1 //== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ArrayBoundCheckerV2, which is a path-sensitive check 10 // which looks for an out-of-bound array element access. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/CharUnits.h" 15 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 16 #include "clang/StaticAnalyzer/Checkers/Taint.h" 17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 18 #include "clang/StaticAnalyzer/Core/Checker.h" 19 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 20 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <optional> 27 28 using namespace clang; 29 using namespace ento; 30 using namespace taint; 31 32 namespace { 33 class ArrayBoundCheckerV2 : 34 public Checker<check::Location> { 35 mutable std::unique_ptr<BuiltinBug> BT; 36 mutable std::unique_ptr<BugType> TaintBT; 37 38 enum OOB_Kind { OOB_Precedes, OOB_Excedes }; 39 40 void reportOOB(CheckerContext &C, ProgramStateRef errorState, 41 OOB_Kind kind) const; 42 void reportTaintOOB(CheckerContext &C, ProgramStateRef errorState, 43 SVal TaintedSVal) const; 44 45 static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC); 46 47 public: 48 void checkLocation(SVal l, bool isLoad, const Stmt *S, 49 CheckerContext &C) const; 50 }; 51 52 // FIXME: Eventually replace RegionRawOffset with this class. 53 class RegionRawOffsetV2 { 54 private: 55 const SubRegion *baseRegion; 56 SVal byteOffset; 57 58 RegionRawOffsetV2() 59 : baseRegion(nullptr), byteOffset(UnknownVal()) {} 60 61 public: 62 RegionRawOffsetV2(const SubRegion *base, NonLoc offset) 63 : baseRegion(base), byteOffset(offset) { assert(base); } 64 65 NonLoc getByteOffset() const { return byteOffset.castAs<NonLoc>(); } 66 const SubRegion *getRegion() const { return baseRegion; } 67 68 static RegionRawOffsetV2 computeOffset(ProgramStateRef state, 69 SValBuilder &svalBuilder, 70 SVal location); 71 72 void dump() const; 73 void dumpToStream(raw_ostream &os) const; 74 }; 75 } 76 77 // TODO: once the constraint manager is smart enough to handle non simplified 78 // symbolic expressions remove this function. Note that this can not be used in 79 // the constraint manager as is, since this does not handle overflows. It is 80 // safe to assume, however, that memory offsets will not overflow. 81 // NOTE: callers of this function need to be aware of the effects of overflows 82 // and signed<->unsigned conversions! 83 static std::pair<NonLoc, nonloc::ConcreteInt> 84 getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent, 85 SValBuilder &svalBuilder) { 86 std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>(); 87 if (SymVal && SymVal->isExpression()) { 88 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) { 89 llvm::APSInt constant = 90 APSIntType(extent.getValue()).convert(SIE->getRHS()); 91 switch (SIE->getOpcode()) { 92 case BO_Mul: 93 // The constant should never be 0 here, since it the result of scaling 94 // based on the size of a type which is never 0. 95 if ((extent.getValue() % constant) != 0) 96 return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent); 97 else 98 return getSimplifiedOffsets( 99 nonloc::SymbolVal(SIE->getLHS()), 100 svalBuilder.makeIntVal(extent.getValue() / constant), 101 svalBuilder); 102 case BO_Add: 103 return getSimplifiedOffsets( 104 nonloc::SymbolVal(SIE->getLHS()), 105 svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder); 106 default: 107 break; 108 } 109 } 110 } 111 112 return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent); 113 } 114 115 // Evaluate the comparison Value < Threshold with the help of the custom 116 // simplification algorithm defined for this checker. Return a pair of states, 117 // where the first one corresponds to "value below threshold" and the second 118 // corresponds to "value at or above threshold". Returns {nullptr, nullptr} in 119 // the case when the evaluation fails. 120 static std::pair<ProgramStateRef, ProgramStateRef> 121 compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold, 122 SValBuilder &SVB) { 123 if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) { 124 std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB); 125 } 126 if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) { 127 QualType T = Value.getType(SVB.getContext()); 128 if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) { 129 // In this case we reduced the bound check to a comparison of the form 130 // (symbol or value with unsigned type) < (negative number) 131 // which is always false. We are handling these cases separately because 132 // evalBinOpNN can perform a signed->unsigned conversion that turns the 133 // negative number into a huge positive value and leads to wildly 134 // inaccurate conclusions. 135 return {nullptr, State}; 136 } 137 } 138 auto BelowThreshold = 139 SVB.evalBinOpNN(State, BO_LT, Value, Threshold, SVB.getConditionType()).getAs<NonLoc>(); 140 141 if (BelowThreshold) 142 return State->assume(*BelowThreshold); 143 144 return {nullptr, nullptr}; 145 } 146 147 void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad, 148 const Stmt* LoadS, 149 CheckerContext &checkerContext) const { 150 151 // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping 152 // some new logic here that reasons directly about memory region extents. 153 // Once that logic is more mature, we can bring it back to assumeInBound() 154 // for all clients to use. 155 // 156 // The algorithm we are using here for bounds checking is to see if the 157 // memory access is within the extent of the base region. Since we 158 // have some flexibility in defining the base region, we can achieve 159 // various levels of conservatism in our buffer overflow checking. 160 161 // The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as 162 // #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX) 163 // and incomplete analysis of these leads to false positives. As even 164 // accurate reports would be confusing for the users, just disable reports 165 // from these macros: 166 if (isFromCtypeMacro(LoadS, checkerContext.getASTContext())) 167 return; 168 169 ProgramStateRef state = checkerContext.getState(); 170 171 SValBuilder &svalBuilder = checkerContext.getSValBuilder(); 172 const RegionRawOffsetV2 &rawOffset = 173 RegionRawOffsetV2::computeOffset(state, svalBuilder, location); 174 175 if (!rawOffset.getRegion()) 176 return; 177 178 NonLoc ByteOffset = rawOffset.getByteOffset(); 179 180 // CHECK LOWER BOUND 181 const MemSpaceRegion *SR = rawOffset.getRegion()->getMemorySpace(); 182 if (!llvm::isa<UnknownSpaceRegion>(SR)) { 183 // A pointer to UnknownSpaceRegion may point to the middle of 184 // an allocated region. 185 186 auto [state_precedesLowerBound, state_withinLowerBound] = 187 compareValueToThreshold(state, ByteOffset, 188 svalBuilder.makeZeroArrayIndex(), svalBuilder); 189 190 if (state_precedesLowerBound && !state_withinLowerBound) { 191 // We know that the index definitely precedes the lower bound. 192 reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes); 193 return; 194 } 195 196 if (state_withinLowerBound) 197 state = state_withinLowerBound; 198 } 199 200 // CHECK UPPER BOUND 201 DefinedOrUnknownSVal Size = 202 getDynamicExtent(state, rawOffset.getRegion(), svalBuilder); 203 if (auto KnownSize = Size.getAs<NonLoc>()) { 204 auto [state_withinUpperBound, state_exceedsUpperBound] = 205 compareValueToThreshold(state, ByteOffset, *KnownSize, svalBuilder); 206 207 if (state_exceedsUpperBound) { 208 if (!state_withinUpperBound) { 209 // We know that the index definitely exceeds the upper bound. 210 reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes); 211 return; 212 } 213 if (isTainted(state, ByteOffset)) { 214 // Both cases are possible, but the index is tainted, so report. 215 reportTaintOOB(checkerContext, state_exceedsUpperBound, ByteOffset); 216 return; 217 } 218 } 219 220 if (state_withinUpperBound) 221 state = state_withinUpperBound; 222 } 223 224 checkerContext.addTransition(state); 225 } 226 227 void ArrayBoundCheckerV2::reportTaintOOB(CheckerContext &checkerContext, 228 ProgramStateRef errorState, 229 SVal TaintedSVal) const { 230 ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState); 231 if (!errorNode) 232 return; 233 234 if (!TaintBT) 235 TaintBT.reset( 236 new BugType(this, "Out-of-bound access", categories::TaintedData)); 237 238 SmallString<256> buf; 239 llvm::raw_svector_ostream os(buf); 240 os << "Out of bound memory access (index is tainted)"; 241 auto BR = 242 std::make_unique<PathSensitiveBugReport>(*TaintBT, os.str(), errorNode); 243 244 // Track back the propagation of taintedness. 245 for (SymbolRef Sym : getTaintedSymbols(errorState, TaintedSVal)) { 246 BR->markInteresting(Sym); 247 } 248 249 checkerContext.emitReport(std::move(BR)); 250 } 251 252 void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext, 253 ProgramStateRef errorState, 254 OOB_Kind kind) const { 255 256 ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState); 257 if (!errorNode) 258 return; 259 260 if (!BT) 261 BT.reset(new BuiltinBug(this, "Out-of-bound access")); 262 263 // FIXME: This diagnostics are preliminary. We should get far better 264 // diagnostics for explaining buffer overruns. 265 266 SmallString<256> buf; 267 llvm::raw_svector_ostream os(buf); 268 os << "Out of bound memory access "; 269 switch (kind) { 270 case OOB_Precedes: 271 os << "(accessed memory precedes memory block)"; 272 break; 273 case OOB_Excedes: 274 os << "(access exceeds upper limit of memory block)"; 275 break; 276 } 277 auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode); 278 checkerContext.emitReport(std::move(BR)); 279 } 280 281 bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) { 282 SourceLocation Loc = S->getBeginLoc(); 283 if (!Loc.isMacroID()) 284 return false; 285 286 StringRef MacroName = Lexer::getImmediateMacroName( 287 Loc, ACtx.getSourceManager(), ACtx.getLangOpts()); 288 289 if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's') 290 return false; 291 292 return ((MacroName == "isalnum") || (MacroName == "isalpha") || 293 (MacroName == "isblank") || (MacroName == "isdigit") || 294 (MacroName == "isgraph") || (MacroName == "islower") || 295 (MacroName == "isnctrl") || (MacroName == "isprint") || 296 (MacroName == "ispunct") || (MacroName == "isspace") || 297 (MacroName == "isupper") || (MacroName == "isxdigit")); 298 } 299 300 #ifndef NDEBUG 301 LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const { 302 dumpToStream(llvm::errs()); 303 } 304 305 void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const { 306 os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}'; 307 } 308 #endif 309 310 // Lazily computes a value to be used by 'computeOffset'. If 'val' 311 // is unknown or undefined, we lazily substitute '0'. Otherwise, 312 // return 'val'. 313 static inline SVal getValue(SVal val, SValBuilder &svalBuilder) { 314 return val.isUndef() ? svalBuilder.makeZeroArrayIndex() : val; 315 } 316 317 // Scale a base value by a scaling factor, and return the scaled 318 // value as an SVal. Used by 'computeOffset'. 319 static inline SVal scaleValue(ProgramStateRef state, 320 NonLoc baseVal, CharUnits scaling, 321 SValBuilder &sb) { 322 return sb.evalBinOpNN(state, BO_Mul, baseVal, 323 sb.makeArrayIndex(scaling.getQuantity()), 324 sb.getArrayIndexType()); 325 } 326 327 // Add an SVal to another, treating unknown and undefined values as 328 // summing to UnknownVal. Used by 'computeOffset'. 329 static SVal addValue(ProgramStateRef state, SVal x, SVal y, 330 SValBuilder &svalBuilder) { 331 // We treat UnknownVals and UndefinedVals the same here because we 332 // only care about computing offsets. 333 if (x.isUnknownOrUndef() || y.isUnknownOrUndef()) 334 return UnknownVal(); 335 336 return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs<NonLoc>(), 337 y.castAs<NonLoc>(), 338 svalBuilder.getArrayIndexType()); 339 } 340 341 /// Compute a raw byte offset from a base region. Used for array bounds 342 /// checking. 343 RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state, 344 SValBuilder &svalBuilder, 345 SVal location) 346 { 347 const MemRegion *region = location.getAsRegion(); 348 SVal offset = UndefinedVal(); 349 350 while (region) { 351 switch (region->getKind()) { 352 default: { 353 if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) { 354 if (auto Offset = getValue(offset, svalBuilder).getAs<NonLoc>()) 355 return RegionRawOffsetV2(subReg, *Offset); 356 } 357 return RegionRawOffsetV2(); 358 } 359 case MemRegion::ElementRegionKind: { 360 const ElementRegion *elemReg = cast<ElementRegion>(region); 361 SVal index = elemReg->getIndex(); 362 if (!isa<NonLoc>(index)) 363 return RegionRawOffsetV2(); 364 QualType elemType = elemReg->getElementType(); 365 // If the element is an incomplete type, go no further. 366 ASTContext &astContext = svalBuilder.getContext(); 367 if (elemType->isIncompleteType()) 368 return RegionRawOffsetV2(); 369 370 // Update the offset. 371 offset = addValue(state, 372 getValue(offset, svalBuilder), 373 scaleValue(state, 374 index.castAs<NonLoc>(), 375 astContext.getTypeSizeInChars(elemType), 376 svalBuilder), 377 svalBuilder); 378 379 if (offset.isUnknownOrUndef()) 380 return RegionRawOffsetV2(); 381 382 region = elemReg->getSuperRegion(); 383 continue; 384 } 385 } 386 } 387 return RegionRawOffsetV2(); 388 } 389 390 void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) { 391 mgr.registerChecker<ArrayBoundCheckerV2>(); 392 } 393 394 bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) { 395 return true; 396 } 397