1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This defines CStringChecker, which is an assortment of checks on calls 11 // to functions in <string.h>. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 77 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 78 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 79 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 80 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 81 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 82 ProgramStateRef state, 83 const Expr *Size, 84 const Expr *Source, 85 const Expr *Dest, 86 bool Restricted = false, 87 bool IsMempcpy = false) const; 88 89 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 90 91 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 92 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 93 void evalstrLengthCommon(CheckerContext &C, 94 const CallExpr *CE, 95 bool IsStrnlen = false) const; 96 97 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 98 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 101 void evalStrcpyCommon(CheckerContext &C, 102 const CallExpr *CE, 103 bool returnEnd, 104 bool isBounded, 105 bool isAppending, 106 bool returnPtr = true) const; 107 108 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 109 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 110 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 111 112 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 114 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 115 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 116 void evalStrcmpCommon(CheckerContext &C, 117 const CallExpr *CE, 118 bool isBounded = false, 119 bool ignoreCase = false) const; 120 121 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 122 123 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 124 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 125 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 126 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 127 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 128 129 // Utility methods 130 std::pair<ProgramStateRef , ProgramStateRef > 131 static assumeZero(CheckerContext &C, 132 ProgramStateRef state, SVal V, QualType Ty); 133 134 static ProgramStateRef setCStringLength(ProgramStateRef state, 135 const MemRegion *MR, 136 SVal strLength); 137 static SVal getCStringLengthForRegion(CheckerContext &C, 138 ProgramStateRef &state, 139 const Expr *Ex, 140 const MemRegion *MR, 141 bool hypothetical); 142 SVal getCStringLength(CheckerContext &C, 143 ProgramStateRef &state, 144 const Expr *Ex, 145 SVal Buf, 146 bool hypothetical = false) const; 147 148 const StringLiteral *getCStringLiteral(CheckerContext &C, 149 ProgramStateRef &state, 150 const Expr *expr, 151 SVal val) const; 152 153 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 154 ProgramStateRef state, 155 const Expr *Ex, SVal V, 156 bool IsSourceBuffer, 157 const Expr *Size); 158 159 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 160 const MemRegion *MR); 161 162 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 163 const Expr *Size, CheckerContext &C, 164 ProgramStateRef &State); 165 166 // Re-usable checks 167 ProgramStateRef checkNonNull(CheckerContext &C, 168 ProgramStateRef state, 169 const Expr *S, 170 SVal l) const; 171 ProgramStateRef CheckLocation(CheckerContext &C, 172 ProgramStateRef state, 173 const Expr *S, 174 SVal l, 175 const char *message = nullptr) const; 176 ProgramStateRef CheckBufferAccess(CheckerContext &C, 177 ProgramStateRef state, 178 const Expr *Size, 179 const Expr *FirstBuf, 180 const Expr *SecondBuf, 181 const char *firstMessage = nullptr, 182 const char *secondMessage = nullptr, 183 bool WarnAboutSize = false) const; 184 185 ProgramStateRef CheckBufferAccess(CheckerContext &C, 186 ProgramStateRef state, 187 const Expr *Size, 188 const Expr *Buf, 189 const char *message = nullptr, 190 bool WarnAboutSize = false) const { 191 // This is a convenience override. 192 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 193 WarnAboutSize); 194 } 195 ProgramStateRef CheckOverlap(CheckerContext &C, 196 ProgramStateRef state, 197 const Expr *Size, 198 const Expr *First, 199 const Expr *Second) const; 200 void emitOverlapBug(CheckerContext &C, 201 ProgramStateRef state, 202 const Stmt *First, 203 const Stmt *Second) const; 204 205 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 206 StringRef WarningMsg) const; 207 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 208 const Stmt *S, StringRef WarningMsg) const; 209 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 210 const Stmt *S, StringRef WarningMsg) const; 211 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 212 213 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 214 ProgramStateRef state, 215 NonLoc left, 216 NonLoc right) const; 217 218 // Return true if the destination buffer of the copy function may be in bound. 219 // Expects SVal of Size to be positive and unsigned. 220 // Expects SVal of FirstBuf to be a FieldRegion. 221 static bool IsFirstBufInBound(CheckerContext &C, 222 ProgramStateRef state, 223 const Expr *FirstBuf, 224 const Expr *Size); 225 }; 226 227 } //end anonymous namespace 228 229 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 230 231 //===----------------------------------------------------------------------===// 232 // Individual checks and utility methods. 233 //===----------------------------------------------------------------------===// 234 235 std::pair<ProgramStateRef , ProgramStateRef > 236 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 237 QualType Ty) { 238 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 239 if (!val) 240 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 241 242 SValBuilder &svalBuilder = C.getSValBuilder(); 243 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 244 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 245 } 246 247 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 248 ProgramStateRef state, 249 const Expr *S, SVal l) const { 250 // If a previous check has failed, propagate the failure. 251 if (!state) 252 return nullptr; 253 254 ProgramStateRef stateNull, stateNonNull; 255 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 256 257 if (stateNull && !stateNonNull) { 258 if (Filter.CheckCStringNullArg) { 259 SmallString<80> buf; 260 llvm::raw_svector_ostream os(buf); 261 assert(CurrentFunctionDescription); 262 os << "Null pointer argument in call to " << CurrentFunctionDescription; 263 264 emitNullArgBug(C, stateNull, S, os.str()); 265 } 266 return nullptr; 267 } 268 269 // From here on, assume that the value is non-null. 270 assert(stateNonNull); 271 return stateNonNull; 272 } 273 274 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 275 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 276 ProgramStateRef state, 277 const Expr *S, SVal l, 278 const char *warningMsg) const { 279 // If a previous check has failed, propagate the failure. 280 if (!state) 281 return nullptr; 282 283 // Check for out of bound array element access. 284 const MemRegion *R = l.getAsRegion(); 285 if (!R) 286 return state; 287 288 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 289 if (!ER) 290 return state; 291 292 if (ER->getValueType() != C.getASTContext().CharTy) 293 return state; 294 295 // Get the size of the array. 296 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 297 SValBuilder &svalBuilder = C.getSValBuilder(); 298 SVal Extent = 299 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 300 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 301 302 // Get the index of the accessed element. 303 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 304 305 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 306 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 307 if (StOutBound && !StInBound) { 308 // These checks are either enabled by the CString out-of-bounds checker 309 // explicitly or implicitly by the Malloc checker. 310 // In the latter case we only do modeling but do not emit warning. 311 if (!Filter.CheckCStringOutOfBounds) 312 return nullptr; 313 // Emit a bug report. 314 if (warningMsg) { 315 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 316 } else { 317 assert(CurrentFunctionDescription); 318 assert(CurrentFunctionDescription[0] != '\0'); 319 320 SmallString<80> buf; 321 llvm::raw_svector_ostream os(buf); 322 os << toUppercase(CurrentFunctionDescription[0]) 323 << &CurrentFunctionDescription[1] 324 << " accesses out-of-bound array element"; 325 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 326 } 327 return nullptr; 328 } 329 330 // Array bound check succeeded. From this point forward the array bound 331 // should always succeed. 332 return StInBound; 333 } 334 335 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 336 ProgramStateRef state, 337 const Expr *Size, 338 const Expr *FirstBuf, 339 const Expr *SecondBuf, 340 const char *firstMessage, 341 const char *secondMessage, 342 bool WarnAboutSize) const { 343 // If a previous check has failed, propagate the failure. 344 if (!state) 345 return nullptr; 346 347 SValBuilder &svalBuilder = C.getSValBuilder(); 348 ASTContext &Ctx = svalBuilder.getContext(); 349 const LocationContext *LCtx = C.getLocationContext(); 350 351 QualType sizeTy = Size->getType(); 352 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 353 354 // Check that the first buffer is non-null. 355 SVal BufVal = C.getSVal(FirstBuf); 356 state = checkNonNull(C, state, FirstBuf, BufVal); 357 if (!state) 358 return nullptr; 359 360 // If out-of-bounds checking is turned off, skip the rest. 361 if (!Filter.CheckCStringOutOfBounds) 362 return state; 363 364 // Get the access length and make sure it is known. 365 // FIXME: This assumes the caller has already checked that the access length 366 // is positive. And that it's unsigned. 367 SVal LengthVal = C.getSVal(Size); 368 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 369 if (!Length) 370 return state; 371 372 // Compute the offset of the last element to be accessed: size-1. 373 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 374 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 375 if (Offset.isUnknown()) 376 return nullptr; 377 NonLoc LastOffset = Offset.castAs<NonLoc>(); 378 379 // Check that the first buffer is sufficiently long. 380 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 381 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 382 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 383 384 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 385 LastOffset, PtrTy); 386 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 387 388 // If the buffer isn't large enough, abort. 389 if (!state) 390 return nullptr; 391 } 392 393 // If there's a second buffer, check it as well. 394 if (SecondBuf) { 395 BufVal = state->getSVal(SecondBuf, LCtx); 396 state = checkNonNull(C, state, SecondBuf, BufVal); 397 if (!state) 398 return nullptr; 399 400 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 401 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 402 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 403 404 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 405 LastOffset, PtrTy); 406 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 407 } 408 } 409 410 // Large enough or not, return this state! 411 return state; 412 } 413 414 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 415 ProgramStateRef state, 416 const Expr *Size, 417 const Expr *First, 418 const Expr *Second) const { 419 if (!Filter.CheckCStringBufferOverlap) 420 return state; 421 422 // Do a simple check for overlap: if the two arguments are from the same 423 // buffer, see if the end of the first is greater than the start of the second 424 // or vice versa. 425 426 // If a previous check has failed, propagate the failure. 427 if (!state) 428 return nullptr; 429 430 ProgramStateRef stateTrue, stateFalse; 431 432 // Get the buffer values and make sure they're known locations. 433 const LocationContext *LCtx = C.getLocationContext(); 434 SVal firstVal = state->getSVal(First, LCtx); 435 SVal secondVal = state->getSVal(Second, LCtx); 436 437 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 438 if (!firstLoc) 439 return state; 440 441 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 442 if (!secondLoc) 443 return state; 444 445 // Are the two values the same? 446 SValBuilder &svalBuilder = C.getSValBuilder(); 447 std::tie(stateTrue, stateFalse) = 448 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 449 450 if (stateTrue && !stateFalse) { 451 // If the values are known to be equal, that's automatically an overlap. 452 emitOverlapBug(C, stateTrue, First, Second); 453 return nullptr; 454 } 455 456 // assume the two expressions are not equal. 457 assert(stateFalse); 458 state = stateFalse; 459 460 // Which value comes first? 461 QualType cmpTy = svalBuilder.getConditionType(); 462 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 463 *firstLoc, *secondLoc, cmpTy); 464 Optional<DefinedOrUnknownSVal> reverseTest = 465 reverse.getAs<DefinedOrUnknownSVal>(); 466 if (!reverseTest) 467 return state; 468 469 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 470 if (stateTrue) { 471 if (stateFalse) { 472 // If we don't know which one comes first, we can't perform this test. 473 return state; 474 } else { 475 // Switch the values so that firstVal is before secondVal. 476 std::swap(firstLoc, secondLoc); 477 478 // Switch the Exprs as well, so that they still correspond. 479 std::swap(First, Second); 480 } 481 } 482 483 // Get the length, and make sure it too is known. 484 SVal LengthVal = state->getSVal(Size, LCtx); 485 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 486 if (!Length) 487 return state; 488 489 // Convert the first buffer's start address to char*. 490 // Bail out if the cast fails. 491 ASTContext &Ctx = svalBuilder.getContext(); 492 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 493 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 494 First->getType()); 495 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 496 if (!FirstStartLoc) 497 return state; 498 499 // Compute the end of the first buffer. Bail out if THAT fails. 500 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 501 *FirstStartLoc, *Length, CharPtrTy); 502 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 503 if (!FirstEndLoc) 504 return state; 505 506 // Is the end of the first buffer past the start of the second buffer? 507 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 508 *FirstEndLoc, *secondLoc, cmpTy); 509 Optional<DefinedOrUnknownSVal> OverlapTest = 510 Overlap.getAs<DefinedOrUnknownSVal>(); 511 if (!OverlapTest) 512 return state; 513 514 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 515 516 if (stateTrue && !stateFalse) { 517 // Overlap! 518 emitOverlapBug(C, stateTrue, First, Second); 519 return nullptr; 520 } 521 522 // assume the two expressions don't overlap. 523 assert(stateFalse); 524 return stateFalse; 525 } 526 527 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 528 const Stmt *First, const Stmt *Second) const { 529 ExplodedNode *N = C.generateErrorNode(state); 530 if (!N) 531 return; 532 533 if (!BT_Overlap) 534 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 535 categories::UnixAPI, "Improper arguments")); 536 537 // Generate a report for this bug. 538 auto report = llvm::make_unique<BugReport>( 539 *BT_Overlap, "Arguments must not be overlapping buffers", N); 540 report->addRange(First->getSourceRange()); 541 report->addRange(Second->getSourceRange()); 542 543 C.emitReport(std::move(report)); 544 } 545 546 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 547 const Stmt *S, StringRef WarningMsg) const { 548 if (ExplodedNode *N = C.generateErrorNode(State)) { 549 if (!BT_Null) 550 BT_Null.reset(new BuiltinBug( 551 Filter.CheckNameCStringNullArg, categories::UnixAPI, 552 "Null pointer argument in call to byte string function")); 553 554 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 555 auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N); 556 Report->addRange(S->getSourceRange()); 557 if (const auto *Ex = dyn_cast<Expr>(S)) 558 bugreporter::trackExpressionValue(N, Ex, *Report); 559 C.emitReport(std::move(Report)); 560 } 561 } 562 563 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 564 ProgramStateRef State, const Stmt *S, 565 StringRef WarningMsg) const { 566 if (ExplodedNode *N = C.generateErrorNode(State)) { 567 if (!BT_Bounds) 568 BT_Bounds.reset(new BuiltinBug( 569 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 570 : Filter.CheckNameCStringNullArg, 571 "Out-of-bound array access", 572 "Byte string function accesses out-of-bound array element")); 573 574 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 575 576 // FIXME: It would be nice to eventually make this diagnostic more clear, 577 // e.g., by referencing the original declaration or by saying *why* this 578 // reference is outside the range. 579 auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N); 580 Report->addRange(S->getSourceRange()); 581 C.emitReport(std::move(Report)); 582 } 583 } 584 585 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 586 const Stmt *S, 587 StringRef WarningMsg) const { 588 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 589 if (!BT_NotCString) 590 BT_NotCString.reset(new BuiltinBug( 591 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 592 "Argument is not a null-terminated string.")); 593 594 auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 595 596 Report->addRange(S->getSourceRange()); 597 C.emitReport(std::move(Report)); 598 } 599 } 600 601 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 602 ProgramStateRef State) const { 603 if (ExplodedNode *N = C.generateErrorNode(State)) { 604 if (!BT_NotCString) 605 BT_NotCString.reset( 606 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 607 "Sum of expressions causes overflow.")); 608 609 // This isn't a great error message, but this should never occur in real 610 // code anyway -- you'd have to create a buffer longer than a size_t can 611 // represent, which is sort of a contradiction. 612 const char *WarningMsg = 613 "This expression will create a string whose length is too big to " 614 "be represented as a size_t"; 615 616 auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 617 C.emitReport(std::move(Report)); 618 } 619 } 620 621 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 622 ProgramStateRef state, 623 NonLoc left, 624 NonLoc right) const { 625 // If out-of-bounds checking is turned off, skip the rest. 626 if (!Filter.CheckCStringOutOfBounds) 627 return state; 628 629 // If a previous check has failed, propagate the failure. 630 if (!state) 631 return nullptr; 632 633 SValBuilder &svalBuilder = C.getSValBuilder(); 634 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 635 636 QualType sizeTy = svalBuilder.getContext().getSizeType(); 637 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 638 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 639 640 SVal maxMinusRight; 641 if (right.getAs<nonloc::ConcreteInt>()) { 642 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 643 sizeTy); 644 } else { 645 // Try switching the operands. (The order of these two assignments is 646 // important!) 647 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 648 sizeTy); 649 left = right; 650 } 651 652 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 653 QualType cmpTy = svalBuilder.getConditionType(); 654 // If left > max - right, we have an overflow. 655 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 656 *maxMinusRightNL, cmpTy); 657 658 ProgramStateRef stateOverflow, stateOkay; 659 std::tie(stateOverflow, stateOkay) = 660 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 661 662 if (stateOverflow && !stateOkay) { 663 // We have an overflow. Emit a bug report. 664 emitAdditionOverflowBug(C, stateOverflow); 665 return nullptr; 666 } 667 668 // From now on, assume an overflow didn't occur. 669 assert(stateOkay); 670 state = stateOkay; 671 } 672 673 return state; 674 } 675 676 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 677 const MemRegion *MR, 678 SVal strLength) { 679 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 680 681 MR = MR->StripCasts(); 682 683 switch (MR->getKind()) { 684 case MemRegion::StringRegionKind: 685 // FIXME: This can happen if we strcpy() into a string region. This is 686 // undefined [C99 6.4.5p6], but we should still warn about it. 687 return state; 688 689 case MemRegion::SymbolicRegionKind: 690 case MemRegion::AllocaRegionKind: 691 case MemRegion::VarRegionKind: 692 case MemRegion::FieldRegionKind: 693 case MemRegion::ObjCIvarRegionKind: 694 // These are the types we can currently track string lengths for. 695 break; 696 697 case MemRegion::ElementRegionKind: 698 // FIXME: Handle element regions by upper-bounding the parent region's 699 // string length. 700 return state; 701 702 default: 703 // Other regions (mostly non-data) can't have a reliable C string length. 704 // For now, just ignore the change. 705 // FIXME: These are rare but not impossible. We should output some kind of 706 // warning for things like strcpy((char[]){'a', 0}, "b"); 707 return state; 708 } 709 710 if (strLength.isUnknown()) 711 return state->remove<CStringLength>(MR); 712 713 return state->set<CStringLength>(MR, strLength); 714 } 715 716 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 717 ProgramStateRef &state, 718 const Expr *Ex, 719 const MemRegion *MR, 720 bool hypothetical) { 721 if (!hypothetical) { 722 // If there's a recorded length, go ahead and return it. 723 const SVal *Recorded = state->get<CStringLength>(MR); 724 if (Recorded) 725 return *Recorded; 726 } 727 728 // Otherwise, get a new symbol and update the state. 729 SValBuilder &svalBuilder = C.getSValBuilder(); 730 QualType sizeTy = svalBuilder.getContext().getSizeType(); 731 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 732 MR, Ex, sizeTy, 733 C.getLocationContext(), 734 C.blockCount()); 735 736 if (!hypothetical) { 737 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 738 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 739 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 740 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 741 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 742 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 743 fourInt); 744 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 745 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 746 maxLength, sizeTy); 747 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 748 } 749 state = state->set<CStringLength>(MR, strLength); 750 } 751 752 return strLength; 753 } 754 755 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 756 const Expr *Ex, SVal Buf, 757 bool hypothetical) const { 758 const MemRegion *MR = Buf.getAsRegion(); 759 if (!MR) { 760 // If we can't get a region, see if it's something we /know/ isn't a 761 // C string. In the context of locations, the only time we can issue such 762 // a warning is for labels. 763 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 764 if (Filter.CheckCStringNotNullTerm) { 765 SmallString<120> buf; 766 llvm::raw_svector_ostream os(buf); 767 assert(CurrentFunctionDescription); 768 os << "Argument to " << CurrentFunctionDescription 769 << " is the address of the label '" << Label->getLabel()->getName() 770 << "', which is not a null-terminated string"; 771 772 emitNotCStringBug(C, state, Ex, os.str()); 773 } 774 return UndefinedVal(); 775 } 776 777 // If it's not a region and not a label, give up. 778 return UnknownVal(); 779 } 780 781 // If we have a region, strip casts from it and see if we can figure out 782 // its length. For anything we can't figure out, just return UnknownVal. 783 MR = MR->StripCasts(); 784 785 switch (MR->getKind()) { 786 case MemRegion::StringRegionKind: { 787 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 788 // so we can assume that the byte length is the correct C string length. 789 SValBuilder &svalBuilder = C.getSValBuilder(); 790 QualType sizeTy = svalBuilder.getContext().getSizeType(); 791 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 792 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 793 } 794 case MemRegion::SymbolicRegionKind: 795 case MemRegion::AllocaRegionKind: 796 case MemRegion::VarRegionKind: 797 case MemRegion::FieldRegionKind: 798 case MemRegion::ObjCIvarRegionKind: 799 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 800 case MemRegion::CompoundLiteralRegionKind: 801 // FIXME: Can we track this? Is it necessary? 802 return UnknownVal(); 803 case MemRegion::ElementRegionKind: 804 // FIXME: How can we handle this? It's not good enough to subtract the 805 // offset from the base string length; consider "123\x00567" and &a[5]. 806 return UnknownVal(); 807 default: 808 // Other regions (mostly non-data) can't have a reliable C string length. 809 // In this case, an error is emitted and UndefinedVal is returned. 810 // The caller should always be prepared to handle this case. 811 if (Filter.CheckCStringNotNullTerm) { 812 SmallString<120> buf; 813 llvm::raw_svector_ostream os(buf); 814 815 assert(CurrentFunctionDescription); 816 os << "Argument to " << CurrentFunctionDescription << " is "; 817 818 if (SummarizeRegion(os, C.getASTContext(), MR)) 819 os << ", which is not a null-terminated string"; 820 else 821 os << "not a null-terminated string"; 822 823 emitNotCStringBug(C, state, Ex, os.str()); 824 } 825 return UndefinedVal(); 826 } 827 } 828 829 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 830 ProgramStateRef &state, const Expr *expr, SVal val) const { 831 832 // Get the memory region pointed to by the val. 833 const MemRegion *bufRegion = val.getAsRegion(); 834 if (!bufRegion) 835 return nullptr; 836 837 // Strip casts off the memory region. 838 bufRegion = bufRegion->StripCasts(); 839 840 // Cast the memory region to a string region. 841 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 842 if (!strRegion) 843 return nullptr; 844 845 // Return the actual string in the string region. 846 return strRegion->getStringLiteral(); 847 } 848 849 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 850 ProgramStateRef state, 851 const Expr *FirstBuf, 852 const Expr *Size) { 853 // If we do not know that the buffer is long enough we return 'true'. 854 // Otherwise the parent region of this field region would also get 855 // invalidated, which would lead to warnings based on an unknown state. 856 857 // Originally copied from CheckBufferAccess and CheckLocation. 858 SValBuilder &svalBuilder = C.getSValBuilder(); 859 ASTContext &Ctx = svalBuilder.getContext(); 860 const LocationContext *LCtx = C.getLocationContext(); 861 862 QualType sizeTy = Size->getType(); 863 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 864 SVal BufVal = state->getSVal(FirstBuf, LCtx); 865 866 SVal LengthVal = state->getSVal(Size, LCtx); 867 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 868 if (!Length) 869 return true; // cf top comment. 870 871 // Compute the offset of the last element to be accessed: size-1. 872 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 873 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 874 if (Offset.isUnknown()) 875 return true; // cf top comment 876 NonLoc LastOffset = Offset.castAs<NonLoc>(); 877 878 // Check that the first buffer is sufficiently long. 879 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 880 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 881 if (!BufLoc) 882 return true; // cf top comment. 883 884 SVal BufEnd = 885 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 886 887 // Check for out of bound array element access. 888 const MemRegion *R = BufEnd.getAsRegion(); 889 if (!R) 890 return true; // cf top comment. 891 892 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 893 if (!ER) 894 return true; // cf top comment. 895 896 // FIXME: Does this crash when a non-standard definition 897 // of a library function is encountered? 898 assert(ER->getValueType() == C.getASTContext().CharTy && 899 "IsFirstBufInBound should only be called with char* ElementRegions"); 900 901 // Get the size of the array. 902 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 903 SVal Extent = 904 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 905 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 906 907 // Get the index of the accessed element. 908 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 909 910 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 911 912 return static_cast<bool>(StInBound); 913 } 914 915 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 916 ProgramStateRef state, 917 const Expr *E, SVal V, 918 bool IsSourceBuffer, 919 const Expr *Size) { 920 Optional<Loc> L = V.getAs<Loc>(); 921 if (!L) 922 return state; 923 924 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 925 // some assumptions about the value that CFRefCount can't. Even so, it should 926 // probably be refactored. 927 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 928 const MemRegion *R = MR->getRegion()->StripCasts(); 929 930 // Are we dealing with an ElementRegion? If so, we should be invalidating 931 // the super-region. 932 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 933 R = ER->getSuperRegion(); 934 // FIXME: What about layers of ElementRegions? 935 } 936 937 // Invalidate this region. 938 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 939 940 bool CausesPointerEscape = false; 941 RegionAndSymbolInvalidationTraits ITraits; 942 // Invalidate and escape only indirect regions accessible through the source 943 // buffer. 944 if (IsSourceBuffer) { 945 ITraits.setTrait(R->getBaseRegion(), 946 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 947 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 948 CausesPointerEscape = true; 949 } else { 950 const MemRegion::Kind& K = R->getKind(); 951 if (K == MemRegion::FieldRegionKind) 952 if (Size && IsFirstBufInBound(C, state, E, Size)) { 953 // If destination buffer is a field region and access is in bound, 954 // do not invalidate its super region. 955 ITraits.setTrait( 956 R, 957 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 958 } 959 } 960 961 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 962 CausesPointerEscape, nullptr, nullptr, 963 &ITraits); 964 } 965 966 // If we have a non-region value by chance, just remove the binding. 967 // FIXME: is this necessary or correct? This handles the non-Region 968 // cases. Is it ever valid to store to these? 969 return state->killBinding(*L); 970 } 971 972 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 973 const MemRegion *MR) { 974 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 975 976 switch (MR->getKind()) { 977 case MemRegion::FunctionCodeRegionKind: { 978 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 979 if (FD) 980 os << "the address of the function '" << *FD << '\''; 981 else 982 os << "the address of a function"; 983 return true; 984 } 985 case MemRegion::BlockCodeRegionKind: 986 os << "block text"; 987 return true; 988 case MemRegion::BlockDataRegionKind: 989 os << "a block"; 990 return true; 991 case MemRegion::CXXThisRegionKind: 992 case MemRegion::CXXTempObjectRegionKind: 993 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 994 return true; 995 case MemRegion::VarRegionKind: 996 os << "a variable of type" << TVR->getValueType().getAsString(); 997 return true; 998 case MemRegion::FieldRegionKind: 999 os << "a field of type " << TVR->getValueType().getAsString(); 1000 return true; 1001 case MemRegion::ObjCIvarRegionKind: 1002 os << "an instance variable of type " << TVR->getValueType().getAsString(); 1003 return true; 1004 default: 1005 return false; 1006 } 1007 } 1008 1009 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1010 const Expr *Size, CheckerContext &C, 1011 ProgramStateRef &State) { 1012 SVal MemVal = C.getSVal(DstBuffer); 1013 SVal SizeVal = C.getSVal(Size); 1014 const MemRegion *MR = MemVal.getAsRegion(); 1015 if (!MR) 1016 return false; 1017 1018 // We're about to model memset by producing a "default binding" in the Store. 1019 // Our current implementation - RegionStore - doesn't support default bindings 1020 // that don't cover the whole base region. So we should first get the offset 1021 // and the base region to figure out whether the offset of buffer is 0. 1022 RegionOffset Offset = MR->getAsOffset(); 1023 const MemRegion *BR = Offset.getRegion(); 1024 1025 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1026 if (!SizeNL) 1027 return false; 1028 1029 SValBuilder &svalBuilder = C.getSValBuilder(); 1030 ASTContext &Ctx = C.getASTContext(); 1031 1032 // void *memset(void *dest, int ch, size_t count); 1033 // For now we can only handle the case of offset is 0 and concrete char value. 1034 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1035 Offset.getOffset() == 0) { 1036 // Get the base region's extent. 1037 auto *SubReg = cast<SubRegion>(BR); 1038 DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); 1039 1040 ProgramStateRef StateWholeReg, StateNotWholeReg; 1041 std::tie(StateWholeReg, StateNotWholeReg) = 1042 State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); 1043 1044 // With the semantic of 'memset()', we should convert the CharVal to 1045 // unsigned char. 1046 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1047 1048 ProgramStateRef StateNullChar, StateNonNullChar; 1049 std::tie(StateNullChar, StateNonNullChar) = 1050 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1051 1052 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1053 !StateNonNullChar) { 1054 // If the 'memset()' acts on the whole region of destination buffer and 1055 // the value of the second argument of 'memset()' is zero, bind the second 1056 // argument's value to the destination buffer with 'default binding'. 1057 // FIXME: Since there is no perfect way to bind the non-zero character, we 1058 // can only deal with zero value here. In the future, we need to deal with 1059 // the binding of non-zero value in the case of whole region. 1060 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1061 C.getLocationContext()); 1062 } else { 1063 // If the destination buffer's extent is not equal to the value of 1064 // third argument, just invalidate buffer. 1065 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1066 /*IsSourceBuffer*/ false, Size); 1067 } 1068 1069 if (StateNullChar && !StateNonNullChar) { 1070 // If the value of the second argument of 'memset()' is zero, set the 1071 // string length of destination buffer to 0 directly. 1072 State = setCStringLength(State, MR, 1073 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1074 } else if (!StateNullChar && StateNonNullChar) { 1075 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1076 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1077 C.getLocationContext(), C.blockCount()); 1078 1079 // If the value of second argument is not zero, then the string length 1080 // is at least the size argument. 1081 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1082 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1083 1084 State = setCStringLength( 1085 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1086 MR, NewStrLen); 1087 } 1088 } else { 1089 // If the offset is not zero and char value is not concrete, we can do 1090 // nothing but invalidate the buffer. 1091 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1092 /*IsSourceBuffer*/ false, Size); 1093 } 1094 return true; 1095 } 1096 1097 //===----------------------------------------------------------------------===// 1098 // evaluation of individual function calls. 1099 //===----------------------------------------------------------------------===// 1100 1101 void CStringChecker::evalCopyCommon(CheckerContext &C, 1102 const CallExpr *CE, 1103 ProgramStateRef state, 1104 const Expr *Size, const Expr *Dest, 1105 const Expr *Source, bool Restricted, 1106 bool IsMempcpy) const { 1107 CurrentFunctionDescription = "memory copy function"; 1108 1109 // See if the size argument is zero. 1110 const LocationContext *LCtx = C.getLocationContext(); 1111 SVal sizeVal = state->getSVal(Size, LCtx); 1112 QualType sizeTy = Size->getType(); 1113 1114 ProgramStateRef stateZeroSize, stateNonZeroSize; 1115 std::tie(stateZeroSize, stateNonZeroSize) = 1116 assumeZero(C, state, sizeVal, sizeTy); 1117 1118 // Get the value of the Dest. 1119 SVal destVal = state->getSVal(Dest, LCtx); 1120 1121 // If the size is zero, there won't be any actual memory access, so 1122 // just bind the return value to the destination buffer and return. 1123 if (stateZeroSize && !stateNonZeroSize) { 1124 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1125 C.addTransition(stateZeroSize); 1126 return; 1127 } 1128 1129 // If the size can be nonzero, we have to check the other arguments. 1130 if (stateNonZeroSize) { 1131 state = stateNonZeroSize; 1132 1133 // Ensure the destination is not null. If it is NULL there will be a 1134 // NULL pointer dereference. 1135 state = checkNonNull(C, state, Dest, destVal); 1136 if (!state) 1137 return; 1138 1139 // Get the value of the Src. 1140 SVal srcVal = state->getSVal(Source, LCtx); 1141 1142 // Ensure the source is not null. If it is NULL there will be a 1143 // NULL pointer dereference. 1144 state = checkNonNull(C, state, Source, srcVal); 1145 if (!state) 1146 return; 1147 1148 // Ensure the accesses are valid and that the buffers do not overlap. 1149 const char * const writeWarning = 1150 "Memory copy function overflows destination buffer"; 1151 state = CheckBufferAccess(C, state, Size, Dest, Source, 1152 writeWarning, /* sourceWarning = */ nullptr); 1153 if (Restricted) 1154 state = CheckOverlap(C, state, Size, Dest, Source); 1155 1156 if (!state) 1157 return; 1158 1159 // If this is mempcpy, get the byte after the last byte copied and 1160 // bind the expr. 1161 if (IsMempcpy) { 1162 // Get the byte after the last byte copied. 1163 SValBuilder &SvalBuilder = C.getSValBuilder(); 1164 ASTContext &Ctx = SvalBuilder.getContext(); 1165 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1166 SVal DestRegCharVal = 1167 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1168 SVal lastElement = C.getSValBuilder().evalBinOp( 1169 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1170 // If we don't know how much we copied, we can at least 1171 // conjure a return value for later. 1172 if (lastElement.isUnknown()) 1173 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1174 C.blockCount()); 1175 1176 // The byte after the last byte copied is the return value. 1177 state = state->BindExpr(CE, LCtx, lastElement); 1178 } else { 1179 // All other copies return the destination buffer. 1180 // (Well, bcopy() has a void return type, but this won't hurt.) 1181 state = state->BindExpr(CE, LCtx, destVal); 1182 } 1183 1184 // Invalidate the destination (regular invalidation without pointer-escaping 1185 // the address of the top-level region). 1186 // FIXME: Even if we can't perfectly model the copy, we should see if we 1187 // can use LazyCompoundVals to copy the source values into the destination. 1188 // This would probably remove any existing bindings past the end of the 1189 // copied region, but that's still an improvement over blank invalidation. 1190 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1191 /*IsSourceBuffer*/false, Size); 1192 1193 // Invalidate the source (const-invalidation without const-pointer-escaping 1194 // the address of the top-level region). 1195 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1196 /*IsSourceBuffer*/true, nullptr); 1197 1198 C.addTransition(state); 1199 } 1200 } 1201 1202 1203 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1204 if (CE->getNumArgs() < 3) 1205 return; 1206 1207 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1208 // The return value is the address of the destination buffer. 1209 const Expr *Dest = CE->getArg(0); 1210 ProgramStateRef state = C.getState(); 1211 1212 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1213 } 1214 1215 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1216 if (CE->getNumArgs() < 3) 1217 return; 1218 1219 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1220 // The return value is a pointer to the byte following the last written byte. 1221 const Expr *Dest = CE->getArg(0); 1222 ProgramStateRef state = C.getState(); 1223 1224 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1225 } 1226 1227 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1228 if (CE->getNumArgs() < 3) 1229 return; 1230 1231 // void *memmove(void *dst, const void *src, size_t n); 1232 // The return value is the address of the destination buffer. 1233 const Expr *Dest = CE->getArg(0); 1234 ProgramStateRef state = C.getState(); 1235 1236 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1237 } 1238 1239 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1240 if (CE->getNumArgs() < 3) 1241 return; 1242 1243 // void bcopy(const void *src, void *dst, size_t n); 1244 evalCopyCommon(C, CE, C.getState(), 1245 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1246 } 1247 1248 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1249 if (CE->getNumArgs() < 3) 1250 return; 1251 1252 // int memcmp(const void *s1, const void *s2, size_t n); 1253 CurrentFunctionDescription = "memory comparison function"; 1254 1255 const Expr *Left = CE->getArg(0); 1256 const Expr *Right = CE->getArg(1); 1257 const Expr *Size = CE->getArg(2); 1258 1259 ProgramStateRef state = C.getState(); 1260 SValBuilder &svalBuilder = C.getSValBuilder(); 1261 1262 // See if the size argument is zero. 1263 const LocationContext *LCtx = C.getLocationContext(); 1264 SVal sizeVal = state->getSVal(Size, LCtx); 1265 QualType sizeTy = Size->getType(); 1266 1267 ProgramStateRef stateZeroSize, stateNonZeroSize; 1268 std::tie(stateZeroSize, stateNonZeroSize) = 1269 assumeZero(C, state, sizeVal, sizeTy); 1270 1271 // If the size can be zero, the result will be 0 in that case, and we don't 1272 // have to check either of the buffers. 1273 if (stateZeroSize) { 1274 state = stateZeroSize; 1275 state = state->BindExpr(CE, LCtx, 1276 svalBuilder.makeZeroVal(CE->getType())); 1277 C.addTransition(state); 1278 } 1279 1280 // If the size can be nonzero, we have to check the other arguments. 1281 if (stateNonZeroSize) { 1282 state = stateNonZeroSize; 1283 // If we know the two buffers are the same, we know the result is 0. 1284 // First, get the two buffers' addresses. Another checker will have already 1285 // made sure they're not undefined. 1286 DefinedOrUnknownSVal LV = 1287 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1288 DefinedOrUnknownSVal RV = 1289 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1290 1291 // See if they are the same. 1292 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1293 ProgramStateRef StSameBuf, StNotSameBuf; 1294 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1295 1296 // If the two arguments might be the same buffer, we know the result is 0, 1297 // and we only need to check one size. 1298 if (StSameBuf) { 1299 state = StSameBuf; 1300 state = CheckBufferAccess(C, state, Size, Left); 1301 if (state) { 1302 state = StSameBuf->BindExpr(CE, LCtx, 1303 svalBuilder.makeZeroVal(CE->getType())); 1304 C.addTransition(state); 1305 } 1306 } 1307 1308 // If the two arguments might be different buffers, we have to check the 1309 // size of both of them. 1310 if (StNotSameBuf) { 1311 state = StNotSameBuf; 1312 state = CheckBufferAccess(C, state, Size, Left, Right); 1313 if (state) { 1314 // The return value is the comparison result, which we don't know. 1315 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1316 C.blockCount()); 1317 state = state->BindExpr(CE, LCtx, CmpV); 1318 C.addTransition(state); 1319 } 1320 } 1321 } 1322 } 1323 1324 void CStringChecker::evalstrLength(CheckerContext &C, 1325 const CallExpr *CE) const { 1326 if (CE->getNumArgs() < 1) 1327 return; 1328 1329 // size_t strlen(const char *s); 1330 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1331 } 1332 1333 void CStringChecker::evalstrnLength(CheckerContext &C, 1334 const CallExpr *CE) const { 1335 if (CE->getNumArgs() < 2) 1336 return; 1337 1338 // size_t strnlen(const char *s, size_t maxlen); 1339 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1340 } 1341 1342 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1343 bool IsStrnlen) const { 1344 CurrentFunctionDescription = "string length function"; 1345 ProgramStateRef state = C.getState(); 1346 const LocationContext *LCtx = C.getLocationContext(); 1347 1348 if (IsStrnlen) { 1349 const Expr *maxlenExpr = CE->getArg(1); 1350 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1351 1352 ProgramStateRef stateZeroSize, stateNonZeroSize; 1353 std::tie(stateZeroSize, stateNonZeroSize) = 1354 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1355 1356 // If the size can be zero, the result will be 0 in that case, and we don't 1357 // have to check the string itself. 1358 if (stateZeroSize) { 1359 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1360 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1361 C.addTransition(stateZeroSize); 1362 } 1363 1364 // If the size is GUARANTEED to be zero, we're done! 1365 if (!stateNonZeroSize) 1366 return; 1367 1368 // Otherwise, record the assumption that the size is nonzero. 1369 state = stateNonZeroSize; 1370 } 1371 1372 // Check that the string argument is non-null. 1373 const Expr *Arg = CE->getArg(0); 1374 SVal ArgVal = state->getSVal(Arg, LCtx); 1375 1376 state = checkNonNull(C, state, Arg, ArgVal); 1377 1378 if (!state) 1379 return; 1380 1381 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1382 1383 // If the argument isn't a valid C string, there's no valid state to 1384 // transition to. 1385 if (strLength.isUndef()) 1386 return; 1387 1388 DefinedOrUnknownSVal result = UnknownVal(); 1389 1390 // If the check is for strnlen() then bind the return value to no more than 1391 // the maxlen value. 1392 if (IsStrnlen) { 1393 QualType cmpTy = C.getSValBuilder().getConditionType(); 1394 1395 // It's a little unfortunate to be getting this again, 1396 // but it's not that expensive... 1397 const Expr *maxlenExpr = CE->getArg(1); 1398 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1399 1400 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1401 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1402 1403 if (strLengthNL && maxlenValNL) { 1404 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1405 1406 // Check if the strLength is greater than the maxlen. 1407 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1408 C.getSValBuilder() 1409 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1410 .castAs<DefinedOrUnknownSVal>()); 1411 1412 if (stateStringTooLong && !stateStringNotTooLong) { 1413 // If the string is longer than maxlen, return maxlen. 1414 result = *maxlenValNL; 1415 } else if (stateStringNotTooLong && !stateStringTooLong) { 1416 // If the string is shorter than maxlen, return its length. 1417 result = *strLengthNL; 1418 } 1419 } 1420 1421 if (result.isUnknown()) { 1422 // If we don't have enough information for a comparison, there's 1423 // no guarantee the full string length will actually be returned. 1424 // All we know is the return value is the min of the string length 1425 // and the limit. This is better than nothing. 1426 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1427 C.blockCount()); 1428 NonLoc resultNL = result.castAs<NonLoc>(); 1429 1430 if (strLengthNL) { 1431 state = state->assume(C.getSValBuilder().evalBinOpNN( 1432 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1433 .castAs<DefinedOrUnknownSVal>(), true); 1434 } 1435 1436 if (maxlenValNL) { 1437 state = state->assume(C.getSValBuilder().evalBinOpNN( 1438 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1439 .castAs<DefinedOrUnknownSVal>(), true); 1440 } 1441 } 1442 1443 } else { 1444 // This is a plain strlen(), not strnlen(). 1445 result = strLength.castAs<DefinedOrUnknownSVal>(); 1446 1447 // If we don't know the length of the string, conjure a return 1448 // value, so it can be used in constraints, at least. 1449 if (result.isUnknown()) { 1450 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1451 C.blockCount()); 1452 } 1453 } 1454 1455 // Bind the return value. 1456 assert(!result.isUnknown() && "Should have conjured a value by now"); 1457 state = state->BindExpr(CE, LCtx, result); 1458 C.addTransition(state); 1459 } 1460 1461 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1462 if (CE->getNumArgs() < 2) 1463 return; 1464 1465 // char *strcpy(char *restrict dst, const char *restrict src); 1466 evalStrcpyCommon(C, CE, 1467 /* returnEnd = */ false, 1468 /* isBounded = */ false, 1469 /* isAppending = */ false); 1470 } 1471 1472 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1473 if (CE->getNumArgs() < 3) 1474 return; 1475 1476 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1477 evalStrcpyCommon(C, CE, 1478 /* returnEnd = */ false, 1479 /* isBounded = */ true, 1480 /* isAppending = */ false); 1481 } 1482 1483 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1484 if (CE->getNumArgs() < 2) 1485 return; 1486 1487 // char *stpcpy(char *restrict dst, const char *restrict src); 1488 evalStrcpyCommon(C, CE, 1489 /* returnEnd = */ true, 1490 /* isBounded = */ false, 1491 /* isAppending = */ false); 1492 } 1493 1494 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1495 if (CE->getNumArgs() < 3) 1496 return; 1497 1498 // char *strlcpy(char *dst, const char *src, size_t n); 1499 evalStrcpyCommon(C, CE, 1500 /* returnEnd = */ true, 1501 /* isBounded = */ true, 1502 /* isAppending = */ false, 1503 /* returnPtr = */ false); 1504 } 1505 1506 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1507 if (CE->getNumArgs() < 2) 1508 return; 1509 1510 //char *strcat(char *restrict s1, const char *restrict s2); 1511 evalStrcpyCommon(C, CE, 1512 /* returnEnd = */ false, 1513 /* isBounded = */ false, 1514 /* isAppending = */ true); 1515 } 1516 1517 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1518 if (CE->getNumArgs() < 3) 1519 return; 1520 1521 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1522 evalStrcpyCommon(C, CE, 1523 /* returnEnd = */ false, 1524 /* isBounded = */ true, 1525 /* isAppending = */ true); 1526 } 1527 1528 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1529 if (CE->getNumArgs() < 3) 1530 return; 1531 1532 //char *strlcat(char *s1, const char *s2, size_t n); 1533 evalStrcpyCommon(C, CE, 1534 /* returnEnd = */ false, 1535 /* isBounded = */ true, 1536 /* isAppending = */ true, 1537 /* returnPtr = */ false); 1538 } 1539 1540 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1541 bool returnEnd, bool isBounded, 1542 bool isAppending, bool returnPtr) const { 1543 CurrentFunctionDescription = "string copy function"; 1544 ProgramStateRef state = C.getState(); 1545 const LocationContext *LCtx = C.getLocationContext(); 1546 1547 // Check that the destination is non-null. 1548 const Expr *Dst = CE->getArg(0); 1549 SVal DstVal = state->getSVal(Dst, LCtx); 1550 1551 state = checkNonNull(C, state, Dst, DstVal); 1552 if (!state) 1553 return; 1554 1555 // Check that the source is non-null. 1556 const Expr *srcExpr = CE->getArg(1); 1557 SVal srcVal = state->getSVal(srcExpr, LCtx); 1558 state = checkNonNull(C, state, srcExpr, srcVal); 1559 if (!state) 1560 return; 1561 1562 // Get the string length of the source. 1563 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1564 1565 // If the source isn't a valid C string, give up. 1566 if (strLength.isUndef()) 1567 return; 1568 1569 SValBuilder &svalBuilder = C.getSValBuilder(); 1570 QualType cmpTy = svalBuilder.getConditionType(); 1571 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1572 1573 // These two values allow checking two kinds of errors: 1574 // - actual overflows caused by a source that doesn't fit in the destination 1575 // - potential overflows caused by a bound that could exceed the destination 1576 SVal amountCopied = UnknownVal(); 1577 SVal maxLastElementIndex = UnknownVal(); 1578 const char *boundWarning = nullptr; 1579 1580 state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr); 1581 1582 if (!state) 1583 return; 1584 1585 // If the function is strncpy, strncat, etc... it is bounded. 1586 if (isBounded) { 1587 // Get the max number of characters to copy. 1588 const Expr *lenExpr = CE->getArg(2); 1589 SVal lenVal = state->getSVal(lenExpr, LCtx); 1590 1591 // Protect against misdeclared strncpy(). 1592 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1593 1594 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1595 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1596 1597 // If we know both values, we might be able to figure out how much 1598 // we're copying. 1599 if (strLengthNL && lenValNL) { 1600 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1601 1602 // Check if the max number to copy is less than the length of the src. 1603 // If the bound is equal to the source length, strncpy won't null- 1604 // terminate the result! 1605 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1606 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1607 .castAs<DefinedOrUnknownSVal>()); 1608 1609 if (stateSourceTooLong && !stateSourceNotTooLong) { 1610 // Max number to copy is less than the length of the src, so the actual 1611 // strLength copied is the max number arg. 1612 state = stateSourceTooLong; 1613 amountCopied = lenVal; 1614 1615 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1616 // The source buffer entirely fits in the bound. 1617 state = stateSourceNotTooLong; 1618 amountCopied = strLength; 1619 } 1620 } 1621 1622 // We still want to know if the bound is known to be too large. 1623 if (lenValNL) { 1624 if (isAppending) { 1625 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1626 1627 // Get the string length of the destination. If the destination is 1628 // memory that can't have a string length, we shouldn't be copying 1629 // into it anyway. 1630 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1631 if (dstStrLength.isUndef()) 1632 return; 1633 1634 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1635 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1636 *lenValNL, 1637 *dstStrLengthNL, 1638 sizeTy); 1639 boundWarning = "Size argument is greater than the free space in the " 1640 "destination buffer"; 1641 } 1642 1643 } else { 1644 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1645 // (Yes, strncpy and strncat differ in how they treat termination. 1646 // strncat ALWAYS terminates, but strncpy doesn't.) 1647 1648 // We need a special case for when the copy size is zero, in which 1649 // case strncpy will do no work at all. Our bounds check uses n-1 1650 // as the last element accessed, so n == 0 is problematic. 1651 ProgramStateRef StateZeroSize, StateNonZeroSize; 1652 std::tie(StateZeroSize, StateNonZeroSize) = 1653 assumeZero(C, state, *lenValNL, sizeTy); 1654 1655 // If the size is known to be zero, we're done. 1656 if (StateZeroSize && !StateNonZeroSize) { 1657 if (returnPtr) { 1658 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1659 } else { 1660 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL); 1661 } 1662 C.addTransition(StateZeroSize); 1663 return; 1664 } 1665 1666 // Otherwise, go ahead and figure out the last element we'll touch. 1667 // We don't record the non-zero assumption here because we can't 1668 // be sure. We won't warn on a possible zero. 1669 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1670 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1671 one, sizeTy); 1672 boundWarning = "Size argument is greater than the length of the " 1673 "destination buffer"; 1674 } 1675 } 1676 1677 // If we couldn't pin down the copy length, at least bound it. 1678 // FIXME: We should actually run this code path for append as well, but 1679 // right now it creates problems with constraints (since we can end up 1680 // trying to pass constraints from symbol to symbol). 1681 if (amountCopied.isUnknown() && !isAppending) { 1682 // Try to get a "hypothetical" string length symbol, which we can later 1683 // set as a real value if that turns out to be the case. 1684 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1685 assert(!amountCopied.isUndef()); 1686 1687 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1688 if (lenValNL) { 1689 // amountCopied <= lenVal 1690 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1691 *amountCopiedNL, 1692 *lenValNL, 1693 cmpTy); 1694 state = state->assume( 1695 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1696 if (!state) 1697 return; 1698 } 1699 1700 if (strLengthNL) { 1701 // amountCopied <= strlen(source) 1702 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1703 *amountCopiedNL, 1704 *strLengthNL, 1705 cmpTy); 1706 state = state->assume( 1707 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1708 if (!state) 1709 return; 1710 } 1711 } 1712 } 1713 1714 } else { 1715 // The function isn't bounded. The amount copied should match the length 1716 // of the source buffer. 1717 amountCopied = strLength; 1718 } 1719 1720 assert(state); 1721 1722 // This represents the number of characters copied into the destination 1723 // buffer. (It may not actually be the strlen if the destination buffer 1724 // is not terminated.) 1725 SVal finalStrLength = UnknownVal(); 1726 1727 // If this is an appending function (strcat, strncat...) then set the 1728 // string length to strlen(src) + strlen(dst) since the buffer will 1729 // ultimately contain both. 1730 if (isAppending) { 1731 // Get the string length of the destination. If the destination is memory 1732 // that can't have a string length, we shouldn't be copying into it anyway. 1733 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1734 if (dstStrLength.isUndef()) 1735 return; 1736 1737 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1738 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1739 1740 // If we know both string lengths, we might know the final string length. 1741 if (srcStrLengthNL && dstStrLengthNL) { 1742 // Make sure the two lengths together don't overflow a size_t. 1743 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1744 if (!state) 1745 return; 1746 1747 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1748 *dstStrLengthNL, sizeTy); 1749 } 1750 1751 // If we couldn't get a single value for the final string length, 1752 // we can at least bound it by the individual lengths. 1753 if (finalStrLength.isUnknown()) { 1754 // Try to get a "hypothetical" string length symbol, which we can later 1755 // set as a real value if that turns out to be the case. 1756 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1757 assert(!finalStrLength.isUndef()); 1758 1759 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1760 if (srcStrLengthNL) { 1761 // finalStrLength >= srcStrLength 1762 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1763 *finalStrLengthNL, 1764 *srcStrLengthNL, 1765 cmpTy); 1766 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1767 true); 1768 if (!state) 1769 return; 1770 } 1771 1772 if (dstStrLengthNL) { 1773 // finalStrLength >= dstStrLength 1774 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1775 *finalStrLengthNL, 1776 *dstStrLengthNL, 1777 cmpTy); 1778 state = 1779 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1780 if (!state) 1781 return; 1782 } 1783 } 1784 } 1785 1786 } else { 1787 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1788 // the final string length will match the input string length. 1789 finalStrLength = amountCopied; 1790 } 1791 1792 SVal Result; 1793 1794 if (returnPtr) { 1795 // The final result of the function will either be a pointer past the last 1796 // copied element, or a pointer to the start of the destination buffer. 1797 Result = (returnEnd ? UnknownVal() : DstVal); 1798 } else { 1799 Result = finalStrLength; 1800 } 1801 1802 assert(state); 1803 1804 // If the destination is a MemRegion, try to check for a buffer overflow and 1805 // record the new string length. 1806 if (Optional<loc::MemRegionVal> dstRegVal = 1807 DstVal.getAs<loc::MemRegionVal>()) { 1808 QualType ptrTy = Dst->getType(); 1809 1810 // If we have an exact value on a bounded copy, use that to check for 1811 // overflows, rather than our estimate about how much is actually copied. 1812 if (boundWarning) { 1813 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1814 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1815 *maxLastNL, ptrTy); 1816 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1817 boundWarning); 1818 if (!state) 1819 return; 1820 } 1821 } 1822 1823 // Then, if the final length is known... 1824 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1825 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1826 *knownStrLength, ptrTy); 1827 1828 // ...and we haven't checked the bound, we'll check the actual copy. 1829 if (!boundWarning) { 1830 const char * const warningMsg = 1831 "String copy function overflows destination buffer"; 1832 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1833 if (!state) 1834 return; 1835 } 1836 1837 // If this is a stpcpy-style copy, the last element is the return value. 1838 if (returnPtr && returnEnd) 1839 Result = lastElement; 1840 } 1841 1842 // Invalidate the destination (regular invalidation without pointer-escaping 1843 // the address of the top-level region). This must happen before we set the 1844 // C string length because invalidation will clear the length. 1845 // FIXME: Even if we can't perfectly model the copy, we should see if we 1846 // can use LazyCompoundVals to copy the source values into the destination. 1847 // This would probably remove any existing bindings past the end of the 1848 // string, but that's still an improvement over blank invalidation. 1849 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1850 /*IsSourceBuffer*/false, nullptr); 1851 1852 // Invalidate the source (const-invalidation without const-pointer-escaping 1853 // the address of the top-level region). 1854 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1855 nullptr); 1856 1857 // Set the C string length of the destination, if we know it. 1858 if (isBounded && !isAppending) { 1859 // strncpy is annoying in that it doesn't guarantee to null-terminate 1860 // the result string. If the original string didn't fit entirely inside 1861 // the bound (including the null-terminator), we don't know how long the 1862 // result is. 1863 if (amountCopied != strLength) 1864 finalStrLength = UnknownVal(); 1865 } 1866 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1867 } 1868 1869 assert(state); 1870 1871 if (returnPtr) { 1872 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1873 // overflow, we still need a result. Conjure a return value. 1874 if (returnEnd && Result.isUnknown()) { 1875 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1876 } 1877 } 1878 // Set the return value. 1879 state = state->BindExpr(CE, LCtx, Result); 1880 C.addTransition(state); 1881 } 1882 1883 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1884 if (CE->getNumArgs() < 2) 1885 return; 1886 1887 //int strcmp(const char *s1, const char *s2); 1888 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1889 } 1890 1891 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1892 if (CE->getNumArgs() < 3) 1893 return; 1894 1895 //int strncmp(const char *s1, const char *s2, size_t n); 1896 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1897 } 1898 1899 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1900 const CallExpr *CE) const { 1901 if (CE->getNumArgs() < 2) 1902 return; 1903 1904 //int strcasecmp(const char *s1, const char *s2); 1905 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1906 } 1907 1908 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1909 const CallExpr *CE) const { 1910 if (CE->getNumArgs() < 3) 1911 return; 1912 1913 //int strncasecmp(const char *s1, const char *s2, size_t n); 1914 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1915 } 1916 1917 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1918 bool isBounded, bool ignoreCase) const { 1919 CurrentFunctionDescription = "string comparison function"; 1920 ProgramStateRef state = C.getState(); 1921 const LocationContext *LCtx = C.getLocationContext(); 1922 1923 // Check that the first string is non-null 1924 const Expr *s1 = CE->getArg(0); 1925 SVal s1Val = state->getSVal(s1, LCtx); 1926 state = checkNonNull(C, state, s1, s1Val); 1927 if (!state) 1928 return; 1929 1930 // Check that the second string is non-null. 1931 const Expr *s2 = CE->getArg(1); 1932 SVal s2Val = state->getSVal(s2, LCtx); 1933 state = checkNonNull(C, state, s2, s2Val); 1934 if (!state) 1935 return; 1936 1937 // Get the string length of the first string or give up. 1938 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1939 if (s1Length.isUndef()) 1940 return; 1941 1942 // Get the string length of the second string or give up. 1943 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1944 if (s2Length.isUndef()) 1945 return; 1946 1947 // If we know the two buffers are the same, we know the result is 0. 1948 // First, get the two buffers' addresses. Another checker will have already 1949 // made sure they're not undefined. 1950 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1951 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1952 1953 // See if they are the same. 1954 SValBuilder &svalBuilder = C.getSValBuilder(); 1955 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1956 ProgramStateRef StSameBuf, StNotSameBuf; 1957 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1958 1959 // If the two arguments might be the same buffer, we know the result is 0, 1960 // and we only need to check one size. 1961 if (StSameBuf) { 1962 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1963 svalBuilder.makeZeroVal(CE->getType())); 1964 C.addTransition(StSameBuf); 1965 1966 // If the two arguments are GUARANTEED to be the same, we're done! 1967 if (!StNotSameBuf) 1968 return; 1969 } 1970 1971 assert(StNotSameBuf); 1972 state = StNotSameBuf; 1973 1974 // At this point we can go about comparing the two buffers. 1975 // For now, we only do this if they're both known string literals. 1976 1977 // Attempt to extract string literals from both expressions. 1978 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1979 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1980 bool canComputeResult = false; 1981 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1982 C.blockCount()); 1983 1984 if (s1StrLiteral && s2StrLiteral) { 1985 StringRef s1StrRef = s1StrLiteral->getString(); 1986 StringRef s2StrRef = s2StrLiteral->getString(); 1987 1988 if (isBounded) { 1989 // Get the max number of characters to compare. 1990 const Expr *lenExpr = CE->getArg(2); 1991 SVal lenVal = state->getSVal(lenExpr, LCtx); 1992 1993 // If the length is known, we can get the right substrings. 1994 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1995 // Create substrings of each to compare the prefix. 1996 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1997 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1998 canComputeResult = true; 1999 } 2000 } else { 2001 // This is a normal, unbounded strcmp. 2002 canComputeResult = true; 2003 } 2004 2005 if (canComputeResult) { 2006 // Real strcmp stops at null characters. 2007 size_t s1Term = s1StrRef.find('\0'); 2008 if (s1Term != StringRef::npos) 2009 s1StrRef = s1StrRef.substr(0, s1Term); 2010 2011 size_t s2Term = s2StrRef.find('\0'); 2012 if (s2Term != StringRef::npos) 2013 s2StrRef = s2StrRef.substr(0, s2Term); 2014 2015 // Use StringRef's comparison methods to compute the actual result. 2016 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 2017 : s1StrRef.compare(s2StrRef); 2018 2019 // The strcmp function returns an integer greater than, equal to, or less 2020 // than zero, [c11, p7.24.4.2]. 2021 if (compareRes == 0) { 2022 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2023 } 2024 else { 2025 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2026 // Constrain strcmp's result range based on the result of StringRef's 2027 // comparison methods. 2028 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2029 SVal compareWithZero = 2030 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2031 svalBuilder.getConditionType()); 2032 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2033 state = state->assume(compareWithZeroVal, true); 2034 } 2035 } 2036 } 2037 2038 state = state->BindExpr(CE, LCtx, resultVal); 2039 2040 // Record this as a possible path. 2041 C.addTransition(state); 2042 } 2043 2044 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2045 //char *strsep(char **stringp, const char *delim); 2046 if (CE->getNumArgs() < 2) 2047 return; 2048 2049 // Sanity: does the search string parameter match the return type? 2050 const Expr *SearchStrPtr = CE->getArg(0); 2051 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2052 if (CharPtrTy.isNull() || 2053 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2054 return; 2055 2056 CurrentFunctionDescription = "strsep()"; 2057 ProgramStateRef State = C.getState(); 2058 const LocationContext *LCtx = C.getLocationContext(); 2059 2060 // Check that the search string pointer is non-null (though it may point to 2061 // a null string). 2062 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2063 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 2064 if (!State) 2065 return; 2066 2067 // Check that the delimiter string is non-null. 2068 const Expr *DelimStr = CE->getArg(1); 2069 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2070 State = checkNonNull(C, State, DelimStr, DelimStrVal); 2071 if (!State) 2072 return; 2073 2074 SValBuilder &SVB = C.getSValBuilder(); 2075 SVal Result; 2076 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2077 // Get the current value of the search string pointer, as a char*. 2078 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2079 2080 // Invalidate the search string, representing the change of one delimiter 2081 // character to NUL. 2082 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2083 /*IsSourceBuffer*/false, nullptr); 2084 2085 // Overwrite the search string pointer. The new value is either an address 2086 // further along in the same string, or NULL if there are no more tokens. 2087 State = State->bindLoc(*SearchStrLoc, 2088 SVB.conjureSymbolVal(getTag(), 2089 CE, 2090 LCtx, 2091 CharPtrTy, 2092 C.blockCount()), 2093 LCtx); 2094 } else { 2095 assert(SearchStrVal.isUnknown()); 2096 // Conjure a symbolic value. It's the best we can do. 2097 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2098 } 2099 2100 // Set the return value, and finish. 2101 State = State->BindExpr(CE, LCtx, Result); 2102 C.addTransition(State); 2103 } 2104 2105 // These should probably be moved into a C++ standard library checker. 2106 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2107 evalStdCopyCommon(C, CE); 2108 } 2109 2110 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2111 const CallExpr *CE) const { 2112 evalStdCopyCommon(C, CE); 2113 } 2114 2115 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2116 const CallExpr *CE) const { 2117 if (CE->getNumArgs() < 3) 2118 return; 2119 2120 ProgramStateRef State = C.getState(); 2121 2122 const LocationContext *LCtx = C.getLocationContext(); 2123 2124 // template <class _InputIterator, class _OutputIterator> 2125 // _OutputIterator 2126 // copy(_InputIterator __first, _InputIterator __last, 2127 // _OutputIterator __result) 2128 2129 // Invalidate the destination buffer 2130 const Expr *Dst = CE->getArg(2); 2131 SVal DstVal = State->getSVal(Dst, LCtx); 2132 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2133 /*Size=*/nullptr); 2134 2135 SValBuilder &SVB = C.getSValBuilder(); 2136 2137 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2138 State = State->BindExpr(CE, LCtx, ResultVal); 2139 2140 C.addTransition(State); 2141 } 2142 2143 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2144 if (CE->getNumArgs() != 3) 2145 return; 2146 2147 CurrentFunctionDescription = "memory set function"; 2148 2149 const Expr *Mem = CE->getArg(0); 2150 const Expr *CharE = CE->getArg(1); 2151 const Expr *Size = CE->getArg(2); 2152 ProgramStateRef State = C.getState(); 2153 2154 // See if the size argument is zero. 2155 const LocationContext *LCtx = C.getLocationContext(); 2156 SVal SizeVal = State->getSVal(Size, LCtx); 2157 QualType SizeTy = Size->getType(); 2158 2159 ProgramStateRef StateZeroSize, StateNonZeroSize; 2160 std::tie(StateZeroSize, StateNonZeroSize) = 2161 assumeZero(C, State, SizeVal, SizeTy); 2162 2163 // Get the value of the memory area. 2164 SVal MemVal = State->getSVal(Mem, LCtx); 2165 2166 // If the size is zero, there won't be any actual memory access, so 2167 // just bind the return value to the Mem buffer and return. 2168 if (StateZeroSize && !StateNonZeroSize) { 2169 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2170 C.addTransition(StateZeroSize); 2171 return; 2172 } 2173 2174 // Ensure the memory area is not null. 2175 // If it is NULL there will be a NULL pointer dereference. 2176 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2177 if (!State) 2178 return; 2179 2180 State = CheckBufferAccess(C, State, Size, Mem); 2181 if (!State) 2182 return; 2183 2184 // According to the values of the arguments, bind the value of the second 2185 // argument to the destination buffer and set string length, or just 2186 // invalidate the destination buffer. 2187 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2188 return; 2189 2190 State = State->BindExpr(CE, LCtx, MemVal); 2191 C.addTransition(State); 2192 } 2193 2194 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2195 if (CE->getNumArgs() != 2) 2196 return; 2197 2198 CurrentFunctionDescription = "memory clearance function"; 2199 2200 const Expr *Mem = CE->getArg(0); 2201 const Expr *Size = CE->getArg(1); 2202 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2203 2204 ProgramStateRef State = C.getState(); 2205 2206 // See if the size argument is zero. 2207 SVal SizeVal = C.getSVal(Size); 2208 QualType SizeTy = Size->getType(); 2209 2210 ProgramStateRef StateZeroSize, StateNonZeroSize; 2211 std::tie(StateZeroSize, StateNonZeroSize) = 2212 assumeZero(C, State, SizeVal, SizeTy); 2213 2214 // If the size is zero, there won't be any actual memory access, 2215 // In this case we just return. 2216 if (StateZeroSize && !StateNonZeroSize) { 2217 C.addTransition(StateZeroSize); 2218 return; 2219 } 2220 2221 // Get the value of the memory area. 2222 SVal MemVal = C.getSVal(Mem); 2223 2224 // Ensure the memory area is not null. 2225 // If it is NULL there will be a NULL pointer dereference. 2226 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2227 if (!State) 2228 return; 2229 2230 State = CheckBufferAccess(C, State, Size, Mem); 2231 if (!State) 2232 return; 2233 2234 if (!memsetAux(Mem, Zero, Size, C, State)) 2235 return; 2236 2237 C.addTransition(State); 2238 } 2239 2240 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) { 2241 IdentifierInfo *II = FD->getIdentifier(); 2242 if (!II) 2243 return false; 2244 2245 if (!AnalysisDeclContext::isInStdNamespace(FD)) 2246 return false; 2247 2248 if (II->getName().equals(Name)) 2249 return true; 2250 2251 return false; 2252 } 2253 //===----------------------------------------------------------------------===// 2254 // The driver method, and other Checker callbacks. 2255 //===----------------------------------------------------------------------===// 2256 2257 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 2258 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 2259 2260 if (!FDecl) 2261 return false; 2262 2263 // FIXME: Poorly-factored string switches are slow. 2264 FnCheck evalFunction = nullptr; 2265 if (C.isCLibraryFunction(FDecl, "memcpy")) 2266 evalFunction = &CStringChecker::evalMemcpy; 2267 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 2268 evalFunction = &CStringChecker::evalMempcpy; 2269 else if (C.isCLibraryFunction(FDecl, "memcmp")) 2270 evalFunction = &CStringChecker::evalMemcmp; 2271 else if (C.isCLibraryFunction(FDecl, "memmove")) 2272 evalFunction = &CStringChecker::evalMemmove; 2273 else if (C.isCLibraryFunction(FDecl, "memset") || 2274 C.isCLibraryFunction(FDecl, "explicit_memset")) 2275 evalFunction = &CStringChecker::evalMemset; 2276 else if (C.isCLibraryFunction(FDecl, "strcpy")) 2277 evalFunction = &CStringChecker::evalStrcpy; 2278 else if (C.isCLibraryFunction(FDecl, "strncpy")) 2279 evalFunction = &CStringChecker::evalStrncpy; 2280 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 2281 evalFunction = &CStringChecker::evalStpcpy; 2282 else if (C.isCLibraryFunction(FDecl, "strlcpy")) 2283 evalFunction = &CStringChecker::evalStrlcpy; 2284 else if (C.isCLibraryFunction(FDecl, "strcat")) 2285 evalFunction = &CStringChecker::evalStrcat; 2286 else if (C.isCLibraryFunction(FDecl, "strncat")) 2287 evalFunction = &CStringChecker::evalStrncat; 2288 else if (C.isCLibraryFunction(FDecl, "strlcat")) 2289 evalFunction = &CStringChecker::evalStrlcat; 2290 else if (C.isCLibraryFunction(FDecl, "strlen")) 2291 evalFunction = &CStringChecker::evalstrLength; 2292 else if (C.isCLibraryFunction(FDecl, "strnlen")) 2293 evalFunction = &CStringChecker::evalstrnLength; 2294 else if (C.isCLibraryFunction(FDecl, "strcmp")) 2295 evalFunction = &CStringChecker::evalStrcmp; 2296 else if (C.isCLibraryFunction(FDecl, "strncmp")) 2297 evalFunction = &CStringChecker::evalStrncmp; 2298 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 2299 evalFunction = &CStringChecker::evalStrcasecmp; 2300 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 2301 evalFunction = &CStringChecker::evalStrncasecmp; 2302 else if (C.isCLibraryFunction(FDecl, "strsep")) 2303 evalFunction = &CStringChecker::evalStrsep; 2304 else if (C.isCLibraryFunction(FDecl, "bcopy")) 2305 evalFunction = &CStringChecker::evalBcopy; 2306 else if (C.isCLibraryFunction(FDecl, "bcmp")) 2307 evalFunction = &CStringChecker::evalMemcmp; 2308 else if (isCPPStdLibraryFunction(FDecl, "copy")) 2309 evalFunction = &CStringChecker::evalStdCopy; 2310 else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) 2311 evalFunction = &CStringChecker::evalStdCopyBackward; 2312 else if (C.isCLibraryFunction(FDecl, "bzero") || 2313 C.isCLibraryFunction(FDecl, "explicit_bzero")) 2314 evalFunction = &CStringChecker::evalBzero; 2315 2316 // If the callee isn't a string function, let another checker handle it. 2317 if (!evalFunction) 2318 return false; 2319 2320 // Check and evaluate the call. 2321 (this->*evalFunction)(C, CE); 2322 2323 // If the evaluate call resulted in no change, chain to the next eval call 2324 // handler. 2325 // Note, the custom CString evaluation calls assume that basic safety 2326 // properties are held. However, if the user chooses to turn off some of these 2327 // checks, we ignore the issues and leave the call evaluation to a generic 2328 // handler. 2329 return C.isDifferent(); 2330 } 2331 2332 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2333 // Record string length for char a[] = "abc"; 2334 ProgramStateRef state = C.getState(); 2335 2336 for (const auto *I : DS->decls()) { 2337 const VarDecl *D = dyn_cast<VarDecl>(I); 2338 if (!D) 2339 continue; 2340 2341 // FIXME: Handle array fields of structs. 2342 if (!D->getType()->isArrayType()) 2343 continue; 2344 2345 const Expr *Init = D->getInit(); 2346 if (!Init) 2347 continue; 2348 if (!isa<StringLiteral>(Init)) 2349 continue; 2350 2351 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2352 const MemRegion *MR = VarLoc.getAsRegion(); 2353 if (!MR) 2354 continue; 2355 2356 SVal StrVal = C.getSVal(Init); 2357 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2358 DefinedOrUnknownSVal strLength = 2359 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2360 2361 state = state->set<CStringLength>(MR, strLength); 2362 } 2363 2364 C.addTransition(state); 2365 } 2366 2367 ProgramStateRef 2368 CStringChecker::checkRegionChanges(ProgramStateRef state, 2369 const InvalidatedSymbols *, 2370 ArrayRef<const MemRegion *> ExplicitRegions, 2371 ArrayRef<const MemRegion *> Regions, 2372 const LocationContext *LCtx, 2373 const CallEvent *Call) const { 2374 CStringLengthTy Entries = state->get<CStringLength>(); 2375 if (Entries.isEmpty()) 2376 return state; 2377 2378 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2379 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2380 2381 // First build sets for the changed regions and their super-regions. 2382 for (ArrayRef<const MemRegion *>::iterator 2383 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2384 const MemRegion *MR = *I; 2385 Invalidated.insert(MR); 2386 2387 SuperRegions.insert(MR); 2388 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2389 MR = SR->getSuperRegion(); 2390 SuperRegions.insert(MR); 2391 } 2392 } 2393 2394 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2395 2396 // Then loop over the entries in the current state. 2397 for (CStringLengthTy::iterator I = Entries.begin(), 2398 E = Entries.end(); I != E; ++I) { 2399 const MemRegion *MR = I.getKey(); 2400 2401 // Is this entry for a super-region of a changed region? 2402 if (SuperRegions.count(MR)) { 2403 Entries = F.remove(Entries, MR); 2404 continue; 2405 } 2406 2407 // Is this entry for a sub-region of a changed region? 2408 const MemRegion *Super = MR; 2409 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2410 Super = SR->getSuperRegion(); 2411 if (Invalidated.count(Super)) { 2412 Entries = F.remove(Entries, MR); 2413 break; 2414 } 2415 } 2416 } 2417 2418 return state->set<CStringLength>(Entries); 2419 } 2420 2421 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2422 SymbolReaper &SR) const { 2423 // Mark all symbols in our string length map as valid. 2424 CStringLengthTy Entries = state->get<CStringLength>(); 2425 2426 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2427 I != E; ++I) { 2428 SVal Len = I.getData(); 2429 2430 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2431 se = Len.symbol_end(); si != se; ++si) 2432 SR.markInUse(*si); 2433 } 2434 } 2435 2436 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2437 CheckerContext &C) const { 2438 ProgramStateRef state = C.getState(); 2439 CStringLengthTy Entries = state->get<CStringLength>(); 2440 if (Entries.isEmpty()) 2441 return; 2442 2443 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2444 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2445 I != E; ++I) { 2446 SVal Len = I.getData(); 2447 if (SymbolRef Sym = Len.getAsSymbol()) { 2448 if (SR.isDead(Sym)) 2449 Entries = F.remove(Entries, I.getKey()); 2450 } 2451 } 2452 2453 state = state->set<CStringLength>(Entries); 2454 C.addTransition(state); 2455 } 2456 2457 #define REGISTER_CHECKER(name) \ 2458 void ento::register##name(CheckerManager &mgr) { \ 2459 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \ 2460 checker->Filter.Check##name = true; \ 2461 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2462 } 2463 2464 REGISTER_CHECKER(CStringNullArg) 2465 REGISTER_CHECKER(CStringOutOfBounds) 2466 REGISTER_CHECKER(CStringBufferOverlap) 2467 REGISTER_CHECKER(CStringNotNullTerm) 2468 2469 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { 2470 Mgr.registerChecker<CStringChecker>(); 2471 } 2472