xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp (revision 20829c90be03ed873e445d570bc3503c9f6af3b1)
1 //== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines ArrayBoundCheckerV2, which is a path-sensitive check
11 // which looks for an out-of-bound array element access.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "clang/StaticAnalyzer/Core/Checker.h"
17 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
18 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
19 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
21 #include "clang/AST/CharUnits.h"
22 
23 using namespace clang;
24 using namespace ento;
25 
26 namespace {
27 class ArrayBoundCheckerV2 :
28     public Checker<check::Location> {
29   mutable llvm::OwningPtr<BuiltinBug> BT;
30 
31   enum OOB_Kind { OOB_Precedes, OOB_Excedes };
32 
33   void reportOOB(CheckerContext &C, const ProgramState *errorState,
34                  OOB_Kind kind) const;
35 
36 public:
37   void checkLocation(SVal l, bool isLoad, const Stmt*S,
38                      CheckerContext &C) const;
39 };
40 
41 // FIXME: Eventually replace RegionRawOffset with this class.
42 class RegionRawOffsetV2 {
43 private:
44   const SubRegion *baseRegion;
45   SVal byteOffset;
46 
47   RegionRawOffsetV2()
48     : baseRegion(0), byteOffset(UnknownVal()) {}
49 
50 public:
51   RegionRawOffsetV2(const SubRegion* base, SVal offset)
52     : baseRegion(base), byteOffset(offset) {}
53 
54   NonLoc getByteOffset() const { return cast<NonLoc>(byteOffset); }
55   const SubRegion *getRegion() const { return baseRegion; }
56 
57   static RegionRawOffsetV2 computeOffset(const ProgramState *state,
58                                          SValBuilder &svalBuilder,
59                                          SVal location);
60 
61   void dump() const;
62   void dumpToStream(raw_ostream &os) const;
63 };
64 }
65 
66 static SVal computeExtentBegin(SValBuilder &svalBuilder,
67                                const MemRegion *region) {
68   while (true)
69     switch (region->getKind()) {
70       default:
71         return svalBuilder.makeZeroArrayIndex();
72       case MemRegion::SymbolicRegionKind:
73         // FIXME: improve this later by tracking symbolic lower bounds
74         // for symbolic regions.
75         return UnknownVal();
76       case MemRegion::ElementRegionKind:
77         region = cast<SubRegion>(region)->getSuperRegion();
78         continue;
79     }
80 }
81 
82 void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
83                                         const Stmt* LoadS,
84                                         CheckerContext &checkerContext) const {
85 
86   // NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
87   // some new logic here that reasons directly about memory region extents.
88   // Once that logic is more mature, we can bring it back to assumeInBound()
89   // for all clients to use.
90   //
91   // The algorithm we are using here for bounds checking is to see if the
92   // memory access is within the extent of the base region.  Since we
93   // have some flexibility in defining the base region, we can achieve
94   // various levels of conservatism in our buffer overflow checking.
95   const ProgramState *state = checkerContext.getState();
96   const ProgramState *originalState = state;
97 
98   SValBuilder &svalBuilder = checkerContext.getSValBuilder();
99   const RegionRawOffsetV2 &rawOffset =
100     RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
101 
102   if (!rawOffset.getRegion())
103     return;
104 
105   // CHECK LOWER BOUND: Is byteOffset < extent begin?
106   //  If so, we are doing a load/store
107   //  before the first valid offset in the memory region.
108 
109   SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion());
110 
111   if (isa<NonLoc>(extentBegin)) {
112     SVal lowerBound
113       = svalBuilder.evalBinOpNN(state, BO_LT, rawOffset.getByteOffset(),
114                                 cast<NonLoc>(extentBegin),
115                                 svalBuilder.getConditionType());
116 
117     NonLoc *lowerBoundToCheck = dyn_cast<NonLoc>(&lowerBound);
118     if (!lowerBoundToCheck)
119       return;
120 
121     const ProgramState *state_precedesLowerBound, *state_withinLowerBound;
122     llvm::tie(state_precedesLowerBound, state_withinLowerBound) =
123       state->assume(*lowerBoundToCheck);
124 
125     // Are we constrained enough to definitely precede the lower bound?
126     if (state_precedesLowerBound && !state_withinLowerBound) {
127       reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
128       return;
129     }
130 
131     // Otherwise, assume the constraint of the lower bound.
132     assert(state_withinLowerBound);
133     state = state_withinLowerBound;
134   }
135 
136   do {
137     // CHECK UPPER BOUND: Is byteOffset >= extent(baseRegion)?  If so,
138     // we are doing a load/store after the last valid offset.
139     DefinedOrUnknownSVal extentVal =
140       rawOffset.getRegion()->getExtent(svalBuilder);
141     if (!isa<NonLoc>(extentVal))
142       break;
143 
144     SVal upperbound
145       = svalBuilder.evalBinOpNN(state, BO_GE, rawOffset.getByteOffset(),
146                                 cast<NonLoc>(extentVal),
147                                 svalBuilder.getConditionType());
148 
149     NonLoc *upperboundToCheck = dyn_cast<NonLoc>(&upperbound);
150     if (!upperboundToCheck)
151       break;
152 
153     const ProgramState *state_exceedsUpperBound, *state_withinUpperBound;
154     llvm::tie(state_exceedsUpperBound, state_withinUpperBound) =
155       state->assume(*upperboundToCheck);
156 
157     // If we are under constrained and the index variables are tainted, report.
158     if (state_exceedsUpperBound && state_withinUpperBound) {
159       if (state->isTainted(rawOffset.getByteOffset()))
160         reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
161         return;
162     }
163 
164     // If we are constrained enough to definitely exceed the upper bound, report.
165     if (state_exceedsUpperBound) {
166       assert(!state_withinUpperBound);
167       reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
168       return;
169     }
170 
171     assert(state_withinUpperBound);
172     state = state_withinUpperBound;
173   }
174   while (false);
175 
176   if (state != originalState)
177     checkerContext.addTransition(state);
178 }
179 
180 void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
181                                     const ProgramState *errorState,
182                                     OOB_Kind kind) const {
183 
184   ExplodedNode *errorNode = checkerContext.generateSink(errorState);
185   if (!errorNode)
186     return;
187 
188   if (!BT)
189     BT.reset(new BuiltinBug("Out-of-bound access"));
190 
191   // FIXME: This diagnostics are preliminary.  We should get far better
192   // diagnostics for explaining buffer overruns.
193 
194   llvm::SmallString<256> buf;
195   llvm::raw_svector_ostream os(buf);
196   os << "Out of bound memory access "
197      << (kind == OOB_Precedes ? "(accessed memory precedes memory block)"
198                               : "(access exceeds upper limit of memory block)");
199 
200   checkerContext.EmitReport(new BugReport(*BT, os.str(), errorNode));
201 }
202 
203 void RegionRawOffsetV2::dump() const {
204   dumpToStream(llvm::errs());
205 }
206 
207 void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
208   os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
209 }
210 
211 // FIXME: Merge with the implementation of the same method in Store.cpp
212 static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
213   if (const RecordType *RT = Ty->getAs<RecordType>()) {
214     const RecordDecl *D = RT->getDecl();
215     if (!D->getDefinition())
216       return false;
217   }
218 
219   return true;
220 }
221 
222 
223 // Lazily computes a value to be used by 'computeOffset'.  If 'val'
224 // is unknown or undefined, we lazily substitute '0'.  Otherwise,
225 // return 'val'.
226 static inline SVal getValue(SVal val, SValBuilder &svalBuilder) {
227   return isa<UndefinedVal>(val) ? svalBuilder.makeArrayIndex(0) : val;
228 }
229 
230 // Scale a base value by a scaling factor, and return the scaled
231 // value as an SVal.  Used by 'computeOffset'.
232 static inline SVal scaleValue(const ProgramState *state,
233                               NonLoc baseVal, CharUnits scaling,
234                               SValBuilder &sb) {
235   return sb.evalBinOpNN(state, BO_Mul, baseVal,
236                         sb.makeArrayIndex(scaling.getQuantity()),
237                         sb.getArrayIndexType());
238 }
239 
240 // Add an SVal to another, treating unknown and undefined values as
241 // summing to UnknownVal.  Used by 'computeOffset'.
242 static SVal addValue(const ProgramState *state, SVal x, SVal y,
243                      SValBuilder &svalBuilder) {
244   // We treat UnknownVals and UndefinedVals the same here because we
245   // only care about computing offsets.
246   if (x.isUnknownOrUndef() || y.isUnknownOrUndef())
247     return UnknownVal();
248 
249   return svalBuilder.evalBinOpNN(state, BO_Add,
250                                  cast<NonLoc>(x), cast<NonLoc>(y),
251                                  svalBuilder.getArrayIndexType());
252 }
253 
254 /// Compute a raw byte offset from a base region.  Used for array bounds
255 /// checking.
256 RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(const ProgramState *state,
257                                                    SValBuilder &svalBuilder,
258                                                    SVal location)
259 {
260   const MemRegion *region = location.getAsRegion();
261   SVal offset = UndefinedVal();
262 
263   while (region) {
264     switch (region->getKind()) {
265       default: {
266         if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) {
267           offset = getValue(offset, svalBuilder);
268           if (!offset.isUnknownOrUndef())
269             return RegionRawOffsetV2(subReg, offset);
270         }
271         return RegionRawOffsetV2();
272       }
273       case MemRegion::ElementRegionKind: {
274         const ElementRegion *elemReg = cast<ElementRegion>(region);
275         SVal index = elemReg->getIndex();
276         if (!isa<NonLoc>(index))
277           return RegionRawOffsetV2();
278         QualType elemType = elemReg->getElementType();
279         // If the element is an incomplete type, go no further.
280         ASTContext &astContext = svalBuilder.getContext();
281         if (!IsCompleteType(astContext, elemType))
282           return RegionRawOffsetV2();
283 
284         // Update the offset.
285         offset = addValue(state,
286                           getValue(offset, svalBuilder),
287                           scaleValue(state,
288                           cast<NonLoc>(index),
289                           astContext.getTypeSizeInChars(elemType),
290                           svalBuilder),
291                           svalBuilder);
292 
293         if (offset.isUnknownOrUndef())
294           return RegionRawOffsetV2();
295 
296         region = elemReg->getSuperRegion();
297         continue;
298       }
299     }
300   }
301   return RegionRawOffsetV2();
302 }
303 
304 
305 void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
306   mgr.registerChecker<ArrayBoundCheckerV2>();
307 }
308