xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp (revision 343bdb10940cb2387c0b9bd3caccee7bb56c937b)
1 //== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines ArrayBoundCheckerV2, which is a path-sensitive check
10 // which looks for an out-of-bound array element access.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/CharUnits.h"
15 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
16 #include "clang/StaticAnalyzer/Checkers/Taint.h"
17 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
18 #include "clang/StaticAnalyzer/Core/Checker.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <optional>
27 
28 using namespace clang;
29 using namespace ento;
30 using namespace taint;
31 
32 namespace {
33 class ArrayBoundCheckerV2 :
34     public Checker<check::Location> {
35   mutable std::unique_ptr<BuiltinBug> BT;
36   mutable std::unique_ptr<BugType> TaintBT;
37 
38   enum OOB_Kind { OOB_Precedes, OOB_Excedes };
39 
40   void reportOOB(CheckerContext &C, ProgramStateRef errorState,
41                  OOB_Kind kind) const;
42   void reportTaintOOB(CheckerContext &C, ProgramStateRef errorState,
43                       SVal TaintedSVal) const;
44 
45 public:
46   void checkLocation(SVal l, bool isLoad, const Stmt*S,
47                      CheckerContext &C) const;
48 };
49 
50 // FIXME: Eventually replace RegionRawOffset with this class.
51 class RegionRawOffsetV2 {
52 private:
53   const SubRegion *baseRegion;
54   SVal byteOffset;
55 
56   RegionRawOffsetV2()
57     : baseRegion(nullptr), byteOffset(UnknownVal()) {}
58 
59 public:
60   RegionRawOffsetV2(const SubRegion* base, SVal offset)
61     : baseRegion(base), byteOffset(offset) {}
62 
63   NonLoc getByteOffset() const { return byteOffset.castAs<NonLoc>(); }
64   const SubRegion *getRegion() const { return baseRegion; }
65 
66   static RegionRawOffsetV2 computeOffset(ProgramStateRef state,
67                                          SValBuilder &svalBuilder,
68                                          SVal location);
69 
70   void dump() const;
71   void dumpToStream(raw_ostream &os) const;
72 };
73 }
74 
75 static SVal computeExtentBegin(SValBuilder &svalBuilder,
76                                const MemRegion *region) {
77   const MemSpaceRegion *SR = region->getMemorySpace();
78   if (SR->getKind() == MemRegion::UnknownSpaceRegionKind)
79     return UnknownVal();
80   else
81     return svalBuilder.makeZeroArrayIndex();
82 }
83 
84 // TODO: once the constraint manager is smart enough to handle non simplified
85 // symbolic expressions remove this function. Note that this can not be used in
86 // the constraint manager as is, since this does not handle overflows. It is
87 // safe to assume, however, that memory offsets will not overflow.
88 static std::pair<NonLoc, nonloc::ConcreteInt>
89 getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
90                      SValBuilder &svalBuilder) {
91   std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
92   if (SymVal && SymVal->isExpression()) {
93     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
94       llvm::APSInt constant =
95           APSIntType(extent.getValue()).convert(SIE->getRHS());
96       switch (SIE->getOpcode()) {
97       case BO_Mul:
98         // The constant should never be 0 here, since it the result of scaling
99         // based on the size of a type which is never 0.
100         if ((extent.getValue() % constant) != 0)
101           return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
102         else
103           return getSimplifiedOffsets(
104               nonloc::SymbolVal(SIE->getLHS()),
105               svalBuilder.makeIntVal(extent.getValue() / constant),
106               svalBuilder);
107       case BO_Add:
108         return getSimplifiedOffsets(
109             nonloc::SymbolVal(SIE->getLHS()),
110             svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
111       default:
112         break;
113       }
114     }
115   }
116 
117   return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
118 }
119 
120 void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
121                                         const Stmt* LoadS,
122                                         CheckerContext &checkerContext) const {
123 
124   // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
125   // some new logic here that reasons directly about memory region extents.
126   // Once that logic is more mature, we can bring it back to assumeInBound()
127   // for all clients to use.
128   //
129   // The algorithm we are using here for bounds checking is to see if the
130   // memory access is within the extent of the base region.  Since we
131   // have some flexibility in defining the base region, we can achieve
132   // various levels of conservatism in our buffer overflow checking.
133   ProgramStateRef state = checkerContext.getState();
134 
135   SValBuilder &svalBuilder = checkerContext.getSValBuilder();
136   const RegionRawOffsetV2 &rawOffset =
137     RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
138 
139   if (!rawOffset.getRegion())
140     return;
141 
142   NonLoc rawOffsetVal = rawOffset.getByteOffset();
143 
144   // CHECK LOWER BOUND: Is byteOffset < extent begin?
145   //  If so, we are doing a load/store
146   //  before the first valid offset in the memory region.
147 
148   SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion());
149 
150   if (std::optional<NonLoc> NV = extentBegin.getAs<NonLoc>()) {
151     if (auto ConcreteNV = NV->getAs<nonloc::ConcreteInt>()) {
152       std::pair<NonLoc, nonloc::ConcreteInt> simplifiedOffsets =
153           getSimplifiedOffsets(rawOffset.getByteOffset(), *ConcreteNV,
154                                svalBuilder);
155       rawOffsetVal = simplifiedOffsets.first;
156       *NV = simplifiedOffsets.second;
157     }
158 
159     SVal lowerBound = svalBuilder.evalBinOpNN(state, BO_LT, rawOffsetVal, *NV,
160                                               svalBuilder.getConditionType());
161 
162     std::optional<NonLoc> lowerBoundToCheck = lowerBound.getAs<NonLoc>();
163     if (!lowerBoundToCheck)
164       return;
165 
166     ProgramStateRef state_precedesLowerBound, state_withinLowerBound;
167     std::tie(state_precedesLowerBound, state_withinLowerBound) =
168       state->assume(*lowerBoundToCheck);
169 
170     // Are we constrained enough to definitely precede the lower bound?
171     if (state_precedesLowerBound && !state_withinLowerBound) {
172       reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
173       return;
174     }
175 
176     // Otherwise, assume the constraint of the lower bound.
177     assert(state_withinLowerBound);
178     state = state_withinLowerBound;
179   }
180 
181   do {
182     // CHECK UPPER BOUND: Is byteOffset >= size(baseRegion)?  If so,
183     // we are doing a load/store after the last valid offset.
184     const MemRegion *MR = rawOffset.getRegion();
185     DefinedOrUnknownSVal Size = getDynamicExtent(state, MR, svalBuilder);
186     if (!isa<NonLoc>(Size))
187       break;
188 
189     if (auto ConcreteSize = Size.getAs<nonloc::ConcreteInt>()) {
190       std::pair<NonLoc, nonloc::ConcreteInt> simplifiedOffsets =
191           getSimplifiedOffsets(rawOffset.getByteOffset(), *ConcreteSize,
192                                svalBuilder);
193       rawOffsetVal = simplifiedOffsets.first;
194       Size = simplifiedOffsets.second;
195     }
196 
197     SVal upperbound = svalBuilder.evalBinOpNN(state, BO_GE, rawOffsetVal,
198                                               Size.castAs<NonLoc>(),
199                                               svalBuilder.getConditionType());
200 
201     std::optional<NonLoc> upperboundToCheck = upperbound.getAs<NonLoc>();
202     if (!upperboundToCheck)
203       break;
204 
205     ProgramStateRef state_exceedsUpperBound, state_withinUpperBound;
206     std::tie(state_exceedsUpperBound, state_withinUpperBound) =
207       state->assume(*upperboundToCheck);
208 
209     // If we are under constrained and the index variables are tainted, report.
210     if (state_exceedsUpperBound && state_withinUpperBound) {
211       SVal ByteOffset = rawOffset.getByteOffset();
212       if (isTainted(state, ByteOffset)) {
213         reportTaintOOB(checkerContext, state_exceedsUpperBound, ByteOffset);
214         return;
215       }
216     } else if (state_exceedsUpperBound) {
217       // If we are constrained enough to definitely exceed the upper bound,
218       // report.
219       assert(!state_withinUpperBound);
220       reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
221       return;
222     }
223 
224     assert(state_withinUpperBound);
225     state = state_withinUpperBound;
226   }
227   while (false);
228 
229   checkerContext.addTransition(state);
230 }
231 void ArrayBoundCheckerV2::reportTaintOOB(CheckerContext &checkerContext,
232                                          ProgramStateRef errorState,
233                                          SVal TaintedSVal) const {
234   ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
235   if (!errorNode)
236     return;
237 
238   if (!TaintBT)
239     TaintBT.reset(
240         new BugType(this, "Out-of-bound access", categories::TaintedData));
241 
242   SmallString<256> buf;
243   llvm::raw_svector_ostream os(buf);
244   os << "Out of bound memory access (index is tainted)";
245   auto BR =
246       std::make_unique<PathSensitiveBugReport>(*TaintBT, os.str(), errorNode);
247 
248   // Track back the propagation of taintedness.
249   for (SymbolRef Sym : getTaintedSymbols(errorState, TaintedSVal)) {
250     BR->markInteresting(Sym);
251   }
252 
253   checkerContext.emitReport(std::move(BR));
254 }
255 
256 void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
257                                     ProgramStateRef errorState,
258                                     OOB_Kind kind) const {
259 
260   ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
261   if (!errorNode)
262     return;
263 
264   if (!BT)
265     BT.reset(new BuiltinBug(this, "Out-of-bound access"));
266 
267   // FIXME: This diagnostics are preliminary.  We should get far better
268   // diagnostics for explaining buffer overruns.
269 
270   SmallString<256> buf;
271   llvm::raw_svector_ostream os(buf);
272   os << "Out of bound memory access ";
273   switch (kind) {
274   case OOB_Precedes:
275     os << "(accessed memory precedes memory block)";
276     break;
277   case OOB_Excedes:
278     os << "(access exceeds upper limit of memory block)";
279     break;
280   }
281   auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode);
282   checkerContext.emitReport(std::move(BR));
283 }
284 
285 #ifndef NDEBUG
286 LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const {
287   dumpToStream(llvm::errs());
288 }
289 
290 void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
291   os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
292 }
293 #endif
294 
295 // Lazily computes a value to be used by 'computeOffset'.  If 'val'
296 // is unknown or undefined, we lazily substitute '0'.  Otherwise,
297 // return 'val'.
298 static inline SVal getValue(SVal val, SValBuilder &svalBuilder) {
299   return val.isUndef() ? svalBuilder.makeZeroArrayIndex() : val;
300 }
301 
302 // Scale a base value by a scaling factor, and return the scaled
303 // value as an SVal.  Used by 'computeOffset'.
304 static inline SVal scaleValue(ProgramStateRef state,
305                               NonLoc baseVal, CharUnits scaling,
306                               SValBuilder &sb) {
307   return sb.evalBinOpNN(state, BO_Mul, baseVal,
308                         sb.makeArrayIndex(scaling.getQuantity()),
309                         sb.getArrayIndexType());
310 }
311 
312 // Add an SVal to another, treating unknown and undefined values as
313 // summing to UnknownVal.  Used by 'computeOffset'.
314 static SVal addValue(ProgramStateRef state, SVal x, SVal y,
315                      SValBuilder &svalBuilder) {
316   // We treat UnknownVals and UndefinedVals the same here because we
317   // only care about computing offsets.
318   if (x.isUnknownOrUndef() || y.isUnknownOrUndef())
319     return UnknownVal();
320 
321   return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs<NonLoc>(),
322                                  y.castAs<NonLoc>(),
323                                  svalBuilder.getArrayIndexType());
324 }
325 
326 /// Compute a raw byte offset from a base region.  Used for array bounds
327 /// checking.
328 RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state,
329                                                    SValBuilder &svalBuilder,
330                                                    SVal location)
331 {
332   const MemRegion *region = location.getAsRegion();
333   SVal offset = UndefinedVal();
334 
335   while (region) {
336     switch (region->getKind()) {
337       default: {
338         if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) {
339           offset = getValue(offset, svalBuilder);
340           if (!offset.isUnknownOrUndef())
341             return RegionRawOffsetV2(subReg, offset);
342         }
343         return RegionRawOffsetV2();
344       }
345       case MemRegion::ElementRegionKind: {
346         const ElementRegion *elemReg = cast<ElementRegion>(region);
347         SVal index = elemReg->getIndex();
348         if (!isa<NonLoc>(index))
349           return RegionRawOffsetV2();
350         QualType elemType = elemReg->getElementType();
351         // If the element is an incomplete type, go no further.
352         ASTContext &astContext = svalBuilder.getContext();
353         if (elemType->isIncompleteType())
354           return RegionRawOffsetV2();
355 
356         // Update the offset.
357         offset = addValue(state,
358                           getValue(offset, svalBuilder),
359                           scaleValue(state,
360                           index.castAs<NonLoc>(),
361                           astContext.getTypeSizeInChars(elemType),
362                           svalBuilder),
363                           svalBuilder);
364 
365         if (offset.isUnknownOrUndef())
366           return RegionRawOffsetV2();
367 
368         region = elemReg->getSuperRegion();
369         continue;
370       }
371     }
372   }
373   return RegionRawOffsetV2();
374 }
375 
376 void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
377   mgr.registerChecker<ArrayBoundCheckerV2>();
378 }
379 
380 bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
381   return true;
382 }
383