1 //== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines ArrayBoundCheckerV2, which is a path-sensitive check 10 // which looks for an out-of-bound array element access. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/CharUnits.h" 15 #include "clang/AST/ParentMapContext.h" 16 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" 17 #include "clang/StaticAnalyzer/Checkers/Taint.h" 18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 19 #include "clang/StaticAnalyzer/Core/Checker.h" 20 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 21 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" 22 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 23 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/FormatVariadic.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <optional> 29 30 using namespace clang; 31 using namespace ento; 32 using namespace taint; 33 using llvm::formatv; 34 35 namespace { 36 /// If `E` is a "clean" array subscript expression, return the type of the 37 /// accessed element. If the base of the subscript expression is modified by 38 /// pointer arithmetic (and not the beginning of a "full" memory region), this 39 /// always returns nullopt because that's the right (or the least bad) thing to 40 /// do for the diagnostic output that's relying on this. 41 static std::optional<QualType> determineElementType(const Expr *E, 42 const CheckerContext &C) { 43 const auto *ASE = dyn_cast<ArraySubscriptExpr>(E); 44 if (!ASE) 45 return std::nullopt; 46 47 const MemRegion *SubscriptBaseReg = C.getSVal(ASE->getBase()).getAsRegion(); 48 if (!SubscriptBaseReg) 49 return std::nullopt; 50 51 // The base of the subscript expression is affected by pointer arithmetics, 52 // so we want to report byte offsets instead of indices. 53 if (isa<ElementRegion>(SubscriptBaseReg->StripCasts())) 54 return std::nullopt; 55 56 return ASE->getType(); 57 } 58 59 static std::optional<int64_t> 60 determineElementSize(const std::optional<QualType> T, const CheckerContext &C) { 61 if (!T) 62 return std::nullopt; 63 return C.getASTContext().getTypeSizeInChars(*T).getQuantity(); 64 } 65 66 class StateUpdateReporter { 67 const SubRegion *Reg; 68 const NonLoc ByteOffsetVal; 69 const std::optional<QualType> ElementType; 70 const std::optional<int64_t> ElementSize; 71 bool AssumedNonNegative = false; 72 std::optional<NonLoc> AssumedUpperBound = std::nullopt; 73 74 public: 75 StateUpdateReporter(const SubRegion *R, NonLoc ByteOffsVal, const Expr *E, 76 CheckerContext &C) 77 : Reg(R), ByteOffsetVal(ByteOffsVal), 78 ElementType(determineElementType(E, C)), 79 ElementSize(determineElementSize(ElementType, C)) {} 80 81 void recordNonNegativeAssumption() { AssumedNonNegative = true; } 82 void recordUpperBoundAssumption(NonLoc UpperBoundVal) { 83 AssumedUpperBound = UpperBoundVal; 84 } 85 86 const NoteTag *createNoteTag(CheckerContext &C) const; 87 88 private: 89 std::string getMessage(PathSensitiveBugReport &BR) const; 90 91 /// Return true if information about the value of `Sym` can put constraints 92 /// on some symbol which is interesting within the bug report `BR`. 93 /// In particular, this returns true when `Sym` is interesting within `BR`; 94 /// but it also returns true if `Sym` is an expression that contains integer 95 /// constants and a single symbolic operand which is interesting (in `BR`). 96 /// We need to use this instead of plain `BR.isInteresting()` because if we 97 /// are analyzing code like 98 /// int array[10]; 99 /// int f(int arg) { 100 /// return array[arg] && array[arg + 10]; 101 /// } 102 /// then the byte offsets are `arg * 4` and `(arg + 10) * 4`, which are not 103 /// sub-expressions of each other (but `getSimplifiedOffsets` is smart enough 104 /// to detect this out of bounds access). 105 static bool providesInformationAboutInteresting(SymbolRef Sym, 106 PathSensitiveBugReport &BR); 107 static bool providesInformationAboutInteresting(SVal SV, 108 PathSensitiveBugReport &BR) { 109 return providesInformationAboutInteresting(SV.getAsSymbol(), BR); 110 } 111 }; 112 113 struct Messages { 114 std::string Short, Full; 115 }; 116 117 // NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt` 118 // instead of `PreStmt` because the current implementation passes the whole 119 // expression to `CheckerContext::getSVal()` which only works after the 120 // symbolic evaluation of the expression. (To turn them into `PreStmt` 121 // callbacks, we'd need to duplicate the logic that evaluates these 122 // expressions.) The `MemberExpr` callback would work as `PreStmt` but it's 123 // defined as `PostStmt` for the sake of consistency with the other callbacks. 124 class ArrayBoundCheckerV2 : public Checker<check::PostStmt<ArraySubscriptExpr>, 125 check::PostStmt<UnaryOperator>, 126 check::PostStmt<MemberExpr>> { 127 BugType BT{this, "Out-of-bound access"}; 128 BugType TaintBT{this, "Out-of-bound access", categories::TaintedData}; 129 130 void performCheck(const Expr *E, CheckerContext &C) const; 131 132 void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, Messages Msgs, 133 NonLoc Offset, std::optional<NonLoc> Extent, 134 bool IsTaintBug = false) const; 135 136 static void markPartsInteresting(PathSensitiveBugReport &BR, 137 ProgramStateRef ErrorState, NonLoc Val, 138 bool MarkTaint); 139 140 static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC); 141 142 static bool isIdiomaticPastTheEndPtr(const Expr *E, ProgramStateRef State, 143 NonLoc Offset, NonLoc Limit, 144 CheckerContext &C); 145 static bool isInAddressOf(const Stmt *S, ASTContext &AC); 146 147 public: 148 void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const { 149 performCheck(E, C); 150 } 151 void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const { 152 if (E->getOpcode() == UO_Deref) 153 performCheck(E, C); 154 } 155 void checkPostStmt(const MemberExpr *E, CheckerContext &C) const { 156 if (E->isArrow()) 157 performCheck(E->getBase(), C); 158 } 159 }; 160 161 } // anonymous namespace 162 163 /// For a given Location that can be represented as a symbolic expression 164 /// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block 165 /// Arr and the distance of Location from the beginning of Arr (expressed in a 166 /// NonLoc that specifies the number of CharUnits). Returns nullopt when these 167 /// cannot be determined. 168 static std::optional<std::pair<const SubRegion *, NonLoc>> 169 computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) { 170 QualType T = SVB.getArrayIndexType(); 171 auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) { 172 // We will use this utility to add and multiply values. 173 return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>(); 174 }; 175 176 const SubRegion *OwnerRegion = nullptr; 177 std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex(); 178 179 const ElementRegion *CurRegion = 180 dyn_cast_or_null<ElementRegion>(Location.getAsRegion()); 181 182 while (CurRegion) { 183 const auto Index = CurRegion->getIndex().getAs<NonLoc>(); 184 if (!Index) 185 return std::nullopt; 186 187 QualType ElemType = CurRegion->getElementType(); 188 189 // FIXME: The following early return was presumably added to safeguard the 190 // getTypeSizeInChars() call (which doesn't accept an incomplete type), but 191 // it seems that `ElemType` cannot be incomplete at this point. 192 if (ElemType->isIncompleteType()) 193 return std::nullopt; 194 195 // Calculate Delta = Index * sizeof(ElemType). 196 NonLoc Size = SVB.makeArrayIndex( 197 SVB.getContext().getTypeSizeInChars(ElemType).getQuantity()); 198 auto Delta = EvalBinOp(BO_Mul, *Index, Size); 199 if (!Delta) 200 return std::nullopt; 201 202 // Perform Offset += Delta. 203 Offset = EvalBinOp(BO_Add, *Offset, *Delta); 204 if (!Offset) 205 return std::nullopt; 206 207 OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>(); 208 // When this is just another ElementRegion layer, we need to continue the 209 // offset calculations: 210 CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion); 211 } 212 213 if (OwnerRegion) 214 return std::make_pair(OwnerRegion, *Offset); 215 216 return std::nullopt; 217 } 218 219 // NOTE: This function is the "heart" of this checker. It simplifies 220 // inequalities with transformations that are valid (and very elementary) in 221 // pure mathematics, but become invalid if we use them in C++ number model 222 // where the calculations may overflow. 223 // Due to the overflow issues I think it's impossible (or at least not 224 // practical) to integrate this kind of simplification into the resolution of 225 // arbitrary inequalities (i.e. the code of `evalBinOp`); but this function 226 // produces valid results when the calculations are handling memory offsets 227 // and every value is well below SIZE_MAX. 228 // TODO: This algorithm should be moved to a central location where it's 229 // available for other checkers that need to compare memory offsets. 230 // NOTE: the simplification preserves the order of the two operands in a 231 // mathematical sense, but it may change the result produced by a C++ 232 // comparison operator (and the automatic type conversions). 233 // For example, consider a comparison "X+1 < 0", where the LHS is stored as a 234 // size_t and the RHS is stored in an int. (As size_t is unsigned, this 235 // comparison is false for all values of "X".) However, the simplification may 236 // turn it into "X < -1", which is still always false in a mathematical sense, 237 // but can produce a true result when evaluated by `evalBinOp` (which follows 238 // the rules of C++ and casts -1 to SIZE_MAX). 239 static std::pair<NonLoc, nonloc::ConcreteInt> 240 getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent, 241 SValBuilder &svalBuilder) { 242 std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>(); 243 if (SymVal && SymVal->isExpression()) { 244 if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) { 245 llvm::APSInt constant = 246 APSIntType(extent.getValue()).convert(SIE->getRHS()); 247 switch (SIE->getOpcode()) { 248 case BO_Mul: 249 // The constant should never be 0 here, becasue multiplication by zero 250 // is simplified by the engine. 251 if ((extent.getValue() % constant) != 0) 252 return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent); 253 else 254 return getSimplifiedOffsets( 255 nonloc::SymbolVal(SIE->getLHS()), 256 svalBuilder.makeIntVal(extent.getValue() / constant), 257 svalBuilder); 258 case BO_Add: 259 return getSimplifiedOffsets( 260 nonloc::SymbolVal(SIE->getLHS()), 261 svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder); 262 default: 263 break; 264 } 265 } 266 } 267 268 return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent); 269 } 270 271 static bool isNegative(SValBuilder &SVB, ProgramStateRef State, NonLoc Value) { 272 const llvm::APSInt *MaxV = SVB.getMaxValue(State, Value); 273 return MaxV && MaxV->isNegative(); 274 } 275 276 static bool isUnsigned(SValBuilder &SVB, NonLoc Value) { 277 QualType T = Value.getType(SVB.getContext()); 278 return T->isUnsignedIntegerType(); 279 } 280 281 // Evaluate the comparison Value < Threshold with the help of the custom 282 // simplification algorithm defined for this checker. Return a pair of states, 283 // where the first one corresponds to "value below threshold" and the second 284 // corresponds to "value at or above threshold". Returns {nullptr, nullptr} in 285 // the case when the evaluation fails. 286 // If the optional argument CheckEquality is true, then use BO_EQ instead of 287 // the default BO_LT after consistently applying the same simplification steps. 288 static std::pair<ProgramStateRef, ProgramStateRef> 289 compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold, 290 SValBuilder &SVB, bool CheckEquality = false) { 291 if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) { 292 std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB); 293 } 294 295 // We want to perform a _mathematical_ comparison between the numbers `Value` 296 // and `Threshold`; but `evalBinOpNN` evaluates a C/C++ operator that may 297 // perform automatic conversions. For example the number -1 is less than the 298 // number 1000, but -1 < `1000ull` will evaluate to `false` because the `int` 299 // -1 is converted to ULONGLONG_MAX. 300 // To avoid automatic conversions, we evaluate the "obvious" cases without 301 // calling `evalBinOpNN`: 302 if (isNegative(SVB, State, Value) && isUnsigned(SVB, Threshold)) { 303 if (CheckEquality) { 304 // negative_value == unsigned_threshold is always false 305 return {nullptr, State}; 306 } 307 // negative_value < unsigned_threshold is always true 308 return {State, nullptr}; 309 } 310 if (isUnsigned(SVB, Value) && isNegative(SVB, State, Threshold)) { 311 // unsigned_value == negative_threshold and 312 // unsigned_value < negative_threshold are both always false 313 return {nullptr, State}; 314 } 315 // FIXME: These special cases are sufficient for handling real-world 316 // comparisons, but in theory there could be contrived situations where 317 // automatic conversion of a symbolic value (which can be negative and can be 318 // positive) leads to incorrect results. 319 // NOTE: We NEED to use the `evalBinOpNN` call in the "common" case, because 320 // we want to ensure that assumptions coming from this precondition and 321 // assumptions coming from regular C/C++ operator calls are represented by 322 // constraints on the same symbolic expression. A solution that would 323 // evaluate these "mathematical" compariosns through a separate pathway would 324 // be a step backwards in this sense. 325 326 const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT; 327 auto BelowThreshold = 328 SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType()) 329 .getAs<NonLoc>(); 330 331 if (BelowThreshold) 332 return State->assume(*BelowThreshold); 333 334 return {nullptr, nullptr}; 335 } 336 337 static std::string getRegionName(const SubRegion *Region) { 338 if (std::string RegName = Region->getDescriptiveName(); !RegName.empty()) 339 return RegName; 340 341 // Field regions only have descriptive names when their parent has a 342 // descriptive name; so we provide a fallback representation for them: 343 if (const auto *FR = Region->getAs<FieldRegion>()) { 344 if (StringRef Name = FR->getDecl()->getName(); !Name.empty()) 345 return formatv("the field '{0}'", Name); 346 return "the unnamed field"; 347 } 348 349 if (isa<AllocaRegion>(Region)) 350 return "the memory returned by 'alloca'"; 351 352 if (isa<SymbolicRegion>(Region) && 353 isa<HeapSpaceRegion>(Region->getMemorySpace())) 354 return "the heap area"; 355 356 if (isa<StringRegion>(Region)) 357 return "the string literal"; 358 359 return "the region"; 360 } 361 362 static std::optional<int64_t> getConcreteValue(NonLoc SV) { 363 if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) { 364 return ConcreteVal->getValue().tryExtValue(); 365 } 366 return std::nullopt; 367 } 368 369 static std::optional<int64_t> getConcreteValue(std::optional<NonLoc> SV) { 370 return SV ? getConcreteValue(*SV) : std::nullopt; 371 } 372 373 static Messages getPrecedesMsgs(const SubRegion *Region, NonLoc Offset) { 374 std::string RegName = getRegionName(Region); 375 SmallString<128> Buf; 376 llvm::raw_svector_ostream Out(Buf); 377 Out << "Access of " << RegName << " at negative byte offset"; 378 if (auto ConcreteIdx = Offset.getAs<nonloc::ConcreteInt>()) 379 Out << ' ' << ConcreteIdx->getValue(); 380 return {formatv("Out of bound access to memory preceding {0}", RegName), 381 std::string(Buf)}; 382 } 383 384 /// Try to divide `Val1` and `Val2` (in place) by `Divisor` and return true if 385 /// it can be performed (`Divisor` is nonzero and there is no remainder). The 386 /// values `Val1` and `Val2` may be nullopt and in that case the corresponding 387 /// division is considered to be successful. 388 static bool tryDividePair(std::optional<int64_t> &Val1, 389 std::optional<int64_t> &Val2, int64_t Divisor) { 390 if (!Divisor) 391 return false; 392 const bool Val1HasRemainder = Val1 && *Val1 % Divisor; 393 const bool Val2HasRemainder = Val2 && *Val2 % Divisor; 394 if (!Val1HasRemainder && !Val2HasRemainder) { 395 if (Val1) 396 *Val1 /= Divisor; 397 if (Val2) 398 *Val2 /= Divisor; 399 return true; 400 } 401 return false; 402 } 403 404 static Messages getExceedsMsgs(ASTContext &ACtx, const SubRegion *Region, 405 NonLoc Offset, NonLoc Extent, SVal Location) { 406 std::string RegName = getRegionName(Region); 407 const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>(); 408 assert(EReg && "this checker only handles element access"); 409 QualType ElemType = EReg->getElementType(); 410 411 std::optional<int64_t> OffsetN = getConcreteValue(Offset); 412 std::optional<int64_t> ExtentN = getConcreteValue(Extent); 413 414 int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity(); 415 416 bool UseByteOffsets = !tryDividePair(OffsetN, ExtentN, ElemSize); 417 418 SmallString<256> Buf; 419 llvm::raw_svector_ostream Out(Buf); 420 Out << "Access of "; 421 if (!ExtentN && !UseByteOffsets) 422 Out << "'" << ElemType.getAsString() << "' element in "; 423 Out << RegName << " at "; 424 if (OffsetN) { 425 Out << (UseByteOffsets ? "byte offset " : "index ") << *OffsetN; 426 } else { 427 Out << "an overflowing " << (UseByteOffsets ? "byte offset" : "index"); 428 } 429 if (ExtentN) { 430 Out << ", while it holds only "; 431 if (*ExtentN != 1) 432 Out << *ExtentN; 433 else 434 Out << "a single"; 435 if (UseByteOffsets) 436 Out << " byte"; 437 else 438 Out << " '" << ElemType.getAsString() << "' element"; 439 440 if (*ExtentN > 1) 441 Out << "s"; 442 } 443 444 return { 445 formatv("Out of bound access to memory after the end of {0}", RegName), 446 std::string(Buf)}; 447 } 448 449 static Messages getTaintMsgs(const SubRegion *Region, const char *OffsetName) { 450 std::string RegName = getRegionName(Region); 451 return {formatv("Potential out of bound access to {0} with tainted {1}", 452 RegName, OffsetName), 453 formatv("Access of {0} with a tainted {1} that may be too large", 454 RegName, OffsetName)}; 455 } 456 457 const NoteTag *StateUpdateReporter::createNoteTag(CheckerContext &C) const { 458 // Don't create a note tag if we didn't assume anything: 459 if (!AssumedNonNegative && !AssumedUpperBound) 460 return nullptr; 461 462 return C.getNoteTag([*this](PathSensitiveBugReport &BR) -> std::string { 463 return getMessage(BR); 464 }); 465 } 466 467 std::string StateUpdateReporter::getMessage(PathSensitiveBugReport &BR) const { 468 bool ShouldReportNonNegative = AssumedNonNegative; 469 if (!providesInformationAboutInteresting(ByteOffsetVal, BR)) { 470 if (AssumedUpperBound && 471 providesInformationAboutInteresting(*AssumedUpperBound, BR)) { 472 // Even if the byte offset isn't interesting (e.g. it's a constant value), 473 // the assumption can still be interesting if it provides information 474 // about an interesting symbolic upper bound. 475 ShouldReportNonNegative = false; 476 } else { 477 // We don't have anything interesting, don't report the assumption. 478 return ""; 479 } 480 } 481 482 std::optional<int64_t> OffsetN = getConcreteValue(ByteOffsetVal); 483 std::optional<int64_t> ExtentN = getConcreteValue(AssumedUpperBound); 484 485 const bool UseIndex = 486 ElementSize && tryDividePair(OffsetN, ExtentN, *ElementSize); 487 488 SmallString<256> Buf; 489 llvm::raw_svector_ostream Out(Buf); 490 Out << "Assuming "; 491 if (UseIndex) { 492 Out << "index "; 493 if (OffsetN) 494 Out << "'" << OffsetN << "' "; 495 } else if (AssumedUpperBound) { 496 Out << "byte offset "; 497 if (OffsetN) 498 Out << "'" << OffsetN << "' "; 499 } else { 500 Out << "offset "; 501 } 502 503 Out << "is"; 504 if (ShouldReportNonNegative) { 505 Out << " non-negative"; 506 } 507 if (AssumedUpperBound) { 508 if (ShouldReportNonNegative) 509 Out << " and"; 510 Out << " less than "; 511 if (ExtentN) 512 Out << *ExtentN << ", "; 513 if (UseIndex && ElementType) 514 Out << "the number of '" << ElementType->getAsString() 515 << "' elements in "; 516 else 517 Out << "the extent of "; 518 Out << getRegionName(Reg); 519 } 520 return std::string(Out.str()); 521 } 522 523 bool StateUpdateReporter::providesInformationAboutInteresting( 524 SymbolRef Sym, PathSensitiveBugReport &BR) { 525 if (!Sym) 526 return false; 527 for (SymbolRef PartSym : Sym->symbols()) { 528 // The interestingess mark may appear on any layer as we're stripping off 529 // the SymIntExpr, UnarySymExpr etc. layers... 530 if (BR.isInteresting(PartSym)) 531 return true; 532 // ...but if both sides of the expression are symbolic, then there is no 533 // practical algorithm to produce separate constraints for the two 534 // operands (from the single combined result). 535 if (isa<SymSymExpr>(PartSym)) 536 return false; 537 } 538 return false; 539 } 540 541 void ArrayBoundCheckerV2::performCheck(const Expr *E, CheckerContext &C) const { 542 const SVal Location = C.getSVal(E); 543 544 // The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as 545 // #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX) 546 // and incomplete analysis of these leads to false positives. As even 547 // accurate reports would be confusing for the users, just disable reports 548 // from these macros: 549 if (isFromCtypeMacro(E, C.getASTContext())) 550 return; 551 552 ProgramStateRef State = C.getState(); 553 SValBuilder &SVB = C.getSValBuilder(); 554 555 const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset = 556 computeOffset(State, SVB, Location); 557 558 if (!RawOffset) 559 return; 560 561 auto [Reg, ByteOffset] = *RawOffset; 562 563 // The state updates will be reported as a single note tag, which will be 564 // composed by this helper class. 565 StateUpdateReporter SUR(Reg, ByteOffset, E, C); 566 567 // CHECK LOWER BOUND 568 const MemSpaceRegion *Space = Reg->getMemorySpace(); 569 if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) { 570 // A symbolic region in unknown space represents an unknown pointer that 571 // may point into the middle of an array, so we don't look for underflows. 572 // Both conditions are significant because we want to check underflows in 573 // symbolic regions on the heap (which may be introduced by checkers like 574 // MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and 575 // non-symbolic regions (e.g. a field subregion of a symbolic region) in 576 // unknown space. 577 auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold( 578 State, ByteOffset, SVB.makeZeroArrayIndex(), SVB); 579 580 if (PrecedesLowerBound) { 581 // The offset may be invalid (negative)... 582 if (!WithinLowerBound) { 583 // ...and it cannot be valid (>= 0), so report an error. 584 Messages Msgs = getPrecedesMsgs(Reg, ByteOffset); 585 reportOOB(C, PrecedesLowerBound, Msgs, ByteOffset, std::nullopt); 586 return; 587 } 588 // ...but it can be valid as well, so the checker will (optimistically) 589 // assume that it's valid and mention this in the note tag. 590 SUR.recordNonNegativeAssumption(); 591 } 592 593 // Actually update the state. The "if" only fails in the extremely unlikely 594 // case when compareValueToThreshold returns {nullptr, nullptr} becasue 595 // evalBinOpNN fails to evaluate the less-than operator. 596 if (WithinLowerBound) 597 State = WithinLowerBound; 598 } 599 600 // CHECK UPPER BOUND 601 DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB); 602 if (auto KnownSize = Size.getAs<NonLoc>()) { 603 auto [WithinUpperBound, ExceedsUpperBound] = 604 compareValueToThreshold(State, ByteOffset, *KnownSize, SVB); 605 606 if (ExceedsUpperBound) { 607 // The offset may be invalid (>= Size)... 608 if (!WithinUpperBound) { 609 // ...and it cannot be within bounds, so report an error, unless we can 610 // definitely determine that this is an idiomatic `&array[size]` 611 // expression that calculates the past-the-end pointer. 612 if (isIdiomaticPastTheEndPtr(E, ExceedsUpperBound, ByteOffset, 613 *KnownSize, C)) { 614 C.addTransition(ExceedsUpperBound, SUR.createNoteTag(C)); 615 return; 616 } 617 618 Messages Msgs = getExceedsMsgs(C.getASTContext(), Reg, ByteOffset, 619 *KnownSize, Location); 620 reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize); 621 return; 622 } 623 // ...and it can be valid as well... 624 if (isTainted(State, ByteOffset)) { 625 // ...but it's tainted, so report an error. 626 627 // Diagnostic detail: saying "tainted offset" is always correct, but 628 // the common case is that 'idx' is tainted in 'arr[idx]' and then it's 629 // nicer to say "tainted index". 630 const char *OffsetName = "offset"; 631 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) 632 if (isTainted(State, ASE->getIdx(), C.getLocationContext())) 633 OffsetName = "index"; 634 635 Messages Msgs = getTaintMsgs(Reg, OffsetName); 636 reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize, 637 /*IsTaintBug=*/true); 638 return; 639 } 640 // ...and it isn't tainted, so the checker will (optimistically) assume 641 // that the offset is in bounds and mention this in the note tag. 642 SUR.recordUpperBoundAssumption(*KnownSize); 643 } 644 645 // Actually update the state. The "if" only fails in the extremely unlikely 646 // case when compareValueToThreshold returns {nullptr, nullptr} becasue 647 // evalBinOpNN fails to evaluate the less-than operator. 648 if (WithinUpperBound) 649 State = WithinUpperBound; 650 } 651 652 // Add a transition, reporting the state updates that we accumulated. 653 C.addTransition(State, SUR.createNoteTag(C)); 654 } 655 656 void ArrayBoundCheckerV2::markPartsInteresting(PathSensitiveBugReport &BR, 657 ProgramStateRef ErrorState, 658 NonLoc Val, bool MarkTaint) { 659 if (SymbolRef Sym = Val.getAsSymbol()) { 660 // If the offset is a symbolic value, iterate over its "parts" with 661 // `SymExpr::symbols()` and mark each of them as interesting. 662 // For example, if the offset is `x*4 + y` then we put interestingness onto 663 // the SymSymExpr `x*4 + y`, the SymIntExpr `x*4` and the two data symbols 664 // `x` and `y`. 665 for (SymbolRef PartSym : Sym->symbols()) 666 BR.markInteresting(PartSym); 667 } 668 669 if (MarkTaint) { 670 // If the issue that we're reporting depends on the taintedness of the 671 // offset, then put interestingness onto symbols that could be the origin 672 // of the taint. Note that this may find symbols that did not appear in 673 // `Sym->symbols()` (because they're only loosely connected to `Val`). 674 for (SymbolRef Sym : getTaintedSymbols(ErrorState, Val)) 675 BR.markInteresting(Sym); 676 } 677 } 678 679 void ArrayBoundCheckerV2::reportOOB(CheckerContext &C, 680 ProgramStateRef ErrorState, Messages Msgs, 681 NonLoc Offset, std::optional<NonLoc> Extent, 682 bool IsTaintBug /*=false*/) const { 683 684 ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState); 685 if (!ErrorNode) 686 return; 687 688 auto BR = std::make_unique<PathSensitiveBugReport>( 689 IsTaintBug ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode); 690 691 // FIXME: ideally we would just call trackExpressionValue() and that would 692 // "do the right thing": mark the relevant symbols as interesting, track the 693 // control dependencies and statements storing the relevant values and add 694 // helpful diagnostic pieces. However, right now trackExpressionValue() is 695 // a heap of unreliable heuristics, so it would cause several issues: 696 // - Interestingness is not applied consistently, e.g. if `array[x+10]` 697 // causes an overflow, then `x` is not marked as interesting. 698 // - We get irrelevant diagnostic pieces, e.g. in the code 699 // `int *p = (int*)malloc(2*sizeof(int)); p[3] = 0;` 700 // it places a "Storing uninitialized value" note on the `malloc` call 701 // (which is technically true, but irrelevant). 702 // If trackExpressionValue() becomes reliable, it should be applied instead 703 // of this custom markPartsInteresting(). 704 markPartsInteresting(*BR, ErrorState, Offset, IsTaintBug); 705 if (Extent) 706 markPartsInteresting(*BR, ErrorState, *Extent, IsTaintBug); 707 708 C.emitReport(std::move(BR)); 709 } 710 711 bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) { 712 SourceLocation Loc = S->getBeginLoc(); 713 if (!Loc.isMacroID()) 714 return false; 715 716 StringRef MacroName = Lexer::getImmediateMacroName( 717 Loc, ACtx.getSourceManager(), ACtx.getLangOpts()); 718 719 if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's') 720 return false; 721 722 return ((MacroName == "isalnum") || (MacroName == "isalpha") || 723 (MacroName == "isblank") || (MacroName == "isdigit") || 724 (MacroName == "isgraph") || (MacroName == "islower") || 725 (MacroName == "isnctrl") || (MacroName == "isprint") || 726 (MacroName == "ispunct") || (MacroName == "isspace") || 727 (MacroName == "isupper") || (MacroName == "isxdigit")); 728 } 729 730 bool ArrayBoundCheckerV2::isInAddressOf(const Stmt *S, ASTContext &ACtx) { 731 ParentMapContext &ParentCtx = ACtx.getParentMapContext(); 732 do { 733 const DynTypedNodeList Parents = ParentCtx.getParents(*S); 734 if (Parents.empty()) 735 return false; 736 S = Parents[0].get<Stmt>(); 737 } while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S)); 738 const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S); 739 return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf; 740 } 741 742 bool ArrayBoundCheckerV2::isIdiomaticPastTheEndPtr(const Expr *E, 743 ProgramStateRef State, 744 NonLoc Offset, NonLoc Limit, 745 CheckerContext &C) { 746 if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) { 747 auto [EqualsToThreshold, NotEqualToThreshold] = compareValueToThreshold( 748 State, Offset, Limit, C.getSValBuilder(), /*CheckEquality=*/true); 749 return EqualsToThreshold && !NotEqualToThreshold; 750 } 751 return false; 752 } 753 754 void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) { 755 mgr.registerChecker<ArrayBoundCheckerV2>(); 756 } 757 758 bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) { 759 return true; 760 } 761