1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This defines CStringChecker, which is an assortment of checks on calls 10 // to functions in <string.h>. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 15 #include "InterCheckerAPI.h" 16 #include "clang/Basic/CharInfo.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallEvent &Call, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 CallDescriptionMap<FnCheck> Callbacks = { 77 {{CDF_MaybeBuiltin, "memcpy", 3}, &CStringChecker::evalMemcpy}, 78 {{CDF_MaybeBuiltin, "mempcpy", 3}, &CStringChecker::evalMempcpy}, 79 {{CDF_MaybeBuiltin, "memcmp", 3}, &CStringChecker::evalMemcmp}, 80 {{CDF_MaybeBuiltin, "memmove", 3}, &CStringChecker::evalMemmove}, 81 {{CDF_MaybeBuiltin, "memset", 3}, &CStringChecker::evalMemset}, 82 {{CDF_MaybeBuiltin, "explicit_memset", 3}, &CStringChecker::evalMemset}, 83 {{CDF_MaybeBuiltin, "strcpy", 2}, &CStringChecker::evalStrcpy}, 84 {{CDF_MaybeBuiltin, "strncpy", 3}, &CStringChecker::evalStrncpy}, 85 {{CDF_MaybeBuiltin, "stpcpy", 2}, &CStringChecker::evalStpcpy}, 86 {{CDF_MaybeBuiltin, "strlcpy", 3}, &CStringChecker::evalStrlcpy}, 87 {{CDF_MaybeBuiltin, "strcat", 2}, &CStringChecker::evalStrcat}, 88 {{CDF_MaybeBuiltin, "strncat", 3}, &CStringChecker::evalStrncat}, 89 {{CDF_MaybeBuiltin, "strlcat", 3}, &CStringChecker::evalStrlcat}, 90 {{CDF_MaybeBuiltin, "strlen", 1}, &CStringChecker::evalstrLength}, 91 {{CDF_MaybeBuiltin, "strnlen", 2}, &CStringChecker::evalstrnLength}, 92 {{CDF_MaybeBuiltin, "strcmp", 2}, &CStringChecker::evalStrcmp}, 93 {{CDF_MaybeBuiltin, "strncmp", 3}, &CStringChecker::evalStrncmp}, 94 {{CDF_MaybeBuiltin, "strcasecmp", 2}, &CStringChecker::evalStrcasecmp}, 95 {{CDF_MaybeBuiltin, "strncasecmp", 3}, &CStringChecker::evalStrncasecmp}, 96 {{CDF_MaybeBuiltin, "strsep", 2}, &CStringChecker::evalStrsep}, 97 {{CDF_MaybeBuiltin, "bcopy", 3}, &CStringChecker::evalBcopy}, 98 {{CDF_MaybeBuiltin, "bcmp", 3}, &CStringChecker::evalMemcmp}, 99 {{CDF_MaybeBuiltin, "bzero", 2}, &CStringChecker::evalBzero}, 100 {{CDF_MaybeBuiltin, "explicit_bzero", 2}, &CStringChecker::evalBzero}, 101 }; 102 103 // These require a bit of special handling. 104 CallDescription StdCopy{{"std", "copy"}, 3}, 105 StdCopyBackward{{"std", "copy_backward"}, 3}; 106 107 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; 108 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 109 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 110 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 111 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 112 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 113 ProgramStateRef state, 114 const Expr *Size, 115 const Expr *Source, 116 const Expr *Dest, 117 bool Restricted = false, 118 bool IsMempcpy = false) const; 119 120 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 121 122 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 123 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 124 void evalstrLengthCommon(CheckerContext &C, 125 const CallExpr *CE, 126 bool IsStrnlen = false) const; 127 128 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 129 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 130 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 131 void evalStrlcpy(CheckerContext &C, const CallExpr *CE) const; 132 void evalStrcpyCommon(CheckerContext &C, 133 const CallExpr *CE, 134 bool returnEnd, 135 bool isBounded, 136 bool isAppending, 137 bool returnPtr = true) const; 138 139 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 140 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 141 void evalStrlcat(CheckerContext &C, const CallExpr *CE) const; 142 143 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 144 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 145 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 146 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 147 void evalStrcmpCommon(CheckerContext &C, 148 const CallExpr *CE, 149 bool isBounded = false, 150 bool ignoreCase = false) const; 151 152 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 153 154 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 155 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 156 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 157 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 158 void evalBzero(CheckerContext &C, const CallExpr *CE) const; 159 160 // Utility methods 161 std::pair<ProgramStateRef , ProgramStateRef > 162 static assumeZero(CheckerContext &C, 163 ProgramStateRef state, SVal V, QualType Ty); 164 165 static ProgramStateRef setCStringLength(ProgramStateRef state, 166 const MemRegion *MR, 167 SVal strLength); 168 static SVal getCStringLengthForRegion(CheckerContext &C, 169 ProgramStateRef &state, 170 const Expr *Ex, 171 const MemRegion *MR, 172 bool hypothetical); 173 SVal getCStringLength(CheckerContext &C, 174 ProgramStateRef &state, 175 const Expr *Ex, 176 SVal Buf, 177 bool hypothetical = false) const; 178 179 const StringLiteral *getCStringLiteral(CheckerContext &C, 180 ProgramStateRef &state, 181 const Expr *expr, 182 SVal val) const; 183 184 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 185 ProgramStateRef state, 186 const Expr *Ex, SVal V, 187 bool IsSourceBuffer, 188 const Expr *Size); 189 190 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 191 const MemRegion *MR); 192 193 static bool memsetAux(const Expr *DstBuffer, SVal CharE, 194 const Expr *Size, CheckerContext &C, 195 ProgramStateRef &State); 196 197 // Re-usable checks 198 ProgramStateRef checkNonNull(CheckerContext &C, 199 ProgramStateRef state, 200 const Expr *S, 201 SVal l, 202 unsigned IdxOfArg) const; 203 ProgramStateRef CheckLocation(CheckerContext &C, 204 ProgramStateRef state, 205 const Expr *S, 206 SVal l, 207 const char *message = nullptr) const; 208 ProgramStateRef CheckBufferAccess(CheckerContext &C, 209 ProgramStateRef state, 210 const Expr *Size, 211 const Expr *FirstBuf, 212 const Expr *SecondBuf, 213 const char *firstMessage = nullptr, 214 const char *secondMessage = nullptr, 215 bool WarnAboutSize = false) const; 216 217 ProgramStateRef CheckBufferAccess(CheckerContext &C, 218 ProgramStateRef state, 219 const Expr *Size, 220 const Expr *Buf, 221 const char *message = nullptr, 222 bool WarnAboutSize = false) const { 223 // This is a convenience overload. 224 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 225 WarnAboutSize); 226 } 227 ProgramStateRef CheckOverlap(CheckerContext &C, 228 ProgramStateRef state, 229 const Expr *Size, 230 const Expr *First, 231 const Expr *Second) const; 232 void emitOverlapBug(CheckerContext &C, 233 ProgramStateRef state, 234 const Stmt *First, 235 const Stmt *Second) const; 236 237 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, 238 StringRef WarningMsg) const; 239 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, 240 const Stmt *S, StringRef WarningMsg) const; 241 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 242 const Stmt *S, StringRef WarningMsg) const; 243 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; 244 245 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 246 ProgramStateRef state, 247 NonLoc left, 248 NonLoc right) const; 249 250 // Return true if the destination buffer of the copy function may be in bound. 251 // Expects SVal of Size to be positive and unsigned. 252 // Expects SVal of FirstBuf to be a FieldRegion. 253 static bool IsFirstBufInBound(CheckerContext &C, 254 ProgramStateRef state, 255 const Expr *FirstBuf, 256 const Expr *Size); 257 }; 258 259 } //end anonymous namespace 260 261 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 262 263 //===----------------------------------------------------------------------===// 264 // Individual checks and utility methods. 265 //===----------------------------------------------------------------------===// 266 267 std::pair<ProgramStateRef , ProgramStateRef > 268 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 269 QualType Ty) { 270 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 271 if (!val) 272 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 273 274 SValBuilder &svalBuilder = C.getSValBuilder(); 275 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 276 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 277 } 278 279 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 280 ProgramStateRef state, 281 const Expr *S, SVal l, 282 unsigned IdxOfArg) const { 283 // If a previous check has failed, propagate the failure. 284 if (!state) 285 return nullptr; 286 287 ProgramStateRef stateNull, stateNonNull; 288 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 289 290 if (stateNull && !stateNonNull) { 291 if (Filter.CheckCStringNullArg) { 292 SmallString<80> buf; 293 llvm::raw_svector_ostream OS(buf); 294 assert(CurrentFunctionDescription); 295 OS << "Null pointer argument in call to " << CurrentFunctionDescription 296 << ' ' << IdxOfArg << llvm::getOrdinalSuffix(IdxOfArg) 297 << " parameter"; 298 299 emitNullArgBug(C, stateNull, S, OS.str()); 300 } 301 return nullptr; 302 } 303 304 // From here on, assume that the value is non-null. 305 assert(stateNonNull); 306 return stateNonNull; 307 } 308 309 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 310 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 311 ProgramStateRef state, 312 const Expr *S, SVal l, 313 const char *warningMsg) const { 314 // If a previous check has failed, propagate the failure. 315 if (!state) 316 return nullptr; 317 318 // Check for out of bound array element access. 319 const MemRegion *R = l.getAsRegion(); 320 if (!R) 321 return state; 322 323 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 324 if (!ER) 325 return state; 326 327 if (ER->getValueType() != C.getASTContext().CharTy) 328 return state; 329 330 // Get the size of the array. 331 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 332 SValBuilder &svalBuilder = C.getSValBuilder(); 333 SVal Extent = 334 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 335 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 336 337 // Get the index of the accessed element. 338 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 339 340 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 341 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 342 if (StOutBound && !StInBound) { 343 // These checks are either enabled by the CString out-of-bounds checker 344 // explicitly or implicitly by the Malloc checker. 345 // In the latter case we only do modeling but do not emit warning. 346 if (!Filter.CheckCStringOutOfBounds) 347 return nullptr; 348 // Emit a bug report. 349 if (warningMsg) { 350 emitOutOfBoundsBug(C, StOutBound, S, warningMsg); 351 } else { 352 assert(CurrentFunctionDescription); 353 assert(CurrentFunctionDescription[0] != '\0'); 354 355 SmallString<80> buf; 356 llvm::raw_svector_ostream os(buf); 357 os << toUppercase(CurrentFunctionDescription[0]) 358 << &CurrentFunctionDescription[1] 359 << " accesses out-of-bound array element"; 360 emitOutOfBoundsBug(C, StOutBound, S, os.str()); 361 } 362 return nullptr; 363 } 364 365 // Array bound check succeeded. From this point forward the array bound 366 // should always succeed. 367 return StInBound; 368 } 369 370 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 371 ProgramStateRef state, 372 const Expr *Size, 373 const Expr *FirstBuf, 374 const Expr *SecondBuf, 375 const char *firstMessage, 376 const char *secondMessage, 377 bool WarnAboutSize) const { 378 // If a previous check has failed, propagate the failure. 379 if (!state) 380 return nullptr; 381 382 SValBuilder &svalBuilder = C.getSValBuilder(); 383 ASTContext &Ctx = svalBuilder.getContext(); 384 const LocationContext *LCtx = C.getLocationContext(); 385 386 QualType sizeTy = Size->getType(); 387 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 388 389 // Check that the first buffer is non-null. 390 SVal BufVal = C.getSVal(FirstBuf); 391 state = checkNonNull(C, state, FirstBuf, BufVal, 1); 392 if (!state) 393 return nullptr; 394 395 // If out-of-bounds checking is turned off, skip the rest. 396 if (!Filter.CheckCStringOutOfBounds) 397 return state; 398 399 // Get the access length and make sure it is known. 400 // FIXME: This assumes the caller has already checked that the access length 401 // is positive. And that it's unsigned. 402 SVal LengthVal = C.getSVal(Size); 403 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 404 if (!Length) 405 return state; 406 407 // Compute the offset of the last element to be accessed: size-1. 408 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 409 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 410 if (Offset.isUnknown()) 411 return nullptr; 412 NonLoc LastOffset = Offset.castAs<NonLoc>(); 413 414 // Check that the first buffer is sufficiently long. 415 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 416 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 417 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 418 419 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 420 LastOffset, PtrTy); 421 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 422 423 // If the buffer isn't large enough, abort. 424 if (!state) 425 return nullptr; 426 } 427 428 // If there's a second buffer, check it as well. 429 if (SecondBuf) { 430 BufVal = state->getSVal(SecondBuf, LCtx); 431 state = checkNonNull(C, state, SecondBuf, BufVal, 2); 432 if (!state) 433 return nullptr; 434 435 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 436 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 437 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 438 439 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 440 LastOffset, PtrTy); 441 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 442 } 443 } 444 445 // Large enough or not, return this state! 446 return state; 447 } 448 449 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 450 ProgramStateRef state, 451 const Expr *Size, 452 const Expr *First, 453 const Expr *Second) const { 454 if (!Filter.CheckCStringBufferOverlap) 455 return state; 456 457 // Do a simple check for overlap: if the two arguments are from the same 458 // buffer, see if the end of the first is greater than the start of the second 459 // or vice versa. 460 461 // If a previous check has failed, propagate the failure. 462 if (!state) 463 return nullptr; 464 465 ProgramStateRef stateTrue, stateFalse; 466 467 // Get the buffer values and make sure they're known locations. 468 const LocationContext *LCtx = C.getLocationContext(); 469 SVal firstVal = state->getSVal(First, LCtx); 470 SVal secondVal = state->getSVal(Second, LCtx); 471 472 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 473 if (!firstLoc) 474 return state; 475 476 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 477 if (!secondLoc) 478 return state; 479 480 // Are the two values the same? 481 SValBuilder &svalBuilder = C.getSValBuilder(); 482 std::tie(stateTrue, stateFalse) = 483 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 484 485 if (stateTrue && !stateFalse) { 486 // If the values are known to be equal, that's automatically an overlap. 487 emitOverlapBug(C, stateTrue, First, Second); 488 return nullptr; 489 } 490 491 // assume the two expressions are not equal. 492 assert(stateFalse); 493 state = stateFalse; 494 495 // Which value comes first? 496 QualType cmpTy = svalBuilder.getConditionType(); 497 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 498 *firstLoc, *secondLoc, cmpTy); 499 Optional<DefinedOrUnknownSVal> reverseTest = 500 reverse.getAs<DefinedOrUnknownSVal>(); 501 if (!reverseTest) 502 return state; 503 504 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 505 if (stateTrue) { 506 if (stateFalse) { 507 // If we don't know which one comes first, we can't perform this test. 508 return state; 509 } else { 510 // Switch the values so that firstVal is before secondVal. 511 std::swap(firstLoc, secondLoc); 512 513 // Switch the Exprs as well, so that they still correspond. 514 std::swap(First, Second); 515 } 516 } 517 518 // Get the length, and make sure it too is known. 519 SVal LengthVal = state->getSVal(Size, LCtx); 520 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 521 if (!Length) 522 return state; 523 524 // Convert the first buffer's start address to char*. 525 // Bail out if the cast fails. 526 ASTContext &Ctx = svalBuilder.getContext(); 527 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 528 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 529 First->getType()); 530 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 531 if (!FirstStartLoc) 532 return state; 533 534 // Compute the end of the first buffer. Bail out if THAT fails. 535 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 536 *FirstStartLoc, *Length, CharPtrTy); 537 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 538 if (!FirstEndLoc) 539 return state; 540 541 // Is the end of the first buffer past the start of the second buffer? 542 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 543 *FirstEndLoc, *secondLoc, cmpTy); 544 Optional<DefinedOrUnknownSVal> OverlapTest = 545 Overlap.getAs<DefinedOrUnknownSVal>(); 546 if (!OverlapTest) 547 return state; 548 549 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 550 551 if (stateTrue && !stateFalse) { 552 // Overlap! 553 emitOverlapBug(C, stateTrue, First, Second); 554 return nullptr; 555 } 556 557 // assume the two expressions don't overlap. 558 assert(stateFalse); 559 return stateFalse; 560 } 561 562 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 563 const Stmt *First, const Stmt *Second) const { 564 ExplodedNode *N = C.generateErrorNode(state); 565 if (!N) 566 return; 567 568 if (!BT_Overlap) 569 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 570 categories::UnixAPI, "Improper arguments")); 571 572 // Generate a report for this bug. 573 auto report = std::make_unique<BugReport>( 574 *BT_Overlap, "Arguments must not be overlapping buffers", N); 575 report->addRange(First->getSourceRange()); 576 report->addRange(Second->getSourceRange()); 577 578 C.emitReport(std::move(report)); 579 } 580 581 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, 582 const Stmt *S, StringRef WarningMsg) const { 583 if (ExplodedNode *N = C.generateErrorNode(State)) { 584 if (!BT_Null) 585 BT_Null.reset(new BuiltinBug( 586 Filter.CheckNameCStringNullArg, categories::UnixAPI, 587 "Null pointer argument in call to byte string function")); 588 589 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Null.get()); 590 auto Report = std::make_unique<BugReport>(*BT, WarningMsg, N); 591 Report->addRange(S->getSourceRange()); 592 if (const auto *Ex = dyn_cast<Expr>(S)) 593 bugreporter::trackExpressionValue(N, Ex, *Report); 594 C.emitReport(std::move(Report)); 595 } 596 } 597 598 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, 599 ProgramStateRef State, const Stmt *S, 600 StringRef WarningMsg) const { 601 if (ExplodedNode *N = C.generateErrorNode(State)) { 602 if (!BT_Bounds) 603 BT_Bounds.reset(new BuiltinBug( 604 Filter.CheckCStringOutOfBounds ? Filter.CheckNameCStringOutOfBounds 605 : Filter.CheckNameCStringNullArg, 606 "Out-of-bound array access", 607 "Byte string function accesses out-of-bound array element")); 608 609 BuiltinBug *BT = static_cast<BuiltinBug *>(BT_Bounds.get()); 610 611 // FIXME: It would be nice to eventually make this diagnostic more clear, 612 // e.g., by referencing the original declaration or by saying *why* this 613 // reference is outside the range. 614 auto Report = std::make_unique<BugReport>(*BT, WarningMsg, N); 615 Report->addRange(S->getSourceRange()); 616 C.emitReport(std::move(Report)); 617 } 618 } 619 620 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, 621 const Stmt *S, 622 StringRef WarningMsg) const { 623 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { 624 if (!BT_NotCString) 625 BT_NotCString.reset(new BuiltinBug( 626 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 627 "Argument is not a null-terminated string.")); 628 629 auto Report = std::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 630 631 Report->addRange(S->getSourceRange()); 632 C.emitReport(std::move(Report)); 633 } 634 } 635 636 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, 637 ProgramStateRef State) const { 638 if (ExplodedNode *N = C.generateErrorNode(State)) { 639 if (!BT_NotCString) 640 BT_NotCString.reset( 641 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 642 "Sum of expressions causes overflow.")); 643 644 // This isn't a great error message, but this should never occur in real 645 // code anyway -- you'd have to create a buffer longer than a size_t can 646 // represent, which is sort of a contradiction. 647 const char *WarningMsg = 648 "This expression will create a string whose length is too big to " 649 "be represented as a size_t"; 650 651 auto Report = std::make_unique<BugReport>(*BT_NotCString, WarningMsg, N); 652 C.emitReport(std::move(Report)); 653 } 654 } 655 656 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 657 ProgramStateRef state, 658 NonLoc left, 659 NonLoc right) const { 660 // If out-of-bounds checking is turned off, skip the rest. 661 if (!Filter.CheckCStringOutOfBounds) 662 return state; 663 664 // If a previous check has failed, propagate the failure. 665 if (!state) 666 return nullptr; 667 668 SValBuilder &svalBuilder = C.getSValBuilder(); 669 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 670 671 QualType sizeTy = svalBuilder.getContext().getSizeType(); 672 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 673 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 674 675 SVal maxMinusRight; 676 if (right.getAs<nonloc::ConcreteInt>()) { 677 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 678 sizeTy); 679 } else { 680 // Try switching the operands. (The order of these two assignments is 681 // important!) 682 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 683 sizeTy); 684 left = right; 685 } 686 687 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 688 QualType cmpTy = svalBuilder.getConditionType(); 689 // If left > max - right, we have an overflow. 690 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 691 *maxMinusRightNL, cmpTy); 692 693 ProgramStateRef stateOverflow, stateOkay; 694 std::tie(stateOverflow, stateOkay) = 695 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 696 697 if (stateOverflow && !stateOkay) { 698 // We have an overflow. Emit a bug report. 699 emitAdditionOverflowBug(C, stateOverflow); 700 return nullptr; 701 } 702 703 // From now on, assume an overflow didn't occur. 704 assert(stateOkay); 705 state = stateOkay; 706 } 707 708 return state; 709 } 710 711 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 712 const MemRegion *MR, 713 SVal strLength) { 714 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 715 716 MR = MR->StripCasts(); 717 718 switch (MR->getKind()) { 719 case MemRegion::StringRegionKind: 720 // FIXME: This can happen if we strcpy() into a string region. This is 721 // undefined [C99 6.4.5p6], but we should still warn about it. 722 return state; 723 724 case MemRegion::SymbolicRegionKind: 725 case MemRegion::AllocaRegionKind: 726 case MemRegion::VarRegionKind: 727 case MemRegion::FieldRegionKind: 728 case MemRegion::ObjCIvarRegionKind: 729 // These are the types we can currently track string lengths for. 730 break; 731 732 case MemRegion::ElementRegionKind: 733 // FIXME: Handle element regions by upper-bounding the parent region's 734 // string length. 735 return state; 736 737 default: 738 // Other regions (mostly non-data) can't have a reliable C string length. 739 // For now, just ignore the change. 740 // FIXME: These are rare but not impossible. We should output some kind of 741 // warning for things like strcpy((char[]){'a', 0}, "b"); 742 return state; 743 } 744 745 if (strLength.isUnknown()) 746 return state->remove<CStringLength>(MR); 747 748 return state->set<CStringLength>(MR, strLength); 749 } 750 751 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 752 ProgramStateRef &state, 753 const Expr *Ex, 754 const MemRegion *MR, 755 bool hypothetical) { 756 if (!hypothetical) { 757 // If there's a recorded length, go ahead and return it. 758 const SVal *Recorded = state->get<CStringLength>(MR); 759 if (Recorded) 760 return *Recorded; 761 } 762 763 // Otherwise, get a new symbol and update the state. 764 SValBuilder &svalBuilder = C.getSValBuilder(); 765 QualType sizeTy = svalBuilder.getContext().getSizeType(); 766 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 767 MR, Ex, sizeTy, 768 C.getLocationContext(), 769 C.blockCount()); 770 771 if (!hypothetical) { 772 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 773 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 774 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 775 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 776 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 777 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 778 fourInt); 779 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 780 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 781 maxLength, sizeTy); 782 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 783 } 784 state = state->set<CStringLength>(MR, strLength); 785 } 786 787 return strLength; 788 } 789 790 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 791 const Expr *Ex, SVal Buf, 792 bool hypothetical) const { 793 const MemRegion *MR = Buf.getAsRegion(); 794 if (!MR) { 795 // If we can't get a region, see if it's something we /know/ isn't a 796 // C string. In the context of locations, the only time we can issue such 797 // a warning is for labels. 798 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 799 if (Filter.CheckCStringNotNullTerm) { 800 SmallString<120> buf; 801 llvm::raw_svector_ostream os(buf); 802 assert(CurrentFunctionDescription); 803 os << "Argument to " << CurrentFunctionDescription 804 << " is the address of the label '" << Label->getLabel()->getName() 805 << "', which is not a null-terminated string"; 806 807 emitNotCStringBug(C, state, Ex, os.str()); 808 } 809 return UndefinedVal(); 810 } 811 812 // If it's not a region and not a label, give up. 813 return UnknownVal(); 814 } 815 816 // If we have a region, strip casts from it and see if we can figure out 817 // its length. For anything we can't figure out, just return UnknownVal. 818 MR = MR->StripCasts(); 819 820 switch (MR->getKind()) { 821 case MemRegion::StringRegionKind: { 822 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 823 // so we can assume that the byte length is the correct C string length. 824 SValBuilder &svalBuilder = C.getSValBuilder(); 825 QualType sizeTy = svalBuilder.getContext().getSizeType(); 826 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 827 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 828 } 829 case MemRegion::SymbolicRegionKind: 830 case MemRegion::AllocaRegionKind: 831 case MemRegion::VarRegionKind: 832 case MemRegion::FieldRegionKind: 833 case MemRegion::ObjCIvarRegionKind: 834 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 835 case MemRegion::CompoundLiteralRegionKind: 836 // FIXME: Can we track this? Is it necessary? 837 return UnknownVal(); 838 case MemRegion::ElementRegionKind: 839 // FIXME: How can we handle this? It's not good enough to subtract the 840 // offset from the base string length; consider "123\x00567" and &a[5]. 841 return UnknownVal(); 842 default: 843 // Other regions (mostly non-data) can't have a reliable C string length. 844 // In this case, an error is emitted and UndefinedVal is returned. 845 // The caller should always be prepared to handle this case. 846 if (Filter.CheckCStringNotNullTerm) { 847 SmallString<120> buf; 848 llvm::raw_svector_ostream os(buf); 849 850 assert(CurrentFunctionDescription); 851 os << "Argument to " << CurrentFunctionDescription << " is "; 852 853 if (SummarizeRegion(os, C.getASTContext(), MR)) 854 os << ", which is not a null-terminated string"; 855 else 856 os << "not a null-terminated string"; 857 858 emitNotCStringBug(C, state, Ex, os.str()); 859 } 860 return UndefinedVal(); 861 } 862 } 863 864 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 865 ProgramStateRef &state, const Expr *expr, SVal val) const { 866 867 // Get the memory region pointed to by the val. 868 const MemRegion *bufRegion = val.getAsRegion(); 869 if (!bufRegion) 870 return nullptr; 871 872 // Strip casts off the memory region. 873 bufRegion = bufRegion->StripCasts(); 874 875 // Cast the memory region to a string region. 876 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 877 if (!strRegion) 878 return nullptr; 879 880 // Return the actual string in the string region. 881 return strRegion->getStringLiteral(); 882 } 883 884 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 885 ProgramStateRef state, 886 const Expr *FirstBuf, 887 const Expr *Size) { 888 // If we do not know that the buffer is long enough we return 'true'. 889 // Otherwise the parent region of this field region would also get 890 // invalidated, which would lead to warnings based on an unknown state. 891 892 // Originally copied from CheckBufferAccess and CheckLocation. 893 SValBuilder &svalBuilder = C.getSValBuilder(); 894 ASTContext &Ctx = svalBuilder.getContext(); 895 const LocationContext *LCtx = C.getLocationContext(); 896 897 QualType sizeTy = Size->getType(); 898 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 899 SVal BufVal = state->getSVal(FirstBuf, LCtx); 900 901 SVal LengthVal = state->getSVal(Size, LCtx); 902 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 903 if (!Length) 904 return true; // cf top comment. 905 906 // Compute the offset of the last element to be accessed: size-1. 907 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 908 SVal Offset = svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy); 909 if (Offset.isUnknown()) 910 return true; // cf top comment 911 NonLoc LastOffset = Offset.castAs<NonLoc>(); 912 913 // Check that the first buffer is sufficiently long. 914 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 915 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 916 if (!BufLoc) 917 return true; // cf top comment. 918 919 SVal BufEnd = 920 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 921 922 // Check for out of bound array element access. 923 const MemRegion *R = BufEnd.getAsRegion(); 924 if (!R) 925 return true; // cf top comment. 926 927 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 928 if (!ER) 929 return true; // cf top comment. 930 931 // FIXME: Does this crash when a non-standard definition 932 // of a library function is encountered? 933 assert(ER->getValueType() == C.getASTContext().CharTy && 934 "IsFirstBufInBound should only be called with char* ElementRegions"); 935 936 // Get the size of the array. 937 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 938 SVal Extent = 939 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 940 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 941 942 // Get the index of the accessed element. 943 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 944 945 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 946 947 return static_cast<bool>(StInBound); 948 } 949 950 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 951 ProgramStateRef state, 952 const Expr *E, SVal V, 953 bool IsSourceBuffer, 954 const Expr *Size) { 955 Optional<Loc> L = V.getAs<Loc>(); 956 if (!L) 957 return state; 958 959 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 960 // some assumptions about the value that CFRefCount can't. Even so, it should 961 // probably be refactored. 962 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 963 const MemRegion *R = MR->getRegion()->StripCasts(); 964 965 // Are we dealing with an ElementRegion? If so, we should be invalidating 966 // the super-region. 967 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 968 R = ER->getSuperRegion(); 969 // FIXME: What about layers of ElementRegions? 970 } 971 972 // Invalidate this region. 973 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 974 975 bool CausesPointerEscape = false; 976 RegionAndSymbolInvalidationTraits ITraits; 977 // Invalidate and escape only indirect regions accessible through the source 978 // buffer. 979 if (IsSourceBuffer) { 980 ITraits.setTrait(R->getBaseRegion(), 981 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 982 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 983 CausesPointerEscape = true; 984 } else { 985 const MemRegion::Kind& K = R->getKind(); 986 if (K == MemRegion::FieldRegionKind) 987 if (Size && IsFirstBufInBound(C, state, E, Size)) { 988 // If destination buffer is a field region and access is in bound, 989 // do not invalidate its super region. 990 ITraits.setTrait( 991 R, 992 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 993 } 994 } 995 996 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 997 CausesPointerEscape, nullptr, nullptr, 998 &ITraits); 999 } 1000 1001 // If we have a non-region value by chance, just remove the binding. 1002 // FIXME: is this necessary or correct? This handles the non-Region 1003 // cases. Is it ever valid to store to these? 1004 return state->killBinding(*L); 1005 } 1006 1007 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 1008 const MemRegion *MR) { 1009 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 1010 1011 switch (MR->getKind()) { 1012 case MemRegion::FunctionCodeRegionKind: { 1013 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1014 if (FD) 1015 os << "the address of the function '" << *FD << '\''; 1016 else 1017 os << "the address of a function"; 1018 return true; 1019 } 1020 case MemRegion::BlockCodeRegionKind: 1021 os << "block text"; 1022 return true; 1023 case MemRegion::BlockDataRegionKind: 1024 os << "a block"; 1025 return true; 1026 case MemRegion::CXXThisRegionKind: 1027 case MemRegion::CXXTempObjectRegionKind: 1028 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 1029 return true; 1030 case MemRegion::VarRegionKind: 1031 os << "a variable of type" << TVR->getValueType().getAsString(); 1032 return true; 1033 case MemRegion::FieldRegionKind: 1034 os << "a field of type " << TVR->getValueType().getAsString(); 1035 return true; 1036 case MemRegion::ObjCIvarRegionKind: 1037 os << "an instance variable of type " << TVR->getValueType().getAsString(); 1038 return true; 1039 default: 1040 return false; 1041 } 1042 } 1043 1044 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, 1045 const Expr *Size, CheckerContext &C, 1046 ProgramStateRef &State) { 1047 SVal MemVal = C.getSVal(DstBuffer); 1048 SVal SizeVal = C.getSVal(Size); 1049 const MemRegion *MR = MemVal.getAsRegion(); 1050 if (!MR) 1051 return false; 1052 1053 // We're about to model memset by producing a "default binding" in the Store. 1054 // Our current implementation - RegionStore - doesn't support default bindings 1055 // that don't cover the whole base region. So we should first get the offset 1056 // and the base region to figure out whether the offset of buffer is 0. 1057 RegionOffset Offset = MR->getAsOffset(); 1058 const MemRegion *BR = Offset.getRegion(); 1059 1060 Optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); 1061 if (!SizeNL) 1062 return false; 1063 1064 SValBuilder &svalBuilder = C.getSValBuilder(); 1065 ASTContext &Ctx = C.getASTContext(); 1066 1067 // void *memset(void *dest, int ch, size_t count); 1068 // For now we can only handle the case of offset is 0 and concrete char value. 1069 if (Offset.isValid() && !Offset.hasSymbolicOffset() && 1070 Offset.getOffset() == 0) { 1071 // Get the base region's extent. 1072 auto *SubReg = cast<SubRegion>(BR); 1073 DefinedOrUnknownSVal Extent = SubReg->getExtent(svalBuilder); 1074 1075 ProgramStateRef StateWholeReg, StateNotWholeReg; 1076 std::tie(StateWholeReg, StateNotWholeReg) = 1077 State->assume(svalBuilder.evalEQ(State, Extent, *SizeNL)); 1078 1079 // With the semantic of 'memset()', we should convert the CharVal to 1080 // unsigned char. 1081 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy); 1082 1083 ProgramStateRef StateNullChar, StateNonNullChar; 1084 std::tie(StateNullChar, StateNonNullChar) = 1085 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy); 1086 1087 if (StateWholeReg && !StateNotWholeReg && StateNullChar && 1088 !StateNonNullChar) { 1089 // If the 'memset()' acts on the whole region of destination buffer and 1090 // the value of the second argument of 'memset()' is zero, bind the second 1091 // argument's value to the destination buffer with 'default binding'. 1092 // FIXME: Since there is no perfect way to bind the non-zero character, we 1093 // can only deal with zero value here. In the future, we need to deal with 1094 // the binding of non-zero value in the case of whole region. 1095 State = State->bindDefaultZero(svalBuilder.makeLoc(BR), 1096 C.getLocationContext()); 1097 } else { 1098 // If the destination buffer's extent is not equal to the value of 1099 // third argument, just invalidate buffer. 1100 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1101 /*IsSourceBuffer*/ false, Size); 1102 } 1103 1104 if (StateNullChar && !StateNonNullChar) { 1105 // If the value of the second argument of 'memset()' is zero, set the 1106 // string length of destination buffer to 0 directly. 1107 State = setCStringLength(State, MR, 1108 svalBuilder.makeZeroVal(Ctx.getSizeType())); 1109 } else if (!StateNullChar && StateNonNullChar) { 1110 SVal NewStrLen = svalBuilder.getMetadataSymbolVal( 1111 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(), 1112 C.getLocationContext(), C.blockCount()); 1113 1114 // If the value of second argument is not zero, then the string length 1115 // is at least the size argument. 1116 SVal NewStrLenGESize = svalBuilder.evalBinOp( 1117 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType()); 1118 1119 State = setCStringLength( 1120 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true), 1121 MR, NewStrLen); 1122 } 1123 } else { 1124 // If the offset is not zero and char value is not concrete, we can do 1125 // nothing but invalidate the buffer. 1126 State = InvalidateBuffer(C, State, DstBuffer, MemVal, 1127 /*IsSourceBuffer*/ false, Size); 1128 } 1129 return true; 1130 } 1131 1132 //===----------------------------------------------------------------------===// 1133 // evaluation of individual function calls. 1134 //===----------------------------------------------------------------------===// 1135 1136 void CStringChecker::evalCopyCommon(CheckerContext &C, 1137 const CallExpr *CE, 1138 ProgramStateRef state, 1139 const Expr *Size, const Expr *Dest, 1140 const Expr *Source, bool Restricted, 1141 bool IsMempcpy) const { 1142 CurrentFunctionDescription = "memory copy function"; 1143 1144 // See if the size argument is zero. 1145 const LocationContext *LCtx = C.getLocationContext(); 1146 SVal sizeVal = state->getSVal(Size, LCtx); 1147 QualType sizeTy = Size->getType(); 1148 1149 ProgramStateRef stateZeroSize, stateNonZeroSize; 1150 std::tie(stateZeroSize, stateNonZeroSize) = 1151 assumeZero(C, state, sizeVal, sizeTy); 1152 1153 // Get the value of the Dest. 1154 SVal destVal = state->getSVal(Dest, LCtx); 1155 1156 // If the size is zero, there won't be any actual memory access, so 1157 // just bind the return value to the destination buffer and return. 1158 if (stateZeroSize && !stateNonZeroSize) { 1159 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1160 C.addTransition(stateZeroSize); 1161 return; 1162 } 1163 1164 // If the size can be nonzero, we have to check the other arguments. 1165 if (stateNonZeroSize) { 1166 state = stateNonZeroSize; 1167 1168 // Ensure the destination is not null. If it is NULL there will be a 1169 // NULL pointer dereference. 1170 state = checkNonNull(C, state, Dest, destVal, 1); 1171 if (!state) 1172 return; 1173 1174 // Get the value of the Src. 1175 SVal srcVal = state->getSVal(Source, LCtx); 1176 1177 // Ensure the source is not null. If it is NULL there will be a 1178 // NULL pointer dereference. 1179 state = checkNonNull(C, state, Source, srcVal, 2); 1180 if (!state) 1181 return; 1182 1183 // Ensure the accesses are valid and that the buffers do not overlap. 1184 const char * const writeWarning = 1185 "Memory copy function overflows destination buffer"; 1186 state = CheckBufferAccess(C, state, Size, Dest, Source, 1187 writeWarning, /* sourceWarning = */ nullptr); 1188 if (Restricted) 1189 state = CheckOverlap(C, state, Size, Dest, Source); 1190 1191 if (!state) 1192 return; 1193 1194 // If this is mempcpy, get the byte after the last byte copied and 1195 // bind the expr. 1196 if (IsMempcpy) { 1197 // Get the byte after the last byte copied. 1198 SValBuilder &SvalBuilder = C.getSValBuilder(); 1199 ASTContext &Ctx = SvalBuilder.getContext(); 1200 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1201 SVal DestRegCharVal = 1202 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1203 SVal lastElement = C.getSValBuilder().evalBinOp( 1204 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1205 // If we don't know how much we copied, we can at least 1206 // conjure a return value for later. 1207 if (lastElement.isUnknown()) 1208 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1209 C.blockCount()); 1210 1211 // The byte after the last byte copied is the return value. 1212 state = state->BindExpr(CE, LCtx, lastElement); 1213 } else { 1214 // All other copies return the destination buffer. 1215 // (Well, bcopy() has a void return type, but this won't hurt.) 1216 state = state->BindExpr(CE, LCtx, destVal); 1217 } 1218 1219 // Invalidate the destination (regular invalidation without pointer-escaping 1220 // the address of the top-level region). 1221 // FIXME: Even if we can't perfectly model the copy, we should see if we 1222 // can use LazyCompoundVals to copy the source values into the destination. 1223 // This would probably remove any existing bindings past the end of the 1224 // copied region, but that's still an improvement over blank invalidation. 1225 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1226 /*IsSourceBuffer*/false, Size); 1227 1228 // Invalidate the source (const-invalidation without const-pointer-escaping 1229 // the address of the top-level region). 1230 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1231 /*IsSourceBuffer*/true, nullptr); 1232 1233 C.addTransition(state); 1234 } 1235 } 1236 1237 1238 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1239 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1240 // The return value is the address of the destination buffer. 1241 const Expr *Dest = CE->getArg(0); 1242 ProgramStateRef state = C.getState(); 1243 1244 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1245 } 1246 1247 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1248 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1249 // The return value is a pointer to the byte following the last written byte. 1250 const Expr *Dest = CE->getArg(0); 1251 ProgramStateRef state = C.getState(); 1252 1253 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1254 } 1255 1256 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1257 // void *memmove(void *dst, const void *src, size_t n); 1258 // The return value is the address of the destination buffer. 1259 const Expr *Dest = CE->getArg(0); 1260 ProgramStateRef state = C.getState(); 1261 1262 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1263 } 1264 1265 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1266 // void bcopy(const void *src, void *dst, size_t n); 1267 evalCopyCommon(C, CE, C.getState(), 1268 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1269 } 1270 1271 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1272 // int memcmp(const void *s1, const void *s2, size_t n); 1273 CurrentFunctionDescription = "memory comparison function"; 1274 1275 const Expr *Left = CE->getArg(0); 1276 const Expr *Right = CE->getArg(1); 1277 const Expr *Size = CE->getArg(2); 1278 1279 ProgramStateRef state = C.getState(); 1280 SValBuilder &svalBuilder = C.getSValBuilder(); 1281 1282 // See if the size argument is zero. 1283 const LocationContext *LCtx = C.getLocationContext(); 1284 SVal sizeVal = state->getSVal(Size, LCtx); 1285 QualType sizeTy = Size->getType(); 1286 1287 ProgramStateRef stateZeroSize, stateNonZeroSize; 1288 std::tie(stateZeroSize, stateNonZeroSize) = 1289 assumeZero(C, state, sizeVal, sizeTy); 1290 1291 // If the size can be zero, the result will be 0 in that case, and we don't 1292 // have to check either of the buffers. 1293 if (stateZeroSize) { 1294 state = stateZeroSize; 1295 state = state->BindExpr(CE, LCtx, 1296 svalBuilder.makeZeroVal(CE->getType())); 1297 C.addTransition(state); 1298 } 1299 1300 // If the size can be nonzero, we have to check the other arguments. 1301 if (stateNonZeroSize) { 1302 state = stateNonZeroSize; 1303 // If we know the two buffers are the same, we know the result is 0. 1304 // First, get the two buffers' addresses. Another checker will have already 1305 // made sure they're not undefined. 1306 DefinedOrUnknownSVal LV = 1307 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1308 DefinedOrUnknownSVal RV = 1309 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1310 1311 // See if they are the same. 1312 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1313 ProgramStateRef StSameBuf, StNotSameBuf; 1314 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1315 1316 // If the two arguments might be the same buffer, we know the result is 0, 1317 // and we only need to check one size. 1318 if (StSameBuf) { 1319 state = StSameBuf; 1320 state = CheckBufferAccess(C, state, Size, Left); 1321 if (state) { 1322 state = StSameBuf->BindExpr(CE, LCtx, 1323 svalBuilder.makeZeroVal(CE->getType())); 1324 C.addTransition(state); 1325 } 1326 } 1327 1328 // If the two arguments might be different buffers, we have to check the 1329 // size of both of them. 1330 if (StNotSameBuf) { 1331 state = StNotSameBuf; 1332 state = CheckBufferAccess(C, state, Size, Left, Right); 1333 if (state) { 1334 // The return value is the comparison result, which we don't know. 1335 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1336 C.blockCount()); 1337 state = state->BindExpr(CE, LCtx, CmpV); 1338 C.addTransition(state); 1339 } 1340 } 1341 } 1342 } 1343 1344 void CStringChecker::evalstrLength(CheckerContext &C, 1345 const CallExpr *CE) const { 1346 // size_t strlen(const char *s); 1347 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1348 } 1349 1350 void CStringChecker::evalstrnLength(CheckerContext &C, 1351 const CallExpr *CE) const { 1352 // size_t strnlen(const char *s, size_t maxlen); 1353 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1354 } 1355 1356 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1357 bool IsStrnlen) const { 1358 CurrentFunctionDescription = "string length function"; 1359 ProgramStateRef state = C.getState(); 1360 const LocationContext *LCtx = C.getLocationContext(); 1361 1362 if (IsStrnlen) { 1363 const Expr *maxlenExpr = CE->getArg(1); 1364 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1365 1366 ProgramStateRef stateZeroSize, stateNonZeroSize; 1367 std::tie(stateZeroSize, stateNonZeroSize) = 1368 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1369 1370 // If the size can be zero, the result will be 0 in that case, and we don't 1371 // have to check the string itself. 1372 if (stateZeroSize) { 1373 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1374 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1375 C.addTransition(stateZeroSize); 1376 } 1377 1378 // If the size is GUARANTEED to be zero, we're done! 1379 if (!stateNonZeroSize) 1380 return; 1381 1382 // Otherwise, record the assumption that the size is nonzero. 1383 state = stateNonZeroSize; 1384 } 1385 1386 // Check that the string argument is non-null. 1387 const Expr *Arg = CE->getArg(0); 1388 SVal ArgVal = state->getSVal(Arg, LCtx); 1389 1390 state = checkNonNull(C, state, Arg, ArgVal, 1); 1391 1392 if (!state) 1393 return; 1394 1395 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1396 1397 // If the argument isn't a valid C string, there's no valid state to 1398 // transition to. 1399 if (strLength.isUndef()) 1400 return; 1401 1402 DefinedOrUnknownSVal result = UnknownVal(); 1403 1404 // If the check is for strnlen() then bind the return value to no more than 1405 // the maxlen value. 1406 if (IsStrnlen) { 1407 QualType cmpTy = C.getSValBuilder().getConditionType(); 1408 1409 // It's a little unfortunate to be getting this again, 1410 // but it's not that expensive... 1411 const Expr *maxlenExpr = CE->getArg(1); 1412 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1413 1414 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1415 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1416 1417 if (strLengthNL && maxlenValNL) { 1418 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1419 1420 // Check if the strLength is greater than the maxlen. 1421 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1422 C.getSValBuilder() 1423 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1424 .castAs<DefinedOrUnknownSVal>()); 1425 1426 if (stateStringTooLong && !stateStringNotTooLong) { 1427 // If the string is longer than maxlen, return maxlen. 1428 result = *maxlenValNL; 1429 } else if (stateStringNotTooLong && !stateStringTooLong) { 1430 // If the string is shorter than maxlen, return its length. 1431 result = *strLengthNL; 1432 } 1433 } 1434 1435 if (result.isUnknown()) { 1436 // If we don't have enough information for a comparison, there's 1437 // no guarantee the full string length will actually be returned. 1438 // All we know is the return value is the min of the string length 1439 // and the limit. This is better than nothing. 1440 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1441 C.blockCount()); 1442 NonLoc resultNL = result.castAs<NonLoc>(); 1443 1444 if (strLengthNL) { 1445 state = state->assume(C.getSValBuilder().evalBinOpNN( 1446 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1447 .castAs<DefinedOrUnknownSVal>(), true); 1448 } 1449 1450 if (maxlenValNL) { 1451 state = state->assume(C.getSValBuilder().evalBinOpNN( 1452 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1453 .castAs<DefinedOrUnknownSVal>(), true); 1454 } 1455 } 1456 1457 } else { 1458 // This is a plain strlen(), not strnlen(). 1459 result = strLength.castAs<DefinedOrUnknownSVal>(); 1460 1461 // If we don't know the length of the string, conjure a return 1462 // value, so it can be used in constraints, at least. 1463 if (result.isUnknown()) { 1464 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1465 C.blockCount()); 1466 } 1467 } 1468 1469 // Bind the return value. 1470 assert(!result.isUnknown() && "Should have conjured a value by now"); 1471 state = state->BindExpr(CE, LCtx, result); 1472 C.addTransition(state); 1473 } 1474 1475 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1476 // char *strcpy(char *restrict dst, const char *restrict src); 1477 evalStrcpyCommon(C, CE, 1478 /* returnEnd = */ false, 1479 /* isBounded = */ false, 1480 /* isAppending = */ false); 1481 } 1482 1483 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1484 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1485 evalStrcpyCommon(C, CE, 1486 /* returnEnd = */ false, 1487 /* isBounded = */ true, 1488 /* isAppending = */ false); 1489 } 1490 1491 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1492 // char *stpcpy(char *restrict dst, const char *restrict src); 1493 evalStrcpyCommon(C, CE, 1494 /* returnEnd = */ true, 1495 /* isBounded = */ false, 1496 /* isAppending = */ false); 1497 } 1498 1499 void CStringChecker::evalStrlcpy(CheckerContext &C, const CallExpr *CE) const { 1500 // char *strlcpy(char *dst, const char *src, size_t n); 1501 evalStrcpyCommon(C, CE, 1502 /* returnEnd = */ true, 1503 /* isBounded = */ true, 1504 /* isAppending = */ false, 1505 /* returnPtr = */ false); 1506 } 1507 1508 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1509 //char *strcat(char *restrict s1, const char *restrict s2); 1510 evalStrcpyCommon(C, CE, 1511 /* returnEnd = */ false, 1512 /* isBounded = */ false, 1513 /* isAppending = */ true); 1514 } 1515 1516 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1517 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1518 evalStrcpyCommon(C, CE, 1519 /* returnEnd = */ false, 1520 /* isBounded = */ true, 1521 /* isAppending = */ true); 1522 } 1523 1524 void CStringChecker::evalStrlcat(CheckerContext &C, const CallExpr *CE) const { 1525 // FIXME: strlcat() uses a different rule for bound checking, i.e. 'n' means 1526 // a different thing as compared to strncat(). This currently causes 1527 // false positives in the alpha string bound checker. 1528 1529 //char *strlcat(char *s1, const char *s2, size_t n); 1530 evalStrcpyCommon(C, CE, 1531 /* returnEnd = */ false, 1532 /* isBounded = */ true, 1533 /* isAppending = */ true, 1534 /* returnPtr = */ false); 1535 } 1536 1537 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1538 bool returnEnd, bool isBounded, 1539 bool isAppending, bool returnPtr) const { 1540 CurrentFunctionDescription = "string copy function"; 1541 ProgramStateRef state = C.getState(); 1542 const LocationContext *LCtx = C.getLocationContext(); 1543 1544 // Check that the destination is non-null. 1545 const Expr *Dst = CE->getArg(0); 1546 SVal DstVal = state->getSVal(Dst, LCtx); 1547 1548 state = checkNonNull(C, state, Dst, DstVal, 1); 1549 if (!state) 1550 return; 1551 1552 // Check that the source is non-null. 1553 const Expr *srcExpr = CE->getArg(1); 1554 SVal srcVal = state->getSVal(srcExpr, LCtx); 1555 state = checkNonNull(C, state, srcExpr, srcVal, 2); 1556 if (!state) 1557 return; 1558 1559 // Get the string length of the source. 1560 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1561 1562 // If the source isn't a valid C string, give up. 1563 if (strLength.isUndef()) 1564 return; 1565 1566 SValBuilder &svalBuilder = C.getSValBuilder(); 1567 QualType cmpTy = svalBuilder.getConditionType(); 1568 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1569 1570 // These two values allow checking two kinds of errors: 1571 // - actual overflows caused by a source that doesn't fit in the destination 1572 // - potential overflows caused by a bound that could exceed the destination 1573 SVal amountCopied = UnknownVal(); 1574 SVal maxLastElementIndex = UnknownVal(); 1575 const char *boundWarning = nullptr; 1576 1577 state = CheckOverlap(C, state, isBounded ? CE->getArg(2) : CE->getArg(1), Dst, srcExpr); 1578 1579 if (!state) 1580 return; 1581 1582 // If the function is strncpy, strncat, etc... it is bounded. 1583 if (isBounded) { 1584 // Get the max number of characters to copy. 1585 const Expr *lenExpr = CE->getArg(2); 1586 SVal lenVal = state->getSVal(lenExpr, LCtx); 1587 1588 // Protect against misdeclared strncpy(). 1589 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1590 1591 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1592 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1593 1594 // If we know both values, we might be able to figure out how much 1595 // we're copying. 1596 if (strLengthNL && lenValNL) { 1597 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1598 1599 // Check if the max number to copy is less than the length of the src. 1600 // If the bound is equal to the source length, strncpy won't null- 1601 // terminate the result! 1602 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1603 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1604 .castAs<DefinedOrUnknownSVal>()); 1605 1606 if (stateSourceTooLong && !stateSourceNotTooLong) { 1607 // Max number to copy is less than the length of the src, so the actual 1608 // strLength copied is the max number arg. 1609 state = stateSourceTooLong; 1610 amountCopied = lenVal; 1611 1612 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1613 // The source buffer entirely fits in the bound. 1614 state = stateSourceNotTooLong; 1615 amountCopied = strLength; 1616 } 1617 } 1618 1619 // We still want to know if the bound is known to be too large. 1620 if (lenValNL) { 1621 if (isAppending) { 1622 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1623 1624 // Get the string length of the destination. If the destination is 1625 // memory that can't have a string length, we shouldn't be copying 1626 // into it anyway. 1627 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1628 if (dstStrLength.isUndef()) 1629 return; 1630 1631 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1632 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1633 *lenValNL, 1634 *dstStrLengthNL, 1635 sizeTy); 1636 boundWarning = "Size argument is greater than the free space in the " 1637 "destination buffer"; 1638 } 1639 1640 } else { 1641 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1642 // (Yes, strncpy and strncat differ in how they treat termination. 1643 // strncat ALWAYS terminates, but strncpy doesn't.) 1644 1645 // We need a special case for when the copy size is zero, in which 1646 // case strncpy will do no work at all. Our bounds check uses n-1 1647 // as the last element accessed, so n == 0 is problematic. 1648 ProgramStateRef StateZeroSize, StateNonZeroSize; 1649 std::tie(StateZeroSize, StateNonZeroSize) = 1650 assumeZero(C, state, *lenValNL, sizeTy); 1651 1652 // If the size is known to be zero, we're done. 1653 if (StateZeroSize && !StateNonZeroSize) { 1654 if (returnPtr) { 1655 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1656 } else { 1657 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, *lenValNL); 1658 } 1659 C.addTransition(StateZeroSize); 1660 return; 1661 } 1662 1663 // Otherwise, go ahead and figure out the last element we'll touch. 1664 // We don't record the non-zero assumption here because we can't 1665 // be sure. We won't warn on a possible zero. 1666 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1667 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1668 one, sizeTy); 1669 boundWarning = "Size argument is greater than the length of the " 1670 "destination buffer"; 1671 } 1672 } 1673 1674 // If we couldn't pin down the copy length, at least bound it. 1675 // FIXME: We should actually run this code path for append as well, but 1676 // right now it creates problems with constraints (since we can end up 1677 // trying to pass constraints from symbol to symbol). 1678 if (amountCopied.isUnknown() && !isAppending) { 1679 // Try to get a "hypothetical" string length symbol, which we can later 1680 // set as a real value if that turns out to be the case. 1681 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1682 assert(!amountCopied.isUndef()); 1683 1684 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1685 if (lenValNL) { 1686 // amountCopied <= lenVal 1687 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1688 *amountCopiedNL, 1689 *lenValNL, 1690 cmpTy); 1691 state = state->assume( 1692 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1693 if (!state) 1694 return; 1695 } 1696 1697 if (strLengthNL) { 1698 // amountCopied <= strlen(source) 1699 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1700 *amountCopiedNL, 1701 *strLengthNL, 1702 cmpTy); 1703 state = state->assume( 1704 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1705 if (!state) 1706 return; 1707 } 1708 } 1709 } 1710 1711 } else { 1712 // The function isn't bounded. The amount copied should match the length 1713 // of the source buffer. 1714 amountCopied = strLength; 1715 } 1716 1717 assert(state); 1718 1719 // This represents the number of characters copied into the destination 1720 // buffer. (It may not actually be the strlen if the destination buffer 1721 // is not terminated.) 1722 SVal finalStrLength = UnknownVal(); 1723 1724 // If this is an appending function (strcat, strncat...) then set the 1725 // string length to strlen(src) + strlen(dst) since the buffer will 1726 // ultimately contain both. 1727 if (isAppending) { 1728 // Get the string length of the destination. If the destination is memory 1729 // that can't have a string length, we shouldn't be copying into it anyway. 1730 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1731 if (dstStrLength.isUndef()) 1732 return; 1733 1734 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1735 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1736 1737 // If we know both string lengths, we might know the final string length. 1738 if (srcStrLengthNL && dstStrLengthNL) { 1739 // Make sure the two lengths together don't overflow a size_t. 1740 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1741 if (!state) 1742 return; 1743 1744 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1745 *dstStrLengthNL, sizeTy); 1746 } 1747 1748 // If we couldn't get a single value for the final string length, 1749 // we can at least bound it by the individual lengths. 1750 if (finalStrLength.isUnknown()) { 1751 // Try to get a "hypothetical" string length symbol, which we can later 1752 // set as a real value if that turns out to be the case. 1753 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1754 assert(!finalStrLength.isUndef()); 1755 1756 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1757 if (srcStrLengthNL) { 1758 // finalStrLength >= srcStrLength 1759 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1760 *finalStrLengthNL, 1761 *srcStrLengthNL, 1762 cmpTy); 1763 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1764 true); 1765 if (!state) 1766 return; 1767 } 1768 1769 if (dstStrLengthNL) { 1770 // finalStrLength >= dstStrLength 1771 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1772 *finalStrLengthNL, 1773 *dstStrLengthNL, 1774 cmpTy); 1775 state = 1776 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1777 if (!state) 1778 return; 1779 } 1780 } 1781 } 1782 1783 } else { 1784 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1785 // the final string length will match the input string length. 1786 finalStrLength = amountCopied; 1787 } 1788 1789 SVal Result; 1790 1791 if (returnPtr) { 1792 // The final result of the function will either be a pointer past the last 1793 // copied element, or a pointer to the start of the destination buffer. 1794 Result = (returnEnd ? UnknownVal() : DstVal); 1795 } else { 1796 Result = finalStrLength; 1797 } 1798 1799 assert(state); 1800 1801 // If the destination is a MemRegion, try to check for a buffer overflow and 1802 // record the new string length. 1803 if (Optional<loc::MemRegionVal> dstRegVal = 1804 DstVal.getAs<loc::MemRegionVal>()) { 1805 QualType ptrTy = Dst->getType(); 1806 1807 // If we have an exact value on a bounded copy, use that to check for 1808 // overflows, rather than our estimate about how much is actually copied. 1809 if (boundWarning) { 1810 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1811 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1812 *maxLastNL, ptrTy); 1813 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1814 boundWarning); 1815 if (!state) 1816 return; 1817 } 1818 } 1819 1820 // Then, if the final length is known... 1821 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1822 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1823 *knownStrLength, ptrTy); 1824 1825 // ...and we haven't checked the bound, we'll check the actual copy. 1826 if (!boundWarning) { 1827 const char * const warningMsg = 1828 "String copy function overflows destination buffer"; 1829 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1830 if (!state) 1831 return; 1832 } 1833 1834 // If this is a stpcpy-style copy, the last element is the return value. 1835 if (returnPtr && returnEnd) 1836 Result = lastElement; 1837 } 1838 1839 // Invalidate the destination (regular invalidation without pointer-escaping 1840 // the address of the top-level region). This must happen before we set the 1841 // C string length because invalidation will clear the length. 1842 // FIXME: Even if we can't perfectly model the copy, we should see if we 1843 // can use LazyCompoundVals to copy the source values into the destination. 1844 // This would probably remove any existing bindings past the end of the 1845 // string, but that's still an improvement over blank invalidation. 1846 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1847 /*IsSourceBuffer*/false, nullptr); 1848 1849 // Invalidate the source (const-invalidation without const-pointer-escaping 1850 // the address of the top-level region). 1851 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1852 nullptr); 1853 1854 // Set the C string length of the destination, if we know it. 1855 if (isBounded && !isAppending) { 1856 // strncpy is annoying in that it doesn't guarantee to null-terminate 1857 // the result string. If the original string didn't fit entirely inside 1858 // the bound (including the null-terminator), we don't know how long the 1859 // result is. 1860 if (amountCopied != strLength) 1861 finalStrLength = UnknownVal(); 1862 } 1863 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1864 } 1865 1866 assert(state); 1867 1868 if (returnPtr) { 1869 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1870 // overflow, we still need a result. Conjure a return value. 1871 if (returnEnd && Result.isUnknown()) { 1872 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1873 } 1874 } 1875 // Set the return value. 1876 state = state->BindExpr(CE, LCtx, Result); 1877 C.addTransition(state); 1878 } 1879 1880 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1881 //int strcmp(const char *s1, const char *s2); 1882 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1883 } 1884 1885 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1886 //int strncmp(const char *s1, const char *s2, size_t n); 1887 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1888 } 1889 1890 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1891 const CallExpr *CE) const { 1892 //int strcasecmp(const char *s1, const char *s2); 1893 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1894 } 1895 1896 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1897 const CallExpr *CE) const { 1898 //int strncasecmp(const char *s1, const char *s2, size_t n); 1899 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1900 } 1901 1902 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1903 bool isBounded, bool ignoreCase) const { 1904 CurrentFunctionDescription = "string comparison function"; 1905 ProgramStateRef state = C.getState(); 1906 const LocationContext *LCtx = C.getLocationContext(); 1907 1908 // Check that the first string is non-null 1909 const Expr *s1 = CE->getArg(0); 1910 SVal s1Val = state->getSVal(s1, LCtx); 1911 state = checkNonNull(C, state, s1, s1Val, 1); 1912 if (!state) 1913 return; 1914 1915 // Check that the second string is non-null. 1916 const Expr *s2 = CE->getArg(1); 1917 SVal s2Val = state->getSVal(s2, LCtx); 1918 state = checkNonNull(C, state, s2, s2Val, 2); 1919 if (!state) 1920 return; 1921 1922 // Get the string length of the first string or give up. 1923 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1924 if (s1Length.isUndef()) 1925 return; 1926 1927 // Get the string length of the second string or give up. 1928 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1929 if (s2Length.isUndef()) 1930 return; 1931 1932 // If we know the two buffers are the same, we know the result is 0. 1933 // First, get the two buffers' addresses. Another checker will have already 1934 // made sure they're not undefined. 1935 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1936 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1937 1938 // See if they are the same. 1939 SValBuilder &svalBuilder = C.getSValBuilder(); 1940 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1941 ProgramStateRef StSameBuf, StNotSameBuf; 1942 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1943 1944 // If the two arguments might be the same buffer, we know the result is 0, 1945 // and we only need to check one size. 1946 if (StSameBuf) { 1947 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1948 svalBuilder.makeZeroVal(CE->getType())); 1949 C.addTransition(StSameBuf); 1950 1951 // If the two arguments are GUARANTEED to be the same, we're done! 1952 if (!StNotSameBuf) 1953 return; 1954 } 1955 1956 assert(StNotSameBuf); 1957 state = StNotSameBuf; 1958 1959 // At this point we can go about comparing the two buffers. 1960 // For now, we only do this if they're both known string literals. 1961 1962 // Attempt to extract string literals from both expressions. 1963 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1964 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1965 bool canComputeResult = false; 1966 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1967 C.blockCount()); 1968 1969 if (s1StrLiteral && s2StrLiteral) { 1970 StringRef s1StrRef = s1StrLiteral->getString(); 1971 StringRef s2StrRef = s2StrLiteral->getString(); 1972 1973 if (isBounded) { 1974 // Get the max number of characters to compare. 1975 const Expr *lenExpr = CE->getArg(2); 1976 SVal lenVal = state->getSVal(lenExpr, LCtx); 1977 1978 // If the length is known, we can get the right substrings. 1979 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1980 // Create substrings of each to compare the prefix. 1981 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1982 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1983 canComputeResult = true; 1984 } 1985 } else { 1986 // This is a normal, unbounded strcmp. 1987 canComputeResult = true; 1988 } 1989 1990 if (canComputeResult) { 1991 // Real strcmp stops at null characters. 1992 size_t s1Term = s1StrRef.find('\0'); 1993 if (s1Term != StringRef::npos) 1994 s1StrRef = s1StrRef.substr(0, s1Term); 1995 1996 size_t s2Term = s2StrRef.find('\0'); 1997 if (s2Term != StringRef::npos) 1998 s2StrRef = s2StrRef.substr(0, s2Term); 1999 2000 // Use StringRef's comparison methods to compute the actual result. 2001 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 2002 : s1StrRef.compare(s2StrRef); 2003 2004 // The strcmp function returns an integer greater than, equal to, or less 2005 // than zero, [c11, p7.24.4.2]. 2006 if (compareRes == 0) { 2007 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 2008 } 2009 else { 2010 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 2011 // Constrain strcmp's result range based on the result of StringRef's 2012 // comparison methods. 2013 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 2014 SVal compareWithZero = 2015 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 2016 svalBuilder.getConditionType()); 2017 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 2018 state = state->assume(compareWithZeroVal, true); 2019 } 2020 } 2021 } 2022 2023 state = state->BindExpr(CE, LCtx, resultVal); 2024 2025 // Record this as a possible path. 2026 C.addTransition(state); 2027 } 2028 2029 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 2030 //char *strsep(char **stringp, const char *delim); 2031 // Sanity: does the search string parameter match the return type? 2032 const Expr *SearchStrPtr = CE->getArg(0); 2033 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 2034 if (CharPtrTy.isNull() || 2035 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 2036 return; 2037 2038 CurrentFunctionDescription = "strsep()"; 2039 ProgramStateRef State = C.getState(); 2040 const LocationContext *LCtx = C.getLocationContext(); 2041 2042 // Check that the search string pointer is non-null (though it may point to 2043 // a null string). 2044 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 2045 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal, 1); 2046 if (!State) 2047 return; 2048 2049 // Check that the delimiter string is non-null. 2050 const Expr *DelimStr = CE->getArg(1); 2051 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 2052 State = checkNonNull(C, State, DelimStr, DelimStrVal, 2); 2053 if (!State) 2054 return; 2055 2056 SValBuilder &SVB = C.getSValBuilder(); 2057 SVal Result; 2058 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 2059 // Get the current value of the search string pointer, as a char*. 2060 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 2061 2062 // Invalidate the search string, representing the change of one delimiter 2063 // character to NUL. 2064 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 2065 /*IsSourceBuffer*/false, nullptr); 2066 2067 // Overwrite the search string pointer. The new value is either an address 2068 // further along in the same string, or NULL if there are no more tokens. 2069 State = State->bindLoc(*SearchStrLoc, 2070 SVB.conjureSymbolVal(getTag(), 2071 CE, 2072 LCtx, 2073 CharPtrTy, 2074 C.blockCount()), 2075 LCtx); 2076 } else { 2077 assert(SearchStrVal.isUnknown()); 2078 // Conjure a symbolic value. It's the best we can do. 2079 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2080 } 2081 2082 // Set the return value, and finish. 2083 State = State->BindExpr(CE, LCtx, Result); 2084 C.addTransition(State); 2085 } 2086 2087 // These should probably be moved into a C++ standard library checker. 2088 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 2089 evalStdCopyCommon(C, CE); 2090 } 2091 2092 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 2093 const CallExpr *CE) const { 2094 evalStdCopyCommon(C, CE); 2095 } 2096 2097 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 2098 const CallExpr *CE) const { 2099 if (!CE->getArg(2)->getType()->isPointerType()) 2100 return; 2101 2102 ProgramStateRef State = C.getState(); 2103 2104 const LocationContext *LCtx = C.getLocationContext(); 2105 2106 // template <class _InputIterator, class _OutputIterator> 2107 // _OutputIterator 2108 // copy(_InputIterator __first, _InputIterator __last, 2109 // _OutputIterator __result) 2110 2111 // Invalidate the destination buffer 2112 const Expr *Dst = CE->getArg(2); 2113 SVal DstVal = State->getSVal(Dst, LCtx); 2114 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 2115 /*Size=*/nullptr); 2116 2117 SValBuilder &SVB = C.getSValBuilder(); 2118 2119 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 2120 State = State->BindExpr(CE, LCtx, ResultVal); 2121 2122 C.addTransition(State); 2123 } 2124 2125 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 2126 CurrentFunctionDescription = "memory set function"; 2127 2128 const Expr *Mem = CE->getArg(0); 2129 const Expr *CharE = CE->getArg(1); 2130 const Expr *Size = CE->getArg(2); 2131 ProgramStateRef State = C.getState(); 2132 2133 // See if the size argument is zero. 2134 const LocationContext *LCtx = C.getLocationContext(); 2135 SVal SizeVal = State->getSVal(Size, LCtx); 2136 QualType SizeTy = Size->getType(); 2137 2138 ProgramStateRef StateZeroSize, StateNonZeroSize; 2139 std::tie(StateZeroSize, StateNonZeroSize) = 2140 assumeZero(C, State, SizeVal, SizeTy); 2141 2142 // Get the value of the memory area. 2143 SVal MemVal = State->getSVal(Mem, LCtx); 2144 2145 // If the size is zero, there won't be any actual memory access, so 2146 // just bind the return value to the Mem buffer and return. 2147 if (StateZeroSize && !StateNonZeroSize) { 2148 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2149 C.addTransition(StateZeroSize); 2150 return; 2151 } 2152 2153 // Ensure the memory area is not null. 2154 // If it is NULL there will be a NULL pointer dereference. 2155 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2156 if (!State) 2157 return; 2158 2159 State = CheckBufferAccess(C, State, Size, Mem); 2160 if (!State) 2161 return; 2162 2163 // According to the values of the arguments, bind the value of the second 2164 // argument to the destination buffer and set string length, or just 2165 // invalidate the destination buffer. 2166 if (!memsetAux(Mem, C.getSVal(CharE), Size, C, State)) 2167 return; 2168 2169 State = State->BindExpr(CE, LCtx, MemVal); 2170 C.addTransition(State); 2171 } 2172 2173 void CStringChecker::evalBzero(CheckerContext &C, const CallExpr *CE) const { 2174 CurrentFunctionDescription = "memory clearance function"; 2175 2176 const Expr *Mem = CE->getArg(0); 2177 const Expr *Size = CE->getArg(1); 2178 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy); 2179 2180 ProgramStateRef State = C.getState(); 2181 2182 // See if the size argument is zero. 2183 SVal SizeVal = C.getSVal(Size); 2184 QualType SizeTy = Size->getType(); 2185 2186 ProgramStateRef StateZeroSize, StateNonZeroSize; 2187 std::tie(StateZeroSize, StateNonZeroSize) = 2188 assumeZero(C, State, SizeVal, SizeTy); 2189 2190 // If the size is zero, there won't be any actual memory access, 2191 // In this case we just return. 2192 if (StateZeroSize && !StateNonZeroSize) { 2193 C.addTransition(StateZeroSize); 2194 return; 2195 } 2196 2197 // Get the value of the memory area. 2198 SVal MemVal = C.getSVal(Mem); 2199 2200 // Ensure the memory area is not null. 2201 // If it is NULL there will be a NULL pointer dereference. 2202 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal, 1); 2203 if (!State) 2204 return; 2205 2206 State = CheckBufferAccess(C, State, Size, Mem); 2207 if (!State) 2208 return; 2209 2210 if (!memsetAux(Mem, Zero, Size, C, State)) 2211 return; 2212 2213 C.addTransition(State); 2214 } 2215 2216 //===----------------------------------------------------------------------===// 2217 // The driver method, and other Checker callbacks. 2218 //===----------------------------------------------------------------------===// 2219 2220 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, 2221 CheckerContext &C) const { 2222 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()); 2223 if (!CE) 2224 return nullptr; 2225 2226 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl()); 2227 if (!FD) 2228 return nullptr; 2229 2230 if (Call.isCalled(StdCopy)) { 2231 return &CStringChecker::evalStdCopy; 2232 } else if (Call.isCalled(StdCopyBackward)) { 2233 return &CStringChecker::evalStdCopyBackward; 2234 } 2235 2236 // Pro-actively check that argument types are safe to do arithmetic upon. 2237 // We do not want to crash if someone accidentally passes a structure 2238 // into, say, a C++ overload of any of these functions. We could not check 2239 // that for std::copy because they may have arguments of other types. 2240 for (auto I : CE->arguments()) { 2241 QualType T = I->getType(); 2242 if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) 2243 return nullptr; 2244 } 2245 2246 const FnCheck *Callback = Callbacks.lookup(Call); 2247 if (Callback) 2248 return *Callback; 2249 2250 return nullptr; 2251 } 2252 2253 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { 2254 FnCheck Callback = identifyCall(Call, C); 2255 2256 // If the callee isn't a string function, let another checker handle it. 2257 if (!Callback) 2258 return false; 2259 2260 // Check and evaluate the call. 2261 const auto *CE = cast<CallExpr>(Call.getOriginExpr()); 2262 (this->*Callback)(C, CE); 2263 2264 // If the evaluate call resulted in no change, chain to the next eval call 2265 // handler. 2266 // Note, the custom CString evaluation calls assume that basic safety 2267 // properties are held. However, if the user chooses to turn off some of these 2268 // checks, we ignore the issues and leave the call evaluation to a generic 2269 // handler. 2270 return C.isDifferent(); 2271 } 2272 2273 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2274 // Record string length for char a[] = "abc"; 2275 ProgramStateRef state = C.getState(); 2276 2277 for (const auto *I : DS->decls()) { 2278 const VarDecl *D = dyn_cast<VarDecl>(I); 2279 if (!D) 2280 continue; 2281 2282 // FIXME: Handle array fields of structs. 2283 if (!D->getType()->isArrayType()) 2284 continue; 2285 2286 const Expr *Init = D->getInit(); 2287 if (!Init) 2288 continue; 2289 if (!isa<StringLiteral>(Init)) 2290 continue; 2291 2292 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2293 const MemRegion *MR = VarLoc.getAsRegion(); 2294 if (!MR) 2295 continue; 2296 2297 SVal StrVal = C.getSVal(Init); 2298 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2299 DefinedOrUnknownSVal strLength = 2300 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2301 2302 state = state->set<CStringLength>(MR, strLength); 2303 } 2304 2305 C.addTransition(state); 2306 } 2307 2308 ProgramStateRef 2309 CStringChecker::checkRegionChanges(ProgramStateRef state, 2310 const InvalidatedSymbols *, 2311 ArrayRef<const MemRegion *> ExplicitRegions, 2312 ArrayRef<const MemRegion *> Regions, 2313 const LocationContext *LCtx, 2314 const CallEvent *Call) const { 2315 CStringLengthTy Entries = state->get<CStringLength>(); 2316 if (Entries.isEmpty()) 2317 return state; 2318 2319 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2320 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2321 2322 // First build sets for the changed regions and their super-regions. 2323 for (ArrayRef<const MemRegion *>::iterator 2324 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2325 const MemRegion *MR = *I; 2326 Invalidated.insert(MR); 2327 2328 SuperRegions.insert(MR); 2329 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2330 MR = SR->getSuperRegion(); 2331 SuperRegions.insert(MR); 2332 } 2333 } 2334 2335 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2336 2337 // Then loop over the entries in the current state. 2338 for (CStringLengthTy::iterator I = Entries.begin(), 2339 E = Entries.end(); I != E; ++I) { 2340 const MemRegion *MR = I.getKey(); 2341 2342 // Is this entry for a super-region of a changed region? 2343 if (SuperRegions.count(MR)) { 2344 Entries = F.remove(Entries, MR); 2345 continue; 2346 } 2347 2348 // Is this entry for a sub-region of a changed region? 2349 const MemRegion *Super = MR; 2350 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2351 Super = SR->getSuperRegion(); 2352 if (Invalidated.count(Super)) { 2353 Entries = F.remove(Entries, MR); 2354 break; 2355 } 2356 } 2357 } 2358 2359 return state->set<CStringLength>(Entries); 2360 } 2361 2362 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2363 SymbolReaper &SR) const { 2364 // Mark all symbols in our string length map as valid. 2365 CStringLengthTy Entries = state->get<CStringLength>(); 2366 2367 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2368 I != E; ++I) { 2369 SVal Len = I.getData(); 2370 2371 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2372 se = Len.symbol_end(); si != se; ++si) 2373 SR.markInUse(*si); 2374 } 2375 } 2376 2377 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2378 CheckerContext &C) const { 2379 ProgramStateRef state = C.getState(); 2380 CStringLengthTy Entries = state->get<CStringLength>(); 2381 if (Entries.isEmpty()) 2382 return; 2383 2384 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2385 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2386 I != E; ++I) { 2387 SVal Len = I.getData(); 2388 if (SymbolRef Sym = Len.getAsSymbol()) { 2389 if (SR.isDead(Sym)) 2390 Entries = F.remove(Entries, I.getKey()); 2391 } 2392 } 2393 2394 state = state->set<CStringLength>(Entries); 2395 C.addTransition(state); 2396 } 2397 2398 void ento::registerCStringModeling(CheckerManager &Mgr) { 2399 Mgr.registerChecker<CStringChecker>(); 2400 } 2401 2402 bool ento::shouldRegisterCStringModeling(const LangOptions &LO) { 2403 return true; 2404 } 2405 2406 #define REGISTER_CHECKER(name) \ 2407 void ento::register##name(CheckerManager &mgr) { \ 2408 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ 2409 checker->Filter.Check##name = true; \ 2410 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2411 } \ 2412 \ 2413 bool ento::shouldRegister##name(const LangOptions &LO) { \ 2414 return true; \ 2415 } 2416 2417 REGISTER_CHECKER(CStringNullArg) 2418 REGISTER_CHECKER(CStringOutOfBounds) 2419 REGISTER_CHECKER(CStringBufferOverlap) 2420 REGISTER_CHECKER(CStringNotNullTerm) 2421