xref: /llvm-project/clang/lib/Sema/SemaType.cpp (revision d3daa3c4435a54f7876d0ced81787fea92e77d08)
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/LocInfoType.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeLocVisitor.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/Specifiers.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Lookup.h"
37 #include "clang/Sema/ParsedAttr.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaCUDA.h"
41 #include "clang/Sema/SemaHLSL.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "clang/Sema/SemaObjC.h"
44 #include "clang/Sema/SemaOpenMP.h"
45 #include "clang/Sema/Template.h"
46 #include "clang/Sema/TemplateInstCallback.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/STLForwardCompat.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include <bitset>
56 #include <optional>
57 
58 using namespace clang;
59 
60 enum TypeDiagSelector {
61   TDS_Function,
62   TDS_Pointer,
63   TDS_ObjCObjOrBlock
64 };
65 
66 /// isOmittedBlockReturnType - Return true if this declarator is missing a
67 /// return type because this is a omitted return type on a block literal.
68 static bool isOmittedBlockReturnType(const Declarator &D) {
69   if (D.getContext() != DeclaratorContext::BlockLiteral ||
70       D.getDeclSpec().hasTypeSpecifier())
71     return false;
72 
73   if (D.getNumTypeObjects() == 0)
74     return true;   // ^{ ... }
75 
76   if (D.getNumTypeObjects() == 1 &&
77       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
78     return true;   // ^(int X, float Y) { ... }
79 
80   return false;
81 }
82 
83 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
84 /// doesn't apply to the given type.
85 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
86                                      QualType type) {
87   TypeDiagSelector WhichType;
88   bool useExpansionLoc = true;
89   switch (attr.getKind()) {
90   case ParsedAttr::AT_ObjCGC:
91     WhichType = TDS_Pointer;
92     break;
93   case ParsedAttr::AT_ObjCOwnership:
94     WhichType = TDS_ObjCObjOrBlock;
95     break;
96   default:
97     // Assume everything else was a function attribute.
98     WhichType = TDS_Function;
99     useExpansionLoc = false;
100     break;
101   }
102 
103   SourceLocation loc = attr.getLoc();
104   StringRef name = attr.getAttrName()->getName();
105 
106   // The GC attributes are usually written with macros;  special-case them.
107   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
108                                           : nullptr;
109   if (useExpansionLoc && loc.isMacroID() && II) {
110     if (II->isStr("strong")) {
111       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
112     } else if (II->isStr("weak")) {
113       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
114     }
115   }
116 
117   S.Diag(loc, attr.isRegularKeywordAttribute()
118                   ? diag::err_type_attribute_wrong_type
119                   : diag::warn_type_attribute_wrong_type)
120       << name << WhichType << type;
121 }
122 
123 // objc_gc applies to Objective-C pointers or, otherwise, to the
124 // smallest available pointer type (i.e. 'void*' in 'void**').
125 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
126   case ParsedAttr::AT_ObjCGC:                                                  \
127   case ParsedAttr::AT_ObjCOwnership
128 
129 // Calling convention attributes.
130 #define CALLING_CONV_ATTRS_CASELIST                                            \
131   case ParsedAttr::AT_CDecl:                                                   \
132   case ParsedAttr::AT_FastCall:                                                \
133   case ParsedAttr::AT_StdCall:                                                 \
134   case ParsedAttr::AT_ThisCall:                                                \
135   case ParsedAttr::AT_RegCall:                                                 \
136   case ParsedAttr::AT_Pascal:                                                  \
137   case ParsedAttr::AT_SwiftCall:                                               \
138   case ParsedAttr::AT_SwiftAsyncCall:                                          \
139   case ParsedAttr::AT_VectorCall:                                              \
140   case ParsedAttr::AT_AArch64VectorPcs:                                        \
141   case ParsedAttr::AT_AArch64SVEPcs:                                           \
142   case ParsedAttr::AT_AMDGPUKernelCall:                                        \
143   case ParsedAttr::AT_MSABI:                                                   \
144   case ParsedAttr::AT_SysVABI:                                                 \
145   case ParsedAttr::AT_Pcs:                                                     \
146   case ParsedAttr::AT_IntelOclBicc:                                            \
147   case ParsedAttr::AT_PreserveMost:                                            \
148   case ParsedAttr::AT_PreserveAll:                                             \
149   case ParsedAttr::AT_M68kRTD:                                                 \
150   case ParsedAttr::AT_PreserveNone:                                            \
151   case ParsedAttr::AT_RISCVVectorCC
152 
153 // Function type attributes.
154 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
155   case ParsedAttr::AT_NSReturnsRetained:                                       \
156   case ParsedAttr::AT_NoReturn:                                                \
157   case ParsedAttr::AT_NonBlocking:                                             \
158   case ParsedAttr::AT_NonAllocating:                                           \
159   case ParsedAttr::AT_Blocking:                                                \
160   case ParsedAttr::AT_Allocating:                                              \
161   case ParsedAttr::AT_Regparm:                                                 \
162   case ParsedAttr::AT_CmseNSCall:                                              \
163   case ParsedAttr::AT_ArmStreaming:                                            \
164   case ParsedAttr::AT_ArmStreamingCompatible:                                  \
165   case ParsedAttr::AT_ArmPreserves:                                            \
166   case ParsedAttr::AT_ArmIn:                                                   \
167   case ParsedAttr::AT_ArmOut:                                                  \
168   case ParsedAttr::AT_ArmInOut:                                                \
169   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
170   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
171     CALLING_CONV_ATTRS_CASELIST
172 
173 // Microsoft-specific type qualifiers.
174 #define MS_TYPE_ATTRS_CASELIST                                                 \
175   case ParsedAttr::AT_Ptr32:                                                   \
176   case ParsedAttr::AT_Ptr64:                                                   \
177   case ParsedAttr::AT_SPtr:                                                    \
178   case ParsedAttr::AT_UPtr
179 
180 // Nullability qualifiers.
181 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
182   case ParsedAttr::AT_TypeNonNull:                                             \
183   case ParsedAttr::AT_TypeNullable:                                            \
184   case ParsedAttr::AT_TypeNullableResult:                                      \
185   case ParsedAttr::AT_TypeNullUnspecified
186 
187 namespace {
188   /// An object which stores processing state for the entire
189   /// GetTypeForDeclarator process.
190   class TypeProcessingState {
191     Sema &sema;
192 
193     /// The declarator being processed.
194     Declarator &declarator;
195 
196     /// The index of the declarator chunk we're currently processing.
197     /// May be the total number of valid chunks, indicating the
198     /// DeclSpec.
199     unsigned chunkIndex;
200 
201     /// The original set of attributes on the DeclSpec.
202     SmallVector<ParsedAttr *, 2> savedAttrs;
203 
204     /// A list of attributes to diagnose the uselessness of when the
205     /// processing is complete.
206     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
207 
208     /// Attributes corresponding to AttributedTypeLocs that we have not yet
209     /// populated.
210     // FIXME: The two-phase mechanism by which we construct Types and fill
211     // their TypeLocs makes it hard to correctly assign these. We keep the
212     // attributes in creation order as an attempt to make them line up
213     // properly.
214     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
215     SmallVector<TypeAttrPair, 8> AttrsForTypes;
216     bool AttrsForTypesSorted = true;
217 
218     /// MacroQualifiedTypes mapping to macro expansion locations that will be
219     /// stored in a MacroQualifiedTypeLoc.
220     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
221 
222     /// Flag to indicate we parsed a noderef attribute. This is used for
223     /// validating that noderef was used on a pointer or array.
224     bool parsedNoDeref;
225 
226     // Flag to indicate that we already parsed a HLSL parameter modifier
227     // attribute. This prevents double-mutating the type.
228     bool ParsedHLSLParamMod;
229 
230   public:
231     TypeProcessingState(Sema &sema, Declarator &declarator)
232         : sema(sema), declarator(declarator),
233           chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false),
234           ParsedHLSLParamMod(false) {}
235 
236     Sema &getSema() const {
237       return sema;
238     }
239 
240     Declarator &getDeclarator() const {
241       return declarator;
242     }
243 
244     bool isProcessingDeclSpec() const {
245       return chunkIndex == declarator.getNumTypeObjects();
246     }
247 
248     unsigned getCurrentChunkIndex() const {
249       return chunkIndex;
250     }
251 
252     void setCurrentChunkIndex(unsigned idx) {
253       assert(idx <= declarator.getNumTypeObjects());
254       chunkIndex = idx;
255     }
256 
257     ParsedAttributesView &getCurrentAttributes() const {
258       if (isProcessingDeclSpec())
259         return getMutableDeclSpec().getAttributes();
260       return declarator.getTypeObject(chunkIndex).getAttrs();
261     }
262 
263     /// Save the current set of attributes on the DeclSpec.
264     void saveDeclSpecAttrs() {
265       // Don't try to save them multiple times.
266       if (!savedAttrs.empty())
267         return;
268 
269       DeclSpec &spec = getMutableDeclSpec();
270       llvm::append_range(savedAttrs,
271                          llvm::make_pointer_range(spec.getAttributes()));
272     }
273 
274     /// Record that we had nowhere to put the given type attribute.
275     /// We will diagnose such attributes later.
276     void addIgnoredTypeAttr(ParsedAttr &attr) {
277       ignoredTypeAttrs.push_back(&attr);
278     }
279 
280     /// Diagnose all the ignored type attributes, given that the
281     /// declarator worked out to the given type.
282     void diagnoseIgnoredTypeAttrs(QualType type) const {
283       for (auto *Attr : ignoredTypeAttrs)
284         diagnoseBadTypeAttribute(getSema(), *Attr, type);
285     }
286 
287     /// Get an attributed type for the given attribute, and remember the Attr
288     /// object so that we can attach it to the AttributedTypeLoc.
289     QualType getAttributedType(Attr *A, QualType ModifiedType,
290                                QualType EquivType) {
291       QualType T =
292           sema.Context.getAttributedType(A, ModifiedType, EquivType);
293       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
294       AttrsForTypesSorted = false;
295       return T;
296     }
297 
298     /// Get a BTFTagAttributed type for the btf_type_tag attribute.
299     QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
300                                      QualType WrappedType) {
301       return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
302     }
303 
304     /// Completely replace the \c auto in \p TypeWithAuto by
305     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
306     /// necessary.
307     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
308       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
309       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
310         // Attributed type still should be an attributed type after replacement.
311         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
312         for (TypeAttrPair &A : AttrsForTypes) {
313           if (A.first == AttrTy)
314             A.first = NewAttrTy;
315         }
316         AttrsForTypesSorted = false;
317       }
318       return T;
319     }
320 
321     /// Extract and remove the Attr* for a given attributed type.
322     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
323       if (!AttrsForTypesSorted) {
324         llvm::stable_sort(AttrsForTypes, llvm::less_first());
325         AttrsForTypesSorted = true;
326       }
327 
328       // FIXME: This is quadratic if we have lots of reuses of the same
329       // attributed type.
330       for (auto It = std::partition_point(
331                AttrsForTypes.begin(), AttrsForTypes.end(),
332                [=](const TypeAttrPair &A) { return A.first < AT; });
333            It != AttrsForTypes.end() && It->first == AT; ++It) {
334         if (It->second) {
335           const Attr *Result = It->second;
336           It->second = nullptr;
337           return Result;
338         }
339       }
340 
341       llvm_unreachable("no Attr* for AttributedType*");
342     }
343 
344     SourceLocation
345     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
346       auto FoundLoc = LocsForMacros.find(MQT);
347       assert(FoundLoc != LocsForMacros.end() &&
348              "Unable to find macro expansion location for MacroQualifedType");
349       return FoundLoc->second;
350     }
351 
352     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
353                                               SourceLocation Loc) {
354       LocsForMacros[MQT] = Loc;
355     }
356 
357     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
358 
359     bool didParseNoDeref() const { return parsedNoDeref; }
360 
361     void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; }
362 
363     bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; }
364 
365     ~TypeProcessingState() {
366       if (savedAttrs.empty())
367         return;
368 
369       getMutableDeclSpec().getAttributes().clearListOnly();
370       for (ParsedAttr *AL : savedAttrs)
371         getMutableDeclSpec().getAttributes().addAtEnd(AL);
372     }
373 
374   private:
375     DeclSpec &getMutableDeclSpec() const {
376       return const_cast<DeclSpec&>(declarator.getDeclSpec());
377     }
378   };
379 } // end anonymous namespace
380 
381 static void moveAttrFromListToList(ParsedAttr &attr,
382                                    ParsedAttributesView &fromList,
383                                    ParsedAttributesView &toList) {
384   fromList.remove(&attr);
385   toList.addAtEnd(&attr);
386 }
387 
388 /// The location of a type attribute.
389 enum TypeAttrLocation {
390   /// The attribute is in the decl-specifier-seq.
391   TAL_DeclSpec,
392   /// The attribute is part of a DeclaratorChunk.
393   TAL_DeclChunk,
394   /// The attribute is immediately after the declaration's name.
395   TAL_DeclName
396 };
397 
398 static void
399 processTypeAttrs(TypeProcessingState &state, QualType &type,
400                  TypeAttrLocation TAL, const ParsedAttributesView &attrs,
401                  CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
402 
403 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
404                                    QualType &type, CUDAFunctionTarget CFT);
405 
406 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
407                                              ParsedAttr &attr, QualType &type);
408 
409 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
410                                  QualType &type);
411 
412 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
413                                         ParsedAttr &attr, QualType &type);
414 
415 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
416                                       ParsedAttr &attr, QualType &type) {
417   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
418     return handleObjCGCTypeAttr(state, attr, type);
419   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
420   return handleObjCOwnershipTypeAttr(state, attr, type);
421 }
422 
423 /// Given the index of a declarator chunk, check whether that chunk
424 /// directly specifies the return type of a function and, if so, find
425 /// an appropriate place for it.
426 ///
427 /// \param i - a notional index which the search will start
428 ///   immediately inside
429 ///
430 /// \param onlyBlockPointers Whether we should only look into block
431 /// pointer types (vs. all pointer types).
432 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
433                                                 unsigned i,
434                                                 bool onlyBlockPointers) {
435   assert(i <= declarator.getNumTypeObjects());
436 
437   DeclaratorChunk *result = nullptr;
438 
439   // First, look inwards past parens for a function declarator.
440   for (; i != 0; --i) {
441     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
442     switch (fnChunk.Kind) {
443     case DeclaratorChunk::Paren:
444       continue;
445 
446     // If we find anything except a function, bail out.
447     case DeclaratorChunk::Pointer:
448     case DeclaratorChunk::BlockPointer:
449     case DeclaratorChunk::Array:
450     case DeclaratorChunk::Reference:
451     case DeclaratorChunk::MemberPointer:
452     case DeclaratorChunk::Pipe:
453       return result;
454 
455     // If we do find a function declarator, scan inwards from that,
456     // looking for a (block-)pointer declarator.
457     case DeclaratorChunk::Function:
458       for (--i; i != 0; --i) {
459         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
460         switch (ptrChunk.Kind) {
461         case DeclaratorChunk::Paren:
462         case DeclaratorChunk::Array:
463         case DeclaratorChunk::Function:
464         case DeclaratorChunk::Reference:
465         case DeclaratorChunk::Pipe:
466           continue;
467 
468         case DeclaratorChunk::MemberPointer:
469         case DeclaratorChunk::Pointer:
470           if (onlyBlockPointers)
471             continue;
472 
473           [[fallthrough]];
474 
475         case DeclaratorChunk::BlockPointer:
476           result = &ptrChunk;
477           goto continue_outer;
478         }
479         llvm_unreachable("bad declarator chunk kind");
480       }
481 
482       // If we run out of declarators doing that, we're done.
483       return result;
484     }
485     llvm_unreachable("bad declarator chunk kind");
486 
487     // Okay, reconsider from our new point.
488   continue_outer: ;
489   }
490 
491   // Ran out of chunks, bail out.
492   return result;
493 }
494 
495 /// Given that an objc_gc attribute was written somewhere on a
496 /// declaration *other* than on the declarator itself (for which, use
497 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
498 /// didn't apply in whatever position it was written in, try to move
499 /// it to a more appropriate position.
500 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
501                                           ParsedAttr &attr, QualType type) {
502   Declarator &declarator = state.getDeclarator();
503 
504   // Move it to the outermost normal or block pointer declarator.
505   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
506     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
507     switch (chunk.Kind) {
508     case DeclaratorChunk::Pointer:
509     case DeclaratorChunk::BlockPointer: {
510       // But don't move an ARC ownership attribute to the return type
511       // of a block.
512       DeclaratorChunk *destChunk = nullptr;
513       if (state.isProcessingDeclSpec() &&
514           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
515         destChunk = maybeMovePastReturnType(declarator, i - 1,
516                                             /*onlyBlockPointers=*/true);
517       if (!destChunk) destChunk = &chunk;
518 
519       moveAttrFromListToList(attr, state.getCurrentAttributes(),
520                              destChunk->getAttrs());
521       return;
522     }
523 
524     case DeclaratorChunk::Paren:
525     case DeclaratorChunk::Array:
526       continue;
527 
528     // We may be starting at the return type of a block.
529     case DeclaratorChunk::Function:
530       if (state.isProcessingDeclSpec() &&
531           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
532         if (DeclaratorChunk *dest = maybeMovePastReturnType(
533                                       declarator, i,
534                                       /*onlyBlockPointers=*/true)) {
535           moveAttrFromListToList(attr, state.getCurrentAttributes(),
536                                  dest->getAttrs());
537           return;
538         }
539       }
540       goto error;
541 
542     // Don't walk through these.
543     case DeclaratorChunk::Reference:
544     case DeclaratorChunk::MemberPointer:
545     case DeclaratorChunk::Pipe:
546       goto error;
547     }
548   }
549  error:
550 
551   diagnoseBadTypeAttribute(state.getSema(), attr, type);
552 }
553 
554 /// Distribute an objc_gc type attribute that was written on the
555 /// declarator.
556 static void distributeObjCPointerTypeAttrFromDeclarator(
557     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
558   Declarator &declarator = state.getDeclarator();
559 
560   // objc_gc goes on the innermost pointer to something that's not a
561   // pointer.
562   unsigned innermost = -1U;
563   bool considerDeclSpec = true;
564   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
565     DeclaratorChunk &chunk = declarator.getTypeObject(i);
566     switch (chunk.Kind) {
567     case DeclaratorChunk::Pointer:
568     case DeclaratorChunk::BlockPointer:
569       innermost = i;
570       continue;
571 
572     case DeclaratorChunk::Reference:
573     case DeclaratorChunk::MemberPointer:
574     case DeclaratorChunk::Paren:
575     case DeclaratorChunk::Array:
576     case DeclaratorChunk::Pipe:
577       continue;
578 
579     case DeclaratorChunk::Function:
580       considerDeclSpec = false;
581       goto done;
582     }
583   }
584  done:
585 
586   // That might actually be the decl spec if we weren't blocked by
587   // anything in the declarator.
588   if (considerDeclSpec) {
589     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
590       // Splice the attribute into the decl spec.  Prevents the
591       // attribute from being applied multiple times and gives
592       // the source-location-filler something to work with.
593       state.saveDeclSpecAttrs();
594       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
595           declarator.getAttributes(), &attr);
596       return;
597     }
598   }
599 
600   // Otherwise, if we found an appropriate chunk, splice the attribute
601   // into it.
602   if (innermost != -1U) {
603     moveAttrFromListToList(attr, declarator.getAttributes(),
604                            declarator.getTypeObject(innermost).getAttrs());
605     return;
606   }
607 
608   // Otherwise, diagnose when we're done building the type.
609   declarator.getAttributes().remove(&attr);
610   state.addIgnoredTypeAttr(attr);
611 }
612 
613 /// A function type attribute was written somewhere in a declaration
614 /// *other* than on the declarator itself or in the decl spec.  Given
615 /// that it didn't apply in whatever position it was written in, try
616 /// to move it to a more appropriate position.
617 static void distributeFunctionTypeAttr(TypeProcessingState &state,
618                                        ParsedAttr &attr, QualType type) {
619   Declarator &declarator = state.getDeclarator();
620 
621   // Try to push the attribute from the return type of a function to
622   // the function itself.
623   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
624     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
625     switch (chunk.Kind) {
626     case DeclaratorChunk::Function:
627       moveAttrFromListToList(attr, state.getCurrentAttributes(),
628                              chunk.getAttrs());
629       return;
630 
631     case DeclaratorChunk::Paren:
632     case DeclaratorChunk::Pointer:
633     case DeclaratorChunk::BlockPointer:
634     case DeclaratorChunk::Array:
635     case DeclaratorChunk::Reference:
636     case DeclaratorChunk::MemberPointer:
637     case DeclaratorChunk::Pipe:
638       continue;
639     }
640   }
641 
642   diagnoseBadTypeAttribute(state.getSema(), attr, type);
643 }
644 
645 /// Try to distribute a function type attribute to the innermost
646 /// function chunk or type.  Returns true if the attribute was
647 /// distributed, false if no location was found.
648 static bool distributeFunctionTypeAttrToInnermost(
649     TypeProcessingState &state, ParsedAttr &attr,
650     ParsedAttributesView &attrList, QualType &declSpecType,
651     CUDAFunctionTarget CFT) {
652   Declarator &declarator = state.getDeclarator();
653 
654   // Put it on the innermost function chunk, if there is one.
655   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
656     DeclaratorChunk &chunk = declarator.getTypeObject(i);
657     if (chunk.Kind != DeclaratorChunk::Function) continue;
658 
659     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
660     return true;
661   }
662 
663   return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
664 }
665 
666 /// A function type attribute was written in the decl spec.  Try to
667 /// apply it somewhere.
668 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
669                                                    ParsedAttr &attr,
670                                                    QualType &declSpecType,
671                                                    CUDAFunctionTarget CFT) {
672   state.saveDeclSpecAttrs();
673 
674   // Try to distribute to the innermost.
675   if (distributeFunctionTypeAttrToInnermost(
676           state, attr, state.getCurrentAttributes(), declSpecType, CFT))
677     return;
678 
679   // If that failed, diagnose the bad attribute when the declarator is
680   // fully built.
681   state.addIgnoredTypeAttr(attr);
682 }
683 
684 /// A function type attribute was written on the declarator or declaration.
685 /// Try to apply it somewhere.
686 /// `Attrs` is the attribute list containing the declaration (either of the
687 /// declarator or the declaration).
688 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
689                                                      ParsedAttr &attr,
690                                                      QualType &declSpecType,
691                                                      CUDAFunctionTarget CFT) {
692   Declarator &declarator = state.getDeclarator();
693 
694   // Try to distribute to the innermost.
695   if (distributeFunctionTypeAttrToInnermost(
696           state, attr, declarator.getAttributes(), declSpecType, CFT))
697     return;
698 
699   // If that failed, diagnose the bad attribute when the declarator is
700   // fully built.
701   declarator.getAttributes().remove(&attr);
702   state.addIgnoredTypeAttr(attr);
703 }
704 
705 /// Given that there are attributes written on the declarator or declaration
706 /// itself, try to distribute any type attributes to the appropriate
707 /// declarator chunk.
708 ///
709 /// These are attributes like the following:
710 ///   int f ATTR;
711 ///   int (f ATTR)();
712 /// but not necessarily this:
713 ///   int f() ATTR;
714 ///
715 /// `Attrs` is the attribute list containing the declaration (either of the
716 /// declarator or the declaration).
717 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
718                                               QualType &declSpecType,
719                                               CUDAFunctionTarget CFT) {
720   // The called functions in this loop actually remove things from the current
721   // list, so iterating over the existing list isn't possible.  Instead, make a
722   // non-owning copy and iterate over that.
723   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
724   for (ParsedAttr &attr : AttrsCopy) {
725     // Do not distribute [[]] attributes. They have strict rules for what
726     // they appertain to.
727     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
728       continue;
729 
730     switch (attr.getKind()) {
731     OBJC_POINTER_TYPE_ATTRS_CASELIST:
732       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
733       break;
734 
735     FUNCTION_TYPE_ATTRS_CASELIST:
736       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
737       break;
738 
739     MS_TYPE_ATTRS_CASELIST:
740       // Microsoft type attributes cannot go after the declarator-id.
741       continue;
742 
743     NULLABILITY_TYPE_ATTRS_CASELIST:
744       // Nullability specifiers cannot go after the declarator-id.
745 
746     // Objective-C __kindof does not get distributed.
747     case ParsedAttr::AT_ObjCKindOf:
748       continue;
749 
750     default:
751       break;
752     }
753   }
754 }
755 
756 /// Add a synthetic '()' to a block-literal declarator if it is
757 /// required, given the return type.
758 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
759                                           QualType declSpecType) {
760   Declarator &declarator = state.getDeclarator();
761 
762   // First, check whether the declarator would produce a function,
763   // i.e. whether the innermost semantic chunk is a function.
764   if (declarator.isFunctionDeclarator()) {
765     // If so, make that declarator a prototyped declarator.
766     declarator.getFunctionTypeInfo().hasPrototype = true;
767     return;
768   }
769 
770   // If there are any type objects, the type as written won't name a
771   // function, regardless of the decl spec type.  This is because a
772   // block signature declarator is always an abstract-declarator, and
773   // abstract-declarators can't just be parentheses chunks.  Therefore
774   // we need to build a function chunk unless there are no type
775   // objects and the decl spec type is a function.
776   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
777     return;
778 
779   // Note that there *are* cases with invalid declarators where
780   // declarators consist solely of parentheses.  In general, these
781   // occur only in failed efforts to make function declarators, so
782   // faking up the function chunk is still the right thing to do.
783 
784   // Otherwise, we need to fake up a function declarator.
785   SourceLocation loc = declarator.getBeginLoc();
786 
787   // ...and *prepend* it to the declarator.
788   SourceLocation NoLoc;
789   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
790       /*HasProto=*/true,
791       /*IsAmbiguous=*/false,
792       /*LParenLoc=*/NoLoc,
793       /*ArgInfo=*/nullptr,
794       /*NumParams=*/0,
795       /*EllipsisLoc=*/NoLoc,
796       /*RParenLoc=*/NoLoc,
797       /*RefQualifierIsLvalueRef=*/true,
798       /*RefQualifierLoc=*/NoLoc,
799       /*MutableLoc=*/NoLoc, EST_None,
800       /*ESpecRange=*/SourceRange(),
801       /*Exceptions=*/nullptr,
802       /*ExceptionRanges=*/nullptr,
803       /*NumExceptions=*/0,
804       /*NoexceptExpr=*/nullptr,
805       /*ExceptionSpecTokens=*/nullptr,
806       /*DeclsInPrototype=*/{}, loc, loc, declarator));
807 
808   // For consistency, make sure the state still has us as processing
809   // the decl spec.
810   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
811   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
812 }
813 
814 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
815                                             unsigned &TypeQuals,
816                                             QualType TypeSoFar,
817                                             unsigned RemoveTQs,
818                                             unsigned DiagID) {
819   // If this occurs outside a template instantiation, warn the user about
820   // it; they probably didn't mean to specify a redundant qualifier.
821   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
822   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
823                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
824                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
825                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
826     if (!(RemoveTQs & Qual.first))
827       continue;
828 
829     if (!S.inTemplateInstantiation()) {
830       if (TypeQuals & Qual.first)
831         S.Diag(Qual.second, DiagID)
832           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
833           << FixItHint::CreateRemoval(Qual.second);
834     }
835 
836     TypeQuals &= ~Qual.first;
837   }
838 }
839 
840 /// Return true if this is omitted block return type. Also check type
841 /// attributes and type qualifiers when returning true.
842 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
843                                         QualType Result) {
844   if (!isOmittedBlockReturnType(declarator))
845     return false;
846 
847   // Warn if we see type attributes for omitted return type on a block literal.
848   SmallVector<ParsedAttr *, 2> ToBeRemoved;
849   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
850     if (AL.isInvalid() || !AL.isTypeAttr())
851       continue;
852     S.Diag(AL.getLoc(),
853            diag::warn_block_literal_attributes_on_omitted_return_type)
854         << AL;
855     ToBeRemoved.push_back(&AL);
856   }
857   // Remove bad attributes from the list.
858   for (ParsedAttr *AL : ToBeRemoved)
859     declarator.getMutableDeclSpec().getAttributes().remove(AL);
860 
861   // Warn if we see type qualifiers for omitted return type on a block literal.
862   const DeclSpec &DS = declarator.getDeclSpec();
863   unsigned TypeQuals = DS.getTypeQualifiers();
864   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
865       diag::warn_block_literal_qualifiers_on_omitted_return_type);
866   declarator.getMutableDeclSpec().ClearTypeQualifiers();
867 
868   return true;
869 }
870 
871 static OpenCLAccessAttr::Spelling
872 getImageAccess(const ParsedAttributesView &Attrs) {
873   for (const ParsedAttr &AL : Attrs)
874     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
875       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
876   return OpenCLAccessAttr::Keyword_read_only;
877 }
878 
879 static UnaryTransformType::UTTKind
880 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
881   switch (SwitchTST) {
882 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
883   case TST_##Trait:                                                            \
884     return UnaryTransformType::Enum;
885 #include "clang/Basic/TransformTypeTraits.def"
886   default:
887     llvm_unreachable("attempted to parse a non-unary transform builtin");
888   }
889 }
890 
891 /// Convert the specified declspec to the appropriate type
892 /// object.
893 /// \param state Specifies the declarator containing the declaration specifier
894 /// to be converted, along with other associated processing state.
895 /// \returns The type described by the declaration specifiers.  This function
896 /// never returns null.
897 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
898   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
899   // checking.
900 
901   Sema &S = state.getSema();
902   Declarator &declarator = state.getDeclarator();
903   DeclSpec &DS = declarator.getMutableDeclSpec();
904   SourceLocation DeclLoc = declarator.getIdentifierLoc();
905   if (DeclLoc.isInvalid())
906     DeclLoc = DS.getBeginLoc();
907 
908   ASTContext &Context = S.Context;
909 
910   QualType Result;
911   switch (DS.getTypeSpecType()) {
912   case DeclSpec::TST_void:
913     Result = Context.VoidTy;
914     break;
915   case DeclSpec::TST_char:
916     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
917       Result = Context.CharTy;
918     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
919       Result = Context.SignedCharTy;
920     else {
921       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
922              "Unknown TSS value");
923       Result = Context.UnsignedCharTy;
924     }
925     break;
926   case DeclSpec::TST_wchar:
927     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
928       Result = Context.WCharTy;
929     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
930       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
931         << DS.getSpecifierName(DS.getTypeSpecType(),
932                                Context.getPrintingPolicy());
933       Result = Context.getSignedWCharType();
934     } else {
935       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
936              "Unknown TSS value");
937       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
938         << DS.getSpecifierName(DS.getTypeSpecType(),
939                                Context.getPrintingPolicy());
940       Result = Context.getUnsignedWCharType();
941     }
942     break;
943   case DeclSpec::TST_char8:
944     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
945            "Unknown TSS value");
946     Result = Context.Char8Ty;
947     break;
948   case DeclSpec::TST_char16:
949     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
950            "Unknown TSS value");
951     Result = Context.Char16Ty;
952     break;
953   case DeclSpec::TST_char32:
954     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
955            "Unknown TSS value");
956     Result = Context.Char32Ty;
957     break;
958   case DeclSpec::TST_unspecified:
959     // If this is a missing declspec in a block literal return context, then it
960     // is inferred from the return statements inside the block.
961     // The declspec is always missing in a lambda expr context; it is either
962     // specified with a trailing return type or inferred.
963     if (S.getLangOpts().CPlusPlus14 &&
964         declarator.getContext() == DeclaratorContext::LambdaExpr) {
965       // In C++1y, a lambda's implicit return type is 'auto'.
966       Result = Context.getAutoDeductType();
967       break;
968     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
969                checkOmittedBlockReturnType(S, declarator,
970                                            Context.DependentTy)) {
971       Result = Context.DependentTy;
972       break;
973     }
974 
975     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
976     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
977     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
978     // Note that the one exception to this is function definitions, which are
979     // allowed to be completely missing a declspec.  This is handled in the
980     // parser already though by it pretending to have seen an 'int' in this
981     // case.
982     if (S.getLangOpts().isImplicitIntRequired()) {
983       S.Diag(DeclLoc, diag::warn_missing_type_specifier)
984           << DS.getSourceRange()
985           << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
986     } else if (!DS.hasTypeSpecifier()) {
987       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
988       // "At least one type specifier shall be given in the declaration
989       // specifiers in each declaration, and in the specifier-qualifier list in
990       // each struct declaration and type name."
991       if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
992         S.Diag(DeclLoc, diag::err_missing_type_specifier)
993             << DS.getSourceRange();
994 
995         // When this occurs, often something is very broken with the value
996         // being declared, poison it as invalid so we don't get chains of
997         // errors.
998         declarator.setInvalidType(true);
999       } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1000                  DS.isTypeSpecPipe()) {
1001         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1002             << DS.getSourceRange();
1003         declarator.setInvalidType(true);
1004       } else {
1005         assert(S.getLangOpts().isImplicitIntAllowed() &&
1006                "implicit int is disabled?");
1007         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1008             << DS.getSourceRange()
1009             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1010       }
1011     }
1012 
1013     [[fallthrough]];
1014   case DeclSpec::TST_int: {
1015     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1016       switch (DS.getTypeSpecWidth()) {
1017       case TypeSpecifierWidth::Unspecified:
1018         Result = Context.IntTy;
1019         break;
1020       case TypeSpecifierWidth::Short:
1021         Result = Context.ShortTy;
1022         break;
1023       case TypeSpecifierWidth::Long:
1024         Result = Context.LongTy;
1025         break;
1026       case TypeSpecifierWidth::LongLong:
1027         Result = Context.LongLongTy;
1028 
1029         // 'long long' is a C99 or C++11 feature.
1030         if (!S.getLangOpts().C99) {
1031           if (S.getLangOpts().CPlusPlus)
1032             S.Diag(DS.getTypeSpecWidthLoc(),
1033                    S.getLangOpts().CPlusPlus11 ?
1034                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1035           else
1036             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1037         }
1038         break;
1039       }
1040     } else {
1041       switch (DS.getTypeSpecWidth()) {
1042       case TypeSpecifierWidth::Unspecified:
1043         Result = Context.UnsignedIntTy;
1044         break;
1045       case TypeSpecifierWidth::Short:
1046         Result = Context.UnsignedShortTy;
1047         break;
1048       case TypeSpecifierWidth::Long:
1049         Result = Context.UnsignedLongTy;
1050         break;
1051       case TypeSpecifierWidth::LongLong:
1052         Result = Context.UnsignedLongLongTy;
1053 
1054         // 'long long' is a C99 or C++11 feature.
1055         if (!S.getLangOpts().C99) {
1056           if (S.getLangOpts().CPlusPlus)
1057             S.Diag(DS.getTypeSpecWidthLoc(),
1058                    S.getLangOpts().CPlusPlus11 ?
1059                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1060           else
1061             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1062         }
1063         break;
1064       }
1065     }
1066     break;
1067   }
1068   case DeclSpec::TST_bitint: {
1069     if (!S.Context.getTargetInfo().hasBitIntType())
1070       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1071     Result =
1072         S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1073                           DS.getRepAsExpr(), DS.getBeginLoc());
1074     if (Result.isNull()) {
1075       Result = Context.IntTy;
1076       declarator.setInvalidType(true);
1077     }
1078     break;
1079   }
1080   case DeclSpec::TST_accum: {
1081     switch (DS.getTypeSpecWidth()) {
1082     case TypeSpecifierWidth::Short:
1083       Result = Context.ShortAccumTy;
1084       break;
1085     case TypeSpecifierWidth::Unspecified:
1086       Result = Context.AccumTy;
1087       break;
1088     case TypeSpecifierWidth::Long:
1089       Result = Context.LongAccumTy;
1090       break;
1091     case TypeSpecifierWidth::LongLong:
1092       llvm_unreachable("Unable to specify long long as _Accum width");
1093     }
1094 
1095     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1096       Result = Context.getCorrespondingUnsignedType(Result);
1097 
1098     if (DS.isTypeSpecSat())
1099       Result = Context.getCorrespondingSaturatedType(Result);
1100 
1101     break;
1102   }
1103   case DeclSpec::TST_fract: {
1104     switch (DS.getTypeSpecWidth()) {
1105     case TypeSpecifierWidth::Short:
1106       Result = Context.ShortFractTy;
1107       break;
1108     case TypeSpecifierWidth::Unspecified:
1109       Result = Context.FractTy;
1110       break;
1111     case TypeSpecifierWidth::Long:
1112       Result = Context.LongFractTy;
1113       break;
1114     case TypeSpecifierWidth::LongLong:
1115       llvm_unreachable("Unable to specify long long as _Fract width");
1116     }
1117 
1118     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1119       Result = Context.getCorrespondingUnsignedType(Result);
1120 
1121     if (DS.isTypeSpecSat())
1122       Result = Context.getCorrespondingSaturatedType(Result);
1123 
1124     break;
1125   }
1126   case DeclSpec::TST_int128:
1127     if (!S.Context.getTargetInfo().hasInt128Type() &&
1128         !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1129           (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1130       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1131         << "__int128";
1132     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1133       Result = Context.UnsignedInt128Ty;
1134     else
1135       Result = Context.Int128Ty;
1136     break;
1137   case DeclSpec::TST_float16:
1138     // CUDA host and device may have different _Float16 support, therefore
1139     // do not diagnose _Float16 usage to avoid false alarm.
1140     // ToDo: more precise diagnostics for CUDA.
1141     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1142         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1143       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1144         << "_Float16";
1145     Result = Context.Float16Ty;
1146     break;
1147   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1148   case DeclSpec::TST_BFloat16:
1149     if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1150         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1151         !S.getLangOpts().SYCLIsDevice)
1152       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1153     Result = Context.BFloat16Ty;
1154     break;
1155   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1156   case DeclSpec::TST_double:
1157     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1158       Result = Context.LongDoubleTy;
1159     else
1160       Result = Context.DoubleTy;
1161     if (S.getLangOpts().OpenCL) {
1162       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1163         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1164             << 0 << Result
1165             << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1166                     ? "cl_khr_fp64 and __opencl_c_fp64"
1167                     : "cl_khr_fp64");
1168       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1169         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1170     }
1171     break;
1172   case DeclSpec::TST_float128:
1173     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1174         !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1175         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1176       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1177         << "__float128";
1178     Result = Context.Float128Ty;
1179     break;
1180   case DeclSpec::TST_ibm128:
1181     if (!S.Context.getTargetInfo().hasIbm128Type() &&
1182         !S.getLangOpts().SYCLIsDevice &&
1183         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1184       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1185     Result = Context.Ibm128Ty;
1186     break;
1187   case DeclSpec::TST_bool:
1188     Result = Context.BoolTy; // _Bool or bool
1189     break;
1190   case DeclSpec::TST_decimal32:    // _Decimal32
1191   case DeclSpec::TST_decimal64:    // _Decimal64
1192   case DeclSpec::TST_decimal128:   // _Decimal128
1193     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1194     Result = Context.IntTy;
1195     declarator.setInvalidType(true);
1196     break;
1197   case DeclSpec::TST_class:
1198   case DeclSpec::TST_enum:
1199   case DeclSpec::TST_union:
1200   case DeclSpec::TST_struct:
1201   case DeclSpec::TST_interface: {
1202     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1203     if (!D) {
1204       // This can happen in C++ with ambiguous lookups.
1205       Result = Context.IntTy;
1206       declarator.setInvalidType(true);
1207       break;
1208     }
1209 
1210     // If the type is deprecated or unavailable, diagnose it.
1211     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1212 
1213     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1214            DS.getTypeSpecComplex() == 0 &&
1215            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1216            "No qualifiers on tag names!");
1217 
1218     // TypeQuals handled by caller.
1219     Result = Context.getTypeDeclType(D);
1220 
1221     // In both C and C++, make an ElaboratedType.
1222     ElaboratedTypeKeyword Keyword
1223       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1224     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1225                                  DS.isTypeSpecOwned() ? D : nullptr);
1226     break;
1227   }
1228   case DeclSpec::TST_typename: {
1229     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1230            DS.getTypeSpecComplex() == 0 &&
1231            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1232            "Can't handle qualifiers on typedef names yet!");
1233     Result = S.GetTypeFromParser(DS.getRepAsType());
1234     if (Result.isNull()) {
1235       declarator.setInvalidType(true);
1236     }
1237 
1238     // TypeQuals handled by caller.
1239     break;
1240   }
1241   case DeclSpec::TST_typeof_unqualType:
1242   case DeclSpec::TST_typeofType:
1243     // FIXME: Preserve type source info.
1244     Result = S.GetTypeFromParser(DS.getRepAsType());
1245     assert(!Result.isNull() && "Didn't get a type for typeof?");
1246     if (!Result->isDependentType())
1247       if (const TagType *TT = Result->getAs<TagType>())
1248         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1249     // TypeQuals handled by caller.
1250     Result = Context.getTypeOfType(
1251         Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1252                     ? TypeOfKind::Unqualified
1253                     : TypeOfKind::Qualified);
1254     break;
1255   case DeclSpec::TST_typeof_unqualExpr:
1256   case DeclSpec::TST_typeofExpr: {
1257     Expr *E = DS.getRepAsExpr();
1258     assert(E && "Didn't get an expression for typeof?");
1259     // TypeQuals handled by caller.
1260     Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1261                                               DeclSpec::TST_typeof_unqualExpr
1262                                           ? TypeOfKind::Unqualified
1263                                           : TypeOfKind::Qualified);
1264     if (Result.isNull()) {
1265       Result = Context.IntTy;
1266       declarator.setInvalidType(true);
1267     }
1268     break;
1269   }
1270   case DeclSpec::TST_decltype: {
1271     Expr *E = DS.getRepAsExpr();
1272     assert(E && "Didn't get an expression for decltype?");
1273     // TypeQuals handled by caller.
1274     Result = S.BuildDecltypeType(E);
1275     if (Result.isNull()) {
1276       Result = Context.IntTy;
1277       declarator.setInvalidType(true);
1278     }
1279     break;
1280   }
1281   case DeclSpec::TST_typename_pack_indexing: {
1282     Expr *E = DS.getPackIndexingExpr();
1283     assert(E && "Didn't get an expression for pack indexing");
1284     QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1285     Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1286                                      DS.getEllipsisLoc());
1287     if (Result.isNull()) {
1288       declarator.setInvalidType(true);
1289       Result = Context.IntTy;
1290     }
1291     break;
1292   }
1293 
1294 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1295 #include "clang/Basic/TransformTypeTraits.def"
1296     Result = S.GetTypeFromParser(DS.getRepAsType());
1297     assert(!Result.isNull() && "Didn't get a type for the transformation?");
1298     Result = S.BuildUnaryTransformType(
1299         Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1300         DS.getTypeSpecTypeLoc());
1301     if (Result.isNull()) {
1302       Result = Context.IntTy;
1303       declarator.setInvalidType(true);
1304     }
1305     break;
1306 
1307   case DeclSpec::TST_auto:
1308   case DeclSpec::TST_decltype_auto: {
1309     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1310                       ? AutoTypeKeyword::DecltypeAuto
1311                       : AutoTypeKeyword::Auto;
1312 
1313     ConceptDecl *TypeConstraintConcept = nullptr;
1314     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1315     if (DS.isConstrainedAuto()) {
1316       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1317         TypeConstraintConcept =
1318             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1319         TemplateArgumentListInfo TemplateArgsInfo;
1320         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1321         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1322         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1323                                            TemplateId->NumArgs);
1324         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1325         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1326           TemplateArgs.push_back(ArgLoc.getArgument());
1327       } else {
1328         declarator.setInvalidType(true);
1329       }
1330     }
1331     Result = S.Context.getAutoType(QualType(), AutoKW,
1332                                    /*IsDependent*/ false, /*IsPack=*/false,
1333                                    TypeConstraintConcept, TemplateArgs);
1334     break;
1335   }
1336 
1337   case DeclSpec::TST_auto_type:
1338     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1339     break;
1340 
1341   case DeclSpec::TST_unknown_anytype:
1342     Result = Context.UnknownAnyTy;
1343     break;
1344 
1345   case DeclSpec::TST_atomic:
1346     Result = S.GetTypeFromParser(DS.getRepAsType());
1347     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1348     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1349     if (Result.isNull()) {
1350       Result = Context.IntTy;
1351       declarator.setInvalidType(true);
1352     }
1353     break;
1354 
1355 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1356   case DeclSpec::TST_##ImgType##_t:                                            \
1357     switch (getImageAccess(DS.getAttributes())) {                              \
1358     case OpenCLAccessAttr::Keyword_write_only:                                 \
1359       Result = Context.Id##WOTy;                                               \
1360       break;                                                                   \
1361     case OpenCLAccessAttr::Keyword_read_write:                                 \
1362       Result = Context.Id##RWTy;                                               \
1363       break;                                                                   \
1364     case OpenCLAccessAttr::Keyword_read_only:                                  \
1365       Result = Context.Id##ROTy;                                               \
1366       break;                                                                   \
1367     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1368       llvm_unreachable("Spelling not yet calculated");                         \
1369     }                                                                          \
1370     break;
1371 #include "clang/Basic/OpenCLImageTypes.def"
1372 
1373 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \
1374   case DeclSpec::TST_##Name:                                                   \
1375     Result = Context.SingletonId;                                              \
1376     break;
1377 #include "clang/Basic/HLSLIntangibleTypes.def"
1378 
1379   case DeclSpec::TST_error:
1380     Result = Context.IntTy;
1381     declarator.setInvalidType(true);
1382     break;
1383   }
1384 
1385   // FIXME: we want resulting declarations to be marked invalid, but claiming
1386   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1387   // a null type.
1388   if (Result->containsErrors())
1389     declarator.setInvalidType();
1390 
1391   if (S.getLangOpts().OpenCL) {
1392     const auto &OpenCLOptions = S.getOpenCLOptions();
1393     bool IsOpenCLC30Compatible =
1394         S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1395     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1396     // support.
1397     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1398     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1399     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1400     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1401     // only when the optional feature is supported
1402     if ((Result->isImageType() || Result->isSamplerT()) &&
1403         (IsOpenCLC30Compatible &&
1404          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1405       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1406           << 0 << Result << "__opencl_c_images";
1407       declarator.setInvalidType();
1408     } else if (Result->isOCLImage3dWOType() &&
1409                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1410                                           S.getLangOpts())) {
1411       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1412           << 0 << Result
1413           << (IsOpenCLC30Compatible
1414                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1415                   : "cl_khr_3d_image_writes");
1416       declarator.setInvalidType();
1417     }
1418   }
1419 
1420   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1421                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1422 
1423   // Only fixed point types can be saturated
1424   if (DS.isTypeSpecSat() && !IsFixedPointType)
1425     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1426         << DS.getSpecifierName(DS.getTypeSpecType(),
1427                                Context.getPrintingPolicy());
1428 
1429   // Handle complex types.
1430   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1431     if (S.getLangOpts().Freestanding)
1432       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1433     Result = Context.getComplexType(Result);
1434   } else if (DS.isTypeAltiVecVector()) {
1435     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1436     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1437     VectorKind VecKind = VectorKind::AltiVecVector;
1438     if (DS.isTypeAltiVecPixel())
1439       VecKind = VectorKind::AltiVecPixel;
1440     else if (DS.isTypeAltiVecBool())
1441       VecKind = VectorKind::AltiVecBool;
1442     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1443   }
1444 
1445   // _Imaginary was a feature of C99 through C23 but was never supported in
1446   // Clang. The feature was removed in C2y, but we retain the unsupported
1447   // diagnostic for an improved user experience.
1448   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1449     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1450 
1451   // Before we process any type attributes, synthesize a block literal
1452   // function declarator if necessary.
1453   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1454     maybeSynthesizeBlockSignature(state, Result);
1455 
1456   // Apply any type attributes from the decl spec.  This may cause the
1457   // list of type attributes to be temporarily saved while the type
1458   // attributes are pushed around.
1459   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1460   if (!DS.isTypeSpecPipe()) {
1461     // We also apply declaration attributes that "slide" to the decl spec.
1462     // Ordering can be important for attributes. The decalaration attributes
1463     // come syntactically before the decl spec attributes, so we process them
1464     // in that order.
1465     ParsedAttributesView SlidingAttrs;
1466     for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1467       if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1468         SlidingAttrs.addAtEnd(&AL);
1469 
1470         // For standard syntax attributes, which would normally appertain to the
1471         // declaration here, suggest moving them to the type instead. But only
1472         // do this for our own vendor attributes; moving other vendors'
1473         // attributes might hurt portability.
1474         // There's one special case that we need to deal with here: The
1475         // `MatrixType` attribute may only be used in a typedef declaration. If
1476         // it's being used anywhere else, don't output the warning as
1477         // ProcessDeclAttributes() will output an error anyway.
1478         if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1479             !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1480               DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1481           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1482               << AL;
1483         }
1484       }
1485     }
1486     // During this call to processTypeAttrs(),
1487     // TypeProcessingState::getCurrentAttributes() will erroneously return a
1488     // reference to the DeclSpec attributes, rather than the declaration
1489     // attributes. However, this doesn't matter, as getCurrentAttributes()
1490     // is only called when distributing attributes from one attribute list
1491     // to another. Declaration attributes are always C++11 attributes, and these
1492     // are never distributed.
1493     processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1494     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1495   }
1496 
1497   // Apply const/volatile/restrict qualifiers to T.
1498   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1499     // Warn about CV qualifiers on function types.
1500     // C99 6.7.3p8:
1501     //   If the specification of a function type includes any type qualifiers,
1502     //   the behavior is undefined.
1503     // C++11 [dcl.fct]p7:
1504     //   The effect of a cv-qualifier-seq in a function declarator is not the
1505     //   same as adding cv-qualification on top of the function type. In the
1506     //   latter case, the cv-qualifiers are ignored.
1507     if (Result->isFunctionType()) {
1508       diagnoseAndRemoveTypeQualifiers(
1509           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1510           S.getLangOpts().CPlusPlus
1511               ? diag::warn_typecheck_function_qualifiers_ignored
1512               : diag::warn_typecheck_function_qualifiers_unspecified);
1513       // No diagnostic for 'restrict' or '_Atomic' applied to a
1514       // function type; we'll diagnose those later, in BuildQualifiedType.
1515     }
1516 
1517     // C++11 [dcl.ref]p1:
1518     //   Cv-qualified references are ill-formed except when the
1519     //   cv-qualifiers are introduced through the use of a typedef-name
1520     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1521     //
1522     // There don't appear to be any other contexts in which a cv-qualified
1523     // reference type could be formed, so the 'ill-formed' clause here appears
1524     // to never happen.
1525     if (TypeQuals && Result->isReferenceType()) {
1526       diagnoseAndRemoveTypeQualifiers(
1527           S, DS, TypeQuals, Result,
1528           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1529           diag::warn_typecheck_reference_qualifiers);
1530     }
1531 
1532     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1533     // than once in the same specifier-list or qualifier-list, either directly
1534     // or via one or more typedefs."
1535     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1536         && TypeQuals & Result.getCVRQualifiers()) {
1537       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1538         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1539           << "const";
1540       }
1541 
1542       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1543         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1544           << "volatile";
1545       }
1546 
1547       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1548       // produce a warning in this case.
1549     }
1550 
1551     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1552 
1553     // If adding qualifiers fails, just use the unqualified type.
1554     if (Qualified.isNull())
1555       declarator.setInvalidType(true);
1556     else
1557       Result = Qualified;
1558   }
1559 
1560   if (S.getLangOpts().HLSL)
1561     Result = S.HLSL().ProcessResourceTypeAttributes(Result);
1562 
1563   assert(!Result.isNull() && "This function should not return a null type");
1564   return Result;
1565 }
1566 
1567 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1568   if (Entity)
1569     return Entity.getAsString();
1570 
1571   return "type name";
1572 }
1573 
1574 static bool isDependentOrGNUAutoType(QualType T) {
1575   if (T->isDependentType())
1576     return true;
1577 
1578   const auto *AT = dyn_cast<AutoType>(T);
1579   return AT && AT->isGNUAutoType();
1580 }
1581 
1582 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1583                                   Qualifiers Qs, const DeclSpec *DS) {
1584   if (T.isNull())
1585     return QualType();
1586 
1587   // Ignore any attempt to form a cv-qualified reference.
1588   if (T->isReferenceType()) {
1589     Qs.removeConst();
1590     Qs.removeVolatile();
1591   }
1592 
1593   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1594   // object or incomplete types shall not be restrict-qualified."
1595   if (Qs.hasRestrict()) {
1596     unsigned DiagID = 0;
1597     QualType ProblemTy;
1598 
1599     if (T->isAnyPointerType() || T->isReferenceType() ||
1600         T->isMemberPointerType()) {
1601       QualType EltTy;
1602       if (T->isObjCObjectPointerType())
1603         EltTy = T;
1604       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1605         EltTy = PTy->getPointeeType();
1606       else
1607         EltTy = T->getPointeeType();
1608 
1609       // If we have a pointer or reference, the pointee must have an object
1610       // incomplete type.
1611       if (!EltTy->isIncompleteOrObjectType()) {
1612         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1613         ProblemTy = EltTy;
1614       }
1615     } else if (!isDependentOrGNUAutoType(T)) {
1616       // For an __auto_type variable, we may not have seen the initializer yet
1617       // and so have no idea whether the underlying type is a pointer type or
1618       // not.
1619       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1620       ProblemTy = T;
1621     }
1622 
1623     if (DiagID) {
1624       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1625       Qs.removeRestrict();
1626     }
1627   }
1628 
1629   return Context.getQualifiedType(T, Qs);
1630 }
1631 
1632 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1633                                   unsigned CVRAU, const DeclSpec *DS) {
1634   if (T.isNull())
1635     return QualType();
1636 
1637   // Ignore any attempt to form a cv-qualified reference.
1638   if (T->isReferenceType())
1639     CVRAU &=
1640         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1641 
1642   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1643   // TQ_unaligned;
1644   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1645 
1646   // C11 6.7.3/5:
1647   //   If the same qualifier appears more than once in the same
1648   //   specifier-qualifier-list, either directly or via one or more typedefs,
1649   //   the behavior is the same as if it appeared only once.
1650   //
1651   // It's not specified what happens when the _Atomic qualifier is applied to
1652   // a type specified with the _Atomic specifier, but we assume that this
1653   // should be treated as if the _Atomic qualifier appeared multiple times.
1654   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1655     // C11 6.7.3/5:
1656     //   If other qualifiers appear along with the _Atomic qualifier in a
1657     //   specifier-qualifier-list, the resulting type is the so-qualified
1658     //   atomic type.
1659     //
1660     // Don't need to worry about array types here, since _Atomic can't be
1661     // applied to such types.
1662     SplitQualType Split = T.getSplitUnqualifiedType();
1663     T = BuildAtomicType(QualType(Split.Ty, 0),
1664                         DS ? DS->getAtomicSpecLoc() : Loc);
1665     if (T.isNull())
1666       return T;
1667     Split.Quals.addCVRQualifiers(CVR);
1668     return BuildQualifiedType(T, Loc, Split.Quals);
1669   }
1670 
1671   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1672   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1673   return BuildQualifiedType(T, Loc, Q, DS);
1674 }
1675 
1676 QualType Sema::BuildParenType(QualType T) {
1677   return Context.getParenType(T);
1678 }
1679 
1680 /// Given that we're building a pointer or reference to the given
1681 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1682                                            SourceLocation loc,
1683                                            bool isReference) {
1684   // Bail out if retention is unrequired or already specified.
1685   if (!type->isObjCLifetimeType() ||
1686       type.getObjCLifetime() != Qualifiers::OCL_None)
1687     return type;
1688 
1689   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1690 
1691   // If the object type is const-qualified, we can safely use
1692   // __unsafe_unretained.  This is safe (because there are no read
1693   // barriers), and it'll be safe to coerce anything but __weak* to
1694   // the resulting type.
1695   if (type.isConstQualified()) {
1696     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1697 
1698   // Otherwise, check whether the static type does not require
1699   // retaining.  This currently only triggers for Class (possibly
1700   // protocol-qualifed, and arrays thereof).
1701   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1702     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1703 
1704   // If we are in an unevaluated context, like sizeof, skip adding a
1705   // qualification.
1706   } else if (S.isUnevaluatedContext()) {
1707     return type;
1708 
1709   // If that failed, give an error and recover using __strong.  __strong
1710   // is the option most likely to prevent spurious second-order diagnostics,
1711   // like when binding a reference to a field.
1712   } else {
1713     // These types can show up in private ivars in system headers, so
1714     // we need this to not be an error in those cases.  Instead we
1715     // want to delay.
1716     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1717       S.DelayedDiagnostics.add(
1718           sema::DelayedDiagnostic::makeForbiddenType(loc,
1719               diag::err_arc_indirect_no_ownership, type, isReference));
1720     } else {
1721       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1722     }
1723     implicitLifetime = Qualifiers::OCL_Strong;
1724   }
1725   assert(implicitLifetime && "didn't infer any lifetime!");
1726 
1727   Qualifiers qs;
1728   qs.addObjCLifetime(implicitLifetime);
1729   return S.Context.getQualifiedType(type, qs);
1730 }
1731 
1732 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1733   std::string Quals = FnTy->getMethodQuals().getAsString();
1734 
1735   switch (FnTy->getRefQualifier()) {
1736   case RQ_None:
1737     break;
1738 
1739   case RQ_LValue:
1740     if (!Quals.empty())
1741       Quals += ' ';
1742     Quals += '&';
1743     break;
1744 
1745   case RQ_RValue:
1746     if (!Quals.empty())
1747       Quals += ' ';
1748     Quals += "&&";
1749     break;
1750   }
1751 
1752   return Quals;
1753 }
1754 
1755 namespace {
1756 /// Kinds of declarator that cannot contain a qualified function type.
1757 ///
1758 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1759 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1760 ///     at the topmost level of a type.
1761 ///
1762 /// Parens and member pointers are permitted. We don't diagnose array and
1763 /// function declarators, because they don't allow function types at all.
1764 ///
1765 /// The values of this enum are used in diagnostics.
1766 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1767 } // end anonymous namespace
1768 
1769 /// Check whether the type T is a qualified function type, and if it is,
1770 /// diagnose that it cannot be contained within the given kind of declarator.
1771 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1772                                    QualifiedFunctionKind QFK) {
1773   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1774   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1775   if (!FPT ||
1776       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1777     return false;
1778 
1779   S.Diag(Loc, diag::err_compound_qualified_function_type)
1780     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1781     << getFunctionQualifiersAsString(FPT);
1782   return true;
1783 }
1784 
1785 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1786   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1787   if (!FPT ||
1788       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1789     return false;
1790 
1791   Diag(Loc, diag::err_qualified_function_typeid)
1792       << T << getFunctionQualifiersAsString(FPT);
1793   return true;
1794 }
1795 
1796 // Helper to deduce addr space of a pointee type in OpenCL mode.
1797 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1798   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1799       !PointeeType->isSamplerT() &&
1800       !PointeeType.hasAddressSpace())
1801     PointeeType = S.getASTContext().getAddrSpaceQualType(
1802         PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1803   return PointeeType;
1804 }
1805 
1806 QualType Sema::BuildPointerType(QualType T,
1807                                 SourceLocation Loc, DeclarationName Entity) {
1808   if (T->isReferenceType()) {
1809     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1810     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1811       << getPrintableNameForEntity(Entity) << T;
1812     return QualType();
1813   }
1814 
1815   if (T->isFunctionType() && getLangOpts().OpenCL &&
1816       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1817                                             getLangOpts())) {
1818     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1819     return QualType();
1820   }
1821 
1822   if (getLangOpts().HLSL && Loc.isValid()) {
1823     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1824     return QualType();
1825   }
1826 
1827   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1828     return QualType();
1829 
1830   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1831 
1832   // In ARC, it is forbidden to build pointers to unqualified pointers.
1833   if (getLangOpts().ObjCAutoRefCount)
1834     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1835 
1836   if (getLangOpts().OpenCL)
1837     T = deduceOpenCLPointeeAddrSpace(*this, T);
1838 
1839   // In WebAssembly, pointers to reference types and pointers to tables are
1840   // illegal.
1841   if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1842     if (T.isWebAssemblyReferenceType()) {
1843       Diag(Loc, diag::err_wasm_reference_pr) << 0;
1844       return QualType();
1845     }
1846 
1847     // We need to desugar the type here in case T is a ParenType.
1848     if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1849       Diag(Loc, diag::err_wasm_table_pr) << 0;
1850       return QualType();
1851     }
1852   }
1853 
1854   // Build the pointer type.
1855   return Context.getPointerType(T);
1856 }
1857 
1858 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1859                                   SourceLocation Loc,
1860                                   DeclarationName Entity) {
1861   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1862          "Unresolved overloaded function type");
1863 
1864   // C++0x [dcl.ref]p6:
1865   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1866   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1867   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1868   //   the type "lvalue reference to T", while an attempt to create the type
1869   //   "rvalue reference to cv TR" creates the type TR.
1870   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1871 
1872   // C++ [dcl.ref]p4: There shall be no references to references.
1873   //
1874   // According to C++ DR 106, references to references are only
1875   // diagnosed when they are written directly (e.g., "int & &"),
1876   // but not when they happen via a typedef:
1877   //
1878   //   typedef int& intref;
1879   //   typedef intref& intref2;
1880   //
1881   // Parser::ParseDeclaratorInternal diagnoses the case where
1882   // references are written directly; here, we handle the
1883   // collapsing of references-to-references as described in C++0x.
1884   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1885 
1886   // C++ [dcl.ref]p1:
1887   //   A declarator that specifies the type "reference to cv void"
1888   //   is ill-formed.
1889   if (T->isVoidType()) {
1890     Diag(Loc, diag::err_reference_to_void);
1891     return QualType();
1892   }
1893 
1894   if (getLangOpts().HLSL && Loc.isValid()) {
1895     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1896     return QualType();
1897   }
1898 
1899   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1900     return QualType();
1901 
1902   if (T->isFunctionType() && getLangOpts().OpenCL &&
1903       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1904                                             getLangOpts())) {
1905     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1906     return QualType();
1907   }
1908 
1909   // In ARC, it is forbidden to build references to unqualified pointers.
1910   if (getLangOpts().ObjCAutoRefCount)
1911     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1912 
1913   if (getLangOpts().OpenCL)
1914     T = deduceOpenCLPointeeAddrSpace(*this, T);
1915 
1916   // In WebAssembly, references to reference types and tables are illegal.
1917   if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1918       T.isWebAssemblyReferenceType()) {
1919     Diag(Loc, diag::err_wasm_reference_pr) << 1;
1920     return QualType();
1921   }
1922   if (T->isWebAssemblyTableType()) {
1923     Diag(Loc, diag::err_wasm_table_pr) << 1;
1924     return QualType();
1925   }
1926 
1927   // Handle restrict on references.
1928   if (LValueRef)
1929     return Context.getLValueReferenceType(T, SpelledAsLValue);
1930   return Context.getRValueReferenceType(T);
1931 }
1932 
1933 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1934   return Context.getReadPipeType(T);
1935 }
1936 
1937 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1938   return Context.getWritePipeType(T);
1939 }
1940 
1941 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1942                                SourceLocation Loc) {
1943   if (BitWidth->isInstantiationDependent())
1944     return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1945 
1946   llvm::APSInt Bits(32);
1947   ExprResult ICE =
1948       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1949 
1950   if (ICE.isInvalid())
1951     return QualType();
1952 
1953   size_t NumBits = Bits.getZExtValue();
1954   if (!IsUnsigned && NumBits < 2) {
1955     Diag(Loc, diag::err_bit_int_bad_size) << 0;
1956     return QualType();
1957   }
1958 
1959   if (IsUnsigned && NumBits < 1) {
1960     Diag(Loc, diag::err_bit_int_bad_size) << 1;
1961     return QualType();
1962   }
1963 
1964   const TargetInfo &TI = getASTContext().getTargetInfo();
1965   if (NumBits > TI.getMaxBitIntWidth()) {
1966     Diag(Loc, diag::err_bit_int_max_size)
1967         << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1968     return QualType();
1969   }
1970 
1971   return Context.getBitIntType(IsUnsigned, NumBits);
1972 }
1973 
1974 /// Check whether the specified array bound can be evaluated using the relevant
1975 /// language rules. If so, returns the possibly-converted expression and sets
1976 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1977 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1978 /// ExprError().
1979 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1980                                  llvm::APSInt &SizeVal, unsigned VLADiag,
1981                                  bool VLAIsError) {
1982   if (S.getLangOpts().CPlusPlus14 &&
1983       (VLAIsError ||
1984        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1985     // C++14 [dcl.array]p1:
1986     //   The constant-expression shall be a converted constant expression of
1987     //   type std::size_t.
1988     //
1989     // Don't apply this rule if we might be forming a VLA: in that case, we
1990     // allow non-constant expressions and constant-folding. We only need to use
1991     // the converted constant expression rules (to properly convert the source)
1992     // when the source expression is of class type.
1993     return S.CheckConvertedConstantExpression(
1994         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1995   }
1996 
1997   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1998   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1999   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2000   public:
2001     unsigned VLADiag;
2002     bool VLAIsError;
2003     bool IsVLA = false;
2004 
2005     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2006         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2007 
2008     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2009                                                    QualType T) override {
2010       return S.Diag(Loc, diag::err_array_size_non_int) << T;
2011     }
2012 
2013     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2014                                                SourceLocation Loc) override {
2015       IsVLA = !VLAIsError;
2016       return S.Diag(Loc, VLADiag);
2017     }
2018 
2019     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2020                                              SourceLocation Loc) override {
2021       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2022     }
2023   } Diagnoser(VLADiag, VLAIsError);
2024 
2025   ExprResult R =
2026       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2027   if (Diagnoser.IsVLA)
2028     return ExprResult();
2029   return R;
2030 }
2031 
2032 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2033   EltTy = Context.getBaseElementType(EltTy);
2034   if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2035       EltTy->isUndeducedType())
2036     return true;
2037 
2038   CharUnits Size = Context.getTypeSizeInChars(EltTy);
2039   CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2040 
2041   if (Size.isMultipleOf(Alignment))
2042     return true;
2043 
2044   Diag(Loc, diag::err_array_element_alignment)
2045       << EltTy << Size.getQuantity() << Alignment.getQuantity();
2046   return false;
2047 }
2048 
2049 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2050                               Expr *ArraySize, unsigned Quals,
2051                               SourceRange Brackets, DeclarationName Entity) {
2052 
2053   SourceLocation Loc = Brackets.getBegin();
2054   if (getLangOpts().CPlusPlus) {
2055     // C++ [dcl.array]p1:
2056     //   T is called the array element type; this type shall not be a reference
2057     //   type, the (possibly cv-qualified) type void, a function type or an
2058     //   abstract class type.
2059     //
2060     // C++ [dcl.array]p3:
2061     //   When several "array of" specifications are adjacent, [...] only the
2062     //   first of the constant expressions that specify the bounds of the arrays
2063     //   may be omitted.
2064     //
2065     // Note: function types are handled in the common path with C.
2066     if (T->isReferenceType()) {
2067       Diag(Loc, diag::err_illegal_decl_array_of_references)
2068       << getPrintableNameForEntity(Entity) << T;
2069       return QualType();
2070     }
2071 
2072     if (T->isVoidType() || T->isIncompleteArrayType()) {
2073       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2074       return QualType();
2075     }
2076 
2077     if (RequireNonAbstractType(Brackets.getBegin(), T,
2078                                diag::err_array_of_abstract_type))
2079       return QualType();
2080 
2081     // Mentioning a member pointer type for an array type causes us to lock in
2082     // an inheritance model, even if it's inside an unused typedef.
2083     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2084       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2085         if (!MPTy->getClass()->isDependentType())
2086           (void)isCompleteType(Loc, T);
2087 
2088   } else {
2089     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2090     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2091     if (!T.isWebAssemblyReferenceType() &&
2092         RequireCompleteSizedType(Loc, T,
2093                                  diag::err_array_incomplete_or_sizeless_type))
2094       return QualType();
2095   }
2096 
2097   // Multi-dimensional arrays of WebAssembly references are not allowed.
2098   if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2099     const auto *ATy = dyn_cast<ArrayType>(T);
2100     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2101       Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2102       return QualType();
2103     }
2104   }
2105 
2106   if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2107     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2108     return QualType();
2109   }
2110 
2111   if (T->isFunctionType()) {
2112     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2113       << getPrintableNameForEntity(Entity) << T;
2114     return QualType();
2115   }
2116 
2117   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2118     // If the element type is a struct or union that contains a variadic
2119     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2120     if (EltTy->getDecl()->hasFlexibleArrayMember())
2121       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2122   } else if (T->isObjCObjectType()) {
2123     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2124     return QualType();
2125   }
2126 
2127   if (!checkArrayElementAlignment(T, Loc))
2128     return QualType();
2129 
2130   // Do placeholder conversions on the array size expression.
2131   if (ArraySize && ArraySize->hasPlaceholderType()) {
2132     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2133     if (Result.isInvalid()) return QualType();
2134     ArraySize = Result.get();
2135   }
2136 
2137   // Do lvalue-to-rvalue conversions on the array size expression.
2138   if (ArraySize && !ArraySize->isPRValue()) {
2139     ExprResult Result = DefaultLvalueConversion(ArraySize);
2140     if (Result.isInvalid())
2141       return QualType();
2142 
2143     ArraySize = Result.get();
2144   }
2145 
2146   // C99 6.7.5.2p1: The size expression shall have integer type.
2147   // C++11 allows contextual conversions to such types.
2148   if (!getLangOpts().CPlusPlus11 &&
2149       ArraySize && !ArraySize->isTypeDependent() &&
2150       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2151     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2152         << ArraySize->getType() << ArraySize->getSourceRange();
2153     return QualType();
2154   }
2155 
2156   auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2157     if (!ArraySize)
2158       return false;
2159 
2160     // If the array size expression is a conditional expression whose branches
2161     // are both integer constant expressions, one negative and one positive,
2162     // then it's assumed to be like an old-style static assertion. e.g.,
2163     //   int old_style_assert[expr ? 1 : -1];
2164     // We will accept any integer constant expressions instead of assuming the
2165     // values 1 and -1 are always used.
2166     if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2167             ArraySize->IgnoreParenImpCasts())) {
2168       std::optional<llvm::APSInt> LHS =
2169           CondExpr->getLHS()->getIntegerConstantExpr(Context);
2170       std::optional<llvm::APSInt> RHS =
2171           CondExpr->getRHS()->getIntegerConstantExpr(Context);
2172       return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2173     }
2174     return false;
2175   };
2176 
2177   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2178   unsigned VLADiag;
2179   bool VLAIsError;
2180   if (getLangOpts().OpenCL) {
2181     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2182     VLADiag = diag::err_opencl_vla;
2183     VLAIsError = true;
2184   } else if (getLangOpts().C99) {
2185     VLADiag = diag::warn_vla_used;
2186     VLAIsError = false;
2187   } else if (isSFINAEContext()) {
2188     VLADiag = diag::err_vla_in_sfinae;
2189     VLAIsError = true;
2190   } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2191     VLADiag = diag::err_openmp_vla_in_task_untied;
2192     VLAIsError = true;
2193   } else if (getLangOpts().CPlusPlus) {
2194     if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2195       VLADiag = getLangOpts().GNUMode
2196                     ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2197                     : diag::ext_vla_cxx_static_assert;
2198     else
2199       VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2200                                       : diag::ext_vla_cxx;
2201     VLAIsError = false;
2202   } else {
2203     VLADiag = diag::ext_vla;
2204     VLAIsError = false;
2205   }
2206 
2207   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2208   if (!ArraySize) {
2209     if (ASM == ArraySizeModifier::Star) {
2210       Diag(Loc, VLADiag);
2211       if (VLAIsError)
2212         return QualType();
2213 
2214       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2215     } else {
2216       T = Context.getIncompleteArrayType(T, ASM, Quals);
2217     }
2218   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2219     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2220   } else {
2221     ExprResult R =
2222         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2223     if (R.isInvalid())
2224       return QualType();
2225 
2226     if (!R.isUsable()) {
2227       // C99: an array with a non-ICE size is a VLA. We accept any expression
2228       // that we can fold to a non-zero positive value as a non-VLA as an
2229       // extension.
2230       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2231     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2232                !T->isConstantSizeType()) {
2233       // C99: an array with an element type that has a non-constant-size is a
2234       // VLA.
2235       // FIXME: Add a note to explain why this isn't a VLA.
2236       Diag(Loc, VLADiag);
2237       if (VLAIsError)
2238         return QualType();
2239       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2240     } else {
2241       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2242       // have a value greater than zero.
2243       // In C++, this follows from narrowing conversions being disallowed.
2244       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2245         if (Entity)
2246           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2247               << getPrintableNameForEntity(Entity)
2248               << ArraySize->getSourceRange();
2249         else
2250           Diag(ArraySize->getBeginLoc(),
2251                diag::err_typecheck_negative_array_size)
2252               << ArraySize->getSourceRange();
2253         return QualType();
2254       }
2255       if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2256         // GCC accepts zero sized static arrays. We allow them when
2257         // we're not in a SFINAE context.
2258         Diag(ArraySize->getBeginLoc(),
2259              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2260                                : diag::ext_typecheck_zero_array_size)
2261             << 0 << ArraySize->getSourceRange();
2262       }
2263 
2264       // Is the array too large?
2265       unsigned ActiveSizeBits =
2266           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2267            !T->isIncompleteType() && !T->isUndeducedType())
2268               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2269               : ConstVal.getActiveBits();
2270       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2271         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2272             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2273         return QualType();
2274       }
2275 
2276       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2277     }
2278   }
2279 
2280   if (T->isVariableArrayType()) {
2281     if (!Context.getTargetInfo().isVLASupported()) {
2282       // CUDA device code and some other targets don't support VLAs.
2283       bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2284       targetDiag(Loc,
2285                  IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2286           << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2287     } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2288       // VLAs are supported on this target, but we may need to do delayed
2289       // checking that the VLA is not being used within a coroutine.
2290       FSI->setHasVLA(Loc);
2291     }
2292   }
2293 
2294   // If this is not C99, diagnose array size modifiers on non-VLAs.
2295   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2296       (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2297     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2298                                       : diag::ext_c99_array_usage)
2299         << llvm::to_underlying(ASM);
2300   }
2301 
2302   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2303   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2304   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2305   if (getLangOpts().OpenCL) {
2306     const QualType ArrType = Context.getBaseElementType(T);
2307     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2308         ArrType->isSamplerT() || ArrType->isImageType()) {
2309       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2310       return QualType();
2311     }
2312   }
2313 
2314   return T;
2315 }
2316 
2317 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2318                                SourceLocation AttrLoc) {
2319   // The base type must be integer (not Boolean or enumeration) or float, and
2320   // can't already be a vector.
2321   if ((!CurType->isDependentType() &&
2322        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2323         (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2324        !CurType->isBitIntType()) ||
2325       CurType->isArrayType()) {
2326     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2327     return QualType();
2328   }
2329   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2330   if (const auto *BIT = CurType->getAs<BitIntType>()) {
2331     unsigned NumBits = BIT->getNumBits();
2332     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2333       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2334           << (NumBits < 8);
2335       return QualType();
2336     }
2337   }
2338 
2339   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2340     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2341                                           VectorKind::Generic);
2342 
2343   std::optional<llvm::APSInt> VecSize =
2344       SizeExpr->getIntegerConstantExpr(Context);
2345   if (!VecSize) {
2346     Diag(AttrLoc, diag::err_attribute_argument_type)
2347         << "vector_size" << AANT_ArgumentIntegerConstant
2348         << SizeExpr->getSourceRange();
2349     return QualType();
2350   }
2351 
2352   if (CurType->isDependentType())
2353     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2354                                           VectorKind::Generic);
2355 
2356   // vecSize is specified in bytes - convert to bits.
2357   if (!VecSize->isIntN(61)) {
2358     // Bit size will overflow uint64.
2359     Diag(AttrLoc, diag::err_attribute_size_too_large)
2360         << SizeExpr->getSourceRange() << "vector";
2361     return QualType();
2362   }
2363   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2364   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2365 
2366   if (VectorSizeBits == 0) {
2367     Diag(AttrLoc, diag::err_attribute_zero_size)
2368         << SizeExpr->getSourceRange() << "vector";
2369     return QualType();
2370   }
2371 
2372   if (!TypeSize || VectorSizeBits % TypeSize) {
2373     Diag(AttrLoc, diag::err_attribute_invalid_size)
2374         << SizeExpr->getSourceRange();
2375     return QualType();
2376   }
2377 
2378   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2379     Diag(AttrLoc, diag::err_attribute_size_too_large)
2380         << SizeExpr->getSourceRange() << "vector";
2381     return QualType();
2382   }
2383 
2384   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2385                                VectorKind::Generic);
2386 }
2387 
2388 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2389                                   SourceLocation AttrLoc) {
2390   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2391   // in conjunction with complex types (pointers, arrays, functions, etc.).
2392   //
2393   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2394   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2395   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2396   // of bool aren't allowed.
2397   //
2398   // We explicitly allow bool elements in ext_vector_type for C/C++.
2399   bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2400   if ((!T->isDependentType() && !T->isIntegerType() &&
2401        !T->isRealFloatingType()) ||
2402       (IsNoBoolVecLang && T->isBooleanType())) {
2403     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2404     return QualType();
2405   }
2406 
2407   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2408   if (T->isBitIntType()) {
2409     unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2410     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2411       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2412           << (NumBits < 8);
2413       return QualType();
2414     }
2415   }
2416 
2417   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2418     std::optional<llvm::APSInt> vecSize =
2419         ArraySize->getIntegerConstantExpr(Context);
2420     if (!vecSize) {
2421       Diag(AttrLoc, diag::err_attribute_argument_type)
2422         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2423         << ArraySize->getSourceRange();
2424       return QualType();
2425     }
2426 
2427     if (!vecSize->isIntN(32)) {
2428       Diag(AttrLoc, diag::err_attribute_size_too_large)
2429           << ArraySize->getSourceRange() << "vector";
2430       return QualType();
2431     }
2432     // Unlike gcc's vector_size attribute, the size is specified as the
2433     // number of elements, not the number of bytes.
2434     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2435 
2436     if (vectorSize == 0) {
2437       Diag(AttrLoc, diag::err_attribute_zero_size)
2438           << ArraySize->getSourceRange() << "vector";
2439       return QualType();
2440     }
2441 
2442     return Context.getExtVectorType(T, vectorSize);
2443   }
2444 
2445   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2446 }
2447 
2448 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2449                                SourceLocation AttrLoc) {
2450   assert(Context.getLangOpts().MatrixTypes &&
2451          "Should never build a matrix type when it is disabled");
2452 
2453   // Check element type, if it is not dependent.
2454   if (!ElementTy->isDependentType() &&
2455       !MatrixType::isValidElementType(ElementTy)) {
2456     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2457     return QualType();
2458   }
2459 
2460   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2461       NumRows->isValueDependent() || NumCols->isValueDependent())
2462     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2463                                                AttrLoc);
2464 
2465   std::optional<llvm::APSInt> ValueRows =
2466       NumRows->getIntegerConstantExpr(Context);
2467   std::optional<llvm::APSInt> ValueColumns =
2468       NumCols->getIntegerConstantExpr(Context);
2469 
2470   auto const RowRange = NumRows->getSourceRange();
2471   auto const ColRange = NumCols->getSourceRange();
2472 
2473   // Both are row and column expressions are invalid.
2474   if (!ValueRows && !ValueColumns) {
2475     Diag(AttrLoc, diag::err_attribute_argument_type)
2476         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2477         << ColRange;
2478     return QualType();
2479   }
2480 
2481   // Only the row expression is invalid.
2482   if (!ValueRows) {
2483     Diag(AttrLoc, diag::err_attribute_argument_type)
2484         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2485     return QualType();
2486   }
2487 
2488   // Only the column expression is invalid.
2489   if (!ValueColumns) {
2490     Diag(AttrLoc, diag::err_attribute_argument_type)
2491         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2492     return QualType();
2493   }
2494 
2495   // Check the matrix dimensions.
2496   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2497   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2498   if (MatrixRows == 0 && MatrixColumns == 0) {
2499     Diag(AttrLoc, diag::err_attribute_zero_size)
2500         << "matrix" << RowRange << ColRange;
2501     return QualType();
2502   }
2503   if (MatrixRows == 0) {
2504     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2505     return QualType();
2506   }
2507   if (MatrixColumns == 0) {
2508     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2509     return QualType();
2510   }
2511   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2512     Diag(AttrLoc, diag::err_attribute_size_too_large)
2513         << RowRange << "matrix row";
2514     return QualType();
2515   }
2516   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2517     Diag(AttrLoc, diag::err_attribute_size_too_large)
2518         << ColRange << "matrix column";
2519     return QualType();
2520   }
2521   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2522 }
2523 
2524 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2525   if (T->isArrayType() || T->isFunctionType()) {
2526     Diag(Loc, diag::err_func_returning_array_function)
2527       << T->isFunctionType() << T;
2528     return true;
2529   }
2530 
2531   // Functions cannot return half FP.
2532   if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2533       !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2534     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2535       FixItHint::CreateInsertion(Loc, "*");
2536     return true;
2537   }
2538 
2539   // Methods cannot return interface types. All ObjC objects are
2540   // passed by reference.
2541   if (T->isObjCObjectType()) {
2542     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2543         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2544     return true;
2545   }
2546 
2547   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2548       T.hasNonTrivialToPrimitiveCopyCUnion())
2549     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2550                           NTCUK_Destruct|NTCUK_Copy);
2551 
2552   // C++2a [dcl.fct]p12:
2553   //   A volatile-qualified return type is deprecated
2554   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2555     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2556 
2557   if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2558     return true;
2559   return false;
2560 }
2561 
2562 /// Check the extended parameter information.  Most of the necessary
2563 /// checking should occur when applying the parameter attribute; the
2564 /// only other checks required are positional restrictions.
2565 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2566                     const FunctionProtoType::ExtProtoInfo &EPI,
2567                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2568   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2569 
2570   bool emittedError = false;
2571   auto actualCC = EPI.ExtInfo.getCC();
2572   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2573   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2574     bool isCompatible =
2575         (required == RequiredCC::OnlySwift)
2576             ? (actualCC == CC_Swift)
2577             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2578     if (isCompatible || emittedError)
2579       return;
2580     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2581         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2582         << (required == RequiredCC::OnlySwift);
2583     emittedError = true;
2584   };
2585   for (size_t paramIndex = 0, numParams = paramTypes.size();
2586           paramIndex != numParams; ++paramIndex) {
2587     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2588     // Nothing interesting to check for orindary-ABI parameters.
2589     case ParameterABI::Ordinary:
2590     case ParameterABI::HLSLOut:
2591     case ParameterABI::HLSLInOut:
2592       continue;
2593 
2594     // swift_indirect_result parameters must be a prefix of the function
2595     // arguments.
2596     case ParameterABI::SwiftIndirectResult:
2597       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2598       if (paramIndex != 0 &&
2599           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2600             != ParameterABI::SwiftIndirectResult) {
2601         S.Diag(getParamLoc(paramIndex),
2602                diag::err_swift_indirect_result_not_first);
2603       }
2604       continue;
2605 
2606     case ParameterABI::SwiftContext:
2607       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2608       continue;
2609 
2610     // SwiftAsyncContext is not limited to swiftasynccall functions.
2611     case ParameterABI::SwiftAsyncContext:
2612       continue;
2613 
2614     // swift_error parameters must be preceded by a swift_context parameter.
2615     case ParameterABI::SwiftErrorResult:
2616       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2617       if (paramIndex == 0 ||
2618           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2619               ParameterABI::SwiftContext) {
2620         S.Diag(getParamLoc(paramIndex),
2621                diag::err_swift_error_result_not_after_swift_context);
2622       }
2623       continue;
2624     }
2625     llvm_unreachable("bad ABI kind");
2626   }
2627 }
2628 
2629 QualType Sema::BuildFunctionType(QualType T,
2630                                  MutableArrayRef<QualType> ParamTypes,
2631                                  SourceLocation Loc, DeclarationName Entity,
2632                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2633   bool Invalid = false;
2634 
2635   Invalid |= CheckFunctionReturnType(T, Loc);
2636 
2637   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2638     // FIXME: Loc is too inprecise here, should use proper locations for args.
2639     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2640     if (ParamType->isVoidType()) {
2641       Diag(Loc, diag::err_param_with_void_type);
2642       Invalid = true;
2643     } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2644                !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2645       // Disallow half FP arguments.
2646       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2647         FixItHint::CreateInsertion(Loc, "*");
2648       Invalid = true;
2649     } else if (ParamType->isWebAssemblyTableType()) {
2650       Diag(Loc, diag::err_wasm_table_as_function_parameter);
2651       Invalid = true;
2652     }
2653 
2654     // C++2a [dcl.fct]p4:
2655     //   A parameter with volatile-qualified type is deprecated
2656     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2657       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2658 
2659     ParamTypes[Idx] = ParamType;
2660   }
2661 
2662   if (EPI.ExtParameterInfos) {
2663     checkExtParameterInfos(*this, ParamTypes, EPI,
2664                            [=](unsigned i) { return Loc; });
2665   }
2666 
2667   if (EPI.ExtInfo.getProducesResult()) {
2668     // This is just a warning, so we can't fail to build if we see it.
2669     ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2670   }
2671 
2672   if (Invalid)
2673     return QualType();
2674 
2675   return Context.getFunctionType(T, ParamTypes, EPI);
2676 }
2677 
2678 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2679                                       SourceLocation Loc,
2680                                       DeclarationName Entity) {
2681   // Verify that we're not building a pointer to pointer to function with
2682   // exception specification.
2683   if (CheckDistantExceptionSpec(T)) {
2684     Diag(Loc, diag::err_distant_exception_spec);
2685     return QualType();
2686   }
2687 
2688   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2689   //   with reference type, or "cv void."
2690   if (T->isReferenceType()) {
2691     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2692       << getPrintableNameForEntity(Entity) << T;
2693     return QualType();
2694   }
2695 
2696   if (T->isVoidType()) {
2697     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2698       << getPrintableNameForEntity(Entity);
2699     return QualType();
2700   }
2701 
2702   if (!Class->isDependentType() && !Class->isRecordType()) {
2703     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2704     return QualType();
2705   }
2706 
2707   if (T->isFunctionType() && getLangOpts().OpenCL &&
2708       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2709                                             getLangOpts())) {
2710     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2711     return QualType();
2712   }
2713 
2714   if (getLangOpts().HLSL && Loc.isValid()) {
2715     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2716     return QualType();
2717   }
2718 
2719   // Adjust the default free function calling convention to the default method
2720   // calling convention.
2721   bool IsCtorOrDtor =
2722       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2723       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2724   if (T->isFunctionType())
2725     adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2726 
2727   return Context.getMemberPointerType(T, Class.getTypePtr());
2728 }
2729 
2730 QualType Sema::BuildBlockPointerType(QualType T,
2731                                      SourceLocation Loc,
2732                                      DeclarationName Entity) {
2733   if (!T->isFunctionType()) {
2734     Diag(Loc, diag::err_nonfunction_block_type);
2735     return QualType();
2736   }
2737 
2738   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2739     return QualType();
2740 
2741   if (getLangOpts().OpenCL)
2742     T = deduceOpenCLPointeeAddrSpace(*this, T);
2743 
2744   return Context.getBlockPointerType(T);
2745 }
2746 
2747 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2748   QualType QT = Ty.get();
2749   if (QT.isNull()) {
2750     if (TInfo) *TInfo = nullptr;
2751     return QualType();
2752   }
2753 
2754   TypeSourceInfo *DI = nullptr;
2755   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2756     QT = LIT->getType();
2757     DI = LIT->getTypeSourceInfo();
2758   }
2759 
2760   if (TInfo) *TInfo = DI;
2761   return QT;
2762 }
2763 
2764 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2765                                             Qualifiers::ObjCLifetime ownership,
2766                                             unsigned chunkIndex);
2767 
2768 /// Given that this is the declaration of a parameter under ARC,
2769 /// attempt to infer attributes and such for pointer-to-whatever
2770 /// types.
2771 static void inferARCWriteback(TypeProcessingState &state,
2772                               QualType &declSpecType) {
2773   Sema &S = state.getSema();
2774   Declarator &declarator = state.getDeclarator();
2775 
2776   // TODO: should we care about decl qualifiers?
2777 
2778   // Check whether the declarator has the expected form.  We walk
2779   // from the inside out in order to make the block logic work.
2780   unsigned outermostPointerIndex = 0;
2781   bool isBlockPointer = false;
2782   unsigned numPointers = 0;
2783   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2784     unsigned chunkIndex = i;
2785     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2786     switch (chunk.Kind) {
2787     case DeclaratorChunk::Paren:
2788       // Ignore parens.
2789       break;
2790 
2791     case DeclaratorChunk::Reference:
2792     case DeclaratorChunk::Pointer:
2793       // Count the number of pointers.  Treat references
2794       // interchangeably as pointers; if they're mis-ordered, normal
2795       // type building will discover that.
2796       outermostPointerIndex = chunkIndex;
2797       numPointers++;
2798       break;
2799 
2800     case DeclaratorChunk::BlockPointer:
2801       // If we have a pointer to block pointer, that's an acceptable
2802       // indirect reference; anything else is not an application of
2803       // the rules.
2804       if (numPointers != 1) return;
2805       numPointers++;
2806       outermostPointerIndex = chunkIndex;
2807       isBlockPointer = true;
2808 
2809       // We don't care about pointer structure in return values here.
2810       goto done;
2811 
2812     case DeclaratorChunk::Array: // suppress if written (id[])?
2813     case DeclaratorChunk::Function:
2814     case DeclaratorChunk::MemberPointer:
2815     case DeclaratorChunk::Pipe:
2816       return;
2817     }
2818   }
2819  done:
2820 
2821   // If we have *one* pointer, then we want to throw the qualifier on
2822   // the declaration-specifiers, which means that it needs to be a
2823   // retainable object type.
2824   if (numPointers == 1) {
2825     // If it's not a retainable object type, the rule doesn't apply.
2826     if (!declSpecType->isObjCRetainableType()) return;
2827 
2828     // If it already has lifetime, don't do anything.
2829     if (declSpecType.getObjCLifetime()) return;
2830 
2831     // Otherwise, modify the type in-place.
2832     Qualifiers qs;
2833 
2834     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2835       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2836     else
2837       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2838     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2839 
2840   // If we have *two* pointers, then we want to throw the qualifier on
2841   // the outermost pointer.
2842   } else if (numPointers == 2) {
2843     // If we don't have a block pointer, we need to check whether the
2844     // declaration-specifiers gave us something that will turn into a
2845     // retainable object pointer after we slap the first pointer on it.
2846     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2847       return;
2848 
2849     // Look for an explicit lifetime attribute there.
2850     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2851     if (chunk.Kind != DeclaratorChunk::Pointer &&
2852         chunk.Kind != DeclaratorChunk::BlockPointer)
2853       return;
2854     for (const ParsedAttr &AL : chunk.getAttrs())
2855       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2856         return;
2857 
2858     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2859                                           outermostPointerIndex);
2860 
2861   // Any other number of pointers/references does not trigger the rule.
2862   } else return;
2863 
2864   // TODO: mark whether we did this inference?
2865 }
2866 
2867 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2868                                      SourceLocation FallbackLoc,
2869                                      SourceLocation ConstQualLoc,
2870                                      SourceLocation VolatileQualLoc,
2871                                      SourceLocation RestrictQualLoc,
2872                                      SourceLocation AtomicQualLoc,
2873                                      SourceLocation UnalignedQualLoc) {
2874   if (!Quals)
2875     return;
2876 
2877   struct Qual {
2878     const char *Name;
2879     unsigned Mask;
2880     SourceLocation Loc;
2881   } const QualKinds[5] = {
2882     { "const", DeclSpec::TQ_const, ConstQualLoc },
2883     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2884     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2885     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2886     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2887   };
2888 
2889   SmallString<32> QualStr;
2890   unsigned NumQuals = 0;
2891   SourceLocation Loc;
2892   FixItHint FixIts[5];
2893 
2894   // Build a string naming the redundant qualifiers.
2895   for (auto &E : QualKinds) {
2896     if (Quals & E.Mask) {
2897       if (!QualStr.empty()) QualStr += ' ';
2898       QualStr += E.Name;
2899 
2900       // If we have a location for the qualifier, offer a fixit.
2901       SourceLocation QualLoc = E.Loc;
2902       if (QualLoc.isValid()) {
2903         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2904         if (Loc.isInvalid() ||
2905             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2906           Loc = QualLoc;
2907       }
2908 
2909       ++NumQuals;
2910     }
2911   }
2912 
2913   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2914     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2915 }
2916 
2917 // Diagnose pointless type qualifiers on the return type of a function.
2918 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2919                                                   Declarator &D,
2920                                                   unsigned FunctionChunkIndex) {
2921   const DeclaratorChunk::FunctionTypeInfo &FTI =
2922       D.getTypeObject(FunctionChunkIndex).Fun;
2923   if (FTI.hasTrailingReturnType()) {
2924     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2925                                 RetTy.getLocalCVRQualifiers(),
2926                                 FTI.getTrailingReturnTypeLoc());
2927     return;
2928   }
2929 
2930   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2931                 End = D.getNumTypeObjects();
2932        OuterChunkIndex != End; ++OuterChunkIndex) {
2933     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2934     switch (OuterChunk.Kind) {
2935     case DeclaratorChunk::Paren:
2936       continue;
2937 
2938     case DeclaratorChunk::Pointer: {
2939       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2940       S.diagnoseIgnoredQualifiers(
2941           diag::warn_qual_return_type,
2942           PTI.TypeQuals,
2943           SourceLocation(),
2944           PTI.ConstQualLoc,
2945           PTI.VolatileQualLoc,
2946           PTI.RestrictQualLoc,
2947           PTI.AtomicQualLoc,
2948           PTI.UnalignedQualLoc);
2949       return;
2950     }
2951 
2952     case DeclaratorChunk::Function:
2953     case DeclaratorChunk::BlockPointer:
2954     case DeclaratorChunk::Reference:
2955     case DeclaratorChunk::Array:
2956     case DeclaratorChunk::MemberPointer:
2957     case DeclaratorChunk::Pipe:
2958       // FIXME: We can't currently provide an accurate source location and a
2959       // fix-it hint for these.
2960       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2961       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2962                                   RetTy.getCVRQualifiers() | AtomicQual,
2963                                   D.getIdentifierLoc());
2964       return;
2965     }
2966 
2967     llvm_unreachable("unknown declarator chunk kind");
2968   }
2969 
2970   // If the qualifiers come from a conversion function type, don't diagnose
2971   // them -- they're not necessarily redundant, since such a conversion
2972   // operator can be explicitly called as "x.operator const int()".
2973   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2974     return;
2975 
2976   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2977   // which are present there.
2978   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2979                               D.getDeclSpec().getTypeQualifiers(),
2980                               D.getIdentifierLoc(),
2981                               D.getDeclSpec().getConstSpecLoc(),
2982                               D.getDeclSpec().getVolatileSpecLoc(),
2983                               D.getDeclSpec().getRestrictSpecLoc(),
2984                               D.getDeclSpec().getAtomicSpecLoc(),
2985                               D.getDeclSpec().getUnalignedSpecLoc());
2986 }
2987 
2988 static std::pair<QualType, TypeSourceInfo *>
2989 InventTemplateParameter(TypeProcessingState &state, QualType T,
2990                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
2991                         InventedTemplateParameterInfo &Info) {
2992   Sema &S = state.getSema();
2993   Declarator &D = state.getDeclarator();
2994 
2995   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2996   const unsigned AutoParameterPosition = Info.TemplateParams.size();
2997   const bool IsParameterPack = D.hasEllipsis();
2998 
2999   // If auto is mentioned in a lambda parameter or abbreviated function
3000   // template context, convert it to a template parameter type.
3001 
3002   // Create the TemplateTypeParmDecl here to retrieve the corresponding
3003   // template parameter type. Template parameters are temporarily added
3004   // to the TU until the associated TemplateDecl is created.
3005   TemplateTypeParmDecl *InventedTemplateParam =
3006       TemplateTypeParmDecl::Create(
3007           S.Context, S.Context.getTranslationUnitDecl(),
3008           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3009           /*NameLoc=*/D.getIdentifierLoc(),
3010           TemplateParameterDepth, AutoParameterPosition,
3011           S.InventAbbreviatedTemplateParameterTypeName(
3012               D.getIdentifier(), AutoParameterPosition), false,
3013           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3014   InventedTemplateParam->setImplicit();
3015   Info.TemplateParams.push_back(InventedTemplateParam);
3016 
3017   // Attach type constraints to the new parameter.
3018   if (Auto->isConstrained()) {
3019     if (TrailingTSI) {
3020       // The 'auto' appears in a trailing return type we've already built;
3021       // extract its type constraints to attach to the template parameter.
3022       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3023       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3024       bool Invalid = false;
3025       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3026         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3027             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3028                                               Sema::UPPC_TypeConstraint))
3029           Invalid = true;
3030         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3031       }
3032 
3033       if (!Invalid) {
3034         S.AttachTypeConstraint(
3035             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3036             AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3037             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3038             InventedTemplateParam,
3039             S.Context.getTypeDeclType(InventedTemplateParam),
3040             D.getEllipsisLoc());
3041       }
3042     } else {
3043       // The 'auto' appears in the decl-specifiers; we've not finished forming
3044       // TypeSourceInfo for it yet.
3045       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3046       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3047                                                 TemplateId->RAngleLoc);
3048       bool Invalid = false;
3049       if (TemplateId->LAngleLoc.isValid()) {
3050         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3051                                            TemplateId->NumArgs);
3052         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3053 
3054         if (D.getEllipsisLoc().isInvalid()) {
3055           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3056             if (S.DiagnoseUnexpandedParameterPack(Arg,
3057                                                   Sema::UPPC_TypeConstraint)) {
3058               Invalid = true;
3059               break;
3060             }
3061           }
3062         }
3063       }
3064       if (!Invalid) {
3065         UsingShadowDecl *USD =
3066             TemplateId->Template.get().getAsUsingShadowDecl();
3067         auto *CD =
3068             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3069         S.AttachTypeConstraint(
3070             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3071             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3072                                 TemplateId->TemplateNameLoc),
3073             CD,
3074             /*FoundDecl=*/
3075             USD ? cast<NamedDecl>(USD) : CD,
3076             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3077             InventedTemplateParam,
3078             S.Context.getTypeDeclType(InventedTemplateParam),
3079             D.getEllipsisLoc());
3080       }
3081     }
3082   }
3083 
3084   // Replace the 'auto' in the function parameter with this invented
3085   // template type parameter.
3086   // FIXME: Retain some type sugar to indicate that this was written
3087   //  as 'auto'?
3088   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3089   QualType NewT = state.ReplaceAutoType(T, Replacement);
3090   TypeSourceInfo *NewTSI =
3091       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3092                   : nullptr;
3093   return {NewT, NewTSI};
3094 }
3095 
3096 static TypeSourceInfo *
3097 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3098                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3099 
3100 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3101                                              TypeSourceInfo *&ReturnTypeInfo) {
3102   Sema &SemaRef = state.getSema();
3103   Declarator &D = state.getDeclarator();
3104   QualType T;
3105   ReturnTypeInfo = nullptr;
3106 
3107   // The TagDecl owned by the DeclSpec.
3108   TagDecl *OwnedTagDecl = nullptr;
3109 
3110   switch (D.getName().getKind()) {
3111   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3112   case UnqualifiedIdKind::IK_OperatorFunctionId:
3113   case UnqualifiedIdKind::IK_Identifier:
3114   case UnqualifiedIdKind::IK_LiteralOperatorId:
3115   case UnqualifiedIdKind::IK_TemplateId:
3116     T = ConvertDeclSpecToType(state);
3117 
3118     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3119       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3120       // Owned declaration is embedded in declarator.
3121       OwnedTagDecl->setEmbeddedInDeclarator(true);
3122     }
3123     break;
3124 
3125   case UnqualifiedIdKind::IK_ConstructorName:
3126   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3127   case UnqualifiedIdKind::IK_DestructorName:
3128     // Constructors and destructors don't have return types. Use
3129     // "void" instead.
3130     T = SemaRef.Context.VoidTy;
3131     processTypeAttrs(state, T, TAL_DeclSpec,
3132                      D.getMutableDeclSpec().getAttributes());
3133     break;
3134 
3135   case UnqualifiedIdKind::IK_DeductionGuideName:
3136     // Deduction guides have a trailing return type and no type in their
3137     // decl-specifier sequence. Use a placeholder return type for now.
3138     T = SemaRef.Context.DependentTy;
3139     break;
3140 
3141   case UnqualifiedIdKind::IK_ConversionFunctionId:
3142     // The result type of a conversion function is the type that it
3143     // converts to.
3144     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3145                                   &ReturnTypeInfo);
3146     break;
3147   }
3148 
3149   // Note: We don't need to distribute declaration attributes (i.e.
3150   // D.getDeclarationAttributes()) because those are always C++11 attributes,
3151   // and those don't get distributed.
3152   distributeTypeAttrsFromDeclarator(
3153       state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3154 
3155   // Find the deduced type in this type. Look in the trailing return type if we
3156   // have one, otherwise in the DeclSpec type.
3157   // FIXME: The standard wording doesn't currently describe this.
3158   DeducedType *Deduced = T->getContainedDeducedType();
3159   bool DeducedIsTrailingReturnType = false;
3160   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3161     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3162     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3163     DeducedIsTrailingReturnType = true;
3164   }
3165 
3166   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3167   if (Deduced) {
3168     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3169     int Error = -1;
3170 
3171     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3172     // class template argument deduction)?
3173     bool IsCXXAutoType =
3174         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3175     bool IsDeducedReturnType = false;
3176 
3177     switch (D.getContext()) {
3178     case DeclaratorContext::LambdaExpr:
3179       // Declared return type of a lambda-declarator is implicit and is always
3180       // 'auto'.
3181       break;
3182     case DeclaratorContext::ObjCParameter:
3183     case DeclaratorContext::ObjCResult:
3184       Error = 0;
3185       break;
3186     case DeclaratorContext::RequiresExpr:
3187       Error = 22;
3188       break;
3189     case DeclaratorContext::Prototype:
3190     case DeclaratorContext::LambdaExprParameter: {
3191       InventedTemplateParameterInfo *Info = nullptr;
3192       if (D.getContext() == DeclaratorContext::Prototype) {
3193         // With concepts we allow 'auto' in function parameters.
3194         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3195             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3196           Error = 0;
3197           break;
3198         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3199           Error = 21;
3200           break;
3201         }
3202 
3203         Info = &SemaRef.InventedParameterInfos.back();
3204       } else {
3205         // In C++14, generic lambdas allow 'auto' in their parameters.
3206         if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3207             Auto->getKeyword() == AutoTypeKeyword::Auto) {
3208           Error = 25; // auto not allowed in lambda parameter (before C++14)
3209           break;
3210         } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3211           Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3212                       // parameter
3213           break;
3214         }
3215         Info = SemaRef.getCurLambda();
3216         assert(Info && "No LambdaScopeInfo on the stack!");
3217       }
3218 
3219       // We'll deal with inventing template parameters for 'auto' in trailing
3220       // return types when we pick up the trailing return type when processing
3221       // the function chunk.
3222       if (!DeducedIsTrailingReturnType)
3223         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3224       break;
3225     }
3226     case DeclaratorContext::Member: {
3227       if (D.isStaticMember() || D.isFunctionDeclarator())
3228         break;
3229       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3230       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3231         Error = 6; // Interface member.
3232       } else {
3233         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3234         case TagTypeKind::Enum:
3235           llvm_unreachable("unhandled tag kind");
3236         case TagTypeKind::Struct:
3237           Error = Cxx ? 1 : 2; /* Struct member */
3238           break;
3239         case TagTypeKind::Union:
3240           Error = Cxx ? 3 : 4; /* Union member */
3241           break;
3242         case TagTypeKind::Class:
3243           Error = 5; /* Class member */
3244           break;
3245         case TagTypeKind::Interface:
3246           Error = 6; /* Interface member */
3247           break;
3248         }
3249       }
3250       if (D.getDeclSpec().isFriendSpecified())
3251         Error = 20; // Friend type
3252       break;
3253     }
3254     case DeclaratorContext::CXXCatch:
3255     case DeclaratorContext::ObjCCatch:
3256       Error = 7; // Exception declaration
3257       break;
3258     case DeclaratorContext::TemplateParam:
3259       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3260           !SemaRef.getLangOpts().CPlusPlus20)
3261         Error = 19; // Template parameter (until C++20)
3262       else if (!SemaRef.getLangOpts().CPlusPlus17)
3263         Error = 8; // Template parameter (until C++17)
3264       break;
3265     case DeclaratorContext::BlockLiteral:
3266       Error = 9; // Block literal
3267       break;
3268     case DeclaratorContext::TemplateArg:
3269       // Within a template argument list, a deduced template specialization
3270       // type will be reinterpreted as a template template argument.
3271       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3272           !D.getNumTypeObjects() &&
3273           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3274         break;
3275       [[fallthrough]];
3276     case DeclaratorContext::TemplateTypeArg:
3277       Error = 10; // Template type argument
3278       break;
3279     case DeclaratorContext::AliasDecl:
3280     case DeclaratorContext::AliasTemplate:
3281       Error = 12; // Type alias
3282       break;
3283     case DeclaratorContext::TrailingReturn:
3284     case DeclaratorContext::TrailingReturnVar:
3285       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3286         Error = 13; // Function return type
3287       IsDeducedReturnType = true;
3288       break;
3289     case DeclaratorContext::ConversionId:
3290       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3291         Error = 14; // conversion-type-id
3292       IsDeducedReturnType = true;
3293       break;
3294     case DeclaratorContext::FunctionalCast:
3295       if (isa<DeducedTemplateSpecializationType>(Deduced))
3296         break;
3297       if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3298           !Auto->isDecltypeAuto())
3299         break; // auto(x)
3300       [[fallthrough]];
3301     case DeclaratorContext::TypeName:
3302     case DeclaratorContext::Association:
3303       Error = 15; // Generic
3304       break;
3305     case DeclaratorContext::File:
3306     case DeclaratorContext::Block:
3307     case DeclaratorContext::ForInit:
3308     case DeclaratorContext::SelectionInit:
3309     case DeclaratorContext::Condition:
3310       // FIXME: P0091R3 (erroneously) does not permit class template argument
3311       // deduction in conditions, for-init-statements, and other declarations
3312       // that are not simple-declarations.
3313       break;
3314     case DeclaratorContext::CXXNew:
3315       // FIXME: P0091R3 does not permit class template argument deduction here,
3316       // but we follow GCC and allow it anyway.
3317       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3318         Error = 17; // 'new' type
3319       break;
3320     case DeclaratorContext::KNRTypeList:
3321       Error = 18; // K&R function parameter
3322       break;
3323     }
3324 
3325     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3326       Error = 11;
3327 
3328     // In Objective-C it is an error to use 'auto' on a function declarator
3329     // (and everywhere for '__auto_type').
3330     if (D.isFunctionDeclarator() &&
3331         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3332       Error = 13;
3333 
3334     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3335     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3336       AutoRange = D.getName().getSourceRange();
3337 
3338     if (Error != -1) {
3339       unsigned Kind;
3340       if (Auto) {
3341         switch (Auto->getKeyword()) {
3342         case AutoTypeKeyword::Auto: Kind = 0; break;
3343         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3344         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3345         }
3346       } else {
3347         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3348                "unknown auto type");
3349         Kind = 3;
3350       }
3351 
3352       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3353       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3354 
3355       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3356         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3357         << QualType(Deduced, 0) << AutoRange;
3358       if (auto *TD = TN.getAsTemplateDecl())
3359         SemaRef.NoteTemplateLocation(*TD);
3360 
3361       T = SemaRef.Context.IntTy;
3362       D.setInvalidType(true);
3363     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3364       // If there was a trailing return type, we already got
3365       // warn_cxx98_compat_trailing_return_type in the parser.
3366       SemaRef.Diag(AutoRange.getBegin(),
3367                    D.getContext() == DeclaratorContext::LambdaExprParameter
3368                        ? diag::warn_cxx11_compat_generic_lambda
3369                    : IsDeducedReturnType
3370                        ? diag::warn_cxx11_compat_deduced_return_type
3371                        : diag::warn_cxx98_compat_auto_type_specifier)
3372           << AutoRange;
3373     }
3374   }
3375 
3376   if (SemaRef.getLangOpts().CPlusPlus &&
3377       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3378     // Check the contexts where C++ forbids the declaration of a new class
3379     // or enumeration in a type-specifier-seq.
3380     unsigned DiagID = 0;
3381     switch (D.getContext()) {
3382     case DeclaratorContext::TrailingReturn:
3383     case DeclaratorContext::TrailingReturnVar:
3384       // Class and enumeration definitions are syntactically not allowed in
3385       // trailing return types.
3386       llvm_unreachable("parser should not have allowed this");
3387       break;
3388     case DeclaratorContext::File:
3389     case DeclaratorContext::Member:
3390     case DeclaratorContext::Block:
3391     case DeclaratorContext::ForInit:
3392     case DeclaratorContext::SelectionInit:
3393     case DeclaratorContext::BlockLiteral:
3394     case DeclaratorContext::LambdaExpr:
3395       // C++11 [dcl.type]p3:
3396       //   A type-specifier-seq shall not define a class or enumeration unless
3397       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3398       //   the declaration of a template-declaration.
3399     case DeclaratorContext::AliasDecl:
3400       break;
3401     case DeclaratorContext::AliasTemplate:
3402       DiagID = diag::err_type_defined_in_alias_template;
3403       break;
3404     case DeclaratorContext::TypeName:
3405     case DeclaratorContext::FunctionalCast:
3406     case DeclaratorContext::ConversionId:
3407     case DeclaratorContext::TemplateParam:
3408     case DeclaratorContext::CXXNew:
3409     case DeclaratorContext::CXXCatch:
3410     case DeclaratorContext::ObjCCatch:
3411     case DeclaratorContext::TemplateArg:
3412     case DeclaratorContext::TemplateTypeArg:
3413     case DeclaratorContext::Association:
3414       DiagID = diag::err_type_defined_in_type_specifier;
3415       break;
3416     case DeclaratorContext::Prototype:
3417     case DeclaratorContext::LambdaExprParameter:
3418     case DeclaratorContext::ObjCParameter:
3419     case DeclaratorContext::ObjCResult:
3420     case DeclaratorContext::KNRTypeList:
3421     case DeclaratorContext::RequiresExpr:
3422       // C++ [dcl.fct]p6:
3423       //   Types shall not be defined in return or parameter types.
3424       DiagID = diag::err_type_defined_in_param_type;
3425       break;
3426     case DeclaratorContext::Condition:
3427       // C++ 6.4p2:
3428       // The type-specifier-seq shall not contain typedef and shall not declare
3429       // a new class or enumeration.
3430       DiagID = diag::err_type_defined_in_condition;
3431       break;
3432     }
3433 
3434     if (DiagID != 0) {
3435       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3436           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3437       D.setInvalidType(true);
3438     }
3439   }
3440 
3441   assert(!T.isNull() && "This function should not return a null type");
3442   return T;
3443 }
3444 
3445 /// Produce an appropriate diagnostic for an ambiguity between a function
3446 /// declarator and a C++ direct-initializer.
3447 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3448                                        DeclaratorChunk &DeclType, QualType RT) {
3449   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3450   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3451 
3452   // If the return type is void there is no ambiguity.
3453   if (RT->isVoidType())
3454     return;
3455 
3456   // An initializer for a non-class type can have at most one argument.
3457   if (!RT->isRecordType() && FTI.NumParams > 1)
3458     return;
3459 
3460   // An initializer for a reference must have exactly one argument.
3461   if (RT->isReferenceType() && FTI.NumParams != 1)
3462     return;
3463 
3464   // Only warn if this declarator is declaring a function at block scope, and
3465   // doesn't have a storage class (such as 'extern') specified.
3466   if (!D.isFunctionDeclarator() ||
3467       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3468       !S.CurContext->isFunctionOrMethod() ||
3469       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3470     return;
3471 
3472   // Inside a condition, a direct initializer is not permitted. We allow one to
3473   // be parsed in order to give better diagnostics in condition parsing.
3474   if (D.getContext() == DeclaratorContext::Condition)
3475     return;
3476 
3477   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3478 
3479   S.Diag(DeclType.Loc,
3480          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3481                        : diag::warn_empty_parens_are_function_decl)
3482       << ParenRange;
3483 
3484   // If the declaration looks like:
3485   //   T var1,
3486   //   f();
3487   // and name lookup finds a function named 'f', then the ',' was
3488   // probably intended to be a ';'.
3489   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3490     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3491     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3492     if (Comma.getFileID() != Name.getFileID() ||
3493         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3494       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3495                           Sema::LookupOrdinaryName);
3496       if (S.LookupName(Result, S.getCurScope()))
3497         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3498           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3499           << D.getIdentifier();
3500       Result.suppressDiagnostics();
3501     }
3502   }
3503 
3504   if (FTI.NumParams > 0) {
3505     // For a declaration with parameters, eg. "T var(T());", suggest adding
3506     // parens around the first parameter to turn the declaration into a
3507     // variable declaration.
3508     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3509     SourceLocation B = Range.getBegin();
3510     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3511     // FIXME: Maybe we should suggest adding braces instead of parens
3512     // in C++11 for classes that don't have an initializer_list constructor.
3513     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3514       << FixItHint::CreateInsertion(B, "(")
3515       << FixItHint::CreateInsertion(E, ")");
3516   } else {
3517     // For a declaration without parameters, eg. "T var();", suggest replacing
3518     // the parens with an initializer to turn the declaration into a variable
3519     // declaration.
3520     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3521 
3522     // Empty parens mean value-initialization, and no parens mean
3523     // default initialization. These are equivalent if the default
3524     // constructor is user-provided or if zero-initialization is a
3525     // no-op.
3526     if (RD && RD->hasDefinition() &&
3527         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3528       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3529         << FixItHint::CreateRemoval(ParenRange);
3530     else {
3531       std::string Init =
3532           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3533       if (Init.empty() && S.LangOpts.CPlusPlus11)
3534         Init = "{}";
3535       if (!Init.empty())
3536         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3537           << FixItHint::CreateReplacement(ParenRange, Init);
3538     }
3539   }
3540 }
3541 
3542 /// Produce an appropriate diagnostic for a declarator with top-level
3543 /// parentheses.
3544 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3545   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3546   assert(Paren.Kind == DeclaratorChunk::Paren &&
3547          "do not have redundant top-level parentheses");
3548 
3549   // This is a syntactic check; we're not interested in cases that arise
3550   // during template instantiation.
3551   if (S.inTemplateInstantiation())
3552     return;
3553 
3554   // Check whether this could be intended to be a construction of a temporary
3555   // object in C++ via a function-style cast.
3556   bool CouldBeTemporaryObject =
3557       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3558       !D.isInvalidType() && D.getIdentifier() &&
3559       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3560       (T->isRecordType() || T->isDependentType()) &&
3561       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3562 
3563   bool StartsWithDeclaratorId = true;
3564   for (auto &C : D.type_objects()) {
3565     switch (C.Kind) {
3566     case DeclaratorChunk::Paren:
3567       if (&C == &Paren)
3568         continue;
3569       [[fallthrough]];
3570     case DeclaratorChunk::Pointer:
3571       StartsWithDeclaratorId = false;
3572       continue;
3573 
3574     case DeclaratorChunk::Array:
3575       if (!C.Arr.NumElts)
3576         CouldBeTemporaryObject = false;
3577       continue;
3578 
3579     case DeclaratorChunk::Reference:
3580       // FIXME: Suppress the warning here if there is no initializer; we're
3581       // going to give an error anyway.
3582       // We assume that something like 'T (&x) = y;' is highly likely to not
3583       // be intended to be a temporary object.
3584       CouldBeTemporaryObject = false;
3585       StartsWithDeclaratorId = false;
3586       continue;
3587 
3588     case DeclaratorChunk::Function:
3589       // In a new-type-id, function chunks require parentheses.
3590       if (D.getContext() == DeclaratorContext::CXXNew)
3591         return;
3592       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3593       // redundant-parens warning, but we don't know whether the function
3594       // chunk was syntactically valid as an expression here.
3595       CouldBeTemporaryObject = false;
3596       continue;
3597 
3598     case DeclaratorChunk::BlockPointer:
3599     case DeclaratorChunk::MemberPointer:
3600     case DeclaratorChunk::Pipe:
3601       // These cannot appear in expressions.
3602       CouldBeTemporaryObject = false;
3603       StartsWithDeclaratorId = false;
3604       continue;
3605     }
3606   }
3607 
3608   // FIXME: If there is an initializer, assume that this is not intended to be
3609   // a construction of a temporary object.
3610 
3611   // Check whether the name has already been declared; if not, this is not a
3612   // function-style cast.
3613   if (CouldBeTemporaryObject) {
3614     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3615                         Sema::LookupOrdinaryName);
3616     if (!S.LookupName(Result, S.getCurScope()))
3617       CouldBeTemporaryObject = false;
3618     Result.suppressDiagnostics();
3619   }
3620 
3621   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3622 
3623   if (!CouldBeTemporaryObject) {
3624     // If we have A (::B), the parentheses affect the meaning of the program.
3625     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3626     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3627     // formally unambiguous.
3628     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3629       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3630            NNS = NNS->getPrefix()) {
3631         if (NNS->getKind() == NestedNameSpecifier::Global)
3632           return;
3633       }
3634     }
3635 
3636     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3637         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3638         << FixItHint::CreateRemoval(Paren.EndLoc);
3639     return;
3640   }
3641 
3642   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3643       << ParenRange << D.getIdentifier();
3644   auto *RD = T->getAsCXXRecordDecl();
3645   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3646     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3647         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3648         << D.getIdentifier();
3649   // FIXME: A cast to void is probably a better suggestion in cases where it's
3650   // valid (when there is no initializer and we're not in a condition).
3651   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3652       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3653       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3654   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3655       << FixItHint::CreateRemoval(Paren.Loc)
3656       << FixItHint::CreateRemoval(Paren.EndLoc);
3657 }
3658 
3659 /// Helper for figuring out the default CC for a function declarator type.  If
3660 /// this is the outermost chunk, then we can determine the CC from the
3661 /// declarator context.  If not, then this could be either a member function
3662 /// type or normal function type.
3663 static CallingConv getCCForDeclaratorChunk(
3664     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3665     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3666   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3667 
3668   // Check for an explicit CC attribute.
3669   for (const ParsedAttr &AL : AttrList) {
3670     switch (AL.getKind()) {
3671     CALLING_CONV_ATTRS_CASELIST : {
3672       // Ignore attributes that don't validate or can't apply to the
3673       // function type.  We'll diagnose the failure to apply them in
3674       // handleFunctionTypeAttr.
3675       CallingConv CC;
3676       if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3677                                   S.CUDA().IdentifyTarget(D.getAttributes())) &&
3678           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3679         return CC;
3680       }
3681       break;
3682     }
3683 
3684     default:
3685       break;
3686     }
3687   }
3688 
3689   bool IsCXXInstanceMethod = false;
3690 
3691   if (S.getLangOpts().CPlusPlus) {
3692     // Look inwards through parentheses to see if this chunk will form a
3693     // member pointer type or if we're the declarator.  Any type attributes
3694     // between here and there will override the CC we choose here.
3695     unsigned I = ChunkIndex;
3696     bool FoundNonParen = false;
3697     while (I && !FoundNonParen) {
3698       --I;
3699       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3700         FoundNonParen = true;
3701     }
3702 
3703     if (FoundNonParen) {
3704       // If we're not the declarator, we're a regular function type unless we're
3705       // in a member pointer.
3706       IsCXXInstanceMethod =
3707           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3708     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3709       // This can only be a call operator for a lambda, which is an instance
3710       // method, unless explicitly specified as 'static'.
3711       IsCXXInstanceMethod =
3712           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3713     } else {
3714       // We're the innermost decl chunk, so must be a function declarator.
3715       assert(D.isFunctionDeclarator());
3716 
3717       // If we're inside a record, we're declaring a method, but it could be
3718       // explicitly or implicitly static.
3719       IsCXXInstanceMethod =
3720           D.isFirstDeclarationOfMember() &&
3721           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3722           !D.isStaticMember();
3723     }
3724   }
3725 
3726   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3727                                                          IsCXXInstanceMethod);
3728 
3729   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3730   // and AMDGPU targets, hence it cannot be treated as a calling
3731   // convention attribute. This is the simplest place to infer
3732   // calling convention for OpenCL kernels.
3733   if (S.getLangOpts().OpenCL) {
3734     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3735       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3736         CC = CC_OpenCLKernel;
3737         break;
3738       }
3739     }
3740   } else if (S.getLangOpts().CUDA) {
3741     // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make
3742     // sure the kernels will be marked with the right calling convention so that
3743     // they will be visible by the APIs that ingest SPIR-V. We do not do this
3744     // when targeting AMDGCNSPIRV, as it does not rely on OpenCL.
3745     llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3746     if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) {
3747       for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3748         if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3749           CC = CC_OpenCLKernel;
3750           break;
3751         }
3752       }
3753     }
3754   }
3755 
3756   return CC;
3757 }
3758 
3759 namespace {
3760   /// A simple notion of pointer kinds, which matches up with the various
3761   /// pointer declarators.
3762   enum class SimplePointerKind {
3763     Pointer,
3764     BlockPointer,
3765     MemberPointer,
3766     Array,
3767   };
3768 } // end anonymous namespace
3769 
3770 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3771   switch (nullability) {
3772   case NullabilityKind::NonNull:
3773     if (!Ident__Nonnull)
3774       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3775     return Ident__Nonnull;
3776 
3777   case NullabilityKind::Nullable:
3778     if (!Ident__Nullable)
3779       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3780     return Ident__Nullable;
3781 
3782   case NullabilityKind::NullableResult:
3783     if (!Ident__Nullable_result)
3784       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3785     return Ident__Nullable_result;
3786 
3787   case NullabilityKind::Unspecified:
3788     if (!Ident__Null_unspecified)
3789       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3790     return Ident__Null_unspecified;
3791   }
3792   llvm_unreachable("Unknown nullability kind.");
3793 }
3794 
3795 /// Check whether there is a nullability attribute of any kind in the given
3796 /// attribute list.
3797 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3798   for (const ParsedAttr &AL : attrs) {
3799     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3800         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3801         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3802         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3803       return true;
3804   }
3805 
3806   return false;
3807 }
3808 
3809 namespace {
3810   /// Describes the kind of a pointer a declarator describes.
3811   enum class PointerDeclaratorKind {
3812     // Not a pointer.
3813     NonPointer,
3814     // Single-level pointer.
3815     SingleLevelPointer,
3816     // Multi-level pointer (of any pointer kind).
3817     MultiLevelPointer,
3818     // CFFooRef*
3819     MaybePointerToCFRef,
3820     // CFErrorRef*
3821     CFErrorRefPointer,
3822     // NSError**
3823     NSErrorPointerPointer,
3824   };
3825 
3826   /// Describes a declarator chunk wrapping a pointer that marks inference as
3827   /// unexpected.
3828   // These values must be kept in sync with diagnostics.
3829   enum class PointerWrappingDeclaratorKind {
3830     /// Pointer is top-level.
3831     None = -1,
3832     /// Pointer is an array element.
3833     Array = 0,
3834     /// Pointer is the referent type of a C++ reference.
3835     Reference = 1
3836   };
3837 } // end anonymous namespace
3838 
3839 /// Classify the given declarator, whose type-specified is \c type, based on
3840 /// what kind of pointer it refers to.
3841 ///
3842 /// This is used to determine the default nullability.
3843 static PointerDeclaratorKind
3844 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3845                           PointerWrappingDeclaratorKind &wrappingKind) {
3846   unsigned numNormalPointers = 0;
3847 
3848   // For any dependent type, we consider it a non-pointer.
3849   if (type->isDependentType())
3850     return PointerDeclaratorKind::NonPointer;
3851 
3852   // Look through the declarator chunks to identify pointers.
3853   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3854     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3855     switch (chunk.Kind) {
3856     case DeclaratorChunk::Array:
3857       if (numNormalPointers == 0)
3858         wrappingKind = PointerWrappingDeclaratorKind::Array;
3859       break;
3860 
3861     case DeclaratorChunk::Function:
3862     case DeclaratorChunk::Pipe:
3863       break;
3864 
3865     case DeclaratorChunk::BlockPointer:
3866     case DeclaratorChunk::MemberPointer:
3867       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3868                                    : PointerDeclaratorKind::SingleLevelPointer;
3869 
3870     case DeclaratorChunk::Paren:
3871       break;
3872 
3873     case DeclaratorChunk::Reference:
3874       if (numNormalPointers == 0)
3875         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3876       break;
3877 
3878     case DeclaratorChunk::Pointer:
3879       ++numNormalPointers;
3880       if (numNormalPointers > 2)
3881         return PointerDeclaratorKind::MultiLevelPointer;
3882       break;
3883     }
3884   }
3885 
3886   // Then, dig into the type specifier itself.
3887   unsigned numTypeSpecifierPointers = 0;
3888   do {
3889     // Decompose normal pointers.
3890     if (auto ptrType = type->getAs<PointerType>()) {
3891       ++numNormalPointers;
3892 
3893       if (numNormalPointers > 2)
3894         return PointerDeclaratorKind::MultiLevelPointer;
3895 
3896       type = ptrType->getPointeeType();
3897       ++numTypeSpecifierPointers;
3898       continue;
3899     }
3900 
3901     // Decompose block pointers.
3902     if (type->getAs<BlockPointerType>()) {
3903       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3904                                    : PointerDeclaratorKind::SingleLevelPointer;
3905     }
3906 
3907     // Decompose member pointers.
3908     if (type->getAs<MemberPointerType>()) {
3909       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3910                                    : PointerDeclaratorKind::SingleLevelPointer;
3911     }
3912 
3913     // Look at Objective-C object pointers.
3914     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3915       ++numNormalPointers;
3916       ++numTypeSpecifierPointers;
3917 
3918       // If this is NSError**, report that.
3919       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3920         if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3921             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3922           return PointerDeclaratorKind::NSErrorPointerPointer;
3923         }
3924       }
3925 
3926       break;
3927     }
3928 
3929     // Look at Objective-C class types.
3930     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3931       if (objcClass->getInterface()->getIdentifier() ==
3932           S.ObjC().getNSErrorIdent()) {
3933         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3934           return PointerDeclaratorKind::NSErrorPointerPointer;
3935       }
3936 
3937       break;
3938     }
3939 
3940     // If at this point we haven't seen a pointer, we won't see one.
3941     if (numNormalPointers == 0)
3942       return PointerDeclaratorKind::NonPointer;
3943 
3944     if (auto recordType = type->getAs<RecordType>()) {
3945       RecordDecl *recordDecl = recordType->getDecl();
3946 
3947       // If this is CFErrorRef*, report it as such.
3948       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3949           S.ObjC().isCFError(recordDecl)) {
3950         return PointerDeclaratorKind::CFErrorRefPointer;
3951       }
3952       break;
3953     }
3954 
3955     break;
3956   } while (true);
3957 
3958   switch (numNormalPointers) {
3959   case 0:
3960     return PointerDeclaratorKind::NonPointer;
3961 
3962   case 1:
3963     return PointerDeclaratorKind::SingleLevelPointer;
3964 
3965   case 2:
3966     return PointerDeclaratorKind::MaybePointerToCFRef;
3967 
3968   default:
3969     return PointerDeclaratorKind::MultiLevelPointer;
3970   }
3971 }
3972 
3973 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3974                                                     SourceLocation loc) {
3975   // If we're anywhere in a function, method, or closure context, don't perform
3976   // completeness checks.
3977   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3978     if (ctx->isFunctionOrMethod())
3979       return FileID();
3980 
3981     if (ctx->isFileContext())
3982       break;
3983   }
3984 
3985   // We only care about the expansion location.
3986   loc = S.SourceMgr.getExpansionLoc(loc);
3987   FileID file = S.SourceMgr.getFileID(loc);
3988   if (file.isInvalid())
3989     return FileID();
3990 
3991   // Retrieve file information.
3992   bool invalid = false;
3993   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3994   if (invalid || !sloc.isFile())
3995     return FileID();
3996 
3997   // We don't want to perform completeness checks on the main file or in
3998   // system headers.
3999   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4000   if (fileInfo.getIncludeLoc().isInvalid())
4001     return FileID();
4002   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4003       S.Diags.getSuppressSystemWarnings()) {
4004     return FileID();
4005   }
4006 
4007   return file;
4008 }
4009 
4010 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4011 /// taking into account whitespace before and after.
4012 template <typename DiagBuilderT>
4013 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4014                              SourceLocation PointerLoc,
4015                              NullabilityKind Nullability) {
4016   assert(PointerLoc.isValid());
4017   if (PointerLoc.isMacroID())
4018     return;
4019 
4020   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4021   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4022     return;
4023 
4024   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4025   if (!NextChar)
4026     return;
4027 
4028   SmallString<32> InsertionTextBuf{" "};
4029   InsertionTextBuf += getNullabilitySpelling(Nullability);
4030   InsertionTextBuf += " ";
4031   StringRef InsertionText = InsertionTextBuf.str();
4032 
4033   if (isWhitespace(*NextChar)) {
4034     InsertionText = InsertionText.drop_back();
4035   } else if (NextChar[-1] == '[') {
4036     if (NextChar[0] == ']')
4037       InsertionText = InsertionText.drop_back().drop_front();
4038     else
4039       InsertionText = InsertionText.drop_front();
4040   } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4041              !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4042     InsertionText = InsertionText.drop_back().drop_front();
4043   }
4044 
4045   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4046 }
4047 
4048 static void emitNullabilityConsistencyWarning(Sema &S,
4049                                               SimplePointerKind PointerKind,
4050                                               SourceLocation PointerLoc,
4051                                               SourceLocation PointerEndLoc) {
4052   assert(PointerLoc.isValid());
4053 
4054   if (PointerKind == SimplePointerKind::Array) {
4055     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4056   } else {
4057     S.Diag(PointerLoc, diag::warn_nullability_missing)
4058       << static_cast<unsigned>(PointerKind);
4059   }
4060 
4061   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4062   if (FixItLoc.isMacroID())
4063     return;
4064 
4065   auto addFixIt = [&](NullabilityKind Nullability) {
4066     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4067     Diag << static_cast<unsigned>(Nullability);
4068     Diag << static_cast<unsigned>(PointerKind);
4069     fixItNullability(S, Diag, FixItLoc, Nullability);
4070   };
4071   addFixIt(NullabilityKind::Nullable);
4072   addFixIt(NullabilityKind::NonNull);
4073 }
4074 
4075 /// Complains about missing nullability if the file containing \p pointerLoc
4076 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4077 /// pragma).
4078 ///
4079 /// If the file has \e not seen other uses of nullability, this particular
4080 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4081 static void
4082 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4083                             SourceLocation pointerLoc,
4084                             SourceLocation pointerEndLoc = SourceLocation()) {
4085   // Determine which file we're performing consistency checking for.
4086   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4087   if (file.isInvalid())
4088     return;
4089 
4090   // If we haven't seen any type nullability in this file, we won't warn now
4091   // about anything.
4092   FileNullability &fileNullability = S.NullabilityMap[file];
4093   if (!fileNullability.SawTypeNullability) {
4094     // If this is the first pointer declarator in the file, and the appropriate
4095     // warning is on, record it in case we need to diagnose it retroactively.
4096     diag::kind diagKind;
4097     if (pointerKind == SimplePointerKind::Array)
4098       diagKind = diag::warn_nullability_missing_array;
4099     else
4100       diagKind = diag::warn_nullability_missing;
4101 
4102     if (fileNullability.PointerLoc.isInvalid() &&
4103         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4104       fileNullability.PointerLoc = pointerLoc;
4105       fileNullability.PointerEndLoc = pointerEndLoc;
4106       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4107     }
4108 
4109     return;
4110   }
4111 
4112   // Complain about missing nullability.
4113   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4114 }
4115 
4116 /// Marks that a nullability feature has been used in the file containing
4117 /// \p loc.
4118 ///
4119 /// If this file already had pointer types in it that were missing nullability,
4120 /// the first such instance is retroactively diagnosed.
4121 ///
4122 /// \sa checkNullabilityConsistency
4123 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4124   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4125   if (file.isInvalid())
4126     return;
4127 
4128   FileNullability &fileNullability = S.NullabilityMap[file];
4129   if (fileNullability.SawTypeNullability)
4130     return;
4131   fileNullability.SawTypeNullability = true;
4132 
4133   // If we haven't seen any type nullability before, now we have. Retroactively
4134   // diagnose the first unannotated pointer, if there was one.
4135   if (fileNullability.PointerLoc.isInvalid())
4136     return;
4137 
4138   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4139   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4140                                     fileNullability.PointerEndLoc);
4141 }
4142 
4143 /// Returns true if any of the declarator chunks before \p endIndex include a
4144 /// level of indirection: array, pointer, reference, or pointer-to-member.
4145 ///
4146 /// Because declarator chunks are stored in outer-to-inner order, testing
4147 /// every chunk before \p endIndex is testing all chunks that embed the current
4148 /// chunk as part of their type.
4149 ///
4150 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4151 /// end index, in which case all chunks are tested.
4152 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4153   unsigned i = endIndex;
4154   while (i != 0) {
4155     // Walk outwards along the declarator chunks.
4156     --i;
4157     const DeclaratorChunk &DC = D.getTypeObject(i);
4158     switch (DC.Kind) {
4159     case DeclaratorChunk::Paren:
4160       break;
4161     case DeclaratorChunk::Array:
4162     case DeclaratorChunk::Pointer:
4163     case DeclaratorChunk::Reference:
4164     case DeclaratorChunk::MemberPointer:
4165       return true;
4166     case DeclaratorChunk::Function:
4167     case DeclaratorChunk::BlockPointer:
4168     case DeclaratorChunk::Pipe:
4169       // These are invalid anyway, so just ignore.
4170       break;
4171     }
4172   }
4173   return false;
4174 }
4175 
4176 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4177   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4178           Chunk.Kind == DeclaratorChunk::Array);
4179 }
4180 
4181 template<typename AttrT>
4182 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4183   AL.setUsedAsTypeAttr();
4184   return ::new (Ctx) AttrT(Ctx, AL);
4185 }
4186 
4187 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4188                                    NullabilityKind NK) {
4189   switch (NK) {
4190   case NullabilityKind::NonNull:
4191     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4192 
4193   case NullabilityKind::Nullable:
4194     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4195 
4196   case NullabilityKind::NullableResult:
4197     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4198 
4199   case NullabilityKind::Unspecified:
4200     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4201   }
4202   llvm_unreachable("unknown NullabilityKind");
4203 }
4204 
4205 // Diagnose whether this is a case with the multiple addr spaces.
4206 // Returns true if this is an invalid case.
4207 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4208 // by qualifiers for two or more different address spaces."
4209 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4210                                                 LangAS ASNew,
4211                                                 SourceLocation AttrLoc) {
4212   if (ASOld != LangAS::Default) {
4213     if (ASOld != ASNew) {
4214       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4215       return true;
4216     }
4217     // Emit a warning if they are identical; it's likely unintended.
4218     S.Diag(AttrLoc,
4219            diag::warn_attribute_address_multiple_identical_qualifiers);
4220   }
4221   return false;
4222 }
4223 
4224 // Whether this is a type broadly expected to have nullability attached.
4225 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4226 // will be diagnosed with -Wnullability-completeness.
4227 static bool shouldHaveNullability(QualType T) {
4228   return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4229          // For now, do not infer/require nullability on C++ smart pointers.
4230          // It's unclear whether the pragma's behavior is useful for C++.
4231          // e.g. treating type-aliases and template-type-parameters differently
4232          // from types of declarations can be surprising.
4233          !isa<RecordType, TemplateSpecializationType>(
4234              T->getCanonicalTypeInternal());
4235 }
4236 
4237 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4238                                                 QualType declSpecType,
4239                                                 TypeSourceInfo *TInfo) {
4240   // The TypeSourceInfo that this function returns will not be a null type.
4241   // If there is an error, this function will fill in a dummy type as fallback.
4242   QualType T = declSpecType;
4243   Declarator &D = state.getDeclarator();
4244   Sema &S = state.getSema();
4245   ASTContext &Context = S.Context;
4246   const LangOptions &LangOpts = S.getLangOpts();
4247 
4248   // The name we're declaring, if any.
4249   DeclarationName Name;
4250   if (D.getIdentifier())
4251     Name = D.getIdentifier();
4252 
4253   // Does this declaration declare a typedef-name?
4254   bool IsTypedefName =
4255       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4256       D.getContext() == DeclaratorContext::AliasDecl ||
4257       D.getContext() == DeclaratorContext::AliasTemplate;
4258 
4259   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4260   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4261       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4262        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4263 
4264   // If T is 'decltype(auto)', the only declarators we can have are parens
4265   // and at most one function declarator if this is a function declaration.
4266   // If T is a deduced class template specialization type, we can have no
4267   // declarator chunks at all.
4268   if (auto *DT = T->getAs<DeducedType>()) {
4269     const AutoType *AT = T->getAs<AutoType>();
4270     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4271     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4272       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4273         unsigned Index = E - I - 1;
4274         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4275         unsigned DiagId = IsClassTemplateDeduction
4276                               ? diag::err_deduced_class_template_compound_type
4277                               : diag::err_decltype_auto_compound_type;
4278         unsigned DiagKind = 0;
4279         switch (DeclChunk.Kind) {
4280         case DeclaratorChunk::Paren:
4281           // FIXME: Rejecting this is a little silly.
4282           if (IsClassTemplateDeduction) {
4283             DiagKind = 4;
4284             break;
4285           }
4286           continue;
4287         case DeclaratorChunk::Function: {
4288           if (IsClassTemplateDeduction) {
4289             DiagKind = 3;
4290             break;
4291           }
4292           unsigned FnIndex;
4293           if (D.isFunctionDeclarationContext() &&
4294               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4295             continue;
4296           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4297           break;
4298         }
4299         case DeclaratorChunk::Pointer:
4300         case DeclaratorChunk::BlockPointer:
4301         case DeclaratorChunk::MemberPointer:
4302           DiagKind = 0;
4303           break;
4304         case DeclaratorChunk::Reference:
4305           DiagKind = 1;
4306           break;
4307         case DeclaratorChunk::Array:
4308           DiagKind = 2;
4309           break;
4310         case DeclaratorChunk::Pipe:
4311           break;
4312         }
4313 
4314         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4315         D.setInvalidType(true);
4316         break;
4317       }
4318     }
4319   }
4320 
4321   // Determine whether we should infer _Nonnull on pointer types.
4322   std::optional<NullabilityKind> inferNullability;
4323   bool inferNullabilityCS = false;
4324   bool inferNullabilityInnerOnly = false;
4325   bool inferNullabilityInnerOnlyComplete = false;
4326 
4327   // Are we in an assume-nonnull region?
4328   bool inAssumeNonNullRegion = false;
4329   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4330   if (assumeNonNullLoc.isValid()) {
4331     inAssumeNonNullRegion = true;
4332     recordNullabilitySeen(S, assumeNonNullLoc);
4333   }
4334 
4335   // Whether to complain about missing nullability specifiers or not.
4336   enum {
4337     /// Never complain.
4338     CAMN_No,
4339     /// Complain on the inner pointers (but not the outermost
4340     /// pointer).
4341     CAMN_InnerPointers,
4342     /// Complain about any pointers that don't have nullability
4343     /// specified or inferred.
4344     CAMN_Yes
4345   } complainAboutMissingNullability = CAMN_No;
4346   unsigned NumPointersRemaining = 0;
4347   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4348 
4349   if (IsTypedefName) {
4350     // For typedefs, we do not infer any nullability (the default),
4351     // and we only complain about missing nullability specifiers on
4352     // inner pointers.
4353     complainAboutMissingNullability = CAMN_InnerPointers;
4354 
4355     if (shouldHaveNullability(T) && !T->getNullability()) {
4356       // Note that we allow but don't require nullability on dependent types.
4357       ++NumPointersRemaining;
4358     }
4359 
4360     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4361       DeclaratorChunk &chunk = D.getTypeObject(i);
4362       switch (chunk.Kind) {
4363       case DeclaratorChunk::Array:
4364       case DeclaratorChunk::Function:
4365       case DeclaratorChunk::Pipe:
4366         break;
4367 
4368       case DeclaratorChunk::BlockPointer:
4369       case DeclaratorChunk::MemberPointer:
4370         ++NumPointersRemaining;
4371         break;
4372 
4373       case DeclaratorChunk::Paren:
4374       case DeclaratorChunk::Reference:
4375         continue;
4376 
4377       case DeclaratorChunk::Pointer:
4378         ++NumPointersRemaining;
4379         continue;
4380       }
4381     }
4382   } else {
4383     bool isFunctionOrMethod = false;
4384     switch (auto context = state.getDeclarator().getContext()) {
4385     case DeclaratorContext::ObjCParameter:
4386     case DeclaratorContext::ObjCResult:
4387     case DeclaratorContext::Prototype:
4388     case DeclaratorContext::TrailingReturn:
4389     case DeclaratorContext::TrailingReturnVar:
4390       isFunctionOrMethod = true;
4391       [[fallthrough]];
4392 
4393     case DeclaratorContext::Member:
4394       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4395         complainAboutMissingNullability = CAMN_No;
4396         break;
4397       }
4398 
4399       // Weak properties are inferred to be nullable.
4400       if (state.getDeclarator().isObjCWeakProperty()) {
4401         // Weak properties cannot be nonnull, and should not complain about
4402         // missing nullable attributes during completeness checks.
4403         complainAboutMissingNullability = CAMN_No;
4404         if (inAssumeNonNullRegion) {
4405           inferNullability = NullabilityKind::Nullable;
4406         }
4407         break;
4408       }
4409 
4410       [[fallthrough]];
4411 
4412     case DeclaratorContext::File:
4413     case DeclaratorContext::KNRTypeList: {
4414       complainAboutMissingNullability = CAMN_Yes;
4415 
4416       // Nullability inference depends on the type and declarator.
4417       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4418       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4419       case PointerDeclaratorKind::NonPointer:
4420       case PointerDeclaratorKind::MultiLevelPointer:
4421         // Cannot infer nullability.
4422         break;
4423 
4424       case PointerDeclaratorKind::SingleLevelPointer:
4425         // Infer _Nonnull if we are in an assumes-nonnull region.
4426         if (inAssumeNonNullRegion) {
4427           complainAboutInferringWithinChunk = wrappingKind;
4428           inferNullability = NullabilityKind::NonNull;
4429           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4430                                 context == DeclaratorContext::ObjCResult);
4431         }
4432         break;
4433 
4434       case PointerDeclaratorKind::CFErrorRefPointer:
4435       case PointerDeclaratorKind::NSErrorPointerPointer:
4436         // Within a function or method signature, infer _Nullable at both
4437         // levels.
4438         if (isFunctionOrMethod && inAssumeNonNullRegion)
4439           inferNullability = NullabilityKind::Nullable;
4440         break;
4441 
4442       case PointerDeclaratorKind::MaybePointerToCFRef:
4443         if (isFunctionOrMethod) {
4444           // On pointer-to-pointer parameters marked cf_returns_retained or
4445           // cf_returns_not_retained, if the outer pointer is explicit then
4446           // infer the inner pointer as _Nullable.
4447           auto hasCFReturnsAttr =
4448               [](const ParsedAttributesView &AttrList) -> bool {
4449             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4450                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4451           };
4452           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4453             if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4454                 hasCFReturnsAttr(D.getAttributes()) ||
4455                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4456                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4457               inferNullability = NullabilityKind::Nullable;
4458               inferNullabilityInnerOnly = true;
4459             }
4460           }
4461         }
4462         break;
4463       }
4464       break;
4465     }
4466 
4467     case DeclaratorContext::ConversionId:
4468       complainAboutMissingNullability = CAMN_Yes;
4469       break;
4470 
4471     case DeclaratorContext::AliasDecl:
4472     case DeclaratorContext::AliasTemplate:
4473     case DeclaratorContext::Block:
4474     case DeclaratorContext::BlockLiteral:
4475     case DeclaratorContext::Condition:
4476     case DeclaratorContext::CXXCatch:
4477     case DeclaratorContext::CXXNew:
4478     case DeclaratorContext::ForInit:
4479     case DeclaratorContext::SelectionInit:
4480     case DeclaratorContext::LambdaExpr:
4481     case DeclaratorContext::LambdaExprParameter:
4482     case DeclaratorContext::ObjCCatch:
4483     case DeclaratorContext::TemplateParam:
4484     case DeclaratorContext::TemplateArg:
4485     case DeclaratorContext::TemplateTypeArg:
4486     case DeclaratorContext::TypeName:
4487     case DeclaratorContext::FunctionalCast:
4488     case DeclaratorContext::RequiresExpr:
4489     case DeclaratorContext::Association:
4490       // Don't infer in these contexts.
4491       break;
4492     }
4493   }
4494 
4495   // Local function that returns true if its argument looks like a va_list.
4496   auto isVaList = [&S](QualType T) -> bool {
4497     auto *typedefTy = T->getAs<TypedefType>();
4498     if (!typedefTy)
4499       return false;
4500     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4501     do {
4502       if (typedefTy->getDecl() == vaListTypedef)
4503         return true;
4504       if (auto *name = typedefTy->getDecl()->getIdentifier())
4505         if (name->isStr("va_list"))
4506           return true;
4507       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4508     } while (typedefTy);
4509     return false;
4510   };
4511 
4512   // Local function that checks the nullability for a given pointer declarator.
4513   // Returns true if _Nonnull was inferred.
4514   auto inferPointerNullability =
4515       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4516           SourceLocation pointerEndLoc,
4517           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4518     // We've seen a pointer.
4519     if (NumPointersRemaining > 0)
4520       --NumPointersRemaining;
4521 
4522     // If a nullability attribute is present, there's nothing to do.
4523     if (hasNullabilityAttr(attrs))
4524       return nullptr;
4525 
4526     // If we're supposed to infer nullability, do so now.
4527     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4528       ParsedAttr::Form form =
4529           inferNullabilityCS
4530               ? ParsedAttr::Form::ContextSensitiveKeyword()
4531               : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4532                                           false /*IsRegularKeywordAttribute*/);
4533       ParsedAttr *nullabilityAttr = Pool.create(
4534           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4535           nullptr, SourceLocation(), nullptr, 0, form);
4536 
4537       attrs.addAtEnd(nullabilityAttr);
4538 
4539       if (inferNullabilityCS) {
4540         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4541           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4542       }
4543 
4544       if (pointerLoc.isValid() &&
4545           complainAboutInferringWithinChunk !=
4546             PointerWrappingDeclaratorKind::None) {
4547         auto Diag =
4548             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4549         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4550         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4551       }
4552 
4553       if (inferNullabilityInnerOnly)
4554         inferNullabilityInnerOnlyComplete = true;
4555       return nullabilityAttr;
4556     }
4557 
4558     // If we're supposed to complain about missing nullability, do so
4559     // now if it's truly missing.
4560     switch (complainAboutMissingNullability) {
4561     case CAMN_No:
4562       break;
4563 
4564     case CAMN_InnerPointers:
4565       if (NumPointersRemaining == 0)
4566         break;
4567       [[fallthrough]];
4568 
4569     case CAMN_Yes:
4570       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4571     }
4572     return nullptr;
4573   };
4574 
4575   // If the type itself could have nullability but does not, infer pointer
4576   // nullability and perform consistency checking.
4577   if (S.CodeSynthesisContexts.empty()) {
4578     if (shouldHaveNullability(T) && !T->getNullability()) {
4579       if (isVaList(T)) {
4580         // Record that we've seen a pointer, but do nothing else.
4581         if (NumPointersRemaining > 0)
4582           --NumPointersRemaining;
4583       } else {
4584         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4585         if (T->isBlockPointerType())
4586           pointerKind = SimplePointerKind::BlockPointer;
4587         else if (T->isMemberPointerType())
4588           pointerKind = SimplePointerKind::MemberPointer;
4589 
4590         if (auto *attr = inferPointerNullability(
4591                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4592                 D.getDeclSpec().getEndLoc(),
4593                 D.getMutableDeclSpec().getAttributes(),
4594                 D.getMutableDeclSpec().getAttributePool())) {
4595           T = state.getAttributedType(
4596               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4597         }
4598       }
4599     }
4600 
4601     if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4602         !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4603         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4604       checkNullabilityConsistency(S, SimplePointerKind::Array,
4605                                   D.getDeclSpec().getTypeSpecTypeLoc());
4606     }
4607   }
4608 
4609   bool ExpectNoDerefChunk =
4610       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4611 
4612   // Walk the DeclTypeInfo, building the recursive type as we go.
4613   // DeclTypeInfos are ordered from the identifier out, which is
4614   // opposite of what we want :).
4615 
4616   // Track if the produced type matches the structure of the declarator.
4617   // This is used later to decide if we can fill `TypeLoc` from
4618   // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4619   // an error by replacing the type with `int`.
4620   bool AreDeclaratorChunksValid = true;
4621   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4622     unsigned chunkIndex = e - i - 1;
4623     state.setCurrentChunkIndex(chunkIndex);
4624     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4625     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4626     switch (DeclType.Kind) {
4627     case DeclaratorChunk::Paren:
4628       if (i == 0)
4629         warnAboutRedundantParens(S, D, T);
4630       T = S.BuildParenType(T);
4631       break;
4632     case DeclaratorChunk::BlockPointer:
4633       // If blocks are disabled, emit an error.
4634       if (!LangOpts.Blocks)
4635         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4636 
4637       // Handle pointer nullability.
4638       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4639                               DeclType.EndLoc, DeclType.getAttrs(),
4640                               state.getDeclarator().getAttributePool());
4641 
4642       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4643       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4644         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4645         // qualified with const.
4646         if (LangOpts.OpenCL)
4647           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4648         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4649       }
4650       break;
4651     case DeclaratorChunk::Pointer:
4652       // Verify that we're not building a pointer to pointer to function with
4653       // exception specification.
4654       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4655         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4656         D.setInvalidType(true);
4657         // Build the type anyway.
4658       }
4659 
4660       // Handle pointer nullability
4661       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4662                               DeclType.EndLoc, DeclType.getAttrs(),
4663                               state.getDeclarator().getAttributePool());
4664 
4665       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4666         T = Context.getObjCObjectPointerType(T);
4667         if (DeclType.Ptr.TypeQuals)
4668           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4669         break;
4670       }
4671 
4672       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4673       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4674       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4675       if (LangOpts.OpenCL) {
4676         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4677             T->isBlockPointerType()) {
4678           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4679           D.setInvalidType(true);
4680         }
4681       }
4682 
4683       T = S.BuildPointerType(T, DeclType.Loc, Name);
4684       if (DeclType.Ptr.TypeQuals)
4685         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4686       break;
4687     case DeclaratorChunk::Reference: {
4688       // Verify that we're not building a reference to pointer to function with
4689       // exception specification.
4690       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4691         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4692         D.setInvalidType(true);
4693         // Build the type anyway.
4694       }
4695       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4696 
4697       if (DeclType.Ref.HasRestrict)
4698         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4699       break;
4700     }
4701     case DeclaratorChunk::Array: {
4702       // Verify that we're not building an array of pointers to function with
4703       // exception specification.
4704       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4705         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4706         D.setInvalidType(true);
4707         // Build the type anyway.
4708       }
4709       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4710       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4711       ArraySizeModifier ASM;
4712 
4713       // Microsoft property fields can have multiple sizeless array chunks
4714       // (i.e. int x[][][]). Skip all of these except one to avoid creating
4715       // bad incomplete array types.
4716       if (chunkIndex != 0 && !ArraySize &&
4717           D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4718         // This is a sizeless chunk. If the next is also, skip this one.
4719         DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4720         if (NextDeclType.Kind == DeclaratorChunk::Array &&
4721             !NextDeclType.Arr.NumElts)
4722           break;
4723       }
4724 
4725       if (ATI.isStar)
4726         ASM = ArraySizeModifier::Star;
4727       else if (ATI.hasStatic)
4728         ASM = ArraySizeModifier::Static;
4729       else
4730         ASM = ArraySizeModifier::Normal;
4731       if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4732         // FIXME: This check isn't quite right: it allows star in prototypes
4733         // for function definitions, and disallows some edge cases detailed
4734         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4735         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4736         ASM = ArraySizeModifier::Normal;
4737         D.setInvalidType(true);
4738       }
4739 
4740       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4741       // shall appear only in a declaration of a function parameter with an
4742       // array type, ...
4743       if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4744         if (!(D.isPrototypeContext() ||
4745               D.getContext() == DeclaratorContext::KNRTypeList)) {
4746           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4747               << (ASM == ArraySizeModifier::Static ? "'static'"
4748                                                    : "type qualifier");
4749           // Remove the 'static' and the type qualifiers.
4750           if (ASM == ArraySizeModifier::Static)
4751             ASM = ArraySizeModifier::Normal;
4752           ATI.TypeQuals = 0;
4753           D.setInvalidType(true);
4754         }
4755 
4756         // C99 6.7.5.2p1: ... and then only in the outermost array type
4757         // derivation.
4758         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4759           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4760               << (ASM == ArraySizeModifier::Static ? "'static'"
4761                                                    : "type qualifier");
4762           if (ASM == ArraySizeModifier::Static)
4763             ASM = ArraySizeModifier::Normal;
4764           ATI.TypeQuals = 0;
4765           D.setInvalidType(true);
4766         }
4767       }
4768 
4769       // Array parameters can be marked nullable as well, although it's not
4770       // necessary if they're marked 'static'.
4771       if (complainAboutMissingNullability == CAMN_Yes &&
4772           !hasNullabilityAttr(DeclType.getAttrs()) &&
4773           ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4774           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4775         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4776       }
4777 
4778       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4779                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4780       break;
4781     }
4782     case DeclaratorChunk::Function: {
4783       // If the function declarator has a prototype (i.e. it is not () and
4784       // does not have a K&R-style identifier list), then the arguments are part
4785       // of the type, otherwise the argument list is ().
4786       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4787       IsQualifiedFunction =
4788           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4789 
4790       // Check for auto functions and trailing return type and adjust the
4791       // return type accordingly.
4792       if (!D.isInvalidType()) {
4793         auto IsClassType = [&](CXXScopeSpec &SS) {
4794           // If there already was an problem with the scope, don’t issue another
4795           // error about the explicit object parameter.
4796           return SS.isInvalid() ||
4797                  isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4798         };
4799 
4800         // C++23 [dcl.fct]p6:
4801         //
4802         // An explicit-object-parameter-declaration is a parameter-declaration
4803         // with a this specifier. An explicit-object-parameter-declaration shall
4804         // appear only as the first parameter-declaration of a
4805         // parameter-declaration-list of one of:
4806         //
4807         // - a declaration of a member function or member function template
4808         //   ([class.mem]), or
4809         //
4810         // - an explicit instantiation ([temp.explicit]) or explicit
4811         //   specialization ([temp.expl.spec]) of a templated member function,
4812         //   or
4813         //
4814         // - a lambda-declarator [expr.prim.lambda].
4815         DeclaratorContext C = D.getContext();
4816         ParmVarDecl *First =
4817             FTI.NumParams
4818                 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4819                 : nullptr;
4820 
4821         bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4822         if (First && First->isExplicitObjectParameter() &&
4823             C != DeclaratorContext::LambdaExpr &&
4824 
4825             // Either not a member or nested declarator in a member.
4826             //
4827             // Note that e.g. 'static' or 'friend' declarations are accepted
4828             // here; we diagnose them later when we build the member function
4829             // because it's easier that way.
4830             (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4831 
4832             // Allow out-of-line definitions of member functions.
4833             !IsClassType(D.getCXXScopeSpec())) {
4834           if (IsFunctionDecl)
4835             S.Diag(First->getBeginLoc(),
4836                    diag::err_explicit_object_parameter_nonmember)
4837                 << /*non-member*/ 2 << /*function*/ 0
4838                 << First->getSourceRange();
4839           else
4840             S.Diag(First->getBeginLoc(),
4841                    diag::err_explicit_object_parameter_invalid)
4842                 << First->getSourceRange();
4843 
4844           D.setInvalidType();
4845           AreDeclaratorChunksValid = false;
4846         }
4847 
4848         // trailing-return-type is only required if we're declaring a function,
4849         // and not, for instance, a pointer to a function.
4850         if (D.getDeclSpec().hasAutoTypeSpec() &&
4851             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4852           if (!S.getLangOpts().CPlusPlus14) {
4853             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4854                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4855                        ? diag::err_auto_missing_trailing_return
4856                        : diag::err_deduced_return_type);
4857             T = Context.IntTy;
4858             D.setInvalidType(true);
4859             AreDeclaratorChunksValid = false;
4860           } else {
4861             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4862                    diag::warn_cxx11_compat_deduced_return_type);
4863           }
4864         } else if (FTI.hasTrailingReturnType()) {
4865           // T must be exactly 'auto' at this point. See CWG issue 681.
4866           if (isa<ParenType>(T)) {
4867             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4868                 << T << D.getSourceRange();
4869             D.setInvalidType(true);
4870             // FIXME: recover and fill decls in `TypeLoc`s.
4871             AreDeclaratorChunksValid = false;
4872           } else if (D.getName().getKind() ==
4873                      UnqualifiedIdKind::IK_DeductionGuideName) {
4874             if (T != Context.DependentTy) {
4875               S.Diag(D.getDeclSpec().getBeginLoc(),
4876                      diag::err_deduction_guide_with_complex_decl)
4877                   << D.getSourceRange();
4878               D.setInvalidType(true);
4879               // FIXME: recover and fill decls in `TypeLoc`s.
4880               AreDeclaratorChunksValid = false;
4881             }
4882           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4883                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4884                       cast<AutoType>(T)->getKeyword() !=
4885                           AutoTypeKeyword::Auto ||
4886                       cast<AutoType>(T)->isConstrained())) {
4887             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4888                    diag::err_trailing_return_without_auto)
4889                 << T << D.getDeclSpec().getSourceRange();
4890             D.setInvalidType(true);
4891             // FIXME: recover and fill decls in `TypeLoc`s.
4892             AreDeclaratorChunksValid = false;
4893           }
4894           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4895           if (T.isNull()) {
4896             // An error occurred parsing the trailing return type.
4897             T = Context.IntTy;
4898             D.setInvalidType(true);
4899           } else if (AutoType *Auto = T->getContainedAutoType()) {
4900             // If the trailing return type contains an `auto`, we may need to
4901             // invent a template parameter for it, for cases like
4902             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4903             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4904             if (D.getContext() == DeclaratorContext::Prototype)
4905               InventedParamInfo = &S.InventedParameterInfos.back();
4906             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4907               InventedParamInfo = S.getCurLambda();
4908             if (InventedParamInfo) {
4909               std::tie(T, TInfo) = InventTemplateParameter(
4910                   state, T, TInfo, Auto, *InventedParamInfo);
4911             }
4912           }
4913         } else {
4914           // This function type is not the type of the entity being declared,
4915           // so checking the 'auto' is not the responsibility of this chunk.
4916         }
4917       }
4918 
4919       // C99 6.7.5.3p1: The return type may not be a function or array type.
4920       // For conversion functions, we'll diagnose this particular error later.
4921       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4922           (D.getName().getKind() !=
4923            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4924         unsigned diagID = diag::err_func_returning_array_function;
4925         // Last processing chunk in block context means this function chunk
4926         // represents the block.
4927         if (chunkIndex == 0 &&
4928             D.getContext() == DeclaratorContext::BlockLiteral)
4929           diagID = diag::err_block_returning_array_function;
4930         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4931         T = Context.IntTy;
4932         D.setInvalidType(true);
4933         AreDeclaratorChunksValid = false;
4934       }
4935 
4936       // Do not allow returning half FP value.
4937       // FIXME: This really should be in BuildFunctionType.
4938       if (T->isHalfType()) {
4939         if (S.getLangOpts().OpenCL) {
4940           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4941                                                       S.getLangOpts())) {
4942             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4943                 << T << 0 /*pointer hint*/;
4944             D.setInvalidType(true);
4945           }
4946         } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4947                    !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4948           S.Diag(D.getIdentifierLoc(),
4949             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4950           D.setInvalidType(true);
4951         }
4952       }
4953 
4954       if (LangOpts.OpenCL) {
4955         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4956         // function.
4957         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4958             T->isPipeType()) {
4959           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4960               << T << 1 /*hint off*/;
4961           D.setInvalidType(true);
4962         }
4963         // OpenCL doesn't support variadic functions and blocks
4964         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4965         // We also allow here any toolchain reserved identifiers.
4966         if (FTI.isVariadic &&
4967             !S.getOpenCLOptions().isAvailableOption(
4968                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4969             !(D.getIdentifier() &&
4970               ((D.getIdentifier()->getName() == "printf" &&
4971                 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4972                D.getIdentifier()->getName().starts_with("__")))) {
4973           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4974           D.setInvalidType(true);
4975         }
4976       }
4977 
4978       // Methods cannot return interface types. All ObjC objects are
4979       // passed by reference.
4980       if (T->isObjCObjectType()) {
4981         SourceLocation DiagLoc, FixitLoc;
4982         if (TInfo) {
4983           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4984           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4985         } else {
4986           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4987           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4988         }
4989         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4990           << 0 << T
4991           << FixItHint::CreateInsertion(FixitLoc, "*");
4992 
4993         T = Context.getObjCObjectPointerType(T);
4994         if (TInfo) {
4995           TypeLocBuilder TLB;
4996           TLB.pushFullCopy(TInfo->getTypeLoc());
4997           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4998           TLoc.setStarLoc(FixitLoc);
4999           TInfo = TLB.getTypeSourceInfo(Context, T);
5000         } else {
5001           AreDeclaratorChunksValid = false;
5002         }
5003 
5004         D.setInvalidType(true);
5005       }
5006 
5007       // cv-qualifiers on return types are pointless except when the type is a
5008       // class type in C++.
5009       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5010           !(S.getLangOpts().CPlusPlus &&
5011             (T->isDependentType() || T->isRecordType()))) {
5012         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5013             D.getFunctionDefinitionKind() ==
5014                 FunctionDefinitionKind::Definition) {
5015           // [6.9.1/3] qualified void return is invalid on a C
5016           // function definition.  Apparently ok on declarations and
5017           // in C++ though (!)
5018           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5019         } else
5020           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5021 
5022         // C++2a [dcl.fct]p12:
5023         //   A volatile-qualified return type is deprecated
5024         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5025           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5026       }
5027 
5028       // Objective-C ARC ownership qualifiers are ignored on the function
5029       // return type (by type canonicalization). Complain if this attribute
5030       // was written here.
5031       if (T.getQualifiers().hasObjCLifetime()) {
5032         SourceLocation AttrLoc;
5033         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5034           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5035           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5036             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5037               AttrLoc = AL.getLoc();
5038               break;
5039             }
5040           }
5041         }
5042         if (AttrLoc.isInvalid()) {
5043           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5044             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5045               AttrLoc = AL.getLoc();
5046               break;
5047             }
5048           }
5049         }
5050 
5051         if (AttrLoc.isValid()) {
5052           // The ownership attributes are almost always written via
5053           // the predefined
5054           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5055           if (AttrLoc.isMacroID())
5056             AttrLoc =
5057                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5058 
5059           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5060             << T.getQualifiers().getObjCLifetime();
5061         }
5062       }
5063 
5064       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5065         // C++ [dcl.fct]p6:
5066         //   Types shall not be defined in return or parameter types.
5067         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5068         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5069           << Context.getTypeDeclType(Tag);
5070       }
5071 
5072       // Exception specs are not allowed in typedefs. Complain, but add it
5073       // anyway.
5074       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5075         S.Diag(FTI.getExceptionSpecLocBeg(),
5076                diag::err_exception_spec_in_typedef)
5077             << (D.getContext() == DeclaratorContext::AliasDecl ||
5078                 D.getContext() == DeclaratorContext::AliasTemplate);
5079 
5080       // If we see "T var();" or "T var(T());" at block scope, it is probably
5081       // an attempt to initialize a variable, not a function declaration.
5082       if (FTI.isAmbiguous)
5083         warnAboutAmbiguousFunction(S, D, DeclType, T);
5084 
5085       FunctionType::ExtInfo EI(
5086           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5087 
5088       // OpenCL disallows functions without a prototype, but it doesn't enforce
5089       // strict prototypes as in C23 because it allows a function definition to
5090       // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5091       if (!FTI.NumParams && !FTI.isVariadic &&
5092           !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5093         // Simple void foo(), where the incoming T is the result type.
5094         T = Context.getFunctionNoProtoType(T, EI);
5095       } else {
5096         // We allow a zero-parameter variadic function in C if the
5097         // function is marked with the "overloadable" attribute. Scan
5098         // for this attribute now. We also allow it in C23 per WG14 N2975.
5099         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5100           if (LangOpts.C23)
5101             S.Diag(FTI.getEllipsisLoc(),
5102                    diag::warn_c17_compat_ellipsis_only_parameter);
5103           else if (!D.getDeclarationAttributes().hasAttribute(
5104                        ParsedAttr::AT_Overloadable) &&
5105                    !D.getAttributes().hasAttribute(
5106                        ParsedAttr::AT_Overloadable) &&
5107                    !D.getDeclSpec().getAttributes().hasAttribute(
5108                        ParsedAttr::AT_Overloadable))
5109             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5110         }
5111 
5112         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5113           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5114           // definition.
5115           S.Diag(FTI.Params[0].IdentLoc,
5116                  diag::err_ident_list_in_fn_declaration);
5117           D.setInvalidType(true);
5118           // Recover by creating a K&R-style function type, if possible.
5119           T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5120                   ? Context.getFunctionNoProtoType(T, EI)
5121                   : Context.IntTy;
5122           AreDeclaratorChunksValid = false;
5123           break;
5124         }
5125 
5126         FunctionProtoType::ExtProtoInfo EPI;
5127         EPI.ExtInfo = EI;
5128         EPI.Variadic = FTI.isVariadic;
5129         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5130         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5131         EPI.TypeQuals.addCVRUQualifiers(
5132             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5133                                  : 0);
5134         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5135                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5136                     : RQ_RValue;
5137 
5138         // Otherwise, we have a function with a parameter list that is
5139         // potentially variadic.
5140         SmallVector<QualType, 16> ParamTys;
5141         ParamTys.reserve(FTI.NumParams);
5142 
5143         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5144           ExtParameterInfos(FTI.NumParams);
5145         bool HasAnyInterestingExtParameterInfos = false;
5146 
5147         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5148           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5149           QualType ParamTy = Param->getType();
5150           assert(!ParamTy.isNull() && "Couldn't parse type?");
5151 
5152           // Look for 'void'.  void is allowed only as a single parameter to a
5153           // function with no other parameters (C99 6.7.5.3p10).  We record
5154           // int(void) as a FunctionProtoType with an empty parameter list.
5155           if (ParamTy->isVoidType()) {
5156             // If this is something like 'float(int, void)', reject it.  'void'
5157             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5158             // have parameters of incomplete type.
5159             if (FTI.NumParams != 1 || FTI.isVariadic) {
5160               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5161               ParamTy = Context.IntTy;
5162               Param->setType(ParamTy);
5163             } else if (FTI.Params[i].Ident) {
5164               // Reject, but continue to parse 'int(void abc)'.
5165               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5166               ParamTy = Context.IntTy;
5167               Param->setType(ParamTy);
5168             } else {
5169               // Reject, but continue to parse 'float(const void)'.
5170               if (ParamTy.hasQualifiers())
5171                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5172 
5173               // Reject, but continue to parse 'float(this void)' as
5174               // 'float(void)'.
5175               if (Param->isExplicitObjectParameter()) {
5176                 S.Diag(Param->getLocation(),
5177                        diag::err_void_explicit_object_param);
5178                 Param->setExplicitObjectParameterLoc(SourceLocation());
5179               }
5180 
5181               // Do not add 'void' to the list.
5182               break;
5183             }
5184           } else if (ParamTy->isHalfType()) {
5185             // Disallow half FP parameters.
5186             // FIXME: This really should be in BuildFunctionType.
5187             if (S.getLangOpts().OpenCL) {
5188               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5189                                                           S.getLangOpts())) {
5190                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5191                     << ParamTy << 0;
5192                 D.setInvalidType();
5193                 Param->setInvalidDecl();
5194               }
5195             } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5196                        !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5197               S.Diag(Param->getLocation(),
5198                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5199               D.setInvalidType();
5200             }
5201           } else if (!FTI.hasPrototype) {
5202             if (Context.isPromotableIntegerType(ParamTy)) {
5203               ParamTy = Context.getPromotedIntegerType(ParamTy);
5204               Param->setKNRPromoted(true);
5205             } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5206               if (BTy->getKind() == BuiltinType::Float) {
5207                 ParamTy = Context.DoubleTy;
5208                 Param->setKNRPromoted(true);
5209               }
5210             }
5211           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5212             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5213             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5214                 << ParamTy << 1 /*hint off*/;
5215             D.setInvalidType();
5216           }
5217 
5218           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5219             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5220             HasAnyInterestingExtParameterInfos = true;
5221           }
5222 
5223           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5224             ExtParameterInfos[i] =
5225               ExtParameterInfos[i].withABI(attr->getABI());
5226             HasAnyInterestingExtParameterInfos = true;
5227           }
5228 
5229           if (Param->hasAttr<PassObjectSizeAttr>()) {
5230             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5231             HasAnyInterestingExtParameterInfos = true;
5232           }
5233 
5234           if (Param->hasAttr<NoEscapeAttr>()) {
5235             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5236             HasAnyInterestingExtParameterInfos = true;
5237           }
5238 
5239           ParamTys.push_back(ParamTy);
5240         }
5241 
5242         if (HasAnyInterestingExtParameterInfos) {
5243           EPI.ExtParameterInfos = ExtParameterInfos.data();
5244           checkExtParameterInfos(S, ParamTys, EPI,
5245               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5246         }
5247 
5248         SmallVector<QualType, 4> Exceptions;
5249         SmallVector<ParsedType, 2> DynamicExceptions;
5250         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5251         Expr *NoexceptExpr = nullptr;
5252 
5253         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5254           // FIXME: It's rather inefficient to have to split into two vectors
5255           // here.
5256           unsigned N = FTI.getNumExceptions();
5257           DynamicExceptions.reserve(N);
5258           DynamicExceptionRanges.reserve(N);
5259           for (unsigned I = 0; I != N; ++I) {
5260             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5261             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5262           }
5263         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5264           NoexceptExpr = FTI.NoexceptExpr;
5265         }
5266 
5267         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5268                                       FTI.getExceptionSpecType(),
5269                                       DynamicExceptions,
5270                                       DynamicExceptionRanges,
5271                                       NoexceptExpr,
5272                                       Exceptions,
5273                                       EPI.ExceptionSpec);
5274 
5275         // FIXME: Set address space from attrs for C++ mode here.
5276         // OpenCLCPlusPlus: A class member function has an address space.
5277         auto IsClassMember = [&]() {
5278           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5279                   state.getDeclarator()
5280                           .getCXXScopeSpec()
5281                           .getScopeRep()
5282                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5283                  state.getDeclarator().getContext() ==
5284                      DeclaratorContext::Member ||
5285                  state.getDeclarator().getContext() ==
5286                      DeclaratorContext::LambdaExpr;
5287         };
5288 
5289         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5290           LangAS ASIdx = LangAS::Default;
5291           // Take address space attr if any and mark as invalid to avoid adding
5292           // them later while creating QualType.
5293           if (FTI.MethodQualifiers)
5294             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5295               LangAS ASIdxNew = attr.asOpenCLLangAS();
5296               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5297                                                       attr.getLoc()))
5298                 D.setInvalidType(true);
5299               else
5300                 ASIdx = ASIdxNew;
5301             }
5302           // If a class member function's address space is not set, set it to
5303           // __generic.
5304           LangAS AS =
5305               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5306                                         : ASIdx);
5307           EPI.TypeQuals.addAddressSpace(AS);
5308         }
5309         T = Context.getFunctionType(T, ParamTys, EPI);
5310       }
5311       break;
5312     }
5313     case DeclaratorChunk::MemberPointer: {
5314       // The scope spec must refer to a class, or be dependent.
5315       CXXScopeSpec &SS = DeclType.Mem.Scope();
5316       QualType ClsType;
5317 
5318       // Handle pointer nullability.
5319       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5320                               DeclType.EndLoc, DeclType.getAttrs(),
5321                               state.getDeclarator().getAttributePool());
5322 
5323       if (SS.isInvalid()) {
5324         // Avoid emitting extra errors if we already errored on the scope.
5325         D.setInvalidType(true);
5326       } else if (S.isDependentScopeSpecifier(SS) ||
5327                  isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5328         NestedNameSpecifier *NNS = SS.getScopeRep();
5329         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5330         switch (NNS->getKind()) {
5331         case NestedNameSpecifier::Identifier:
5332           ClsType = Context.getDependentNameType(
5333               ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5334           break;
5335 
5336         case NestedNameSpecifier::Namespace:
5337         case NestedNameSpecifier::NamespaceAlias:
5338         case NestedNameSpecifier::Global:
5339         case NestedNameSpecifier::Super:
5340           llvm_unreachable("Nested-name-specifier must name a type");
5341 
5342         case NestedNameSpecifier::TypeSpec:
5343         case NestedNameSpecifier::TypeSpecWithTemplate:
5344           ClsType = QualType(NNS->getAsType(), 0);
5345           // Note: if the NNS has a prefix and ClsType is a nondependent
5346           // TemplateSpecializationType, then the NNS prefix is NOT included
5347           // in ClsType; hence we wrap ClsType into an ElaboratedType.
5348           // NOTE: in particular, no wrap occurs if ClsType already is an
5349           // Elaborated, DependentName, or DependentTemplateSpecialization.
5350           if (isa<TemplateSpecializationType>(NNS->getAsType()))
5351             ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5352                                                 NNSPrefix, ClsType);
5353           break;
5354         }
5355       } else {
5356         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5357              diag::err_illegal_decl_mempointer_in_nonclass)
5358           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5359           << DeclType.Mem.Scope().getRange();
5360         D.setInvalidType(true);
5361       }
5362 
5363       if (!ClsType.isNull())
5364         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5365                                      D.getIdentifier());
5366       else
5367         AreDeclaratorChunksValid = false;
5368 
5369       if (T.isNull()) {
5370         T = Context.IntTy;
5371         D.setInvalidType(true);
5372         AreDeclaratorChunksValid = false;
5373       } else if (DeclType.Mem.TypeQuals) {
5374         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5375       }
5376       break;
5377     }
5378 
5379     case DeclaratorChunk::Pipe: {
5380       T = S.BuildReadPipeType(T, DeclType.Loc);
5381       processTypeAttrs(state, T, TAL_DeclSpec,
5382                        D.getMutableDeclSpec().getAttributes());
5383       break;
5384     }
5385     }
5386 
5387     if (T.isNull()) {
5388       D.setInvalidType(true);
5389       T = Context.IntTy;
5390       AreDeclaratorChunksValid = false;
5391     }
5392 
5393     // See if there are any attributes on this declarator chunk.
5394     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5395                      S.CUDA().IdentifyTarget(D.getAttributes()));
5396 
5397     if (DeclType.Kind != DeclaratorChunk::Paren) {
5398       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5399         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5400 
5401       ExpectNoDerefChunk = state.didParseNoDeref();
5402     }
5403   }
5404 
5405   if (ExpectNoDerefChunk)
5406     S.Diag(state.getDeclarator().getBeginLoc(),
5407            diag::warn_noderef_on_non_pointer_or_array);
5408 
5409   // GNU warning -Wstrict-prototypes
5410   //   Warn if a function declaration or definition is without a prototype.
5411   //   This warning is issued for all kinds of unprototyped function
5412   //   declarations (i.e. function type typedef, function pointer etc.)
5413   //   C99 6.7.5.3p14:
5414   //   The empty list in a function declarator that is not part of a definition
5415   //   of that function specifies that no information about the number or types
5416   //   of the parameters is supplied.
5417   // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5418   // function declarations whose behavior changes in C23.
5419   if (!LangOpts.requiresStrictPrototypes()) {
5420     bool IsBlock = false;
5421     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5422       switch (DeclType.Kind) {
5423       case DeclaratorChunk::BlockPointer:
5424         IsBlock = true;
5425         break;
5426       case DeclaratorChunk::Function: {
5427         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5428         // We suppress the warning when there's no LParen location, as this
5429         // indicates the declaration was an implicit declaration, which gets
5430         // warned about separately via -Wimplicit-function-declaration. We also
5431         // suppress the warning when we know the function has a prototype.
5432         if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5433             FTI.getLParenLoc().isValid())
5434           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5435               << IsBlock
5436               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5437         IsBlock = false;
5438         break;
5439       }
5440       default:
5441         break;
5442       }
5443     }
5444   }
5445 
5446   assert(!T.isNull() && "T must not be null after this point");
5447 
5448   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5449     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5450     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5451 
5452     // C++ 8.3.5p4:
5453     //   A cv-qualifier-seq shall only be part of the function type
5454     //   for a nonstatic member function, the function type to which a pointer
5455     //   to member refers, or the top-level function type of a function typedef
5456     //   declaration.
5457     //
5458     // Core issue 547 also allows cv-qualifiers on function types that are
5459     // top-level template type arguments.
5460     enum {
5461       NonMember,
5462       Member,
5463       ExplicitObjectMember,
5464       DeductionGuide
5465     } Kind = NonMember;
5466     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5467       Kind = DeductionGuide;
5468     else if (!D.getCXXScopeSpec().isSet()) {
5469       if ((D.getContext() == DeclaratorContext::Member ||
5470            D.getContext() == DeclaratorContext::LambdaExpr) &&
5471           !D.getDeclSpec().isFriendSpecified())
5472         Kind = Member;
5473     } else {
5474       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5475       if (!DC || DC->isRecord())
5476         Kind = Member;
5477     }
5478 
5479     if (Kind == Member) {
5480       unsigned I;
5481       if (D.isFunctionDeclarator(I)) {
5482         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5483         if (Chunk.Fun.NumParams) {
5484           auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5485           if (P && P->isExplicitObjectParameter())
5486             Kind = ExplicitObjectMember;
5487         }
5488       }
5489     }
5490 
5491     // C++11 [dcl.fct]p6 (w/DR1417):
5492     // An attempt to specify a function type with a cv-qualifier-seq or a
5493     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5494     //  - the function type for a non-static member function,
5495     //  - the function type to which a pointer to member refers,
5496     //  - the top-level function type of a function typedef declaration or
5497     //    alias-declaration,
5498     //  - the type-id in the default argument of a type-parameter, or
5499     //  - the type-id of a template-argument for a type-parameter
5500     //
5501     // C++23 [dcl.fct]p6 (P0847R7)
5502     // ... A member-declarator with an explicit-object-parameter-declaration
5503     // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5504     // declared static or virtual ...
5505     //
5506     // FIXME: Checking this here is insufficient. We accept-invalid on:
5507     //
5508     //   template<typename T> struct S { void f(T); };
5509     //   S<int() const> s;
5510     //
5511     // ... for instance.
5512     if (IsQualifiedFunction &&
5513         // Check for non-static member function and not and
5514         // explicit-object-parameter-declaration
5515         (Kind != Member || D.isExplicitObjectMemberFunction() ||
5516          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5517          (D.getContext() == clang::DeclaratorContext::Member &&
5518           D.isStaticMember())) &&
5519         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5520         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5521       SourceLocation Loc = D.getBeginLoc();
5522       SourceRange RemovalRange;
5523       unsigned I;
5524       if (D.isFunctionDeclarator(I)) {
5525         SmallVector<SourceLocation, 4> RemovalLocs;
5526         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5527         assert(Chunk.Kind == DeclaratorChunk::Function);
5528 
5529         if (Chunk.Fun.hasRefQualifier())
5530           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5531 
5532         if (Chunk.Fun.hasMethodTypeQualifiers())
5533           Chunk.Fun.MethodQualifiers->forEachQualifier(
5534               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5535                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5536 
5537         if (!RemovalLocs.empty()) {
5538           llvm::sort(RemovalLocs,
5539                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5540           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5541           Loc = RemovalLocs.front();
5542         }
5543       }
5544 
5545       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5546         << Kind << D.isFunctionDeclarator() << T
5547         << getFunctionQualifiersAsString(FnTy)
5548         << FixItHint::CreateRemoval(RemovalRange);
5549 
5550       // Strip the cv-qualifiers and ref-qualifiers from the type.
5551       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5552       EPI.TypeQuals.removeCVRQualifiers();
5553       EPI.RefQualifier = RQ_None;
5554 
5555       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5556                                   EPI);
5557       // Rebuild any parens around the identifier in the function type.
5558       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5559         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5560           break;
5561         T = S.BuildParenType(T);
5562       }
5563     }
5564   }
5565 
5566   // Apply any undistributed attributes from the declaration or declarator.
5567   ParsedAttributesView NonSlidingAttrs;
5568   for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5569     if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5570       NonSlidingAttrs.addAtEnd(&AL);
5571     }
5572   }
5573   processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5574   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5575 
5576   // Diagnose any ignored type attributes.
5577   state.diagnoseIgnoredTypeAttrs(T);
5578 
5579   // C++0x [dcl.constexpr]p9:
5580   //  A constexpr specifier used in an object declaration declares the object
5581   //  as const.
5582   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5583       T->isObjectType())
5584     T.addConst();
5585 
5586   // C++2a [dcl.fct]p4:
5587   //   A parameter with volatile-qualified type is deprecated
5588   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5589       (D.getContext() == DeclaratorContext::Prototype ||
5590        D.getContext() == DeclaratorContext::LambdaExprParameter))
5591     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5592 
5593   // If there was an ellipsis in the declarator, the declaration declares a
5594   // parameter pack whose type may be a pack expansion type.
5595   if (D.hasEllipsis()) {
5596     // C++0x [dcl.fct]p13:
5597     //   A declarator-id or abstract-declarator containing an ellipsis shall
5598     //   only be used in a parameter-declaration. Such a parameter-declaration
5599     //   is a parameter pack (14.5.3). [...]
5600     switch (D.getContext()) {
5601     case DeclaratorContext::Prototype:
5602     case DeclaratorContext::LambdaExprParameter:
5603     case DeclaratorContext::RequiresExpr:
5604       // C++0x [dcl.fct]p13:
5605       //   [...] When it is part of a parameter-declaration-clause, the
5606       //   parameter pack is a function parameter pack (14.5.3). The type T
5607       //   of the declarator-id of the function parameter pack shall contain
5608       //   a template parameter pack; each template parameter pack in T is
5609       //   expanded by the function parameter pack.
5610       //
5611       // We represent function parameter packs as function parameters whose
5612       // type is a pack expansion.
5613       if (!T->containsUnexpandedParameterPack() &&
5614           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5615         S.Diag(D.getEllipsisLoc(),
5616              diag::err_function_parameter_pack_without_parameter_packs)
5617           << T <<  D.getSourceRange();
5618         D.setEllipsisLoc(SourceLocation());
5619       } else {
5620         T = Context.getPackExpansionType(T, std::nullopt,
5621                                          /*ExpectPackInType=*/false);
5622       }
5623       break;
5624     case DeclaratorContext::TemplateParam:
5625       // C++0x [temp.param]p15:
5626       //   If a template-parameter is a [...] is a parameter-declaration that
5627       //   declares a parameter pack (8.3.5), then the template-parameter is a
5628       //   template parameter pack (14.5.3).
5629       //
5630       // Note: core issue 778 clarifies that, if there are any unexpanded
5631       // parameter packs in the type of the non-type template parameter, then
5632       // it expands those parameter packs.
5633       if (T->containsUnexpandedParameterPack())
5634         T = Context.getPackExpansionType(T, std::nullopt);
5635       else
5636         S.Diag(D.getEllipsisLoc(),
5637                LangOpts.CPlusPlus11
5638                  ? diag::warn_cxx98_compat_variadic_templates
5639                  : diag::ext_variadic_templates);
5640       break;
5641 
5642     case DeclaratorContext::File:
5643     case DeclaratorContext::KNRTypeList:
5644     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5645     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5646     case DeclaratorContext::TypeName:
5647     case DeclaratorContext::FunctionalCast:
5648     case DeclaratorContext::CXXNew:
5649     case DeclaratorContext::AliasDecl:
5650     case DeclaratorContext::AliasTemplate:
5651     case DeclaratorContext::Member:
5652     case DeclaratorContext::Block:
5653     case DeclaratorContext::ForInit:
5654     case DeclaratorContext::SelectionInit:
5655     case DeclaratorContext::Condition:
5656     case DeclaratorContext::CXXCatch:
5657     case DeclaratorContext::ObjCCatch:
5658     case DeclaratorContext::BlockLiteral:
5659     case DeclaratorContext::LambdaExpr:
5660     case DeclaratorContext::ConversionId:
5661     case DeclaratorContext::TrailingReturn:
5662     case DeclaratorContext::TrailingReturnVar:
5663     case DeclaratorContext::TemplateArg:
5664     case DeclaratorContext::TemplateTypeArg:
5665     case DeclaratorContext::Association:
5666       // FIXME: We may want to allow parameter packs in block-literal contexts
5667       // in the future.
5668       S.Diag(D.getEllipsisLoc(),
5669              diag::err_ellipsis_in_declarator_not_parameter);
5670       D.setEllipsisLoc(SourceLocation());
5671       break;
5672     }
5673   }
5674 
5675   assert(!T.isNull() && "T must not be null at the end of this function");
5676   if (!AreDeclaratorChunksValid)
5677     return Context.getTrivialTypeSourceInfo(T);
5678   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5679 }
5680 
5681 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5682   // Determine the type of the declarator. Not all forms of declarator
5683   // have a type.
5684 
5685   TypeProcessingState state(*this, D);
5686 
5687   TypeSourceInfo *ReturnTypeInfo = nullptr;
5688   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5689   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5690     inferARCWriteback(state, T);
5691 
5692   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5693 }
5694 
5695 static void transferARCOwnershipToDeclSpec(Sema &S,
5696                                            QualType &declSpecTy,
5697                                            Qualifiers::ObjCLifetime ownership) {
5698   if (declSpecTy->isObjCRetainableType() &&
5699       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5700     Qualifiers qs;
5701     qs.addObjCLifetime(ownership);
5702     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5703   }
5704 }
5705 
5706 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5707                                             Qualifiers::ObjCLifetime ownership,
5708                                             unsigned chunkIndex) {
5709   Sema &S = state.getSema();
5710   Declarator &D = state.getDeclarator();
5711 
5712   // Look for an explicit lifetime attribute.
5713   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5714   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5715     return;
5716 
5717   const char *attrStr = nullptr;
5718   switch (ownership) {
5719   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5720   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5721   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5722   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5723   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5724   }
5725 
5726   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5727   Arg->Ident = &S.Context.Idents.get(attrStr);
5728   Arg->Loc = SourceLocation();
5729 
5730   ArgsUnion Args(Arg);
5731 
5732   // If there wasn't one, add one (with an invalid source location
5733   // so that we don't make an AttributedType for it).
5734   ParsedAttr *attr = D.getAttributePool().create(
5735       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5736       /*scope*/ nullptr, SourceLocation(),
5737       /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5738   chunk.getAttrs().addAtEnd(attr);
5739   // TODO: mark whether we did this inference?
5740 }
5741 
5742 /// Used for transferring ownership in casts resulting in l-values.
5743 static void transferARCOwnership(TypeProcessingState &state,
5744                                  QualType &declSpecTy,
5745                                  Qualifiers::ObjCLifetime ownership) {
5746   Sema &S = state.getSema();
5747   Declarator &D = state.getDeclarator();
5748 
5749   int inner = -1;
5750   bool hasIndirection = false;
5751   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5752     DeclaratorChunk &chunk = D.getTypeObject(i);
5753     switch (chunk.Kind) {
5754     case DeclaratorChunk::Paren:
5755       // Ignore parens.
5756       break;
5757 
5758     case DeclaratorChunk::Array:
5759     case DeclaratorChunk::Reference:
5760     case DeclaratorChunk::Pointer:
5761       if (inner != -1)
5762         hasIndirection = true;
5763       inner = i;
5764       break;
5765 
5766     case DeclaratorChunk::BlockPointer:
5767       if (inner != -1)
5768         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5769       return;
5770 
5771     case DeclaratorChunk::Function:
5772     case DeclaratorChunk::MemberPointer:
5773     case DeclaratorChunk::Pipe:
5774       return;
5775     }
5776   }
5777 
5778   if (inner == -1)
5779     return;
5780 
5781   DeclaratorChunk &chunk = D.getTypeObject(inner);
5782   if (chunk.Kind == DeclaratorChunk::Pointer) {
5783     if (declSpecTy->isObjCRetainableType())
5784       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5785     if (declSpecTy->isObjCObjectType() && hasIndirection)
5786       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5787   } else {
5788     assert(chunk.Kind == DeclaratorChunk::Array ||
5789            chunk.Kind == DeclaratorChunk::Reference);
5790     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5791   }
5792 }
5793 
5794 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5795   TypeProcessingState state(*this, D);
5796 
5797   TypeSourceInfo *ReturnTypeInfo = nullptr;
5798   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5799 
5800   if (getLangOpts().ObjC) {
5801     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5802     if (ownership != Qualifiers::OCL_None)
5803       transferARCOwnership(state, declSpecTy, ownership);
5804   }
5805 
5806   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5807 }
5808 
5809 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5810                                   TypeProcessingState &State) {
5811   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5812 }
5813 
5814 static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL,
5815                                               TypeProcessingState &State) {
5816   HLSLAttributedResourceLocInfo LocInfo =
5817       State.getSema().HLSL().TakeLocForHLSLAttribute(TL.getTypePtr());
5818   TL.setSourceRange(LocInfo.Range);
5819   TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo);
5820 }
5821 
5822 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5823                               const ParsedAttributesView &Attrs) {
5824   for (const ParsedAttr &AL : Attrs) {
5825     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5826       MTL.setAttrNameLoc(AL.getLoc());
5827       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5828       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5829       MTL.setAttrOperandParensRange(SourceRange());
5830       return;
5831     }
5832   }
5833 
5834   llvm_unreachable("no matrix_type attribute found at the expected location!");
5835 }
5836 
5837 namespace {
5838   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5839     Sema &SemaRef;
5840     ASTContext &Context;
5841     TypeProcessingState &State;
5842     const DeclSpec &DS;
5843 
5844   public:
5845     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5846                       const DeclSpec &DS)
5847         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5848 
5849     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5850       Visit(TL.getModifiedLoc());
5851       fillAttributedTypeLoc(TL, State);
5852     }
5853     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5854       Visit(TL.getWrappedLoc());
5855     }
5856     void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) {
5857       Visit(TL.getWrappedLoc());
5858       fillHLSLAttributedResourceTypeLoc(TL, State);
5859     }
5860     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5861       Visit(TL.getInnerLoc());
5862       TL.setExpansionLoc(
5863           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5864     }
5865     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5866       Visit(TL.getUnqualifiedLoc());
5867     }
5868     // Allow to fill pointee's type locations, e.g.,
5869     //   int __attr * __attr * __attr *p;
5870     void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5871     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5872       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5873     }
5874     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5875       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5876       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5877       // addition field. What we have is good enough for display of location
5878       // of 'fixit' on interface name.
5879       TL.setNameEndLoc(DS.getEndLoc());
5880     }
5881     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5882       TypeSourceInfo *RepTInfo = nullptr;
5883       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5884       TL.copy(RepTInfo->getTypeLoc());
5885     }
5886     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5887       TypeSourceInfo *RepTInfo = nullptr;
5888       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5889       TL.copy(RepTInfo->getTypeLoc());
5890     }
5891     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5892       TypeSourceInfo *TInfo = nullptr;
5893       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5894 
5895       // If we got no declarator info from previous Sema routines,
5896       // just fill with the typespec loc.
5897       if (!TInfo) {
5898         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5899         return;
5900       }
5901 
5902       TypeLoc OldTL = TInfo->getTypeLoc();
5903       if (TInfo->getType()->getAs<ElaboratedType>()) {
5904         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5905         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5906             .castAs<TemplateSpecializationTypeLoc>();
5907         TL.copy(NamedTL);
5908       } else {
5909         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5910         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5911       }
5912 
5913     }
5914     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5915       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5916              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5917       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5918       TL.setParensRange(DS.getTypeofParensRange());
5919     }
5920     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5921       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5922              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5923       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5924       TL.setParensRange(DS.getTypeofParensRange());
5925       assert(DS.getRepAsType());
5926       TypeSourceInfo *TInfo = nullptr;
5927       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5928       TL.setUnmodifiedTInfo(TInfo);
5929     }
5930     void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5931       assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5932       TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5933       TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5934     }
5935     void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5936       assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5937       TL.setEllipsisLoc(DS.getEllipsisLoc());
5938     }
5939     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5940       assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5941       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5942       TL.setParensRange(DS.getTypeofParensRange());
5943       assert(DS.getRepAsType());
5944       TypeSourceInfo *TInfo = nullptr;
5945       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5946       TL.setUnderlyingTInfo(TInfo);
5947     }
5948     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5949       // By default, use the source location of the type specifier.
5950       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5951       if (TL.needsExtraLocalData()) {
5952         // Set info for the written builtin specifiers.
5953         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5954         // Try to have a meaningful source location.
5955         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5956           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5957         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5958           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5959       }
5960     }
5961     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5962       if (DS.getTypeSpecType() == TST_typename) {
5963         TypeSourceInfo *TInfo = nullptr;
5964         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5965         if (TInfo)
5966           if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
5967             TL.copy(ETL);
5968             return;
5969           }
5970       }
5971       const ElaboratedType *T = TL.getTypePtr();
5972       TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
5973                                      ? DS.getTypeSpecTypeLoc()
5974                                      : SourceLocation());
5975       const CXXScopeSpec& SS = DS.getTypeSpecScope();
5976       TL.setQualifierLoc(SS.getWithLocInContext(Context));
5977       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5978     }
5979     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5980       assert(DS.getTypeSpecType() == TST_typename);
5981       TypeSourceInfo *TInfo = nullptr;
5982       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5983       assert(TInfo);
5984       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5985     }
5986     void VisitDependentTemplateSpecializationTypeLoc(
5987                                  DependentTemplateSpecializationTypeLoc TL) {
5988       assert(DS.getTypeSpecType() == TST_typename);
5989       TypeSourceInfo *TInfo = nullptr;
5990       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5991       assert(TInfo);
5992       TL.copy(
5993           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5994     }
5995     void VisitAutoTypeLoc(AutoTypeLoc TL) {
5996       assert(DS.getTypeSpecType() == TST_auto ||
5997              DS.getTypeSpecType() == TST_decltype_auto ||
5998              DS.getTypeSpecType() == TST_auto_type ||
5999              DS.getTypeSpecType() == TST_unspecified);
6000       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6001       if (DS.getTypeSpecType() == TST_decltype_auto)
6002         TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6003       if (!DS.isConstrainedAuto())
6004         return;
6005       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6006       if (!TemplateId)
6007         return;
6008 
6009       NestedNameSpecifierLoc NNS =
6010           (DS.getTypeSpecScope().isNotEmpty()
6011                ? DS.getTypeSpecScope().getWithLocInContext(Context)
6012                : NestedNameSpecifierLoc());
6013       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6014                                                 TemplateId->RAngleLoc);
6015       if (TemplateId->NumArgs > 0) {
6016         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6017                                            TemplateId->NumArgs);
6018         SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6019       }
6020       DeclarationNameInfo DNI = DeclarationNameInfo(
6021           TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6022           TemplateId->TemplateNameLoc);
6023 
6024       NamedDecl *FoundDecl;
6025       if (auto TN = TemplateId->Template.get();
6026           UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
6027         FoundDecl = cast<NamedDecl>(USD);
6028       else
6029         FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
6030 
6031       auto *CR = ConceptReference::Create(
6032           Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
6033           /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
6034           ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
6035       TL.setConceptReference(CR);
6036     }
6037     void VisitTagTypeLoc(TagTypeLoc TL) {
6038       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6039     }
6040     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6041       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6042       // or an _Atomic qualifier.
6043       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6044         TL.setKWLoc(DS.getTypeSpecTypeLoc());
6045         TL.setParensRange(DS.getTypeofParensRange());
6046 
6047         TypeSourceInfo *TInfo = nullptr;
6048         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6049         assert(TInfo);
6050         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6051       } else {
6052         TL.setKWLoc(DS.getAtomicSpecLoc());
6053         // No parens, to indicate this was spelled as an _Atomic qualifier.
6054         TL.setParensRange(SourceRange());
6055         Visit(TL.getValueLoc());
6056       }
6057     }
6058 
6059     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6060       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6061 
6062       TypeSourceInfo *TInfo = nullptr;
6063       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6064       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6065     }
6066 
6067     void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6068       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6069     }
6070 
6071     void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6072       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6073     }
6074 
6075     void VisitTypeLoc(TypeLoc TL) {
6076       // FIXME: add other typespec types and change this to an assert.
6077       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6078     }
6079   };
6080 
6081   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6082     ASTContext &Context;
6083     TypeProcessingState &State;
6084     const DeclaratorChunk &Chunk;
6085 
6086   public:
6087     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6088                         const DeclaratorChunk &Chunk)
6089         : Context(Context), State(State), Chunk(Chunk) {}
6090 
6091     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6092       llvm_unreachable("qualified type locs not expected here!");
6093     }
6094     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6095       llvm_unreachable("decayed type locs not expected here!");
6096     }
6097     void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6098       llvm_unreachable("array parameter type locs not expected here!");
6099     }
6100 
6101     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6102       fillAttributedTypeLoc(TL, State);
6103     }
6104     void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6105       // nothing
6106     }
6107     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6108       // nothing
6109     }
6110     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6111       // nothing
6112     }
6113     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6114       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6115       TL.setCaretLoc(Chunk.Loc);
6116     }
6117     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6118       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6119       TL.setStarLoc(Chunk.Loc);
6120     }
6121     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6122       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6123       TL.setStarLoc(Chunk.Loc);
6124     }
6125     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6126       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6127       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6128       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6129 
6130       const Type* ClsTy = TL.getClass();
6131       QualType ClsQT = QualType(ClsTy, 0);
6132       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6133       // Now copy source location info into the type loc component.
6134       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6135       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6136       case NestedNameSpecifier::Identifier:
6137         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6138         {
6139           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6140           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6141           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6142           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6143         }
6144         break;
6145 
6146       case NestedNameSpecifier::TypeSpec:
6147       case NestedNameSpecifier::TypeSpecWithTemplate:
6148         if (isa<ElaboratedType>(ClsTy)) {
6149           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6150           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6151           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6152           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6153           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6154         } else {
6155           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6156         }
6157         break;
6158 
6159       case NestedNameSpecifier::Namespace:
6160       case NestedNameSpecifier::NamespaceAlias:
6161       case NestedNameSpecifier::Global:
6162       case NestedNameSpecifier::Super:
6163         llvm_unreachable("Nested-name-specifier must name a type");
6164       }
6165 
6166       // Finally fill in MemberPointerLocInfo fields.
6167       TL.setStarLoc(Chunk.Mem.StarLoc);
6168       TL.setClassTInfo(ClsTInfo);
6169     }
6170     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6171       assert(Chunk.Kind == DeclaratorChunk::Reference);
6172       // 'Amp' is misleading: this might have been originally
6173       /// spelled with AmpAmp.
6174       TL.setAmpLoc(Chunk.Loc);
6175     }
6176     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6177       assert(Chunk.Kind == DeclaratorChunk::Reference);
6178       assert(!Chunk.Ref.LValueRef);
6179       TL.setAmpAmpLoc(Chunk.Loc);
6180     }
6181     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6182       assert(Chunk.Kind == DeclaratorChunk::Array);
6183       TL.setLBracketLoc(Chunk.Loc);
6184       TL.setRBracketLoc(Chunk.EndLoc);
6185       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6186     }
6187     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6188       assert(Chunk.Kind == DeclaratorChunk::Function);
6189       TL.setLocalRangeBegin(Chunk.Loc);
6190       TL.setLocalRangeEnd(Chunk.EndLoc);
6191 
6192       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6193       TL.setLParenLoc(FTI.getLParenLoc());
6194       TL.setRParenLoc(FTI.getRParenLoc());
6195       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6196         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6197         TL.setParam(tpi++, Param);
6198       }
6199       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6200     }
6201     void VisitParenTypeLoc(ParenTypeLoc TL) {
6202       assert(Chunk.Kind == DeclaratorChunk::Paren);
6203       TL.setLParenLoc(Chunk.Loc);
6204       TL.setRParenLoc(Chunk.EndLoc);
6205     }
6206     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6207       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6208       TL.setKWLoc(Chunk.Loc);
6209     }
6210     void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6211       TL.setNameLoc(Chunk.Loc);
6212     }
6213     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6214       TL.setExpansionLoc(Chunk.Loc);
6215     }
6216     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6217     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6218       TL.setNameLoc(Chunk.Loc);
6219     }
6220     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6221       TL.setNameLoc(Chunk.Loc);
6222     }
6223     void
6224     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6225       TL.setNameLoc(Chunk.Loc);
6226     }
6227     void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6228       fillMatrixTypeLoc(TL, Chunk.getAttrs());
6229     }
6230 
6231     void VisitTypeLoc(TypeLoc TL) {
6232       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6233     }
6234   };
6235 } // end anonymous namespace
6236 
6237 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6238   SourceLocation Loc;
6239   switch (Chunk.Kind) {
6240   case DeclaratorChunk::Function:
6241   case DeclaratorChunk::Array:
6242   case DeclaratorChunk::Paren:
6243   case DeclaratorChunk::Pipe:
6244     llvm_unreachable("cannot be _Atomic qualified");
6245 
6246   case DeclaratorChunk::Pointer:
6247     Loc = Chunk.Ptr.AtomicQualLoc;
6248     break;
6249 
6250   case DeclaratorChunk::BlockPointer:
6251   case DeclaratorChunk::Reference:
6252   case DeclaratorChunk::MemberPointer:
6253     // FIXME: Provide a source location for the _Atomic keyword.
6254     break;
6255   }
6256 
6257   ATL.setKWLoc(Loc);
6258   ATL.setParensRange(SourceRange());
6259 }
6260 
6261 static void
6262 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6263                                  const ParsedAttributesView &Attrs) {
6264   for (const ParsedAttr &AL : Attrs) {
6265     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6266       DASTL.setAttrNameLoc(AL.getLoc());
6267       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6268       DASTL.setAttrOperandParensRange(SourceRange());
6269       return;
6270     }
6271   }
6272 
6273   llvm_unreachable(
6274       "no address_space attribute found at the expected location!");
6275 }
6276 
6277 /// Create and instantiate a TypeSourceInfo with type source information.
6278 ///
6279 /// \param T QualType referring to the type as written in source code.
6280 ///
6281 /// \param ReturnTypeInfo For declarators whose return type does not show
6282 /// up in the normal place in the declaration specifiers (such as a C++
6283 /// conversion function), this pointer will refer to a type source information
6284 /// for that return type.
6285 static TypeSourceInfo *
6286 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6287                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6288   Sema &S = State.getSema();
6289   Declarator &D = State.getDeclarator();
6290 
6291   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6292   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6293 
6294   // Handle parameter packs whose type is a pack expansion.
6295   if (isa<PackExpansionType>(T)) {
6296     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6297     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6298   }
6299 
6300   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6301     // Microsoft property fields can have multiple sizeless array chunks
6302     // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6303     if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6304         D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6305       continue;
6306 
6307     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6308     // declarator chunk.
6309     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6310       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6311       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6312     }
6313 
6314     bool HasDesugaredTypeLoc = true;
6315     while (HasDesugaredTypeLoc) {
6316       switch (CurrTL.getTypeLocClass()) {
6317       case TypeLoc::MacroQualified: {
6318         auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6319         TL.setExpansionLoc(
6320             State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6321         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6322         break;
6323       }
6324 
6325       case TypeLoc::Attributed: {
6326         auto TL = CurrTL.castAs<AttributedTypeLoc>();
6327         fillAttributedTypeLoc(TL, State);
6328         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6329         break;
6330       }
6331 
6332       case TypeLoc::Adjusted:
6333       case TypeLoc::BTFTagAttributed: {
6334         CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6335         break;
6336       }
6337 
6338       case TypeLoc::DependentAddressSpace: {
6339         auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6340         fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6341         CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6342         break;
6343       }
6344 
6345       default:
6346         HasDesugaredTypeLoc = false;
6347         break;
6348       }
6349     }
6350 
6351     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6352     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6353   }
6354 
6355   // If we have different source information for the return type, use
6356   // that.  This really only applies to C++ conversion functions.
6357   if (ReturnTypeInfo) {
6358     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6359     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6360     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6361   } else {
6362     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6363   }
6364 
6365   return TInfo;
6366 }
6367 
6368 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6369 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6370   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6371   // and Sema during declaration parsing. Try deallocating/caching them when
6372   // it's appropriate, instead of allocating them and keeping them around.
6373   LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6374                                                         alignof(LocInfoType));
6375   new (LocT) LocInfoType(T, TInfo);
6376   assert(LocT->getTypeClass() != T->getTypeClass() &&
6377          "LocInfoType's TypeClass conflicts with an existing Type class");
6378   return ParsedType::make(QualType(LocT, 0));
6379 }
6380 
6381 void LocInfoType::getAsStringInternal(std::string &Str,
6382                                       const PrintingPolicy &Policy) const {
6383   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6384          " was used directly instead of getting the QualType through"
6385          " GetTypeFromParser");
6386 }
6387 
6388 TypeResult Sema::ActOnTypeName(Declarator &D) {
6389   // C99 6.7.6: Type names have no identifier.  This is already validated by
6390   // the parser.
6391   assert(D.getIdentifier() == nullptr &&
6392          "Type name should have no identifier!");
6393 
6394   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6395   QualType T = TInfo->getType();
6396   if (D.isInvalidType())
6397     return true;
6398 
6399   // Make sure there are no unused decl attributes on the declarator.
6400   // We don't want to do this for ObjC parameters because we're going
6401   // to apply them to the actual parameter declaration.
6402   // Likewise, we don't want to do this for alias declarations, because
6403   // we are actually going to build a declaration from this eventually.
6404   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6405       D.getContext() != DeclaratorContext::AliasDecl &&
6406       D.getContext() != DeclaratorContext::AliasTemplate)
6407     checkUnusedDeclAttributes(D);
6408 
6409   if (getLangOpts().CPlusPlus) {
6410     // Check that there are no default arguments (C++ only).
6411     CheckExtraCXXDefaultArguments(D);
6412   }
6413 
6414   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6415     const AutoType *AT = TL.getTypePtr();
6416     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6417   }
6418   return CreateParsedType(T, TInfo);
6419 }
6420 
6421 //===----------------------------------------------------------------------===//
6422 // Type Attribute Processing
6423 //===----------------------------------------------------------------------===//
6424 
6425 /// Build an AddressSpace index from a constant expression and diagnose any
6426 /// errors related to invalid address_spaces. Returns true on successfully
6427 /// building an AddressSpace index.
6428 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6429                                    const Expr *AddrSpace,
6430                                    SourceLocation AttrLoc) {
6431   if (!AddrSpace->isValueDependent()) {
6432     std::optional<llvm::APSInt> OptAddrSpace =
6433         AddrSpace->getIntegerConstantExpr(S.Context);
6434     if (!OptAddrSpace) {
6435       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6436           << "'address_space'" << AANT_ArgumentIntegerConstant
6437           << AddrSpace->getSourceRange();
6438       return false;
6439     }
6440     llvm::APSInt &addrSpace = *OptAddrSpace;
6441 
6442     // Bounds checking.
6443     if (addrSpace.isSigned()) {
6444       if (addrSpace.isNegative()) {
6445         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6446             << AddrSpace->getSourceRange();
6447         return false;
6448       }
6449       addrSpace.setIsSigned(false);
6450     }
6451 
6452     llvm::APSInt max(addrSpace.getBitWidth());
6453     max =
6454         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6455 
6456     if (addrSpace > max) {
6457       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6458           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6459       return false;
6460     }
6461 
6462     ASIdx =
6463         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6464     return true;
6465   }
6466 
6467   // Default value for DependentAddressSpaceTypes
6468   ASIdx = LangAS::Default;
6469   return true;
6470 }
6471 
6472 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6473                                      SourceLocation AttrLoc) {
6474   if (!AddrSpace->isValueDependent()) {
6475     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6476                                             AttrLoc))
6477       return QualType();
6478 
6479     return Context.getAddrSpaceQualType(T, ASIdx);
6480   }
6481 
6482   // A check with similar intentions as checking if a type already has an
6483   // address space except for on a dependent types, basically if the
6484   // current type is already a DependentAddressSpaceType then its already
6485   // lined up to have another address space on it and we can't have
6486   // multiple address spaces on the one pointer indirection
6487   if (T->getAs<DependentAddressSpaceType>()) {
6488     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6489     return QualType();
6490   }
6491 
6492   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6493 }
6494 
6495 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6496                                      SourceLocation AttrLoc) {
6497   LangAS ASIdx;
6498   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6499     return QualType();
6500   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6501 }
6502 
6503 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6504                                       TypeProcessingState &State) {
6505   Sema &S = State.getSema();
6506 
6507   // This attribute is only supported in C.
6508   // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp
6509   // such that it handles type attributes, and then call that from
6510   // processTypeAttrs() instead of one-off checks like this.
6511   if (!Attr.diagnoseLangOpts(S)) {
6512     Attr.setInvalid();
6513     return;
6514   }
6515 
6516   // Check the number of attribute arguments.
6517   if (Attr.getNumArgs() != 1) {
6518     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6519         << Attr << 1;
6520     Attr.setInvalid();
6521     return;
6522   }
6523 
6524   // Ensure the argument is a string.
6525   auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6526   if (!StrLiteral) {
6527     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6528         << Attr << AANT_ArgumentString;
6529     Attr.setInvalid();
6530     return;
6531   }
6532 
6533   ASTContext &Ctx = S.Context;
6534   StringRef BTFTypeTag = StrLiteral->getString();
6535   Type = State.getBTFTagAttributedType(
6536       ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6537 }
6538 
6539 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6540 /// specified type.  The attribute contains 1 argument, the id of the address
6541 /// space for the type.
6542 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6543                                             const ParsedAttr &Attr,
6544                                             TypeProcessingState &State) {
6545   Sema &S = State.getSema();
6546 
6547   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6548   // qualified by an address-space qualifier."
6549   if (Type->isFunctionType()) {
6550     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6551     Attr.setInvalid();
6552     return;
6553   }
6554 
6555   LangAS ASIdx;
6556   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6557 
6558     // Check the attribute arguments.
6559     if (Attr.getNumArgs() != 1) {
6560       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6561                                                                         << 1;
6562       Attr.setInvalid();
6563       return;
6564     }
6565 
6566     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6567     LangAS ASIdx;
6568     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6569       Attr.setInvalid();
6570       return;
6571     }
6572 
6573     ASTContext &Ctx = S.Context;
6574     auto *ASAttr =
6575         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6576 
6577     // If the expression is not value dependent (not templated), then we can
6578     // apply the address space qualifiers just to the equivalent type.
6579     // Otherwise, we make an AttributedType with the modified and equivalent
6580     // type the same, and wrap it in a DependentAddressSpaceType. When this
6581     // dependent type is resolved, the qualifier is added to the equivalent type
6582     // later.
6583     QualType T;
6584     if (!ASArgExpr->isValueDependent()) {
6585       QualType EquivType =
6586           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6587       if (EquivType.isNull()) {
6588         Attr.setInvalid();
6589         return;
6590       }
6591       T = State.getAttributedType(ASAttr, Type, EquivType);
6592     } else {
6593       T = State.getAttributedType(ASAttr, Type, Type);
6594       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6595     }
6596 
6597     if (!T.isNull())
6598       Type = T;
6599     else
6600       Attr.setInvalid();
6601   } else {
6602     // The keyword-based type attributes imply which address space to use.
6603     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6604                                          : Attr.asOpenCLLangAS();
6605     if (S.getLangOpts().HLSL)
6606       ASIdx = Attr.asHLSLLangAS();
6607 
6608     if (ASIdx == LangAS::Default)
6609       llvm_unreachable("Invalid address space");
6610 
6611     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6612                                             Attr.getLoc())) {
6613       Attr.setInvalid();
6614       return;
6615     }
6616 
6617     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6618   }
6619 }
6620 
6621 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6622 /// attribute on the specified type.
6623 ///
6624 /// Returns 'true' if the attribute was handled.
6625 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6626                                         ParsedAttr &attr, QualType &type) {
6627   bool NonObjCPointer = false;
6628 
6629   if (!type->isDependentType() && !type->isUndeducedType()) {
6630     if (const PointerType *ptr = type->getAs<PointerType>()) {
6631       QualType pointee = ptr->getPointeeType();
6632       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6633         return false;
6634       // It is important not to lose the source info that there was an attribute
6635       // applied to non-objc pointer. We will create an attributed type but
6636       // its type will be the same as the original type.
6637       NonObjCPointer = true;
6638     } else if (!type->isObjCRetainableType()) {
6639       return false;
6640     }
6641 
6642     // Don't accept an ownership attribute in the declspec if it would
6643     // just be the return type of a block pointer.
6644     if (state.isProcessingDeclSpec()) {
6645       Declarator &D = state.getDeclarator();
6646       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6647                                   /*onlyBlockPointers=*/true))
6648         return false;
6649     }
6650   }
6651 
6652   Sema &S = state.getSema();
6653   SourceLocation AttrLoc = attr.getLoc();
6654   if (AttrLoc.isMacroID())
6655     AttrLoc =
6656         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6657 
6658   if (!attr.isArgIdent(0)) {
6659     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6660                                                        << AANT_ArgumentString;
6661     attr.setInvalid();
6662     return true;
6663   }
6664 
6665   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6666   Qualifiers::ObjCLifetime lifetime;
6667   if (II->isStr("none"))
6668     lifetime = Qualifiers::OCL_ExplicitNone;
6669   else if (II->isStr("strong"))
6670     lifetime = Qualifiers::OCL_Strong;
6671   else if (II->isStr("weak"))
6672     lifetime = Qualifiers::OCL_Weak;
6673   else if (II->isStr("autoreleasing"))
6674     lifetime = Qualifiers::OCL_Autoreleasing;
6675   else {
6676     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6677     attr.setInvalid();
6678     return true;
6679   }
6680 
6681   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6682   // outside of ARC mode.
6683   if (!S.getLangOpts().ObjCAutoRefCount &&
6684       lifetime != Qualifiers::OCL_Weak &&
6685       lifetime != Qualifiers::OCL_ExplicitNone) {
6686     return true;
6687   }
6688 
6689   SplitQualType underlyingType = type.split();
6690 
6691   // Check for redundant/conflicting ownership qualifiers.
6692   if (Qualifiers::ObjCLifetime previousLifetime
6693         = type.getQualifiers().getObjCLifetime()) {
6694     // If it's written directly, that's an error.
6695     if (S.Context.hasDirectOwnershipQualifier(type)) {
6696       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6697         << type;
6698       return true;
6699     }
6700 
6701     // Otherwise, if the qualifiers actually conflict, pull sugar off
6702     // and remove the ObjCLifetime qualifiers.
6703     if (previousLifetime != lifetime) {
6704       // It's possible to have multiple local ObjCLifetime qualifiers. We
6705       // can't stop after we reach a type that is directly qualified.
6706       const Type *prevTy = nullptr;
6707       while (!prevTy || prevTy != underlyingType.Ty) {
6708         prevTy = underlyingType.Ty;
6709         underlyingType = underlyingType.getSingleStepDesugaredType();
6710       }
6711       underlyingType.Quals.removeObjCLifetime();
6712     }
6713   }
6714 
6715   underlyingType.Quals.addObjCLifetime(lifetime);
6716 
6717   if (NonObjCPointer) {
6718     StringRef name = attr.getAttrName()->getName();
6719     switch (lifetime) {
6720     case Qualifiers::OCL_None:
6721     case Qualifiers::OCL_ExplicitNone:
6722       break;
6723     case Qualifiers::OCL_Strong: name = "__strong"; break;
6724     case Qualifiers::OCL_Weak: name = "__weak"; break;
6725     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6726     }
6727     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6728       << TDS_ObjCObjOrBlock << type;
6729   }
6730 
6731   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6732   // because having both 'T' and '__unsafe_unretained T' exist in the type
6733   // system causes unfortunate widespread consistency problems.  (For example,
6734   // they're not considered compatible types, and we mangle them identicially
6735   // as template arguments.)  These problems are all individually fixable,
6736   // but it's easier to just not add the qualifier and instead sniff it out
6737   // in specific places using isObjCInertUnsafeUnretainedType().
6738   //
6739   // Doing this does means we miss some trivial consistency checks that
6740   // would've triggered in ARC, but that's better than trying to solve all
6741   // the coexistence problems with __unsafe_unretained.
6742   if (!S.getLangOpts().ObjCAutoRefCount &&
6743       lifetime == Qualifiers::OCL_ExplicitNone) {
6744     type = state.getAttributedType(
6745         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6746         type, type);
6747     return true;
6748   }
6749 
6750   QualType origType = type;
6751   if (!NonObjCPointer)
6752     type = S.Context.getQualifiedType(underlyingType);
6753 
6754   // If we have a valid source location for the attribute, use an
6755   // AttributedType instead.
6756   if (AttrLoc.isValid()) {
6757     type = state.getAttributedType(::new (S.Context)
6758                                        ObjCOwnershipAttr(S.Context, attr, II),
6759                                    origType, type);
6760   }
6761 
6762   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6763                             unsigned diagnostic, QualType type) {
6764     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6765       S.DelayedDiagnostics.add(
6766           sema::DelayedDiagnostic::makeForbiddenType(
6767               S.getSourceManager().getExpansionLoc(loc),
6768               diagnostic, type, /*ignored*/ 0));
6769     } else {
6770       S.Diag(loc, diagnostic);
6771     }
6772   };
6773 
6774   // Sometimes, __weak isn't allowed.
6775   if (lifetime == Qualifiers::OCL_Weak &&
6776       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6777 
6778     // Use a specialized diagnostic if the runtime just doesn't support them.
6779     unsigned diagnostic =
6780       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6781                                        : diag::err_arc_weak_no_runtime);
6782 
6783     // In any case, delay the diagnostic until we know what we're parsing.
6784     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6785 
6786     attr.setInvalid();
6787     return true;
6788   }
6789 
6790   // Forbid __weak for class objects marked as
6791   // objc_arc_weak_reference_unavailable
6792   if (lifetime == Qualifiers::OCL_Weak) {
6793     if (const ObjCObjectPointerType *ObjT =
6794           type->getAs<ObjCObjectPointerType>()) {
6795       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6796         if (Class->isArcWeakrefUnavailable()) {
6797           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6798           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6799                  diag::note_class_declared);
6800         }
6801       }
6802     }
6803   }
6804 
6805   return true;
6806 }
6807 
6808 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6809 /// attribute on the specified type.  Returns true to indicate that
6810 /// the attribute was handled, false to indicate that the type does
6811 /// not permit the attribute.
6812 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6813                                  QualType &type) {
6814   Sema &S = state.getSema();
6815 
6816   // Delay if this isn't some kind of pointer.
6817   if (!type->isPointerType() &&
6818       !type->isObjCObjectPointerType() &&
6819       !type->isBlockPointerType())
6820     return false;
6821 
6822   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6823     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6824     attr.setInvalid();
6825     return true;
6826   }
6827 
6828   // Check the attribute arguments.
6829   if (!attr.isArgIdent(0)) {
6830     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6831         << attr << AANT_ArgumentString;
6832     attr.setInvalid();
6833     return true;
6834   }
6835   Qualifiers::GC GCAttr;
6836   if (attr.getNumArgs() > 1) {
6837     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6838                                                                       << 1;
6839     attr.setInvalid();
6840     return true;
6841   }
6842 
6843   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6844   if (II->isStr("weak"))
6845     GCAttr = Qualifiers::Weak;
6846   else if (II->isStr("strong"))
6847     GCAttr = Qualifiers::Strong;
6848   else {
6849     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6850         << attr << II;
6851     attr.setInvalid();
6852     return true;
6853   }
6854 
6855   QualType origType = type;
6856   type = S.Context.getObjCGCQualType(origType, GCAttr);
6857 
6858   // Make an attributed type to preserve the source information.
6859   if (attr.getLoc().isValid())
6860     type = state.getAttributedType(
6861         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6862 
6863   return true;
6864 }
6865 
6866 namespace {
6867   /// A helper class to unwrap a type down to a function for the
6868   /// purposes of applying attributes there.
6869   ///
6870   /// Use:
6871   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6872   ///   if (unwrapped.isFunctionType()) {
6873   ///     const FunctionType *fn = unwrapped.get();
6874   ///     // change fn somehow
6875   ///     T = unwrapped.wrap(fn);
6876   ///   }
6877   struct FunctionTypeUnwrapper {
6878     enum WrapKind {
6879       Desugar,
6880       Attributed,
6881       Parens,
6882       Array,
6883       Pointer,
6884       BlockPointer,
6885       Reference,
6886       MemberPointer,
6887       MacroQualified,
6888     };
6889 
6890     QualType Original;
6891     const FunctionType *Fn;
6892     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6893 
6894     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6895       while (true) {
6896         const Type *Ty = T.getTypePtr();
6897         if (isa<FunctionType>(Ty)) {
6898           Fn = cast<FunctionType>(Ty);
6899           return;
6900         } else if (isa<ParenType>(Ty)) {
6901           T = cast<ParenType>(Ty)->getInnerType();
6902           Stack.push_back(Parens);
6903         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6904                    isa<IncompleteArrayType>(Ty)) {
6905           T = cast<ArrayType>(Ty)->getElementType();
6906           Stack.push_back(Array);
6907         } else if (isa<PointerType>(Ty)) {
6908           T = cast<PointerType>(Ty)->getPointeeType();
6909           Stack.push_back(Pointer);
6910         } else if (isa<BlockPointerType>(Ty)) {
6911           T = cast<BlockPointerType>(Ty)->getPointeeType();
6912           Stack.push_back(BlockPointer);
6913         } else if (isa<MemberPointerType>(Ty)) {
6914           T = cast<MemberPointerType>(Ty)->getPointeeType();
6915           Stack.push_back(MemberPointer);
6916         } else if (isa<ReferenceType>(Ty)) {
6917           T = cast<ReferenceType>(Ty)->getPointeeType();
6918           Stack.push_back(Reference);
6919         } else if (isa<AttributedType>(Ty)) {
6920           T = cast<AttributedType>(Ty)->getEquivalentType();
6921           Stack.push_back(Attributed);
6922         } else if (isa<MacroQualifiedType>(Ty)) {
6923           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6924           Stack.push_back(MacroQualified);
6925         } else {
6926           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6927           if (Ty == DTy) {
6928             Fn = nullptr;
6929             return;
6930           }
6931 
6932           T = QualType(DTy, 0);
6933           Stack.push_back(Desugar);
6934         }
6935       }
6936     }
6937 
6938     bool isFunctionType() const { return (Fn != nullptr); }
6939     const FunctionType *get() const { return Fn; }
6940 
6941     QualType wrap(Sema &S, const FunctionType *New) {
6942       // If T wasn't modified from the unwrapped type, do nothing.
6943       if (New == get()) return Original;
6944 
6945       Fn = New;
6946       return wrap(S.Context, Original, 0);
6947     }
6948 
6949   private:
6950     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6951       if (I == Stack.size())
6952         return C.getQualifiedType(Fn, Old.getQualifiers());
6953 
6954       // Build up the inner type, applying the qualifiers from the old
6955       // type to the new type.
6956       SplitQualType SplitOld = Old.split();
6957 
6958       // As a special case, tail-recurse if there are no qualifiers.
6959       if (SplitOld.Quals.empty())
6960         return wrap(C, SplitOld.Ty, I);
6961       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6962     }
6963 
6964     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6965       if (I == Stack.size()) return QualType(Fn, 0);
6966 
6967       switch (static_cast<WrapKind>(Stack[I++])) {
6968       case Desugar:
6969         // This is the point at which we potentially lose source
6970         // information.
6971         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6972 
6973       case Attributed:
6974         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6975 
6976       case Parens: {
6977         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6978         return C.getParenType(New);
6979       }
6980 
6981       case MacroQualified:
6982         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6983 
6984       case Array: {
6985         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6986           QualType New = wrap(C, CAT->getElementType(), I);
6987           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6988                                         CAT->getSizeModifier(),
6989                                         CAT->getIndexTypeCVRQualifiers());
6990         }
6991 
6992         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6993           QualType New = wrap(C, VAT->getElementType(), I);
6994           return C.getVariableArrayType(
6995               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6996               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6997         }
6998 
6999         const auto *IAT = cast<IncompleteArrayType>(Old);
7000         QualType New = wrap(C, IAT->getElementType(), I);
7001         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7002                                         IAT->getIndexTypeCVRQualifiers());
7003       }
7004 
7005       case Pointer: {
7006         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7007         return C.getPointerType(New);
7008       }
7009 
7010       case BlockPointer: {
7011         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7012         return C.getBlockPointerType(New);
7013       }
7014 
7015       case MemberPointer: {
7016         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7017         QualType New = wrap(C, OldMPT->getPointeeType(), I);
7018         return C.getMemberPointerType(New, OldMPT->getClass());
7019       }
7020 
7021       case Reference: {
7022         const ReferenceType *OldRef = cast<ReferenceType>(Old);
7023         QualType New = wrap(C, OldRef->getPointeeType(), I);
7024         if (isa<LValueReferenceType>(OldRef))
7025           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7026         else
7027           return C.getRValueReferenceType(New);
7028       }
7029       }
7030 
7031       llvm_unreachable("unknown wrapping kind");
7032     }
7033   };
7034 } // end anonymous namespace
7035 
7036 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7037                                              ParsedAttr &PAttr, QualType &Type) {
7038   Sema &S = State.getSema();
7039 
7040   Attr *A;
7041   switch (PAttr.getKind()) {
7042   default: llvm_unreachable("Unknown attribute kind");
7043   case ParsedAttr::AT_Ptr32:
7044     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7045     break;
7046   case ParsedAttr::AT_Ptr64:
7047     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7048     break;
7049   case ParsedAttr::AT_SPtr:
7050     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7051     break;
7052   case ParsedAttr::AT_UPtr:
7053     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7054     break;
7055   }
7056 
7057   std::bitset<attr::LastAttr> Attrs;
7058   QualType Desugared = Type;
7059   for (;;) {
7060     if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7061       Desugared = TT->desugar();
7062       continue;
7063     } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7064       Desugared = ET->desugar();
7065       continue;
7066     }
7067     const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7068     if (!AT)
7069       break;
7070     Attrs[AT->getAttrKind()] = true;
7071     Desugared = AT->getModifiedType();
7072   }
7073 
7074   // You cannot specify duplicate type attributes, so if the attribute has
7075   // already been applied, flag it.
7076   attr::Kind NewAttrKind = A->getKind();
7077   if (Attrs[NewAttrKind]) {
7078     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7079     return true;
7080   }
7081   Attrs[NewAttrKind] = true;
7082 
7083   // You cannot have both __sptr and __uptr on the same type, nor can you
7084   // have __ptr32 and __ptr64.
7085   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7086     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7087         << "'__ptr32'"
7088         << "'__ptr64'" << /*isRegularKeyword=*/0;
7089     return true;
7090   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7091     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7092         << "'__sptr'"
7093         << "'__uptr'" << /*isRegularKeyword=*/0;
7094     return true;
7095   }
7096 
7097   // Check the raw (i.e., desugared) Canonical type to see if it
7098   // is a pointer type.
7099   if (!isa<PointerType>(Desugared)) {
7100     // Pointer type qualifiers can only operate on pointer types, but not
7101     // pointer-to-member types.
7102     if (Type->isMemberPointerType())
7103       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7104     else
7105       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7106     return true;
7107   }
7108 
7109   // Add address space to type based on its attributes.
7110   LangAS ASIdx = LangAS::Default;
7111   uint64_t PtrWidth =
7112       S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7113   if (PtrWidth == 32) {
7114     if (Attrs[attr::Ptr64])
7115       ASIdx = LangAS::ptr64;
7116     else if (Attrs[attr::UPtr])
7117       ASIdx = LangAS::ptr32_uptr;
7118   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7119     if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr])
7120       ASIdx = LangAS::ptr32_uptr;
7121     else
7122       ASIdx = LangAS::ptr32_sptr;
7123   }
7124 
7125   QualType Pointee = Type->getPointeeType();
7126   if (ASIdx != LangAS::Default)
7127     Pointee = S.Context.getAddrSpaceQualType(
7128         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7129   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7130   return false;
7131 }
7132 
7133 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7134                                          QualType &QT, ParsedAttr &PAttr) {
7135   assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7136 
7137   Sema &S = State.getSema();
7138   Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7139 
7140   std::bitset<attr::LastAttr> Attrs;
7141   attr::Kind NewAttrKind = A->getKind();
7142   const auto *AT = dyn_cast<AttributedType>(QT);
7143   while (AT) {
7144     Attrs[AT->getAttrKind()] = true;
7145     AT = dyn_cast<AttributedType>(AT->getModifiedType());
7146   }
7147 
7148   // You cannot specify duplicate type attributes, so if the attribute has
7149   // already been applied, flag it.
7150   if (Attrs[NewAttrKind]) {
7151     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7152     return true;
7153   }
7154 
7155   // Add address space to type based on its attributes.
7156   LangAS ASIdx = LangAS::wasm_funcref;
7157   QualType Pointee = QT->getPointeeType();
7158   Pointee = S.Context.getAddrSpaceQualType(
7159       S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7160   QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7161   return false;
7162 }
7163 
7164 static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL,
7165                             QualType &QT, ParsedAttr &PAttr) {
7166   if (TAL == TAL_DeclName)
7167     return;
7168 
7169   Sema &S = State.getSema();
7170   auto &D = State.getDeclarator();
7171 
7172   // If the attribute appears in declaration specifiers
7173   // it should be handled as a declaration attribute,
7174   // unless it's associated with a type or a function
7175   // prototype (i.e. appears on a parameter or result type).
7176   if (State.isProcessingDeclSpec()) {
7177     if (!(D.isPrototypeContext() ||
7178           D.getContext() == DeclaratorContext::TypeName))
7179       return;
7180 
7181     if (auto *chunk = D.getInnermostNonParenChunk()) {
7182       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7183                              const_cast<DeclaratorChunk *>(chunk)->getAttrs());
7184       return;
7185     }
7186   }
7187 
7188   StringRef Str;
7189   if (!S.checkStringLiteralArgumentAttr(PAttr, 0, Str)) {
7190     PAttr.setInvalid();
7191     return;
7192   }
7193 
7194   // If the attribute as attached to a paren move it closer to
7195   // the declarator. This can happen in block declarations when
7196   // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`.
7197   //
7198   // Note that it's actually invalid to use GNU style attributes
7199   // in a block but such cases are currently handled gracefully
7200   // but the parser and behavior should be consistent between
7201   // cases when attribute appears before/after block's result
7202   // type and inside (^).
7203   if (TAL == TAL_DeclChunk) {
7204     auto chunkIdx = State.getCurrentChunkIndex();
7205     if (chunkIdx >= 1 &&
7206         D.getTypeObject(chunkIdx).Kind == DeclaratorChunk::Paren) {
7207       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7208                              D.getTypeObject(chunkIdx - 1).getAttrs());
7209       return;
7210     }
7211   }
7212 
7213   auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str);
7214   QT = State.getAttributedType(A, QT, QT);
7215   PAttr.setUsedAsTypeAttr();
7216 }
7217 
7218 /// Rebuild an attributed type without the nullability attribute on it.
7219 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7220                                                         QualType Type) {
7221   auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7222   if (!Attributed)
7223     return Type;
7224 
7225   // Skip the nullability attribute; we're done.
7226   if (Attributed->getImmediateNullability())
7227     return Attributed->getModifiedType();
7228 
7229   // Build the modified type.
7230   QualType Modified = rebuildAttributedTypeWithoutNullability(
7231       Ctx, Attributed->getModifiedType());
7232   assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7233   return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7234                                Attributed->getEquivalentType(),
7235                                Attributed->getAttr());
7236 }
7237 
7238 /// Map a nullability attribute kind to a nullability kind.
7239 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7240   switch (kind) {
7241   case ParsedAttr::AT_TypeNonNull:
7242     return NullabilityKind::NonNull;
7243 
7244   case ParsedAttr::AT_TypeNullable:
7245     return NullabilityKind::Nullable;
7246 
7247   case ParsedAttr::AT_TypeNullableResult:
7248     return NullabilityKind::NullableResult;
7249 
7250   case ParsedAttr::AT_TypeNullUnspecified:
7251     return NullabilityKind::Unspecified;
7252 
7253   default:
7254     llvm_unreachable("not a nullability attribute kind");
7255   }
7256 }
7257 
7258 static bool CheckNullabilityTypeSpecifier(
7259     Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7260     NullabilityKind Nullability, SourceLocation NullabilityLoc,
7261     bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7262   bool Implicit = (State == nullptr);
7263   if (!Implicit)
7264     recordNullabilitySeen(S, NullabilityLoc);
7265 
7266   // Check for existing nullability attributes on the type.
7267   QualType Desugared = QT;
7268   while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7269     // Check whether there is already a null
7270     if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7271       // Duplicated nullability.
7272       if (Nullability == *ExistingNullability) {
7273         if (Implicit)
7274           break;
7275 
7276         S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7277             << DiagNullabilityKind(Nullability, IsContextSensitive)
7278             << FixItHint::CreateRemoval(NullabilityLoc);
7279 
7280         break;
7281       }
7282 
7283       if (!OverrideExisting) {
7284         // Conflicting nullability.
7285         S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7286             << DiagNullabilityKind(Nullability, IsContextSensitive)
7287             << DiagNullabilityKind(*ExistingNullability, false);
7288         return true;
7289       }
7290 
7291       // Rebuild the attributed type, dropping the existing nullability.
7292       QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7293     }
7294 
7295     Desugared = Attributed->getModifiedType();
7296   }
7297 
7298   // If there is already a different nullability specifier, complain.
7299   // This (unlike the code above) looks through typedefs that might
7300   // have nullability specifiers on them, which means we cannot
7301   // provide a useful Fix-It.
7302   if (auto ExistingNullability = Desugared->getNullability()) {
7303     if (Nullability != *ExistingNullability && !Implicit) {
7304       S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7305           << DiagNullabilityKind(Nullability, IsContextSensitive)
7306           << DiagNullabilityKind(*ExistingNullability, false);
7307 
7308       // Try to find the typedef with the existing nullability specifier.
7309       if (auto TT = Desugared->getAs<TypedefType>()) {
7310         TypedefNameDecl *typedefDecl = TT->getDecl();
7311         QualType underlyingType = typedefDecl->getUnderlyingType();
7312         if (auto typedefNullability =
7313                 AttributedType::stripOuterNullability(underlyingType)) {
7314           if (*typedefNullability == *ExistingNullability) {
7315             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7316                 << DiagNullabilityKind(*ExistingNullability, false);
7317           }
7318         }
7319       }
7320 
7321       return true;
7322     }
7323   }
7324 
7325   // If this definitely isn't a pointer type, reject the specifier.
7326   if (!Desugared->canHaveNullability() &&
7327       !(AllowOnArrayType && Desugared->isArrayType())) {
7328     if (!Implicit)
7329       S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7330           << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7331 
7332     return true;
7333   }
7334 
7335   // For the context-sensitive keywords/Objective-C property
7336   // attributes, require that the type be a single-level pointer.
7337   if (IsContextSensitive) {
7338     // Make sure that the pointee isn't itself a pointer type.
7339     const Type *pointeeType = nullptr;
7340     if (Desugared->isArrayType())
7341       pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7342     else if (Desugared->isAnyPointerType())
7343       pointeeType = Desugared->getPointeeType().getTypePtr();
7344 
7345     if (pointeeType && (pointeeType->isAnyPointerType() ||
7346                         pointeeType->isObjCObjectPointerType() ||
7347                         pointeeType->isMemberPointerType())) {
7348       S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7349           << DiagNullabilityKind(Nullability, true) << QT;
7350       S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7351           << DiagNullabilityKind(Nullability, false) << QT
7352           << FixItHint::CreateReplacement(NullabilityLoc,
7353                                           getNullabilitySpelling(Nullability));
7354       return true;
7355     }
7356   }
7357 
7358   // Form the attributed type.
7359   if (State) {
7360     assert(PAttr);
7361     Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7362     QT = State->getAttributedType(A, QT, QT);
7363   } else {
7364     QT = S.Context.getAttributedType(Nullability, QT, QT);
7365   }
7366   return false;
7367 }
7368 
7369 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7370                                           QualType &Type, ParsedAttr &Attr,
7371                                           bool AllowOnArrayType) {
7372   NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7373   SourceLocation NullabilityLoc = Attr.getLoc();
7374   bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7375 
7376   return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7377                                        Nullability, NullabilityLoc,
7378                                        IsContextSensitive, AllowOnArrayType,
7379                                        /*overrideExisting*/ false);
7380 }
7381 
7382 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7383                                                  NullabilityKind Nullability,
7384                                                  SourceLocation DiagLoc,
7385                                                  bool AllowArrayTypes,
7386                                                  bool OverrideExisting) {
7387   return CheckNullabilityTypeSpecifier(
7388       *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7389       /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7390 }
7391 
7392 /// Check the application of the Objective-C '__kindof' qualifier to
7393 /// the given type.
7394 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7395                                 ParsedAttr &attr) {
7396   Sema &S = state.getSema();
7397 
7398   if (isa<ObjCTypeParamType>(type)) {
7399     // Build the attributed type to record where __kindof occurred.
7400     type = state.getAttributedType(
7401         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7402     return false;
7403   }
7404 
7405   // Find out if it's an Objective-C object or object pointer type;
7406   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7407   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7408                                           : type->getAs<ObjCObjectType>();
7409 
7410   // If not, we can't apply __kindof.
7411   if (!objType) {
7412     // FIXME: Handle dependent types that aren't yet object types.
7413     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7414       << type;
7415     return true;
7416   }
7417 
7418   // Rebuild the "equivalent" type, which pushes __kindof down into
7419   // the object type.
7420   // There is no need to apply kindof on an unqualified id type.
7421   QualType equivType = S.Context.getObjCObjectType(
7422       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7423       objType->getProtocols(),
7424       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7425 
7426   // If we started with an object pointer type, rebuild it.
7427   if (ptrType) {
7428     equivType = S.Context.getObjCObjectPointerType(equivType);
7429     if (auto nullability = type->getNullability()) {
7430       // We create a nullability attribute from the __kindof attribute.
7431       // Make sure that will make sense.
7432       assert(attr.getAttributeSpellingListIndex() == 0 &&
7433              "multiple spellings for __kindof?");
7434       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7435       A->setImplicit(true);
7436       equivType = state.getAttributedType(A, equivType, equivType);
7437     }
7438   }
7439 
7440   // Build the attributed type to record where __kindof occurred.
7441   type = state.getAttributedType(
7442       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7443   return false;
7444 }
7445 
7446 /// Distribute a nullability type attribute that cannot be applied to
7447 /// the type specifier to a pointer, block pointer, or member pointer
7448 /// declarator, complaining if necessary.
7449 ///
7450 /// \returns true if the nullability annotation was distributed, false
7451 /// otherwise.
7452 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7453                                           QualType type, ParsedAttr &attr) {
7454   Declarator &declarator = state.getDeclarator();
7455 
7456   /// Attempt to move the attribute to the specified chunk.
7457   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7458     // If there is already a nullability attribute there, don't add
7459     // one.
7460     if (hasNullabilityAttr(chunk.getAttrs()))
7461       return false;
7462 
7463     // Complain about the nullability qualifier being in the wrong
7464     // place.
7465     enum {
7466       PK_Pointer,
7467       PK_BlockPointer,
7468       PK_MemberPointer,
7469       PK_FunctionPointer,
7470       PK_MemberFunctionPointer,
7471     } pointerKind
7472       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7473                                                              : PK_Pointer)
7474         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7475         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7476 
7477     auto diag = state.getSema().Diag(attr.getLoc(),
7478                                      diag::warn_nullability_declspec)
7479       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7480                              attr.isContextSensitiveKeywordAttribute())
7481       << type
7482       << static_cast<unsigned>(pointerKind);
7483 
7484     // FIXME: MemberPointer chunks don't carry the location of the *.
7485     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7486       diag << FixItHint::CreateRemoval(attr.getLoc())
7487            << FixItHint::CreateInsertion(
7488                   state.getSema().getPreprocessor().getLocForEndOfToken(
7489                       chunk.Loc),
7490                   " " + attr.getAttrName()->getName().str() + " ");
7491     }
7492 
7493     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7494                            chunk.getAttrs());
7495     return true;
7496   };
7497 
7498   // Move it to the outermost pointer, member pointer, or block
7499   // pointer declarator.
7500   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7501     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7502     switch (chunk.Kind) {
7503     case DeclaratorChunk::Pointer:
7504     case DeclaratorChunk::BlockPointer:
7505     case DeclaratorChunk::MemberPointer:
7506       return moveToChunk(chunk, false);
7507 
7508     case DeclaratorChunk::Paren:
7509     case DeclaratorChunk::Array:
7510       continue;
7511 
7512     case DeclaratorChunk::Function:
7513       // Try to move past the return type to a function/block/member
7514       // function pointer.
7515       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7516                                     declarator, i,
7517                                     /*onlyBlockPointers=*/false)) {
7518         return moveToChunk(*dest, true);
7519       }
7520 
7521       return false;
7522 
7523     // Don't walk through these.
7524     case DeclaratorChunk::Reference:
7525     case DeclaratorChunk::Pipe:
7526       return false;
7527     }
7528   }
7529 
7530   return false;
7531 }
7532 
7533 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7534   assert(!Attr.isInvalid());
7535   switch (Attr.getKind()) {
7536   default:
7537     llvm_unreachable("not a calling convention attribute");
7538   case ParsedAttr::AT_CDecl:
7539     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7540   case ParsedAttr::AT_FastCall:
7541     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7542   case ParsedAttr::AT_StdCall:
7543     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7544   case ParsedAttr::AT_ThisCall:
7545     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7546   case ParsedAttr::AT_RegCall:
7547     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7548   case ParsedAttr::AT_Pascal:
7549     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7550   case ParsedAttr::AT_SwiftCall:
7551     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7552   case ParsedAttr::AT_SwiftAsyncCall:
7553     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7554   case ParsedAttr::AT_VectorCall:
7555     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7556   case ParsedAttr::AT_AArch64VectorPcs:
7557     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7558   case ParsedAttr::AT_AArch64SVEPcs:
7559     return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7560   case ParsedAttr::AT_ArmStreaming:
7561     return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7562   case ParsedAttr::AT_AMDGPUKernelCall:
7563     return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7564   case ParsedAttr::AT_Pcs: {
7565     // The attribute may have had a fixit applied where we treated an
7566     // identifier as a string literal.  The contents of the string are valid,
7567     // but the form may not be.
7568     StringRef Str;
7569     if (Attr.isArgExpr(0))
7570       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7571     else
7572       Str = Attr.getArgAsIdent(0)->Ident->getName();
7573     PcsAttr::PCSType Type;
7574     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7575       llvm_unreachable("already validated the attribute");
7576     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7577   }
7578   case ParsedAttr::AT_IntelOclBicc:
7579     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7580   case ParsedAttr::AT_MSABI:
7581     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7582   case ParsedAttr::AT_SysVABI:
7583     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7584   case ParsedAttr::AT_PreserveMost:
7585     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7586   case ParsedAttr::AT_PreserveAll:
7587     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7588   case ParsedAttr::AT_M68kRTD:
7589     return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7590   case ParsedAttr::AT_PreserveNone:
7591     return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7592   case ParsedAttr::AT_RISCVVectorCC:
7593     return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7594   }
7595   llvm_unreachable("unexpected attribute kind!");
7596 }
7597 
7598 std::optional<FunctionEffectMode>
7599 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7600   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7601     return FunctionEffectMode::Dependent;
7602 
7603   std::optional<llvm::APSInt> ConditionValue =
7604       CondExpr->getIntegerConstantExpr(Context);
7605   if (!ConditionValue) {
7606     // FIXME: err_attribute_argument_type doesn't quote the attribute
7607     // name but needs to; users are inconsistent.
7608     Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7609         << AttributeName << AANT_ArgumentIntegerConstant
7610         << CondExpr->getSourceRange();
7611     return std::nullopt;
7612   }
7613   return !ConditionValue->isZero() ? FunctionEffectMode::True
7614                                    : FunctionEffectMode::False;
7615 }
7616 
7617 static bool
7618 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7619                                        ParsedAttr &PAttr, QualType &QT,
7620                                        FunctionTypeUnwrapper &Unwrapped) {
7621   // Delay if this is not a function type.
7622   if (!Unwrapped.isFunctionType())
7623     return false;
7624 
7625   Sema &S = TPState.getSema();
7626 
7627   // Require FunctionProtoType.
7628   auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7629   if (FPT == nullptr) {
7630     S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7631         << PAttr.getAttrName()->getName();
7632     return true;
7633   }
7634 
7635   // Parse the new  attribute.
7636   // non/blocking or non/allocating? Or conditional (computed)?
7637   bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7638                        PAttr.getKind() == ParsedAttr::AT_Blocking;
7639 
7640   FunctionEffectMode NewMode = FunctionEffectMode::None;
7641   Expr *CondExpr = nullptr; // only valid if dependent
7642 
7643   if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7644       PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7645     if (!PAttr.checkAtMostNumArgs(S, 1)) {
7646       PAttr.setInvalid();
7647       return true;
7648     }
7649 
7650     // Parse the condition, if any.
7651     if (PAttr.getNumArgs() == 1) {
7652       CondExpr = PAttr.getArgAsExpr(0);
7653       std::optional<FunctionEffectMode> MaybeMode =
7654           S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7655       if (!MaybeMode) {
7656         PAttr.setInvalid();
7657         return true;
7658       }
7659       NewMode = *MaybeMode;
7660       if (NewMode != FunctionEffectMode::Dependent)
7661         CondExpr = nullptr;
7662     } else {
7663       NewMode = FunctionEffectMode::True;
7664     }
7665   } else {
7666     // This is the `blocking` or `allocating` attribute.
7667     if (S.CheckAttrNoArgs(PAttr)) {
7668       // The attribute has been marked invalid.
7669       return true;
7670     }
7671     NewMode = FunctionEffectMode::False;
7672   }
7673 
7674   const FunctionEffect::Kind FEKind =
7675       (NewMode == FunctionEffectMode::False)
7676           ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7677                            : FunctionEffect::Kind::Allocating)
7678           : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7679                            : FunctionEffect::Kind::NonAllocating);
7680   const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7681                                           EffectConditionExpr(CondExpr)};
7682 
7683   if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7684                                           PAttr.getLoc())) {
7685     PAttr.setInvalid();
7686     return true;
7687   }
7688 
7689   // Add the effect to the FunctionProtoType.
7690   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7691   FunctionEffectSet FX(EPI.FunctionEffects);
7692   FunctionEffectSet::Conflicts Errs;
7693   [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7694   assert(Success && "effect conflicts should have been diagnosed above");
7695   EPI.FunctionEffects = FunctionEffectsRef(FX);
7696 
7697   QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7698                                                FPT->getParamTypes(), EPI);
7699   QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7700   return true;
7701 }
7702 
7703 static bool checkMutualExclusion(TypeProcessingState &state,
7704                                  const FunctionProtoType::ExtProtoInfo &EPI,
7705                                  ParsedAttr &Attr,
7706                                  AttributeCommonInfo::Kind OtherKind) {
7707   auto OtherAttr = std::find_if(
7708       state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7709       [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7710   if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7711     return false;
7712 
7713   Sema &S = state.getSema();
7714   S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7715       << *OtherAttr << Attr
7716       << (OtherAttr->isRegularKeywordAttribute() ||
7717           Attr.isRegularKeywordAttribute());
7718   S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7719   Attr.setInvalid();
7720   return true;
7721 }
7722 
7723 static bool handleArmStateAttribute(Sema &S,
7724                                     FunctionProtoType::ExtProtoInfo &EPI,
7725                                     ParsedAttr &Attr,
7726                                     FunctionType::ArmStateValue State) {
7727   if (!Attr.getNumArgs()) {
7728     S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7729     Attr.setInvalid();
7730     return true;
7731   }
7732 
7733   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7734     StringRef StateName;
7735     SourceLocation LiteralLoc;
7736     if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7737       return true;
7738 
7739     unsigned Shift;
7740     FunctionType::ArmStateValue ExistingState;
7741     if (StateName == "za") {
7742       Shift = FunctionType::SME_ZAShift;
7743       ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7744     } else if (StateName == "zt0") {
7745       Shift = FunctionType::SME_ZT0Shift;
7746       ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7747     } else {
7748       S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7749       Attr.setInvalid();
7750       return true;
7751     }
7752 
7753     // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7754     // are all mutually exclusive for the same S, so check if there are
7755     // conflicting attributes.
7756     if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7757       S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7758           << StateName;
7759       Attr.setInvalid();
7760       return true;
7761     }
7762 
7763     EPI.setArmSMEAttribute(
7764         (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7765   }
7766   return false;
7767 }
7768 
7769 /// Process an individual function attribute.  Returns true to
7770 /// indicate that the attribute was handled, false if it wasn't.
7771 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7772                                    QualType &type, CUDAFunctionTarget CFT) {
7773   Sema &S = state.getSema();
7774 
7775   FunctionTypeUnwrapper unwrapped(S, type);
7776 
7777   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7778     if (S.CheckAttrNoArgs(attr))
7779       return true;
7780 
7781     // Delay if this is not a function type.
7782     if (!unwrapped.isFunctionType())
7783       return false;
7784 
7785     // Otherwise we can process right away.
7786     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7787     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7788     return true;
7789   }
7790 
7791   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7792     // Delay if this is not a function type.
7793     if (!unwrapped.isFunctionType())
7794       return false;
7795 
7796     // Ignore if we don't have CMSE enabled.
7797     if (!S.getLangOpts().Cmse) {
7798       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7799       attr.setInvalid();
7800       return true;
7801     }
7802 
7803     // Otherwise we can process right away.
7804     FunctionType::ExtInfo EI =
7805         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7806     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7807     return true;
7808   }
7809 
7810   // ns_returns_retained is not always a type attribute, but if we got
7811   // here, we're treating it as one right now.
7812   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7813     if (attr.getNumArgs()) return true;
7814 
7815     // Delay if this is not a function type.
7816     if (!unwrapped.isFunctionType())
7817       return false;
7818 
7819     // Check whether the return type is reasonable.
7820     if (S.ObjC().checkNSReturnsRetainedReturnType(
7821             attr.getLoc(), unwrapped.get()->getReturnType()))
7822       return true;
7823 
7824     // Only actually change the underlying type in ARC builds.
7825     QualType origType = type;
7826     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7827       FunctionType::ExtInfo EI
7828         = unwrapped.get()->getExtInfo().withProducesResult(true);
7829       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7830     }
7831     type = state.getAttributedType(
7832         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7833         origType, type);
7834     return true;
7835   }
7836 
7837   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7838     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7839       return true;
7840 
7841     // Delay if this is not a function type.
7842     if (!unwrapped.isFunctionType())
7843       return false;
7844 
7845     FunctionType::ExtInfo EI =
7846         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7847     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7848     return true;
7849   }
7850 
7851   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7852     if (!S.getLangOpts().CFProtectionBranch) {
7853       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7854       attr.setInvalid();
7855       return true;
7856     }
7857 
7858     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7859       return true;
7860 
7861     // If this is not a function type, warning will be asserted by subject
7862     // check.
7863     if (!unwrapped.isFunctionType())
7864       return true;
7865 
7866     FunctionType::ExtInfo EI =
7867       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7868     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7869     return true;
7870   }
7871 
7872   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7873     unsigned value;
7874     if (S.CheckRegparmAttr(attr, value))
7875       return true;
7876 
7877     // Delay if this is not a function type.
7878     if (!unwrapped.isFunctionType())
7879       return false;
7880 
7881     // Diagnose regparm with fastcall.
7882     const FunctionType *fn = unwrapped.get();
7883     CallingConv CC = fn->getCallConv();
7884     if (CC == CC_X86FastCall) {
7885       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7886           << FunctionType::getNameForCallConv(CC) << "regparm"
7887           << attr.isRegularKeywordAttribute();
7888       attr.setInvalid();
7889       return true;
7890     }
7891 
7892     FunctionType::ExtInfo EI =
7893       unwrapped.get()->getExtInfo().withRegParm(value);
7894     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7895     return true;
7896   }
7897 
7898   if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7899       attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7900       attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7901       attr.getKind() == ParsedAttr::AT_ArmIn ||
7902       attr.getKind() == ParsedAttr::AT_ArmOut ||
7903       attr.getKind() == ParsedAttr::AT_ArmInOut) {
7904     if (S.CheckAttrTarget(attr))
7905       return true;
7906 
7907     if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7908         attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7909       if (S.CheckAttrNoArgs(attr))
7910         return true;
7911 
7912     if (!unwrapped.isFunctionType())
7913       return false;
7914 
7915     const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7916     if (!FnTy) {
7917       // SME ACLE attributes are not supported on K&R-style unprototyped C
7918       // functions.
7919       S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7920         attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7921       attr.setInvalid();
7922       return false;
7923     }
7924 
7925     FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7926     switch (attr.getKind()) {
7927     case ParsedAttr::AT_ArmStreaming:
7928       if (checkMutualExclusion(state, EPI, attr,
7929                                ParsedAttr::AT_ArmStreamingCompatible))
7930         return true;
7931       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7932       break;
7933     case ParsedAttr::AT_ArmStreamingCompatible:
7934       if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7935         return true;
7936       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7937       break;
7938     case ParsedAttr::AT_ArmPreserves:
7939       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7940         return true;
7941       break;
7942     case ParsedAttr::AT_ArmIn:
7943       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7944         return true;
7945       break;
7946     case ParsedAttr::AT_ArmOut:
7947       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7948         return true;
7949       break;
7950     case ParsedAttr::AT_ArmInOut:
7951       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7952         return true;
7953       break;
7954     default:
7955       llvm_unreachable("Unsupported attribute");
7956     }
7957 
7958     QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7959                                                  FnTy->getParamTypes(), EPI);
7960     type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7961     return true;
7962   }
7963 
7964   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7965     // Delay if this is not a function type.
7966     if (!unwrapped.isFunctionType())
7967       return false;
7968 
7969     if (S.CheckAttrNoArgs(attr)) {
7970       attr.setInvalid();
7971       return true;
7972     }
7973 
7974     // Otherwise we can process right away.
7975     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7976 
7977     // MSVC ignores nothrow if it is in conflict with an explicit exception
7978     // specification.
7979     if (Proto->hasExceptionSpec()) {
7980       switch (Proto->getExceptionSpecType()) {
7981       case EST_None:
7982         llvm_unreachable("This doesn't have an exception spec!");
7983 
7984       case EST_DynamicNone:
7985       case EST_BasicNoexcept:
7986       case EST_NoexceptTrue:
7987       case EST_NoThrow:
7988         // Exception spec doesn't conflict with nothrow, so don't warn.
7989         [[fallthrough]];
7990       case EST_Unparsed:
7991       case EST_Uninstantiated:
7992       case EST_DependentNoexcept:
7993       case EST_Unevaluated:
7994         // We don't have enough information to properly determine if there is a
7995         // conflict, so suppress the warning.
7996         break;
7997       case EST_Dynamic:
7998       case EST_MSAny:
7999       case EST_NoexceptFalse:
8000         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
8001         break;
8002       }
8003       return true;
8004     }
8005 
8006     type = unwrapped.wrap(
8007         S, S.Context
8008                .getFunctionTypeWithExceptionSpec(
8009                    QualType{Proto, 0},
8010                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
8011                ->getAs<FunctionType>());
8012     return true;
8013   }
8014 
8015   if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
8016       attr.getKind() == ParsedAttr::AT_NonAllocating ||
8017       attr.getKind() == ParsedAttr::AT_Blocking ||
8018       attr.getKind() == ParsedAttr::AT_Allocating) {
8019     return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
8020   }
8021 
8022   // Delay if the type didn't work out to a function.
8023   if (!unwrapped.isFunctionType()) return false;
8024 
8025   // Otherwise, a calling convention.
8026   CallingConv CC;
8027   if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
8028     return true;
8029 
8030   const FunctionType *fn = unwrapped.get();
8031   CallingConv CCOld = fn->getCallConv();
8032   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
8033 
8034   if (CCOld != CC) {
8035     // Error out on when there's already an attribute on the type
8036     // and the CCs don't match.
8037     if (S.getCallingConvAttributedType(type)) {
8038       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8039           << FunctionType::getNameForCallConv(CC)
8040           << FunctionType::getNameForCallConv(CCOld)
8041           << attr.isRegularKeywordAttribute();
8042       attr.setInvalid();
8043       return true;
8044     }
8045   }
8046 
8047   // Diagnose use of variadic functions with calling conventions that
8048   // don't support them (e.g. because they're callee-cleanup).
8049   // We delay warning about this on unprototyped function declarations
8050   // until after redeclaration checking, just in case we pick up a
8051   // prototype that way.  And apparently we also "delay" warning about
8052   // unprototyped function types in general, despite not necessarily having
8053   // much ability to diagnose it later.
8054   if (!supportsVariadicCall(CC)) {
8055     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
8056     if (FnP && FnP->isVariadic()) {
8057       // stdcall and fastcall are ignored with a warning for GCC and MS
8058       // compatibility.
8059       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
8060         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
8061                << FunctionType::getNameForCallConv(CC)
8062                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
8063 
8064       attr.setInvalid();
8065       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8066              << FunctionType::getNameForCallConv(CC);
8067     }
8068   }
8069 
8070   // Also diagnose fastcall with regparm.
8071   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8072     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8073         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8074         << attr.isRegularKeywordAttribute();
8075     attr.setInvalid();
8076     return true;
8077   }
8078 
8079   // Modify the CC from the wrapped function type, wrap it all back, and then
8080   // wrap the whole thing in an AttributedType as written.  The modified type
8081   // might have a different CC if we ignored the attribute.
8082   QualType Equivalent;
8083   if (CCOld == CC) {
8084     Equivalent = type;
8085   } else {
8086     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
8087     Equivalent =
8088       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
8089   }
8090   type = state.getAttributedType(CCAttr, type, Equivalent);
8091   return true;
8092 }
8093 
8094 bool Sema::hasExplicitCallingConv(QualType T) {
8095   const AttributedType *AT;
8096 
8097   // Stop if we'd be stripping off a typedef sugar node to reach the
8098   // AttributedType.
8099   while ((AT = T->getAs<AttributedType>()) &&
8100          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8101     if (AT->isCallingConv())
8102       return true;
8103     T = AT->getModifiedType();
8104   }
8105   return false;
8106 }
8107 
8108 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8109                                   bool IsCtorOrDtor, SourceLocation Loc) {
8110   FunctionTypeUnwrapper Unwrapped(*this, T);
8111   const FunctionType *FT = Unwrapped.get();
8112   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8113                      cast<FunctionProtoType>(FT)->isVariadic());
8114   CallingConv CurCC = FT->getCallConv();
8115   CallingConv ToCC =
8116       Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8117 
8118   if (CurCC == ToCC)
8119     return;
8120 
8121   // MS compiler ignores explicit calling convention attributes on structors. We
8122   // should do the same.
8123   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8124     // Issue a warning on ignored calling convention -- except of __stdcall.
8125     // Again, this is what MS compiler does.
8126     if (CurCC != CC_X86StdCall)
8127       Diag(Loc, diag::warn_cconv_unsupported)
8128           << FunctionType::getNameForCallConv(CurCC)
8129           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8130   // Default adjustment.
8131   } else {
8132     // Only adjust types with the default convention.  For example, on Windows
8133     // we should adjust a __cdecl type to __thiscall for instance methods, and a
8134     // __thiscall type to __cdecl for static methods.
8135     CallingConv DefaultCC =
8136         Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8137 
8138     if (CurCC != DefaultCC)
8139       return;
8140 
8141     if (hasExplicitCallingConv(T))
8142       return;
8143   }
8144 
8145   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8146   QualType Wrapped = Unwrapped.wrap(*this, FT);
8147   T = Context.getAdjustedType(T, Wrapped);
8148 }
8149 
8150 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8151 /// and float scalars, although arrays, pointers, and function return values are
8152 /// allowed in conjunction with this construct. Aggregates with this attribute
8153 /// are invalid, even if they are of the same size as a corresponding scalar.
8154 /// The raw attribute should contain precisely 1 argument, the vector size for
8155 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8156 /// this routine will return a new vector type.
8157 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8158                                  Sema &S) {
8159   // Check the attribute arguments.
8160   if (Attr.getNumArgs() != 1) {
8161     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8162                                                                       << 1;
8163     Attr.setInvalid();
8164     return;
8165   }
8166 
8167   Expr *SizeExpr = Attr.getArgAsExpr(0);
8168   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8169   if (!T.isNull())
8170     CurType = T;
8171   else
8172     Attr.setInvalid();
8173 }
8174 
8175 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8176 /// a type.
8177 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8178                                     Sema &S) {
8179   // check the attribute arguments.
8180   if (Attr.getNumArgs() != 1) {
8181     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8182                                                                       << 1;
8183     return;
8184   }
8185 
8186   Expr *SizeExpr = Attr.getArgAsExpr(0);
8187   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8188   if (!T.isNull())
8189     CurType = T;
8190 }
8191 
8192 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8193   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8194   if (!BTy)
8195     return false;
8196 
8197   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8198 
8199   // Signed poly is mathematically wrong, but has been baked into some ABIs by
8200   // now.
8201   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8202                         Triple.getArch() == llvm::Triple::aarch64_32 ||
8203                         Triple.getArch() == llvm::Triple::aarch64_be;
8204   if (VecKind == VectorKind::NeonPoly) {
8205     if (IsPolyUnsigned) {
8206       // AArch64 polynomial vectors are unsigned.
8207       return BTy->getKind() == BuiltinType::UChar ||
8208              BTy->getKind() == BuiltinType::UShort ||
8209              BTy->getKind() == BuiltinType::ULong ||
8210              BTy->getKind() == BuiltinType::ULongLong;
8211     } else {
8212       // AArch32 polynomial vectors are signed.
8213       return BTy->getKind() == BuiltinType::SChar ||
8214              BTy->getKind() == BuiltinType::Short ||
8215              BTy->getKind() == BuiltinType::LongLong;
8216     }
8217   }
8218 
8219   // Non-polynomial vector types: the usual suspects are allowed, as well as
8220   // float64_t on AArch64.
8221   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8222       BTy->getKind() == BuiltinType::Double)
8223     return true;
8224 
8225   return BTy->getKind() == BuiltinType::SChar ||
8226          BTy->getKind() == BuiltinType::UChar ||
8227          BTy->getKind() == BuiltinType::Short ||
8228          BTy->getKind() == BuiltinType::UShort ||
8229          BTy->getKind() == BuiltinType::Int ||
8230          BTy->getKind() == BuiltinType::UInt ||
8231          BTy->getKind() == BuiltinType::Long ||
8232          BTy->getKind() == BuiltinType::ULong ||
8233          BTy->getKind() == BuiltinType::LongLong ||
8234          BTy->getKind() == BuiltinType::ULongLong ||
8235          BTy->getKind() == BuiltinType::Float ||
8236          BTy->getKind() == BuiltinType::Half ||
8237          BTy->getKind() == BuiltinType::BFloat16;
8238 }
8239 
8240 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8241                                            llvm::APSInt &Result) {
8242   const auto *AttrExpr = Attr.getArgAsExpr(0);
8243   if (!AttrExpr->isTypeDependent()) {
8244     if (std::optional<llvm::APSInt> Res =
8245             AttrExpr->getIntegerConstantExpr(S.Context)) {
8246       Result = *Res;
8247       return true;
8248     }
8249   }
8250   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8251       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8252   Attr.setInvalid();
8253   return false;
8254 }
8255 
8256 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8257 /// "neon_polyvector_type" attributes are used to create vector types that
8258 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
8259 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
8260 /// the argument to these Neon attributes is the number of vector elements,
8261 /// not the vector size in bytes.  The vector width and element type must
8262 /// match one of the standard Neon vector types.
8263 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8264                                      Sema &S, VectorKind VecKind) {
8265   bool IsTargetCUDAAndHostARM = false;
8266   if (S.getLangOpts().CUDAIsDevice) {
8267     const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8268     IsTargetCUDAAndHostARM =
8269         AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8270   }
8271 
8272   // Target must have NEON (or MVE, whose vectors are similar enough
8273   // not to need a separate attribute)
8274   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8275       VecKind == VectorKind::Neon &&
8276       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8277     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8278         << Attr << "'mve'";
8279     Attr.setInvalid();
8280     return;
8281   }
8282   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8283       VecKind == VectorKind::NeonPoly &&
8284       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8285     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8286         << Attr << "'mve'";
8287     Attr.setInvalid();
8288     return;
8289   }
8290 
8291   // Check the attribute arguments.
8292   if (Attr.getNumArgs() != 1) {
8293     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8294         << Attr << 1;
8295     Attr.setInvalid();
8296     return;
8297   }
8298   // The number of elements must be an ICE.
8299   llvm::APSInt numEltsInt(32);
8300   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8301     return;
8302 
8303   // Only certain element types are supported for Neon vectors.
8304   if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8305       !IsTargetCUDAAndHostARM) {
8306     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8307     Attr.setInvalid();
8308     return;
8309   }
8310 
8311   // The total size of the vector must be 64 or 128 bits.
8312   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8313   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8314   unsigned vecSize = typeSize * numElts;
8315   if (vecSize != 64 && vecSize != 128) {
8316     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8317     Attr.setInvalid();
8318     return;
8319   }
8320 
8321   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8322 }
8323 
8324 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8325 /// used to create fixed-length versions of sizeless SVE types defined by
8326 /// the ACLE, such as svint32_t and svbool_t.
8327 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8328                                            Sema &S) {
8329   // Target must have SVE.
8330   if (!S.Context.getTargetInfo().hasFeature("sve")) {
8331     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8332     Attr.setInvalid();
8333     return;
8334   }
8335 
8336   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8337   // if <bits>+ syntax is used.
8338   if (!S.getLangOpts().VScaleMin ||
8339       S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8340     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8341         << Attr;
8342     Attr.setInvalid();
8343     return;
8344   }
8345 
8346   // Check the attribute arguments.
8347   if (Attr.getNumArgs() != 1) {
8348     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8349         << Attr << 1;
8350     Attr.setInvalid();
8351     return;
8352   }
8353 
8354   // The vector size must be an integer constant expression.
8355   llvm::APSInt SveVectorSizeInBits(32);
8356   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8357     return;
8358 
8359   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8360 
8361   // The attribute vector size must match -msve-vector-bits.
8362   if (VecSize != S.getLangOpts().VScaleMin * 128) {
8363     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8364         << VecSize << S.getLangOpts().VScaleMin * 128;
8365     Attr.setInvalid();
8366     return;
8367   }
8368 
8369   // Attribute can only be attached to a single SVE vector or predicate type.
8370   if (!CurType->isSveVLSBuiltinType()) {
8371     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8372         << Attr << CurType;
8373     Attr.setInvalid();
8374     return;
8375   }
8376 
8377   const auto *BT = CurType->castAs<BuiltinType>();
8378 
8379   QualType EltType = CurType->getSveEltType(S.Context);
8380   unsigned TypeSize = S.Context.getTypeSize(EltType);
8381   VectorKind VecKind = VectorKind::SveFixedLengthData;
8382   if (BT->getKind() == BuiltinType::SveBool) {
8383     // Predicates are represented as i8.
8384     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8385     VecKind = VectorKind::SveFixedLengthPredicate;
8386   } else
8387     VecSize /= TypeSize;
8388   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8389 }
8390 
8391 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8392                                                QualType &CurType,
8393                                                ParsedAttr &Attr) {
8394   const VectorType *VT = dyn_cast<VectorType>(CurType);
8395   if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8396     State.getSema().Diag(Attr.getLoc(),
8397                          diag::err_attribute_arm_mve_polymorphism);
8398     Attr.setInvalid();
8399     return;
8400   }
8401 
8402   CurType =
8403       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8404                                   State.getSema().Context, Attr),
8405                               CurType, CurType);
8406 }
8407 
8408 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8409 /// used to create fixed-length versions of sizeless RVV types such as
8410 /// vint8m1_t_t.
8411 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8412                                              ParsedAttr &Attr, Sema &S) {
8413   // Target must have vector extension.
8414   if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8415     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8416         << Attr << "'zve32x'";
8417     Attr.setInvalid();
8418     return;
8419   }
8420 
8421   auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8422   if (!VScale || !VScale->first || VScale->first != VScale->second) {
8423     S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8424         << Attr;
8425     Attr.setInvalid();
8426     return;
8427   }
8428 
8429   // Check the attribute arguments.
8430   if (Attr.getNumArgs() != 1) {
8431     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8432         << Attr << 1;
8433     Attr.setInvalid();
8434     return;
8435   }
8436 
8437   // The vector size must be an integer constant expression.
8438   llvm::APSInt RVVVectorSizeInBits(32);
8439   if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8440     return;
8441 
8442   // Attribute can only be attached to a single RVV vector type.
8443   if (!CurType->isRVVVLSBuiltinType()) {
8444     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8445         << Attr << CurType;
8446     Attr.setInvalid();
8447     return;
8448   }
8449 
8450   unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8451 
8452   ASTContext::BuiltinVectorTypeInfo Info =
8453       S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8454   unsigned MinElts = Info.EC.getKnownMinValue();
8455 
8456   VectorKind VecKind = VectorKind::RVVFixedLengthData;
8457   unsigned ExpectedSize = VScale->first * MinElts;
8458   QualType EltType = CurType->getRVVEltType(S.Context);
8459   unsigned EltSize = S.Context.getTypeSize(EltType);
8460   unsigned NumElts;
8461   if (Info.ElementType == S.Context.BoolTy) {
8462     NumElts = VecSize / S.Context.getCharWidth();
8463     if (!NumElts) {
8464       NumElts = 1;
8465       switch (VecSize) {
8466       case 1:
8467         VecKind = VectorKind::RVVFixedLengthMask_1;
8468         break;
8469       case 2:
8470         VecKind = VectorKind::RVVFixedLengthMask_2;
8471         break;
8472       case 4:
8473         VecKind = VectorKind::RVVFixedLengthMask_4;
8474         break;
8475       }
8476     } else
8477       VecKind = VectorKind::RVVFixedLengthMask;
8478   } else {
8479     ExpectedSize *= EltSize;
8480     NumElts = VecSize / EltSize;
8481   }
8482 
8483   // The attribute vector size must match -mrvv-vector-bits.
8484   if (VecSize != ExpectedSize) {
8485     S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8486         << VecSize << ExpectedSize;
8487     Attr.setInvalid();
8488     return;
8489   }
8490 
8491   CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8492 }
8493 
8494 /// Handle OpenCL Access Qualifier Attribute.
8495 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8496                                    Sema &S) {
8497   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8498   if (!(CurType->isImageType() || CurType->isPipeType())) {
8499     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8500     Attr.setInvalid();
8501     return;
8502   }
8503 
8504   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8505     QualType BaseTy = TypedefTy->desugar();
8506 
8507     std::string PrevAccessQual;
8508     if (BaseTy->isPipeType()) {
8509       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8510         OpenCLAccessAttr *Attr =
8511             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8512         PrevAccessQual = Attr->getSpelling();
8513       } else {
8514         PrevAccessQual = "read_only";
8515       }
8516     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8517 
8518       switch (ImgType->getKind()) {
8519         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8520       case BuiltinType::Id:                                          \
8521         PrevAccessQual = #Access;                                    \
8522         break;
8523         #include "clang/Basic/OpenCLImageTypes.def"
8524       default:
8525         llvm_unreachable("Unable to find corresponding image type.");
8526       }
8527     } else {
8528       llvm_unreachable("unexpected type");
8529     }
8530     StringRef AttrName = Attr.getAttrName()->getName();
8531     if (PrevAccessQual == AttrName.ltrim("_")) {
8532       // Duplicated qualifiers
8533       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8534          << AttrName << Attr.getRange();
8535     } else {
8536       // Contradicting qualifiers
8537       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8538     }
8539 
8540     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8541            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8542   } else if (CurType->isPipeType()) {
8543     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8544       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8545       CurType = S.Context.getWritePipeType(ElemType);
8546     }
8547   }
8548 }
8549 
8550 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8551 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8552                                  Sema &S) {
8553   if (!S.getLangOpts().MatrixTypes) {
8554     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8555     return;
8556   }
8557 
8558   if (Attr.getNumArgs() != 2) {
8559     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8560         << Attr << 2;
8561     return;
8562   }
8563 
8564   Expr *RowsExpr = Attr.getArgAsExpr(0);
8565   Expr *ColsExpr = Attr.getArgAsExpr(1);
8566   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8567   if (!T.isNull())
8568     CurType = T;
8569 }
8570 
8571 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8572                                    QualType &CurType, const ParsedAttr &PA) {
8573   Sema &S = State.getSema();
8574 
8575   if (PA.getNumArgs() < 1) {
8576     S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8577     return;
8578   }
8579 
8580   // Make sure that there is a string literal as the annotation's first
8581   // argument.
8582   StringRef Str;
8583   if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8584     return;
8585 
8586   llvm::SmallVector<Expr *, 4> Args;
8587   Args.reserve(PA.getNumArgs() - 1);
8588   for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8589     assert(!PA.isArgIdent(Idx));
8590     Args.push_back(PA.getArgAsExpr(Idx));
8591   }
8592   if (!S.ConstantFoldAttrArgs(PA, Args))
8593     return;
8594   auto *AnnotateTypeAttr =
8595       AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8596   CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8597 }
8598 
8599 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8600                                     QualType &CurType,
8601                                     ParsedAttr &Attr) {
8602   if (State.getDeclarator().isDeclarationOfFunction()) {
8603     CurType = State.getAttributedType(
8604         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8605         CurType, CurType);
8606   }
8607 }
8608 
8609 static void HandleHLSLParamModifierAttr(TypeProcessingState &State,
8610                                         QualType &CurType,
8611                                         const ParsedAttr &Attr, Sema &S) {
8612   // Don't apply this attribute to template dependent types. It is applied on
8613   // substitution during template instantiation. Also skip parsing this if we've
8614   // already modified the type based on an earlier attribute.
8615   if (CurType->isDependentType() || State.didParseHLSLParamMod())
8616     return;
8617   if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8618       Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) {
8619     CurType = S.HLSL().getInoutParameterType(CurType);
8620     State.setParsedHLSLParamMod(true);
8621   }
8622 }
8623 
8624 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8625                              TypeAttrLocation TAL,
8626                              const ParsedAttributesView &attrs,
8627                              CUDAFunctionTarget CFT) {
8628 
8629   state.setParsedNoDeref(false);
8630   if (attrs.empty())
8631     return;
8632 
8633   // Scan through and apply attributes to this type where it makes sense.  Some
8634   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8635   // type, but others can be present in the type specifiers even though they
8636   // apply to the decl.  Here we apply type attributes and ignore the rest.
8637 
8638   // This loop modifies the list pretty frequently, but we still need to make
8639   // sure we visit every element once. Copy the attributes list, and iterate
8640   // over that.
8641   ParsedAttributesView AttrsCopy{attrs};
8642   for (ParsedAttr &attr : AttrsCopy) {
8643 
8644     // Skip attributes that were marked to be invalid.
8645     if (attr.isInvalid())
8646       continue;
8647 
8648     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8649       // [[gnu::...]] attributes are treated as declaration attributes, so may
8650       // not appertain to a DeclaratorChunk. If we handle them as type
8651       // attributes, accept them in that position and diagnose the GCC
8652       // incompatibility.
8653       if (attr.isGNUScope()) {
8654         assert(attr.isStandardAttributeSyntax());
8655         bool IsTypeAttr = attr.isTypeAttr();
8656         if (TAL == TAL_DeclChunk) {
8657           state.getSema().Diag(attr.getLoc(),
8658                                IsTypeAttr
8659                                    ? diag::warn_gcc_ignores_type_attr
8660                                    : diag::warn_cxx11_gnu_attribute_on_type)
8661               << attr;
8662           if (!IsTypeAttr)
8663             continue;
8664         }
8665       } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8666                  !attr.isTypeAttr()) {
8667         // Otherwise, only consider type processing for a C++11 attribute if
8668         // - it has actually been applied to a type (decl-specifier-seq or
8669         //   declarator chunk), or
8670         // - it is a type attribute, irrespective of where it was applied (so
8671         //   that we can support the legacy behavior of some type attributes
8672         //   that can be applied to the declaration name).
8673         continue;
8674       }
8675     }
8676 
8677     // If this is an attribute we can handle, do so now,
8678     // otherwise, add it to the FnAttrs list for rechaining.
8679     switch (attr.getKind()) {
8680     default:
8681       // A [[]] attribute on a declarator chunk must appertain to a type.
8682       if ((attr.isStandardAttributeSyntax() ||
8683            attr.isRegularKeywordAttribute()) &&
8684           TAL == TAL_DeclChunk) {
8685         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8686             << attr << attr.isRegularKeywordAttribute();
8687         attr.setUsedAsTypeAttr();
8688       }
8689       break;
8690 
8691     case ParsedAttr::UnknownAttribute:
8692       if (attr.isStandardAttributeSyntax()) {
8693         state.getSema().Diag(attr.getLoc(),
8694                              diag::warn_unknown_attribute_ignored)
8695             << attr << attr.getRange();
8696         // Mark the attribute as invalid so we don't emit the same diagnostic
8697         // multiple times.
8698         attr.setInvalid();
8699       }
8700       break;
8701 
8702     case ParsedAttr::IgnoredAttribute:
8703       break;
8704 
8705     case ParsedAttr::AT_BTFTypeTag:
8706       HandleBTFTypeTagAttribute(type, attr, state);
8707       attr.setUsedAsTypeAttr();
8708       break;
8709 
8710     case ParsedAttr::AT_MayAlias:
8711       // FIXME: This attribute needs to actually be handled, but if we ignore
8712       // it it breaks large amounts of Linux software.
8713       attr.setUsedAsTypeAttr();
8714       break;
8715     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8716     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8717     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8718     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8719     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8720     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8721     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8722     case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8723     case ParsedAttr::AT_AddressSpace:
8724       HandleAddressSpaceTypeAttribute(type, attr, state);
8725       attr.setUsedAsTypeAttr();
8726       break;
8727     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8728       if (!handleObjCPointerTypeAttr(state, attr, type))
8729         distributeObjCPointerTypeAttr(state, attr, type);
8730       attr.setUsedAsTypeAttr();
8731       break;
8732     case ParsedAttr::AT_VectorSize:
8733       HandleVectorSizeAttr(type, attr, state.getSema());
8734       attr.setUsedAsTypeAttr();
8735       break;
8736     case ParsedAttr::AT_ExtVectorType:
8737       HandleExtVectorTypeAttr(type, attr, state.getSema());
8738       attr.setUsedAsTypeAttr();
8739       break;
8740     case ParsedAttr::AT_NeonVectorType:
8741       HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8742       attr.setUsedAsTypeAttr();
8743       break;
8744     case ParsedAttr::AT_NeonPolyVectorType:
8745       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8746                                VectorKind::NeonPoly);
8747       attr.setUsedAsTypeAttr();
8748       break;
8749     case ParsedAttr::AT_ArmSveVectorBits:
8750       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8751       attr.setUsedAsTypeAttr();
8752       break;
8753     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8754       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8755       attr.setUsedAsTypeAttr();
8756       break;
8757     }
8758     case ParsedAttr::AT_RISCVRVVVectorBits:
8759       HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8760       attr.setUsedAsTypeAttr();
8761       break;
8762     case ParsedAttr::AT_OpenCLAccess:
8763       HandleOpenCLAccessAttr(type, attr, state.getSema());
8764       attr.setUsedAsTypeAttr();
8765       break;
8766     case ParsedAttr::AT_LifetimeBound:
8767       if (TAL == TAL_DeclChunk)
8768         HandleLifetimeBoundAttr(state, type, attr);
8769       break;
8770 
8771     case ParsedAttr::AT_NoDeref: {
8772       // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8773       // See https://github.com/llvm/llvm-project/issues/55790 for details.
8774       // For the time being, we simply emit a warning that the attribute is
8775       // ignored.
8776       if (attr.isStandardAttributeSyntax()) {
8777         state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8778             << attr;
8779         break;
8780       }
8781       ASTContext &Ctx = state.getSema().Context;
8782       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8783                                      type, type);
8784       attr.setUsedAsTypeAttr();
8785       state.setParsedNoDeref(true);
8786       break;
8787     }
8788 
8789     case ParsedAttr::AT_MatrixType:
8790       HandleMatrixTypeAttr(type, attr, state.getSema());
8791       attr.setUsedAsTypeAttr();
8792       break;
8793 
8794     case ParsedAttr::AT_WebAssemblyFuncref: {
8795       if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8796         attr.setUsedAsTypeAttr();
8797       break;
8798     }
8799 
8800     case ParsedAttr::AT_HLSLParamModifier: {
8801       HandleHLSLParamModifierAttr(state, type, attr, state.getSema());
8802       attr.setUsedAsTypeAttr();
8803       break;
8804     }
8805 
8806     case ParsedAttr::AT_SwiftAttr: {
8807       HandleSwiftAttr(state, TAL, type, attr);
8808       break;
8809     }
8810 
8811     MS_TYPE_ATTRS_CASELIST:
8812       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8813         attr.setUsedAsTypeAttr();
8814       break;
8815 
8816 
8817     NULLABILITY_TYPE_ATTRS_CASELIST:
8818       // Either add nullability here or try to distribute it.  We
8819       // don't want to distribute the nullability specifier past any
8820       // dependent type, because that complicates the user model.
8821       if (type->canHaveNullability() || type->isDependentType() ||
8822           type->isArrayType() ||
8823           !distributeNullabilityTypeAttr(state, type, attr)) {
8824         unsigned endIndex;
8825         if (TAL == TAL_DeclChunk)
8826           endIndex = state.getCurrentChunkIndex();
8827         else
8828           endIndex = state.getDeclarator().getNumTypeObjects();
8829         bool allowOnArrayType =
8830             state.getDeclarator().isPrototypeContext() &&
8831             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8832         if (CheckNullabilityTypeSpecifier(state, type, attr,
8833                                           allowOnArrayType)) {
8834           attr.setInvalid();
8835         }
8836 
8837         attr.setUsedAsTypeAttr();
8838       }
8839       break;
8840 
8841     case ParsedAttr::AT_ObjCKindOf:
8842       // '__kindof' must be part of the decl-specifiers.
8843       switch (TAL) {
8844       case TAL_DeclSpec:
8845         break;
8846 
8847       case TAL_DeclChunk:
8848       case TAL_DeclName:
8849         state.getSema().Diag(attr.getLoc(),
8850                              diag::err_objc_kindof_wrong_position)
8851             << FixItHint::CreateRemoval(attr.getLoc())
8852             << FixItHint::CreateInsertion(
8853                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8854                    "__kindof ");
8855         break;
8856       }
8857 
8858       // Apply it regardless.
8859       if (checkObjCKindOfType(state, type, attr))
8860         attr.setInvalid();
8861       break;
8862 
8863     case ParsedAttr::AT_NoThrow:
8864     // Exception Specifications aren't generally supported in C mode throughout
8865     // clang, so revert to attribute-based handling for C.
8866       if (!state.getSema().getLangOpts().CPlusPlus)
8867         break;
8868       [[fallthrough]];
8869     FUNCTION_TYPE_ATTRS_CASELIST:
8870       attr.setUsedAsTypeAttr();
8871 
8872       // Attributes with standard syntax have strict rules for what they
8873       // appertain to and hence should not use the "distribution" logic below.
8874       if (attr.isStandardAttributeSyntax() ||
8875           attr.isRegularKeywordAttribute()) {
8876         if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8877           diagnoseBadTypeAttribute(state.getSema(), attr, type);
8878           attr.setInvalid();
8879         }
8880         break;
8881       }
8882 
8883       // Never process function type attributes as part of the
8884       // declaration-specifiers.
8885       if (TAL == TAL_DeclSpec)
8886         distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8887 
8888       // Otherwise, handle the possible delays.
8889       else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8890         distributeFunctionTypeAttr(state, attr, type);
8891       break;
8892     case ParsedAttr::AT_AcquireHandle: {
8893       if (!type->isFunctionType())
8894         return;
8895 
8896       if (attr.getNumArgs() != 1) {
8897         state.getSema().Diag(attr.getLoc(),
8898                              diag::err_attribute_wrong_number_arguments)
8899             << attr << 1;
8900         attr.setInvalid();
8901         return;
8902       }
8903 
8904       StringRef HandleType;
8905       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8906         return;
8907       type = state.getAttributedType(
8908           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8909           type, type);
8910       attr.setUsedAsTypeAttr();
8911       break;
8912     }
8913     case ParsedAttr::AT_AnnotateType: {
8914       HandleAnnotateTypeAttr(state, type, attr);
8915       attr.setUsedAsTypeAttr();
8916       break;
8917     }
8918     case ParsedAttr::AT_HLSLResourceClass:
8919     case ParsedAttr::AT_HLSLROV:
8920     case ParsedAttr::AT_HLSLRawBuffer:
8921     case ParsedAttr::AT_HLSLContainedType: {
8922       // Only collect HLSL resource type attributes that are in
8923       // decl-specifier-seq; do not collect attributes on declarations or those
8924       // that get to slide after declaration name.
8925       if (TAL == TAL_DeclSpec &&
8926           state.getSema().HLSL().handleResourceTypeAttr(type, attr))
8927         attr.setUsedAsTypeAttr();
8928       break;
8929     }
8930     }
8931 
8932     // Handle attributes that are defined in a macro. We do not want this to be
8933     // applied to ObjC builtin attributes.
8934     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8935         !type.getQualifiers().hasObjCLifetime() &&
8936         !type.getQualifiers().hasObjCGCAttr() &&
8937         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8938         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8939       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8940       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8941       state.setExpansionLocForMacroQualifiedType(
8942           cast<MacroQualifiedType>(type.getTypePtr()),
8943           attr.getMacroExpansionLoc());
8944     }
8945   }
8946 }
8947 
8948 void Sema::completeExprArrayBound(Expr *E) {
8949   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8950     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8951       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8952         auto *Def = Var->getDefinition();
8953         if (!Def) {
8954           SourceLocation PointOfInstantiation = E->getExprLoc();
8955           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8956             InstantiateVariableDefinition(PointOfInstantiation, Var);
8957           });
8958           Def = Var->getDefinition();
8959 
8960           // If we don't already have a point of instantiation, and we managed
8961           // to instantiate a definition, this is the point of instantiation.
8962           // Otherwise, we don't request an end-of-TU instantiation, so this is
8963           // not a point of instantiation.
8964           // FIXME: Is this really the right behavior?
8965           if (Var->getPointOfInstantiation().isInvalid() && Def) {
8966             assert(Var->getTemplateSpecializationKind() ==
8967                        TSK_ImplicitInstantiation &&
8968                    "explicit instantiation with no point of instantiation");
8969             Var->setTemplateSpecializationKind(
8970                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8971           }
8972         }
8973 
8974         // Update the type to the definition's type both here and within the
8975         // expression.
8976         if (Def) {
8977           DRE->setDecl(Def);
8978           QualType T = Def->getType();
8979           DRE->setType(T);
8980           // FIXME: Update the type on all intervening expressions.
8981           E->setType(T);
8982         }
8983 
8984         // We still go on to try to complete the type independently, as it
8985         // may also require instantiations or diagnostics if it remains
8986         // incomplete.
8987       }
8988     }
8989   }
8990   if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
8991     QualType DestType = CastE->getTypeAsWritten();
8992     if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
8993       // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
8994       // this direct-initialization defines the type of the expression
8995       // as U[1]
8996       QualType ResultType = Context.getConstantArrayType(
8997           IAT->getElementType(),
8998           llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
8999           /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
9000           /*IndexTypeQuals=*/0);
9001       E->setType(ResultType);
9002     }
9003   }
9004 }
9005 
9006 QualType Sema::getCompletedType(Expr *E) {
9007   // Incomplete array types may be completed by the initializer attached to
9008   // their definitions. For static data members of class templates and for
9009   // variable templates, we need to instantiate the definition to get this
9010   // initializer and complete the type.
9011   if (E->getType()->isIncompleteArrayType())
9012     completeExprArrayBound(E);
9013 
9014   // FIXME: Are there other cases which require instantiating something other
9015   // than the type to complete the type of an expression?
9016 
9017   return E->getType();
9018 }
9019 
9020 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
9021                                    TypeDiagnoser &Diagnoser) {
9022   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
9023                              Diagnoser);
9024 }
9025 
9026 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
9027   BoundTypeDiagnoser<> Diagnoser(DiagID);
9028   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
9029 }
9030 
9031 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9032                                CompleteTypeKind Kind,
9033                                TypeDiagnoser &Diagnoser) {
9034   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
9035     return true;
9036   if (const TagType *Tag = T->getAs<TagType>()) {
9037     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
9038       Tag->getDecl()->setCompleteDefinitionRequired();
9039       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
9040     }
9041   }
9042   return false;
9043 }
9044 
9045 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
9046   llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
9047   if (!Suggested)
9048     return false;
9049 
9050   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9051   // and isolate from other C++ specific checks.
9052   StructuralEquivalenceContext Ctx(
9053       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
9054       StructuralEquivalenceKind::Default,
9055       false /*StrictTypeSpelling*/, true /*Complain*/,
9056       true /*ErrorOnTagTypeMismatch*/);
9057   return Ctx.IsEquivalent(D, Suggested);
9058 }
9059 
9060 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
9061                                    AcceptableKind Kind, bool OnlyNeedComplete) {
9062   // Easy case: if we don't have modules, all declarations are visible.
9063   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
9064     return true;
9065 
9066   // If this definition was instantiated from a template, map back to the
9067   // pattern from which it was instantiated.
9068   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
9069     // We're in the middle of defining it; this definition should be treated
9070     // as visible.
9071     return true;
9072   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9073     if (auto *Pattern = RD->getTemplateInstantiationPattern())
9074       RD = Pattern;
9075     D = RD->getDefinition();
9076   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
9077     if (auto *Pattern = ED->getTemplateInstantiationPattern())
9078       ED = Pattern;
9079     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9080       // If the enum has a fixed underlying type, it may have been forward
9081       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9082       // the enum and assign it the underlying type of `int`. Since we're only
9083       // looking for a complete type (not a definition), any visible declaration
9084       // of it will do.
9085       *Suggested = nullptr;
9086       for (auto *Redecl : ED->redecls()) {
9087         if (isAcceptable(Redecl, Kind))
9088           return true;
9089         if (Redecl->isThisDeclarationADefinition() ||
9090             (Redecl->isCanonicalDecl() && !*Suggested))
9091           *Suggested = Redecl;
9092       }
9093 
9094       return false;
9095     }
9096     D = ED->getDefinition();
9097   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
9098     if (auto *Pattern = FD->getTemplateInstantiationPattern())
9099       FD = Pattern;
9100     D = FD->getDefinition();
9101   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
9102     if (auto *Pattern = VD->getTemplateInstantiationPattern())
9103       VD = Pattern;
9104     D = VD->getDefinition();
9105   }
9106 
9107   assert(D && "missing definition for pattern of instantiated definition");
9108 
9109   *Suggested = D;
9110 
9111   auto DefinitionIsAcceptable = [&] {
9112     // The (primary) definition might be in a visible module.
9113     if (isAcceptable(D, Kind))
9114       return true;
9115 
9116     // A visible module might have a merged definition instead.
9117     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
9118                              : hasVisibleMergedDefinition(D)) {
9119       if (CodeSynthesisContexts.empty() &&
9120           !getLangOpts().ModulesLocalVisibility) {
9121         // Cache the fact that this definition is implicitly visible because
9122         // there is a visible merged definition.
9123         D->setVisibleDespiteOwningModule();
9124       }
9125       return true;
9126     }
9127 
9128     return false;
9129   };
9130 
9131   if (DefinitionIsAcceptable())
9132     return true;
9133 
9134   // The external source may have additional definitions of this entity that are
9135   // visible, so complete the redeclaration chain now and ask again.
9136   if (auto *Source = Context.getExternalSource()) {
9137     Source->CompleteRedeclChain(D);
9138     return DefinitionIsAcceptable();
9139   }
9140 
9141   return false;
9142 }
9143 
9144 /// Determine whether there is any declaration of \p D that was ever a
9145 ///        definition (perhaps before module merging) and is currently visible.
9146 /// \param D The definition of the entity.
9147 /// \param Suggested Filled in with the declaration that should be made visible
9148 ///        in order to provide a definition of this entity.
9149 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9150 ///        not defined. This only matters for enums with a fixed underlying
9151 ///        type, since in all other cases, a type is complete if and only if it
9152 ///        is defined.
9153 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9154                                 bool OnlyNeedComplete) {
9155   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9156                                  OnlyNeedComplete);
9157 }
9158 
9159 /// Determine whether there is any declaration of \p D that was ever a
9160 ///        definition (perhaps before module merging) and is currently
9161 ///        reachable.
9162 /// \param D The definition of the entity.
9163 /// \param Suggested Filled in with the declaration that should be made
9164 /// reachable
9165 ///        in order to provide a definition of this entity.
9166 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9167 ///        not defined. This only matters for enums with a fixed underlying
9168 ///        type, since in all other cases, a type is complete if and only if it
9169 ///        is defined.
9170 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9171                                   bool OnlyNeedComplete) {
9172   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9173                                  OnlyNeedComplete);
9174 }
9175 
9176 /// Locks in the inheritance model for the given class and all of its bases.
9177 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9178   RD = RD->getMostRecentNonInjectedDecl();
9179   if (!RD->hasAttr<MSInheritanceAttr>()) {
9180     MSInheritanceModel IM;
9181     bool BestCase = false;
9182     switch (S.MSPointerToMemberRepresentationMethod) {
9183     case LangOptions::PPTMK_BestCase:
9184       BestCase = true;
9185       IM = RD->calculateInheritanceModel();
9186       break;
9187     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9188       IM = MSInheritanceModel::Single;
9189       break;
9190     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9191       IM = MSInheritanceModel::Multiple;
9192       break;
9193     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9194       IM = MSInheritanceModel::Unspecified;
9195       break;
9196     }
9197 
9198     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9199                           ? S.ImplicitMSInheritanceAttrLoc
9200                           : RD->getSourceRange();
9201     RD->addAttr(MSInheritanceAttr::CreateImplicit(
9202         S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9203     S.Consumer.AssignInheritanceModel(RD);
9204   }
9205 }
9206 
9207 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9208                                    CompleteTypeKind Kind,
9209                                    TypeDiagnoser *Diagnoser) {
9210   // FIXME: Add this assertion to make sure we always get instantiation points.
9211   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9212   // FIXME: Add this assertion to help us flush out problems with
9213   // checking for dependent types and type-dependent expressions.
9214   //
9215   //  assert(!T->isDependentType() &&
9216   //         "Can't ask whether a dependent type is complete");
9217 
9218   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9219     if (!MPTy->getClass()->isDependentType()) {
9220       if (getLangOpts().CompleteMemberPointers &&
9221           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9222           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9223                               diag::err_memptr_incomplete))
9224         return true;
9225 
9226       // We lock in the inheritance model once somebody has asked us to ensure
9227       // that a pointer-to-member type is complete.
9228       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9229         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9230         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9231       }
9232     }
9233   }
9234 
9235   NamedDecl *Def = nullptr;
9236   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9237   bool Incomplete = (T->isIncompleteType(&Def) ||
9238                      (!AcceptSizeless && T->isSizelessBuiltinType()));
9239 
9240   // Check that any necessary explicit specializations are visible. For an
9241   // enum, we just need the declaration, so don't check this.
9242   if (Def && !isa<EnumDecl>(Def))
9243     checkSpecializationReachability(Loc, Def);
9244 
9245   // If we have a complete type, we're done.
9246   if (!Incomplete) {
9247     NamedDecl *Suggested = nullptr;
9248     if (Def &&
9249         !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9250       // If the user is going to see an error here, recover by making the
9251       // definition visible.
9252       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9253       if (Diagnoser && Suggested)
9254         diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9255                               /*Recover*/ TreatAsComplete);
9256       return !TreatAsComplete;
9257     } else if (Def && !TemplateInstCallbacks.empty()) {
9258       CodeSynthesisContext TempInst;
9259       TempInst.Kind = CodeSynthesisContext::Memoization;
9260       TempInst.Template = Def;
9261       TempInst.Entity = Def;
9262       TempInst.PointOfInstantiation = Loc;
9263       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9264       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9265     }
9266 
9267     return false;
9268   }
9269 
9270   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9271   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9272 
9273   // Give the external source a chance to provide a definition of the type.
9274   // This is kept separate from completing the redeclaration chain so that
9275   // external sources such as LLDB can avoid synthesizing a type definition
9276   // unless it's actually needed.
9277   if (Tag || IFace) {
9278     // Avoid diagnosing invalid decls as incomplete.
9279     if (Def->isInvalidDecl())
9280       return true;
9281 
9282     // Give the external AST source a chance to complete the type.
9283     if (auto *Source = Context.getExternalSource()) {
9284       if (Tag && Tag->hasExternalLexicalStorage())
9285           Source->CompleteType(Tag);
9286       if (IFace && IFace->hasExternalLexicalStorage())
9287           Source->CompleteType(IFace);
9288       // If the external source completed the type, go through the motions
9289       // again to ensure we're allowed to use the completed type.
9290       if (!T->isIncompleteType())
9291         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9292     }
9293   }
9294 
9295   // If we have a class template specialization or a class member of a
9296   // class template specialization, or an array with known size of such,
9297   // try to instantiate it.
9298   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9299     bool Instantiated = false;
9300     bool Diagnosed = false;
9301     if (RD->isDependentContext()) {
9302       // Don't try to instantiate a dependent class (eg, a member template of
9303       // an instantiated class template specialization).
9304       // FIXME: Can this ever happen?
9305     } else if (auto *ClassTemplateSpec =
9306             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9307       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9308         runWithSufficientStackSpace(Loc, [&] {
9309           Diagnosed = InstantiateClassTemplateSpecialization(
9310               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9311               /*Complain=*/Diagnoser);
9312         });
9313         Instantiated = true;
9314       }
9315     } else {
9316       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9317       if (!RD->isBeingDefined() && Pattern) {
9318         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9319         assert(MSI && "Missing member specialization information?");
9320         // This record was instantiated from a class within a template.
9321         if (MSI->getTemplateSpecializationKind() !=
9322             TSK_ExplicitSpecialization) {
9323           runWithSufficientStackSpace(Loc, [&] {
9324             Diagnosed = InstantiateClass(Loc, RD, Pattern,
9325                                          getTemplateInstantiationArgs(RD),
9326                                          TSK_ImplicitInstantiation,
9327                                          /*Complain=*/Diagnoser);
9328           });
9329           Instantiated = true;
9330         }
9331       }
9332     }
9333 
9334     if (Instantiated) {
9335       // Instantiate* might have already complained that the template is not
9336       // defined, if we asked it to.
9337       if (Diagnoser && Diagnosed)
9338         return true;
9339       // If we instantiated a definition, check that it's usable, even if
9340       // instantiation produced an error, so that repeated calls to this
9341       // function give consistent answers.
9342       if (!T->isIncompleteType())
9343         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9344     }
9345   }
9346 
9347   // FIXME: If we didn't instantiate a definition because of an explicit
9348   // specialization declaration, check that it's visible.
9349 
9350   if (!Diagnoser)
9351     return true;
9352 
9353   Diagnoser->diagnose(*this, Loc, T);
9354 
9355   // If the type was a forward declaration of a class/struct/union
9356   // type, produce a note.
9357   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9358     Diag(Tag->getLocation(),
9359          Tag->isBeingDefined() ? diag::note_type_being_defined
9360                                : diag::note_forward_declaration)
9361       << Context.getTagDeclType(Tag);
9362 
9363   // If the Objective-C class was a forward declaration, produce a note.
9364   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9365     Diag(IFace->getLocation(), diag::note_forward_class);
9366 
9367   // If we have external information that we can use to suggest a fix,
9368   // produce a note.
9369   if (ExternalSource)
9370     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9371 
9372   return true;
9373 }
9374 
9375 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9376                                CompleteTypeKind Kind, unsigned DiagID) {
9377   BoundTypeDiagnoser<> Diagnoser(DiagID);
9378   return RequireCompleteType(Loc, T, Kind, Diagnoser);
9379 }
9380 
9381 /// Get diagnostic %select index for tag kind for
9382 /// literal type diagnostic message.
9383 /// WARNING: Indexes apply to particular diagnostics only!
9384 ///
9385 /// \returns diagnostic %select index.
9386 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9387   switch (Tag) {
9388   case TagTypeKind::Struct:
9389     return 0;
9390   case TagTypeKind::Interface:
9391     return 1;
9392   case TagTypeKind::Class:
9393     return 2;
9394   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9395   }
9396 }
9397 
9398 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9399                               TypeDiagnoser &Diagnoser) {
9400   assert(!T->isDependentType() && "type should not be dependent");
9401 
9402   QualType ElemType = Context.getBaseElementType(T);
9403   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9404       T->isLiteralType(Context))
9405     return false;
9406 
9407   Diagnoser.diagnose(*this, Loc, T);
9408 
9409   if (T->isVariableArrayType())
9410     return true;
9411 
9412   const RecordType *RT = ElemType->getAs<RecordType>();
9413   if (!RT)
9414     return true;
9415 
9416   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9417 
9418   // A partially-defined class type can't be a literal type, because a literal
9419   // class type must have a trivial destructor (which can't be checked until
9420   // the class definition is complete).
9421   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9422     return true;
9423 
9424   // [expr.prim.lambda]p3:
9425   //   This class type is [not] a literal type.
9426   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9427     Diag(RD->getLocation(), diag::note_non_literal_lambda);
9428     return true;
9429   }
9430 
9431   // If the class has virtual base classes, then it's not an aggregate, and
9432   // cannot have any constexpr constructors or a trivial default constructor,
9433   // so is non-literal. This is better to diagnose than the resulting absence
9434   // of constexpr constructors.
9435   if (RD->getNumVBases()) {
9436     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9437       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9438     for (const auto &I : RD->vbases())
9439       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9440           << I.getSourceRange();
9441   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9442              !RD->hasTrivialDefaultConstructor()) {
9443     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9444   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9445     for (const auto &I : RD->bases()) {
9446       if (!I.getType()->isLiteralType(Context)) {
9447         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9448             << RD << I.getType() << I.getSourceRange();
9449         return true;
9450       }
9451     }
9452     for (const auto *I : RD->fields()) {
9453       if (!I->getType()->isLiteralType(Context) ||
9454           I->getType().isVolatileQualified()) {
9455         Diag(I->getLocation(), diag::note_non_literal_field)
9456           << RD << I << I->getType()
9457           << I->getType().isVolatileQualified();
9458         return true;
9459       }
9460     }
9461   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9462                                        : !RD->hasTrivialDestructor()) {
9463     // All fields and bases are of literal types, so have trivial or constexpr
9464     // destructors. If this class's destructor is non-trivial / non-constexpr,
9465     // it must be user-declared.
9466     CXXDestructorDecl *Dtor = RD->getDestructor();
9467     assert(Dtor && "class has literal fields and bases but no dtor?");
9468     if (!Dtor)
9469       return true;
9470 
9471     if (getLangOpts().CPlusPlus20) {
9472       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9473           << RD;
9474     } else {
9475       Diag(Dtor->getLocation(), Dtor->isUserProvided()
9476                                     ? diag::note_non_literal_user_provided_dtor
9477                                     : diag::note_non_literal_nontrivial_dtor)
9478           << RD;
9479       if (!Dtor->isUserProvided())
9480         SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9481                                TAH_IgnoreTrivialABI,
9482                                /*Diagnose*/ true);
9483     }
9484   }
9485 
9486   return true;
9487 }
9488 
9489 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9490   BoundTypeDiagnoser<> Diagnoser(DiagID);
9491   return RequireLiteralType(Loc, T, Diagnoser);
9492 }
9493 
9494 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9495                                  const CXXScopeSpec &SS, QualType T,
9496                                  TagDecl *OwnedTagDecl) {
9497   if (T.isNull())
9498     return T;
9499   return Context.getElaboratedType(
9500       Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9501 }
9502 
9503 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9504   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9505 
9506   if (!getLangOpts().CPlusPlus && E->refersToBitField())
9507     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9508         << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9509 
9510   if (!E->isTypeDependent()) {
9511     QualType T = E->getType();
9512     if (const TagType *TT = T->getAs<TagType>())
9513       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9514   }
9515   return Context.getTypeOfExprType(E, Kind);
9516 }
9517 
9518 static void
9519 BuildTypeCoupledDecls(Expr *E,
9520                       llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9521   // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9522   auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9523   Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9524 }
9525 
9526 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9527                                                       Expr *CountExpr,
9528                                                       bool CountInBytes,
9529                                                       bool OrNull) {
9530   assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9531 
9532   llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9533   BuildTypeCoupledDecls(CountExpr, Decls);
9534   /// When the resulting expression is invalid, we still create the AST using
9535   /// the original count expression for the sake of AST dump.
9536   return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9537                                         OrNull, Decls);
9538 }
9539 
9540 /// getDecltypeForExpr - Given an expr, will return the decltype for
9541 /// that expression, according to the rules in C++11
9542 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9543 QualType Sema::getDecltypeForExpr(Expr *E) {
9544 
9545   Expr *IDExpr = E;
9546   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9547     IDExpr = ImplCastExpr->getSubExpr();
9548 
9549   if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9550     if (E->isInstantiationDependent())
9551       IDExpr = PackExpr->getPackIdExpression();
9552     else
9553       IDExpr = PackExpr->getSelectedExpr();
9554   }
9555 
9556   if (E->isTypeDependent())
9557     return Context.DependentTy;
9558 
9559   // C++11 [dcl.type.simple]p4:
9560   //   The type denoted by decltype(e) is defined as follows:
9561 
9562   // C++20:
9563   //     - if E is an unparenthesized id-expression naming a non-type
9564   //       template-parameter (13.2), decltype(E) is the type of the
9565   //       template-parameter after performing any necessary type deduction
9566   // Note that this does not pick up the implicit 'const' for a template
9567   // parameter object. This rule makes no difference before C++20 so we apply
9568   // it unconditionally.
9569   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9570     return SNTTPE->getParameterType(Context);
9571 
9572   //     - if e is an unparenthesized id-expression or an unparenthesized class
9573   //       member access (5.2.5), decltype(e) is the type of the entity named
9574   //       by e. If there is no such entity, or if e names a set of overloaded
9575   //       functions, the program is ill-formed;
9576   //
9577   // We apply the same rules for Objective-C ivar and property references.
9578   if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9579     const ValueDecl *VD = DRE->getDecl();
9580     QualType T = VD->getType();
9581     return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9582   }
9583   if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9584     if (const auto *VD = ME->getMemberDecl())
9585       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9586         return VD->getType();
9587   } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9588     return IR->getDecl()->getType();
9589   } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9590     if (PR->isExplicitProperty())
9591       return PR->getExplicitProperty()->getType();
9592   } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9593     return PE->getType();
9594   }
9595 
9596   // C++11 [expr.lambda.prim]p18:
9597   //   Every occurrence of decltype((x)) where x is a possibly
9598   //   parenthesized id-expression that names an entity of automatic
9599   //   storage duration is treated as if x were transformed into an
9600   //   access to a corresponding data member of the closure type that
9601   //   would have been declared if x were an odr-use of the denoted
9602   //   entity.
9603   if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9604     if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9605       if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9606         QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9607         if (!T.isNull())
9608           return Context.getLValueReferenceType(T);
9609       }
9610     }
9611   }
9612 
9613   return Context.getReferenceQualifiedType(E);
9614 }
9615 
9616 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9617   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9618 
9619   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9620       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9621     // The expression operand for decltype is in an unevaluated expression
9622     // context, so side effects could result in unintended consequences.
9623     // Exclude instantiation-dependent expressions, because 'decltype' is often
9624     // used to build SFINAE gadgets.
9625     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9626   }
9627   return Context.getDecltypeType(E, getDecltypeForExpr(E));
9628 }
9629 
9630 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9631                                      SourceLocation Loc,
9632                                      SourceLocation EllipsisLoc) {
9633   if (!IndexExpr)
9634     return QualType();
9635 
9636   // Diagnose unexpanded packs but continue to improve recovery.
9637   if (!Pattern->containsUnexpandedParameterPack())
9638     Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9639 
9640   QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9641 
9642   if (!Type.isNull())
9643     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9644                                         : diag::ext_pack_indexing);
9645   return Type;
9646 }
9647 
9648 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9649                                      SourceLocation Loc,
9650                                      SourceLocation EllipsisLoc,
9651                                      bool FullySubstituted,
9652                                      ArrayRef<QualType> Expansions) {
9653 
9654   std::optional<int64_t> Index;
9655   if (FullySubstituted && !IndexExpr->isValueDependent() &&
9656       !IndexExpr->isTypeDependent()) {
9657     llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9658     ExprResult Res = CheckConvertedConstantExpression(
9659         IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9660     if (!Res.isUsable())
9661       return QualType();
9662     Index = Value.getExtValue();
9663     IndexExpr = Res.get();
9664   }
9665 
9666   if (FullySubstituted && Index) {
9667     if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9668       Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9669           << *Index << Pattern << Expansions.size();
9670       return QualType();
9671     }
9672   }
9673 
9674   return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9675                                      Expansions, Index.value_or(-1));
9676 }
9677 
9678 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9679                                       SourceLocation Loc) {
9680   assert(BaseType->isEnumeralType());
9681   EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9682   assert(ED && "EnumType has no EnumDecl");
9683 
9684   S.DiagnoseUseOfDecl(ED, Loc);
9685 
9686   QualType Underlying = ED->getIntegerType();
9687   assert(!Underlying.isNull());
9688 
9689   return Underlying;
9690 }
9691 
9692 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9693                                          SourceLocation Loc) {
9694   if (!BaseType->isEnumeralType()) {
9695     Diag(Loc, diag::err_only_enums_have_underlying_types);
9696     return QualType();
9697   }
9698 
9699   // The enum could be incomplete if we're parsing its definition or
9700   // recovering from an error.
9701   NamedDecl *FwdDecl = nullptr;
9702   if (BaseType->isIncompleteType(&FwdDecl)) {
9703     Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9704     Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9705     return QualType();
9706   }
9707 
9708   return GetEnumUnderlyingType(*this, BaseType, Loc);
9709 }
9710 
9711 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9712   QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9713                          ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9714                                             DeclarationName())
9715                          : BaseType;
9716 
9717   return Pointer.isNull() ? QualType() : Pointer;
9718 }
9719 
9720 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9721   // We don't want block pointers or ObjectiveC's id type.
9722   if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9723     return BaseType;
9724 
9725   return BaseType->getPointeeType();
9726 }
9727 
9728 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9729   QualType Underlying = BaseType.getNonReferenceType();
9730   if (Underlying->isArrayType())
9731     return Context.getDecayedType(Underlying);
9732 
9733   if (Underlying->isFunctionType())
9734     return BuiltinAddPointer(BaseType, Loc);
9735 
9736   SplitQualType Split = Underlying.getSplitUnqualifiedType();
9737   // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9738   // in the same group of qualifiers as 'const' and 'volatile', we're extending
9739   // '__decay(T)' so that it removes all qualifiers.
9740   Split.Quals.removeCVRQualifiers();
9741   return Context.getQualifiedType(Split);
9742 }
9743 
9744 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9745                                    SourceLocation Loc) {
9746   assert(LangOpts.CPlusPlus);
9747   QualType Reference =
9748       BaseType.isReferenceable()
9749           ? BuildReferenceType(BaseType,
9750                                UKind == UnaryTransformType::AddLvalueReference,
9751                                Loc, DeclarationName())
9752           : BaseType;
9753   return Reference.isNull() ? QualType() : Reference;
9754 }
9755 
9756 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9757                                    SourceLocation Loc) {
9758   if (UKind == UnaryTransformType::RemoveAllExtents)
9759     return Context.getBaseElementType(BaseType);
9760 
9761   if (const auto *AT = Context.getAsArrayType(BaseType))
9762     return AT->getElementType();
9763 
9764   return BaseType;
9765 }
9766 
9767 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9768                                       SourceLocation Loc) {
9769   assert(LangOpts.CPlusPlus);
9770   QualType T = BaseType.getNonReferenceType();
9771   if (UKind == UTTKind::RemoveCVRef &&
9772       (T.isConstQualified() || T.isVolatileQualified())) {
9773     Qualifiers Quals;
9774     QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9775     Quals.removeConst();
9776     Quals.removeVolatile();
9777     T = Context.getQualifiedType(Unqual, Quals);
9778   }
9779   return T;
9780 }
9781 
9782 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9783                                           SourceLocation Loc) {
9784   if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9785       BaseType->isFunctionType())
9786     return BaseType;
9787 
9788   Qualifiers Quals;
9789   QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9790 
9791   if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9792     Quals.removeConst();
9793   if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9794     Quals.removeVolatile();
9795   if (UKind == UTTKind::RemoveRestrict)
9796     Quals.removeRestrict();
9797 
9798   return Context.getQualifiedType(Unqual, Quals);
9799 }
9800 
9801 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9802                                          bool IsMakeSigned,
9803                                          SourceLocation Loc) {
9804   if (BaseType->isEnumeralType()) {
9805     QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9806     if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9807       unsigned int Bits = BitInt->getNumBits();
9808       if (Bits > 1)
9809         return S.Context.getBitIntType(!IsMakeSigned, Bits);
9810 
9811       S.Diag(Loc, diag::err_make_signed_integral_only)
9812           << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9813       return QualType();
9814     }
9815     if (Underlying->isBooleanType()) {
9816       S.Diag(Loc, diag::err_make_signed_integral_only)
9817           << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9818           << Underlying;
9819       return QualType();
9820     }
9821   }
9822 
9823   bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9824   std::array<CanQualType *, 6> AllSignedIntegers = {
9825       &S.Context.SignedCharTy, &S.Context.ShortTy,    &S.Context.IntTy,
9826       &S.Context.LongTy,       &S.Context.LongLongTy, &S.Context.Int128Ty};
9827   ArrayRef<CanQualType *> AvailableSignedIntegers(
9828       AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9829   std::array<CanQualType *, 6> AllUnsignedIntegers = {
9830       &S.Context.UnsignedCharTy,     &S.Context.UnsignedShortTy,
9831       &S.Context.UnsignedIntTy,      &S.Context.UnsignedLongTy,
9832       &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9833   ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9834                                                     AllUnsignedIntegers.size() -
9835                                                         Int128Unsupported);
9836   ArrayRef<CanQualType *> *Consider =
9837       IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9838 
9839   uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9840   auto *Result =
9841       llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9842         return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9843       });
9844 
9845   assert(Result != Consider->end());
9846   return QualType((*Result)->getTypePtr(), 0);
9847 }
9848 
9849 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9850                                        SourceLocation Loc) {
9851   bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9852   if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9853       BaseType->isBooleanType() ||
9854       (BaseType->isBitIntType() &&
9855        BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9856     Diag(Loc, diag::err_make_signed_integral_only)
9857         << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9858     return QualType();
9859   }
9860 
9861   bool IsNonIntIntegral =
9862       BaseType->isChar16Type() || BaseType->isChar32Type() ||
9863       BaseType->isWideCharType() || BaseType->isEnumeralType();
9864 
9865   QualType Underlying =
9866       IsNonIntIntegral
9867           ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9868       : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9869                      : Context.getCorrespondingUnsignedType(BaseType);
9870   if (Underlying.isNull())
9871     return Underlying;
9872   return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9873 }
9874 
9875 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9876                                        SourceLocation Loc) {
9877   if (BaseType->isDependentType())
9878     return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9879   QualType Result;
9880   switch (UKind) {
9881   case UnaryTransformType::EnumUnderlyingType: {
9882     Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9883     break;
9884   }
9885   case UnaryTransformType::AddPointer: {
9886     Result = BuiltinAddPointer(BaseType, Loc);
9887     break;
9888   }
9889   case UnaryTransformType::RemovePointer: {
9890     Result = BuiltinRemovePointer(BaseType, Loc);
9891     break;
9892   }
9893   case UnaryTransformType::Decay: {
9894     Result = BuiltinDecay(BaseType, Loc);
9895     break;
9896   }
9897   case UnaryTransformType::AddLvalueReference:
9898   case UnaryTransformType::AddRvalueReference: {
9899     Result = BuiltinAddReference(BaseType, UKind, Loc);
9900     break;
9901   }
9902   case UnaryTransformType::RemoveAllExtents:
9903   case UnaryTransformType::RemoveExtent: {
9904     Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9905     break;
9906   }
9907   case UnaryTransformType::RemoveCVRef:
9908   case UnaryTransformType::RemoveReference: {
9909     Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9910     break;
9911   }
9912   case UnaryTransformType::RemoveConst:
9913   case UnaryTransformType::RemoveCV:
9914   case UnaryTransformType::RemoveRestrict:
9915   case UnaryTransformType::RemoveVolatile: {
9916     Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9917     break;
9918   }
9919   case UnaryTransformType::MakeSigned:
9920   case UnaryTransformType::MakeUnsigned: {
9921     Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9922     break;
9923   }
9924   }
9925 
9926   return !Result.isNull()
9927              ? Context.getUnaryTransformType(BaseType, Result, UKind)
9928              : Result;
9929 }
9930 
9931 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9932   if (!isDependentOrGNUAutoType(T)) {
9933     // FIXME: It isn't entirely clear whether incomplete atomic types
9934     // are allowed or not; for simplicity, ban them for the moment.
9935     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9936       return QualType();
9937 
9938     int DisallowedKind = -1;
9939     if (T->isArrayType())
9940       DisallowedKind = 1;
9941     else if (T->isFunctionType())
9942       DisallowedKind = 2;
9943     else if (T->isReferenceType())
9944       DisallowedKind = 3;
9945     else if (T->isAtomicType())
9946       DisallowedKind = 4;
9947     else if (T.hasQualifiers())
9948       DisallowedKind = 5;
9949     else if (T->isSizelessType())
9950       DisallowedKind = 6;
9951     else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9952       // Some other non-trivially-copyable type (probably a C++ class)
9953       DisallowedKind = 7;
9954     else if (T->isBitIntType())
9955       DisallowedKind = 8;
9956     else if (getLangOpts().C23 && T->isUndeducedAutoType())
9957       // _Atomic auto is prohibited in C23
9958       DisallowedKind = 9;
9959 
9960     if (DisallowedKind != -1) {
9961       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9962       return QualType();
9963     }
9964 
9965     // FIXME: Do we need any handling for ARC here?
9966   }
9967 
9968   // Build the pointer type.
9969   return Context.getAtomicType(T);
9970 }
9971