getState(); 1456 const LocationContext *LCtx = C.getLocationContext(); 1457 1458 if (IsStrnlen) { 1459 const Expr *maxlenExpr = CE->getArg(1); 1460 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1461 1462 ProgramStateRef stateZeroSize, stateNonZeroSize; 1463 std::tie(stateZeroSize, stateNonZeroSize) = 1464 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1465 1466 // If the size can be zero, the result will be 0 in that case, and we don't 1467 // have to check the string itself. 1468 if (stateZeroSize) { 1469 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1470 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1471 C.addTransition(stateZeroSize); 1472 } 1473 1474 // If the size is GUARANTEED to be zero, we're done! 1475 if (!stateNonZeroSize) 1476 return; 1477 1478 // Otherwise, record the assumption that the size is nonzero. 1479 state = stateNonZeroSize; 1480 } 1481 1482 // Check that the string argument is non-null. 1483 AnyArgExpr Arg = {CE->getArg(0), 0}; 1484 SVal ArgVal = state->getSVal(Arg.Expression, LCtx); 1485 state = checkNonNull(C, state, Arg, ArgVal); 1486 1487 if (!state) 1488 return; 1489 1490 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal); 1491 1492 // If the argument isn't a valid C string, there's no valid state to 1493 // transition to. 1494 if (strLength.isUndef()) 1495 return; 1496 1497 DefinedOrUnknownSVal result = UnknownVal(); 1498 1499 // If the check is for strnlen() then bind the return value to no more than 1500 // the maxlen value. 1501 if (IsStrnlen) { 1502 QualType cmpTy = C.getSValBuilder().getConditionType(); 1503 1504 // It's a little unfortunate to be getting this again, 1505 // but it's not that expensive... 1506 const Expr *maxlenExpr = CE->getArg(1); 1507 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1508 1509 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1510 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1511 1512 if (strLengthNL && maxlenValNL) { 1513 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1514 1515 // Check if the strLength is greater than the maxlen. 1516 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1517 C.getSValBuilder() 1518 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1519 .castAs<DefinedOrUnknownSVal>()); 1520 1521 if (stateStringTooLong && !stateStringNotTooLong) { 1522 // If the string is longer than maxlen, return maxlen. 1523 result = *maxlenValNL; 1524 } else if (stateStringNotTooLong && !stateStringTooLong) { 1525 // If the string is shorter than maxlen, return its length. 1526 result = *strLengthNL; 1527 } 1528 } 1529 1530 if (result.isUnknown()) { 1531 // If we don't have enough information for a comparison, there's 1532 // no guarantee the full string length will actually be returned. 1533 // All we know is the return value is the min of the string length 1534 // and the limit. This is better than nothing. 1535 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1536 C.blockCount()); 1537 NonLoc resultNL = result.castAs<NonLoc>(); 1538 1539 if (strLengthNL) { 1540 state = state->assume(C.getSValBuilder().evalBinOpNN( 1541 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1542 .castAs<DefinedOrUnknownSVal>(), true); 1543 } 1544 1545 if (maxlenValNL) { 1546 state = state->assume(C.getSValBuilder().evalBinOpNN( 1547 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1548 .castAs<DefinedOrUnknownSVal>(), true); 1549 } 1550 } 1551 1552 } else { 1553 // This is a plain strlen(), not strnlen(). 1554 result = strLength.castAs<DefinedOrUnknownSVal>(); 1555 1556 // If we don't know the length of the string, conjure a return 1557 // value, so it can be used in constraints, at least. 1558 if (result.isUnknown()) { 1559 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1560 C.blockCount()); 1561 } 1562 } 1563 1564 // Bind the return value. 1565 assert(!result.isUnknown() && "Should have conjured a value by now"); 1566 state = state->BindExpr(CE, LCtx, result); 1567 C.addTransition(state); 1568 } 1569 1570 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1571 // char *strcpy(char *restrict dst, const char *restrict src); 1572 evalStrcpyCommon(C, CE, 1573 /* ReturnEnd = */ false, 1574 /* IsBounded = */ false, 1575 /* appendK = */ ConcatFnKind::none); 1576 } 1577 1578 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1579 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1580 evalStrcpyCommon(C, CE, 1581 /* ReturnEnd = */ false, 1582 /* IsBounded = */ true, 1583 /* appendK = */ ConcatFnKind::none); 1584 } 1585 1586 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1587 // char *stpcpy(char *restrict dst, const char *restrict src); 1588 evalStrcpyCommon(C, CE, 1589 /* ReturnEnd = */ true, 1590 /* IsBounded = */ false, 1591 /* appendK = */ ConcatFnKind::none); 1592 } 1593 1594 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1595 // size_t strlcpy(char *dest, const char *src, size_t size); 1596 evalStrcpyCommon(C, CE, 1597 /* ReturnEnd = */ true, 1598 /* IsBounded = */ true, 1599 /* appendK = */ ConcatFnKind::none, 1600 /* returnPtr = */ false); 1601 } 1602 1603 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1604 // char *strcat(char *restrict s1, const char *restrict s2); 1605 evalStrcpyCommon(C, CE, 1606 /* ReturnEnd = */ false, 1607 /* IsBounded = */ false, 1608 /* appendK = */ ConcatFnKind::strcat); 1609 } 1610 1611 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1612 // char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1613 evalStrcpyCommon(C, CE, 1614 /* ReturnEnd = */ false, 1615 /* IsBounded = */ true, 1616 /* appendK = */ ConcatFnKind::strcat); 1617 } 1618 1619 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1620 // size_t strlcat(char *dst, const char *src, size_t size); 1621 // It will append at most size - strlen(dst) - 1 bytes, 1622 // NULL-terminating the result. 1623 evalStrcpyCommon(C, CE, 1624 /* ReturnEnd = */ false, 1625 /* IsBounded = */ true, 1626 /* appendK = */ ConcatFnKind::strlcat, 1627 /* returnPtr = */ false); 1628 } 1629 1630 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1631 bool ReturnEnd, bool IsBounded, 1632 ConcatFnKind appendK, 1633 bool returnPtr) const { 1634 if (appendK == ConcatFnKind::none) 1635 CurrentFunctionDescription = "string copy function"; 1636 else 1637 CurrentFunctionDescription = "string concatenation function"; 1638 1639 ProgramStateRef state = C.getState(); 1640 const LocationContext *LCtx = C.getLocationContext(); 1641 1642 // Check that the destination is non-null. 1643 DestinationArgExpr Dst = {CE->getArg(0), 0}; 1644 SVal DstVal = state->getSVal(Dst.Expression, LCtx); 1645 state = checkNonNull(C, state, Dst, DstVal); 1646 if (!state) 1647 return; 1648 1649 // Check that the source is non-null. 1650 SourceArgExpr srcExpr = {CE->getArg(1), 1}; 1651 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx); 1652 state = checkNonNull(C, state, srcExpr, srcVal); 1653 if (!state) 1654 return; 1655 1656 // Get the string length of the source. 1657 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal); 1658 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1659 1660 // Get the string length of the destination buffer. 1661 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal); 1662 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1663 1664 // If the source isn't a valid C string, give up. 1665 if (strLength.isUndef()) 1666 return; 1667 1668 SValBuilder &svalBuilder = C.getSValBuilder(); 1669 QualType cmpTy = svalBuilder.getConditionType(); 1670 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1671 1672 // These two values allow checking two kinds of errors: 1673 // - actual overflows caused by a source that doesn't fit in the destination 1674 // - potential overflows caused by a bound that could exceed the destination 1675 SVal amountCopied = UnknownVal(); 1676 SVal maxLastElementIndex = UnknownVal(); 1677 const char *boundWarning = nullptr; 1678 1679 // FIXME: Why do we choose the srcExpr if the access has no size? 1680 // Note that the 3rd argument of the call would be the size parameter. 1681 SizeArgExpr SrcExprAsSizeDummy = {srcExpr.Expression, srcExpr.ArgumentIndex}; 1682 state = CheckOverlap( 1683 C, state, 1684 (IsBounded ? SizeArgExpr{CE->getArg(2), 2} : SrcExprAsSizeDummy), Dst, 1685 srcExpr); 1686 1687 if (!state) 1688 return; 1689 1690 // If the function is strncpy, strncat, etc... it is bounded. 1691 if (IsBounded) { 1692 // Get the max number of characters to copy. 1693 SizeArgExpr lenExpr = {CE->getArg(2), 2}; 1694 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx); 1695 1696 // Protect against misdeclared strncpy(). 1697 lenVal = 1698 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType()); 1699 1700 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1701 1702 // If we know both values, we might be able to figure out how much 1703 // we're copying. 1704 if (strLengthNL && lenValNL) { 1705 switch (appendK) { 1706 case ConcatFnKind::none: 1707 case ConcatFnKind::strcat: { 1708 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1709 // Check if the max number to copy is less than the length of the src. 1710 // If the bound is equal to the source length, strncpy won't null- 1711 // terminate the result! 1712 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1713 svalBuilder 1714 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1715 .castAs<DefinedOrUnknownSVal>()); 1716 1717 if (stateSourceTooLong && !stateSourceNotTooLong) { 1718 // Max number to copy is less than the length of the src, so the 1719 // actual strLength copied is the max number arg. 1720 state = stateSourceTooLong; 1721 amountCopied = lenVal; 1722 1723 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1724 // The source buffer entirely fits in the bound. 1725 state = stateSourceNotTooLong; 1726 amountCopied = strLength; 1727 } 1728 break; 1729 } 1730 case ConcatFnKind::strlcat: 1731 if (!dstStrLengthNL) 1732 return; 1733 1734 // amountCopied = min (size - dstLen - 1 , srcLen) 1735 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1736 *dstStrLengthNL, sizeTy); 1737 if (!isa<NonLoc>(freeSpace)) 1738 return; 1739 freeSpace = 1740 svalBuilder.evalBinOp(state, BO_Sub, freeSpace, 1741 svalBuilder.makeIntVal(1, sizeTy), sizeTy); 1742 Optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); 1743 1744 // While unlikely, it is possible that the subtraction is 1745 // too complex to compute, let's check whether it succeeded. 1746 if (!freeSpaceNL) 1747 return; 1748 SVal hasEnoughSpace = svalBuilder.evalBinOpNN( 1749 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy); 1750 1751 ProgramStateRef TrueState, FalseState; 1752 std::tie(TrueState, FalseState) = 1753 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); 1754 1755 // srcStrLength <= size - dstStrLength -1 1756 if (TrueState && !FalseState) { 1757 amountCopied = strLength; 1758 } 1759 1760 // srcStrLength > size - dstStrLength -1 1761 if (!TrueState && FalseState) { 1762 amountCopied = freeSpace; 1763 } 1764 1765 if (TrueState && FalseState) 1766 amountCopied = UnknownVal(); 1767 break; 1768 } 1769 } 1770 // We still want to know if the bound is known to be too large. 1771 if (lenValNL) { 1772 switch (appendK) { 1773 case ConcatFnKind::strcat: 1774 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1775 1776 // Get the string length of the destination. If the destination is 1777 // memory that can't have a string length, we shouldn't be copying 1778 // into it anyway. 1779 if (dstStrLength.isUndef()) 1780 return; 1781 1782 if (dstStrLengthNL) { 1783 maxLastElementIndex = svalBuilder.evalBinOpNN( 1784 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); 1785 1786 boundWarning = "Size argument is greater than the free space in the " 1787 "destination buffer"; 1788 } 1789 break; 1790 case ConcatFnKind::none: 1791 case ConcatFnKind::strlcat: 1792 // For strncpy and strlcat, this is just checking 1793 // that lenVal <= sizeof(dst). 1794 // (Yes, strncpy and strncat differ in how they treat termination. 1795 // strncat ALWAYS terminates, but strncpy doesn't.) 1796 1797 // We need a special case for when the copy size is zero, in which 1798 // case strncpy will do no work at all. Our bounds check uses n-1 1799 // as the last element accessed, so n == 0 is problematic. 1800 ProgramStateRef StateZeroSize, StateNonZeroSize; 1801 std::tie(StateZeroSize, StateNonZeroSize) = 1802 assumeZero(C, state, *lenValNL, sizeTy); 1803 1804 // If the size is known to be zero, we're done. 1805 if (StateZeroSize && !StateNonZeroSize) { 1806 if (returnPtr) { 1807 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1808 } else { 1809 if (appendK == ConcatFnKind::none) { 1810 // strlcpy returns strlen(src) 1811 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, strLength); 1812 } else { 1813 // strlcat returns strlen(src) + strlen(dst) 1814 SVal retSize = svalBuilder.evalBinOp( 1815 state, BO_Add, strLength, dstStrLength, sizeTy); 1816 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, retSize); 1817 } 1818 } 1819 C.addTransition(StateZeroSize); 1820 return; 1821 } 1822 1823 // Otherwise, go ahead and figure out the last element we'll touch. 1824 // We don't record the non-zero assumption here because we can't 1825 // be sure. We won't warn on a possible zero. 1826 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1827 maxLastElementIndex = 1828 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); 1829 boundWarning = "Size argument is greater than the length of the " 1830 "destination buffer"; 1831 break; 1832 } 1833 } 1834 } else { 1835 // The function isn't bounded. The amount copied should match the length 1836 // of the source buffer. 1837 amountCopied = strLength; 1838 } 1839 1840 assert(state); 1841 1842 // This represents the number of characters copied into the destination 1843 // buffer. (It may not actually be the strlen if the destination buffer 1844 // is not terminated.) 1845 SVal finalStrLength = UnknownVal(); 1846 SVal strlRetVal = UnknownVal(); 1847 1848 if (appendK == ConcatFnKind::none && !returnPtr) { 1849 // strlcpy returns the sizeof(src) 1850 strlRetVal = strLength; 1851 } 1852 1853 // If this is an appending function (strcat, strncat...) then set the 1854 // string length to strlen(src) + strlen(dst) since the buffer will 1855 // ultimately contain both. 1856 if (appendK != ConcatFnKind::none) { 1857 // Get the string length of the destination. If the destination is memory 1858 // that can't have a string length, we shouldn't be copying into it anyway. 1859 if (dstStrLength.isUndef()) 1860 return; 1861 1862 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { 1863 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL, 1864 *dstStrLengthNL, sizeTy); 1865 } 1866 1867 Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); 1868 1869 // If we know both string lengths, we might know the final string length. 1870 if (amountCopiedNL && dstStrLengthNL) { 1871 // Make sure the two lengths together don't overflow a size_t. 1872 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL); 1873 if (!state) 1874 return; 1875 1876 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL, 1877 *dstStrLengthNL, sizeTy); 1878 } 1879 1880 // If we couldn't get a single value for the final string length, 1881 // we can at least bound it by the individual lengths. 1882 if (finalStrLength.isUnknown()) { 1883 // Try to get a "hypothetical" string length symbol, which we can later 1884 // set as a real value if that turns out to be the case. 1885 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1886 assert(!finalStrLength.isUndef()); 1887 1888 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1889 if (amountCopiedNL && appendK == ConcatFnKind::none) { 1890 // we overwrite dst string with the src 1891 // finalStrLength >= srcStrLength 1892 SVal sourceInResult = svalBuilder.evalBinOpNN( 1893 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy); 1894 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1895 true); 1896 if (!state) 1897 return; 1898 } 1899 1900 if (dstStrLengthNL && appendK != ConcatFnKind::none) { 1901 // we extend the dst string with the src 1902 // finalStrLength >= dstStrLength 1903 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1904 *finalStrLengthNL, 1905 *dstStrLengthNL, 1906 cmpTy); 1907 state = 1908 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1909 if (!state) 1910 return; 1911 } 1912 } 1913 } 1914 1915 } else { 1916 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1917 // the final string length will match the input string length. 1918 finalStrLength = amountCopied; 1919 } 1920 1921 SVal Result; 1922 1923 if (returnPtr) { 1924 // The final result of the function will either be a pointer past the last 1925 // copied element, or a pointer to the start of the destination buffer. 1926 Result = (ReturnEnd ? UnknownVal() : DstVal); 1927 } else { 1928 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) 1929 //strlcpy, strlcat 1930 Result = strlRetVal; 1931 else 1932 Result = finalStrLength; 1933 } 1934 1935 assert(state); 1936 1937 // If the destination is a MemRegion, try to check for a buffer overflow and 1938 // record the new string length. 1939 if (Optional<loc::MemRegionVal> dstRegVal = 1940 DstVal.getAs<loc::MemRegionVal>()) { 1941 QualType ptrTy = Dst.Expression->getType(); 1942 1943 // If we have an exact value on a bounded copy, use that to check for 1944 // overflows, rather than our estimate about how much is actually copied. 1945 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1946 SVal maxLastElement = 1947 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); 1948 1949 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write); 1950 if (!state) 1951 return; 1952 } 1953 1954 // Then, if the final length is known... 1955 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1956 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1957 *knownStrLength, ptrTy); 1958 1959 // ...and we haven't checked the bound, we'll check the actual copy. 1960 if (!boundWarning) { 1961 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write); 1962 if (!state) 1963 return; 1964 } 1965 1966 // If this is a stpcpy-style copy, the last element is the return value. 1967 if (returnPtr && ReturnEnd) 1968 Result = lastElement; 1969 } 1970 1971 // Invalidate the destination (regular invalidation without pointer-escaping 1972 // the address of the top-level region). This must happen before we set the 1973 // C string length because invalidation will clear the length. 1974 // FIXME: Even if we can't perfectly model the copy, we should see if we 1975 // can use LazyCompoundVals to copy the source values into the destination. 1976 // This would probably remove any existing bindings past the end of the 1977 // string, but that's still an improvement over blank invalidation. 1978 state = InvalidateBuffer(C, state, Dst.Expression, *dstRegVal, 1979 /*IsSourceBuffer*/ false, nullptr); 1980 1981 // Invalidate the source (const-invalidation without const-pointer-escaping 1982 // the address of the top-level region). 1983 state = InvalidateBuffer(C, state, srcExpr.Expression, srcVal, 1984 /*IsSourceBuffer*/ true, nullptr); 1985 1986 // Set the C string length of the destination, if we know it. 1987 if (IsBounded && (appendK == ConcatFnKind::none)) { 1988 // strncpy is annoying in that it doesn't guarantee to null-terminate 1989 // the result string. If the original string didn't fit entirely inside 1990 // the bound (including the null-terminator), we don't know how long the 1991 // result is. 1992 if (amountCopied != strLength) 1993 finalStrLength = UnknownVal(); 1994 } 1995 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1996 } 1997 1998 assert(state); 1999 2000 if (returnPtr) { 2001 // If this is a stpcpy-style copy, but we were unable to check for a buffer 2002 // overflow, we still need a result. Conjure a return value. 2003 if (ReturnEnd && Result.isUnknown()) { 2004 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2005 } 2006 } 2007 // Set the return value. 2008 state = state->BindExpr(CE, LCtx, Result); 2009 C.addTransition(state); 2010 } 2011 2012 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 2013 //int strcmp(const char *s1, const char *s2); 2014 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ false); 2015 } 2016 2017 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 2018 //int strncmp(const char *s1, const char *s2, size_t n); 2019 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ false); 2020 } 2021 2022 void CStringChecker::evalStrcasecmp(CheckerContext &C, 2023 const CallExpr *CE) const { 2024 //int strcasecmp(const char *s1, const char *s2); 2025 evalStrcmpCommon(C, CE, /* IsBounded = */ false, /* IgnoreCase = */ true); 2026 } 2027 2028 void CStringChecker::evalStrncasecmp(CheckerContext &C, 2029 const CallExpr *CE) const { 2030 //int strncasecmp(const char *s1, const char *s2, size_t n); 2031 evalStrcmpCommon(C, CE, /* IsBounded = */ true, /* IgnoreCase = */ true); 2032 } 2033 2034 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 2035 bool IsBounded, bool IgnoreCase) const { 2036 CurrentFunctionDescription = "string comparison function"; 2037 ProgramStateRef state = C.getState(); 2038 const LocationContext *LCtx = C.getLocationContext(); 2039 2040 // Check that the first string is non-null 2041 AnyArgExpr Left = {CE->getArg(0), 0}; 2042 SVal LeftVal = state->getSVal(Left.Expression, LCtx); 2043 state = checkNonNull(C, state, Left, LeftVal); 2044 if (!state) 2045 return; 2046 2047 // Check that the second string is non-null. 2048 AnyArgExpr Right = {CE->getArg(1), 1}; 2049 SVal RightVal = state->getSVal(Right.Expression, LCtx); 2050 state = checkNonNull(C, state, Right, RightVal); 2051 if (!state) 2052 return; 2053 2054 // Get the string length of the first string or give up. 2055 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal); 2056 if (LeftLength.isUndef()) 2057 return; 2058 2059 // Get the string length of the second string or give up. 2060 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal); 2061 if (RightLength.isUndef()) 2062 return; 2063 2064 // If we know the two buffers are the same, we know the result is 0. 2065 // First, get the two buffers' addresses. Another checker will have already 2066 // made sure they're not undefined. 2067 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); 2068 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); 2069 2070 // See if they are the same. 2071 SValBuilder &svalBuilder = C.getSValBuilder(); 2072 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 2073 ProgramStateRef StSameBuf, StNotSameBuf; 2074 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 2075 2076 // If the two arguments might be the same buffer, we know the result is 0, 2077 // and we only need to check one size. 2078 if (StSameBuf) { 2079 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 2080 svalBuilder.makeZeroVal(CE->getType())); 2081 C.addTransition(StSameBuf); 2082 2083 // If the two arguments are GUARANTEED to be the same, we're done! 2084 if (!StNotSameBuf) 2085 return; 2086 } 2087 2088 assert(StNotSameBuf); 2089 state = StNotSameBuf; 2090 2091 // At this point we can go about comparing the two buffers. 2092 // For now, we only do this if they're both known string literals. 2093 2094 // Attempt to extract string literals from both expressions. 2095 const StringLiteral *LeftStrLiteral = 2096 getCStringLiteral(C, state, Left.Expression, LeftVal); 2097 const StringLiteral *RightStrLiteral = 2098 getCStringLiteral(C, state, Right.Expression, RightVal); 2099 bool canComputeResult = false; 2100 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 2101 C.blockCount()); 2102 2103 if (LeftStrLiteral && RightStrLiteral) { 2104 StringRef LeftStrRef = LeftStrLiteral->getString(); 2105 StringRef RightStrRef = RightStrLiteral->getString(); 2106 2107 if (IsBounded) { 2108 // Get the max number of characters to compare. 2109 const Expr *lenExpr = CE->getArg(2); 2110 SVal lenVal = state->getSVal(lenExpr, LCtx); 2111 2112 // If the length is known, we can get the right substrings. 2113 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 2114 // Create substrings of each to compare the prefix. 2115 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue()); 2116 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue()); 2117 canComputeResult = true; 2118 } 2119 } else { 2120 // This is a normal, unbounded strcmp. 2121 canComputeResult = true; 2122 } 2123 2124 if (canComputeResult) { 2125 // Real strcmp stops at null characters. 2126 size_t s1Term = LeftStrRef.find('\0'); 2127 if (s1Term != StringRef::npos) 2128 LeftStrRef = LeftStrRef.substr(0, s1Term); 2129 2130 size_t s2Term = RightStrRef.find('\0'); 2131 if (s2Term != StringRef::npos) 2132 RightStrRef = RightStrRef.substr(0, s2Term); 2133 2134 // Use StringRef's comparison methods to compute the actual result. 2135 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef) 2136 : LeftStrRef.compare(RightStrRef); 2137 2138 // The strcmp function returns an integer greater than, equal to, or less 2139 // than zero, [c11, p7.24.4.2]. 2140 if (compareRes == 0) { 2141 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2142 } 2143 else { 2144 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2145 // Constrain strcmp's result range based on the result of StringRef's 2146 // comparison methods. 2147 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2148 SVal compareWithZero = 2149 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2150 svalBuilder.getConditionType()); 2151 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2152 state = state->assume(compareWithZeroVal, true); 2153 } 2154 } 2155 } 2156 2157 state = state->BindExpr(CE, LCtx, resultVal); 2158 2159 // Record this as a possible path. 2160 C.addTransition(state); 2161 } 2162 2163 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2164 // char *strsep(char **stringp, const char *delim); 2165 // Verify whether the search string parameter matches the return type. 2166 SourceArgExpr SearchStrPtr = {CE->getArg(0), 0}; 2167 2168 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); 2169 if (CharPtrTy.isNull() || 2170 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2171 return; 2172 2173 CurrentFunctionDescription = "strsep()"; 2174 ProgramStateRef State = C.getState(); 2175 const LocationContext *LCtx = C.getLocationContext(); 2176 2177 // Check that the search string pointer is non-null (though it may point to 2178 // a null string). 2179 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx); 2180 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2181 if (!State) 2182 return; 2183 2184 // Check that the delimiter string is non-null. 2185 AnyArgExpr DelimStr = {CE->getArg(1), 1}; 2186 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx); 2187 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2188 if (!State) 2189 return; 2190 2191 SValBuilder &SVB = C.getSValBuilder(); 2192 SVal Result; 2193 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2194 // Get the current value of the search string pointer, as a char*. 2195 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2196 2197 // Invalidate the search string, representing the change of one delimiter 2198 // character to NUL. 2199 State = InvalidateBuffer(C, State, SearchStrPtr.Expression, Result, 2200 /*IsSourceBuffer*/ false, nullptr); 2201 2202 // Overwrite the search string pointer. The new value is either an address 2203 // further along in the same string, or NULL if there are no more tokens. 2204 State = State->bindLoc(*SearchStrLoc, 2205 SVB.conjureSymbolVal(getTag(), 2206 CE, 2207 LCtx, 2208 CharPtrTy, 2209 C.blockCount()), 2210 LCtx); 2211 } else { 2212 assert(SearchStrVal.isUnknown()); 2213 // Conjure a symbolic value. It's the best we can do. 2214 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2215 } 2216 2217 // Set the return value, and finish. 2218 State = State->BindExpr(CE, LCtx, Result); 2219 C.addTransition(State); 2220 } 2221 2222 // These should probably be moved into a C++ standard library checker. 2223 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2224 evalStdCopyCommon(C, CE); 2225 } 2226 2227 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2228 const CallExpr *CE) const { 2229 evalStdCopyCommon(C, CE); 2230 } 2231 2232 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2233 const CallExpr *CE) const { 2234 if (!CE->getArg(2)->getType()->isPointerType()) 2235 return; 2236 2237 ProgramStateRef State = C.getState(); 2238 2239 const LocationContext *LCtx = C.getLocationContext(); 2240 2241 // template <class _InputIterator, class _OutputIterator> 2242 // _OutputIterator 2243 // copy(_InputIterator __first, _InputIterator __last, 2244 // _OutputIterator __result) 2245 2246 // Invalidate the destination buffer 2247 const Expr *Dst = CE->getArg(2); 2248 SVal DstVal = State->getSVal(Dst, LCtx); 2249 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2250 /*Size=*/nullptr); 2251 2252 SValBuilder &SVB = C.getSValBuilder(); 2253 2254 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2255 State = State->BindExpr(CE, LCtx, ResultVal); 2256 2257 C.addTransition(State); 2258 } 2259 2260 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2261 // void *memset(void *s, int c, size_t n); 2262 CurrentFunctionDescription = "memory set function"; 2263 2264 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2265 AnyArgExpr CharE = {CE->getArg(1), 1}; 2266 SizeArgExpr Size = {CE->getArg(2), 2}; 2267 2268 ProgramStateRef State = C.getState(); 2269 2270 // See if the size argument is zero. 2271 const LocationContext *LCtx = C.getLocationContext(); 2272 SVal SizeVal = C.getSVal(Size.Expression); 2273 QualType SizeTy = Size.Expression->getType(); 2274 2275 ProgramStateRef ZeroSize, NonZeroSize; 2276 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy); 2277 2278 // Get the value of the memory area. 2279 SVal BufferPtrVal = C.getSVal(Buffer.Expression); 2280 2281 // If the size is zero, there won't be any actual memory access, so 2282 // just bind the return value to the buffer and return. 2283 if (ZeroSize && !NonZeroSize) { 2284 ZeroSize = ZeroSize->BindExpr(CE, LCtx, BufferPtrVal); 2285 C.addTransition(ZeroSize); 2286 return; 2287 } 2288 2289 // Ensure the memory area is not null. 2290 // If it is NULL there will be a NULL pointer dereference. 2291 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal); 2292 if (!State) 2293 return; 2294 2295 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2296 if (!State) 2297 return; 2298 2299 // According to the values of the arguments, bind the value of the second 2300 // argument to the destination buffer and set string length, or just 2301 // invalidate the destination buffer. 2302 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression), 2303 Size.Expression, C, State)) 2304 return; 2305 2306 State = State->BindExpr(CE, LCtx, BufferPtrVal); 2307 C.addTransition(State); 2308 } 2309 2310 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2311 CurrentFunctionDescription = "memory clearance function"; 2312 2313 DestinationArgExpr Buffer = {CE->getArg(0), 0}; 2314 SizeArgExpr Size = {CE->getArg(1), 1}; 2315 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2316 2317 ProgramStateRef State = C.getState(); 2318 2319 // See if the size argument is zero. 2320 SVal SizeVal = C.getSVal(Size.Expression); 2321 QualType SizeTy = Size.Expression->getType(); 2322 2323 ProgramStateRef StateZeroSize, StateNonZeroSize; 2324 std::tie(StateZeroSize, StateNonZeroSize) = 2325 assumeZero(C, State, SizeVal, SizeTy); 2326 2327 // If the size is zero, there won't be any actual memory access, 2328 // In this case we just return. 2329 if (StateZeroSize && !StateNonZeroSize) { 2330 C.addTransition(StateZeroSize); 2331 return; 2332 } 2333 2334 // Get the value of the memory area. 2335 SVal MemVal = C.getSVal(Buffer.Expression); 2336 2337 // Ensure the memory area is not null. 2338 // If it is NULL there will be a NULL pointer dereference. 2339 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal); 2340 if (!State) 2341 return; 2342 2343 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write); 2344 if (!State) 2345 return; 2346 2347 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State)) 2348 return; 2349 2350 C.addTransition(State); 2351 } 2352 2353 //===----------------------------------------------------------------------===// 2354 // The driver method, and other Checker callbacks. 2355 //===----------------------------------------------------------------------===// 2356 2357 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2358 CheckerContext &C) const { 2359 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2360 if (!CE) 2361 return nullptr; 2362 2363 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2364 if (!FD) 2365 return nullptr; 2366 2367 if (StdCopy.matches(Call)) 2368 return &CStringChecker::evalStdCopy; 2369 if (StdCopyBackward.matches(Call)) 2370 return &CStringChecker::evalStdCopyBackward; 2371 2372 // Pro-actively check that argument types are safe to do arithmetic upon. 2373 // We do not want to crash if someone accidentally passes a structure 2374 // into, say, a C++ overload of any of these functions. We could not check 2375 // that for std::copy because they may have arguments of other types. 2376 for (auto I : CE->arguments()) { 2377 QualType T = I->getType(); 2378 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2379 return nullptr; 2380 } 2381 2382 const FnCheck *Callback = Callbacks.lookup(Call); 2383 if (Callback) 2384 return *Callback; 2385 2386 return nullptr; 2387 } 2388 2389 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2390 FnCheck Callback = identifyCall(Call, C); 2391 2392 // If the callee isn't a string function, let another checker handle it. 2393 if (!Callback) 2394 return false; 2395 2396 // Check and evaluate the call. 2397 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2398 Callback(this, C, CE); 2399 2400 // If the evaluate call resulted in no change, chain to the next eval call 2401 // handler. 2402 // Note, the custom CString evaluation calls assume that basic safety 2403 // properties are held. However, if the user chooses to turn off some of these 2404 // checks, we ignore the issues and leave the call evaluation to a generic 2405 // handler. 2406 return C.isDifferent(); 2407 } 2408 2409 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2410 // Record string length for char a[] = "abc"; 2411 ProgramStateRef state = C.getState(); 2412 2413 for (const auto *I : DS->decls()) { 2414 const VarDecl *D = dyn_cast<VarDecl>(I); 2415 if (!D) 2416 continue; 2417 2418 // FIXME: Handle array fields of structs. 2419 if (!D->getType()->isArrayType()) 2420 continue; 2421 2422 const Expr *Init = D->getInit(); 2423 if (!Init) 2424 continue; 2425 if (!isa<StringLiteral>(Init)) 2426 continue; 2427 2428 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2429 const MemRegion *MR = VarLoc.getAsRegion(); 2430 if (!MR) 2431 continue; 2432 2433 SVal StrVal = C.getSVal(Init); 2434 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2435 DefinedOrUnknownSVal strLength = 2436 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2437 2438 state = state->set<CStringLength>(MR, strLength); 2439 } 2440 2441 C.addTransition(state); 2442 } 2443 2444 ProgramStateRef 2445 CStringChecker::checkRegionChanges(ProgramStateRef state, 2446 const InvalidatedSymbols *, 2447 ArrayRef<const MemRegion *> ExplicitRegions, 2448 ArrayRef<const MemRegion *> Regions, 2449 const LocationContext *LCtx, 2450 const CallEvent *Call) const { 2451 CStringLengthTy Entries = state->get<CStringLength>(); 2452 if (Entries.isEmpty()) 2453 return state; 2454 2455 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2456 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2457 2458 // First build sets for the changed regions and their super-regions. 2459 for (ArrayRef<const MemRegion *>::iterator 2460 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2461 const MemRegion *MR = *I; 2462 Invalidated.insert(MR); 2463 2464 SuperRegions.insert(MR); 2465 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2466 MR = SR->getSuperRegion(); 2467 SuperRegions.insert(MR); 2468 } 2469 } 2470 2471 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2472 2473 // Then loop over the entries in the current state. 2474 for (CStringLengthTy::iterator I = Entries.begin(), 2475 E = Entries.end(); I != E; ++I) { 2476 const MemRegion *MR = I.getKey(); 2477 2478 // Is this entry for a super-region of a changed region? 2479 if (SuperRegions.count(MR)) { 2480 Entries = F.remove(Entries, MR); 2481 continue; 2482 } 2483 2484 // Is this entry for a sub-region of a changed region? 2485 const MemRegion *Super = MR; 2486 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2487 Super = SR->getSuperRegion(); 2488 if (Invalidated.count(Super)) { 2489 Entries = F.remove(Entries, MR); 2490 break; 2491 } 2492 } 2493 } 2494 2495 return state->set<CStringLength>(Entries); 2496 } 2497 2498 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2499 SymbolReaper &SR) const { 2500 // Mark all symbols in our string length map as valid. 2501 CStringLengthTy Entries = state->get<CStringLength>(); 2502 2503 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2504 I != E; ++I) { 2505 SVal Len = I.getData(); 2506 2507 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2508 se = Len.symbol_end(); si != se; ++si) 2509 SR.markInUse(*si); 2510 } 2511 } 2512 2513 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2514 CheckerContext &C) const { 2515 ProgramStateRef state = C.getState(); 2516 CStringLengthTy Entries = state->get<CStringLength>(); 2517 if (Entries.isEmpty()) 2518 return; 2519 2520 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2521 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2522 I != E; ++I) { 2523 SVal Len = I.getData(); 2524 if (SymbolRef Sym = Len.getAsSymbol()) { 2525 if (SR.isDead(Sym)) 2526 Entries = F.remove(Entries, I.getKey()); 2527 } 2528 } 2529 2530 state = state->set<CStringLength>(Entries); 2531 C.addTransition(state); 2532 } 2533 2534 void ento::registerCStringModeling(CheckerManager &Mgr) { 2535 Mgr.registerChecker<CStringChecker>(); 2536 } 2537 2538 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { 2539 return true; 2540 } 2541 2542 #define REGISTER_CHECKER(name) \ 2543 void ento::register##name(CheckerManager &mgr) { \ 2544 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2545 checker->Filter.Check##name = true; \ 2546 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ 2547 } \ 2548 \ 2549 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } 2550 2551 REGISTER_CHECKER(CStringNullArg) 2552 REGISTER_CHECKER(CStringOutOfBounds) 2553 REGISTER_CHECKER(CStringBufferOverlap) 2554 REGISTER_CHECKER(CStringNotNullTerm) 2555 REGISTER_CHECKER(CStringUninitializedRead) 2556