1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This defines CStringChecker, which is an assortment of checks on calls 11 // to functions in <string.h>. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/Basic/CharInfo.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 27 using namespace clang; 28 using namespace ento; 29 30 namespace { 31 class CStringChecker : public Checker< eval::Call, 32 check::PreStmt<DeclStmt>, 33 check::LiveSymbols, 34 check::DeadSymbols, 35 check::RegionChanges 36 > { 37 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, 38 BT_NotCString, BT_AdditionOverflow; 39 40 mutable const char *CurrentFunctionDescription; 41 42 public: 43 /// The filter is used to filter out the diagnostics which are not enabled by 44 /// the user. 45 struct CStringChecksFilter { 46 DefaultBool CheckCStringNullArg; 47 DefaultBool CheckCStringOutOfBounds; 48 DefaultBool CheckCStringBufferOverlap; 49 DefaultBool CheckCStringNotNullTerm; 50 51 CheckName CheckNameCStringNullArg; 52 CheckName CheckNameCStringOutOfBounds; 53 CheckName CheckNameCStringBufferOverlap; 54 CheckName CheckNameCStringNotNullTerm; 55 }; 56 57 CStringChecksFilter Filter; 58 59 static void *getTag() { static int tag; return &tag; } 60 61 bool evalCall(const CallExpr *CE, CheckerContext &C) const; 62 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; 63 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; 64 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; 65 66 ProgramStateRef 67 checkRegionChanges(ProgramStateRef state, 68 const InvalidatedSymbols *, 69 ArrayRef<const MemRegion *> ExplicitRegions, 70 ArrayRef<const MemRegion *> Regions, 71 const LocationContext *LCtx, 72 const CallEvent *Call) const; 73 74 typedef void (CStringChecker::*FnCheck)(CheckerContext &, 75 const CallExpr *) const; 76 77 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; 78 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; 79 void evalMemmove(CheckerContext &C, const CallExpr *CE) const; 80 void evalBcopy(CheckerContext &C, const CallExpr *CE) const; 81 void evalCopyCommon(CheckerContext &C, const CallExpr *CE, 82 ProgramStateRef state, 83 const Expr *Size, 84 const Expr *Source, 85 const Expr *Dest, 86 bool Restricted = false, 87 bool IsMempcpy = false) const; 88 89 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; 90 91 void evalstrLength(CheckerContext &C, const CallExpr *CE) const; 92 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; 93 void evalstrLengthCommon(CheckerContext &C, 94 const CallExpr *CE, 95 bool IsStrnlen = false) const; 96 97 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; 98 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; 99 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; 100 void evalStrcpyCommon(CheckerContext &C, 101 const CallExpr *CE, 102 bool returnEnd, 103 bool isBounded, 104 bool isAppending) const; 105 106 void evalStrcat(CheckerContext &C, const CallExpr *CE) const; 107 void evalStrncat(CheckerContext &C, const CallExpr *CE) const; 108 109 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; 110 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; 111 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; 112 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; 113 void evalStrcmpCommon(CheckerContext &C, 114 const CallExpr *CE, 115 bool isBounded = false, 116 bool ignoreCase = false) const; 117 118 void evalStrsep(CheckerContext &C, const CallExpr *CE) const; 119 120 void evalStdCopy(CheckerContext &C, const CallExpr *CE) const; 121 void evalStdCopyBackward(CheckerContext &C, const CallExpr *CE) const; 122 void evalStdCopyCommon(CheckerContext &C, const CallExpr *CE) const; 123 void evalMemset(CheckerContext &C, const CallExpr *CE) const; 124 125 // Utility methods 126 std::pair<ProgramStateRef , ProgramStateRef > 127 static assumeZero(CheckerContext &C, 128 ProgramStateRef state, SVal V, QualType Ty); 129 130 static ProgramStateRef setCStringLength(ProgramStateRef state, 131 const MemRegion *MR, 132 SVal strLength); 133 static SVal getCStringLengthForRegion(CheckerContext &C, 134 ProgramStateRef &state, 135 const Expr *Ex, 136 const MemRegion *MR, 137 bool hypothetical); 138 SVal getCStringLength(CheckerContext &C, 139 ProgramStateRef &state, 140 const Expr *Ex, 141 SVal Buf, 142 bool hypothetical = false) const; 143 144 const StringLiteral *getCStringLiteral(CheckerContext &C, 145 ProgramStateRef &state, 146 const Expr *expr, 147 SVal val) const; 148 149 static ProgramStateRef InvalidateBuffer(CheckerContext &C, 150 ProgramStateRef state, 151 const Expr *Ex, SVal V, 152 bool IsSourceBuffer, 153 const Expr *Size); 154 155 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 156 const MemRegion *MR); 157 158 // Re-usable checks 159 ProgramStateRef checkNonNull(CheckerContext &C, 160 ProgramStateRef state, 161 const Expr *S, 162 SVal l) const; 163 ProgramStateRef CheckLocation(CheckerContext &C, 164 ProgramStateRef state, 165 const Expr *S, 166 SVal l, 167 const char *message = nullptr) const; 168 ProgramStateRef CheckBufferAccess(CheckerContext &C, 169 ProgramStateRef state, 170 const Expr *Size, 171 const Expr *FirstBuf, 172 const Expr *SecondBuf, 173 const char *firstMessage = nullptr, 174 const char *secondMessage = nullptr, 175 bool WarnAboutSize = false) const; 176 177 ProgramStateRef CheckBufferAccess(CheckerContext &C, 178 ProgramStateRef state, 179 const Expr *Size, 180 const Expr *Buf, 181 const char *message = nullptr, 182 bool WarnAboutSize = false) const { 183 // This is a convenience override. 184 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr, 185 WarnAboutSize); 186 } 187 ProgramStateRef CheckOverlap(CheckerContext &C, 188 ProgramStateRef state, 189 const Expr *Size, 190 const Expr *First, 191 const Expr *Second) const; 192 void emitOverlapBug(CheckerContext &C, 193 ProgramStateRef state, 194 const Stmt *First, 195 const Stmt *Second) const; 196 197 ProgramStateRef checkAdditionOverflow(CheckerContext &C, 198 ProgramStateRef state, 199 NonLoc left, 200 NonLoc right) const; 201 202 // Return true if the destination buffer of the copy function may be in bound. 203 // Expects SVal of Size to be positive and unsigned. 204 // Expects SVal of FirstBuf to be a FieldRegion. 205 static bool IsFirstBufInBound(CheckerContext &C, 206 ProgramStateRef state, 207 const Expr *FirstBuf, 208 const Expr *Size); 209 }; 210 211 } //end anonymous namespace 212 213 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) 214 215 //===----------------------------------------------------------------------===// 216 // Individual checks and utility methods. 217 //===----------------------------------------------------------------------===// 218 219 std::pair<ProgramStateRef , ProgramStateRef > 220 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, 221 QualType Ty) { 222 Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); 223 if (!val) 224 return std::pair<ProgramStateRef , ProgramStateRef >(state, state); 225 226 SValBuilder &svalBuilder = C.getSValBuilder(); 227 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); 228 return state->assume(svalBuilder.evalEQ(state, *val, zero)); 229 } 230 231 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, 232 ProgramStateRef state, 233 const Expr *S, SVal l) const { 234 // If a previous check has failed, propagate the failure. 235 if (!state) 236 return nullptr; 237 238 ProgramStateRef stateNull, stateNonNull; 239 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); 240 241 if (stateNull && !stateNonNull) { 242 if (!Filter.CheckCStringNullArg) 243 return nullptr; 244 245 ExplodedNode *N = C.generateErrorNode(stateNull); 246 if (!N) 247 return nullptr; 248 249 if (!BT_Null) 250 BT_Null.reset(new BuiltinBug( 251 Filter.CheckNameCStringNullArg, categories::UnixAPI, 252 "Null pointer argument in call to byte string function")); 253 254 SmallString<80> buf; 255 llvm::raw_svector_ostream os(buf); 256 assert(CurrentFunctionDescription); 257 os << "Null pointer argument in call to " << CurrentFunctionDescription; 258 259 // Generate a report for this bug. 260 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); 261 auto report = llvm::make_unique<BugReport>(*BT, os.str(), N); 262 263 report->addRange(S->getSourceRange()); 264 bugreporter::trackNullOrUndefValue(N, S, *report); 265 C.emitReport(std::move(report)); 266 return nullptr; 267 } 268 269 // From here on, assume that the value is non-null. 270 assert(stateNonNull); 271 return stateNonNull; 272 } 273 274 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? 275 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, 276 ProgramStateRef state, 277 const Expr *S, SVal l, 278 const char *warningMsg) const { 279 // If a previous check has failed, propagate the failure. 280 if (!state) 281 return nullptr; 282 283 // Check for out of bound array element access. 284 const MemRegion *R = l.getAsRegion(); 285 if (!R) 286 return state; 287 288 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 289 if (!ER) 290 return state; 291 292 if (ER->getValueType() != C.getASTContext().CharTy) 293 return state; 294 295 // Get the size of the array. 296 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 297 SValBuilder &svalBuilder = C.getSValBuilder(); 298 SVal Extent = 299 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 300 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); 301 302 // Get the index of the accessed element. 303 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 304 305 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); 306 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); 307 if (StOutBound && !StInBound) { 308 ExplodedNode *N = C.generateErrorNode(StOutBound); 309 if (!N) 310 return nullptr; 311 312 if (!BT_Bounds) { 313 BT_Bounds.reset(new BuiltinBug( 314 Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access", 315 "Byte string function accesses out-of-bound array element")); 316 } 317 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); 318 319 // Generate a report for this bug. 320 std::unique_ptr<BugReport> report; 321 if (warningMsg) { 322 report = llvm::make_unique<BugReport>(*BT, warningMsg, N); 323 } else { 324 assert(CurrentFunctionDescription); 325 assert(CurrentFunctionDescription[0] != '\0'); 326 327 SmallString<80> buf; 328 llvm::raw_svector_ostream os(buf); 329 os << toUppercase(CurrentFunctionDescription[0]) 330 << &CurrentFunctionDescription[1] 331 << " accesses out-of-bound array element"; 332 report = llvm::make_unique<BugReport>(*BT, os.str(), N); 333 } 334 335 // FIXME: It would be nice to eventually make this diagnostic more clear, 336 // e.g., by referencing the original declaration or by saying *why* this 337 // reference is outside the range. 338 339 report->addRange(S->getSourceRange()); 340 C.emitReport(std::move(report)); 341 return nullptr; 342 } 343 344 // Array bound check succeeded. From this point forward the array bound 345 // should always succeed. 346 return StInBound; 347 } 348 349 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, 350 ProgramStateRef state, 351 const Expr *Size, 352 const Expr *FirstBuf, 353 const Expr *SecondBuf, 354 const char *firstMessage, 355 const char *secondMessage, 356 bool WarnAboutSize) const { 357 // If a previous check has failed, propagate the failure. 358 if (!state) 359 return nullptr; 360 361 SValBuilder &svalBuilder = C.getSValBuilder(); 362 ASTContext &Ctx = svalBuilder.getContext(); 363 const LocationContext *LCtx = C.getLocationContext(); 364 365 QualType sizeTy = Size->getType(); 366 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 367 368 // Check that the first buffer is non-null. 369 SVal BufVal = state->getSVal(FirstBuf, LCtx); 370 state = checkNonNull(C, state, FirstBuf, BufVal); 371 if (!state) 372 return nullptr; 373 374 // If out-of-bounds checking is turned off, skip the rest. 375 if (!Filter.CheckCStringOutOfBounds) 376 return state; 377 378 // Get the access length and make sure it is known. 379 // FIXME: This assumes the caller has already checked that the access length 380 // is positive. And that it's unsigned. 381 SVal LengthVal = state->getSVal(Size, LCtx); 382 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 383 if (!Length) 384 return state; 385 386 // Compute the offset of the last element to be accessed: size-1. 387 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 388 NonLoc LastOffset = svalBuilder 389 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>(); 390 391 // Check that the first buffer is sufficiently long. 392 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 393 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 394 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); 395 396 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 397 LastOffset, PtrTy); 398 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); 399 400 // If the buffer isn't large enough, abort. 401 if (!state) 402 return nullptr; 403 } 404 405 // If there's a second buffer, check it as well. 406 if (SecondBuf) { 407 BufVal = state->getSVal(SecondBuf, LCtx); 408 state = checkNonNull(C, state, SecondBuf, BufVal); 409 if (!state) 410 return nullptr; 411 412 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); 413 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { 414 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); 415 416 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, 417 LastOffset, PtrTy); 418 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); 419 } 420 } 421 422 // Large enough or not, return this state! 423 return state; 424 } 425 426 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, 427 ProgramStateRef state, 428 const Expr *Size, 429 const Expr *First, 430 const Expr *Second) const { 431 if (!Filter.CheckCStringBufferOverlap) 432 return state; 433 434 // Do a simple check for overlap: if the two arguments are from the same 435 // buffer, see if the end of the first is greater than the start of the second 436 // or vice versa. 437 438 // If a previous check has failed, propagate the failure. 439 if (!state) 440 return nullptr; 441 442 ProgramStateRef stateTrue, stateFalse; 443 444 // Get the buffer values and make sure they're known locations. 445 const LocationContext *LCtx = C.getLocationContext(); 446 SVal firstVal = state->getSVal(First, LCtx); 447 SVal secondVal = state->getSVal(Second, LCtx); 448 449 Optional<Loc> firstLoc = firstVal.getAs<Loc>(); 450 if (!firstLoc) 451 return state; 452 453 Optional<Loc> secondLoc = secondVal.getAs<Loc>(); 454 if (!secondLoc) 455 return state; 456 457 // Are the two values the same? 458 SValBuilder &svalBuilder = C.getSValBuilder(); 459 std::tie(stateTrue, stateFalse) = 460 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); 461 462 if (stateTrue && !stateFalse) { 463 // If the values are known to be equal, that's automatically an overlap. 464 emitOverlapBug(C, stateTrue, First, Second); 465 return nullptr; 466 } 467 468 // assume the two expressions are not equal. 469 assert(stateFalse); 470 state = stateFalse; 471 472 // Which value comes first? 473 QualType cmpTy = svalBuilder.getConditionType(); 474 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, 475 *firstLoc, *secondLoc, cmpTy); 476 Optional<DefinedOrUnknownSVal> reverseTest = 477 reverse.getAs<DefinedOrUnknownSVal>(); 478 if (!reverseTest) 479 return state; 480 481 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest); 482 if (stateTrue) { 483 if (stateFalse) { 484 // If we don't know which one comes first, we can't perform this test. 485 return state; 486 } else { 487 // Switch the values so that firstVal is before secondVal. 488 std::swap(firstLoc, secondLoc); 489 490 // Switch the Exprs as well, so that they still correspond. 491 std::swap(First, Second); 492 } 493 } 494 495 // Get the length, and make sure it too is known. 496 SVal LengthVal = state->getSVal(Size, LCtx); 497 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 498 if (!Length) 499 return state; 500 501 // Convert the first buffer's start address to char*. 502 // Bail out if the cast fails. 503 ASTContext &Ctx = svalBuilder.getContext(); 504 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 505 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, 506 First->getType()); 507 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); 508 if (!FirstStartLoc) 509 return state; 510 511 // Compute the end of the first buffer. Bail out if THAT fails. 512 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, 513 *FirstStartLoc, *Length, CharPtrTy); 514 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); 515 if (!FirstEndLoc) 516 return state; 517 518 // Is the end of the first buffer past the start of the second buffer? 519 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, 520 *FirstEndLoc, *secondLoc, cmpTy); 521 Optional<DefinedOrUnknownSVal> OverlapTest = 522 Overlap.getAs<DefinedOrUnknownSVal>(); 523 if (!OverlapTest) 524 return state; 525 526 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); 527 528 if (stateTrue && !stateFalse) { 529 // Overlap! 530 emitOverlapBug(C, stateTrue, First, Second); 531 return nullptr; 532 } 533 534 // assume the two expressions don't overlap. 535 assert(stateFalse); 536 return stateFalse; 537 } 538 539 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, 540 const Stmt *First, const Stmt *Second) const { 541 ExplodedNode *N = C.generateErrorNode(state); 542 if (!N) 543 return; 544 545 if (!BT_Overlap) 546 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap, 547 categories::UnixAPI, "Improper arguments")); 548 549 // Generate a report for this bug. 550 auto report = llvm::make_unique<BugReport>( 551 *BT_Overlap, "Arguments must not be overlapping buffers", N); 552 report->addRange(First->getSourceRange()); 553 report->addRange(Second->getSourceRange()); 554 555 C.emitReport(std::move(report)); 556 } 557 558 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, 559 ProgramStateRef state, 560 NonLoc left, 561 NonLoc right) const { 562 // If out-of-bounds checking is turned off, skip the rest. 563 if (!Filter.CheckCStringOutOfBounds) 564 return state; 565 566 // If a previous check has failed, propagate the failure. 567 if (!state) 568 return nullptr; 569 570 SValBuilder &svalBuilder = C.getSValBuilder(); 571 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 572 573 QualType sizeTy = svalBuilder.getContext().getSizeType(); 574 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 575 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); 576 577 SVal maxMinusRight; 578 if (right.getAs<nonloc::ConcreteInt>()) { 579 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, 580 sizeTy); 581 } else { 582 // Try switching the operands. (The order of these two assignments is 583 // important!) 584 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, 585 sizeTy); 586 left = right; 587 } 588 589 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { 590 QualType cmpTy = svalBuilder.getConditionType(); 591 // If left > max - right, we have an overflow. 592 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, 593 *maxMinusRightNL, cmpTy); 594 595 ProgramStateRef stateOverflow, stateOkay; 596 std::tie(stateOverflow, stateOkay) = 597 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); 598 599 if (stateOverflow && !stateOkay) { 600 // We have an overflow. Emit a bug report. 601 ExplodedNode *N = C.generateErrorNode(stateOverflow); 602 if (!N) 603 return nullptr; 604 605 if (!BT_AdditionOverflow) 606 BT_AdditionOverflow.reset( 607 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API", 608 "Sum of expressions causes overflow")); 609 610 // This isn't a great error message, but this should never occur in real 611 // code anyway -- you'd have to create a buffer longer than a size_t can 612 // represent, which is sort of a contradiction. 613 const char *warning = 614 "This expression will create a string whose length is too big to " 615 "be represented as a size_t"; 616 617 // Generate a report for this bug. 618 C.emitReport( 619 llvm::make_unique<BugReport>(*BT_AdditionOverflow, warning, N)); 620 621 return nullptr; 622 } 623 624 // From now on, assume an overflow didn't occur. 625 assert(stateOkay); 626 state = stateOkay; 627 } 628 629 return state; 630 } 631 632 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, 633 const MemRegion *MR, 634 SVal strLength) { 635 assert(!strLength.isUndef() && "Attempt to set an undefined string length"); 636 637 MR = MR->StripCasts(); 638 639 switch (MR->getKind()) { 640 case MemRegion::StringRegionKind: 641 // FIXME: This can happen if we strcpy() into a string region. This is 642 // undefined [C99 6.4.5p6], but we should still warn about it. 643 return state; 644 645 case MemRegion::SymbolicRegionKind: 646 case MemRegion::AllocaRegionKind: 647 case MemRegion::VarRegionKind: 648 case MemRegion::FieldRegionKind: 649 case MemRegion::ObjCIvarRegionKind: 650 // These are the types we can currently track string lengths for. 651 break; 652 653 case MemRegion::ElementRegionKind: 654 // FIXME: Handle element regions by upper-bounding the parent region's 655 // string length. 656 return state; 657 658 default: 659 // Other regions (mostly non-data) can't have a reliable C string length. 660 // For now, just ignore the change. 661 // FIXME: These are rare but not impossible. We should output some kind of 662 // warning for things like strcpy((char[]){'a', 0}, "b"); 663 return state; 664 } 665 666 if (strLength.isUnknown()) 667 return state->remove<CStringLength>(MR); 668 669 return state->set<CStringLength>(MR, strLength); 670 } 671 672 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, 673 ProgramStateRef &state, 674 const Expr *Ex, 675 const MemRegion *MR, 676 bool hypothetical) { 677 if (!hypothetical) { 678 // If there's a recorded length, go ahead and return it. 679 const SVal *Recorded = state->get<CStringLength>(MR); 680 if (Recorded) 681 return *Recorded; 682 } 683 684 // Otherwise, get a new symbol and update the state. 685 SValBuilder &svalBuilder = C.getSValBuilder(); 686 QualType sizeTy = svalBuilder.getContext().getSizeType(); 687 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), 688 MR, Ex, sizeTy, 689 C.getLocationContext(), 690 C.blockCount()); 691 692 if (!hypothetical) { 693 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { 694 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 695 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); 696 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); 697 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4); 698 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt, 699 fourInt); 700 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt); 701 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, 702 maxLength, sizeTy); 703 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true); 704 } 705 state = state->set<CStringLength>(MR, strLength); 706 } 707 708 return strLength; 709 } 710 711 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, 712 const Expr *Ex, SVal Buf, 713 bool hypothetical) const { 714 const MemRegion *MR = Buf.getAsRegion(); 715 if (!MR) { 716 // If we can't get a region, see if it's something we /know/ isn't a 717 // C string. In the context of locations, the only time we can issue such 718 // a warning is for labels. 719 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { 720 if (!Filter.CheckCStringNotNullTerm) 721 return UndefinedVal(); 722 723 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 724 if (!BT_NotCString) 725 BT_NotCString.reset(new BuiltinBug( 726 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 727 "Argument is not a null-terminated string.")); 728 729 SmallString<120> buf; 730 llvm::raw_svector_ostream os(buf); 731 assert(CurrentFunctionDescription); 732 os << "Argument to " << CurrentFunctionDescription 733 << " is the address of the label '" << Label->getLabel()->getName() 734 << "', which is not a null-terminated string"; 735 736 // Generate a report for this bug. 737 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 738 739 report->addRange(Ex->getSourceRange()); 740 C.emitReport(std::move(report)); 741 } 742 return UndefinedVal(); 743 744 } 745 746 // If it's not a region and not a label, give up. 747 return UnknownVal(); 748 } 749 750 // If we have a region, strip casts from it and see if we can figure out 751 // its length. For anything we can't figure out, just return UnknownVal. 752 MR = MR->StripCasts(); 753 754 switch (MR->getKind()) { 755 case MemRegion::StringRegionKind: { 756 // Modifying the contents of string regions is undefined [C99 6.4.5p6], 757 // so we can assume that the byte length is the correct C string length. 758 SValBuilder &svalBuilder = C.getSValBuilder(); 759 QualType sizeTy = svalBuilder.getContext().getSizeType(); 760 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); 761 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); 762 } 763 case MemRegion::SymbolicRegionKind: 764 case MemRegion::AllocaRegionKind: 765 case MemRegion::VarRegionKind: 766 case MemRegion::FieldRegionKind: 767 case MemRegion::ObjCIvarRegionKind: 768 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); 769 case MemRegion::CompoundLiteralRegionKind: 770 // FIXME: Can we track this? Is it necessary? 771 return UnknownVal(); 772 case MemRegion::ElementRegionKind: 773 // FIXME: How can we handle this? It's not good enough to subtract the 774 // offset from the base string length; consider "123\x00567" and &a[5]. 775 return UnknownVal(); 776 default: 777 // Other regions (mostly non-data) can't have a reliable C string length. 778 // In this case, an error is emitted and UndefinedVal is returned. 779 // The caller should always be prepared to handle this case. 780 if (!Filter.CheckCStringNotNullTerm) 781 return UndefinedVal(); 782 783 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) { 784 if (!BT_NotCString) 785 BT_NotCString.reset(new BuiltinBug( 786 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI, 787 "Argument is not a null-terminated string.")); 788 789 SmallString<120> buf; 790 llvm::raw_svector_ostream os(buf); 791 792 assert(CurrentFunctionDescription); 793 os << "Argument to " << CurrentFunctionDescription << " is "; 794 795 if (SummarizeRegion(os, C.getASTContext(), MR)) 796 os << ", which is not a null-terminated string"; 797 else 798 os << "not a null-terminated string"; 799 800 // Generate a report for this bug. 801 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N); 802 803 report->addRange(Ex->getSourceRange()); 804 C.emitReport(std::move(report)); 805 } 806 807 return UndefinedVal(); 808 } 809 } 810 811 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, 812 ProgramStateRef &state, const Expr *expr, SVal val) const { 813 814 // Get the memory region pointed to by the val. 815 const MemRegion *bufRegion = val.getAsRegion(); 816 if (!bufRegion) 817 return nullptr; 818 819 // Strip casts off the memory region. 820 bufRegion = bufRegion->StripCasts(); 821 822 // Cast the memory region to a string region. 823 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); 824 if (!strRegion) 825 return nullptr; 826 827 // Return the actual string in the string region. 828 return strRegion->getStringLiteral(); 829 } 830 831 bool CStringChecker::IsFirstBufInBound(CheckerContext &C, 832 ProgramStateRef state, 833 const Expr *FirstBuf, 834 const Expr *Size) { 835 // If we do not know that the buffer is long enough we return 'true'. 836 // Otherwise the parent region of this field region would also get 837 // invalidated, which would lead to warnings based on an unknown state. 838 839 // Originally copied from CheckBufferAccess and CheckLocation. 840 SValBuilder &svalBuilder = C.getSValBuilder(); 841 ASTContext &Ctx = svalBuilder.getContext(); 842 const LocationContext *LCtx = C.getLocationContext(); 843 844 QualType sizeTy = Size->getType(); 845 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); 846 SVal BufVal = state->getSVal(FirstBuf, LCtx); 847 848 SVal LengthVal = state->getSVal(Size, LCtx); 849 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); 850 if (!Length) 851 return true; // cf top comment. 852 853 // Compute the offset of the last element to be accessed: size-1. 854 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 855 NonLoc LastOffset = 856 svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy) 857 .castAs<NonLoc>(); 858 859 // Check that the first buffer is sufficiently long. 860 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); 861 Optional<Loc> BufLoc = BufStart.getAs<Loc>(); 862 if (!BufLoc) 863 return true; // cf top comment. 864 865 SVal BufEnd = 866 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); 867 868 // Check for out of bound array element access. 869 const MemRegion *R = BufEnd.getAsRegion(); 870 if (!R) 871 return true; // cf top comment. 872 873 const ElementRegion *ER = dyn_cast<ElementRegion>(R); 874 if (!ER) 875 return true; // cf top comment. 876 877 // FIXME: Does this crash when a non-standard definition 878 // of a library function is encountered? 879 assert(ER->getValueType() == C.getASTContext().CharTy && 880 "IsFirstBufInBound should only be called with char* ElementRegions"); 881 882 // Get the size of the array. 883 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); 884 SVal Extent = 885 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); 886 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>(); 887 888 // Get the index of the accessed element. 889 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); 890 891 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true); 892 893 return static_cast<bool>(StInBound); 894 } 895 896 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, 897 ProgramStateRef state, 898 const Expr *E, SVal V, 899 bool IsSourceBuffer, 900 const Expr *Size) { 901 Optional<Loc> L = V.getAs<Loc>(); 902 if (!L) 903 return state; 904 905 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes 906 // some assumptions about the value that CFRefCount can't. Even so, it should 907 // probably be refactored. 908 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { 909 const MemRegion *R = MR->getRegion()->StripCasts(); 910 911 // Are we dealing with an ElementRegion? If so, we should be invalidating 912 // the super-region. 913 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { 914 R = ER->getSuperRegion(); 915 // FIXME: What about layers of ElementRegions? 916 } 917 918 // Invalidate this region. 919 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 920 921 bool CausesPointerEscape = false; 922 RegionAndSymbolInvalidationTraits ITraits; 923 // Invalidate and escape only indirect regions accessible through the source 924 // buffer. 925 if (IsSourceBuffer) { 926 ITraits.setTrait(R->getBaseRegion(), 927 RegionAndSymbolInvalidationTraits::TK_PreserveContents); 928 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape); 929 CausesPointerEscape = true; 930 } else { 931 const MemRegion::Kind& K = R->getKind(); 932 if (K == MemRegion::FieldRegionKind) 933 if (Size && IsFirstBufInBound(C, state, E, Size)) { 934 // If destination buffer is a field region and access is in bound, 935 // do not invalidate its super region. 936 ITraits.setTrait( 937 R, 938 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); 939 } 940 } 941 942 return state->invalidateRegions(R, E, C.blockCount(), LCtx, 943 CausesPointerEscape, nullptr, nullptr, 944 &ITraits); 945 } 946 947 // If we have a non-region value by chance, just remove the binding. 948 // FIXME: is this necessary or correct? This handles the non-Region 949 // cases. Is it ever valid to store to these? 950 return state->killBinding(*L); 951 } 952 953 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, 954 const MemRegion *MR) { 955 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); 956 957 switch (MR->getKind()) { 958 case MemRegion::FunctionCodeRegionKind: { 959 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 960 if (FD) 961 os << "the address of the function '" << *FD << '\''; 962 else 963 os << "the address of a function"; 964 return true; 965 } 966 case MemRegion::BlockCodeRegionKind: 967 os << "block text"; 968 return true; 969 case MemRegion::BlockDataRegionKind: 970 os << "a block"; 971 return true; 972 case MemRegion::CXXThisRegionKind: 973 case MemRegion::CXXTempObjectRegionKind: 974 os << "a C++ temp object of type " << TVR->getValueType().getAsString(); 975 return true; 976 case MemRegion::VarRegionKind: 977 os << "a variable of type" << TVR->getValueType().getAsString(); 978 return true; 979 case MemRegion::FieldRegionKind: 980 os << "a field of type " << TVR->getValueType().getAsString(); 981 return true; 982 case MemRegion::ObjCIvarRegionKind: 983 os << "an instance variable of type " << TVR->getValueType().getAsString(); 984 return true; 985 default: 986 return false; 987 } 988 } 989 990 //===----------------------------------------------------------------------===// 991 // evaluation of individual function calls. 992 //===----------------------------------------------------------------------===// 993 994 void CStringChecker::evalCopyCommon(CheckerContext &C, 995 const CallExpr *CE, 996 ProgramStateRef state, 997 const Expr *Size, const Expr *Dest, 998 const Expr *Source, bool Restricted, 999 bool IsMempcpy) const { 1000 CurrentFunctionDescription = "memory copy function"; 1001 1002 // See if the size argument is zero. 1003 const LocationContext *LCtx = C.getLocationContext(); 1004 SVal sizeVal = state->getSVal(Size, LCtx); 1005 QualType sizeTy = Size->getType(); 1006 1007 ProgramStateRef stateZeroSize, stateNonZeroSize; 1008 std::tie(stateZeroSize, stateNonZeroSize) = 1009 assumeZero(C, state, sizeVal, sizeTy); 1010 1011 // Get the value of the Dest. 1012 SVal destVal = state->getSVal(Dest, LCtx); 1013 1014 // If the size is zero, there won't be any actual memory access, so 1015 // just bind the return value to the destination buffer and return. 1016 if (stateZeroSize && !stateNonZeroSize) { 1017 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); 1018 C.addTransition(stateZeroSize); 1019 return; 1020 } 1021 1022 // If the size can be nonzero, we have to check the other arguments. 1023 if (stateNonZeroSize) { 1024 state = stateNonZeroSize; 1025 1026 // Ensure the destination is not null. If it is NULL there will be a 1027 // NULL pointer dereference. 1028 state = checkNonNull(C, state, Dest, destVal); 1029 if (!state) 1030 return; 1031 1032 // Get the value of the Src. 1033 SVal srcVal = state->getSVal(Source, LCtx); 1034 1035 // Ensure the source is not null. If it is NULL there will be a 1036 // NULL pointer dereference. 1037 state = checkNonNull(C, state, Source, srcVal); 1038 if (!state) 1039 return; 1040 1041 // Ensure the accesses are valid and that the buffers do not overlap. 1042 const char * const writeWarning = 1043 "Memory copy function overflows destination buffer"; 1044 state = CheckBufferAccess(C, state, Size, Dest, Source, 1045 writeWarning, /* sourceWarning = */ nullptr); 1046 if (Restricted) 1047 state = CheckOverlap(C, state, Size, Dest, Source); 1048 1049 if (!state) 1050 return; 1051 1052 // If this is mempcpy, get the byte after the last byte copied and 1053 // bind the expr. 1054 if (IsMempcpy) { 1055 // Get the byte after the last byte copied. 1056 SValBuilder &SvalBuilder = C.getSValBuilder(); 1057 ASTContext &Ctx = SvalBuilder.getContext(); 1058 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); 1059 SVal DestRegCharVal = 1060 SvalBuilder.evalCast(destVal, CharPtrTy, Dest->getType()); 1061 SVal lastElement = C.getSValBuilder().evalBinOp( 1062 state, BO_Add, DestRegCharVal, sizeVal, Dest->getType()); 1063 // If we don't know how much we copied, we can at least 1064 // conjure a return value for later. 1065 if (lastElement.isUnknown()) 1066 lastElement = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1067 C.blockCount()); 1068 1069 // The byte after the last byte copied is the return value. 1070 state = state->BindExpr(CE, LCtx, lastElement); 1071 } else { 1072 // All other copies return the destination buffer. 1073 // (Well, bcopy() has a void return type, but this won't hurt.) 1074 state = state->BindExpr(CE, LCtx, destVal); 1075 } 1076 1077 // Invalidate the destination (regular invalidation without pointer-escaping 1078 // the address of the top-level region). 1079 // FIXME: Even if we can't perfectly model the copy, we should see if we 1080 // can use LazyCompoundVals to copy the source values into the destination. 1081 // This would probably remove any existing bindings past the end of the 1082 // copied region, but that's still an improvement over blank invalidation. 1083 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest), 1084 /*IsSourceBuffer*/false, Size); 1085 1086 // Invalidate the source (const-invalidation without const-pointer-escaping 1087 // the address of the top-level region). 1088 state = InvalidateBuffer(C, state, Source, C.getSVal(Source), 1089 /*IsSourceBuffer*/true, nullptr); 1090 1091 C.addTransition(state); 1092 } 1093 } 1094 1095 1096 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { 1097 if (CE->getNumArgs() < 3) 1098 return; 1099 1100 // void *memcpy(void *restrict dst, const void *restrict src, size_t n); 1101 // The return value is the address of the destination buffer. 1102 const Expr *Dest = CE->getArg(0); 1103 ProgramStateRef state = C.getState(); 1104 1105 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); 1106 } 1107 1108 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { 1109 if (CE->getNumArgs() < 3) 1110 return; 1111 1112 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); 1113 // The return value is a pointer to the byte following the last written byte. 1114 const Expr *Dest = CE->getArg(0); 1115 ProgramStateRef state = C.getState(); 1116 1117 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); 1118 } 1119 1120 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { 1121 if (CE->getNumArgs() < 3) 1122 return; 1123 1124 // void *memmove(void *dst, const void *src, size_t n); 1125 // The return value is the address of the destination buffer. 1126 const Expr *Dest = CE->getArg(0); 1127 ProgramStateRef state = C.getState(); 1128 1129 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); 1130 } 1131 1132 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { 1133 if (CE->getNumArgs() < 3) 1134 return; 1135 1136 // void bcopy(const void *src, void *dst, size_t n); 1137 evalCopyCommon(C, CE, C.getState(), 1138 CE->getArg(2), CE->getArg(1), CE->getArg(0)); 1139 } 1140 1141 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { 1142 if (CE->getNumArgs() < 3) 1143 return; 1144 1145 // int memcmp(const void *s1, const void *s2, size_t n); 1146 CurrentFunctionDescription = "memory comparison function"; 1147 1148 const Expr *Left = CE->getArg(0); 1149 const Expr *Right = CE->getArg(1); 1150 const Expr *Size = CE->getArg(2); 1151 1152 ProgramStateRef state = C.getState(); 1153 SValBuilder &svalBuilder = C.getSValBuilder(); 1154 1155 // See if the size argument is zero. 1156 const LocationContext *LCtx = C.getLocationContext(); 1157 SVal sizeVal = state->getSVal(Size, LCtx); 1158 QualType sizeTy = Size->getType(); 1159 1160 ProgramStateRef stateZeroSize, stateNonZeroSize; 1161 std::tie(stateZeroSize, stateNonZeroSize) = 1162 assumeZero(C, state, sizeVal, sizeTy); 1163 1164 // If the size can be zero, the result will be 0 in that case, and we don't 1165 // have to check either of the buffers. 1166 if (stateZeroSize) { 1167 state = stateZeroSize; 1168 state = state->BindExpr(CE, LCtx, 1169 svalBuilder.makeZeroVal(CE->getType())); 1170 C.addTransition(state); 1171 } 1172 1173 // If the size can be nonzero, we have to check the other arguments. 1174 if (stateNonZeroSize) { 1175 state = stateNonZeroSize; 1176 // If we know the two buffers are the same, we know the result is 0. 1177 // First, get the two buffers' addresses. Another checker will have already 1178 // made sure they're not undefined. 1179 DefinedOrUnknownSVal LV = 1180 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); 1181 DefinedOrUnknownSVal RV = 1182 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); 1183 1184 // See if they are the same. 1185 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1186 ProgramStateRef StSameBuf, StNotSameBuf; 1187 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1188 1189 // If the two arguments might be the same buffer, we know the result is 0, 1190 // and we only need to check one size. 1191 if (StSameBuf) { 1192 state = StSameBuf; 1193 state = CheckBufferAccess(C, state, Size, Left); 1194 if (state) { 1195 state = StSameBuf->BindExpr(CE, LCtx, 1196 svalBuilder.makeZeroVal(CE->getType())); 1197 C.addTransition(state); 1198 } 1199 } 1200 1201 // If the two arguments might be different buffers, we have to check the 1202 // size of both of them. 1203 if (StNotSameBuf) { 1204 state = StNotSameBuf; 1205 state = CheckBufferAccess(C, state, Size, Left, Right); 1206 if (state) { 1207 // The return value is the comparison result, which we don't know. 1208 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1209 C.blockCount()); 1210 state = state->BindExpr(CE, LCtx, CmpV); 1211 C.addTransition(state); 1212 } 1213 } 1214 } 1215 } 1216 1217 void CStringChecker::evalstrLength(CheckerContext &C, 1218 const CallExpr *CE) const { 1219 if (CE->getNumArgs() < 1) 1220 return; 1221 1222 // size_t strlen(const char *s); 1223 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); 1224 } 1225 1226 void CStringChecker::evalstrnLength(CheckerContext &C, 1227 const CallExpr *CE) const { 1228 if (CE->getNumArgs() < 2) 1229 return; 1230 1231 // size_t strnlen(const char *s, size_t maxlen); 1232 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); 1233 } 1234 1235 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, 1236 bool IsStrnlen) const { 1237 CurrentFunctionDescription = "string length function"; 1238 ProgramStateRef state = C.getState(); 1239 const LocationContext *LCtx = C.getLocationContext(); 1240 1241 if (IsStrnlen) { 1242 const Expr *maxlenExpr = CE->getArg(1); 1243 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1244 1245 ProgramStateRef stateZeroSize, stateNonZeroSize; 1246 std::tie(stateZeroSize, stateNonZeroSize) = 1247 assumeZero(C, state, maxlenVal, maxlenExpr->getType()); 1248 1249 // If the size can be zero, the result will be 0 in that case, and we don't 1250 // have to check the string itself. 1251 if (stateZeroSize) { 1252 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); 1253 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); 1254 C.addTransition(stateZeroSize); 1255 } 1256 1257 // If the size is GUARANTEED to be zero, we're done! 1258 if (!stateNonZeroSize) 1259 return; 1260 1261 // Otherwise, record the assumption that the size is nonzero. 1262 state = stateNonZeroSize; 1263 } 1264 1265 // Check that the string argument is non-null. 1266 const Expr *Arg = CE->getArg(0); 1267 SVal ArgVal = state->getSVal(Arg, LCtx); 1268 1269 state = checkNonNull(C, state, Arg, ArgVal); 1270 1271 if (!state) 1272 return; 1273 1274 SVal strLength = getCStringLength(C, state, Arg, ArgVal); 1275 1276 // If the argument isn't a valid C string, there's no valid state to 1277 // transition to. 1278 if (strLength.isUndef()) 1279 return; 1280 1281 DefinedOrUnknownSVal result = UnknownVal(); 1282 1283 // If the check is for strnlen() then bind the return value to no more than 1284 // the maxlen value. 1285 if (IsStrnlen) { 1286 QualType cmpTy = C.getSValBuilder().getConditionType(); 1287 1288 // It's a little unfortunate to be getting this again, 1289 // but it's not that expensive... 1290 const Expr *maxlenExpr = CE->getArg(1); 1291 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); 1292 1293 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1294 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); 1295 1296 if (strLengthNL && maxlenValNL) { 1297 ProgramStateRef stateStringTooLong, stateStringNotTooLong; 1298 1299 // Check if the strLength is greater than the maxlen. 1300 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume( 1301 C.getSValBuilder() 1302 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) 1303 .castAs<DefinedOrUnknownSVal>()); 1304 1305 if (stateStringTooLong && !stateStringNotTooLong) { 1306 // If the string is longer than maxlen, return maxlen. 1307 result = *maxlenValNL; 1308 } else if (stateStringNotTooLong && !stateStringTooLong) { 1309 // If the string is shorter than maxlen, return its length. 1310 result = *strLengthNL; 1311 } 1312 } 1313 1314 if (result.isUnknown()) { 1315 // If we don't have enough information for a comparison, there's 1316 // no guarantee the full string length will actually be returned. 1317 // All we know is the return value is the min of the string length 1318 // and the limit. This is better than nothing. 1319 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1320 C.blockCount()); 1321 NonLoc resultNL = result.castAs<NonLoc>(); 1322 1323 if (strLengthNL) { 1324 state = state->assume(C.getSValBuilder().evalBinOpNN( 1325 state, BO_LE, resultNL, *strLengthNL, cmpTy) 1326 .castAs<DefinedOrUnknownSVal>(), true); 1327 } 1328 1329 if (maxlenValNL) { 1330 state = state->assume(C.getSValBuilder().evalBinOpNN( 1331 state, BO_LE, resultNL, *maxlenValNL, cmpTy) 1332 .castAs<DefinedOrUnknownSVal>(), true); 1333 } 1334 } 1335 1336 } else { 1337 // This is a plain strlen(), not strnlen(). 1338 result = strLength.castAs<DefinedOrUnknownSVal>(); 1339 1340 // If we don't know the length of the string, conjure a return 1341 // value, so it can be used in constraints, at least. 1342 if (result.isUnknown()) { 1343 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx, 1344 C.blockCount()); 1345 } 1346 } 1347 1348 // Bind the return value. 1349 assert(!result.isUnknown() && "Should have conjured a value by now"); 1350 state = state->BindExpr(CE, LCtx, result); 1351 C.addTransition(state); 1352 } 1353 1354 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { 1355 if (CE->getNumArgs() < 2) 1356 return; 1357 1358 // char *strcpy(char *restrict dst, const char *restrict src); 1359 evalStrcpyCommon(C, CE, 1360 /* returnEnd = */ false, 1361 /* isBounded = */ false, 1362 /* isAppending = */ false); 1363 } 1364 1365 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { 1366 if (CE->getNumArgs() < 3) 1367 return; 1368 1369 // char *strncpy(char *restrict dst, const char *restrict src, size_t n); 1370 evalStrcpyCommon(C, CE, 1371 /* returnEnd = */ false, 1372 /* isBounded = */ true, 1373 /* isAppending = */ false); 1374 } 1375 1376 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { 1377 if (CE->getNumArgs() < 2) 1378 return; 1379 1380 // char *stpcpy(char *restrict dst, const char *restrict src); 1381 evalStrcpyCommon(C, CE, 1382 /* returnEnd = */ true, 1383 /* isBounded = */ false, 1384 /* isAppending = */ false); 1385 } 1386 1387 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { 1388 if (CE->getNumArgs() < 2) 1389 return; 1390 1391 //char *strcat(char *restrict s1, const char *restrict s2); 1392 evalStrcpyCommon(C, CE, 1393 /* returnEnd = */ false, 1394 /* isBounded = */ false, 1395 /* isAppending = */ true); 1396 } 1397 1398 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { 1399 if (CE->getNumArgs() < 3) 1400 return; 1401 1402 //char *strncat(char *restrict s1, const char *restrict s2, size_t n); 1403 evalStrcpyCommon(C, CE, 1404 /* returnEnd = */ false, 1405 /* isBounded = */ true, 1406 /* isAppending = */ true); 1407 } 1408 1409 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, 1410 bool returnEnd, bool isBounded, 1411 bool isAppending) const { 1412 CurrentFunctionDescription = "string copy function"; 1413 ProgramStateRef state = C.getState(); 1414 const LocationContext *LCtx = C.getLocationContext(); 1415 1416 // Check that the destination is non-null. 1417 const Expr *Dst = CE->getArg(0); 1418 SVal DstVal = state->getSVal(Dst, LCtx); 1419 1420 state = checkNonNull(C, state, Dst, DstVal); 1421 if (!state) 1422 return; 1423 1424 // Check that the source is non-null. 1425 const Expr *srcExpr = CE->getArg(1); 1426 SVal srcVal = state->getSVal(srcExpr, LCtx); 1427 state = checkNonNull(C, state, srcExpr, srcVal); 1428 if (!state) 1429 return; 1430 1431 // Get the string length of the source. 1432 SVal strLength = getCStringLength(C, state, srcExpr, srcVal); 1433 1434 // If the source isn't a valid C string, give up. 1435 if (strLength.isUndef()) 1436 return; 1437 1438 SValBuilder &svalBuilder = C.getSValBuilder(); 1439 QualType cmpTy = svalBuilder.getConditionType(); 1440 QualType sizeTy = svalBuilder.getContext().getSizeType(); 1441 1442 // These two values allow checking two kinds of errors: 1443 // - actual overflows caused by a source that doesn't fit in the destination 1444 // - potential overflows caused by a bound that could exceed the destination 1445 SVal amountCopied = UnknownVal(); 1446 SVal maxLastElementIndex = UnknownVal(); 1447 const char *boundWarning = nullptr; 1448 1449 // If the function is strncpy, strncat, etc... it is bounded. 1450 if (isBounded) { 1451 // Get the max number of characters to copy. 1452 const Expr *lenExpr = CE->getArg(2); 1453 SVal lenVal = state->getSVal(lenExpr, LCtx); 1454 1455 // Protect against misdeclared strncpy(). 1456 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); 1457 1458 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); 1459 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); 1460 1461 // If we know both values, we might be able to figure out how much 1462 // we're copying. 1463 if (strLengthNL && lenValNL) { 1464 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; 1465 1466 // Check if the max number to copy is less than the length of the src. 1467 // If the bound is equal to the source length, strncpy won't null- 1468 // terminate the result! 1469 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( 1470 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) 1471 .castAs<DefinedOrUnknownSVal>()); 1472 1473 if (stateSourceTooLong && !stateSourceNotTooLong) { 1474 // Max number to copy is less than the length of the src, so the actual 1475 // strLength copied is the max number arg. 1476 state = stateSourceTooLong; 1477 amountCopied = lenVal; 1478 1479 } else if (!stateSourceTooLong && stateSourceNotTooLong) { 1480 // The source buffer entirely fits in the bound. 1481 state = stateSourceNotTooLong; 1482 amountCopied = strLength; 1483 } 1484 } 1485 1486 // We still want to know if the bound is known to be too large. 1487 if (lenValNL) { 1488 if (isAppending) { 1489 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) 1490 1491 // Get the string length of the destination. If the destination is 1492 // memory that can't have a string length, we shouldn't be copying 1493 // into it anyway. 1494 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1495 if (dstStrLength.isUndef()) 1496 return; 1497 1498 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { 1499 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, 1500 *lenValNL, 1501 *dstStrLengthNL, 1502 sizeTy); 1503 boundWarning = "Size argument is greater than the free space in the " 1504 "destination buffer"; 1505 } 1506 1507 } else { 1508 // For strncpy, this is just checking that lenVal <= sizeof(dst) 1509 // (Yes, strncpy and strncat differ in how they treat termination. 1510 // strncat ALWAYS terminates, but strncpy doesn't.) 1511 1512 // We need a special case for when the copy size is zero, in which 1513 // case strncpy will do no work at all. Our bounds check uses n-1 1514 // as the last element accessed, so n == 0 is problematic. 1515 ProgramStateRef StateZeroSize, StateNonZeroSize; 1516 std::tie(StateZeroSize, StateNonZeroSize) = 1517 assumeZero(C, state, *lenValNL, sizeTy); 1518 1519 // If the size is known to be zero, we're done. 1520 if (StateZeroSize && !StateNonZeroSize) { 1521 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); 1522 C.addTransition(StateZeroSize); 1523 return; 1524 } 1525 1526 // Otherwise, go ahead and figure out the last element we'll touch. 1527 // We don't record the non-zero assumption here because we can't 1528 // be sure. We won't warn on a possible zero. 1529 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); 1530 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, 1531 one, sizeTy); 1532 boundWarning = "Size argument is greater than the length of the " 1533 "destination buffer"; 1534 } 1535 } 1536 1537 // If we couldn't pin down the copy length, at least bound it. 1538 // FIXME: We should actually run this code path for append as well, but 1539 // right now it creates problems with constraints (since we can end up 1540 // trying to pass constraints from symbol to symbol). 1541 if (amountCopied.isUnknown() && !isAppending) { 1542 // Try to get a "hypothetical" string length symbol, which we can later 1543 // set as a real value if that turns out to be the case. 1544 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); 1545 assert(!amountCopied.isUndef()); 1546 1547 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { 1548 if (lenValNL) { 1549 // amountCopied <= lenVal 1550 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, 1551 *amountCopiedNL, 1552 *lenValNL, 1553 cmpTy); 1554 state = state->assume( 1555 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); 1556 if (!state) 1557 return; 1558 } 1559 1560 if (strLengthNL) { 1561 // amountCopied <= strlen(source) 1562 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, 1563 *amountCopiedNL, 1564 *strLengthNL, 1565 cmpTy); 1566 state = state->assume( 1567 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); 1568 if (!state) 1569 return; 1570 } 1571 } 1572 } 1573 1574 } else { 1575 // The function isn't bounded. The amount copied should match the length 1576 // of the source buffer. 1577 amountCopied = strLength; 1578 } 1579 1580 assert(state); 1581 1582 // This represents the number of characters copied into the destination 1583 // buffer. (It may not actually be the strlen if the destination buffer 1584 // is not terminated.) 1585 SVal finalStrLength = UnknownVal(); 1586 1587 // If this is an appending function (strcat, strncat...) then set the 1588 // string length to strlen(src) + strlen(dst) since the buffer will 1589 // ultimately contain both. 1590 if (isAppending) { 1591 // Get the string length of the destination. If the destination is memory 1592 // that can't have a string length, we shouldn't be copying into it anyway. 1593 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); 1594 if (dstStrLength.isUndef()) 1595 return; 1596 1597 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); 1598 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); 1599 1600 // If we know both string lengths, we might know the final string length. 1601 if (srcStrLengthNL && dstStrLengthNL) { 1602 // Make sure the two lengths together don't overflow a size_t. 1603 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); 1604 if (!state) 1605 return; 1606 1607 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, 1608 *dstStrLengthNL, sizeTy); 1609 } 1610 1611 // If we couldn't get a single value for the final string length, 1612 // we can at least bound it by the individual lengths. 1613 if (finalStrLength.isUnknown()) { 1614 // Try to get a "hypothetical" string length symbol, which we can later 1615 // set as a real value if that turns out to be the case. 1616 finalStrLength = getCStringLength(C, state, CE, DstVal, true); 1617 assert(!finalStrLength.isUndef()); 1618 1619 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { 1620 if (srcStrLengthNL) { 1621 // finalStrLength >= srcStrLength 1622 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1623 *finalStrLengthNL, 1624 *srcStrLengthNL, 1625 cmpTy); 1626 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), 1627 true); 1628 if (!state) 1629 return; 1630 } 1631 1632 if (dstStrLengthNL) { 1633 // finalStrLength >= dstStrLength 1634 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, 1635 *finalStrLengthNL, 1636 *dstStrLengthNL, 1637 cmpTy); 1638 state = 1639 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); 1640 if (!state) 1641 return; 1642 } 1643 } 1644 } 1645 1646 } else { 1647 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and 1648 // the final string length will match the input string length. 1649 finalStrLength = amountCopied; 1650 } 1651 1652 // The final result of the function will either be a pointer past the last 1653 // copied element, or a pointer to the start of the destination buffer. 1654 SVal Result = (returnEnd ? UnknownVal() : DstVal); 1655 1656 assert(state); 1657 1658 // If the destination is a MemRegion, try to check for a buffer overflow and 1659 // record the new string length. 1660 if (Optional<loc::MemRegionVal> dstRegVal = 1661 DstVal.getAs<loc::MemRegionVal>()) { 1662 QualType ptrTy = Dst->getType(); 1663 1664 // If we have an exact value on a bounded copy, use that to check for 1665 // overflows, rather than our estimate about how much is actually copied. 1666 if (boundWarning) { 1667 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { 1668 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1669 *maxLastNL, ptrTy); 1670 state = CheckLocation(C, state, CE->getArg(2), maxLastElement, 1671 boundWarning); 1672 if (!state) 1673 return; 1674 } 1675 } 1676 1677 // Then, if the final length is known... 1678 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { 1679 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, 1680 *knownStrLength, ptrTy); 1681 1682 // ...and we haven't checked the bound, we'll check the actual copy. 1683 if (!boundWarning) { 1684 const char * const warningMsg = 1685 "String copy function overflows destination buffer"; 1686 state = CheckLocation(C, state, Dst, lastElement, warningMsg); 1687 if (!state) 1688 return; 1689 } 1690 1691 // If this is a stpcpy-style copy, the last element is the return value. 1692 if (returnEnd) 1693 Result = lastElement; 1694 } 1695 1696 // Invalidate the destination (regular invalidation without pointer-escaping 1697 // the address of the top-level region). This must happen before we set the 1698 // C string length because invalidation will clear the length. 1699 // FIXME: Even if we can't perfectly model the copy, we should see if we 1700 // can use LazyCompoundVals to copy the source values into the destination. 1701 // This would probably remove any existing bindings past the end of the 1702 // string, but that's still an improvement over blank invalidation. 1703 state = InvalidateBuffer(C, state, Dst, *dstRegVal, 1704 /*IsSourceBuffer*/false, nullptr); 1705 1706 // Invalidate the source (const-invalidation without const-pointer-escaping 1707 // the address of the top-level region). 1708 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true, 1709 nullptr); 1710 1711 // Set the C string length of the destination, if we know it. 1712 if (isBounded && !isAppending) { 1713 // strncpy is annoying in that it doesn't guarantee to null-terminate 1714 // the result string. If the original string didn't fit entirely inside 1715 // the bound (including the null-terminator), we don't know how long the 1716 // result is. 1717 if (amountCopied != strLength) 1718 finalStrLength = UnknownVal(); 1719 } 1720 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); 1721 } 1722 1723 assert(state); 1724 1725 // If this is a stpcpy-style copy, but we were unable to check for a buffer 1726 // overflow, we still need a result. Conjure a return value. 1727 if (returnEnd && Result.isUnknown()) { 1728 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1729 } 1730 1731 // Set the return value. 1732 state = state->BindExpr(CE, LCtx, Result); 1733 C.addTransition(state); 1734 } 1735 1736 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { 1737 if (CE->getNumArgs() < 2) 1738 return; 1739 1740 //int strcmp(const char *s1, const char *s2); 1741 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); 1742 } 1743 1744 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { 1745 if (CE->getNumArgs() < 3) 1746 return; 1747 1748 //int strncmp(const char *s1, const char *s2, size_t n); 1749 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); 1750 } 1751 1752 void CStringChecker::evalStrcasecmp(CheckerContext &C, 1753 const CallExpr *CE) const { 1754 if (CE->getNumArgs() < 2) 1755 return; 1756 1757 //int strcasecmp(const char *s1, const char *s2); 1758 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); 1759 } 1760 1761 void CStringChecker::evalStrncasecmp(CheckerContext &C, 1762 const CallExpr *CE) const { 1763 if (CE->getNumArgs() < 3) 1764 return; 1765 1766 //int strncasecmp(const char *s1, const char *s2, size_t n); 1767 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); 1768 } 1769 1770 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, 1771 bool isBounded, bool ignoreCase) const { 1772 CurrentFunctionDescription = "string comparison function"; 1773 ProgramStateRef state = C.getState(); 1774 const LocationContext *LCtx = C.getLocationContext(); 1775 1776 // Check that the first string is non-null 1777 const Expr *s1 = CE->getArg(0); 1778 SVal s1Val = state->getSVal(s1, LCtx); 1779 state = checkNonNull(C, state, s1, s1Val); 1780 if (!state) 1781 return; 1782 1783 // Check that the second string is non-null. 1784 const Expr *s2 = CE->getArg(1); 1785 SVal s2Val = state->getSVal(s2, LCtx); 1786 state = checkNonNull(C, state, s2, s2Val); 1787 if (!state) 1788 return; 1789 1790 // Get the string length of the first string or give up. 1791 SVal s1Length = getCStringLength(C, state, s1, s1Val); 1792 if (s1Length.isUndef()) 1793 return; 1794 1795 // Get the string length of the second string or give up. 1796 SVal s2Length = getCStringLength(C, state, s2, s2Val); 1797 if (s2Length.isUndef()) 1798 return; 1799 1800 // If we know the two buffers are the same, we know the result is 0. 1801 // First, get the two buffers' addresses. Another checker will have already 1802 // made sure they're not undefined. 1803 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); 1804 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); 1805 1806 // See if they are the same. 1807 SValBuilder &svalBuilder = C.getSValBuilder(); 1808 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); 1809 ProgramStateRef StSameBuf, StNotSameBuf; 1810 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); 1811 1812 // If the two arguments might be the same buffer, we know the result is 0, 1813 // and we only need to check one size. 1814 if (StSameBuf) { 1815 StSameBuf = StSameBuf->BindExpr(CE, LCtx, 1816 svalBuilder.makeZeroVal(CE->getType())); 1817 C.addTransition(StSameBuf); 1818 1819 // If the two arguments are GUARANTEED to be the same, we're done! 1820 if (!StNotSameBuf) 1821 return; 1822 } 1823 1824 assert(StNotSameBuf); 1825 state = StNotSameBuf; 1826 1827 // At this point we can go about comparing the two buffers. 1828 // For now, we only do this if they're both known string literals. 1829 1830 // Attempt to extract string literals from both expressions. 1831 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); 1832 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); 1833 bool canComputeResult = false; 1834 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, 1835 C.blockCount()); 1836 1837 if (s1StrLiteral && s2StrLiteral) { 1838 StringRef s1StrRef = s1StrLiteral->getString(); 1839 StringRef s2StrRef = s2StrLiteral->getString(); 1840 1841 if (isBounded) { 1842 // Get the max number of characters to compare. 1843 const Expr *lenExpr = CE->getArg(2); 1844 SVal lenVal = state->getSVal(lenExpr, LCtx); 1845 1846 // If the length is known, we can get the right substrings. 1847 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { 1848 // Create substrings of each to compare the prefix. 1849 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); 1850 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); 1851 canComputeResult = true; 1852 } 1853 } else { 1854 // This is a normal, unbounded strcmp. 1855 canComputeResult = true; 1856 } 1857 1858 if (canComputeResult) { 1859 // Real strcmp stops at null characters. 1860 size_t s1Term = s1StrRef.find('\0'); 1861 if (s1Term != StringRef::npos) 1862 s1StrRef = s1StrRef.substr(0, s1Term); 1863 1864 size_t s2Term = s2StrRef.find('\0'); 1865 if (s2Term != StringRef::npos) 1866 s2StrRef = s2StrRef.substr(0, s2Term); 1867 1868 // Use StringRef's comparison methods to compute the actual result. 1869 int compareRes = ignoreCase ? s1StrRef.compare_lower(s2StrRef) 1870 : s1StrRef.compare(s2StrRef); 1871 1872 // The strcmp function returns an integer greater than, equal to, or less 1873 // than zero, [c11, p7.24.4.2]. 1874 if (compareRes == 0) { 1875 resultVal = svalBuilder.makeIntVal(compareRes, CE->getType()); 1876 } 1877 else { 1878 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, CE->getType()); 1879 // Constrain strcmp's result range based on the result of StringRef's 1880 // comparison methods. 1881 BinaryOperatorKind op = (compareRes == 1) ? BO_GT : BO_LT; 1882 SVal compareWithZero = 1883 svalBuilder.evalBinOp(state, op, resultVal, zeroVal, 1884 svalBuilder.getConditionType()); 1885 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); 1886 state = state->assume(compareWithZeroVal, true); 1887 } 1888 } 1889 } 1890 1891 state = state->BindExpr(CE, LCtx, resultVal); 1892 1893 // Record this as a possible path. 1894 C.addTransition(state); 1895 } 1896 1897 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const { 1898 //char *strsep(char **stringp, const char *delim); 1899 if (CE->getNumArgs() < 2) 1900 return; 1901 1902 // Sanity: does the search string parameter match the return type? 1903 const Expr *SearchStrPtr = CE->getArg(0); 1904 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType(); 1905 if (CharPtrTy.isNull() || 1906 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType()) 1907 return; 1908 1909 CurrentFunctionDescription = "strsep()"; 1910 ProgramStateRef State = C.getState(); 1911 const LocationContext *LCtx = C.getLocationContext(); 1912 1913 // Check that the search string pointer is non-null (though it may point to 1914 // a null string). 1915 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx); 1916 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal); 1917 if (!State) 1918 return; 1919 1920 // Check that the delimiter string is non-null. 1921 const Expr *DelimStr = CE->getArg(1); 1922 SVal DelimStrVal = State->getSVal(DelimStr, LCtx); 1923 State = checkNonNull(C, State, DelimStr, DelimStrVal); 1924 if (!State) 1925 return; 1926 1927 SValBuilder &SVB = C.getSValBuilder(); 1928 SVal Result; 1929 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { 1930 // Get the current value of the search string pointer, as a char*. 1931 Result = State->getSVal(*SearchStrLoc, CharPtrTy); 1932 1933 // Invalidate the search string, representing the change of one delimiter 1934 // character to NUL. 1935 State = InvalidateBuffer(C, State, SearchStrPtr, Result, 1936 /*IsSourceBuffer*/false, nullptr); 1937 1938 // Overwrite the search string pointer. The new value is either an address 1939 // further along in the same string, or NULL if there are no more tokens. 1940 State = State->bindLoc(*SearchStrLoc, 1941 SVB.conjureSymbolVal(getTag(), 1942 CE, 1943 LCtx, 1944 CharPtrTy, 1945 C.blockCount()), 1946 LCtx); 1947 } else { 1948 assert(SearchStrVal.isUnknown()); 1949 // Conjure a symbolic value. It's the best we can do. 1950 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1951 } 1952 1953 // Set the return value, and finish. 1954 State = State->BindExpr(CE, LCtx, Result); 1955 C.addTransition(State); 1956 } 1957 1958 // These should probably be moved into a C++ standard library checker. 1959 void CStringChecker::evalStdCopy(CheckerContext &C, const CallExpr *CE) const { 1960 evalStdCopyCommon(C, CE); 1961 } 1962 1963 void CStringChecker::evalStdCopyBackward(CheckerContext &C, 1964 const CallExpr *CE) const { 1965 evalStdCopyCommon(C, CE); 1966 } 1967 1968 void CStringChecker::evalStdCopyCommon(CheckerContext &C, 1969 const CallExpr *CE) const { 1970 if (CE->getNumArgs() < 3) 1971 return; 1972 1973 ProgramStateRef State = C.getState(); 1974 1975 const LocationContext *LCtx = C.getLocationContext(); 1976 1977 // template <class _InputIterator, class _OutputIterator> 1978 // _OutputIterator 1979 // copy(_InputIterator __first, _InputIterator __last, 1980 // _OutputIterator __result) 1981 1982 // Invalidate the destination buffer 1983 const Expr *Dst = CE->getArg(2); 1984 SVal DstVal = State->getSVal(Dst, LCtx); 1985 State = InvalidateBuffer(C, State, Dst, DstVal, /*IsSource=*/false, 1986 /*Size=*/nullptr); 1987 1988 SValBuilder &SVB = C.getSValBuilder(); 1989 1990 SVal ResultVal = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount()); 1991 State = State->BindExpr(CE, LCtx, ResultVal); 1992 1993 C.addTransition(State); 1994 } 1995 1996 void CStringChecker::evalMemset(CheckerContext &C, const CallExpr *CE) const { 1997 if (CE->getNumArgs() != 3) 1998 return; 1999 2000 CurrentFunctionDescription = "memory set function"; 2001 2002 const Expr *Mem = CE->getArg(0); 2003 const Expr *Size = CE->getArg(2); 2004 ProgramStateRef State = C.getState(); 2005 2006 // See if the size argument is zero. 2007 const LocationContext *LCtx = C.getLocationContext(); 2008 SVal SizeVal = State->getSVal(Size, LCtx); 2009 QualType SizeTy = Size->getType(); 2010 2011 ProgramStateRef StateZeroSize, StateNonZeroSize; 2012 std::tie(StateZeroSize, StateNonZeroSize) = 2013 assumeZero(C, State, SizeVal, SizeTy); 2014 2015 // Get the value of the memory area. 2016 SVal MemVal = State->getSVal(Mem, LCtx); 2017 2018 // If the size is zero, there won't be any actual memory access, so 2019 // just bind the return value to the Mem buffer and return. 2020 if (StateZeroSize && !StateNonZeroSize) { 2021 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, MemVal); 2022 C.addTransition(StateZeroSize); 2023 return; 2024 } 2025 2026 // Ensure the memory area is not null. 2027 // If it is NULL there will be a NULL pointer dereference. 2028 State = checkNonNull(C, StateNonZeroSize, Mem, MemVal); 2029 if (!State) 2030 return; 2031 2032 State = CheckBufferAccess(C, State, Size, Mem); 2033 if (!State) 2034 return; 2035 State = InvalidateBuffer(C, State, Mem, C.getSVal(Mem), 2036 /*IsSourceBuffer*/false, Size); 2037 if (!State) 2038 return; 2039 2040 State = State->BindExpr(CE, LCtx, MemVal); 2041 C.addTransition(State); 2042 } 2043 2044 static bool isCPPStdLibraryFunction(const FunctionDecl *FD, StringRef Name) { 2045 IdentifierInfo *II = FD->getIdentifier(); 2046 if (!II) 2047 return false; 2048 2049 if (!AnalysisDeclContext::isInStdNamespace(FD)) 2050 return false; 2051 2052 if (II->getName().equals(Name)) 2053 return true; 2054 2055 return false; 2056 } 2057 //===----------------------------------------------------------------------===// 2058 // The driver method, and other Checker callbacks. 2059 //===----------------------------------------------------------------------===// 2060 2061 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { 2062 const FunctionDecl *FDecl = C.getCalleeDecl(CE); 2063 2064 if (!FDecl) 2065 return false; 2066 2067 // FIXME: Poorly-factored string switches are slow. 2068 FnCheck evalFunction = nullptr; 2069 if (C.isCLibraryFunction(FDecl, "memcpy")) 2070 evalFunction = &CStringChecker::evalMemcpy; 2071 else if (C.isCLibraryFunction(FDecl, "mempcpy")) 2072 evalFunction = &CStringChecker::evalMempcpy; 2073 else if (C.isCLibraryFunction(FDecl, "memcmp")) 2074 evalFunction = &CStringChecker::evalMemcmp; 2075 else if (C.isCLibraryFunction(FDecl, "memmove")) 2076 evalFunction = &CStringChecker::evalMemmove; 2077 else if (C.isCLibraryFunction(FDecl, "memset")) 2078 evalFunction = &CStringChecker::evalMemset; 2079 else if (C.isCLibraryFunction(FDecl, "strcpy")) 2080 evalFunction = &CStringChecker::evalStrcpy; 2081 else if (C.isCLibraryFunction(FDecl, "strncpy")) 2082 evalFunction = &CStringChecker::evalStrncpy; 2083 else if (C.isCLibraryFunction(FDecl, "stpcpy")) 2084 evalFunction = &CStringChecker::evalStpcpy; 2085 else if (C.isCLibraryFunction(FDecl, "strcat")) 2086 evalFunction = &CStringChecker::evalStrcat; 2087 else if (C.isCLibraryFunction(FDecl, "strncat")) 2088 evalFunction = &CStringChecker::evalStrncat; 2089 else if (C.isCLibraryFunction(FDecl, "strlen")) 2090 evalFunction = &CStringChecker::evalstrLength; 2091 else if (C.isCLibraryFunction(FDecl, "strnlen")) 2092 evalFunction = &CStringChecker::evalstrnLength; 2093 else if (C.isCLibraryFunction(FDecl, "strcmp")) 2094 evalFunction = &CStringChecker::evalStrcmp; 2095 else if (C.isCLibraryFunction(FDecl, "strncmp")) 2096 evalFunction = &CStringChecker::evalStrncmp; 2097 else if (C.isCLibraryFunction(FDecl, "strcasecmp")) 2098 evalFunction = &CStringChecker::evalStrcasecmp; 2099 else if (C.isCLibraryFunction(FDecl, "strncasecmp")) 2100 evalFunction = &CStringChecker::evalStrncasecmp; 2101 else if (C.isCLibraryFunction(FDecl, "strsep")) 2102 evalFunction = &CStringChecker::evalStrsep; 2103 else if (C.isCLibraryFunction(FDecl, "bcopy")) 2104 evalFunction = &CStringChecker::evalBcopy; 2105 else if (C.isCLibraryFunction(FDecl, "bcmp")) 2106 evalFunction = &CStringChecker::evalMemcmp; 2107 else if (isCPPStdLibraryFunction(FDecl, "copy")) 2108 evalFunction = &CStringChecker::evalStdCopy; 2109 else if (isCPPStdLibraryFunction(FDecl, "copy_backward")) 2110 evalFunction = &CStringChecker::evalStdCopyBackward; 2111 2112 // If the callee isn't a string function, let another checker handle it. 2113 if (!evalFunction) 2114 return false; 2115 2116 // Check and evaluate the call. 2117 (this->*evalFunction)(C, CE); 2118 2119 // If the evaluate call resulted in no change, chain to the next eval call 2120 // handler. 2121 // Note, the custom CString evaluation calls assume that basic safety 2122 // properties are held. However, if the user chooses to turn off some of these 2123 // checks, we ignore the issues and leave the call evaluation to a generic 2124 // handler. 2125 return C.isDifferent(); 2126 } 2127 2128 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { 2129 // Record string length for char a[] = "abc"; 2130 ProgramStateRef state = C.getState(); 2131 2132 for (const auto *I : DS->decls()) { 2133 const VarDecl *D = dyn_cast<VarDecl>(I); 2134 if (!D) 2135 continue; 2136 2137 // FIXME: Handle array fields of structs. 2138 if (!D->getType()->isArrayType()) 2139 continue; 2140 2141 const Expr *Init = D->getInit(); 2142 if (!Init) 2143 continue; 2144 if (!isa<StringLiteral>(Init)) 2145 continue; 2146 2147 Loc VarLoc = state->getLValue(D, C.getLocationContext()); 2148 const MemRegion *MR = VarLoc.getAsRegion(); 2149 if (!MR) 2150 continue; 2151 2152 SVal StrVal = state->getSVal(Init, C.getLocationContext()); 2153 assert(StrVal.isValid() && "Initializer string is unknown or undefined"); 2154 DefinedOrUnknownSVal strLength = 2155 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); 2156 2157 state = state->set<CStringLength>(MR, strLength); 2158 } 2159 2160 C.addTransition(state); 2161 } 2162 2163 ProgramStateRef 2164 CStringChecker::checkRegionChanges(ProgramStateRef state, 2165 const InvalidatedSymbols *, 2166 ArrayRef<const MemRegion *> ExplicitRegions, 2167 ArrayRef<const MemRegion *> Regions, 2168 const LocationContext *LCtx, 2169 const CallEvent *Call) const { 2170 CStringLengthTy Entries = state->get<CStringLength>(); 2171 if (Entries.isEmpty()) 2172 return state; 2173 2174 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; 2175 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; 2176 2177 // First build sets for the changed regions and their super-regions. 2178 for (ArrayRef<const MemRegion *>::iterator 2179 I = Regions.begin(), E = Regions.end(); I != E; ++I) { 2180 const MemRegion *MR = *I; 2181 Invalidated.insert(MR); 2182 2183 SuperRegions.insert(MR); 2184 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { 2185 MR = SR->getSuperRegion(); 2186 SuperRegions.insert(MR); 2187 } 2188 } 2189 2190 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2191 2192 // Then loop over the entries in the current state. 2193 for (CStringLengthTy::iterator I = Entries.begin(), 2194 E = Entries.end(); I != E; ++I) { 2195 const MemRegion *MR = I.getKey(); 2196 2197 // Is this entry for a super-region of a changed region? 2198 if (SuperRegions.count(MR)) { 2199 Entries = F.remove(Entries, MR); 2200 continue; 2201 } 2202 2203 // Is this entry for a sub-region of a changed region? 2204 const MemRegion *Super = MR; 2205 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { 2206 Super = SR->getSuperRegion(); 2207 if (Invalidated.count(Super)) { 2208 Entries = F.remove(Entries, MR); 2209 break; 2210 } 2211 } 2212 } 2213 2214 return state->set<CStringLength>(Entries); 2215 } 2216 2217 void CStringChecker::checkLiveSymbols(ProgramStateRef state, 2218 SymbolReaper &SR) const { 2219 // Mark all symbols in our string length map as valid. 2220 CStringLengthTy Entries = state->get<CStringLength>(); 2221 2222 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2223 I != E; ++I) { 2224 SVal Len = I.getData(); 2225 2226 for (SymExpr::symbol_iterator si = Len.symbol_begin(), 2227 se = Len.symbol_end(); si != se; ++si) 2228 SR.markInUse(*si); 2229 } 2230 } 2231 2232 void CStringChecker::checkDeadSymbols(SymbolReaper &SR, 2233 CheckerContext &C) const { 2234 if (!SR.hasDeadSymbols()) 2235 return; 2236 2237 ProgramStateRef state = C.getState(); 2238 CStringLengthTy Entries = state->get<CStringLength>(); 2239 if (Entries.isEmpty()) 2240 return; 2241 2242 CStringLengthTy::Factory &F = state->get_context<CStringLength>(); 2243 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); 2244 I != E; ++I) { 2245 SVal Len = I.getData(); 2246 if (SymbolRef Sym = Len.getAsSymbol()) { 2247 if (SR.isDead(Sym)) 2248 Entries = F.remove(Entries, I.getKey()); 2249 } 2250 } 2251 2252 state = state->set<CStringLength>(Entries); 2253 C.addTransition(state); 2254 } 2255 2256 #define REGISTER_CHECKER(name) \ 2257 void ento::register##name(CheckerManager &mgr) { \ 2258 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \ 2259 checker->Filter.Check##name = true; \ 2260 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \ 2261 } 2262 2263 REGISTER_CHECKER(CStringNullArg) 2264 REGISTER_CHECKER(CStringOutOfBounds) 2265 REGISTER_CHECKER(CStringBufferOverlap) 2266 REGISTER_CHECKER(CStringNotNullTerm) 2267 2268 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { 2269 registerCStringNullArg(Mgr); 2270 } 2271