xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp (revision 3e014038b373e5a4a96d89d46cea17e4d2456a04)
1 //== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines ArrayBoundCheckerV2, which is a path-sensitive check
10 // which looks for an out-of-bound array element access.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/CharUnits.h"
15 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
16 #include "clang/StaticAnalyzer/Checkers/Taint.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <optional>
27 
28 using namespace clang;
29 using namespace ento;
30 using namespace taint;
31 
32 namespace {
33 class ArrayBoundCheckerV2 :
34     public Checker<check::Location> {
35   mutable std::unique_ptr<BuiltinBug> BT;
36   mutable std::unique_ptr<BugType> TaintBT;
37 
38   enum OOB_Kind { OOB_Precedes, OOB_Excedes };
39 
40   void reportOOB(CheckerContext &C, ProgramStateRef errorState,
41                  OOB_Kind kind) const;
42   void reportTaintOOB(CheckerContext &C, ProgramStateRef errorState,
43                       SVal TaintedSVal) const;
44 
45   static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
46 
47 public:
48   void checkLocation(SVal l, bool isLoad, const Stmt *S,
49                      CheckerContext &C) const;
50 };
51 
52 // FIXME: Eventually replace RegionRawOffset with this class.
53 class RegionRawOffsetV2 {
54 private:
55   const SubRegion *baseRegion;
56   NonLoc byteOffset;
57 
58 public:
59   RegionRawOffsetV2(const SubRegion *base, NonLoc offset)
60       : baseRegion(base), byteOffset(offset) { assert(base); }
61 
62   NonLoc getByteOffset() const { return byteOffset; }
63   const SubRegion *getRegion() const { return baseRegion; }
64 
65   static std::optional<RegionRawOffsetV2>
66   computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location);
67 
68   void dump() const;
69   void dumpToStream(raw_ostream &os) const;
70 };
71 }
72 
73 // TODO: once the constraint manager is smart enough to handle non simplified
74 // symbolic expressions remove this function. Note that this can not be used in
75 // the constraint manager as is, since this does not handle overflows. It is
76 // safe to assume, however, that memory offsets will not overflow.
77 // NOTE: callers of this function need to be aware of the effects of overflows
78 // and signed<->unsigned conversions!
79 static std::pair<NonLoc, nonloc::ConcreteInt>
80 getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
81                      SValBuilder &svalBuilder) {
82   std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
83   if (SymVal && SymVal->isExpression()) {
84     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
85       llvm::APSInt constant =
86           APSIntType(extent.getValue()).convert(SIE->getRHS());
87       switch (SIE->getOpcode()) {
88       case BO_Mul:
89         // The constant should never be 0 here, since it the result of scaling
90         // based on the size of a type which is never 0.
91         if ((extent.getValue() % constant) != 0)
92           return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
93         else
94           return getSimplifiedOffsets(
95               nonloc::SymbolVal(SIE->getLHS()),
96               svalBuilder.makeIntVal(extent.getValue() / constant),
97               svalBuilder);
98       case BO_Add:
99         return getSimplifiedOffsets(
100             nonloc::SymbolVal(SIE->getLHS()),
101             svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
102       default:
103         break;
104       }
105     }
106   }
107 
108   return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
109 }
110 
111 // Evaluate the comparison Value < Threshold with the help of the custom
112 // simplification algorithm defined for this checker. Return a pair of states,
113 // where the first one corresponds to "value below threshold" and the second
114 // corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
115 // the case when the evaluation fails.
116 static std::pair<ProgramStateRef, ProgramStateRef>
117 compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
118                         SValBuilder &SVB) {
119   if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
120     std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
121   }
122   if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
123     QualType T = Value.getType(SVB.getContext());
124     if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) {
125       // In this case we reduced the bound check to a comparison of the form
126       //   (symbol or value with unsigned type) < (negative number)
127       // which is always false. We are handling these cases separately because
128       // evalBinOpNN can perform a signed->unsigned conversion that turns the
129       // negative number into a huge positive value and leads to wildly
130       // inaccurate conclusions.
131       return {nullptr, State};
132     }
133   }
134   auto BelowThreshold =
135       SVB.evalBinOpNN(State, BO_LT, Value, Threshold, SVB.getConditionType()).getAs<NonLoc>();
136 
137   if (BelowThreshold)
138     return State->assume(*BelowThreshold);
139 
140   return {nullptr, nullptr};
141 }
142 
143 void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
144                                         const Stmt* LoadS,
145                                         CheckerContext &checkerContext) const {
146 
147   // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
148   // some new logic here that reasons directly about memory region extents.
149   // Once that logic is more mature, we can bring it back to assumeInBound()
150   // for all clients to use.
151   //
152   // The algorithm we are using here for bounds checking is to see if the
153   // memory access is within the extent of the base region.  Since we
154   // have some flexibility in defining the base region, we can achieve
155   // various levels of conservatism in our buffer overflow checking.
156 
157   // The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
158   //   #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
159   // and incomplete analysis of these leads to false positives. As even
160   // accurate reports would be confusing for the users, just disable reports
161   // from these macros:
162   if (isFromCtypeMacro(LoadS, checkerContext.getASTContext()))
163     return;
164 
165   ProgramStateRef state = checkerContext.getState();
166 
167   SValBuilder &svalBuilder = checkerContext.getSValBuilder();
168   const std::optional<RegionRawOffsetV2> &RawOffset =
169       RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
170 
171   if (!RawOffset)
172     return;
173 
174   NonLoc ByteOffset = RawOffset->getByteOffset();
175   const SubRegion *Reg = RawOffset->getRegion();
176 
177   // CHECK LOWER BOUND
178   const MemSpaceRegion *Space = Reg->getMemorySpace();
179   if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
180     // A symbolic region in unknown space represents an unknown pointer that
181     // may point into the middle of an array, so we don't look for underflows.
182     // Both conditions are significant because we want to check underflows in
183     // symbolic regions on the heap (which may be introduced by checkers like
184     // MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
185     // non-symbolic regions (e.g. a field subregion of a symbolic region) in
186     // unknown space.
187     auto [state_precedesLowerBound, state_withinLowerBound] =
188         compareValueToThreshold(state, ByteOffset,
189                                 svalBuilder.makeZeroArrayIndex(), svalBuilder);
190 
191     if (state_precedesLowerBound && !state_withinLowerBound) {
192       // We know that the index definitely precedes the lower bound.
193       reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
194       return;
195     }
196 
197     if (state_withinLowerBound)
198       state = state_withinLowerBound;
199   }
200 
201   // CHECK UPPER BOUND
202   DefinedOrUnknownSVal Size = getDynamicExtent(state, Reg, svalBuilder);
203   if (auto KnownSize = Size.getAs<NonLoc>()) {
204     auto [state_withinUpperBound, state_exceedsUpperBound] =
205         compareValueToThreshold(state, ByteOffset, *KnownSize, svalBuilder);
206 
207     if (state_exceedsUpperBound) {
208       if (!state_withinUpperBound) {
209         // We know that the index definitely exceeds the upper bound.
210         reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
211         return;
212       }
213       if (isTainted(state, ByteOffset)) {
214         // Both cases are possible, but the index is tainted, so report.
215         reportTaintOOB(checkerContext, state_exceedsUpperBound, ByteOffset);
216         return;
217       }
218     }
219 
220     if (state_withinUpperBound)
221       state = state_withinUpperBound;
222   }
223 
224   checkerContext.addTransition(state);
225 }
226 
227 void ArrayBoundCheckerV2::reportTaintOOB(CheckerContext &checkerContext,
228                                          ProgramStateRef errorState,
229                                          SVal TaintedSVal) const {
230   ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
231   if (!errorNode)
232     return;
233 
234   if (!TaintBT)
235     TaintBT.reset(
236         new BugType(this, "Out-of-bound access", categories::TaintedData));
237 
238   SmallString<256> buf;
239   llvm::raw_svector_ostream os(buf);
240   os << "Out of bound memory access (index is tainted)";
241   auto BR =
242       std::make_unique<PathSensitiveBugReport>(*TaintBT, os.str(), errorNode);
243 
244   // Track back the propagation of taintedness.
245   for (SymbolRef Sym : getTaintedSymbols(errorState, TaintedSVal)) {
246     BR->markInteresting(Sym);
247   }
248 
249   checkerContext.emitReport(std::move(BR));
250 }
251 
252 void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
253                                     ProgramStateRef errorState,
254                                     OOB_Kind kind) const {
255 
256   ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
257   if (!errorNode)
258     return;
259 
260   if (!BT)
261     BT.reset(new BuiltinBug(this, "Out-of-bound access"));
262 
263   // FIXME: This diagnostics are preliminary.  We should get far better
264   // diagnostics for explaining buffer overruns.
265 
266   SmallString<256> buf;
267   llvm::raw_svector_ostream os(buf);
268   os << "Out of bound memory access ";
269   switch (kind) {
270   case OOB_Precedes:
271     os << "(accessed memory precedes memory block)";
272     break;
273   case OOB_Excedes:
274     os << "(access exceeds upper limit of memory block)";
275     break;
276   }
277   auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode);
278   checkerContext.emitReport(std::move(BR));
279 }
280 
281 bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
282   SourceLocation Loc = S->getBeginLoc();
283   if (!Loc.isMacroID())
284     return false;
285 
286   StringRef MacroName = Lexer::getImmediateMacroName(
287       Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
288 
289   if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
290     return false;
291 
292   return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
293           (MacroName == "isblank") || (MacroName == "isdigit") ||
294           (MacroName == "isgraph") || (MacroName == "islower") ||
295           (MacroName == "isnctrl") || (MacroName == "isprint") ||
296           (MacroName == "ispunct") || (MacroName == "isspace") ||
297           (MacroName == "isupper") || (MacroName == "isxdigit"));
298 }
299 
300 #ifndef NDEBUG
301 LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const {
302   dumpToStream(llvm::errs());
303 }
304 
305 void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
306   os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
307 }
308 #endif
309 
310 /// For a given Location that can be represented as a symbolic expression
311 /// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
312 /// Arr and the distance of Location from the beginning of Arr (expressed in a
313 /// NonLoc that specifies the number of CharUnits). Returns nullopt when these
314 /// cannot be determined.
315 std::optional<RegionRawOffsetV2>
316 RegionRawOffsetV2::computeOffset(ProgramStateRef State, SValBuilder &SVB,
317                                  SVal Location) {
318   QualType T = SVB.getArrayIndexType();
319   auto Calc = [&SVB, State, T](BinaryOperatorKind Op, NonLoc LHS, NonLoc RHS) {
320     // We will use this utility to add and multiply values.
321     return SVB.evalBinOpNN(State, Op, LHS, RHS, T).getAs<NonLoc>();
322   };
323 
324   const MemRegion *Region = Location.getAsRegion();
325   NonLoc Offset = SVB.makeZeroArrayIndex();
326 
327   while (Region) {
328     if (const auto *ERegion = dyn_cast<ElementRegion>(Region)) {
329       if (const auto Index = ERegion->getIndex().getAs<NonLoc>()) {
330         QualType ElemType = ERegion->getElementType();
331         // If the element is an incomplete type, go no further.
332         if (ElemType->isIncompleteType())
333           return std::nullopt;
334 
335         // Perform Offset += Index * sizeof(ElemType); then continue the offset
336         // calculations with SuperRegion:
337         NonLoc Size = SVB.makeArrayIndex(
338             SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
339         if (auto Delta = Calc(BO_Mul, *Index, Size)) {
340           if (auto NewOffset = Calc(BO_Add, Offset, *Delta)) {
341             Offset = *NewOffset;
342             Region = ERegion->getSuperRegion();
343             continue;
344           }
345         }
346       }
347     } else if (const auto *SRegion = dyn_cast<SubRegion>(Region)) {
348       // NOTE: The dyn_cast<>() is expected to succeed, it'd be very surprising
349       // to see a MemSpaceRegion at this point.
350       // FIXME: We may return with {<Region>, 0} even if we didn't handle any
351       // ElementRegion layers. I think that this behavior was introduced
352       // accidentally by 8a4c760c204546aba566e302f299f7ed2e00e287 in 2011, so
353       // it may be useful to review it in the future.
354       return RegionRawOffsetV2(SRegion, Offset);
355     }
356     return std::nullopt;
357   }
358   return std::nullopt;
359 }
360 
361 void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
362   mgr.registerChecker<ArrayBoundCheckerV2>();
363 }
364 
365 bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
366   return true;
367 }
368