xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp (revision 204bf2bbb265b5158783bacf9a67b0bc4cc57747)
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
15 #include "InterCheckerAPI.h"
16 #include "clang/Basic/CharInfo.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/raw_ostream.h"
25 
26 using namespace clang;
27 using namespace ento;
28 
29 namespace {
30 class CStringChecker : public Checker< eval::Call,
31                                          check::PreStmt<DeclStmt>,
32                                          check::LiveSymbols,
33                                          check::DeadSymbols,
34                                          check::RegionChanges
35                                          > {
36   mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
37       BT_NotCString, BT_AdditionOverflow;
38 
39   mutable const char *CurrentFunctionDescription;
40 
41 public:
42   /// The filter is used to filter out the diagnostics which are not enabled by
43   /// the user.
44   struct CStringChecksFilter {
45     DefaultBool CheckCStringNullArg;
46     DefaultBool CheckCStringOutOfBounds;
47     DefaultBool CheckCStringBufferOverlap;
48     DefaultBool CheckCStringNotNullTerm;
49 
50     CheckName CheckNameCStringNullArg;
51     CheckName CheckNameCStringOutOfBounds;
52     CheckName CheckNameCStringBufferOverlap;
53     CheckName CheckNameCStringNotNullTerm;
54   };
55 
56   CStringChecksFilter Filter;
57 
58   static void *getTag() { static int tag; return &tag; }
59 
60   bool evalCall(const CallExpr *CE, CheckerContext &C) const;
61   void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
62   void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
63   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
64 
65   ProgramStateRef
66     checkRegionChanges(ProgramStateRef state,
67                        const InvalidatedSymbols *,
68                        ArrayRef<const MemRegion *> ExplicitRegions,
69                        ArrayRef<const MemRegion *> Regions,
70                        const LocationContext *LCtx,
71                        const CallEvent *Call) const;
72 
73   typedef void (CStringChecker::*FnCheck)(CheckerContext &,
74                                           const CallExpr *) const;
75 
76   void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
77   void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
78   void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
79   void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
80   void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
81                       ProgramStateRef state,
82                       const Expr *Size,
83                       const Expr *Source,
84                       const Expr *Dest,
85                       bool Restricted = false,
86                       bool IsMempcpy = false) const;
87 
88   void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
89 
90   void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
91   void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
92   void evalstrLengthCommon(CheckerContext &C,
93                            const CallExpr *CE,
94                            bool IsStrnlen = false) const;
95 
96   void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
97   void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
98   void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
99   void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const;
100   void evalStrcpyCommon(CheckerContext &C,
101                         const CallExpr *CE,
102                         bool returnEnd,
103                         bool isBounded,
104                         bool isAppending,
105                         bool returnPtr = true) const;
106 
107   void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
108   void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
109   void evalStrlcat(CheckerContext &C, const CallExpr *CE) const;
110 
111   void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
112   void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
113   void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
114   void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
115   void evalStrcmpCommon(CheckerContext &C,
116                         const CallExpr *CE,
117                         bool isBounded = false,
118                         bool ignoreCase = false) const;
119 
120   void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
121 
122   void evalStdCopy(CheckerContext &C, const CallExpr *CE) const;
123   void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const;
124   void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const;
125   void evalMemset(CheckerContext &C, const CallExpr *CE) const;
126   void evalBzero(CheckerContext &C, const CallExpr *CE) const;
127 
128   // Utility methods
129   std::pair<ProgramStateRef , ProgramStateRef >
130   static assumeZero(CheckerContext &C,
131                     ProgramStateRef state, SVal V, QualType Ty);
132 
133   static ProgramStateRef setCStringLength(ProgramStateRef state,
134                                               const MemRegion *MR,
135                                               SVal strLength);
136   static SVal getCStringLengthForRegion(CheckerContext &C,
137                                         ProgramStateRef &state,
138                                         const Expr *Ex,
139                                         const MemRegion *MR,
140                                         bool hypothetical);
141   SVal getCStringLength(CheckerContext &C,
142                         ProgramStateRef &state,
143                         const Expr *Ex,
144                         SVal Buf,
145                         bool hypothetical = false) const;
146 
147   const StringLiteral *getCStringLiteral(CheckerContext &C,
148                                          ProgramStateRef &state,
149                                          const Expr *expr,
150                                          SVal val) const;
151 
152   static ProgramStateRef InvalidateBuffer(CheckerContext &C,
153                                           ProgramStateRef state,
154                                           const Expr *Ex, SVal V,
155                                           bool IsSourceBuffer,
156                                           const Expr *Size);
157 
158   static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
159                               const MemRegion *MR);
160 
161   static bool memsetAux(const Expr *DstBuffer, SVal CharE,
162                         const Expr *Size, CheckerContext &C,
163                         ProgramStateRef &State);
164 
165   // Re-usable checks
166   ProgramStateRef checkNonNull(CheckerContext &C,
167                                    ProgramStateRef state,
168                                    const Expr *S,
169                                    SVal l) const;
170   ProgramStateRef CheckLocation(CheckerContext &C,
171                                     ProgramStateRef state,
172                                     const Expr *S,
173                                     SVal l,
174                                     const char *message = nullptr) const;
175   ProgramStateRef CheckBufferAccess(CheckerContext &C,
176                                         ProgramStateRef state,
177                                         const Expr *Size,
178                                         const Expr *FirstBuf,
179                                         const Expr *SecondBuf,
180                                         const char *firstMessage = nullptr,
181                                         const char *secondMessage = nullptr,
182                                         bool WarnAboutSize = false) const;
183 
184   ProgramStateRef CheckBufferAccess(CheckerContext &C,
185                                         ProgramStateRef state,
186                                         const Expr *Size,
187                                         const Expr *Buf,
188                                         const char *message = nullptr,
189                                         bool WarnAboutSize = false) const {
190     // This is a convenience overload.
191     return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
192                              WarnAboutSize);
193   }
194   ProgramStateRef CheckOverlap(CheckerContext &C,
195                                    ProgramStateRef state,
196                                    const Expr *Size,
197                                    const Expr *First,
198                                    const Expr *Second) const;
199   void emitOverlapBug(CheckerContext &C,
200                       ProgramStateRef state,
201                       const Stmt *First,
202                       const Stmt *Second) const;
203 
204   void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
205                       StringRef WarningMsg) const;
206   void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
207                           const Stmt *S, StringRef WarningMsg) const;
208   void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
209                          const Stmt *S, StringRef WarningMsg) const;
210   void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
211 
212   ProgramStateRef checkAdditionOverflow(CheckerContext &C,
213                                             ProgramStateRef state,
214                                             NonLoc left,
215                                             NonLoc right) const;
216 
217   // Return true if the destination buffer of the copy function may be in bound.
218   // Expects SVal of Size to be positive and unsigned.
219   // Expects SVal of FirstBuf to be a FieldRegion.
220   static bool IsFirstBufInBound(CheckerContext &C,
221                                 ProgramStateRef state,
222                                 const Expr *FirstBuf,
223                                 const Expr *Size);
224 };
225 
226 } //end anonymous namespace
227 
228 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
229 
230 //===----------------------------------------------------------------------===//
231 // Individual checks and utility methods.
232 //===----------------------------------------------------------------------===//
233 
234 std::pair<ProgramStateRef , ProgramStateRef >
235 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
236                            QualType Ty) {
237   Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
238   if (!val)
239     return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
240 
241   SValBuilder &svalBuilder = C.getSValBuilder();
242   DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
243   return state->assume(svalBuilder.evalEQ(state, *val, zero));
244 }
245 
246 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
247                                             ProgramStateRef state,
248                                             const Expr *S, SVal l) const {
249   // If a previous check has failed, propagate the failure.
250   if (!state)
251     return nullptr;
252 
253   ProgramStateRef stateNull, stateNonNull;
254   std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
255 
256   if (stateNull && !stateNonNull) {
257     if (Filter.CheckCStringNullArg) {
258       SmallString<80> buf;
259       llvm::raw_svector_ostream os(buf);
260       assert(CurrentFunctionDescription);
261       os << "Null pointer argument in call to " << CurrentFunctionDescription;
262 
263       emitNullArgBug(C, stateNull, S, os.str());
264     }
265     return nullptr;
266   }
267 
268   // From here on, assume that the value is non-null.
269   assert(stateNonNull);
270   return stateNonNull;
271 }
272 
273 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
274 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
275                                              ProgramStateRef state,
276                                              const Expr *S, SVal l,
277                                              const char *warningMsg) const {
278   // If a previous check has failed, propagate the failure.
279   if (!state)
280     return nullptr;
281 
282   // Check for out of bound array element access.
283   const MemRegion *R = l.getAsRegion();
284   if (!R)
285     return state;
286 
287   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
288   if (!ER)
289     return state;
290 
291   if (ER->getValueType() != C.getASTContext().CharTy)
292     return state;
293 
294   // Get the size of the array.
295   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
296   SValBuilder &svalBuilder = C.getSValBuilder();
297   SVal Extent =
298     svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
299   DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
300 
301   // Get the index of the accessed element.
302   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
303 
304   ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
305   ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
306   if (StOutBound && !StInBound) {
307     // These checks are either enabled by the CString out-of-bounds checker
308     // explicitly or implicitly by the Malloc checker.
309     // In the latter case we only do modeling but do not emit warning.
310     if (!Filter.CheckCStringOutOfBounds)
311       return nullptr;
312     // Emit a bug report.
313     if (warningMsg) {
314       emitOutOfBoundsBug(C, StOutBound, S, warningMsg);
315     } else {
316       assert(CurrentFunctionDescription);
317       assert(CurrentFunctionDescription[0] != '\0');
318 
319       SmallString<80> buf;
320       llvm::raw_svector_ostream os(buf);
321       os << toUppercase(CurrentFunctionDescription[0])
322          << &CurrentFunctionDescription[1]
323          << " accesses out-of-bound array element";
324       emitOutOfBoundsBug(C, StOutBound, S, os.str());
325     }
326     return nullptr;
327   }
328 
329   // Array bound check succeeded.  From this point forward the array bound
330   // should always succeed.
331   return StInBound;
332 }
333 
334 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
335                                                  ProgramStateRef state,
336                                                  const Expr *Size,
337                                                  const Expr *FirstBuf,
338                                                  const Expr *SecondBuf,
339                                                  const char *firstMessage,
340                                                  const char *secondMessage,
341                                                  bool WarnAboutSize) const {
342   // If a previous check has failed, propagate the failure.
343   if (!state)
344     return nullptr;
345 
346   SValBuilder &svalBuilder = C.getSValBuilder();
347   ASTContext &Ctx = svalBuilder.getContext();
348   const LocationContext *LCtx = C.getLocationContext();
349 
350   QualType sizeTy = Size->getType();
351   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
352 
353   // Check that the first buffer is non-null.
354   SVal BufVal = C.getSVal(FirstBuf);
355   state = checkNonNull(C, state, FirstBuf, BufVal);
356   if (!state)
357     return nullptr;
358 
359   // If out-of-bounds checking is turned off, skip the rest.
360   if (!Filter.CheckCStringOutOfBounds)
361     return state;
362 
363   // Get the access length and make sure it is known.
364   // FIXME: This assumes the caller has already checked that the access length
365   // is positive. And that it's unsigned.
366   SVal LengthVal = C.getSVal(Size);
367   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
368   if (!Length)
369     return state;
370 
371   // Compute the offset of the last element to be accessed: size-1.
372   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
373   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
374   if (Offset.isUnknown())
375     return nullptr;
376   NonLoc LastOffset = Offset.castAs<NonLoc>();
377 
378   // Check that the first buffer is sufficiently long.
379   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
380   if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
381     const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
382 
383     SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
384                                           LastOffset, PtrTy);
385     state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
386 
387     // If the buffer isn't large enough, abort.
388     if (!state)
389       return nullptr;
390   }
391 
392   // If there's a second buffer, check it as well.
393   if (SecondBuf) {
394     BufVal = state->getSVal(SecondBuf, LCtx);
395     state = checkNonNull(C, state, SecondBuf, BufVal);
396     if (!state)
397       return nullptr;
398 
399     BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
400     if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
401       const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
402 
403       SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
404                                             LastOffset, PtrTy);
405       state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
406     }
407   }
408 
409   // Large enough or not, return this state!
410   return state;
411 }
412 
413 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
414                                             ProgramStateRef state,
415                                             const Expr *Size,
416                                             const Expr *First,
417                                             const Expr *Second) const {
418   if (!Filter.CheckCStringBufferOverlap)
419     return state;
420 
421   // Do a simple check for overlap: if the two arguments are from the same
422   // buffer, see if the end of the first is greater than the start of the second
423   // or vice versa.
424 
425   // If a previous check has failed, propagate the failure.
426   if (!state)
427     return nullptr;
428 
429   ProgramStateRef stateTrue, stateFalse;
430 
431   // Get the buffer values and make sure they're known locations.
432   const LocationContext *LCtx = C.getLocationContext();
433   SVal firstVal = state->getSVal(First, LCtx);
434   SVal secondVal = state->getSVal(Second, LCtx);
435 
436   Optional<Loc> firstLoc = firstVal.getAs<Loc>();
437   if (!firstLoc)
438     return state;
439 
440   Optional<Loc> secondLoc = secondVal.getAs<Loc>();
441   if (!secondLoc)
442     return state;
443 
444   // Are the two values the same?
445   SValBuilder &svalBuilder = C.getSValBuilder();
446   std::tie(stateTrue, stateFalse) =
447     state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
448 
449   if (stateTrue && !stateFalse) {
450     // If the values are known to be equal, that's automatically an overlap.
451     emitOverlapBug(C, stateTrue, First, Second);
452     return nullptr;
453   }
454 
455   // assume the two expressions are not equal.
456   assert(stateFalse);
457   state = stateFalse;
458 
459   // Which value comes first?
460   QualType cmpTy = svalBuilder.getConditionType();
461   SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
462                                          *firstLoc, *secondLoc, cmpTy);
463   Optional<DefinedOrUnknownSVal> reverseTest =
464       reverse.getAs<DefinedOrUnknownSVal>();
465   if (!reverseTest)
466     return state;
467 
468   std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
469   if (stateTrue) {
470     if (stateFalse) {
471       // If we don't know which one comes first, we can't perform this test.
472       return state;
473     } else {
474       // Switch the values so that firstVal is before secondVal.
475       std::swap(firstLoc, secondLoc);
476 
477       // Switch the Exprs as well, so that they still correspond.
478       std::swap(First, Second);
479     }
480   }
481 
482   // Get the length, and make sure it too is known.
483   SVal LengthVal = state->getSVal(Size, LCtx);
484   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
485   if (!Length)
486     return state;
487 
488   // Convert the first buffer's start address to char*.
489   // Bail out if the cast fails.
490   ASTContext &Ctx = svalBuilder.getContext();
491   QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
492   SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
493                                          First->getType());
494   Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
495   if (!FirstStartLoc)
496     return state;
497 
498   // Compute the end of the first buffer. Bail out if THAT fails.
499   SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
500                                  *FirstStartLoc, *Length, CharPtrTy);
501   Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
502   if (!FirstEndLoc)
503     return state;
504 
505   // Is the end of the first buffer past the start of the second buffer?
506   SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
507                                 *FirstEndLoc, *secondLoc, cmpTy);
508   Optional<DefinedOrUnknownSVal> OverlapTest =
509       Overlap.getAs<DefinedOrUnknownSVal>();
510   if (!OverlapTest)
511     return state;
512 
513   std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
514 
515   if (stateTrue && !stateFalse) {
516     // Overlap!
517     emitOverlapBug(C, stateTrue, First, Second);
518     return nullptr;
519   }
520 
521   // assume the two expressions don't overlap.
522   assert(stateFalse);
523   return stateFalse;
524 }
525 
526 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
527                                   const Stmt *First, const Stmt *Second) const {
528   ExplodedNode *N = C.generateErrorNode(state);
529   if (!N)
530     return;
531 
532   if (!BT_Overlap)
533     BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
534                                  categories::UnixAPI, "Improper arguments"));
535 
536   // Generate a report for this bug.
537   auto report = llvm::make_unique<BugReport>(
538       *BT_Overlap, "Arguments must not be overlapping buffers", N);
539   report->addRange(First->getSourceRange());
540   report->addRange(Second->getSourceRange());
541 
542   C.emitReport(std::move(report));
543 }
544 
545 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
546                                     const Stmt *S, StringRef WarningMsg) const {
547   if (ExplodedNode *N = C.generateErrorNode(State)) {
548     if (!BT_Null)
549       BT_Null.reset(new BuiltinBug(
550           Filter.CheckNameCStringNullArg, categories::UnixAPI,
551           "Null pointer argument in call to byte string function"));
552 
553     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get());
554     auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N);
555     Report->addRange(S->getSourceRange());
556     if (const auto *Ex = dyn_cast<Expr>(S))
557       bugreporter::trackExpressionValue(N, Ex, *Report);
558     C.emitReport(std::move(Report));
559   }
560 }
561 
562 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
563                                         ProgramStateRef State, const Stmt *S,
564                                         StringRef WarningMsg) const {
565   if (ExplodedNode *N = C.generateErrorNode(State)) {
566     if (!BT_Bounds)
567       BT_Bounds.reset(new BuiltinBug(
568           Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds
569                                          : Filter.CheckNameCStringNullArg,
570           "Out-of-bound array access",
571           "Byte string function accesses out-of-bound array element"));
572 
573     BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get());
574 
575     // FIXME: It would be nice to eventually make this diagnostic more clear,
576     // e.g., by referencing the original declaration or by saying *why* this
577     // reference is outside the range.
578     auto Report = llvm::make_unique<BugReport>(*BT, WarningMsg, N);
579     Report->addRange(S->getSourceRange());
580     C.emitReport(std::move(Report));
581   }
582 }
583 
584 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
585                                        const Stmt *S,
586                                        StringRef WarningMsg) const {
587   if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
588     if (!BT_NotCString)
589       BT_NotCString.reset(new BuiltinBug(
590           Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
591           "Argument is not a null-terminated string."));
592 
593     auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N);
594 
595     Report->addRange(S->getSourceRange());
596     C.emitReport(std::move(Report));
597   }
598 }
599 
600 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
601                                              ProgramStateRef State) const {
602   if (ExplodedNode *N = C.generateErrorNode(State)) {
603     if (!BT_NotCString)
604       BT_NotCString.reset(
605           new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
606                          "Sum of expressions causes overflow."));
607 
608     // This isn't a great error message, but this should never occur in real
609     // code anyway -- you'd have to create a buffer longer than a size_t can
610     // represent, which is sort of a contradiction.
611     const char *WarningMsg =
612         "This expression will create a string whose length is too big to "
613         "be represented as a size_t";
614 
615     auto Report = llvm::make_unique<BugReport>(*BT_NotCString, WarningMsg, N);
616     C.emitReport(std::move(Report));
617   }
618 }
619 
620 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
621                                                      ProgramStateRef state,
622                                                      NonLoc left,
623                                                      NonLoc right) const {
624   // If out-of-bounds checking is turned off, skip the rest.
625   if (!Filter.CheckCStringOutOfBounds)
626     return state;
627 
628   // If a previous check has failed, propagate the failure.
629   if (!state)
630     return nullptr;
631 
632   SValBuilder &svalBuilder = C.getSValBuilder();
633   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
634 
635   QualType sizeTy = svalBuilder.getContext().getSizeType();
636   const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
637   NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
638 
639   SVal maxMinusRight;
640   if (right.getAs<nonloc::ConcreteInt>()) {
641     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
642                                                  sizeTy);
643   } else {
644     // Try switching the operands. (The order of these two assignments is
645     // important!)
646     maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
647                                             sizeTy);
648     left = right;
649   }
650 
651   if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
652     QualType cmpTy = svalBuilder.getConditionType();
653     // If left > max - right, we have an overflow.
654     SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
655                                                 *maxMinusRightNL, cmpTy);
656 
657     ProgramStateRef stateOverflow, stateOkay;
658     std::tie(stateOverflow, stateOkay) =
659       state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
660 
661     if (stateOverflow && !stateOkay) {
662       // We have an overflow. Emit a bug report.
663       emitAdditionOverflowBug(C, stateOverflow);
664       return nullptr;
665     }
666 
667     // From now on, assume an overflow didn't occur.
668     assert(stateOkay);
669     state = stateOkay;
670   }
671 
672   return state;
673 }
674 
675 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
676                                                 const MemRegion *MR,
677                                                 SVal strLength) {
678   assert(!strLength.isUndef() && "Attempt to set an undefined string length");
679 
680   MR = MR->StripCasts();
681 
682   switch (MR->getKind()) {
683   case MemRegion::StringRegionKind:
684     // FIXME: This can happen if we strcpy() into a string region. This is
685     // undefined [C99 6.4.5p6], but we should still warn about it.
686     return state;
687 
688   case MemRegion::SymbolicRegionKind:
689   case MemRegion::AllocaRegionKind:
690   case MemRegion::VarRegionKind:
691   case MemRegion::FieldRegionKind:
692   case MemRegion::ObjCIvarRegionKind:
693     // These are the types we can currently track string lengths for.
694     break;
695 
696   case MemRegion::ElementRegionKind:
697     // FIXME: Handle element regions by upper-bounding the parent region's
698     // string length.
699     return state;
700 
701   default:
702     // Other regions (mostly non-data) can't have a reliable C string length.
703     // For now, just ignore the change.
704     // FIXME: These are rare but not impossible. We should output some kind of
705     // warning for things like strcpy((char[]){'a', 0}, "b");
706     return state;
707   }
708 
709   if (strLength.isUnknown())
710     return state->remove<CStringLength>(MR);
711 
712   return state->set<CStringLength>(MR, strLength);
713 }
714 
715 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
716                                                ProgramStateRef &state,
717                                                const Expr *Ex,
718                                                const MemRegion *MR,
719                                                bool hypothetical) {
720   if (!hypothetical) {
721     // If there's a recorded length, go ahead and return it.
722     const SVal *Recorded = state->get<CStringLength>(MR);
723     if (Recorded)
724       return *Recorded;
725   }
726 
727   // Otherwise, get a new symbol and update the state.
728   SValBuilder &svalBuilder = C.getSValBuilder();
729   QualType sizeTy = svalBuilder.getContext().getSizeType();
730   SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
731                                                     MR, Ex, sizeTy,
732                                                     C.getLocationContext(),
733                                                     C.blockCount());
734 
735   if (!hypothetical) {
736     if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
737       // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
738       BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
739       const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
740       llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
741       const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
742                                                         fourInt);
743       NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
744       SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
745                                                 maxLength, sizeTy);
746       state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
747     }
748     state = state->set<CStringLength>(MR, strLength);
749   }
750 
751   return strLength;
752 }
753 
754 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
755                                       const Expr *Ex, SVal Buf,
756                                       bool hypothetical) const {
757   const MemRegion *MR = Buf.getAsRegion();
758   if (!MR) {
759     // If we can't get a region, see if it's something we /know/ isn't a
760     // C string. In the context of locations, the only time we can issue such
761     // a warning is for labels.
762     if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
763       if (Filter.CheckCStringNotNullTerm) {
764         SmallString<120> buf;
765         llvm::raw_svector_ostream os(buf);
766         assert(CurrentFunctionDescription);
767         os << "Argument to " << CurrentFunctionDescription
768            << " is the address of the label '" << Label->getLabel()->getName()
769            << "', which is not a null-terminated string";
770 
771         emitNotCStringBug(C, state, Ex, os.str());
772       }
773       return UndefinedVal();
774     }
775 
776     // If it's not a region and not a label, give up.
777     return UnknownVal();
778   }
779 
780   // If we have a region, strip casts from it and see if we can figure out
781   // its length. For anything we can't figure out, just return UnknownVal.
782   MR = MR->StripCasts();
783 
784   switch (MR->getKind()) {
785   case MemRegion::StringRegionKind: {
786     // Modifying the contents of string regions is undefined [C99 6.4.5p6],
787     // so we can assume that the byte length is the correct C string length.
788     SValBuilder &svalBuilder = C.getSValBuilder();
789     QualType sizeTy = svalBuilder.getContext().getSizeType();
790     const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
791     return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
792   }
793   case MemRegion::SymbolicRegionKind:
794   case MemRegion::AllocaRegionKind:
795   case MemRegion::VarRegionKind:
796   case MemRegion::FieldRegionKind:
797   case MemRegion::ObjCIvarRegionKind:
798     return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
799   case MemRegion::CompoundLiteralRegionKind:
800     // FIXME: Can we track this? Is it necessary?
801     return UnknownVal();
802   case MemRegion::ElementRegionKind:
803     // FIXME: How can we handle this? It's not good enough to subtract the
804     // offset from the base string length; consider "123\x00567" and &a[5].
805     return UnknownVal();
806   default:
807     // Other regions (mostly non-data) can't have a reliable C string length.
808     // In this case, an error is emitted and UndefinedVal is returned.
809     // The caller should always be prepared to handle this case.
810     if (Filter.CheckCStringNotNullTerm) {
811       SmallString<120> buf;
812       llvm::raw_svector_ostream os(buf);
813 
814       assert(CurrentFunctionDescription);
815       os << "Argument to " << CurrentFunctionDescription << " is ";
816 
817       if (SummarizeRegion(os, C.getASTContext(), MR))
818         os << ", which is not a null-terminated string";
819       else
820         os << "not a null-terminated string";
821 
822       emitNotCStringBug(C, state, Ex, os.str());
823     }
824     return UndefinedVal();
825   }
826 }
827 
828 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
829   ProgramStateRef &state, const Expr *expr, SVal val) const {
830 
831   // Get the memory region pointed to by the val.
832   const MemRegion *bufRegion = val.getAsRegion();
833   if (!bufRegion)
834     return nullptr;
835 
836   // Strip casts off the memory region.
837   bufRegion = bufRegion->StripCasts();
838 
839   // Cast the memory region to a string region.
840   const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
841   if (!strRegion)
842     return nullptr;
843 
844   // Return the actual string in the string region.
845   return strRegion->getStringLiteral();
846 }
847 
848 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
849                                        ProgramStateRef state,
850                                        const Expr *FirstBuf,
851                                        const Expr *Size) {
852   // If we do not know that the buffer is long enough we return 'true'.
853   // Otherwise the parent region of this field region would also get
854   // invalidated, which would lead to warnings based on an unknown state.
855 
856   // Originally copied from CheckBufferAccess and CheckLocation.
857   SValBuilder &svalBuilder = C.getSValBuilder();
858   ASTContext &Ctx = svalBuilder.getContext();
859   const LocationContext *LCtx = C.getLocationContext();
860 
861   QualType sizeTy = Size->getType();
862   QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
863   SVal BufVal = state->getSVal(FirstBuf, LCtx);
864 
865   SVal LengthVal = state->getSVal(Size, LCtx);
866   Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
867   if (!Length)
868     return true; // cf top comment.
869 
870   // Compute the offset of the last element to be accessed: size-1.
871   NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
872   SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy);
873   if (Offset.isUnknown())
874     return true; // cf top comment
875   NonLoc LastOffset = Offset.castAs<NonLoc>();
876 
877   // Check that the first buffer is sufficiently long.
878   SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
879   Optional<Loc> BufLoc = BufStart.getAs<Loc>();
880   if (!BufLoc)
881     return true; // cf top comment.
882 
883   SVal BufEnd =
884       svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
885 
886   // Check for out of bound array element access.
887   const MemRegion *R = BufEnd.getAsRegion();
888   if (!R)
889     return true; // cf top comment.
890 
891   const ElementRegion *ER = dyn_cast<ElementRegion>(R);
892   if (!ER)
893     return true; // cf top comment.
894 
895   // FIXME: Does this crash when a non-standard definition
896   // of a library function is encountered?
897   assert(ER->getValueType() == C.getASTContext().CharTy &&
898          "IsFirstBufInBound should only be called with char* ElementRegions");
899 
900   // Get the size of the array.
901   const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
902   SVal Extent =
903       svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
904   DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>();
905 
906   // Get the index of the accessed element.
907   DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
908 
909   ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true);
910 
911   return static_cast<bool>(StInBound);
912 }
913 
914 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
915                                                  ProgramStateRef state,
916                                                  const Expr *E, SVal V,
917                                                  bool IsSourceBuffer,
918                                                  const Expr *Size) {
919   Optional<Loc> L = V.getAs<Loc>();
920   if (!L)
921     return state;
922 
923   // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
924   // some assumptions about the value that CFRefCount can't. Even so, it should
925   // probably be refactored.
926   if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
927     const MemRegion *R = MR->getRegion()->StripCasts();
928 
929     // Are we dealing with an ElementRegion?  If so, we should be invalidating
930     // the super-region.
931     if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
932       R = ER->getSuperRegion();
933       // FIXME: What about layers of ElementRegions?
934     }
935 
936     // Invalidate this region.
937     const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
938 
939     bool CausesPointerEscape = false;
940     RegionAndSymbolInvalidationTraits ITraits;
941     // Invalidate and escape only indirect regions accessible through the source
942     // buffer.
943     if (IsSourceBuffer) {
944       ITraits.setTrait(R->getBaseRegion(),
945                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
946       ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
947       CausesPointerEscape = true;
948     } else {
949       const MemRegion::Kind& K = R->getKind();
950       if (K == MemRegion::FieldRegionKind)
951         if (Size && IsFirstBufInBound(C, state, E, Size)) {
952           // If destination buffer is a field region and access is in bound,
953           // do not invalidate its super region.
954           ITraits.setTrait(
955               R,
956               RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
957         }
958     }
959 
960     return state->invalidateRegions(R, E, C.blockCount(), LCtx,
961                                     CausesPointerEscape, nullptr, nullptr,
962                                     &ITraits);
963   }
964 
965   // If we have a non-region value by chance, just remove the binding.
966   // FIXME: is this necessary or correct? This handles the non-Region
967   //  cases.  Is it ever valid to store to these?
968   return state->killBinding(*L);
969 }
970 
971 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
972                                      const MemRegion *MR) {
973   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
974 
975   switch (MR->getKind()) {
976   case MemRegion::FunctionCodeRegionKind: {
977     const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
978     if (FD)
979       os << "the address of the function '" << *FD << '\'';
980     else
981       os << "the address of a function";
982     return true;
983   }
984   case MemRegion::BlockCodeRegionKind:
985     os << "block text";
986     return true;
987   case MemRegion::BlockDataRegionKind:
988     os << "a block";
989     return true;
990   case MemRegion::CXXThisRegionKind:
991   case MemRegion::CXXTempObjectRegionKind:
992     os << "a C++ temp object of type " << TVR->getValueType().getAsString();
993     return true;
994   case MemRegion::VarRegionKind:
995     os << "a variable of type" << TVR->getValueType().getAsString();
996     return true;
997   case MemRegion::FieldRegionKind:
998     os << "a field of type " << TVR->getValueType().getAsString();
999     return true;
1000   case MemRegion::ObjCIvarRegionKind:
1001     os << "an instance variable of type " << TVR->getValueType().getAsString();
1002     return true;
1003   default:
1004     return false;
1005   }
1006 }
1007 
1008 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1009                                const Expr *Size, CheckerContext &C,
1010                                ProgramStateRef &State) {
1011   SVal MemVal = C.getSVal(DstBuffer);
1012   SVal SizeVal = C.getSVal(Size);
1013   const MemRegion *MR = MemVal.getAsRegion();
1014   if (!MR)
1015     return false;
1016 
1017   // We're about to model memset by producing a "default binding" in the Store.
1018   // Our current implementation - RegionStore - doesn't support default bindings
1019   // that don't cover the whole base region. So we should first get the offset
1020   // and the base region to figure out whether the offset of buffer is 0.
1021   RegionOffset Offset = MR->getAsOffset();
1022   const MemRegion *BR = Offset.getRegion();
1023 
1024   Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1025   if (!SizeNL)
1026     return false;
1027 
1028   SValBuilder &svalBuilder = C.getSValBuilder();
1029   ASTContext &Ctx = C.getASTContext();
1030 
1031   // void *memset(void *dest, int ch, size_t count);
1032   // For now we can only handle the case of offset is 0 and concrete char value.
1033   if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1034       Offset.getOffset() == 0) {
1035     // Get the base region's extent.
1036     auto *SubReg = cast<SubRegion>(BR);
1037     DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder);
1038 
1039     ProgramStateRef StateWholeReg, StateNotWholeReg;
1040     std::tie(StateWholeReg, StateNotWholeReg) =
1041         State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL));
1042 
1043     // With the semantic of 'memset()', we should convert the CharVal to
1044     // unsigned char.
1045     CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1046 
1047     ProgramStateRef StateNullChar, StateNonNullChar;
1048     std::tie(StateNullChar, StateNonNullChar) =
1049         assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1050 
1051     if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1052         !StateNonNullChar) {
1053       // If the 'memset()' acts on the whole region of destination buffer and
1054       // the value of the second argument of 'memset()' is zero, bind the second
1055       // argument's value to the destination buffer with 'default binding'.
1056       // FIXME: Since there is no perfect way to bind the non-zero character, we
1057       // can only deal with zero value here. In the future, we need to deal with
1058       // the binding of non-zero value in the case of whole region.
1059       State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1060                                      C.getLocationContext());
1061     } else {
1062       // If the destination buffer's extent is not equal to the value of
1063       // third argument, just invalidate buffer.
1064       State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1065                                /*IsSourceBuffer*/ false, Size);
1066     }
1067 
1068     if (StateNullChar && !StateNonNullChar) {
1069       // If the value of the second argument of 'memset()' is zero, set the
1070       // string length of destination buffer to 0 directly.
1071       State = setCStringLength(State, MR,
1072                                svalBuilder.makeZeroVal(Ctx.getSizeType()));
1073     } else if (!StateNullChar && StateNonNullChar) {
1074       SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1075           CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1076           C.getLocationContext(), C.blockCount());
1077 
1078       // If the value of second argument is not zero, then the string length
1079       // is at least the size argument.
1080       SVal NewStrLenGESize = svalBuilder.evalBinOp(
1081           State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1082 
1083       State = setCStringLength(
1084           State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1085           MR, NewStrLen);
1086     }
1087   } else {
1088     // If the offset is not zero and char value is not concrete, we can do
1089     // nothing but invalidate the buffer.
1090     State = InvalidateBuffer(C, State, DstBuffer, MemVal,
1091                              /*IsSourceBuffer*/ false, Size);
1092   }
1093   return true;
1094 }
1095 
1096 //===----------------------------------------------------------------------===//
1097 // evaluation of individual function calls.
1098 //===----------------------------------------------------------------------===//
1099 
1100 void CStringChecker::evalCopyCommon(CheckerContext &C,
1101                                     const CallExpr *CE,
1102                                     ProgramStateRef state,
1103                                     const Expr *Size, const Expr *Dest,
1104                                     const Expr *Source, bool Restricted,
1105                                     bool IsMempcpy) const {
1106   CurrentFunctionDescription = "memory copy function";
1107 
1108   // See if the size argument is zero.
1109   const LocationContext *LCtx = C.getLocationContext();
1110   SVal sizeVal = state->getSVal(Size, LCtx);
1111   QualType sizeTy = Size->getType();
1112 
1113   ProgramStateRef stateZeroSize, stateNonZeroSize;
1114   std::tie(stateZeroSize, stateNonZeroSize) =
1115     assumeZero(C, state, sizeVal, sizeTy);
1116 
1117   // Get the value of the Dest.
1118   SVal destVal = state->getSVal(Dest, LCtx);
1119 
1120   // If the size is zero, there won't be any actual memory access, so
1121   // just bind the return value to the destination buffer and return.
1122   if (stateZeroSize && !stateNonZeroSize) {
1123     stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1124     C.addTransition(stateZeroSize);
1125     return;
1126   }
1127 
1128   // If the size can be nonzero, we have to check the other arguments.
1129   if (stateNonZeroSize) {
1130     state = stateNonZeroSize;
1131 
1132     // Ensure the destination is not null. If it is NULL there will be a
1133     // NULL pointer dereference.
1134     state = checkNonNull(C, state, Dest, destVal);
1135     if (!state)
1136       return;
1137 
1138     // Get the value of the Src.
1139     SVal srcVal = state->getSVal(Source, LCtx);
1140 
1141     // Ensure the source is not null. If it is NULL there will be a
1142     // NULL pointer dereference.
1143     state = checkNonNull(C, state, Source, srcVal);
1144     if (!state)
1145       return;
1146 
1147     // Ensure the accesses are valid and that the buffers do not overlap.
1148     const char * const writeWarning =
1149       "Memory copy function overflows destination buffer";
1150     state = CheckBufferAccess(C, state, Size, Dest, Source,
1151                               writeWarning, /* sourceWarning = */ nullptr);
1152     if (Restricted)
1153       state = CheckOverlap(C, state, Size, Dest, Source);
1154 
1155     if (!state)
1156       return;
1157 
1158     // If this is mempcpy, get the byte after the last byte copied and
1159     // bind the expr.
1160     if (IsMempcpy) {
1161       // Get the byte after the last byte copied.
1162       SValBuilder &SvalBuilder = C.getSValBuilder();
1163       ASTContext &Ctx = SvalBuilder.getContext();
1164       QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1165       SVal DestRegCharVal =
1166           SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType());
1167       SVal lastElement = C.getSValBuilder().evalBinOp(
1168           state, BO_Add, DestRegCharVal, sizeVal, Dest->getType());
1169       // If we don't know how much we copied, we can at least
1170       // conjure a return value for later.
1171       if (lastElement.isUnknown())
1172         lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1173                                                           C.blockCount());
1174 
1175       // The byte after the last byte copied is the return value.
1176       state = state->BindExpr(CE, LCtx, lastElement);
1177     } else {
1178       // All other copies return the destination buffer.
1179       // (Well, bcopy() has a void return type, but this won't hurt.)
1180       state = state->BindExpr(CE, LCtx, destVal);
1181     }
1182 
1183     // Invalidate the destination (regular invalidation without pointer-escaping
1184     // the address of the top-level region).
1185     // FIXME: Even if we can't perfectly model the copy, we should see if we
1186     // can use LazyCompoundVals to copy the source values into the destination.
1187     // This would probably remove any existing bindings past the end of the
1188     // copied region, but that's still an improvement over blank invalidation.
1189     state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
1190                              /*IsSourceBuffer*/false, Size);
1191 
1192     // Invalidate the source (const-invalidation without const-pointer-escaping
1193     // the address of the top-level region).
1194     state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
1195                              /*IsSourceBuffer*/true, nullptr);
1196 
1197     C.addTransition(state);
1198   }
1199 }
1200 
1201 
1202 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1203   if (CE->getNumArgs() < 3)
1204     return;
1205 
1206   // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1207   // The return value is the address of the destination buffer.
1208   const Expr *Dest = CE->getArg(0);
1209   ProgramStateRef state = C.getState();
1210 
1211   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
1212 }
1213 
1214 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1215   if (CE->getNumArgs() < 3)
1216     return;
1217 
1218   // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1219   // The return value is a pointer to the byte following the last written byte.
1220   const Expr *Dest = CE->getArg(0);
1221   ProgramStateRef state = C.getState();
1222 
1223   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1224 }
1225 
1226 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1227   if (CE->getNumArgs() < 3)
1228     return;
1229 
1230   // void *memmove(void *dst, const void *src, size_t n);
1231   // The return value is the address of the destination buffer.
1232   const Expr *Dest = CE->getArg(0);
1233   ProgramStateRef state = C.getState();
1234 
1235   evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1236 }
1237 
1238 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1239   if (CE->getNumArgs() < 3)
1240     return;
1241 
1242   // void bcopy(const void *src, void *dst, size_t n);
1243   evalCopyCommon(C, CE, C.getState(),
1244                  CE->getArg(2), CE->getArg(1), CE->getArg(0));
1245 }
1246 
1247 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1248   if (CE->getNumArgs() < 3)
1249     return;
1250 
1251   // int memcmp(const void *s1, const void *s2, size_t n);
1252   CurrentFunctionDescription = "memory comparison function";
1253 
1254   const Expr *Left = CE->getArg(0);
1255   const Expr *Right = CE->getArg(1);
1256   const Expr *Size = CE->getArg(2);
1257 
1258   ProgramStateRef state = C.getState();
1259   SValBuilder &svalBuilder = C.getSValBuilder();
1260 
1261   // See if the size argument is zero.
1262   const LocationContext *LCtx = C.getLocationContext();
1263   SVal sizeVal = state->getSVal(Size, LCtx);
1264   QualType sizeTy = Size->getType();
1265 
1266   ProgramStateRef stateZeroSize, stateNonZeroSize;
1267   std::tie(stateZeroSize, stateNonZeroSize) =
1268     assumeZero(C, state, sizeVal, sizeTy);
1269 
1270   // If the size can be zero, the result will be 0 in that case, and we don't
1271   // have to check either of the buffers.
1272   if (stateZeroSize) {
1273     state = stateZeroSize;
1274     state = state->BindExpr(CE, LCtx,
1275                             svalBuilder.makeZeroVal(CE->getType()));
1276     C.addTransition(state);
1277   }
1278 
1279   // If the size can be nonzero, we have to check the other arguments.
1280   if (stateNonZeroSize) {
1281     state = stateNonZeroSize;
1282     // If we know the two buffers are the same, we know the result is 0.
1283     // First, get the two buffers' addresses. Another checker will have already
1284     // made sure they're not undefined.
1285     DefinedOrUnknownSVal LV =
1286         state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1287     DefinedOrUnknownSVal RV =
1288         state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1289 
1290     // See if they are the same.
1291     DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1292     ProgramStateRef StSameBuf, StNotSameBuf;
1293     std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1294 
1295     // If the two arguments might be the same buffer, we know the result is 0,
1296     // and we only need to check one size.
1297     if (StSameBuf) {
1298       state = StSameBuf;
1299       state = CheckBufferAccess(C, state, Size, Left);
1300       if (state) {
1301         state = StSameBuf->BindExpr(CE, LCtx,
1302                                     svalBuilder.makeZeroVal(CE->getType()));
1303         C.addTransition(state);
1304       }
1305     }
1306 
1307     // If the two arguments might be different buffers, we have to check the
1308     // size of both of them.
1309     if (StNotSameBuf) {
1310       state = StNotSameBuf;
1311       state = CheckBufferAccess(C, state, Size, Left, Right);
1312       if (state) {
1313         // The return value is the comparison result, which we don't know.
1314         SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1315                                                  C.blockCount());
1316         state = state->BindExpr(CE, LCtx, CmpV);
1317         C.addTransition(state);
1318       }
1319     }
1320   }
1321 }
1322 
1323 void CStringChecker::evalstrLength(CheckerContext &C,
1324                                    const CallExpr *CE) const {
1325   if (CE->getNumArgs() < 1)
1326     return;
1327 
1328   // size_t strlen(const char *s);
1329   evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1330 }
1331 
1332 void CStringChecker::evalstrnLength(CheckerContext &C,
1333                                     const CallExpr *CE) const {
1334   if (CE->getNumArgs() < 2)
1335     return;
1336 
1337   // size_t strnlen(const char *s, size_t maxlen);
1338   evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1339 }
1340 
1341 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1342                                          bool IsStrnlen) const {
1343   CurrentFunctionDescription = "string length function";
1344   ProgramStateRef state = C.getState();
1345   const LocationContext *LCtx = C.getLocationContext();
1346 
1347   if (IsStrnlen) {
1348     const Expr *maxlenExpr = CE->getArg(1);
1349     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1350 
1351     ProgramStateRef stateZeroSize, stateNonZeroSize;
1352     std::tie(stateZeroSize, stateNonZeroSize) =
1353       assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1354 
1355     // If the size can be zero, the result will be 0 in that case, and we don't
1356     // have to check the string itself.
1357     if (stateZeroSize) {
1358       SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1359       stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1360       C.addTransition(stateZeroSize);
1361     }
1362 
1363     // If the size is GUARANTEED to be zero, we're done!
1364     if (!stateNonZeroSize)
1365       return;
1366 
1367     // Otherwise, record the assumption that the size is nonzero.
1368     state = stateNonZeroSize;
1369   }
1370 
1371   // Check that the string argument is non-null.
1372   const Expr *Arg = CE->getArg(0);
1373   SVal ArgVal = state->getSVal(Arg, LCtx);
1374 
1375   state = checkNonNull(C, state, Arg, ArgVal);
1376 
1377   if (!state)
1378     return;
1379 
1380   SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1381 
1382   // If the argument isn't a valid C string, there's no valid state to
1383   // transition to.
1384   if (strLength.isUndef())
1385     return;
1386 
1387   DefinedOrUnknownSVal result = UnknownVal();
1388 
1389   // If the check is for strnlen() then bind the return value to no more than
1390   // the maxlen value.
1391   if (IsStrnlen) {
1392     QualType cmpTy = C.getSValBuilder().getConditionType();
1393 
1394     // It's a little unfortunate to be getting this again,
1395     // but it's not that expensive...
1396     const Expr *maxlenExpr = CE->getArg(1);
1397     SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1398 
1399     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1400     Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1401 
1402     if (strLengthNL && maxlenValNL) {
1403       ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1404 
1405       // Check if the strLength is greater than the maxlen.
1406       std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1407           C.getSValBuilder()
1408               .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1409               .castAs<DefinedOrUnknownSVal>());
1410 
1411       if (stateStringTooLong && !stateStringNotTooLong) {
1412         // If the string is longer than maxlen, return maxlen.
1413         result = *maxlenValNL;
1414       } else if (stateStringNotTooLong && !stateStringTooLong) {
1415         // If the string is shorter than maxlen, return its length.
1416         result = *strLengthNL;
1417       }
1418     }
1419 
1420     if (result.isUnknown()) {
1421       // If we don't have enough information for a comparison, there's
1422       // no guarantee the full string length will actually be returned.
1423       // All we know is the return value is the min of the string length
1424       // and the limit. This is better than nothing.
1425       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1426                                                    C.blockCount());
1427       NonLoc resultNL = result.castAs<NonLoc>();
1428 
1429       if (strLengthNL) {
1430         state = state->assume(C.getSValBuilder().evalBinOpNN(
1431                                   state, BO_LE, resultNL, *strLengthNL, cmpTy)
1432                                   .castAs<DefinedOrUnknownSVal>(), true);
1433       }
1434 
1435       if (maxlenValNL) {
1436         state = state->assume(C.getSValBuilder().evalBinOpNN(
1437                                   state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1438                                   .castAs<DefinedOrUnknownSVal>(), true);
1439       }
1440     }
1441 
1442   } else {
1443     // This is a plain strlen(), not strnlen().
1444     result = strLength.castAs<DefinedOrUnknownSVal>();
1445 
1446     // If we don't know the length of the string, conjure a return
1447     // value, so it can be used in constraints, at least.
1448     if (result.isUnknown()) {
1449       result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1450                                                    C.blockCount());
1451     }
1452   }
1453 
1454   // Bind the return value.
1455   assert(!result.isUnknown() && "Should have conjured a value by now");
1456   state = state->BindExpr(CE, LCtx, result);
1457   C.addTransition(state);
1458 }
1459 
1460 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1461   if (CE->getNumArgs() < 2)
1462     return;
1463 
1464   // char *strcpy(char *restrict dst, const char *restrict src);
1465   evalStrcpyCommon(C, CE,
1466                    /* returnEnd = */ false,
1467                    /* isBounded = */ false,
1468                    /* isAppending = */ false);
1469 }
1470 
1471 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1472   if (CE->getNumArgs() < 3)
1473     return;
1474 
1475   // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1476   evalStrcpyCommon(C, CE,
1477                    /* returnEnd = */ false,
1478                    /* isBounded = */ true,
1479                    /* isAppending = */ false);
1480 }
1481 
1482 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1483   if (CE->getNumArgs() < 2)
1484     return;
1485 
1486   // char *stpcpy(char *restrict dst, const char *restrict src);
1487   evalStrcpyCommon(C, CE,
1488                    /* returnEnd = */ true,
1489                    /* isBounded = */ false,
1490                    /* isAppending = */ false);
1491 }
1492 
1493 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const {
1494   if (CE->getNumArgs() < 3)
1495     return;
1496 
1497   // char *strlcpy(char *dst, const char *src, size_t n);
1498   evalStrcpyCommon(C, CE,
1499                    /* returnEnd = */ true,
1500                    /* isBounded = */ true,
1501                    /* isAppending = */ false,
1502                    /* returnPtr = */ false);
1503 }
1504 
1505 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1506   if (CE->getNumArgs() < 2)
1507     return;
1508 
1509   //char *strcat(char *restrict s1, const char *restrict s2);
1510   evalStrcpyCommon(C, CE,
1511                    /* returnEnd = */ false,
1512                    /* isBounded = */ false,
1513                    /* isAppending = */ true);
1514 }
1515 
1516 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1517   if (CE->getNumArgs() < 3)
1518     return;
1519 
1520   //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1521   evalStrcpyCommon(C, CE,
1522                    /* returnEnd = */ false,
1523                    /* isBounded = */ true,
1524                    /* isAppending = */ true);
1525 }
1526 
1527 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const {
1528   if (CE->getNumArgs() < 3)
1529     return;
1530 
1531   //char *strlcat(char *s1, const char *s2, size_t n);
1532   evalStrcpyCommon(C, CE,
1533                    /* returnEnd = */ false,
1534                    /* isBounded = */ true,
1535                    /* isAppending = */ true,
1536                    /* returnPtr = */ false);
1537 }
1538 
1539 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1540                                       bool returnEnd, bool isBounded,
1541                                       bool isAppending, bool returnPtr) const {
1542   CurrentFunctionDescription = "string copy function";
1543   ProgramStateRef state = C.getState();
1544   const LocationContext *LCtx = C.getLocationContext();
1545 
1546   // Check that the destination is non-null.
1547   const Expr *Dst = CE->getArg(0);
1548   SVal DstVal = state->getSVal(Dst, LCtx);
1549 
1550   state = checkNonNull(C, state, Dst, DstVal);
1551   if (!state)
1552     return;
1553 
1554   // Check that the source is non-null.
1555   const Expr *srcExpr = CE->getArg(1);
1556   SVal srcVal = state->getSVal(srcExpr, LCtx);
1557   state = checkNonNull(C, state, srcExpr, srcVal);
1558   if (!state)
1559     return;
1560 
1561   // Get the string length of the source.
1562   SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1563 
1564   // If the source isn't a valid C string, give up.
1565   if (strLength.isUndef())
1566     return;
1567 
1568   SValBuilder &svalBuilder = C.getSValBuilder();
1569   QualType cmpTy = svalBuilder.getConditionType();
1570   QualType sizeTy = svalBuilder.getContext().getSizeType();
1571 
1572   // These two values allow checking two kinds of errors:
1573   // - actual overflows caused by a source that doesn't fit in the destination
1574   // - potential overflows caused by a bound that could exceed the destination
1575   SVal amountCopied = UnknownVal();
1576   SVal maxLastElementIndex = UnknownVal();
1577   const char *boundWarning = nullptr;
1578 
1579   state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr);
1580 
1581   if (!state)
1582     return;
1583 
1584   // If the function is strncpy, strncat, etc... it is bounded.
1585   if (isBounded) {
1586     // Get the max number of characters to copy.
1587     const Expr *lenExpr = CE->getArg(2);
1588     SVal lenVal = state->getSVal(lenExpr, LCtx);
1589 
1590     // Protect against misdeclared strncpy().
1591     lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1592 
1593     Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1594     Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1595 
1596     // If we know both values, we might be able to figure out how much
1597     // we're copying.
1598     if (strLengthNL && lenValNL) {
1599       ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1600 
1601       // Check if the max number to copy is less than the length of the src.
1602       // If the bound is equal to the source length, strncpy won't null-
1603       // terminate the result!
1604       std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1605           svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1606               .castAs<DefinedOrUnknownSVal>());
1607 
1608       if (stateSourceTooLong && !stateSourceNotTooLong) {
1609         // Max number to copy is less than the length of the src, so the actual
1610         // strLength copied is the max number arg.
1611         state = stateSourceTooLong;
1612         amountCopied = lenVal;
1613 
1614       } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1615         // The source buffer entirely fits in the bound.
1616         state = stateSourceNotTooLong;
1617         amountCopied = strLength;
1618       }
1619     }
1620 
1621     // We still want to know if the bound is known to be too large.
1622     if (lenValNL) {
1623       if (isAppending) {
1624         // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1625 
1626         // Get the string length of the destination. If the destination is
1627         // memory that can't have a string length, we shouldn't be copying
1628         // into it anyway.
1629         SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1630         if (dstStrLength.isUndef())
1631           return;
1632 
1633         if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
1634           maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1635                                                         *lenValNL,
1636                                                         *dstStrLengthNL,
1637                                                         sizeTy);
1638           boundWarning = "Size argument is greater than the free space in the "
1639                          "destination buffer";
1640         }
1641 
1642       } else {
1643         // For strncpy, this is just checking that lenVal <= sizeof(dst)
1644         // (Yes, strncpy and strncat differ in how they treat termination.
1645         // strncat ALWAYS terminates, but strncpy doesn't.)
1646 
1647         // We need a special case for when the copy size is zero, in which
1648         // case strncpy will do no work at all. Our bounds check uses n-1
1649         // as the last element accessed, so n == 0 is problematic.
1650         ProgramStateRef StateZeroSize, StateNonZeroSize;
1651         std::tie(StateZeroSize, StateNonZeroSize) =
1652           assumeZero(C, state, *lenValNL, sizeTy);
1653 
1654         // If the size is known to be zero, we're done.
1655         if (StateZeroSize && !StateNonZeroSize) {
1656           if (returnPtr) {
1657             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1658           } else {
1659             StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL);
1660           }
1661           C.addTransition(StateZeroSize);
1662           return;
1663         }
1664 
1665         // Otherwise, go ahead and figure out the last element we'll touch.
1666         // We don't record the non-zero assumption here because we can't
1667         // be sure. We won't warn on a possible zero.
1668         NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1669         maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1670                                                       one, sizeTy);
1671         boundWarning = "Size argument is greater than the length of the "
1672                        "destination buffer";
1673       }
1674     }
1675 
1676     // If we couldn't pin down the copy length, at least bound it.
1677     // FIXME: We should actually run this code path for append as well, but
1678     // right now it creates problems with constraints (since we can end up
1679     // trying to pass constraints from symbol to symbol).
1680     if (amountCopied.isUnknown() && !isAppending) {
1681       // Try to get a "hypothetical" string length symbol, which we can later
1682       // set as a real value if that turns out to be the case.
1683       amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1684       assert(!amountCopied.isUndef());
1685 
1686       if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
1687         if (lenValNL) {
1688           // amountCopied <= lenVal
1689           SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1690                                                              *amountCopiedNL,
1691                                                              *lenValNL,
1692                                                              cmpTy);
1693           state = state->assume(
1694               copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
1695           if (!state)
1696             return;
1697         }
1698 
1699         if (strLengthNL) {
1700           // amountCopied <= strlen(source)
1701           SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1702                                                            *amountCopiedNL,
1703                                                            *strLengthNL,
1704                                                            cmpTy);
1705           state = state->assume(
1706               copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
1707           if (!state)
1708             return;
1709         }
1710       }
1711     }
1712 
1713   } else {
1714     // The function isn't bounded. The amount copied should match the length
1715     // of the source buffer.
1716     amountCopied = strLength;
1717   }
1718 
1719   assert(state);
1720 
1721   // This represents the number of characters copied into the destination
1722   // buffer. (It may not actually be the strlen if the destination buffer
1723   // is not terminated.)
1724   SVal finalStrLength = UnknownVal();
1725 
1726   // If this is an appending function (strcat, strncat...) then set the
1727   // string length to strlen(src) + strlen(dst) since the buffer will
1728   // ultimately contain both.
1729   if (isAppending) {
1730     // Get the string length of the destination. If the destination is memory
1731     // that can't have a string length, we shouldn't be copying into it anyway.
1732     SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1733     if (dstStrLength.isUndef())
1734       return;
1735 
1736     Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
1737     Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1738 
1739     // If we know both string lengths, we might know the final string length.
1740     if (srcStrLengthNL && dstStrLengthNL) {
1741       // Make sure the two lengths together don't overflow a size_t.
1742       state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1743       if (!state)
1744         return;
1745 
1746       finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1747                                                *dstStrLengthNL, sizeTy);
1748     }
1749 
1750     // If we couldn't get a single value for the final string length,
1751     // we can at least bound it by the individual lengths.
1752     if (finalStrLength.isUnknown()) {
1753       // Try to get a "hypothetical" string length symbol, which we can later
1754       // set as a real value if that turns out to be the case.
1755       finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1756       assert(!finalStrLength.isUndef());
1757 
1758       if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1759         if (srcStrLengthNL) {
1760           // finalStrLength >= srcStrLength
1761           SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1762                                                         *finalStrLengthNL,
1763                                                         *srcStrLengthNL,
1764                                                         cmpTy);
1765           state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1766                                 true);
1767           if (!state)
1768             return;
1769         }
1770 
1771         if (dstStrLengthNL) {
1772           // finalStrLength >= dstStrLength
1773           SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1774                                                       *finalStrLengthNL,
1775                                                       *dstStrLengthNL,
1776                                                       cmpTy);
1777           state =
1778               state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1779           if (!state)
1780             return;
1781         }
1782       }
1783     }
1784 
1785   } else {
1786     // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1787     // the final string length will match the input string length.
1788     finalStrLength = amountCopied;
1789   }
1790 
1791   SVal Result;
1792 
1793   if (returnPtr) {
1794     // The final result of the function will either be a pointer past the last
1795     // copied element, or a pointer to the start of the destination buffer.
1796     Result = (returnEnd ? UnknownVal() : DstVal);
1797   } else {
1798     Result = finalStrLength;
1799   }
1800 
1801   assert(state);
1802 
1803   // If the destination is a MemRegion, try to check for a buffer overflow and
1804   // record the new string length.
1805   if (Optional<loc::MemRegionVal> dstRegVal =
1806       DstVal.getAs<loc::MemRegionVal>()) {
1807     QualType ptrTy = Dst->getType();
1808 
1809     // If we have an exact value on a bounded copy, use that to check for
1810     // overflows, rather than our estimate about how much is actually copied.
1811     if (boundWarning) {
1812       if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1813         SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1814             *maxLastNL, ptrTy);
1815         state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1816             boundWarning);
1817         if (!state)
1818           return;
1819       }
1820     }
1821 
1822     // Then, if the final length is known...
1823     if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1824       SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1825           *knownStrLength, ptrTy);
1826 
1827       // ...and we haven't checked the bound, we'll check the actual copy.
1828       if (!boundWarning) {
1829         const char * const warningMsg =
1830           "String copy function overflows destination buffer";
1831         state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1832         if (!state)
1833           return;
1834       }
1835 
1836       // If this is a stpcpy-style copy, the last element is the return value.
1837       if (returnPtr && returnEnd)
1838         Result = lastElement;
1839     }
1840 
1841     // Invalidate the destination (regular invalidation without pointer-escaping
1842     // the address of the top-level region). This must happen before we set the
1843     // C string length because invalidation will clear the length.
1844     // FIXME: Even if we can't perfectly model the copy, we should see if we
1845     // can use LazyCompoundVals to copy the source values into the destination.
1846     // This would probably remove any existing bindings past the end of the
1847     // string, but that's still an improvement over blank invalidation.
1848     state = InvalidateBuffer(C, state, Dst, *dstRegVal,
1849         /*IsSourceBuffer*/false, nullptr);
1850 
1851     // Invalidate the source (const-invalidation without const-pointer-escaping
1852     // the address of the top-level region).
1853     state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
1854         nullptr);
1855 
1856     // Set the C string length of the destination, if we know it.
1857     if (isBounded && !isAppending) {
1858       // strncpy is annoying in that it doesn't guarantee to null-terminate
1859       // the result string. If the original string didn't fit entirely inside
1860       // the bound (including the null-terminator), we don't know how long the
1861       // result is.
1862       if (amountCopied != strLength)
1863         finalStrLength = UnknownVal();
1864     }
1865     state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1866   }
1867 
1868   assert(state);
1869 
1870   if (returnPtr) {
1871     // If this is a stpcpy-style copy, but we were unable to check for a buffer
1872     // overflow, we still need a result. Conjure a return value.
1873     if (returnEnd && Result.isUnknown()) {
1874       Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1875     }
1876   }
1877   // Set the return value.
1878   state = state->BindExpr(CE, LCtx, Result);
1879   C.addTransition(state);
1880 }
1881 
1882 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1883   if (CE->getNumArgs() < 2)
1884     return;
1885 
1886   //int strcmp(const char *s1, const char *s2);
1887   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1888 }
1889 
1890 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1891   if (CE->getNumArgs() < 3)
1892     return;
1893 
1894   //int strncmp(const char *s1, const char *s2, size_t n);
1895   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1896 }
1897 
1898 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1899     const CallExpr *CE) const {
1900   if (CE->getNumArgs() < 2)
1901     return;
1902 
1903   //int strcasecmp(const char *s1, const char *s2);
1904   evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1905 }
1906 
1907 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1908     const CallExpr *CE) const {
1909   if (CE->getNumArgs() < 3)
1910     return;
1911 
1912   //int strncasecmp(const char *s1, const char *s2, size_t n);
1913   evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1914 }
1915 
1916 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1917     bool isBounded, bool ignoreCase) const {
1918   CurrentFunctionDescription = "string comparison function";
1919   ProgramStateRef state = C.getState();
1920   const LocationContext *LCtx = C.getLocationContext();
1921 
1922   // Check that the first string is non-null
1923   const Expr *s1 = CE->getArg(0);
1924   SVal s1Val = state->getSVal(s1, LCtx);
1925   state = checkNonNull(C, state, s1, s1Val);
1926   if (!state)
1927     return;
1928 
1929   // Check that the second string is non-null.
1930   const Expr *s2 = CE->getArg(1);
1931   SVal s2Val = state->getSVal(s2, LCtx);
1932   state = checkNonNull(C, state, s2, s2Val);
1933   if (!state)
1934     return;
1935 
1936   // Get the string length of the first string or give up.
1937   SVal s1Length = getCStringLength(C, state, s1, s1Val);
1938   if (s1Length.isUndef())
1939     return;
1940 
1941   // Get the string length of the second string or give up.
1942   SVal s2Length = getCStringLength(C, state, s2, s2Val);
1943   if (s2Length.isUndef())
1944     return;
1945 
1946   // If we know the two buffers are the same, we know the result is 0.
1947   // First, get the two buffers' addresses. Another checker will have already
1948   // made sure they're not undefined.
1949   DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1950   DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1951 
1952   // See if they are the same.
1953   SValBuilder &svalBuilder = C.getSValBuilder();
1954   DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1955   ProgramStateRef StSameBuf, StNotSameBuf;
1956   std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1957 
1958   // If the two arguments might be the same buffer, we know the result is 0,
1959   // and we only need to check one size.
1960   if (StSameBuf) {
1961     StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1962         svalBuilder.makeZeroVal(CE->getType()));
1963     C.addTransition(StSameBuf);
1964 
1965     // If the two arguments are GUARANTEED to be the same, we're done!
1966     if (!StNotSameBuf)
1967       return;
1968   }
1969 
1970   assert(StNotSameBuf);
1971   state = StNotSameBuf;
1972 
1973   // At this point we can go about comparing the two buffers.
1974   // For now, we only do this if they're both known string literals.
1975 
1976   // Attempt to extract string literals from both expressions.
1977   const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1978   const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1979   bool canComputeResult = false;
1980   SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1981       C.blockCount());
1982 
1983   if (s1StrLiteral && s2StrLiteral) {
1984     StringRef s1StrRef = s1StrLiteral->getString();
1985     StringRef s2StrRef = s2StrLiteral->getString();
1986 
1987     if (isBounded) {
1988       // Get the max number of characters to compare.
1989       const Expr *lenExpr = CE->getArg(2);
1990       SVal lenVal = state->getSVal(lenExpr, LCtx);
1991 
1992       // If the length is known, we can get the right substrings.
1993       if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1994         // Create substrings of each to compare the prefix.
1995         s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1996         s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1997         canComputeResult = true;
1998       }
1999     } else {
2000       // This is a normal, unbounded strcmp.
2001       canComputeResult = true;
2002     }
2003 
2004     if (canComputeResult) {
2005       // Real strcmp stops at null characters.
2006       size_t s1Term = s1StrRef.find('\0');
2007       if (s1Term != StringRef::npos)
2008         s1StrRef = s1StrRef.substr(0, s1Term);
2009 
2010       size_t s2Term = s2StrRef.find('\0');
2011       if (s2Term != StringRef::npos)
2012         s2StrRef = s2StrRef.substr(0, s2Term);
2013 
2014       // Use StringRef's comparison methods to compute the actual result.
2015       int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef)
2016         : s1StrRef.compare(s2StrRef);
2017 
2018       // The strcmp function returns an integer greater than, equal to, or less
2019       // than zero, [c11, p7.24.4.2].
2020       if (compareRes == 0) {
2021         resultVal = svalBuilder.makeIntVal(compareRes, CE->getType());
2022       }
2023       else {
2024         DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType());
2025         // Constrain strcmp's result range based on the result of StringRef's
2026         // comparison methods.
2027         BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT;
2028         SVal compareWithZero =
2029           svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2030               svalBuilder.getConditionType());
2031         DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2032         state = state->assume(compareWithZeroVal, true);
2033       }
2034     }
2035   }
2036 
2037   state = state->BindExpr(CE, LCtx, resultVal);
2038 
2039   // Record this as a possible path.
2040   C.addTransition(state);
2041 }
2042 
2043 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
2044   //char *strsep(char **stringp, const char *delim);
2045   if (CE->getNumArgs() < 2)
2046     return;
2047 
2048   // Sanity: does the search string parameter match the return type?
2049   const Expr *SearchStrPtr = CE->getArg(0);
2050   QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
2051   if (CharPtrTy.isNull() ||
2052       CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
2053     return;
2054 
2055   CurrentFunctionDescription = "strsep()";
2056   ProgramStateRef State = C.getState();
2057   const LocationContext *LCtx = C.getLocationContext();
2058 
2059   // Check that the search string pointer is non-null (though it may point to
2060   // a null string).
2061   SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
2062   State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2063   if (!State)
2064     return;
2065 
2066   // Check that the delimiter string is non-null.
2067   const Expr *DelimStr = CE->getArg(1);
2068   SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
2069   State = checkNonNull(C, State, DelimStr, DelimStrVal);
2070   if (!State)
2071     return;
2072 
2073   SValBuilder &SVB = C.getSValBuilder();
2074   SVal Result;
2075   if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2076     // Get the current value of the search string pointer, as a char*.
2077     Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2078 
2079     // Invalidate the search string, representing the change of one delimiter
2080     // character to NUL.
2081     State = InvalidateBuffer(C, State, SearchStrPtr, Result,
2082         /*IsSourceBuffer*/false, nullptr);
2083 
2084     // Overwrite the search string pointer. The new value is either an address
2085     // further along in the same string, or NULL if there are no more tokens.
2086     State = State->bindLoc(*SearchStrLoc,
2087         SVB.conjureSymbolVal(getTag(),
2088           CE,
2089           LCtx,
2090           CharPtrTy,
2091           C.blockCount()),
2092         LCtx);
2093   } else {
2094     assert(SearchStrVal.isUnknown());
2095     // Conjure a symbolic value. It's the best we can do.
2096     Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2097   }
2098 
2099   // Set the return value, and finish.
2100   State = State->BindExpr(CE, LCtx, Result);
2101   C.addTransition(State);
2102 }
2103 
2104 // These should probably be moved into a C++ standard library checker.
2105 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const {
2106   evalStdCopyCommon(C, CE);
2107 }
2108 
2109 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2110     const CallExpr *CE) const {
2111   evalStdCopyCommon(C, CE);
2112 }
2113 
2114 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2115     const CallExpr *CE) const {
2116   if (CE->getNumArgs() < 3)
2117     return;
2118 
2119   ProgramStateRef State = C.getState();
2120 
2121   const LocationContext *LCtx = C.getLocationContext();
2122 
2123   // template <class _InputIterator, class _OutputIterator>
2124   // _OutputIterator
2125   // copy(_InputIterator __first, _InputIterator __last,
2126   //        _OutputIterator __result)
2127 
2128   // Invalidate the destination buffer
2129   const Expr *Dst = CE->getArg(2);
2130   SVal DstVal = State->getSVal(Dst, LCtx);
2131   State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false,
2132       /*Size=*/nullptr);
2133 
2134   SValBuilder &SVB = C.getSValBuilder();
2135 
2136   SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
2137   State = State->BindExpr(CE, LCtx, ResultVal);
2138 
2139   C.addTransition(State);
2140 }
2141 
2142 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const {
2143   if (CE->getNumArgs() != 3)
2144     return;
2145 
2146   CurrentFunctionDescription = "memory set function";
2147 
2148   const Expr *Mem = CE->getArg(0);
2149   const Expr *CharE = CE->getArg(1);
2150   const Expr *Size = CE->getArg(2);
2151   ProgramStateRef State = C.getState();
2152 
2153   // See if the size argument is zero.
2154   const LocationContext *LCtx = C.getLocationContext();
2155   SVal SizeVal = State->getSVal(Size, LCtx);
2156   QualType SizeTy = Size->getType();
2157 
2158   ProgramStateRef StateZeroSize, StateNonZeroSize;
2159   std::tie(StateZeroSize, StateNonZeroSize) =
2160     assumeZero(C, State, SizeVal, SizeTy);
2161 
2162   // Get the value of the memory area.
2163   SVal MemVal = State->getSVal(Mem, LCtx);
2164 
2165   // If the size is zero, there won't be any actual memory access, so
2166   // just bind the return value to the Mem buffer and return.
2167   if (StateZeroSize && !StateNonZeroSize) {
2168     StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal);
2169     C.addTransition(StateZeroSize);
2170     return;
2171   }
2172 
2173   // Ensure the memory area is not null.
2174   // If it is NULL there will be a NULL pointer dereference.
2175   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal);
2176   if (!State)
2177     return;
2178 
2179   State = CheckBufferAccess(C, State, Size, Mem);
2180   if (!State)
2181     return;
2182 
2183   // According to the values of the arguments, bind the value of the second
2184   // argument to the destination buffer and set string length, or just
2185   // invalidate the destination buffer.
2186   if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State))
2187     return;
2188 
2189   State = State->BindExpr(CE, LCtx, MemVal);
2190   C.addTransition(State);
2191 }
2192 
2193 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const {
2194   if (CE->getNumArgs() != 2)
2195     return;
2196 
2197   CurrentFunctionDescription = "memory clearance function";
2198 
2199   const Expr *Mem = CE->getArg(0);
2200   const Expr *Size = CE->getArg(1);
2201   SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2202 
2203   ProgramStateRef State = C.getState();
2204 
2205   // See if the size argument is zero.
2206   SVal SizeVal = C.getSVal(Size);
2207   QualType SizeTy = Size->getType();
2208 
2209   ProgramStateRef StateZeroSize, StateNonZeroSize;
2210   std::tie(StateZeroSize, StateNonZeroSize) =
2211     assumeZero(C, State, SizeVal, SizeTy);
2212 
2213   // If the size is zero, there won't be any actual memory access,
2214   // In this case we just return.
2215   if (StateZeroSize && !StateNonZeroSize) {
2216     C.addTransition(StateZeroSize);
2217     return;
2218   }
2219 
2220   // Get the value of the memory area.
2221   SVal MemVal = C.getSVal(Mem);
2222 
2223   // Ensure the memory area is not null.
2224   // If it is NULL there will be a NULL pointer dereference.
2225   State = checkNonNull(C, StateNonZeroSize, Mem, MemVal);
2226   if (!State)
2227     return;
2228 
2229   State = CheckBufferAccess(C, State, Size, Mem);
2230   if (!State)
2231     return;
2232 
2233   if (!memsetAux(Mem, Zero, Size, C, State))
2234     return;
2235 
2236   C.addTransition(State);
2237 }
2238 
2239 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) {
2240   IdentifierInfo *II = FD->getIdentifier();
2241   if (!II)
2242     return false;
2243 
2244   if (!AnalysisDeclContext::isInStdNamespace(FD))
2245     return false;
2246 
2247   if (II->getName().equals(Name))
2248     return true;
2249 
2250   return false;
2251 }
2252 //===----------------------------------------------------------------------===//
2253 // The driver method, and other Checker callbacks.
2254 //===----------------------------------------------------------------------===//
2255 
2256 static CStringChecker::FnCheck identifyCall(const CallExpr *CE,
2257                                             CheckerContext &C) {
2258   const FunctionDecl *FDecl = C.getCalleeDecl(CE);
2259   if (!FDecl)
2260     return nullptr;
2261 
2262   // Pro-actively check that argument types are safe to do arithmetic upon.
2263   // We do not want to crash if someone accidentally passes a structure
2264   // into, say, a C++ overload of any of these functions.
2265   if (isCPPStdLibraryFunction(FDecl, "copy")) {
2266     if (CE->getNumArgs() < 3 || !CE->getArg(2)->getType()->isPointerType())
2267       return nullptr;
2268     return &CStringChecker::evalStdCopy;
2269   } else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) {
2270     if (CE->getNumArgs() < 3 || !CE->getArg(2)->getType()->isPointerType())
2271       return nullptr;
2272     return &CStringChecker::evalStdCopyBackward;
2273   } else {
2274     // An umbrella check for all C library functions.
2275     for (auto I: CE->arguments()) {
2276       QualType T = I->getType();
2277       if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2278         return nullptr;
2279     }
2280   }
2281 
2282   // FIXME: Poorly-factored string switches are slow.
2283   if (C.isCLibraryFunction(FDecl, "memcpy"))
2284     return &CStringChecker::evalMemcpy;
2285   else if (C.isCLibraryFunction(FDecl, "mempcpy"))
2286     return &CStringChecker::evalMempcpy;
2287   else if (C.isCLibraryFunction(FDecl, "memcmp"))
2288     return &CStringChecker::evalMemcmp;
2289   else if (C.isCLibraryFunction(FDecl, "memmove"))
2290     return &CStringChecker::evalMemmove;
2291   else if (C.isCLibraryFunction(FDecl, "memset") ||
2292            C.isCLibraryFunction(FDecl, "explicit_memset"))
2293     return &CStringChecker::evalMemset;
2294   else if (C.isCLibraryFunction(FDecl, "strcpy"))
2295     return &CStringChecker::evalStrcpy;
2296   else if (C.isCLibraryFunction(FDecl, "strncpy"))
2297     return &CStringChecker::evalStrncpy;
2298   else if (C.isCLibraryFunction(FDecl, "stpcpy"))
2299     return &CStringChecker::evalStpcpy;
2300   else if (C.isCLibraryFunction(FDecl, "strlcpy"))
2301     return &CStringChecker::evalStrlcpy;
2302   else if (C.isCLibraryFunction(FDecl, "strcat"))
2303     return &CStringChecker::evalStrcat;
2304   else if (C.isCLibraryFunction(FDecl, "strncat"))
2305     return &CStringChecker::evalStrncat;
2306   else if (C.isCLibraryFunction(FDecl, "strlcat"))
2307     return &CStringChecker::evalStrlcat;
2308   else if (C.isCLibraryFunction(FDecl, "strlen"))
2309     return &CStringChecker::evalstrLength;
2310   else if (C.isCLibraryFunction(FDecl, "strnlen"))
2311     return &CStringChecker::evalstrnLength;
2312   else if (C.isCLibraryFunction(FDecl, "strcmp"))
2313     return &CStringChecker::evalStrcmp;
2314   else if (C.isCLibraryFunction(FDecl, "strncmp"))
2315     return &CStringChecker::evalStrncmp;
2316   else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
2317     return &CStringChecker::evalStrcasecmp;
2318   else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
2319     return &CStringChecker::evalStrncasecmp;
2320   else if (C.isCLibraryFunction(FDecl, "strsep"))
2321     return &CStringChecker::evalStrsep;
2322   else if (C.isCLibraryFunction(FDecl, "bcopy"))
2323     return &CStringChecker::evalBcopy;
2324   else if (C.isCLibraryFunction(FDecl, "bcmp"))
2325     return &CStringChecker::evalMemcmp;
2326   else if (C.isCLibraryFunction(FDecl, "bzero") ||
2327            C.isCLibraryFunction(FDecl, "explicit_bzero"))
2328     return &CStringChecker::evalBzero;
2329 
2330   return nullptr;
2331 }
2332 
2333 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
2334 
2335   FnCheck evalFunction = identifyCall(CE, C);
2336 
2337   // If the callee isn't a string function, let another checker handle it.
2338   if (!evalFunction)
2339     return false;
2340 
2341   // Check and evaluate the call.
2342   (this->*evalFunction)(C, CE);
2343 
2344   // If the evaluate call resulted in no change, chain to the next eval call
2345   // handler.
2346   // Note, the custom CString evaluation calls assume that basic safety
2347   // properties are held. However, if the user chooses to turn off some of these
2348   // checks, we ignore the issues and leave the call evaluation to a generic
2349   // handler.
2350   return C.isDifferent();
2351 }
2352 
2353 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2354   // Record string length for char a[] = "abc";
2355   ProgramStateRef state = C.getState();
2356 
2357   for (const auto *I : DS->decls()) {
2358     const VarDecl *D = dyn_cast<VarDecl>(I);
2359     if (!D)
2360       continue;
2361 
2362     // FIXME: Handle array fields of structs.
2363     if (!D->getType()->isArrayType())
2364       continue;
2365 
2366     const Expr *Init = D->getInit();
2367     if (!Init)
2368       continue;
2369     if (!isa<StringLiteral>(Init))
2370       continue;
2371 
2372     Loc VarLoc = state->getLValue(D, C.getLocationContext());
2373     const MemRegion *MR = VarLoc.getAsRegion();
2374     if (!MR)
2375       continue;
2376 
2377     SVal StrVal = C.getSVal(Init);
2378     assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2379     DefinedOrUnknownSVal strLength =
2380       getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2381 
2382     state = state->set<CStringLength>(MR, strLength);
2383   }
2384 
2385   C.addTransition(state);
2386 }
2387 
2388 ProgramStateRef
2389 CStringChecker::checkRegionChanges(ProgramStateRef state,
2390     const InvalidatedSymbols *,
2391     ArrayRef<const MemRegion *> ExplicitRegions,
2392     ArrayRef<const MemRegion *> Regions,
2393     const LocationContext *LCtx,
2394     const CallEvent *Call) const {
2395   CStringLengthTy Entries = state->get<CStringLength>();
2396   if (Entries.isEmpty())
2397     return state;
2398 
2399   llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2400   llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2401 
2402   // First build sets for the changed regions and their super-regions.
2403   for (ArrayRef<const MemRegion *>::iterator
2404       I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2405     const MemRegion *MR = *I;
2406     Invalidated.insert(MR);
2407 
2408     SuperRegions.insert(MR);
2409     while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2410       MR = SR->getSuperRegion();
2411       SuperRegions.insert(MR);
2412     }
2413   }
2414 
2415   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2416 
2417   // Then loop over the entries in the current state.
2418   for (CStringLengthTy::iterator I = Entries.begin(),
2419       E = Entries.end(); I != E; ++I) {
2420     const MemRegion *MR = I.getKey();
2421 
2422     // Is this entry for a super-region of a changed region?
2423     if (SuperRegions.count(MR)) {
2424       Entries = F.remove(Entries, MR);
2425       continue;
2426     }
2427 
2428     // Is this entry for a sub-region of a changed region?
2429     const MemRegion *Super = MR;
2430     while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2431       Super = SR->getSuperRegion();
2432       if (Invalidated.count(Super)) {
2433         Entries = F.remove(Entries, MR);
2434         break;
2435       }
2436     }
2437   }
2438 
2439   return state->set<CStringLength>(Entries);
2440 }
2441 
2442 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2443     SymbolReaper &SR) const {
2444   // Mark all symbols in our string length map as valid.
2445   CStringLengthTy Entries = state->get<CStringLength>();
2446 
2447   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2448       I != E; ++I) {
2449     SVal Len = I.getData();
2450 
2451     for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2452         se = Len.symbol_end(); si != se; ++si)
2453       SR.markInUse(*si);
2454   }
2455 }
2456 
2457 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2458     CheckerContext &C) const {
2459   ProgramStateRef state = C.getState();
2460   CStringLengthTy Entries = state->get<CStringLength>();
2461   if (Entries.isEmpty())
2462     return;
2463 
2464   CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2465   for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2466       I != E; ++I) {
2467     SVal Len = I.getData();
2468     if (SymbolRef Sym = Len.getAsSymbol()) {
2469       if (SR.isDead(Sym))
2470         Entries = F.remove(Entries, I.getKey());
2471     }
2472   }
2473 
2474   state = state->set<CStringLength>(Entries);
2475   C.addTransition(state);
2476 }
2477 
2478 void ento::registerCStringModeling(CheckerManager &Mgr) {
2479   Mgr.registerChecker<CStringChecker>();
2480 }
2481 
2482 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) {
2483   return true;
2484 }
2485 
2486 #define REGISTER_CHECKER(name)                                                 \
2487   void ento::register##name(CheckerManager &mgr) {                             \
2488     CStringChecker *checker = mgr.getChecker<CStringChecker>();                \
2489     checker->Filter.Check##name = true;                                        \
2490     checker->Filter.CheckName##name = mgr.getCurrentCheckName();               \
2491   }                                                                            \
2492                                                                                \
2493   bool ento::shouldRegister##name(const LangOptions &LO) {                     \
2494     return true;                                                               \
2495   }
2496 
2497   REGISTER_CHECKER(CStringNullArg)
2498   REGISTER_CHECKER(CStringOutOfBounds)
2499   REGISTER_CHECKER(CStringBufferOverlap)
2500 REGISTER_CHECKER(CStringNotNullTerm)
2501