xref: /llvm-project/clang/lib/Sema/SemaType.cpp (revision 8c4331c1abeb33eabf3cdbefa7f2b6e0540e7f4f)
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/LocInfoType.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeLocVisitor.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/Specifiers.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Lookup.h"
37 #include "clang/Sema/ParsedAttr.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaCUDA.h"
41 #include "clang/Sema/SemaHLSL.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "clang/Sema/SemaObjC.h"
44 #include "clang/Sema/SemaOpenMP.h"
45 #include "clang/Sema/Template.h"
46 #include "clang/Sema/TemplateInstCallback.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/STLForwardCompat.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include <bitset>
56 #include <optional>
57 
58 using namespace clang;
59 
60 enum TypeDiagSelector {
61   TDS_Function,
62   TDS_Pointer,
63   TDS_ObjCObjOrBlock
64 };
65 
66 /// isOmittedBlockReturnType - Return true if this declarator is missing a
67 /// return type because this is a omitted return type on a block literal.
68 static bool isOmittedBlockReturnType(const Declarator &D) {
69   if (D.getContext() != DeclaratorContext::BlockLiteral ||
70       D.getDeclSpec().hasTypeSpecifier())
71     return false;
72 
73   if (D.getNumTypeObjects() == 0)
74     return true;   // ^{ ... }
75 
76   if (D.getNumTypeObjects() == 1 &&
77       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
78     return true;   // ^(int X, float Y) { ... }
79 
80   return false;
81 }
82 
83 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
84 /// doesn't apply to the given type.
85 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
86                                      QualType type) {
87   TypeDiagSelector WhichType;
88   bool useExpansionLoc = true;
89   switch (attr.getKind()) {
90   case ParsedAttr::AT_ObjCGC:
91     WhichType = TDS_Pointer;
92     break;
93   case ParsedAttr::AT_ObjCOwnership:
94     WhichType = TDS_ObjCObjOrBlock;
95     break;
96   default:
97     // Assume everything else was a function attribute.
98     WhichType = TDS_Function;
99     useExpansionLoc = false;
100     break;
101   }
102 
103   SourceLocation loc = attr.getLoc();
104   StringRef name = attr.getAttrName()->getName();
105 
106   // The GC attributes are usually written with macros;  special-case them.
107   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
108                                           : nullptr;
109   if (useExpansionLoc && loc.isMacroID() && II) {
110     if (II->isStr("strong")) {
111       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
112     } else if (II->isStr("weak")) {
113       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
114     }
115   }
116 
117   S.Diag(loc, attr.isRegularKeywordAttribute()
118                   ? diag::err_type_attribute_wrong_type
119                   : diag::warn_type_attribute_wrong_type)
120       << name << WhichType << type;
121 }
122 
123 // objc_gc applies to Objective-C pointers or, otherwise, to the
124 // smallest available pointer type (i.e. 'void*' in 'void**').
125 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
126   case ParsedAttr::AT_ObjCGC:                                                  \
127   case ParsedAttr::AT_ObjCOwnership
128 
129 // Calling convention attributes.
130 #define CALLING_CONV_ATTRS_CASELIST                                            \
131   case ParsedAttr::AT_CDecl:                                                   \
132   case ParsedAttr::AT_FastCall:                                                \
133   case ParsedAttr::AT_StdCall:                                                 \
134   case ParsedAttr::AT_ThisCall:                                                \
135   case ParsedAttr::AT_RegCall:                                                 \
136   case ParsedAttr::AT_Pascal:                                                  \
137   case ParsedAttr::AT_SwiftCall:                                               \
138   case ParsedAttr::AT_SwiftAsyncCall:                                          \
139   case ParsedAttr::AT_VectorCall:                                              \
140   case ParsedAttr::AT_AArch64VectorPcs:                                        \
141   case ParsedAttr::AT_AArch64SVEPcs:                                           \
142   case ParsedAttr::AT_AMDGPUKernelCall:                                        \
143   case ParsedAttr::AT_MSABI:                                                   \
144   case ParsedAttr::AT_SysVABI:                                                 \
145   case ParsedAttr::AT_Pcs:                                                     \
146   case ParsedAttr::AT_IntelOclBicc:                                            \
147   case ParsedAttr::AT_PreserveMost:                                            \
148   case ParsedAttr::AT_PreserveAll:                                             \
149   case ParsedAttr::AT_M68kRTD:                                                 \
150   case ParsedAttr::AT_PreserveNone:                                            \
151   case ParsedAttr::AT_RISCVVectorCC
152 
153 // Function type attributes.
154 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
155   case ParsedAttr::AT_NSReturnsRetained:                                       \
156   case ParsedAttr::AT_NoReturn:                                                \
157   case ParsedAttr::AT_NonBlocking:                                             \
158   case ParsedAttr::AT_NonAllocating:                                           \
159   case ParsedAttr::AT_Blocking:                                                \
160   case ParsedAttr::AT_Allocating:                                              \
161   case ParsedAttr::AT_Regparm:                                                 \
162   case ParsedAttr::AT_CmseNSCall:                                              \
163   case ParsedAttr::AT_ArmStreaming:                                            \
164   case ParsedAttr::AT_ArmStreamingCompatible:                                  \
165   case ParsedAttr::AT_ArmPreserves:                                            \
166   case ParsedAttr::AT_ArmIn:                                                   \
167   case ParsedAttr::AT_ArmOut:                                                  \
168   case ParsedAttr::AT_ArmInOut:                                                \
169   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
170   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
171     CALLING_CONV_ATTRS_CASELIST
172 
173 // Microsoft-specific type qualifiers.
174 #define MS_TYPE_ATTRS_CASELIST                                                 \
175   case ParsedAttr::AT_Ptr32:                                                   \
176   case ParsedAttr::AT_Ptr64:                                                   \
177   case ParsedAttr::AT_SPtr:                                                    \
178   case ParsedAttr::AT_UPtr
179 
180 // Nullability qualifiers.
181 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
182   case ParsedAttr::AT_TypeNonNull:                                             \
183   case ParsedAttr::AT_TypeNullable:                                            \
184   case ParsedAttr::AT_TypeNullableResult:                                      \
185   case ParsedAttr::AT_TypeNullUnspecified
186 
187 namespace {
188   /// An object which stores processing state for the entire
189   /// GetTypeForDeclarator process.
190   class TypeProcessingState {
191     Sema &sema;
192 
193     /// The declarator being processed.
194     Declarator &declarator;
195 
196     /// The index of the declarator chunk we're currently processing.
197     /// May be the total number of valid chunks, indicating the
198     /// DeclSpec.
199     unsigned chunkIndex;
200 
201     /// The original set of attributes on the DeclSpec.
202     SmallVector<ParsedAttr *, 2> savedAttrs;
203 
204     /// A list of attributes to diagnose the uselessness of when the
205     /// processing is complete.
206     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
207 
208     /// Attributes corresponding to AttributedTypeLocs that we have not yet
209     /// populated.
210     // FIXME: The two-phase mechanism by which we construct Types and fill
211     // their TypeLocs makes it hard to correctly assign these. We keep the
212     // attributes in creation order as an attempt to make them line up
213     // properly.
214     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
215     SmallVector<TypeAttrPair, 8> AttrsForTypes;
216     bool AttrsForTypesSorted = true;
217 
218     /// MacroQualifiedTypes mapping to macro expansion locations that will be
219     /// stored in a MacroQualifiedTypeLoc.
220     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
221 
222     /// Flag to indicate we parsed a noderef attribute. This is used for
223     /// validating that noderef was used on a pointer or array.
224     bool parsedNoDeref;
225 
226     // Flag to indicate that we already parsed a HLSL parameter modifier
227     // attribute. This prevents double-mutating the type.
228     bool ParsedHLSLParamMod;
229 
230   public:
231     TypeProcessingState(Sema &sema, Declarator &declarator)
232         : sema(sema), declarator(declarator),
233           chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false),
234           ParsedHLSLParamMod(false) {}
235 
236     Sema &getSema() const {
237       return sema;
238     }
239 
240     Declarator &getDeclarator() const {
241       return declarator;
242     }
243 
244     bool isProcessingDeclSpec() const {
245       return chunkIndex == declarator.getNumTypeObjects();
246     }
247 
248     unsigned getCurrentChunkIndex() const {
249       return chunkIndex;
250     }
251 
252     void setCurrentChunkIndex(unsigned idx) {
253       assert(idx <= declarator.getNumTypeObjects());
254       chunkIndex = idx;
255     }
256 
257     ParsedAttributesView &getCurrentAttributes() const {
258       if (isProcessingDeclSpec())
259         return getMutableDeclSpec().getAttributes();
260       return declarator.getTypeObject(chunkIndex).getAttrs();
261     }
262 
263     /// Save the current set of attributes on the DeclSpec.
264     void saveDeclSpecAttrs() {
265       // Don't try to save them multiple times.
266       if (!savedAttrs.empty())
267         return;
268 
269       DeclSpec &spec = getMutableDeclSpec();
270       llvm::append_range(savedAttrs,
271                          llvm::make_pointer_range(spec.getAttributes()));
272     }
273 
274     /// Record that we had nowhere to put the given type attribute.
275     /// We will diagnose such attributes later.
276     void addIgnoredTypeAttr(ParsedAttr &attr) {
277       ignoredTypeAttrs.push_back(&attr);
278     }
279 
280     /// Diagnose all the ignored type attributes, given that the
281     /// declarator worked out to the given type.
282     void diagnoseIgnoredTypeAttrs(QualType type) const {
283       for (auto *Attr : ignoredTypeAttrs)
284         diagnoseBadTypeAttribute(getSema(), *Attr, type);
285     }
286 
287     /// Get an attributed type for the given attribute, and remember the Attr
288     /// object so that we can attach it to the AttributedTypeLoc.
289     QualType getAttributedType(Attr *A, QualType ModifiedType,
290                                QualType EquivType) {
291       QualType T =
292           sema.Context.getAttributedType(A, ModifiedType, EquivType);
293       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
294       AttrsForTypesSorted = false;
295       return T;
296     }
297 
298     /// Get a BTFTagAttributed type for the btf_type_tag attribute.
299     QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
300                                      QualType WrappedType) {
301       return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
302     }
303 
304     /// Completely replace the \c auto in \p TypeWithAuto by
305     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
306     /// necessary.
307     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
308       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
309       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
310         // Attributed type still should be an attributed type after replacement.
311         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
312         for (TypeAttrPair &A : AttrsForTypes) {
313           if (A.first == AttrTy)
314             A.first = NewAttrTy;
315         }
316         AttrsForTypesSorted = false;
317       }
318       return T;
319     }
320 
321     /// Extract and remove the Attr* for a given attributed type.
322     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
323       if (!AttrsForTypesSorted) {
324         llvm::stable_sort(AttrsForTypes, llvm::less_first());
325         AttrsForTypesSorted = true;
326       }
327 
328       // FIXME: This is quadratic if we have lots of reuses of the same
329       // attributed type.
330       for (auto It = std::partition_point(
331                AttrsForTypes.begin(), AttrsForTypes.end(),
332                [=](const TypeAttrPair &A) { return A.first < AT; });
333            It != AttrsForTypes.end() && It->first == AT; ++It) {
334         if (It->second) {
335           const Attr *Result = It->second;
336           It->second = nullptr;
337           return Result;
338         }
339       }
340 
341       llvm_unreachable("no Attr* for AttributedType*");
342     }
343 
344     SourceLocation
345     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
346       auto FoundLoc = LocsForMacros.find(MQT);
347       assert(FoundLoc != LocsForMacros.end() &&
348              "Unable to find macro expansion location for MacroQualifedType");
349       return FoundLoc->second;
350     }
351 
352     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
353                                               SourceLocation Loc) {
354       LocsForMacros[MQT] = Loc;
355     }
356 
357     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
358 
359     bool didParseNoDeref() const { return parsedNoDeref; }
360 
361     void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; }
362 
363     bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; }
364 
365     ~TypeProcessingState() {
366       if (savedAttrs.empty())
367         return;
368 
369       getMutableDeclSpec().getAttributes().clearListOnly();
370       for (ParsedAttr *AL : savedAttrs)
371         getMutableDeclSpec().getAttributes().addAtEnd(AL);
372     }
373 
374   private:
375     DeclSpec &getMutableDeclSpec() const {
376       return const_cast<DeclSpec&>(declarator.getDeclSpec());
377     }
378   };
379 } // end anonymous namespace
380 
381 static void moveAttrFromListToList(ParsedAttr &attr,
382                                    ParsedAttributesView &fromList,
383                                    ParsedAttributesView &toList) {
384   fromList.remove(&attr);
385   toList.addAtEnd(&attr);
386 }
387 
388 /// The location of a type attribute.
389 enum TypeAttrLocation {
390   /// The attribute is in the decl-specifier-seq.
391   TAL_DeclSpec,
392   /// The attribute is part of a DeclaratorChunk.
393   TAL_DeclChunk,
394   /// The attribute is immediately after the declaration's name.
395   TAL_DeclName
396 };
397 
398 static void
399 processTypeAttrs(TypeProcessingState &state, QualType &type,
400                  TypeAttrLocation TAL, const ParsedAttributesView &attrs,
401                  CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
402 
403 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
404                                    QualType &type, CUDAFunctionTarget CFT);
405 
406 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
407                                              ParsedAttr &attr, QualType &type);
408 
409 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
410                                  QualType &type);
411 
412 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
413                                         ParsedAttr &attr, QualType &type);
414 
415 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
416                                       ParsedAttr &attr, QualType &type) {
417   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
418     return handleObjCGCTypeAttr(state, attr, type);
419   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
420   return handleObjCOwnershipTypeAttr(state, attr, type);
421 }
422 
423 /// Given the index of a declarator chunk, check whether that chunk
424 /// directly specifies the return type of a function and, if so, find
425 /// an appropriate place for it.
426 ///
427 /// \param i - a notional index which the search will start
428 ///   immediately inside
429 ///
430 /// \param onlyBlockPointers Whether we should only look into block
431 /// pointer types (vs. all pointer types).
432 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
433                                                 unsigned i,
434                                                 bool onlyBlockPointers) {
435   assert(i <= declarator.getNumTypeObjects());
436 
437   DeclaratorChunk *result = nullptr;
438 
439   // First, look inwards past parens for a function declarator.
440   for (; i != 0; --i) {
441     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
442     switch (fnChunk.Kind) {
443     case DeclaratorChunk::Paren:
444       continue;
445 
446     // If we find anything except a function, bail out.
447     case DeclaratorChunk::Pointer:
448     case DeclaratorChunk::BlockPointer:
449     case DeclaratorChunk::Array:
450     case DeclaratorChunk::Reference:
451     case DeclaratorChunk::MemberPointer:
452     case DeclaratorChunk::Pipe:
453       return result;
454 
455     // If we do find a function declarator, scan inwards from that,
456     // looking for a (block-)pointer declarator.
457     case DeclaratorChunk::Function:
458       for (--i; i != 0; --i) {
459         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
460         switch (ptrChunk.Kind) {
461         case DeclaratorChunk::Paren:
462         case DeclaratorChunk::Array:
463         case DeclaratorChunk::Function:
464         case DeclaratorChunk::Reference:
465         case DeclaratorChunk::Pipe:
466           continue;
467 
468         case DeclaratorChunk::MemberPointer:
469         case DeclaratorChunk::Pointer:
470           if (onlyBlockPointers)
471             continue;
472 
473           [[fallthrough]];
474 
475         case DeclaratorChunk::BlockPointer:
476           result = &ptrChunk;
477           goto continue_outer;
478         }
479         llvm_unreachable("bad declarator chunk kind");
480       }
481 
482       // If we run out of declarators doing that, we're done.
483       return result;
484     }
485     llvm_unreachable("bad declarator chunk kind");
486 
487     // Okay, reconsider from our new point.
488   continue_outer: ;
489   }
490 
491   // Ran out of chunks, bail out.
492   return result;
493 }
494 
495 /// Given that an objc_gc attribute was written somewhere on a
496 /// declaration *other* than on the declarator itself (for which, use
497 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
498 /// didn't apply in whatever position it was written in, try to move
499 /// it to a more appropriate position.
500 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
501                                           ParsedAttr &attr, QualType type) {
502   Declarator &declarator = state.getDeclarator();
503 
504   // Move it to the outermost normal or block pointer declarator.
505   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
506     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
507     switch (chunk.Kind) {
508     case DeclaratorChunk::Pointer:
509     case DeclaratorChunk::BlockPointer: {
510       // But don't move an ARC ownership attribute to the return type
511       // of a block.
512       DeclaratorChunk *destChunk = nullptr;
513       if (state.isProcessingDeclSpec() &&
514           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
515         destChunk = maybeMovePastReturnType(declarator, i - 1,
516                                             /*onlyBlockPointers=*/true);
517       if (!destChunk) destChunk = &chunk;
518 
519       moveAttrFromListToList(attr, state.getCurrentAttributes(),
520                              destChunk->getAttrs());
521       return;
522     }
523 
524     case DeclaratorChunk::Paren:
525     case DeclaratorChunk::Array:
526       continue;
527 
528     // We may be starting at the return type of a block.
529     case DeclaratorChunk::Function:
530       if (state.isProcessingDeclSpec() &&
531           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
532         if (DeclaratorChunk *dest = maybeMovePastReturnType(
533                                       declarator, i,
534                                       /*onlyBlockPointers=*/true)) {
535           moveAttrFromListToList(attr, state.getCurrentAttributes(),
536                                  dest->getAttrs());
537           return;
538         }
539       }
540       goto error;
541 
542     // Don't walk through these.
543     case DeclaratorChunk::Reference:
544     case DeclaratorChunk::MemberPointer:
545     case DeclaratorChunk::Pipe:
546       goto error;
547     }
548   }
549  error:
550 
551   diagnoseBadTypeAttribute(state.getSema(), attr, type);
552 }
553 
554 /// Distribute an objc_gc type attribute that was written on the
555 /// declarator.
556 static void distributeObjCPointerTypeAttrFromDeclarator(
557     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
558   Declarator &declarator = state.getDeclarator();
559 
560   // objc_gc goes on the innermost pointer to something that's not a
561   // pointer.
562   unsigned innermost = -1U;
563   bool considerDeclSpec = true;
564   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
565     DeclaratorChunk &chunk = declarator.getTypeObject(i);
566     switch (chunk.Kind) {
567     case DeclaratorChunk::Pointer:
568     case DeclaratorChunk::BlockPointer:
569       innermost = i;
570       continue;
571 
572     case DeclaratorChunk::Reference:
573     case DeclaratorChunk::MemberPointer:
574     case DeclaratorChunk::Paren:
575     case DeclaratorChunk::Array:
576     case DeclaratorChunk::Pipe:
577       continue;
578 
579     case DeclaratorChunk::Function:
580       considerDeclSpec = false;
581       goto done;
582     }
583   }
584  done:
585 
586   // That might actually be the decl spec if we weren't blocked by
587   // anything in the declarator.
588   if (considerDeclSpec) {
589     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
590       // Splice the attribute into the decl spec.  Prevents the
591       // attribute from being applied multiple times and gives
592       // the source-location-filler something to work with.
593       state.saveDeclSpecAttrs();
594       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
595           declarator.getAttributes(), &attr);
596       return;
597     }
598   }
599 
600   // Otherwise, if we found an appropriate chunk, splice the attribute
601   // into it.
602   if (innermost != -1U) {
603     moveAttrFromListToList(attr, declarator.getAttributes(),
604                            declarator.getTypeObject(innermost).getAttrs());
605     return;
606   }
607 
608   // Otherwise, diagnose when we're done building the type.
609   declarator.getAttributes().remove(&attr);
610   state.addIgnoredTypeAttr(attr);
611 }
612 
613 /// A function type attribute was written somewhere in a declaration
614 /// *other* than on the declarator itself or in the decl spec.  Given
615 /// that it didn't apply in whatever position it was written in, try
616 /// to move it to a more appropriate position.
617 static void distributeFunctionTypeAttr(TypeProcessingState &state,
618                                        ParsedAttr &attr, QualType type) {
619   Declarator &declarator = state.getDeclarator();
620 
621   // Try to push the attribute from the return type of a function to
622   // the function itself.
623   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
624     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
625     switch (chunk.Kind) {
626     case DeclaratorChunk::Function:
627       moveAttrFromListToList(attr, state.getCurrentAttributes(),
628                              chunk.getAttrs());
629       return;
630 
631     case DeclaratorChunk::Paren:
632     case DeclaratorChunk::Pointer:
633     case DeclaratorChunk::BlockPointer:
634     case DeclaratorChunk::Array:
635     case DeclaratorChunk::Reference:
636     case DeclaratorChunk::MemberPointer:
637     case DeclaratorChunk::Pipe:
638       continue;
639     }
640   }
641 
642   diagnoseBadTypeAttribute(state.getSema(), attr, type);
643 }
644 
645 /// Try to distribute a function type attribute to the innermost
646 /// function chunk or type.  Returns true if the attribute was
647 /// distributed, false if no location was found.
648 static bool distributeFunctionTypeAttrToInnermost(
649     TypeProcessingState &state, ParsedAttr &attr,
650     ParsedAttributesView &attrList, QualType &declSpecType,
651     CUDAFunctionTarget CFT) {
652   Declarator &declarator = state.getDeclarator();
653 
654   // Put it on the innermost function chunk, if there is one.
655   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
656     DeclaratorChunk &chunk = declarator.getTypeObject(i);
657     if (chunk.Kind != DeclaratorChunk::Function) continue;
658 
659     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
660     return true;
661   }
662 
663   return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
664 }
665 
666 /// A function type attribute was written in the decl spec.  Try to
667 /// apply it somewhere.
668 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
669                                                    ParsedAttr &attr,
670                                                    QualType &declSpecType,
671                                                    CUDAFunctionTarget CFT) {
672   state.saveDeclSpecAttrs();
673 
674   // Try to distribute to the innermost.
675   if (distributeFunctionTypeAttrToInnermost(
676           state, attr, state.getCurrentAttributes(), declSpecType, CFT))
677     return;
678 
679   // If that failed, diagnose the bad attribute when the declarator is
680   // fully built.
681   state.addIgnoredTypeAttr(attr);
682 }
683 
684 /// A function type attribute was written on the declarator or declaration.
685 /// Try to apply it somewhere.
686 /// `Attrs` is the attribute list containing the declaration (either of the
687 /// declarator or the declaration).
688 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
689                                                      ParsedAttr &attr,
690                                                      QualType &declSpecType,
691                                                      CUDAFunctionTarget CFT) {
692   Declarator &declarator = state.getDeclarator();
693 
694   // Try to distribute to the innermost.
695   if (distributeFunctionTypeAttrToInnermost(
696           state, attr, declarator.getAttributes(), declSpecType, CFT))
697     return;
698 
699   // If that failed, diagnose the bad attribute when the declarator is
700   // fully built.
701   declarator.getAttributes().remove(&attr);
702   state.addIgnoredTypeAttr(attr);
703 }
704 
705 /// Given that there are attributes written on the declarator or declaration
706 /// itself, try to distribute any type attributes to the appropriate
707 /// declarator chunk.
708 ///
709 /// These are attributes like the following:
710 ///   int f ATTR;
711 ///   int (f ATTR)();
712 /// but not necessarily this:
713 ///   int f() ATTR;
714 ///
715 /// `Attrs` is the attribute list containing the declaration (either of the
716 /// declarator or the declaration).
717 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
718                                               QualType &declSpecType,
719                                               CUDAFunctionTarget CFT) {
720   // The called functions in this loop actually remove things from the current
721   // list, so iterating over the existing list isn't possible.  Instead, make a
722   // non-owning copy and iterate over that.
723   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
724   for (ParsedAttr &attr : AttrsCopy) {
725     // Do not distribute [[]] attributes. They have strict rules for what
726     // they appertain to.
727     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
728       continue;
729 
730     switch (attr.getKind()) {
731     OBJC_POINTER_TYPE_ATTRS_CASELIST:
732       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
733       break;
734 
735     FUNCTION_TYPE_ATTRS_CASELIST:
736       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
737       break;
738 
739     MS_TYPE_ATTRS_CASELIST:
740       // Microsoft type attributes cannot go after the declarator-id.
741       continue;
742 
743     NULLABILITY_TYPE_ATTRS_CASELIST:
744       // Nullability specifiers cannot go after the declarator-id.
745 
746     // Objective-C __kindof does not get distributed.
747     case ParsedAttr::AT_ObjCKindOf:
748       continue;
749 
750     default:
751       break;
752     }
753   }
754 }
755 
756 /// Add a synthetic '()' to a block-literal declarator if it is
757 /// required, given the return type.
758 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
759                                           QualType declSpecType) {
760   Declarator &declarator = state.getDeclarator();
761 
762   // First, check whether the declarator would produce a function,
763   // i.e. whether the innermost semantic chunk is a function.
764   if (declarator.isFunctionDeclarator()) {
765     // If so, make that declarator a prototyped declarator.
766     declarator.getFunctionTypeInfo().hasPrototype = true;
767     return;
768   }
769 
770   // If there are any type objects, the type as written won't name a
771   // function, regardless of the decl spec type.  This is because a
772   // block signature declarator is always an abstract-declarator, and
773   // abstract-declarators can't just be parentheses chunks.  Therefore
774   // we need to build a function chunk unless there are no type
775   // objects and the decl spec type is a function.
776   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
777     return;
778 
779   // Note that there *are* cases with invalid declarators where
780   // declarators consist solely of parentheses.  In general, these
781   // occur only in failed efforts to make function declarators, so
782   // faking up the function chunk is still the right thing to do.
783 
784   // Otherwise, we need to fake up a function declarator.
785   SourceLocation loc = declarator.getBeginLoc();
786 
787   // ...and *prepend* it to the declarator.
788   SourceLocation NoLoc;
789   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
790       /*HasProto=*/true,
791       /*IsAmbiguous=*/false,
792       /*LParenLoc=*/NoLoc,
793       /*ArgInfo=*/nullptr,
794       /*NumParams=*/0,
795       /*EllipsisLoc=*/NoLoc,
796       /*RParenLoc=*/NoLoc,
797       /*RefQualifierIsLvalueRef=*/true,
798       /*RefQualifierLoc=*/NoLoc,
799       /*MutableLoc=*/NoLoc, EST_None,
800       /*ESpecRange=*/SourceRange(),
801       /*Exceptions=*/nullptr,
802       /*ExceptionRanges=*/nullptr,
803       /*NumExceptions=*/0,
804       /*NoexceptExpr=*/nullptr,
805       /*ExceptionSpecTokens=*/nullptr,
806       /*DeclsInPrototype=*/{}, loc, loc, declarator));
807 
808   // For consistency, make sure the state still has us as processing
809   // the decl spec.
810   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
811   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
812 }
813 
814 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
815                                             unsigned &TypeQuals,
816                                             QualType TypeSoFar,
817                                             unsigned RemoveTQs,
818                                             unsigned DiagID) {
819   // If this occurs outside a template instantiation, warn the user about
820   // it; they probably didn't mean to specify a redundant qualifier.
821   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
822   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
823                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
824                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
825                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
826     if (!(RemoveTQs & Qual.first))
827       continue;
828 
829     if (!S.inTemplateInstantiation()) {
830       if (TypeQuals & Qual.first)
831         S.Diag(Qual.second, DiagID)
832           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
833           << FixItHint::CreateRemoval(Qual.second);
834     }
835 
836     TypeQuals &= ~Qual.first;
837   }
838 }
839 
840 /// Return true if this is omitted block return type. Also check type
841 /// attributes and type qualifiers when returning true.
842 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
843                                         QualType Result) {
844   if (!isOmittedBlockReturnType(declarator))
845     return false;
846 
847   // Warn if we see type attributes for omitted return type on a block literal.
848   SmallVector<ParsedAttr *, 2> ToBeRemoved;
849   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
850     if (AL.isInvalid() || !AL.isTypeAttr())
851       continue;
852     S.Diag(AL.getLoc(),
853            diag::warn_block_literal_attributes_on_omitted_return_type)
854         << AL;
855     ToBeRemoved.push_back(&AL);
856   }
857   // Remove bad attributes from the list.
858   for (ParsedAttr *AL : ToBeRemoved)
859     declarator.getMutableDeclSpec().getAttributes().remove(AL);
860 
861   // Warn if we see type qualifiers for omitted return type on a block literal.
862   const DeclSpec &DS = declarator.getDeclSpec();
863   unsigned TypeQuals = DS.getTypeQualifiers();
864   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
865       diag::warn_block_literal_qualifiers_on_omitted_return_type);
866   declarator.getMutableDeclSpec().ClearTypeQualifiers();
867 
868   return true;
869 }
870 
871 static OpenCLAccessAttr::Spelling
872 getImageAccess(const ParsedAttributesView &Attrs) {
873   for (const ParsedAttr &AL : Attrs)
874     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
875       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
876   return OpenCLAccessAttr::Keyword_read_only;
877 }
878 
879 static UnaryTransformType::UTTKind
880 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
881   switch (SwitchTST) {
882 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
883   case TST_##Trait:                                                            \
884     return UnaryTransformType::Enum;
885 #include "clang/Basic/TransformTypeTraits.def"
886   default:
887     llvm_unreachable("attempted to parse a non-unary transform builtin");
888   }
889 }
890 
891 /// Convert the specified declspec to the appropriate type
892 /// object.
893 /// \param state Specifies the declarator containing the declaration specifier
894 /// to be converted, along with other associated processing state.
895 /// \returns The type described by the declaration specifiers.  This function
896 /// never returns null.
897 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
898   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
899   // checking.
900 
901   Sema &S = state.getSema();
902   Declarator &declarator = state.getDeclarator();
903   DeclSpec &DS = declarator.getMutableDeclSpec();
904   SourceLocation DeclLoc = declarator.getIdentifierLoc();
905   if (DeclLoc.isInvalid())
906     DeclLoc = DS.getBeginLoc();
907 
908   ASTContext &Context = S.Context;
909 
910   QualType Result;
911   switch (DS.getTypeSpecType()) {
912   case DeclSpec::TST_void:
913     Result = Context.VoidTy;
914     break;
915   case DeclSpec::TST_char:
916     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
917       Result = Context.CharTy;
918     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
919       Result = Context.SignedCharTy;
920     else {
921       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
922              "Unknown TSS value");
923       Result = Context.UnsignedCharTy;
924     }
925     break;
926   case DeclSpec::TST_wchar:
927     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
928       Result = Context.WCharTy;
929     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
930       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
931         << DS.getSpecifierName(DS.getTypeSpecType(),
932                                Context.getPrintingPolicy());
933       Result = Context.getSignedWCharType();
934     } else {
935       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
936              "Unknown TSS value");
937       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
938         << DS.getSpecifierName(DS.getTypeSpecType(),
939                                Context.getPrintingPolicy());
940       Result = Context.getUnsignedWCharType();
941     }
942     break;
943   case DeclSpec::TST_char8:
944     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
945            "Unknown TSS value");
946     Result = Context.Char8Ty;
947     break;
948   case DeclSpec::TST_char16:
949     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
950            "Unknown TSS value");
951     Result = Context.Char16Ty;
952     break;
953   case DeclSpec::TST_char32:
954     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
955            "Unknown TSS value");
956     Result = Context.Char32Ty;
957     break;
958   case DeclSpec::TST_unspecified:
959     // If this is a missing declspec in a block literal return context, then it
960     // is inferred from the return statements inside the block.
961     // The declspec is always missing in a lambda expr context; it is either
962     // specified with a trailing return type or inferred.
963     if (S.getLangOpts().CPlusPlus14 &&
964         declarator.getContext() == DeclaratorContext::LambdaExpr) {
965       // In C++1y, a lambda's implicit return type is 'auto'.
966       Result = Context.getAutoDeductType();
967       break;
968     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
969                checkOmittedBlockReturnType(S, declarator,
970                                            Context.DependentTy)) {
971       Result = Context.DependentTy;
972       break;
973     }
974 
975     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
976     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
977     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
978     // Note that the one exception to this is function definitions, which are
979     // allowed to be completely missing a declspec.  This is handled in the
980     // parser already though by it pretending to have seen an 'int' in this
981     // case.
982     if (S.getLangOpts().isImplicitIntRequired()) {
983       S.Diag(DeclLoc, diag::warn_missing_type_specifier)
984           << DS.getSourceRange()
985           << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
986     } else if (!DS.hasTypeSpecifier()) {
987       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
988       // "At least one type specifier shall be given in the declaration
989       // specifiers in each declaration, and in the specifier-qualifier list in
990       // each struct declaration and type name."
991       if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
992         S.Diag(DeclLoc, diag::err_missing_type_specifier)
993             << DS.getSourceRange();
994 
995         // When this occurs, often something is very broken with the value
996         // being declared, poison it as invalid so we don't get chains of
997         // errors.
998         declarator.setInvalidType(true);
999       } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1000                  DS.isTypeSpecPipe()) {
1001         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1002             << DS.getSourceRange();
1003         declarator.setInvalidType(true);
1004       } else {
1005         assert(S.getLangOpts().isImplicitIntAllowed() &&
1006                "implicit int is disabled?");
1007         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1008             << DS.getSourceRange()
1009             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1010       }
1011     }
1012 
1013     [[fallthrough]];
1014   case DeclSpec::TST_int: {
1015     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1016       switch (DS.getTypeSpecWidth()) {
1017       case TypeSpecifierWidth::Unspecified:
1018         Result = Context.IntTy;
1019         break;
1020       case TypeSpecifierWidth::Short:
1021         Result = Context.ShortTy;
1022         break;
1023       case TypeSpecifierWidth::Long:
1024         Result = Context.LongTy;
1025         break;
1026       case TypeSpecifierWidth::LongLong:
1027         Result = Context.LongLongTy;
1028 
1029         // 'long long' is a C99 or C++11 feature.
1030         if (!S.getLangOpts().C99) {
1031           if (S.getLangOpts().CPlusPlus)
1032             S.Diag(DS.getTypeSpecWidthLoc(),
1033                    S.getLangOpts().CPlusPlus11 ?
1034                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1035           else
1036             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1037         }
1038         break;
1039       }
1040     } else {
1041       switch (DS.getTypeSpecWidth()) {
1042       case TypeSpecifierWidth::Unspecified:
1043         Result = Context.UnsignedIntTy;
1044         break;
1045       case TypeSpecifierWidth::Short:
1046         Result = Context.UnsignedShortTy;
1047         break;
1048       case TypeSpecifierWidth::Long:
1049         Result = Context.UnsignedLongTy;
1050         break;
1051       case TypeSpecifierWidth::LongLong:
1052         Result = Context.UnsignedLongLongTy;
1053 
1054         // 'long long' is a C99 or C++11 feature.
1055         if (!S.getLangOpts().C99) {
1056           if (S.getLangOpts().CPlusPlus)
1057             S.Diag(DS.getTypeSpecWidthLoc(),
1058                    S.getLangOpts().CPlusPlus11 ?
1059                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1060           else
1061             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1062         }
1063         break;
1064       }
1065     }
1066     break;
1067   }
1068   case DeclSpec::TST_bitint: {
1069     if (!S.Context.getTargetInfo().hasBitIntType())
1070       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1071     Result =
1072         S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1073                           DS.getRepAsExpr(), DS.getBeginLoc());
1074     if (Result.isNull()) {
1075       Result = Context.IntTy;
1076       declarator.setInvalidType(true);
1077     }
1078     break;
1079   }
1080   case DeclSpec::TST_accum: {
1081     switch (DS.getTypeSpecWidth()) {
1082     case TypeSpecifierWidth::Short:
1083       Result = Context.ShortAccumTy;
1084       break;
1085     case TypeSpecifierWidth::Unspecified:
1086       Result = Context.AccumTy;
1087       break;
1088     case TypeSpecifierWidth::Long:
1089       Result = Context.LongAccumTy;
1090       break;
1091     case TypeSpecifierWidth::LongLong:
1092       llvm_unreachable("Unable to specify long long as _Accum width");
1093     }
1094 
1095     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1096       Result = Context.getCorrespondingUnsignedType(Result);
1097 
1098     if (DS.isTypeSpecSat())
1099       Result = Context.getCorrespondingSaturatedType(Result);
1100 
1101     break;
1102   }
1103   case DeclSpec::TST_fract: {
1104     switch (DS.getTypeSpecWidth()) {
1105     case TypeSpecifierWidth::Short:
1106       Result = Context.ShortFractTy;
1107       break;
1108     case TypeSpecifierWidth::Unspecified:
1109       Result = Context.FractTy;
1110       break;
1111     case TypeSpecifierWidth::Long:
1112       Result = Context.LongFractTy;
1113       break;
1114     case TypeSpecifierWidth::LongLong:
1115       llvm_unreachable("Unable to specify long long as _Fract width");
1116     }
1117 
1118     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1119       Result = Context.getCorrespondingUnsignedType(Result);
1120 
1121     if (DS.isTypeSpecSat())
1122       Result = Context.getCorrespondingSaturatedType(Result);
1123 
1124     break;
1125   }
1126   case DeclSpec::TST_int128:
1127     if (!S.Context.getTargetInfo().hasInt128Type() &&
1128         !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1129           (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1130       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1131         << "__int128";
1132     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1133       Result = Context.UnsignedInt128Ty;
1134     else
1135       Result = Context.Int128Ty;
1136     break;
1137   case DeclSpec::TST_float16:
1138     // CUDA host and device may have different _Float16 support, therefore
1139     // do not diagnose _Float16 usage to avoid false alarm.
1140     // ToDo: more precise diagnostics for CUDA.
1141     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1142         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1143       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1144         << "_Float16";
1145     Result = Context.Float16Ty;
1146     break;
1147   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1148   case DeclSpec::TST_BFloat16:
1149     if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1150         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1151         !S.getLangOpts().SYCLIsDevice)
1152       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1153     Result = Context.BFloat16Ty;
1154     break;
1155   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1156   case DeclSpec::TST_double:
1157     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1158       Result = Context.LongDoubleTy;
1159     else
1160       Result = Context.DoubleTy;
1161     if (S.getLangOpts().OpenCL) {
1162       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1163         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1164             << 0 << Result
1165             << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1166                     ? "cl_khr_fp64 and __opencl_c_fp64"
1167                     : "cl_khr_fp64");
1168       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1169         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1170     }
1171     break;
1172   case DeclSpec::TST_float128:
1173     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1174         !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1175         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1176       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1177         << "__float128";
1178     Result = Context.Float128Ty;
1179     break;
1180   case DeclSpec::TST_ibm128:
1181     if (!S.Context.getTargetInfo().hasIbm128Type() &&
1182         !S.getLangOpts().SYCLIsDevice &&
1183         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1184       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1185     Result = Context.Ibm128Ty;
1186     break;
1187   case DeclSpec::TST_bool:
1188     Result = Context.BoolTy; // _Bool or bool
1189     break;
1190   case DeclSpec::TST_decimal32:    // _Decimal32
1191   case DeclSpec::TST_decimal64:    // _Decimal64
1192   case DeclSpec::TST_decimal128:   // _Decimal128
1193     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1194     Result = Context.IntTy;
1195     declarator.setInvalidType(true);
1196     break;
1197   case DeclSpec::TST_class:
1198   case DeclSpec::TST_enum:
1199   case DeclSpec::TST_union:
1200   case DeclSpec::TST_struct:
1201   case DeclSpec::TST_interface: {
1202     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1203     if (!D) {
1204       // This can happen in C++ with ambiguous lookups.
1205       Result = Context.IntTy;
1206       declarator.setInvalidType(true);
1207       break;
1208     }
1209 
1210     // If the type is deprecated or unavailable, diagnose it.
1211     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1212 
1213     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1214            DS.getTypeSpecComplex() == 0 &&
1215            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1216            "No qualifiers on tag names!");
1217 
1218     // TypeQuals handled by caller.
1219     Result = Context.getTypeDeclType(D);
1220 
1221     // In both C and C++, make an ElaboratedType.
1222     ElaboratedTypeKeyword Keyword
1223       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1224     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1225                                  DS.isTypeSpecOwned() ? D : nullptr);
1226     break;
1227   }
1228   case DeclSpec::TST_typename: {
1229     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1230            DS.getTypeSpecComplex() == 0 &&
1231            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1232            "Can't handle qualifiers on typedef names yet!");
1233     Result = S.GetTypeFromParser(DS.getRepAsType());
1234     if (Result.isNull()) {
1235       declarator.setInvalidType(true);
1236     }
1237 
1238     // TypeQuals handled by caller.
1239     break;
1240   }
1241   case DeclSpec::TST_typeof_unqualType:
1242   case DeclSpec::TST_typeofType:
1243     // FIXME: Preserve type source info.
1244     Result = S.GetTypeFromParser(DS.getRepAsType());
1245     assert(!Result.isNull() && "Didn't get a type for typeof?");
1246     if (!Result->isDependentType())
1247       if (const TagType *TT = Result->getAs<TagType>())
1248         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1249     // TypeQuals handled by caller.
1250     Result = Context.getTypeOfType(
1251         Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1252                     ? TypeOfKind::Unqualified
1253                     : TypeOfKind::Qualified);
1254     break;
1255   case DeclSpec::TST_typeof_unqualExpr:
1256   case DeclSpec::TST_typeofExpr: {
1257     Expr *E = DS.getRepAsExpr();
1258     assert(E && "Didn't get an expression for typeof?");
1259     // TypeQuals handled by caller.
1260     Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1261                                               DeclSpec::TST_typeof_unqualExpr
1262                                           ? TypeOfKind::Unqualified
1263                                           : TypeOfKind::Qualified);
1264     if (Result.isNull()) {
1265       Result = Context.IntTy;
1266       declarator.setInvalidType(true);
1267     }
1268     break;
1269   }
1270   case DeclSpec::TST_decltype: {
1271     Expr *E = DS.getRepAsExpr();
1272     assert(E && "Didn't get an expression for decltype?");
1273     // TypeQuals handled by caller.
1274     Result = S.BuildDecltypeType(E);
1275     if (Result.isNull()) {
1276       Result = Context.IntTy;
1277       declarator.setInvalidType(true);
1278     }
1279     break;
1280   }
1281   case DeclSpec::TST_typename_pack_indexing: {
1282     Expr *E = DS.getPackIndexingExpr();
1283     assert(E && "Didn't get an expression for pack indexing");
1284     QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1285     Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1286                                      DS.getEllipsisLoc());
1287     if (Result.isNull()) {
1288       declarator.setInvalidType(true);
1289       Result = Context.IntTy;
1290     }
1291     break;
1292   }
1293 
1294 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1295 #include "clang/Basic/TransformTypeTraits.def"
1296     Result = S.GetTypeFromParser(DS.getRepAsType());
1297     assert(!Result.isNull() && "Didn't get a type for the transformation?");
1298     Result = S.BuildUnaryTransformType(
1299         Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1300         DS.getTypeSpecTypeLoc());
1301     if (Result.isNull()) {
1302       Result = Context.IntTy;
1303       declarator.setInvalidType(true);
1304     }
1305     break;
1306 
1307   case DeclSpec::TST_auto:
1308   case DeclSpec::TST_decltype_auto: {
1309     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1310                       ? AutoTypeKeyword::DecltypeAuto
1311                       : AutoTypeKeyword::Auto;
1312 
1313     ConceptDecl *TypeConstraintConcept = nullptr;
1314     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1315     if (DS.isConstrainedAuto()) {
1316       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1317         TypeConstraintConcept =
1318             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1319         TemplateArgumentListInfo TemplateArgsInfo;
1320         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1321         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1322         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1323                                            TemplateId->NumArgs);
1324         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1325         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1326           TemplateArgs.push_back(ArgLoc.getArgument());
1327       } else {
1328         declarator.setInvalidType(true);
1329       }
1330     }
1331     Result = S.Context.getAutoType(QualType(), AutoKW,
1332                                    /*IsDependent*/ false, /*IsPack=*/false,
1333                                    TypeConstraintConcept, TemplateArgs);
1334     break;
1335   }
1336 
1337   case DeclSpec::TST_auto_type:
1338     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1339     break;
1340 
1341   case DeclSpec::TST_unknown_anytype:
1342     Result = Context.UnknownAnyTy;
1343     break;
1344 
1345   case DeclSpec::TST_atomic:
1346     Result = S.GetTypeFromParser(DS.getRepAsType());
1347     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1348     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1349     if (Result.isNull()) {
1350       Result = Context.IntTy;
1351       declarator.setInvalidType(true);
1352     }
1353     break;
1354 
1355 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1356   case DeclSpec::TST_##ImgType##_t:                                            \
1357     switch (getImageAccess(DS.getAttributes())) {                              \
1358     case OpenCLAccessAttr::Keyword_write_only:                                 \
1359       Result = Context.Id##WOTy;                                               \
1360       break;                                                                   \
1361     case OpenCLAccessAttr::Keyword_read_write:                                 \
1362       Result = Context.Id##RWTy;                                               \
1363       break;                                                                   \
1364     case OpenCLAccessAttr::Keyword_read_only:                                  \
1365       Result = Context.Id##ROTy;                                               \
1366       break;                                                                   \
1367     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1368       llvm_unreachable("Spelling not yet calculated");                         \
1369     }                                                                          \
1370     break;
1371 #include "clang/Basic/OpenCLImageTypes.def"
1372 
1373 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \
1374   case DeclSpec::TST_##Name:                                                   \
1375     Result = Context.SingletonId;                                              \
1376     break;
1377 #include "clang/Basic/HLSLIntangibleTypes.def"
1378 
1379   case DeclSpec::TST_error:
1380     Result = Context.IntTy;
1381     declarator.setInvalidType(true);
1382     break;
1383   }
1384 
1385   // FIXME: we want resulting declarations to be marked invalid, but claiming
1386   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1387   // a null type.
1388   if (Result->containsErrors())
1389     declarator.setInvalidType();
1390 
1391   if (S.getLangOpts().OpenCL) {
1392     const auto &OpenCLOptions = S.getOpenCLOptions();
1393     bool IsOpenCLC30Compatible =
1394         S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1395     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1396     // support.
1397     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1398     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1399     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1400     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1401     // only when the optional feature is supported
1402     if ((Result->isImageType() || Result->isSamplerT()) &&
1403         (IsOpenCLC30Compatible &&
1404          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1405       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1406           << 0 << Result << "__opencl_c_images";
1407       declarator.setInvalidType();
1408     } else if (Result->isOCLImage3dWOType() &&
1409                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1410                                           S.getLangOpts())) {
1411       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1412           << 0 << Result
1413           << (IsOpenCLC30Compatible
1414                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1415                   : "cl_khr_3d_image_writes");
1416       declarator.setInvalidType();
1417     }
1418   }
1419 
1420   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1421                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1422 
1423   // Only fixed point types can be saturated
1424   if (DS.isTypeSpecSat() && !IsFixedPointType)
1425     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1426         << DS.getSpecifierName(DS.getTypeSpecType(),
1427                                Context.getPrintingPolicy());
1428 
1429   // Handle complex types.
1430   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1431     if (S.getLangOpts().Freestanding)
1432       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1433     Result = Context.getComplexType(Result);
1434   } else if (DS.isTypeAltiVecVector()) {
1435     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1436     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1437     VectorKind VecKind = VectorKind::AltiVecVector;
1438     if (DS.isTypeAltiVecPixel())
1439       VecKind = VectorKind::AltiVecPixel;
1440     else if (DS.isTypeAltiVecBool())
1441       VecKind = VectorKind::AltiVecBool;
1442     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1443   }
1444 
1445   // _Imaginary was a feature of C99 through C23 but was never supported in
1446   // Clang. The feature was removed in C2y, but we retain the unsupported
1447   // diagnostic for an improved user experience.
1448   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1449     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1450 
1451   // Before we process any type attributes, synthesize a block literal
1452   // function declarator if necessary.
1453   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1454     maybeSynthesizeBlockSignature(state, Result);
1455 
1456   // Apply any type attributes from the decl spec.  This may cause the
1457   // list of type attributes to be temporarily saved while the type
1458   // attributes are pushed around.
1459   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1460   if (!DS.isTypeSpecPipe()) {
1461     // We also apply declaration attributes that "slide" to the decl spec.
1462     // Ordering can be important for attributes. The decalaration attributes
1463     // come syntactically before the decl spec attributes, so we process them
1464     // in that order.
1465     ParsedAttributesView SlidingAttrs;
1466     for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1467       if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1468         SlidingAttrs.addAtEnd(&AL);
1469 
1470         // For standard syntax attributes, which would normally appertain to the
1471         // declaration here, suggest moving them to the type instead. But only
1472         // do this for our own vendor attributes; moving other vendors'
1473         // attributes might hurt portability.
1474         // There's one special case that we need to deal with here: The
1475         // `MatrixType` attribute may only be used in a typedef declaration. If
1476         // it's being used anywhere else, don't output the warning as
1477         // ProcessDeclAttributes() will output an error anyway.
1478         if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1479             !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1480               DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1481           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1482               << AL;
1483         }
1484       }
1485     }
1486     // During this call to processTypeAttrs(),
1487     // TypeProcessingState::getCurrentAttributes() will erroneously return a
1488     // reference to the DeclSpec attributes, rather than the declaration
1489     // attributes. However, this doesn't matter, as getCurrentAttributes()
1490     // is only called when distributing attributes from one attribute list
1491     // to another. Declaration attributes are always C++11 attributes, and these
1492     // are never distributed.
1493     processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1494     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1495   }
1496 
1497   // Apply const/volatile/restrict qualifiers to T.
1498   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1499     // Warn about CV qualifiers on function types.
1500     // C99 6.7.3p8:
1501     //   If the specification of a function type includes any type qualifiers,
1502     //   the behavior is undefined.
1503     // C2y changed this behavior to be implementation-defined. Clang defines
1504     // the behavior in all cases to ignore the qualifier, as in C++.
1505     // C++11 [dcl.fct]p7:
1506     //   The effect of a cv-qualifier-seq in a function declarator is not the
1507     //   same as adding cv-qualification on top of the function type. In the
1508     //   latter case, the cv-qualifiers are ignored.
1509     if (Result->isFunctionType()) {
1510       unsigned DiagId = diag::warn_typecheck_function_qualifiers_ignored;
1511       if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C2y)
1512         DiagId = diag::ext_typecheck_function_qualifiers_unspecified;
1513       diagnoseAndRemoveTypeQualifiers(
1514           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1515           DiagId);
1516       // No diagnostic for 'restrict' or '_Atomic' applied to a
1517       // function type; we'll diagnose those later, in BuildQualifiedType.
1518     }
1519 
1520     // C++11 [dcl.ref]p1:
1521     //   Cv-qualified references are ill-formed except when the
1522     //   cv-qualifiers are introduced through the use of a typedef-name
1523     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1524     //
1525     // There don't appear to be any other contexts in which a cv-qualified
1526     // reference type could be formed, so the 'ill-formed' clause here appears
1527     // to never happen.
1528     if (TypeQuals && Result->isReferenceType()) {
1529       diagnoseAndRemoveTypeQualifiers(
1530           S, DS, TypeQuals, Result,
1531           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1532           diag::warn_typecheck_reference_qualifiers);
1533     }
1534 
1535     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1536     // than once in the same specifier-list or qualifier-list, either directly
1537     // or via one or more typedefs."
1538     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1539         && TypeQuals & Result.getCVRQualifiers()) {
1540       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1541         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1542           << "const";
1543       }
1544 
1545       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1546         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1547           << "volatile";
1548       }
1549 
1550       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1551       // produce a warning in this case.
1552     }
1553 
1554     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1555 
1556     // If adding qualifiers fails, just use the unqualified type.
1557     if (Qualified.isNull())
1558       declarator.setInvalidType(true);
1559     else
1560       Result = Qualified;
1561   }
1562 
1563   if (S.getLangOpts().HLSL)
1564     Result = S.HLSL().ProcessResourceTypeAttributes(Result);
1565 
1566   assert(!Result.isNull() && "This function should not return a null type");
1567   return Result;
1568 }
1569 
1570 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1571   if (Entity)
1572     return Entity.getAsString();
1573 
1574   return "type name";
1575 }
1576 
1577 static bool isDependentOrGNUAutoType(QualType T) {
1578   if (T->isDependentType())
1579     return true;
1580 
1581   const auto *AT = dyn_cast<AutoType>(T);
1582   return AT && AT->isGNUAutoType();
1583 }
1584 
1585 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1586                                   Qualifiers Qs, const DeclSpec *DS) {
1587   if (T.isNull())
1588     return QualType();
1589 
1590   // Ignore any attempt to form a cv-qualified reference.
1591   if (T->isReferenceType()) {
1592     Qs.removeConst();
1593     Qs.removeVolatile();
1594   }
1595 
1596   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1597   // object or incomplete types shall not be restrict-qualified."
1598   if (Qs.hasRestrict()) {
1599     unsigned DiagID = 0;
1600     QualType ProblemTy;
1601 
1602     if (T->isAnyPointerType() || T->isReferenceType() ||
1603         T->isMemberPointerType()) {
1604       QualType EltTy;
1605       if (T->isObjCObjectPointerType())
1606         EltTy = T;
1607       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1608         EltTy = PTy->getPointeeType();
1609       else
1610         EltTy = T->getPointeeType();
1611 
1612       // If we have a pointer or reference, the pointee must have an object
1613       // incomplete type.
1614       if (!EltTy->isIncompleteOrObjectType()) {
1615         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1616         ProblemTy = EltTy;
1617       }
1618     } else if (!isDependentOrGNUAutoType(T)) {
1619       // For an __auto_type variable, we may not have seen the initializer yet
1620       // and so have no idea whether the underlying type is a pointer type or
1621       // not.
1622       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1623       ProblemTy = T;
1624     }
1625 
1626     if (DiagID) {
1627       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1628       Qs.removeRestrict();
1629     }
1630   }
1631 
1632   return Context.getQualifiedType(T, Qs);
1633 }
1634 
1635 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1636                                   unsigned CVRAU, const DeclSpec *DS) {
1637   if (T.isNull())
1638     return QualType();
1639 
1640   // Ignore any attempt to form a cv-qualified reference.
1641   if (T->isReferenceType())
1642     CVRAU &=
1643         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1644 
1645   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1646   // TQ_unaligned;
1647   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1648 
1649   // C11 6.7.3/5:
1650   //   If the same qualifier appears more than once in the same
1651   //   specifier-qualifier-list, either directly or via one or more typedefs,
1652   //   the behavior is the same as if it appeared only once.
1653   //
1654   // It's not specified what happens when the _Atomic qualifier is applied to
1655   // a type specified with the _Atomic specifier, but we assume that this
1656   // should be treated as if the _Atomic qualifier appeared multiple times.
1657   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1658     // C11 6.7.3/5:
1659     //   If other qualifiers appear along with the _Atomic qualifier in a
1660     //   specifier-qualifier-list, the resulting type is the so-qualified
1661     //   atomic type.
1662     //
1663     // Don't need to worry about array types here, since _Atomic can't be
1664     // applied to such types.
1665     SplitQualType Split = T.getSplitUnqualifiedType();
1666     T = BuildAtomicType(QualType(Split.Ty, 0),
1667                         DS ? DS->getAtomicSpecLoc() : Loc);
1668     if (T.isNull())
1669       return T;
1670     Split.Quals.addCVRQualifiers(CVR);
1671     return BuildQualifiedType(T, Loc, Split.Quals);
1672   }
1673 
1674   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1675   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1676   return BuildQualifiedType(T, Loc, Q, DS);
1677 }
1678 
1679 QualType Sema::BuildParenType(QualType T) {
1680   return Context.getParenType(T);
1681 }
1682 
1683 /// Given that we're building a pointer or reference to the given
1684 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1685                                            SourceLocation loc,
1686                                            bool isReference) {
1687   // Bail out if retention is unrequired or already specified.
1688   if (!type->isObjCLifetimeType() ||
1689       type.getObjCLifetime() != Qualifiers::OCL_None)
1690     return type;
1691 
1692   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1693 
1694   // If the object type is const-qualified, we can safely use
1695   // __unsafe_unretained.  This is safe (because there are no read
1696   // barriers), and it'll be safe to coerce anything but __weak* to
1697   // the resulting type.
1698   if (type.isConstQualified()) {
1699     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1700 
1701   // Otherwise, check whether the static type does not require
1702   // retaining.  This currently only triggers for Class (possibly
1703   // protocol-qualifed, and arrays thereof).
1704   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1705     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1706 
1707   // If we are in an unevaluated context, like sizeof, skip adding a
1708   // qualification.
1709   } else if (S.isUnevaluatedContext()) {
1710     return type;
1711 
1712   // If that failed, give an error and recover using __strong.  __strong
1713   // is the option most likely to prevent spurious second-order diagnostics,
1714   // like when binding a reference to a field.
1715   } else {
1716     // These types can show up in private ivars in system headers, so
1717     // we need this to not be an error in those cases.  Instead we
1718     // want to delay.
1719     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1720       S.DelayedDiagnostics.add(
1721           sema::DelayedDiagnostic::makeForbiddenType(loc,
1722               diag::err_arc_indirect_no_ownership, type, isReference));
1723     } else {
1724       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1725     }
1726     implicitLifetime = Qualifiers::OCL_Strong;
1727   }
1728   assert(implicitLifetime && "didn't infer any lifetime!");
1729 
1730   Qualifiers qs;
1731   qs.addObjCLifetime(implicitLifetime);
1732   return S.Context.getQualifiedType(type, qs);
1733 }
1734 
1735 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1736   std::string Quals = FnTy->getMethodQuals().getAsString();
1737 
1738   switch (FnTy->getRefQualifier()) {
1739   case RQ_None:
1740     break;
1741 
1742   case RQ_LValue:
1743     if (!Quals.empty())
1744       Quals += ' ';
1745     Quals += '&';
1746     break;
1747 
1748   case RQ_RValue:
1749     if (!Quals.empty())
1750       Quals += ' ';
1751     Quals += "&&";
1752     break;
1753   }
1754 
1755   return Quals;
1756 }
1757 
1758 namespace {
1759 /// Kinds of declarator that cannot contain a qualified function type.
1760 ///
1761 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1762 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1763 ///     at the topmost level of a type.
1764 ///
1765 /// Parens and member pointers are permitted. We don't diagnose array and
1766 /// function declarators, because they don't allow function types at all.
1767 ///
1768 /// The values of this enum are used in diagnostics.
1769 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1770 } // end anonymous namespace
1771 
1772 /// Check whether the type T is a qualified function type, and if it is,
1773 /// diagnose that it cannot be contained within the given kind of declarator.
1774 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1775                                    QualifiedFunctionKind QFK) {
1776   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1777   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1778   if (!FPT ||
1779       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1780     return false;
1781 
1782   S.Diag(Loc, diag::err_compound_qualified_function_type)
1783     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1784     << getFunctionQualifiersAsString(FPT);
1785   return true;
1786 }
1787 
1788 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1789   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1790   if (!FPT ||
1791       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1792     return false;
1793 
1794   Diag(Loc, diag::err_qualified_function_typeid)
1795       << T << getFunctionQualifiersAsString(FPT);
1796   return true;
1797 }
1798 
1799 // Helper to deduce addr space of a pointee type in OpenCL mode.
1800 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1801   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1802       !PointeeType->isSamplerT() &&
1803       !PointeeType.hasAddressSpace())
1804     PointeeType = S.getASTContext().getAddrSpaceQualType(
1805         PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1806   return PointeeType;
1807 }
1808 
1809 QualType Sema::BuildPointerType(QualType T,
1810                                 SourceLocation Loc, DeclarationName Entity) {
1811   if (T->isReferenceType()) {
1812     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1813     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1814       << getPrintableNameForEntity(Entity) << T;
1815     return QualType();
1816   }
1817 
1818   if (T->isFunctionType() && getLangOpts().OpenCL &&
1819       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1820                                             getLangOpts())) {
1821     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1822     return QualType();
1823   }
1824 
1825   if (getLangOpts().HLSL && Loc.isValid()) {
1826     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1827     return QualType();
1828   }
1829 
1830   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1831     return QualType();
1832 
1833   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1834 
1835   // In ARC, it is forbidden to build pointers to unqualified pointers.
1836   if (getLangOpts().ObjCAutoRefCount)
1837     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1838 
1839   if (getLangOpts().OpenCL)
1840     T = deduceOpenCLPointeeAddrSpace(*this, T);
1841 
1842   // In WebAssembly, pointers to reference types and pointers to tables are
1843   // illegal.
1844   if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1845     if (T.isWebAssemblyReferenceType()) {
1846       Diag(Loc, diag::err_wasm_reference_pr) << 0;
1847       return QualType();
1848     }
1849 
1850     // We need to desugar the type here in case T is a ParenType.
1851     if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1852       Diag(Loc, diag::err_wasm_table_pr) << 0;
1853       return QualType();
1854     }
1855   }
1856 
1857   // Build the pointer type.
1858   return Context.getPointerType(T);
1859 }
1860 
1861 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1862                                   SourceLocation Loc,
1863                                   DeclarationName Entity) {
1864   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1865          "Unresolved overloaded function type");
1866 
1867   // C++0x [dcl.ref]p6:
1868   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1869   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1870   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1871   //   the type "lvalue reference to T", while an attempt to create the type
1872   //   "rvalue reference to cv TR" creates the type TR.
1873   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1874 
1875   // C++ [dcl.ref]p4: There shall be no references to references.
1876   //
1877   // According to C++ DR 106, references to references are only
1878   // diagnosed when they are written directly (e.g., "int & &"),
1879   // but not when they happen via a typedef:
1880   //
1881   //   typedef int& intref;
1882   //   typedef intref& intref2;
1883   //
1884   // Parser::ParseDeclaratorInternal diagnoses the case where
1885   // references are written directly; here, we handle the
1886   // collapsing of references-to-references as described in C++0x.
1887   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1888 
1889   // C++ [dcl.ref]p1:
1890   //   A declarator that specifies the type "reference to cv void"
1891   //   is ill-formed.
1892   if (T->isVoidType()) {
1893     Diag(Loc, diag::err_reference_to_void);
1894     return QualType();
1895   }
1896 
1897   if (getLangOpts().HLSL && Loc.isValid()) {
1898     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1899     return QualType();
1900   }
1901 
1902   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1903     return QualType();
1904 
1905   if (T->isFunctionType() && getLangOpts().OpenCL &&
1906       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1907                                             getLangOpts())) {
1908     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1909     return QualType();
1910   }
1911 
1912   // In ARC, it is forbidden to build references to unqualified pointers.
1913   if (getLangOpts().ObjCAutoRefCount)
1914     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1915 
1916   if (getLangOpts().OpenCL)
1917     T = deduceOpenCLPointeeAddrSpace(*this, T);
1918 
1919   // In WebAssembly, references to reference types and tables are illegal.
1920   if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1921       T.isWebAssemblyReferenceType()) {
1922     Diag(Loc, diag::err_wasm_reference_pr) << 1;
1923     return QualType();
1924   }
1925   if (T->isWebAssemblyTableType()) {
1926     Diag(Loc, diag::err_wasm_table_pr) << 1;
1927     return QualType();
1928   }
1929 
1930   // Handle restrict on references.
1931   if (LValueRef)
1932     return Context.getLValueReferenceType(T, SpelledAsLValue);
1933   return Context.getRValueReferenceType(T);
1934 }
1935 
1936 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1937   return Context.getReadPipeType(T);
1938 }
1939 
1940 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1941   return Context.getWritePipeType(T);
1942 }
1943 
1944 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1945                                SourceLocation Loc) {
1946   if (BitWidth->isInstantiationDependent())
1947     return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1948 
1949   llvm::APSInt Bits(32);
1950   ExprResult ICE =
1951       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1952 
1953   if (ICE.isInvalid())
1954     return QualType();
1955 
1956   size_t NumBits = Bits.getZExtValue();
1957   if (!IsUnsigned && NumBits < 2) {
1958     Diag(Loc, diag::err_bit_int_bad_size) << 0;
1959     return QualType();
1960   }
1961 
1962   if (IsUnsigned && NumBits < 1) {
1963     Diag(Loc, diag::err_bit_int_bad_size) << 1;
1964     return QualType();
1965   }
1966 
1967   const TargetInfo &TI = getASTContext().getTargetInfo();
1968   if (NumBits > TI.getMaxBitIntWidth()) {
1969     Diag(Loc, diag::err_bit_int_max_size)
1970         << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1971     return QualType();
1972   }
1973 
1974   return Context.getBitIntType(IsUnsigned, NumBits);
1975 }
1976 
1977 /// Check whether the specified array bound can be evaluated using the relevant
1978 /// language rules. If so, returns the possibly-converted expression and sets
1979 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1980 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1981 /// ExprError().
1982 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1983                                  llvm::APSInt &SizeVal, unsigned VLADiag,
1984                                  bool VLAIsError) {
1985   if (S.getLangOpts().CPlusPlus14 &&
1986       (VLAIsError ||
1987        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1988     // C++14 [dcl.array]p1:
1989     //   The constant-expression shall be a converted constant expression of
1990     //   type std::size_t.
1991     //
1992     // Don't apply this rule if we might be forming a VLA: in that case, we
1993     // allow non-constant expressions and constant-folding. We only need to use
1994     // the converted constant expression rules (to properly convert the source)
1995     // when the source expression is of class type.
1996     return S.CheckConvertedConstantExpression(
1997         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1998   }
1999 
2000   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2001   // (like gnu99, but not c99) accept any evaluatable value as an extension.
2002   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2003   public:
2004     unsigned VLADiag;
2005     bool VLAIsError;
2006     bool IsVLA = false;
2007 
2008     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2009         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2010 
2011     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2012                                                    QualType T) override {
2013       return S.Diag(Loc, diag::err_array_size_non_int) << T;
2014     }
2015 
2016     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2017                                                SourceLocation Loc) override {
2018       IsVLA = !VLAIsError;
2019       return S.Diag(Loc, VLADiag);
2020     }
2021 
2022     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2023                                              SourceLocation Loc) override {
2024       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2025     }
2026   } Diagnoser(VLADiag, VLAIsError);
2027 
2028   ExprResult R =
2029       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2030   if (Diagnoser.IsVLA)
2031     return ExprResult();
2032   return R;
2033 }
2034 
2035 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2036   EltTy = Context.getBaseElementType(EltTy);
2037   if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2038       EltTy->isUndeducedType())
2039     return true;
2040 
2041   CharUnits Size = Context.getTypeSizeInChars(EltTy);
2042   CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2043 
2044   if (Size.isMultipleOf(Alignment))
2045     return true;
2046 
2047   Diag(Loc, diag::err_array_element_alignment)
2048       << EltTy << Size.getQuantity() << Alignment.getQuantity();
2049   return false;
2050 }
2051 
2052 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2053                               Expr *ArraySize, unsigned Quals,
2054                               SourceRange Brackets, DeclarationName Entity) {
2055 
2056   SourceLocation Loc = Brackets.getBegin();
2057   if (getLangOpts().CPlusPlus) {
2058     // C++ [dcl.array]p1:
2059     //   T is called the array element type; this type shall not be a reference
2060     //   type, the (possibly cv-qualified) type void, a function type or an
2061     //   abstract class type.
2062     //
2063     // C++ [dcl.array]p3:
2064     //   When several "array of" specifications are adjacent, [...] only the
2065     //   first of the constant expressions that specify the bounds of the arrays
2066     //   may be omitted.
2067     //
2068     // Note: function types are handled in the common path with C.
2069     if (T->isReferenceType()) {
2070       Diag(Loc, diag::err_illegal_decl_array_of_references)
2071       << getPrintableNameForEntity(Entity) << T;
2072       return QualType();
2073     }
2074 
2075     if (T->isVoidType() || T->isIncompleteArrayType()) {
2076       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2077       return QualType();
2078     }
2079 
2080     if (RequireNonAbstractType(Brackets.getBegin(), T,
2081                                diag::err_array_of_abstract_type))
2082       return QualType();
2083 
2084     // Mentioning a member pointer type for an array type causes us to lock in
2085     // an inheritance model, even if it's inside an unused typedef.
2086     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2087       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2088         if (!MPTy->getClass()->isDependentType())
2089           (void)isCompleteType(Loc, T);
2090 
2091   } else {
2092     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2093     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2094     if (!T.isWebAssemblyReferenceType() &&
2095         RequireCompleteSizedType(Loc, T,
2096                                  diag::err_array_incomplete_or_sizeless_type))
2097       return QualType();
2098   }
2099 
2100   // Multi-dimensional arrays of WebAssembly references are not allowed.
2101   if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2102     const auto *ATy = dyn_cast<ArrayType>(T);
2103     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2104       Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2105       return QualType();
2106     }
2107   }
2108 
2109   if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2110     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2111     return QualType();
2112   }
2113 
2114   if (T->isFunctionType()) {
2115     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2116       << getPrintableNameForEntity(Entity) << T;
2117     return QualType();
2118   }
2119 
2120   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2121     // If the element type is a struct or union that contains a variadic
2122     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2123     if (EltTy->getDecl()->hasFlexibleArrayMember())
2124       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2125   } else if (T->isObjCObjectType()) {
2126     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2127     return QualType();
2128   }
2129 
2130   if (!checkArrayElementAlignment(T, Loc))
2131     return QualType();
2132 
2133   // Do placeholder conversions on the array size expression.
2134   if (ArraySize && ArraySize->hasPlaceholderType()) {
2135     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2136     if (Result.isInvalid()) return QualType();
2137     ArraySize = Result.get();
2138   }
2139 
2140   // Do lvalue-to-rvalue conversions on the array size expression.
2141   if (ArraySize && !ArraySize->isPRValue()) {
2142     ExprResult Result = DefaultLvalueConversion(ArraySize);
2143     if (Result.isInvalid())
2144       return QualType();
2145 
2146     ArraySize = Result.get();
2147   }
2148 
2149   // C99 6.7.5.2p1: The size expression shall have integer type.
2150   // C++11 allows contextual conversions to such types.
2151   if (!getLangOpts().CPlusPlus11 &&
2152       ArraySize && !ArraySize->isTypeDependent() &&
2153       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2154     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2155         << ArraySize->getType() << ArraySize->getSourceRange();
2156     return QualType();
2157   }
2158 
2159   auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2160     if (!ArraySize)
2161       return false;
2162 
2163     // If the array size expression is a conditional expression whose branches
2164     // are both integer constant expressions, one negative and one positive,
2165     // then it's assumed to be like an old-style static assertion. e.g.,
2166     //   int old_style_assert[expr ? 1 : -1];
2167     // We will accept any integer constant expressions instead of assuming the
2168     // values 1 and -1 are always used.
2169     if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2170             ArraySize->IgnoreParenImpCasts())) {
2171       std::optional<llvm::APSInt> LHS =
2172           CondExpr->getLHS()->getIntegerConstantExpr(Context);
2173       std::optional<llvm::APSInt> RHS =
2174           CondExpr->getRHS()->getIntegerConstantExpr(Context);
2175       return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2176     }
2177     return false;
2178   };
2179 
2180   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2181   unsigned VLADiag;
2182   bool VLAIsError;
2183   if (getLangOpts().OpenCL) {
2184     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2185     VLADiag = diag::err_opencl_vla;
2186     VLAIsError = true;
2187   } else if (getLangOpts().C99) {
2188     VLADiag = diag::warn_vla_used;
2189     VLAIsError = false;
2190   } else if (isSFINAEContext()) {
2191     VLADiag = diag::err_vla_in_sfinae;
2192     VLAIsError = true;
2193   } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2194     VLADiag = diag::err_openmp_vla_in_task_untied;
2195     VLAIsError = true;
2196   } else if (getLangOpts().CPlusPlus) {
2197     if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2198       VLADiag = getLangOpts().GNUMode
2199                     ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2200                     : diag::ext_vla_cxx_static_assert;
2201     else
2202       VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2203                                       : diag::ext_vla_cxx;
2204     VLAIsError = false;
2205   } else {
2206     VLADiag = diag::ext_vla;
2207     VLAIsError = false;
2208   }
2209 
2210   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2211   if (!ArraySize) {
2212     if (ASM == ArraySizeModifier::Star) {
2213       Diag(Loc, VLADiag);
2214       if (VLAIsError)
2215         return QualType();
2216 
2217       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2218     } else {
2219       T = Context.getIncompleteArrayType(T, ASM, Quals);
2220     }
2221   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2222     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2223   } else {
2224     ExprResult R =
2225         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2226     if (R.isInvalid())
2227       return QualType();
2228 
2229     if (!R.isUsable()) {
2230       // C99: an array with a non-ICE size is a VLA. We accept any expression
2231       // that we can fold to a non-zero positive value as a non-VLA as an
2232       // extension.
2233       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2234     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2235                !T->isConstantSizeType()) {
2236       // C99: an array with an element type that has a non-constant-size is a
2237       // VLA.
2238       // FIXME: Add a note to explain why this isn't a VLA.
2239       Diag(Loc, VLADiag);
2240       if (VLAIsError)
2241         return QualType();
2242       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2243     } else {
2244       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2245       // have a value greater than zero.
2246       // In C++, this follows from narrowing conversions being disallowed.
2247       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2248         if (Entity)
2249           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2250               << getPrintableNameForEntity(Entity)
2251               << ArraySize->getSourceRange();
2252         else
2253           Diag(ArraySize->getBeginLoc(),
2254                diag::err_typecheck_negative_array_size)
2255               << ArraySize->getSourceRange();
2256         return QualType();
2257       }
2258       if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2259         // GCC accepts zero sized static arrays. We allow them when
2260         // we're not in a SFINAE context.
2261         Diag(ArraySize->getBeginLoc(),
2262              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2263                                : diag::ext_typecheck_zero_array_size)
2264             << 0 << ArraySize->getSourceRange();
2265       }
2266 
2267       // Is the array too large?
2268       unsigned ActiveSizeBits =
2269           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2270            !T->isIncompleteType() && !T->isUndeducedType())
2271               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2272               : ConstVal.getActiveBits();
2273       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2274         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2275             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2276         return QualType();
2277       }
2278 
2279       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2280     }
2281   }
2282 
2283   if (T->isVariableArrayType()) {
2284     if (!Context.getTargetInfo().isVLASupported()) {
2285       // CUDA device code and some other targets don't support VLAs.
2286       bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2287       targetDiag(Loc,
2288                  IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2289           << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2290     } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2291       // VLAs are supported on this target, but we may need to do delayed
2292       // checking that the VLA is not being used within a coroutine.
2293       FSI->setHasVLA(Loc);
2294     }
2295   }
2296 
2297   // If this is not C99, diagnose array size modifiers on non-VLAs.
2298   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2299       (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2300     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2301                                       : diag::ext_c99_array_usage)
2302         << llvm::to_underlying(ASM);
2303   }
2304 
2305   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2306   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2307   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2308   if (getLangOpts().OpenCL) {
2309     const QualType ArrType = Context.getBaseElementType(T);
2310     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2311         ArrType->isSamplerT() || ArrType->isImageType()) {
2312       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2313       return QualType();
2314     }
2315   }
2316 
2317   return T;
2318 }
2319 
2320 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2321                                SourceLocation AttrLoc) {
2322   // The base type must be integer (not Boolean or enumeration) or float, and
2323   // can't already be a vector.
2324   if ((!CurType->isDependentType() &&
2325        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2326         (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2327        !CurType->isBitIntType()) ||
2328       CurType->isArrayType()) {
2329     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2330     return QualType();
2331   }
2332   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2333   if (const auto *BIT = CurType->getAs<BitIntType>()) {
2334     unsigned NumBits = BIT->getNumBits();
2335     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2336       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2337           << (NumBits < 8);
2338       return QualType();
2339     }
2340   }
2341 
2342   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2343     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2344                                           VectorKind::Generic);
2345 
2346   std::optional<llvm::APSInt> VecSize =
2347       SizeExpr->getIntegerConstantExpr(Context);
2348   if (!VecSize) {
2349     Diag(AttrLoc, diag::err_attribute_argument_type)
2350         << "vector_size" << AANT_ArgumentIntegerConstant
2351         << SizeExpr->getSourceRange();
2352     return QualType();
2353   }
2354 
2355   if (CurType->isDependentType())
2356     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2357                                           VectorKind::Generic);
2358 
2359   // vecSize is specified in bytes - convert to bits.
2360   if (!VecSize->isIntN(61)) {
2361     // Bit size will overflow uint64.
2362     Diag(AttrLoc, diag::err_attribute_size_too_large)
2363         << SizeExpr->getSourceRange() << "vector";
2364     return QualType();
2365   }
2366   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2367   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2368 
2369   if (VectorSizeBits == 0) {
2370     Diag(AttrLoc, diag::err_attribute_zero_size)
2371         << SizeExpr->getSourceRange() << "vector";
2372     return QualType();
2373   }
2374 
2375   if (!TypeSize || VectorSizeBits % TypeSize) {
2376     Diag(AttrLoc, diag::err_attribute_invalid_size)
2377         << SizeExpr->getSourceRange();
2378     return QualType();
2379   }
2380 
2381   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2382     Diag(AttrLoc, diag::err_attribute_size_too_large)
2383         << SizeExpr->getSourceRange() << "vector";
2384     return QualType();
2385   }
2386 
2387   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2388                                VectorKind::Generic);
2389 }
2390 
2391 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2392                                   SourceLocation AttrLoc) {
2393   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2394   // in conjunction with complex types (pointers, arrays, functions, etc.).
2395   //
2396   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2397   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2398   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2399   // of bool aren't allowed.
2400   //
2401   // We explicitly allow bool elements in ext_vector_type for C/C++.
2402   bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2403   if ((!T->isDependentType() && !T->isIntegerType() &&
2404        !T->isRealFloatingType()) ||
2405       (IsNoBoolVecLang && T->isBooleanType())) {
2406     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2407     return QualType();
2408   }
2409 
2410   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2411   if (T->isBitIntType()) {
2412     unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2413     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2414       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2415           << (NumBits < 8);
2416       return QualType();
2417     }
2418   }
2419 
2420   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2421     std::optional<llvm::APSInt> vecSize =
2422         ArraySize->getIntegerConstantExpr(Context);
2423     if (!vecSize) {
2424       Diag(AttrLoc, diag::err_attribute_argument_type)
2425         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2426         << ArraySize->getSourceRange();
2427       return QualType();
2428     }
2429 
2430     if (!vecSize->isIntN(32)) {
2431       Diag(AttrLoc, diag::err_attribute_size_too_large)
2432           << ArraySize->getSourceRange() << "vector";
2433       return QualType();
2434     }
2435     // Unlike gcc's vector_size attribute, the size is specified as the
2436     // number of elements, not the number of bytes.
2437     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2438 
2439     if (vectorSize == 0) {
2440       Diag(AttrLoc, diag::err_attribute_zero_size)
2441           << ArraySize->getSourceRange() << "vector";
2442       return QualType();
2443     }
2444 
2445     return Context.getExtVectorType(T, vectorSize);
2446   }
2447 
2448   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2449 }
2450 
2451 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2452                                SourceLocation AttrLoc) {
2453   assert(Context.getLangOpts().MatrixTypes &&
2454          "Should never build a matrix type when it is disabled");
2455 
2456   // Check element type, if it is not dependent.
2457   if (!ElementTy->isDependentType() &&
2458       !MatrixType::isValidElementType(ElementTy)) {
2459     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2460     return QualType();
2461   }
2462 
2463   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2464       NumRows->isValueDependent() || NumCols->isValueDependent())
2465     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2466                                                AttrLoc);
2467 
2468   std::optional<llvm::APSInt> ValueRows =
2469       NumRows->getIntegerConstantExpr(Context);
2470   std::optional<llvm::APSInt> ValueColumns =
2471       NumCols->getIntegerConstantExpr(Context);
2472 
2473   auto const RowRange = NumRows->getSourceRange();
2474   auto const ColRange = NumCols->getSourceRange();
2475 
2476   // Both are row and column expressions are invalid.
2477   if (!ValueRows && !ValueColumns) {
2478     Diag(AttrLoc, diag::err_attribute_argument_type)
2479         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2480         << ColRange;
2481     return QualType();
2482   }
2483 
2484   // Only the row expression is invalid.
2485   if (!ValueRows) {
2486     Diag(AttrLoc, diag::err_attribute_argument_type)
2487         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2488     return QualType();
2489   }
2490 
2491   // Only the column expression is invalid.
2492   if (!ValueColumns) {
2493     Diag(AttrLoc, diag::err_attribute_argument_type)
2494         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2495     return QualType();
2496   }
2497 
2498   // Check the matrix dimensions.
2499   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2500   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2501   if (MatrixRows == 0 && MatrixColumns == 0) {
2502     Diag(AttrLoc, diag::err_attribute_zero_size)
2503         << "matrix" << RowRange << ColRange;
2504     return QualType();
2505   }
2506   if (MatrixRows == 0) {
2507     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2508     return QualType();
2509   }
2510   if (MatrixColumns == 0) {
2511     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2512     return QualType();
2513   }
2514   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2515     Diag(AttrLoc, diag::err_attribute_size_too_large)
2516         << RowRange << "matrix row";
2517     return QualType();
2518   }
2519   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2520     Diag(AttrLoc, diag::err_attribute_size_too_large)
2521         << ColRange << "matrix column";
2522     return QualType();
2523   }
2524   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2525 }
2526 
2527 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2528   if (T->isArrayType() || T->isFunctionType()) {
2529     Diag(Loc, diag::err_func_returning_array_function)
2530       << T->isFunctionType() << T;
2531     return true;
2532   }
2533 
2534   // Functions cannot return half FP.
2535   if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2536       !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2537     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2538       FixItHint::CreateInsertion(Loc, "*");
2539     return true;
2540   }
2541 
2542   // Methods cannot return interface types. All ObjC objects are
2543   // passed by reference.
2544   if (T->isObjCObjectType()) {
2545     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2546         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2547     return true;
2548   }
2549 
2550   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2551       T.hasNonTrivialToPrimitiveCopyCUnion())
2552     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2553                           NTCUK_Destruct|NTCUK_Copy);
2554 
2555   // C++2a [dcl.fct]p12:
2556   //   A volatile-qualified return type is deprecated
2557   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2558     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2559 
2560   if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2561     return true;
2562   return false;
2563 }
2564 
2565 /// Check the extended parameter information.  Most of the necessary
2566 /// checking should occur when applying the parameter attribute; the
2567 /// only other checks required are positional restrictions.
2568 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2569                     const FunctionProtoType::ExtProtoInfo &EPI,
2570                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2571   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2572 
2573   bool emittedError = false;
2574   auto actualCC = EPI.ExtInfo.getCC();
2575   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2576   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2577     bool isCompatible =
2578         (required == RequiredCC::OnlySwift)
2579             ? (actualCC == CC_Swift)
2580             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2581     if (isCompatible || emittedError)
2582       return;
2583     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2584         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2585         << (required == RequiredCC::OnlySwift);
2586     emittedError = true;
2587   };
2588   for (size_t paramIndex = 0, numParams = paramTypes.size();
2589           paramIndex != numParams; ++paramIndex) {
2590     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2591     // Nothing interesting to check for orindary-ABI parameters.
2592     case ParameterABI::Ordinary:
2593     case ParameterABI::HLSLOut:
2594     case ParameterABI::HLSLInOut:
2595       continue;
2596 
2597     // swift_indirect_result parameters must be a prefix of the function
2598     // arguments.
2599     case ParameterABI::SwiftIndirectResult:
2600       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2601       if (paramIndex != 0 &&
2602           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2603             != ParameterABI::SwiftIndirectResult) {
2604         S.Diag(getParamLoc(paramIndex),
2605                diag::err_swift_indirect_result_not_first);
2606       }
2607       continue;
2608 
2609     case ParameterABI::SwiftContext:
2610       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2611       continue;
2612 
2613     // SwiftAsyncContext is not limited to swiftasynccall functions.
2614     case ParameterABI::SwiftAsyncContext:
2615       continue;
2616 
2617     // swift_error parameters must be preceded by a swift_context parameter.
2618     case ParameterABI::SwiftErrorResult:
2619       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2620       if (paramIndex == 0 ||
2621           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2622               ParameterABI::SwiftContext) {
2623         S.Diag(getParamLoc(paramIndex),
2624                diag::err_swift_error_result_not_after_swift_context);
2625       }
2626       continue;
2627     }
2628     llvm_unreachable("bad ABI kind");
2629   }
2630 }
2631 
2632 QualType Sema::BuildFunctionType(QualType T,
2633                                  MutableArrayRef<QualType> ParamTypes,
2634                                  SourceLocation Loc, DeclarationName Entity,
2635                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2636   bool Invalid = false;
2637 
2638   Invalid |= CheckFunctionReturnType(T, Loc);
2639 
2640   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2641     // FIXME: Loc is too inprecise here, should use proper locations for args.
2642     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2643     if (ParamType->isVoidType()) {
2644       Diag(Loc, diag::err_param_with_void_type);
2645       Invalid = true;
2646     } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2647                !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2648       // Disallow half FP arguments.
2649       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2650         FixItHint::CreateInsertion(Loc, "*");
2651       Invalid = true;
2652     } else if (ParamType->isWebAssemblyTableType()) {
2653       Diag(Loc, diag::err_wasm_table_as_function_parameter);
2654       Invalid = true;
2655     }
2656 
2657     // C++2a [dcl.fct]p4:
2658     //   A parameter with volatile-qualified type is deprecated
2659     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2660       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2661 
2662     ParamTypes[Idx] = ParamType;
2663   }
2664 
2665   if (EPI.ExtParameterInfos) {
2666     checkExtParameterInfos(*this, ParamTypes, EPI,
2667                            [=](unsigned i) { return Loc; });
2668   }
2669 
2670   if (EPI.ExtInfo.getProducesResult()) {
2671     // This is just a warning, so we can't fail to build if we see it.
2672     ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2673   }
2674 
2675   if (Invalid)
2676     return QualType();
2677 
2678   return Context.getFunctionType(T, ParamTypes, EPI);
2679 }
2680 
2681 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2682                                       SourceLocation Loc,
2683                                       DeclarationName Entity) {
2684   // Verify that we're not building a pointer to pointer to function with
2685   // exception specification.
2686   if (CheckDistantExceptionSpec(T)) {
2687     Diag(Loc, diag::err_distant_exception_spec);
2688     return QualType();
2689   }
2690 
2691   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2692   //   with reference type, or "cv void."
2693   if (T->isReferenceType()) {
2694     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2695       << getPrintableNameForEntity(Entity) << T;
2696     return QualType();
2697   }
2698 
2699   if (T->isVoidType()) {
2700     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2701       << getPrintableNameForEntity(Entity);
2702     return QualType();
2703   }
2704 
2705   if (!Class->isDependentType() && !Class->isRecordType()) {
2706     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2707     return QualType();
2708   }
2709 
2710   if (T->isFunctionType() && getLangOpts().OpenCL &&
2711       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2712                                             getLangOpts())) {
2713     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2714     return QualType();
2715   }
2716 
2717   if (getLangOpts().HLSL && Loc.isValid()) {
2718     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2719     return QualType();
2720   }
2721 
2722   // Adjust the default free function calling convention to the default method
2723   // calling convention.
2724   bool IsCtorOrDtor =
2725       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2726       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2727   if (T->isFunctionType())
2728     adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2729 
2730   return Context.getMemberPointerType(T, Class.getTypePtr());
2731 }
2732 
2733 QualType Sema::BuildBlockPointerType(QualType T,
2734                                      SourceLocation Loc,
2735                                      DeclarationName Entity) {
2736   if (!T->isFunctionType()) {
2737     Diag(Loc, diag::err_nonfunction_block_type);
2738     return QualType();
2739   }
2740 
2741   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2742     return QualType();
2743 
2744   if (getLangOpts().OpenCL)
2745     T = deduceOpenCLPointeeAddrSpace(*this, T);
2746 
2747   return Context.getBlockPointerType(T);
2748 }
2749 
2750 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2751   QualType QT = Ty.get();
2752   if (QT.isNull()) {
2753     if (TInfo) *TInfo = nullptr;
2754     return QualType();
2755   }
2756 
2757   TypeSourceInfo *DI = nullptr;
2758   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2759     QT = LIT->getType();
2760     DI = LIT->getTypeSourceInfo();
2761   }
2762 
2763   if (TInfo) *TInfo = DI;
2764   return QT;
2765 }
2766 
2767 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2768                                             Qualifiers::ObjCLifetime ownership,
2769                                             unsigned chunkIndex);
2770 
2771 /// Given that this is the declaration of a parameter under ARC,
2772 /// attempt to infer attributes and such for pointer-to-whatever
2773 /// types.
2774 static void inferARCWriteback(TypeProcessingState &state,
2775                               QualType &declSpecType) {
2776   Sema &S = state.getSema();
2777   Declarator &declarator = state.getDeclarator();
2778 
2779   // TODO: should we care about decl qualifiers?
2780 
2781   // Check whether the declarator has the expected form.  We walk
2782   // from the inside out in order to make the block logic work.
2783   unsigned outermostPointerIndex = 0;
2784   bool isBlockPointer = false;
2785   unsigned numPointers = 0;
2786   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2787     unsigned chunkIndex = i;
2788     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2789     switch (chunk.Kind) {
2790     case DeclaratorChunk::Paren:
2791       // Ignore parens.
2792       break;
2793 
2794     case DeclaratorChunk::Reference:
2795     case DeclaratorChunk::Pointer:
2796       // Count the number of pointers.  Treat references
2797       // interchangeably as pointers; if they're mis-ordered, normal
2798       // type building will discover that.
2799       outermostPointerIndex = chunkIndex;
2800       numPointers++;
2801       break;
2802 
2803     case DeclaratorChunk::BlockPointer:
2804       // If we have a pointer to block pointer, that's an acceptable
2805       // indirect reference; anything else is not an application of
2806       // the rules.
2807       if (numPointers != 1) return;
2808       numPointers++;
2809       outermostPointerIndex = chunkIndex;
2810       isBlockPointer = true;
2811 
2812       // We don't care about pointer structure in return values here.
2813       goto done;
2814 
2815     case DeclaratorChunk::Array: // suppress if written (id[])?
2816     case DeclaratorChunk::Function:
2817     case DeclaratorChunk::MemberPointer:
2818     case DeclaratorChunk::Pipe:
2819       return;
2820     }
2821   }
2822  done:
2823 
2824   // If we have *one* pointer, then we want to throw the qualifier on
2825   // the declaration-specifiers, which means that it needs to be a
2826   // retainable object type.
2827   if (numPointers == 1) {
2828     // If it's not a retainable object type, the rule doesn't apply.
2829     if (!declSpecType->isObjCRetainableType()) return;
2830 
2831     // If it already has lifetime, don't do anything.
2832     if (declSpecType.getObjCLifetime()) return;
2833 
2834     // Otherwise, modify the type in-place.
2835     Qualifiers qs;
2836 
2837     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2838       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2839     else
2840       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2841     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2842 
2843   // If we have *two* pointers, then we want to throw the qualifier on
2844   // the outermost pointer.
2845   } else if (numPointers == 2) {
2846     // If we don't have a block pointer, we need to check whether the
2847     // declaration-specifiers gave us something that will turn into a
2848     // retainable object pointer after we slap the first pointer on it.
2849     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2850       return;
2851 
2852     // Look for an explicit lifetime attribute there.
2853     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2854     if (chunk.Kind != DeclaratorChunk::Pointer &&
2855         chunk.Kind != DeclaratorChunk::BlockPointer)
2856       return;
2857     for (const ParsedAttr &AL : chunk.getAttrs())
2858       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2859         return;
2860 
2861     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2862                                           outermostPointerIndex);
2863 
2864   // Any other number of pointers/references does not trigger the rule.
2865   } else return;
2866 
2867   // TODO: mark whether we did this inference?
2868 }
2869 
2870 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2871                                      SourceLocation FallbackLoc,
2872                                      SourceLocation ConstQualLoc,
2873                                      SourceLocation VolatileQualLoc,
2874                                      SourceLocation RestrictQualLoc,
2875                                      SourceLocation AtomicQualLoc,
2876                                      SourceLocation UnalignedQualLoc) {
2877   if (!Quals)
2878     return;
2879 
2880   struct Qual {
2881     const char *Name;
2882     unsigned Mask;
2883     SourceLocation Loc;
2884   } const QualKinds[5] = {
2885     { "const", DeclSpec::TQ_const, ConstQualLoc },
2886     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2887     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2888     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2889     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2890   };
2891 
2892   SmallString<32> QualStr;
2893   unsigned NumQuals = 0;
2894   SourceLocation Loc;
2895   FixItHint FixIts[5];
2896 
2897   // Build a string naming the redundant qualifiers.
2898   for (auto &E : QualKinds) {
2899     if (Quals & E.Mask) {
2900       if (!QualStr.empty()) QualStr += ' ';
2901       QualStr += E.Name;
2902 
2903       // If we have a location for the qualifier, offer a fixit.
2904       SourceLocation QualLoc = E.Loc;
2905       if (QualLoc.isValid()) {
2906         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2907         if (Loc.isInvalid() ||
2908             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2909           Loc = QualLoc;
2910       }
2911 
2912       ++NumQuals;
2913     }
2914   }
2915 
2916   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2917     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2918 }
2919 
2920 // Diagnose pointless type qualifiers on the return type of a function.
2921 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2922                                                   Declarator &D,
2923                                                   unsigned FunctionChunkIndex) {
2924   const DeclaratorChunk::FunctionTypeInfo &FTI =
2925       D.getTypeObject(FunctionChunkIndex).Fun;
2926   if (FTI.hasTrailingReturnType()) {
2927     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2928                                 RetTy.getLocalCVRQualifiers(),
2929                                 FTI.getTrailingReturnTypeLoc());
2930     return;
2931   }
2932 
2933   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2934                 End = D.getNumTypeObjects();
2935        OuterChunkIndex != End; ++OuterChunkIndex) {
2936     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2937     switch (OuterChunk.Kind) {
2938     case DeclaratorChunk::Paren:
2939       continue;
2940 
2941     case DeclaratorChunk::Pointer: {
2942       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2943       S.diagnoseIgnoredQualifiers(
2944           diag::warn_qual_return_type,
2945           PTI.TypeQuals,
2946           SourceLocation(),
2947           PTI.ConstQualLoc,
2948           PTI.VolatileQualLoc,
2949           PTI.RestrictQualLoc,
2950           PTI.AtomicQualLoc,
2951           PTI.UnalignedQualLoc);
2952       return;
2953     }
2954 
2955     case DeclaratorChunk::Function:
2956     case DeclaratorChunk::BlockPointer:
2957     case DeclaratorChunk::Reference:
2958     case DeclaratorChunk::Array:
2959     case DeclaratorChunk::MemberPointer:
2960     case DeclaratorChunk::Pipe:
2961       // FIXME: We can't currently provide an accurate source location and a
2962       // fix-it hint for these.
2963       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2964       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2965                                   RetTy.getCVRQualifiers() | AtomicQual,
2966                                   D.getIdentifierLoc());
2967       return;
2968     }
2969 
2970     llvm_unreachable("unknown declarator chunk kind");
2971   }
2972 
2973   // If the qualifiers come from a conversion function type, don't diagnose
2974   // them -- they're not necessarily redundant, since such a conversion
2975   // operator can be explicitly called as "x.operator const int()".
2976   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2977     return;
2978 
2979   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2980   // which are present there.
2981   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2982                               D.getDeclSpec().getTypeQualifiers(),
2983                               D.getIdentifierLoc(),
2984                               D.getDeclSpec().getConstSpecLoc(),
2985                               D.getDeclSpec().getVolatileSpecLoc(),
2986                               D.getDeclSpec().getRestrictSpecLoc(),
2987                               D.getDeclSpec().getAtomicSpecLoc(),
2988                               D.getDeclSpec().getUnalignedSpecLoc());
2989 }
2990 
2991 static std::pair<QualType, TypeSourceInfo *>
2992 InventTemplateParameter(TypeProcessingState &state, QualType T,
2993                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
2994                         InventedTemplateParameterInfo &Info) {
2995   Sema &S = state.getSema();
2996   Declarator &D = state.getDeclarator();
2997 
2998   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2999   const unsigned AutoParameterPosition = Info.TemplateParams.size();
3000   const bool IsParameterPack = D.hasEllipsis();
3001 
3002   // If auto is mentioned in a lambda parameter or abbreviated function
3003   // template context, convert it to a template parameter type.
3004 
3005   // Create the TemplateTypeParmDecl here to retrieve the corresponding
3006   // template parameter type. Template parameters are temporarily added
3007   // to the TU until the associated TemplateDecl is created.
3008   TemplateTypeParmDecl *InventedTemplateParam =
3009       TemplateTypeParmDecl::Create(
3010           S.Context, S.Context.getTranslationUnitDecl(),
3011           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3012           /*NameLoc=*/D.getIdentifierLoc(),
3013           TemplateParameterDepth, AutoParameterPosition,
3014           S.InventAbbreviatedTemplateParameterTypeName(
3015               D.getIdentifier(), AutoParameterPosition), false,
3016           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3017   InventedTemplateParam->setImplicit();
3018   Info.TemplateParams.push_back(InventedTemplateParam);
3019 
3020   // Attach type constraints to the new parameter.
3021   if (Auto->isConstrained()) {
3022     if (TrailingTSI) {
3023       // The 'auto' appears in a trailing return type we've already built;
3024       // extract its type constraints to attach to the template parameter.
3025       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3026       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3027       bool Invalid = false;
3028       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3029         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3030             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3031                                               Sema::UPPC_TypeConstraint))
3032           Invalid = true;
3033         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3034       }
3035 
3036       if (!Invalid) {
3037         S.AttachTypeConstraint(
3038             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3039             AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3040             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3041             InventedTemplateParam,
3042             S.Context.getTypeDeclType(InventedTemplateParam),
3043             D.getEllipsisLoc());
3044       }
3045     } else {
3046       // The 'auto' appears in the decl-specifiers; we've not finished forming
3047       // TypeSourceInfo for it yet.
3048       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3049       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3050                                                 TemplateId->RAngleLoc);
3051       bool Invalid = false;
3052       if (TemplateId->LAngleLoc.isValid()) {
3053         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3054                                            TemplateId->NumArgs);
3055         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3056 
3057         if (D.getEllipsisLoc().isInvalid()) {
3058           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3059             if (S.DiagnoseUnexpandedParameterPack(Arg,
3060                                                   Sema::UPPC_TypeConstraint)) {
3061               Invalid = true;
3062               break;
3063             }
3064           }
3065         }
3066       }
3067       if (!Invalid) {
3068         UsingShadowDecl *USD =
3069             TemplateId->Template.get().getAsUsingShadowDecl();
3070         auto *CD =
3071             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3072         S.AttachTypeConstraint(
3073             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3074             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3075                                 TemplateId->TemplateNameLoc),
3076             CD,
3077             /*FoundDecl=*/
3078             USD ? cast<NamedDecl>(USD) : CD,
3079             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3080             InventedTemplateParam,
3081             S.Context.getTypeDeclType(InventedTemplateParam),
3082             D.getEllipsisLoc());
3083       }
3084     }
3085   }
3086 
3087   // Replace the 'auto' in the function parameter with this invented
3088   // template type parameter.
3089   // FIXME: Retain some type sugar to indicate that this was written
3090   //  as 'auto'?
3091   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3092   QualType NewT = state.ReplaceAutoType(T, Replacement);
3093   TypeSourceInfo *NewTSI =
3094       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3095                   : nullptr;
3096   return {NewT, NewTSI};
3097 }
3098 
3099 static TypeSourceInfo *
3100 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3101                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3102 
3103 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3104                                              TypeSourceInfo *&ReturnTypeInfo) {
3105   Sema &SemaRef = state.getSema();
3106   Declarator &D = state.getDeclarator();
3107   QualType T;
3108   ReturnTypeInfo = nullptr;
3109 
3110   // The TagDecl owned by the DeclSpec.
3111   TagDecl *OwnedTagDecl = nullptr;
3112 
3113   switch (D.getName().getKind()) {
3114   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3115   case UnqualifiedIdKind::IK_OperatorFunctionId:
3116   case UnqualifiedIdKind::IK_Identifier:
3117   case UnqualifiedIdKind::IK_LiteralOperatorId:
3118   case UnqualifiedIdKind::IK_TemplateId:
3119     T = ConvertDeclSpecToType(state);
3120 
3121     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3122       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3123       // Owned declaration is embedded in declarator.
3124       OwnedTagDecl->setEmbeddedInDeclarator(true);
3125     }
3126     break;
3127 
3128   case UnqualifiedIdKind::IK_ConstructorName:
3129   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3130   case UnqualifiedIdKind::IK_DestructorName:
3131     // Constructors and destructors don't have return types. Use
3132     // "void" instead.
3133     T = SemaRef.Context.VoidTy;
3134     processTypeAttrs(state, T, TAL_DeclSpec,
3135                      D.getMutableDeclSpec().getAttributes());
3136     break;
3137 
3138   case UnqualifiedIdKind::IK_DeductionGuideName:
3139     // Deduction guides have a trailing return type and no type in their
3140     // decl-specifier sequence. Use a placeholder return type for now.
3141     T = SemaRef.Context.DependentTy;
3142     break;
3143 
3144   case UnqualifiedIdKind::IK_ConversionFunctionId:
3145     // The result type of a conversion function is the type that it
3146     // converts to.
3147     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3148                                   &ReturnTypeInfo);
3149     break;
3150   }
3151 
3152   // Note: We don't need to distribute declaration attributes (i.e.
3153   // D.getDeclarationAttributes()) because those are always C++11 attributes,
3154   // and those don't get distributed.
3155   distributeTypeAttrsFromDeclarator(
3156       state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3157 
3158   // Find the deduced type in this type. Look in the trailing return type if we
3159   // have one, otherwise in the DeclSpec type.
3160   // FIXME: The standard wording doesn't currently describe this.
3161   DeducedType *Deduced = T->getContainedDeducedType();
3162   bool DeducedIsTrailingReturnType = false;
3163   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3164     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3165     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3166     DeducedIsTrailingReturnType = true;
3167   }
3168 
3169   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3170   if (Deduced) {
3171     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3172     int Error = -1;
3173 
3174     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3175     // class template argument deduction)?
3176     bool IsCXXAutoType =
3177         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3178     bool IsDeducedReturnType = false;
3179 
3180     switch (D.getContext()) {
3181     case DeclaratorContext::LambdaExpr:
3182       // Declared return type of a lambda-declarator is implicit and is always
3183       // 'auto'.
3184       break;
3185     case DeclaratorContext::ObjCParameter:
3186     case DeclaratorContext::ObjCResult:
3187       Error = 0;
3188       break;
3189     case DeclaratorContext::RequiresExpr:
3190       Error = 22;
3191       break;
3192     case DeclaratorContext::Prototype:
3193     case DeclaratorContext::LambdaExprParameter: {
3194       InventedTemplateParameterInfo *Info = nullptr;
3195       if (D.getContext() == DeclaratorContext::Prototype) {
3196         // With concepts we allow 'auto' in function parameters.
3197         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3198             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3199           Error = 0;
3200           break;
3201         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3202           Error = 21;
3203           break;
3204         }
3205 
3206         Info = &SemaRef.InventedParameterInfos.back();
3207       } else {
3208         // In C++14, generic lambdas allow 'auto' in their parameters.
3209         if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3210             Auto->getKeyword() == AutoTypeKeyword::Auto) {
3211           Error = 25; // auto not allowed in lambda parameter (before C++14)
3212           break;
3213         } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3214           Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3215                       // parameter
3216           break;
3217         }
3218         Info = SemaRef.getCurLambda();
3219         assert(Info && "No LambdaScopeInfo on the stack!");
3220       }
3221 
3222       // We'll deal with inventing template parameters for 'auto' in trailing
3223       // return types when we pick up the trailing return type when processing
3224       // the function chunk.
3225       if (!DeducedIsTrailingReturnType)
3226         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3227       break;
3228     }
3229     case DeclaratorContext::Member: {
3230       if (D.isStaticMember() || D.isFunctionDeclarator())
3231         break;
3232       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3233       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3234         Error = 6; // Interface member.
3235       } else {
3236         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3237         case TagTypeKind::Enum:
3238           llvm_unreachable("unhandled tag kind");
3239         case TagTypeKind::Struct:
3240           Error = Cxx ? 1 : 2; /* Struct member */
3241           break;
3242         case TagTypeKind::Union:
3243           Error = Cxx ? 3 : 4; /* Union member */
3244           break;
3245         case TagTypeKind::Class:
3246           Error = 5; /* Class member */
3247           break;
3248         case TagTypeKind::Interface:
3249           Error = 6; /* Interface member */
3250           break;
3251         }
3252       }
3253       if (D.getDeclSpec().isFriendSpecified())
3254         Error = 20; // Friend type
3255       break;
3256     }
3257     case DeclaratorContext::CXXCatch:
3258     case DeclaratorContext::ObjCCatch:
3259       Error = 7; // Exception declaration
3260       break;
3261     case DeclaratorContext::TemplateParam:
3262       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3263           !SemaRef.getLangOpts().CPlusPlus20)
3264         Error = 19; // Template parameter (until C++20)
3265       else if (!SemaRef.getLangOpts().CPlusPlus17)
3266         Error = 8; // Template parameter (until C++17)
3267       break;
3268     case DeclaratorContext::BlockLiteral:
3269       Error = 9; // Block literal
3270       break;
3271     case DeclaratorContext::TemplateArg:
3272       // Within a template argument list, a deduced template specialization
3273       // type will be reinterpreted as a template template argument.
3274       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3275           !D.getNumTypeObjects() &&
3276           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3277         break;
3278       [[fallthrough]];
3279     case DeclaratorContext::TemplateTypeArg:
3280       Error = 10; // Template type argument
3281       break;
3282     case DeclaratorContext::AliasDecl:
3283     case DeclaratorContext::AliasTemplate:
3284       Error = 12; // Type alias
3285       break;
3286     case DeclaratorContext::TrailingReturn:
3287     case DeclaratorContext::TrailingReturnVar:
3288       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3289         Error = 13; // Function return type
3290       IsDeducedReturnType = true;
3291       break;
3292     case DeclaratorContext::ConversionId:
3293       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3294         Error = 14; // conversion-type-id
3295       IsDeducedReturnType = true;
3296       break;
3297     case DeclaratorContext::FunctionalCast:
3298       if (isa<DeducedTemplateSpecializationType>(Deduced))
3299         break;
3300       if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3301           !Auto->isDecltypeAuto())
3302         break; // auto(x)
3303       [[fallthrough]];
3304     case DeclaratorContext::TypeName:
3305     case DeclaratorContext::Association:
3306       Error = 15; // Generic
3307       break;
3308     case DeclaratorContext::File:
3309     case DeclaratorContext::Block:
3310     case DeclaratorContext::ForInit:
3311     case DeclaratorContext::SelectionInit:
3312     case DeclaratorContext::Condition:
3313       // FIXME: P0091R3 (erroneously) does not permit class template argument
3314       // deduction in conditions, for-init-statements, and other declarations
3315       // that are not simple-declarations.
3316       break;
3317     case DeclaratorContext::CXXNew:
3318       // FIXME: P0091R3 does not permit class template argument deduction here,
3319       // but we follow GCC and allow it anyway.
3320       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3321         Error = 17; // 'new' type
3322       break;
3323     case DeclaratorContext::KNRTypeList:
3324       Error = 18; // K&R function parameter
3325       break;
3326     }
3327 
3328     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3329       Error = 11;
3330 
3331     // In Objective-C it is an error to use 'auto' on a function declarator
3332     // (and everywhere for '__auto_type').
3333     if (D.isFunctionDeclarator() &&
3334         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3335       Error = 13;
3336 
3337     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3338     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3339       AutoRange = D.getName().getSourceRange();
3340 
3341     if (Error != -1) {
3342       unsigned Kind;
3343       if (Auto) {
3344         switch (Auto->getKeyword()) {
3345         case AutoTypeKeyword::Auto: Kind = 0; break;
3346         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3347         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3348         }
3349       } else {
3350         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3351                "unknown auto type");
3352         Kind = 3;
3353       }
3354 
3355       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3356       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3357 
3358       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3359         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3360         << QualType(Deduced, 0) << AutoRange;
3361       if (auto *TD = TN.getAsTemplateDecl())
3362         SemaRef.NoteTemplateLocation(*TD);
3363 
3364       T = SemaRef.Context.IntTy;
3365       D.setInvalidType(true);
3366     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3367       // If there was a trailing return type, we already got
3368       // warn_cxx98_compat_trailing_return_type in the parser.
3369       SemaRef.Diag(AutoRange.getBegin(),
3370                    D.getContext() == DeclaratorContext::LambdaExprParameter
3371                        ? diag::warn_cxx11_compat_generic_lambda
3372                    : IsDeducedReturnType
3373                        ? diag::warn_cxx11_compat_deduced_return_type
3374                        : diag::warn_cxx98_compat_auto_type_specifier)
3375           << AutoRange;
3376     }
3377   }
3378 
3379   if (SemaRef.getLangOpts().CPlusPlus &&
3380       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3381     // Check the contexts where C++ forbids the declaration of a new class
3382     // or enumeration in a type-specifier-seq.
3383     unsigned DiagID = 0;
3384     switch (D.getContext()) {
3385     case DeclaratorContext::TrailingReturn:
3386     case DeclaratorContext::TrailingReturnVar:
3387       // Class and enumeration definitions are syntactically not allowed in
3388       // trailing return types.
3389       llvm_unreachable("parser should not have allowed this");
3390       break;
3391     case DeclaratorContext::File:
3392     case DeclaratorContext::Member:
3393     case DeclaratorContext::Block:
3394     case DeclaratorContext::ForInit:
3395     case DeclaratorContext::SelectionInit:
3396     case DeclaratorContext::BlockLiteral:
3397     case DeclaratorContext::LambdaExpr:
3398       // C++11 [dcl.type]p3:
3399       //   A type-specifier-seq shall not define a class or enumeration unless
3400       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3401       //   the declaration of a template-declaration.
3402     case DeclaratorContext::AliasDecl:
3403       break;
3404     case DeclaratorContext::AliasTemplate:
3405       DiagID = diag::err_type_defined_in_alias_template;
3406       break;
3407     case DeclaratorContext::TypeName:
3408     case DeclaratorContext::FunctionalCast:
3409     case DeclaratorContext::ConversionId:
3410     case DeclaratorContext::TemplateParam:
3411     case DeclaratorContext::CXXNew:
3412     case DeclaratorContext::CXXCatch:
3413     case DeclaratorContext::ObjCCatch:
3414     case DeclaratorContext::TemplateArg:
3415     case DeclaratorContext::TemplateTypeArg:
3416     case DeclaratorContext::Association:
3417       DiagID = diag::err_type_defined_in_type_specifier;
3418       break;
3419     case DeclaratorContext::Prototype:
3420     case DeclaratorContext::LambdaExprParameter:
3421     case DeclaratorContext::ObjCParameter:
3422     case DeclaratorContext::ObjCResult:
3423     case DeclaratorContext::KNRTypeList:
3424     case DeclaratorContext::RequiresExpr:
3425       // C++ [dcl.fct]p6:
3426       //   Types shall not be defined in return or parameter types.
3427       DiagID = diag::err_type_defined_in_param_type;
3428       break;
3429     case DeclaratorContext::Condition:
3430       // C++ 6.4p2:
3431       // The type-specifier-seq shall not contain typedef and shall not declare
3432       // a new class or enumeration.
3433       DiagID = diag::err_type_defined_in_condition;
3434       break;
3435     }
3436 
3437     if (DiagID != 0) {
3438       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3439           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3440       D.setInvalidType(true);
3441     }
3442   }
3443 
3444   assert(!T.isNull() && "This function should not return a null type");
3445   return T;
3446 }
3447 
3448 /// Produce an appropriate diagnostic for an ambiguity between a function
3449 /// declarator and a C++ direct-initializer.
3450 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3451                                        DeclaratorChunk &DeclType, QualType RT) {
3452   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3453   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3454 
3455   // If the return type is void there is no ambiguity.
3456   if (RT->isVoidType())
3457     return;
3458 
3459   // An initializer for a non-class type can have at most one argument.
3460   if (!RT->isRecordType() && FTI.NumParams > 1)
3461     return;
3462 
3463   // An initializer for a reference must have exactly one argument.
3464   if (RT->isReferenceType() && FTI.NumParams != 1)
3465     return;
3466 
3467   // Only warn if this declarator is declaring a function at block scope, and
3468   // doesn't have a storage class (such as 'extern') specified.
3469   if (!D.isFunctionDeclarator() ||
3470       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3471       !S.CurContext->isFunctionOrMethod() ||
3472       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3473     return;
3474 
3475   // Inside a condition, a direct initializer is not permitted. We allow one to
3476   // be parsed in order to give better diagnostics in condition parsing.
3477   if (D.getContext() == DeclaratorContext::Condition)
3478     return;
3479 
3480   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3481 
3482   S.Diag(DeclType.Loc,
3483          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3484                        : diag::warn_empty_parens_are_function_decl)
3485       << ParenRange;
3486 
3487   // If the declaration looks like:
3488   //   T var1,
3489   //   f();
3490   // and name lookup finds a function named 'f', then the ',' was
3491   // probably intended to be a ';'.
3492   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3493     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3494     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3495     if (Comma.getFileID() != Name.getFileID() ||
3496         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3497       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3498                           Sema::LookupOrdinaryName);
3499       if (S.LookupName(Result, S.getCurScope()))
3500         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3501           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3502           << D.getIdentifier();
3503       Result.suppressDiagnostics();
3504     }
3505   }
3506 
3507   if (FTI.NumParams > 0) {
3508     // For a declaration with parameters, eg. "T var(T());", suggest adding
3509     // parens around the first parameter to turn the declaration into a
3510     // variable declaration.
3511     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3512     SourceLocation B = Range.getBegin();
3513     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3514     // FIXME: Maybe we should suggest adding braces instead of parens
3515     // in C++11 for classes that don't have an initializer_list constructor.
3516     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3517       << FixItHint::CreateInsertion(B, "(")
3518       << FixItHint::CreateInsertion(E, ")");
3519   } else {
3520     // For a declaration without parameters, eg. "T var();", suggest replacing
3521     // the parens with an initializer to turn the declaration into a variable
3522     // declaration.
3523     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3524 
3525     // Empty parens mean value-initialization, and no parens mean
3526     // default initialization. These are equivalent if the default
3527     // constructor is user-provided or if zero-initialization is a
3528     // no-op.
3529     if (RD && RD->hasDefinition() &&
3530         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3531       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3532         << FixItHint::CreateRemoval(ParenRange);
3533     else {
3534       std::string Init =
3535           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3536       if (Init.empty() && S.LangOpts.CPlusPlus11)
3537         Init = "{}";
3538       if (!Init.empty())
3539         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3540           << FixItHint::CreateReplacement(ParenRange, Init);
3541     }
3542   }
3543 }
3544 
3545 /// Produce an appropriate diagnostic for a declarator with top-level
3546 /// parentheses.
3547 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3548   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3549   assert(Paren.Kind == DeclaratorChunk::Paren &&
3550          "do not have redundant top-level parentheses");
3551 
3552   // This is a syntactic check; we're not interested in cases that arise
3553   // during template instantiation.
3554   if (S.inTemplateInstantiation())
3555     return;
3556 
3557   // Check whether this could be intended to be a construction of a temporary
3558   // object in C++ via a function-style cast.
3559   bool CouldBeTemporaryObject =
3560       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3561       !D.isInvalidType() && D.getIdentifier() &&
3562       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3563       (T->isRecordType() || T->isDependentType()) &&
3564       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3565 
3566   bool StartsWithDeclaratorId = true;
3567   for (auto &C : D.type_objects()) {
3568     switch (C.Kind) {
3569     case DeclaratorChunk::Paren:
3570       if (&C == &Paren)
3571         continue;
3572       [[fallthrough]];
3573     case DeclaratorChunk::Pointer:
3574       StartsWithDeclaratorId = false;
3575       continue;
3576 
3577     case DeclaratorChunk::Array:
3578       if (!C.Arr.NumElts)
3579         CouldBeTemporaryObject = false;
3580       continue;
3581 
3582     case DeclaratorChunk::Reference:
3583       // FIXME: Suppress the warning here if there is no initializer; we're
3584       // going to give an error anyway.
3585       // We assume that something like 'T (&x) = y;' is highly likely to not
3586       // be intended to be a temporary object.
3587       CouldBeTemporaryObject = false;
3588       StartsWithDeclaratorId = false;
3589       continue;
3590 
3591     case DeclaratorChunk::Function:
3592       // In a new-type-id, function chunks require parentheses.
3593       if (D.getContext() == DeclaratorContext::CXXNew)
3594         return;
3595       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3596       // redundant-parens warning, but we don't know whether the function
3597       // chunk was syntactically valid as an expression here.
3598       CouldBeTemporaryObject = false;
3599       continue;
3600 
3601     case DeclaratorChunk::BlockPointer:
3602     case DeclaratorChunk::MemberPointer:
3603     case DeclaratorChunk::Pipe:
3604       // These cannot appear in expressions.
3605       CouldBeTemporaryObject = false;
3606       StartsWithDeclaratorId = false;
3607       continue;
3608     }
3609   }
3610 
3611   // FIXME: If there is an initializer, assume that this is not intended to be
3612   // a construction of a temporary object.
3613 
3614   // Check whether the name has already been declared; if not, this is not a
3615   // function-style cast.
3616   if (CouldBeTemporaryObject) {
3617     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3618                         Sema::LookupOrdinaryName);
3619     if (!S.LookupName(Result, S.getCurScope()))
3620       CouldBeTemporaryObject = false;
3621     Result.suppressDiagnostics();
3622   }
3623 
3624   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3625 
3626   if (!CouldBeTemporaryObject) {
3627     // If we have A (::B), the parentheses affect the meaning of the program.
3628     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3629     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3630     // formally unambiguous.
3631     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3632       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3633            NNS = NNS->getPrefix()) {
3634         if (NNS->getKind() == NestedNameSpecifier::Global)
3635           return;
3636       }
3637     }
3638 
3639     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3640         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3641         << FixItHint::CreateRemoval(Paren.EndLoc);
3642     return;
3643   }
3644 
3645   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3646       << ParenRange << D.getIdentifier();
3647   auto *RD = T->getAsCXXRecordDecl();
3648   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3649     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3650         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3651         << D.getIdentifier();
3652   // FIXME: A cast to void is probably a better suggestion in cases where it's
3653   // valid (when there is no initializer and we're not in a condition).
3654   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3655       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3656       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3657   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3658       << FixItHint::CreateRemoval(Paren.Loc)
3659       << FixItHint::CreateRemoval(Paren.EndLoc);
3660 }
3661 
3662 /// Helper for figuring out the default CC for a function declarator type.  If
3663 /// this is the outermost chunk, then we can determine the CC from the
3664 /// declarator context.  If not, then this could be either a member function
3665 /// type or normal function type.
3666 static CallingConv getCCForDeclaratorChunk(
3667     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3668     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3669   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3670 
3671   // Check for an explicit CC attribute.
3672   for (const ParsedAttr &AL : AttrList) {
3673     switch (AL.getKind()) {
3674     CALLING_CONV_ATTRS_CASELIST : {
3675       // Ignore attributes that don't validate or can't apply to the
3676       // function type.  We'll diagnose the failure to apply them in
3677       // handleFunctionTypeAttr.
3678       CallingConv CC;
3679       if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3680                                   S.CUDA().IdentifyTarget(D.getAttributes())) &&
3681           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3682         return CC;
3683       }
3684       break;
3685     }
3686 
3687     default:
3688       break;
3689     }
3690   }
3691 
3692   bool IsCXXInstanceMethod = false;
3693 
3694   if (S.getLangOpts().CPlusPlus) {
3695     // Look inwards through parentheses to see if this chunk will form a
3696     // member pointer type or if we're the declarator.  Any type attributes
3697     // between here and there will override the CC we choose here.
3698     unsigned I = ChunkIndex;
3699     bool FoundNonParen = false;
3700     while (I && !FoundNonParen) {
3701       --I;
3702       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3703         FoundNonParen = true;
3704     }
3705 
3706     if (FoundNonParen) {
3707       // If we're not the declarator, we're a regular function type unless we're
3708       // in a member pointer.
3709       IsCXXInstanceMethod =
3710           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3711     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3712       // This can only be a call operator for a lambda, which is an instance
3713       // method, unless explicitly specified as 'static'.
3714       IsCXXInstanceMethod =
3715           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3716     } else {
3717       // We're the innermost decl chunk, so must be a function declarator.
3718       assert(D.isFunctionDeclarator());
3719 
3720       // If we're inside a record, we're declaring a method, but it could be
3721       // explicitly or implicitly static.
3722       IsCXXInstanceMethod =
3723           D.isFirstDeclarationOfMember() &&
3724           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3725           !D.isStaticMember();
3726     }
3727   }
3728 
3729   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3730                                                          IsCXXInstanceMethod);
3731 
3732   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3733   // and AMDGPU targets, hence it cannot be treated as a calling
3734   // convention attribute. This is the simplest place to infer
3735   // calling convention for OpenCL kernels.
3736   if (S.getLangOpts().OpenCL) {
3737     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3738       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3739         CC = CC_OpenCLKernel;
3740         break;
3741       }
3742     }
3743   } else if (S.getLangOpts().CUDA) {
3744     // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make
3745     // sure the kernels will be marked with the right calling convention so that
3746     // they will be visible by the APIs that ingest SPIR-V. We do not do this
3747     // when targeting AMDGCNSPIRV, as it does not rely on OpenCL.
3748     llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3749     if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) {
3750       for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3751         if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3752           CC = CC_OpenCLKernel;
3753           break;
3754         }
3755       }
3756     }
3757   }
3758 
3759   return CC;
3760 }
3761 
3762 namespace {
3763   /// A simple notion of pointer kinds, which matches up with the various
3764   /// pointer declarators.
3765   enum class SimplePointerKind {
3766     Pointer,
3767     BlockPointer,
3768     MemberPointer,
3769     Array,
3770   };
3771 } // end anonymous namespace
3772 
3773 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3774   switch (nullability) {
3775   case NullabilityKind::NonNull:
3776     if (!Ident__Nonnull)
3777       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3778     return Ident__Nonnull;
3779 
3780   case NullabilityKind::Nullable:
3781     if (!Ident__Nullable)
3782       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3783     return Ident__Nullable;
3784 
3785   case NullabilityKind::NullableResult:
3786     if (!Ident__Nullable_result)
3787       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3788     return Ident__Nullable_result;
3789 
3790   case NullabilityKind::Unspecified:
3791     if (!Ident__Null_unspecified)
3792       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3793     return Ident__Null_unspecified;
3794   }
3795   llvm_unreachable("Unknown nullability kind.");
3796 }
3797 
3798 /// Check whether there is a nullability attribute of any kind in the given
3799 /// attribute list.
3800 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3801   for (const ParsedAttr &AL : attrs) {
3802     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3803         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3804         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3805         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3806       return true;
3807   }
3808 
3809   return false;
3810 }
3811 
3812 namespace {
3813   /// Describes the kind of a pointer a declarator describes.
3814   enum class PointerDeclaratorKind {
3815     // Not a pointer.
3816     NonPointer,
3817     // Single-level pointer.
3818     SingleLevelPointer,
3819     // Multi-level pointer (of any pointer kind).
3820     MultiLevelPointer,
3821     // CFFooRef*
3822     MaybePointerToCFRef,
3823     // CFErrorRef*
3824     CFErrorRefPointer,
3825     // NSError**
3826     NSErrorPointerPointer,
3827   };
3828 
3829   /// Describes a declarator chunk wrapping a pointer that marks inference as
3830   /// unexpected.
3831   // These values must be kept in sync with diagnostics.
3832   enum class PointerWrappingDeclaratorKind {
3833     /// Pointer is top-level.
3834     None = -1,
3835     /// Pointer is an array element.
3836     Array = 0,
3837     /// Pointer is the referent type of a C++ reference.
3838     Reference = 1
3839   };
3840 } // end anonymous namespace
3841 
3842 /// Classify the given declarator, whose type-specified is \c type, based on
3843 /// what kind of pointer it refers to.
3844 ///
3845 /// This is used to determine the default nullability.
3846 static PointerDeclaratorKind
3847 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3848                           PointerWrappingDeclaratorKind &wrappingKind) {
3849   unsigned numNormalPointers = 0;
3850 
3851   // For any dependent type, we consider it a non-pointer.
3852   if (type->isDependentType())
3853     return PointerDeclaratorKind::NonPointer;
3854 
3855   // Look through the declarator chunks to identify pointers.
3856   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3857     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3858     switch (chunk.Kind) {
3859     case DeclaratorChunk::Array:
3860       if (numNormalPointers == 0)
3861         wrappingKind = PointerWrappingDeclaratorKind::Array;
3862       break;
3863 
3864     case DeclaratorChunk::Function:
3865     case DeclaratorChunk::Pipe:
3866       break;
3867 
3868     case DeclaratorChunk::BlockPointer:
3869     case DeclaratorChunk::MemberPointer:
3870       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3871                                    : PointerDeclaratorKind::SingleLevelPointer;
3872 
3873     case DeclaratorChunk::Paren:
3874       break;
3875 
3876     case DeclaratorChunk::Reference:
3877       if (numNormalPointers == 0)
3878         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3879       break;
3880 
3881     case DeclaratorChunk::Pointer:
3882       ++numNormalPointers;
3883       if (numNormalPointers > 2)
3884         return PointerDeclaratorKind::MultiLevelPointer;
3885       break;
3886     }
3887   }
3888 
3889   // Then, dig into the type specifier itself.
3890   unsigned numTypeSpecifierPointers = 0;
3891   do {
3892     // Decompose normal pointers.
3893     if (auto ptrType = type->getAs<PointerType>()) {
3894       ++numNormalPointers;
3895 
3896       if (numNormalPointers > 2)
3897         return PointerDeclaratorKind::MultiLevelPointer;
3898 
3899       type = ptrType->getPointeeType();
3900       ++numTypeSpecifierPointers;
3901       continue;
3902     }
3903 
3904     // Decompose block pointers.
3905     if (type->getAs<BlockPointerType>()) {
3906       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3907                                    : PointerDeclaratorKind::SingleLevelPointer;
3908     }
3909 
3910     // Decompose member pointers.
3911     if (type->getAs<MemberPointerType>()) {
3912       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3913                                    : PointerDeclaratorKind::SingleLevelPointer;
3914     }
3915 
3916     // Look at Objective-C object pointers.
3917     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3918       ++numNormalPointers;
3919       ++numTypeSpecifierPointers;
3920 
3921       // If this is NSError**, report that.
3922       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3923         if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3924             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3925           return PointerDeclaratorKind::NSErrorPointerPointer;
3926         }
3927       }
3928 
3929       break;
3930     }
3931 
3932     // Look at Objective-C class types.
3933     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3934       if (objcClass->getInterface()->getIdentifier() ==
3935           S.ObjC().getNSErrorIdent()) {
3936         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3937           return PointerDeclaratorKind::NSErrorPointerPointer;
3938       }
3939 
3940       break;
3941     }
3942 
3943     // If at this point we haven't seen a pointer, we won't see one.
3944     if (numNormalPointers == 0)
3945       return PointerDeclaratorKind::NonPointer;
3946 
3947     if (auto recordType = type->getAs<RecordType>()) {
3948       RecordDecl *recordDecl = recordType->getDecl();
3949 
3950       // If this is CFErrorRef*, report it as such.
3951       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3952           S.ObjC().isCFError(recordDecl)) {
3953         return PointerDeclaratorKind::CFErrorRefPointer;
3954       }
3955       break;
3956     }
3957 
3958     break;
3959   } while (true);
3960 
3961   switch (numNormalPointers) {
3962   case 0:
3963     return PointerDeclaratorKind::NonPointer;
3964 
3965   case 1:
3966     return PointerDeclaratorKind::SingleLevelPointer;
3967 
3968   case 2:
3969     return PointerDeclaratorKind::MaybePointerToCFRef;
3970 
3971   default:
3972     return PointerDeclaratorKind::MultiLevelPointer;
3973   }
3974 }
3975 
3976 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3977                                                     SourceLocation loc) {
3978   // If we're anywhere in a function, method, or closure context, don't perform
3979   // completeness checks.
3980   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3981     if (ctx->isFunctionOrMethod())
3982       return FileID();
3983 
3984     if (ctx->isFileContext())
3985       break;
3986   }
3987 
3988   // We only care about the expansion location.
3989   loc = S.SourceMgr.getExpansionLoc(loc);
3990   FileID file = S.SourceMgr.getFileID(loc);
3991   if (file.isInvalid())
3992     return FileID();
3993 
3994   // Retrieve file information.
3995   bool invalid = false;
3996   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3997   if (invalid || !sloc.isFile())
3998     return FileID();
3999 
4000   // We don't want to perform completeness checks on the main file or in
4001   // system headers.
4002   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4003   if (fileInfo.getIncludeLoc().isInvalid())
4004     return FileID();
4005   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4006       S.Diags.getSuppressSystemWarnings()) {
4007     return FileID();
4008   }
4009 
4010   return file;
4011 }
4012 
4013 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4014 /// taking into account whitespace before and after.
4015 template <typename DiagBuilderT>
4016 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4017                              SourceLocation PointerLoc,
4018                              NullabilityKind Nullability) {
4019   assert(PointerLoc.isValid());
4020   if (PointerLoc.isMacroID())
4021     return;
4022 
4023   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4024   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4025     return;
4026 
4027   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4028   if (!NextChar)
4029     return;
4030 
4031   SmallString<32> InsertionTextBuf{" "};
4032   InsertionTextBuf += getNullabilitySpelling(Nullability);
4033   InsertionTextBuf += " ";
4034   StringRef InsertionText = InsertionTextBuf.str();
4035 
4036   if (isWhitespace(*NextChar)) {
4037     InsertionText = InsertionText.drop_back();
4038   } else if (NextChar[-1] == '[') {
4039     if (NextChar[0] == ']')
4040       InsertionText = InsertionText.drop_back().drop_front();
4041     else
4042       InsertionText = InsertionText.drop_front();
4043   } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4044              !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4045     InsertionText = InsertionText.drop_back().drop_front();
4046   }
4047 
4048   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4049 }
4050 
4051 static void emitNullabilityConsistencyWarning(Sema &S,
4052                                               SimplePointerKind PointerKind,
4053                                               SourceLocation PointerLoc,
4054                                               SourceLocation PointerEndLoc) {
4055   assert(PointerLoc.isValid());
4056 
4057   if (PointerKind == SimplePointerKind::Array) {
4058     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4059   } else {
4060     S.Diag(PointerLoc, diag::warn_nullability_missing)
4061       << static_cast<unsigned>(PointerKind);
4062   }
4063 
4064   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4065   if (FixItLoc.isMacroID())
4066     return;
4067 
4068   auto addFixIt = [&](NullabilityKind Nullability) {
4069     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4070     Diag << static_cast<unsigned>(Nullability);
4071     Diag << static_cast<unsigned>(PointerKind);
4072     fixItNullability(S, Diag, FixItLoc, Nullability);
4073   };
4074   addFixIt(NullabilityKind::Nullable);
4075   addFixIt(NullabilityKind::NonNull);
4076 }
4077 
4078 /// Complains about missing nullability if the file containing \p pointerLoc
4079 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4080 /// pragma).
4081 ///
4082 /// If the file has \e not seen other uses of nullability, this particular
4083 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4084 static void
4085 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4086                             SourceLocation pointerLoc,
4087                             SourceLocation pointerEndLoc = SourceLocation()) {
4088   // Determine which file we're performing consistency checking for.
4089   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4090   if (file.isInvalid())
4091     return;
4092 
4093   // If we haven't seen any type nullability in this file, we won't warn now
4094   // about anything.
4095   FileNullability &fileNullability = S.NullabilityMap[file];
4096   if (!fileNullability.SawTypeNullability) {
4097     // If this is the first pointer declarator in the file, and the appropriate
4098     // warning is on, record it in case we need to diagnose it retroactively.
4099     diag::kind diagKind;
4100     if (pointerKind == SimplePointerKind::Array)
4101       diagKind = diag::warn_nullability_missing_array;
4102     else
4103       diagKind = diag::warn_nullability_missing;
4104 
4105     if (fileNullability.PointerLoc.isInvalid() &&
4106         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4107       fileNullability.PointerLoc = pointerLoc;
4108       fileNullability.PointerEndLoc = pointerEndLoc;
4109       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4110     }
4111 
4112     return;
4113   }
4114 
4115   // Complain about missing nullability.
4116   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4117 }
4118 
4119 /// Marks that a nullability feature has been used in the file containing
4120 /// \p loc.
4121 ///
4122 /// If this file already had pointer types in it that were missing nullability,
4123 /// the first such instance is retroactively diagnosed.
4124 ///
4125 /// \sa checkNullabilityConsistency
4126 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4127   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4128   if (file.isInvalid())
4129     return;
4130 
4131   FileNullability &fileNullability = S.NullabilityMap[file];
4132   if (fileNullability.SawTypeNullability)
4133     return;
4134   fileNullability.SawTypeNullability = true;
4135 
4136   // If we haven't seen any type nullability before, now we have. Retroactively
4137   // diagnose the first unannotated pointer, if there was one.
4138   if (fileNullability.PointerLoc.isInvalid())
4139     return;
4140 
4141   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4142   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4143                                     fileNullability.PointerEndLoc);
4144 }
4145 
4146 /// Returns true if any of the declarator chunks before \p endIndex include a
4147 /// level of indirection: array, pointer, reference, or pointer-to-member.
4148 ///
4149 /// Because declarator chunks are stored in outer-to-inner order, testing
4150 /// every chunk before \p endIndex is testing all chunks that embed the current
4151 /// chunk as part of their type.
4152 ///
4153 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4154 /// end index, in which case all chunks are tested.
4155 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4156   unsigned i = endIndex;
4157   while (i != 0) {
4158     // Walk outwards along the declarator chunks.
4159     --i;
4160     const DeclaratorChunk &DC = D.getTypeObject(i);
4161     switch (DC.Kind) {
4162     case DeclaratorChunk::Paren:
4163       break;
4164     case DeclaratorChunk::Array:
4165     case DeclaratorChunk::Pointer:
4166     case DeclaratorChunk::Reference:
4167     case DeclaratorChunk::MemberPointer:
4168       return true;
4169     case DeclaratorChunk::Function:
4170     case DeclaratorChunk::BlockPointer:
4171     case DeclaratorChunk::Pipe:
4172       // These are invalid anyway, so just ignore.
4173       break;
4174     }
4175   }
4176   return false;
4177 }
4178 
4179 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4180   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4181           Chunk.Kind == DeclaratorChunk::Array);
4182 }
4183 
4184 template<typename AttrT>
4185 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4186   AL.setUsedAsTypeAttr();
4187   return ::new (Ctx) AttrT(Ctx, AL);
4188 }
4189 
4190 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4191                                    NullabilityKind NK) {
4192   switch (NK) {
4193   case NullabilityKind::NonNull:
4194     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4195 
4196   case NullabilityKind::Nullable:
4197     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4198 
4199   case NullabilityKind::NullableResult:
4200     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4201 
4202   case NullabilityKind::Unspecified:
4203     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4204   }
4205   llvm_unreachable("unknown NullabilityKind");
4206 }
4207 
4208 // Diagnose whether this is a case with the multiple addr spaces.
4209 // Returns true if this is an invalid case.
4210 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4211 // by qualifiers for two or more different address spaces."
4212 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4213                                                 LangAS ASNew,
4214                                                 SourceLocation AttrLoc) {
4215   if (ASOld != LangAS::Default) {
4216     if (ASOld != ASNew) {
4217       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4218       return true;
4219     }
4220     // Emit a warning if they are identical; it's likely unintended.
4221     S.Diag(AttrLoc,
4222            diag::warn_attribute_address_multiple_identical_qualifiers);
4223   }
4224   return false;
4225 }
4226 
4227 // Whether this is a type broadly expected to have nullability attached.
4228 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4229 // will be diagnosed with -Wnullability-completeness.
4230 static bool shouldHaveNullability(QualType T) {
4231   return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4232          // For now, do not infer/require nullability on C++ smart pointers.
4233          // It's unclear whether the pragma's behavior is useful for C++.
4234          // e.g. treating type-aliases and template-type-parameters differently
4235          // from types of declarations can be surprising.
4236          !isa<RecordType, TemplateSpecializationType>(
4237              T->getCanonicalTypeInternal());
4238 }
4239 
4240 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4241                                                 QualType declSpecType,
4242                                                 TypeSourceInfo *TInfo) {
4243   // The TypeSourceInfo that this function returns will not be a null type.
4244   // If there is an error, this function will fill in a dummy type as fallback.
4245   QualType T = declSpecType;
4246   Declarator &D = state.getDeclarator();
4247   Sema &S = state.getSema();
4248   ASTContext &Context = S.Context;
4249   const LangOptions &LangOpts = S.getLangOpts();
4250 
4251   // The name we're declaring, if any.
4252   DeclarationName Name;
4253   if (D.getIdentifier())
4254     Name = D.getIdentifier();
4255 
4256   // Does this declaration declare a typedef-name?
4257   bool IsTypedefName =
4258       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4259       D.getContext() == DeclaratorContext::AliasDecl ||
4260       D.getContext() == DeclaratorContext::AliasTemplate;
4261 
4262   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4263   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4264       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4265        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4266 
4267   // If T is 'decltype(auto)', the only declarators we can have are parens
4268   // and at most one function declarator if this is a function declaration.
4269   // If T is a deduced class template specialization type, we can have no
4270   // declarator chunks at all.
4271   if (auto *DT = T->getAs<DeducedType>()) {
4272     const AutoType *AT = T->getAs<AutoType>();
4273     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4274     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4275       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4276         unsigned Index = E - I - 1;
4277         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4278         unsigned DiagId = IsClassTemplateDeduction
4279                               ? diag::err_deduced_class_template_compound_type
4280                               : diag::err_decltype_auto_compound_type;
4281         unsigned DiagKind = 0;
4282         switch (DeclChunk.Kind) {
4283         case DeclaratorChunk::Paren:
4284           // FIXME: Rejecting this is a little silly.
4285           if (IsClassTemplateDeduction) {
4286             DiagKind = 4;
4287             break;
4288           }
4289           continue;
4290         case DeclaratorChunk::Function: {
4291           if (IsClassTemplateDeduction) {
4292             DiagKind = 3;
4293             break;
4294           }
4295           unsigned FnIndex;
4296           if (D.isFunctionDeclarationContext() &&
4297               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4298             continue;
4299           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4300           break;
4301         }
4302         case DeclaratorChunk::Pointer:
4303         case DeclaratorChunk::BlockPointer:
4304         case DeclaratorChunk::MemberPointer:
4305           DiagKind = 0;
4306           break;
4307         case DeclaratorChunk::Reference:
4308           DiagKind = 1;
4309           break;
4310         case DeclaratorChunk::Array:
4311           DiagKind = 2;
4312           break;
4313         case DeclaratorChunk::Pipe:
4314           break;
4315         }
4316 
4317         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4318         D.setInvalidType(true);
4319         break;
4320       }
4321     }
4322   }
4323 
4324   // Determine whether we should infer _Nonnull on pointer types.
4325   std::optional<NullabilityKind> inferNullability;
4326   bool inferNullabilityCS = false;
4327   bool inferNullabilityInnerOnly = false;
4328   bool inferNullabilityInnerOnlyComplete = false;
4329 
4330   // Are we in an assume-nonnull region?
4331   bool inAssumeNonNullRegion = false;
4332   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4333   if (assumeNonNullLoc.isValid()) {
4334     inAssumeNonNullRegion = true;
4335     recordNullabilitySeen(S, assumeNonNullLoc);
4336   }
4337 
4338   // Whether to complain about missing nullability specifiers or not.
4339   enum {
4340     /// Never complain.
4341     CAMN_No,
4342     /// Complain on the inner pointers (but not the outermost
4343     /// pointer).
4344     CAMN_InnerPointers,
4345     /// Complain about any pointers that don't have nullability
4346     /// specified or inferred.
4347     CAMN_Yes
4348   } complainAboutMissingNullability = CAMN_No;
4349   unsigned NumPointersRemaining = 0;
4350   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4351 
4352   if (IsTypedefName) {
4353     // For typedefs, we do not infer any nullability (the default),
4354     // and we only complain about missing nullability specifiers on
4355     // inner pointers.
4356     complainAboutMissingNullability = CAMN_InnerPointers;
4357 
4358     if (shouldHaveNullability(T) && !T->getNullability()) {
4359       // Note that we allow but don't require nullability on dependent types.
4360       ++NumPointersRemaining;
4361     }
4362 
4363     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4364       DeclaratorChunk &chunk = D.getTypeObject(i);
4365       switch (chunk.Kind) {
4366       case DeclaratorChunk::Array:
4367       case DeclaratorChunk::Function:
4368       case DeclaratorChunk::Pipe:
4369         break;
4370 
4371       case DeclaratorChunk::BlockPointer:
4372       case DeclaratorChunk::MemberPointer:
4373         ++NumPointersRemaining;
4374         break;
4375 
4376       case DeclaratorChunk::Paren:
4377       case DeclaratorChunk::Reference:
4378         continue;
4379 
4380       case DeclaratorChunk::Pointer:
4381         ++NumPointersRemaining;
4382         continue;
4383       }
4384     }
4385   } else {
4386     bool isFunctionOrMethod = false;
4387     switch (auto context = state.getDeclarator().getContext()) {
4388     case DeclaratorContext::ObjCParameter:
4389     case DeclaratorContext::ObjCResult:
4390     case DeclaratorContext::Prototype:
4391     case DeclaratorContext::TrailingReturn:
4392     case DeclaratorContext::TrailingReturnVar:
4393       isFunctionOrMethod = true;
4394       [[fallthrough]];
4395 
4396     case DeclaratorContext::Member:
4397       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4398         complainAboutMissingNullability = CAMN_No;
4399         break;
4400       }
4401 
4402       // Weak properties are inferred to be nullable.
4403       if (state.getDeclarator().isObjCWeakProperty()) {
4404         // Weak properties cannot be nonnull, and should not complain about
4405         // missing nullable attributes during completeness checks.
4406         complainAboutMissingNullability = CAMN_No;
4407         if (inAssumeNonNullRegion) {
4408           inferNullability = NullabilityKind::Nullable;
4409         }
4410         break;
4411       }
4412 
4413       [[fallthrough]];
4414 
4415     case DeclaratorContext::File:
4416     case DeclaratorContext::KNRTypeList: {
4417       complainAboutMissingNullability = CAMN_Yes;
4418 
4419       // Nullability inference depends on the type and declarator.
4420       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4421       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4422       case PointerDeclaratorKind::NonPointer:
4423       case PointerDeclaratorKind::MultiLevelPointer:
4424         // Cannot infer nullability.
4425         break;
4426 
4427       case PointerDeclaratorKind::SingleLevelPointer:
4428         // Infer _Nonnull if we are in an assumes-nonnull region.
4429         if (inAssumeNonNullRegion) {
4430           complainAboutInferringWithinChunk = wrappingKind;
4431           inferNullability = NullabilityKind::NonNull;
4432           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4433                                 context == DeclaratorContext::ObjCResult);
4434         }
4435         break;
4436 
4437       case PointerDeclaratorKind::CFErrorRefPointer:
4438       case PointerDeclaratorKind::NSErrorPointerPointer:
4439         // Within a function or method signature, infer _Nullable at both
4440         // levels.
4441         if (isFunctionOrMethod && inAssumeNonNullRegion)
4442           inferNullability = NullabilityKind::Nullable;
4443         break;
4444 
4445       case PointerDeclaratorKind::MaybePointerToCFRef:
4446         if (isFunctionOrMethod) {
4447           // On pointer-to-pointer parameters marked cf_returns_retained or
4448           // cf_returns_not_retained, if the outer pointer is explicit then
4449           // infer the inner pointer as _Nullable.
4450           auto hasCFReturnsAttr =
4451               [](const ParsedAttributesView &AttrList) -> bool {
4452             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4453                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4454           };
4455           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4456             if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4457                 hasCFReturnsAttr(D.getAttributes()) ||
4458                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4459                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4460               inferNullability = NullabilityKind::Nullable;
4461               inferNullabilityInnerOnly = true;
4462             }
4463           }
4464         }
4465         break;
4466       }
4467       break;
4468     }
4469 
4470     case DeclaratorContext::ConversionId:
4471       complainAboutMissingNullability = CAMN_Yes;
4472       break;
4473 
4474     case DeclaratorContext::AliasDecl:
4475     case DeclaratorContext::AliasTemplate:
4476     case DeclaratorContext::Block:
4477     case DeclaratorContext::BlockLiteral:
4478     case DeclaratorContext::Condition:
4479     case DeclaratorContext::CXXCatch:
4480     case DeclaratorContext::CXXNew:
4481     case DeclaratorContext::ForInit:
4482     case DeclaratorContext::SelectionInit:
4483     case DeclaratorContext::LambdaExpr:
4484     case DeclaratorContext::LambdaExprParameter:
4485     case DeclaratorContext::ObjCCatch:
4486     case DeclaratorContext::TemplateParam:
4487     case DeclaratorContext::TemplateArg:
4488     case DeclaratorContext::TemplateTypeArg:
4489     case DeclaratorContext::TypeName:
4490     case DeclaratorContext::FunctionalCast:
4491     case DeclaratorContext::RequiresExpr:
4492     case DeclaratorContext::Association:
4493       // Don't infer in these contexts.
4494       break;
4495     }
4496   }
4497 
4498   // Local function that returns true if its argument looks like a va_list.
4499   auto isVaList = [&S](QualType T) -> bool {
4500     auto *typedefTy = T->getAs<TypedefType>();
4501     if (!typedefTy)
4502       return false;
4503     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4504     do {
4505       if (typedefTy->getDecl() == vaListTypedef)
4506         return true;
4507       if (auto *name = typedefTy->getDecl()->getIdentifier())
4508         if (name->isStr("va_list"))
4509           return true;
4510       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4511     } while (typedefTy);
4512     return false;
4513   };
4514 
4515   // Local function that checks the nullability for a given pointer declarator.
4516   // Returns true if _Nonnull was inferred.
4517   auto inferPointerNullability =
4518       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4519           SourceLocation pointerEndLoc,
4520           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4521     // We've seen a pointer.
4522     if (NumPointersRemaining > 0)
4523       --NumPointersRemaining;
4524 
4525     // If a nullability attribute is present, there's nothing to do.
4526     if (hasNullabilityAttr(attrs))
4527       return nullptr;
4528 
4529     // If we're supposed to infer nullability, do so now.
4530     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4531       ParsedAttr::Form form =
4532           inferNullabilityCS
4533               ? ParsedAttr::Form::ContextSensitiveKeyword()
4534               : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4535                                           false /*IsRegularKeywordAttribute*/);
4536       ParsedAttr *nullabilityAttr = Pool.create(
4537           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4538           nullptr, SourceLocation(), nullptr, 0, form);
4539 
4540       attrs.addAtEnd(nullabilityAttr);
4541 
4542       if (inferNullabilityCS) {
4543         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4544           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4545       }
4546 
4547       if (pointerLoc.isValid() &&
4548           complainAboutInferringWithinChunk !=
4549             PointerWrappingDeclaratorKind::None) {
4550         auto Diag =
4551             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4552         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4553         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4554       }
4555 
4556       if (inferNullabilityInnerOnly)
4557         inferNullabilityInnerOnlyComplete = true;
4558       return nullabilityAttr;
4559     }
4560 
4561     // If we're supposed to complain about missing nullability, do so
4562     // now if it's truly missing.
4563     switch (complainAboutMissingNullability) {
4564     case CAMN_No:
4565       break;
4566 
4567     case CAMN_InnerPointers:
4568       if (NumPointersRemaining == 0)
4569         break;
4570       [[fallthrough]];
4571 
4572     case CAMN_Yes:
4573       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4574     }
4575     return nullptr;
4576   };
4577 
4578   // If the type itself could have nullability but does not, infer pointer
4579   // nullability and perform consistency checking.
4580   if (S.CodeSynthesisContexts.empty()) {
4581     if (shouldHaveNullability(T) && !T->getNullability()) {
4582       if (isVaList(T)) {
4583         // Record that we've seen a pointer, but do nothing else.
4584         if (NumPointersRemaining > 0)
4585           --NumPointersRemaining;
4586       } else {
4587         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4588         if (T->isBlockPointerType())
4589           pointerKind = SimplePointerKind::BlockPointer;
4590         else if (T->isMemberPointerType())
4591           pointerKind = SimplePointerKind::MemberPointer;
4592 
4593         if (auto *attr = inferPointerNullability(
4594                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4595                 D.getDeclSpec().getEndLoc(),
4596                 D.getMutableDeclSpec().getAttributes(),
4597                 D.getMutableDeclSpec().getAttributePool())) {
4598           T = state.getAttributedType(
4599               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4600         }
4601       }
4602     }
4603 
4604     if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4605         !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4606         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4607       checkNullabilityConsistency(S, SimplePointerKind::Array,
4608                                   D.getDeclSpec().getTypeSpecTypeLoc());
4609     }
4610   }
4611 
4612   bool ExpectNoDerefChunk =
4613       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4614 
4615   // Walk the DeclTypeInfo, building the recursive type as we go.
4616   // DeclTypeInfos are ordered from the identifier out, which is
4617   // opposite of what we want :).
4618 
4619   // Track if the produced type matches the structure of the declarator.
4620   // This is used later to decide if we can fill `TypeLoc` from
4621   // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4622   // an error by replacing the type with `int`.
4623   bool AreDeclaratorChunksValid = true;
4624   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4625     unsigned chunkIndex = e - i - 1;
4626     state.setCurrentChunkIndex(chunkIndex);
4627     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4628     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4629     switch (DeclType.Kind) {
4630     case DeclaratorChunk::Paren:
4631       if (i == 0)
4632         warnAboutRedundantParens(S, D, T);
4633       T = S.BuildParenType(T);
4634       break;
4635     case DeclaratorChunk::BlockPointer:
4636       // If blocks are disabled, emit an error.
4637       if (!LangOpts.Blocks)
4638         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4639 
4640       // Handle pointer nullability.
4641       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4642                               DeclType.EndLoc, DeclType.getAttrs(),
4643                               state.getDeclarator().getAttributePool());
4644 
4645       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4646       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4647         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4648         // qualified with const.
4649         if (LangOpts.OpenCL)
4650           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4651         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4652       }
4653       break;
4654     case DeclaratorChunk::Pointer:
4655       // Verify that we're not building a pointer to pointer to function with
4656       // exception specification.
4657       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4658         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4659         D.setInvalidType(true);
4660         // Build the type anyway.
4661       }
4662 
4663       // Handle pointer nullability
4664       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4665                               DeclType.EndLoc, DeclType.getAttrs(),
4666                               state.getDeclarator().getAttributePool());
4667 
4668       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4669         T = Context.getObjCObjectPointerType(T);
4670         if (DeclType.Ptr.TypeQuals)
4671           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4672         break;
4673       }
4674 
4675       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4676       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4677       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4678       if (LangOpts.OpenCL) {
4679         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4680             T->isBlockPointerType()) {
4681           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4682           D.setInvalidType(true);
4683         }
4684       }
4685 
4686       T = S.BuildPointerType(T, DeclType.Loc, Name);
4687       if (DeclType.Ptr.TypeQuals)
4688         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4689       break;
4690     case DeclaratorChunk::Reference: {
4691       // Verify that we're not building a reference to pointer to function with
4692       // exception specification.
4693       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4694         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4695         D.setInvalidType(true);
4696         // Build the type anyway.
4697       }
4698       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4699 
4700       if (DeclType.Ref.HasRestrict)
4701         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4702       break;
4703     }
4704     case DeclaratorChunk::Array: {
4705       // Verify that we're not building an array of pointers to function with
4706       // exception specification.
4707       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4708         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4709         D.setInvalidType(true);
4710         // Build the type anyway.
4711       }
4712       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4713       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4714       ArraySizeModifier ASM;
4715 
4716       // Microsoft property fields can have multiple sizeless array chunks
4717       // (i.e. int x[][][]). Skip all of these except one to avoid creating
4718       // bad incomplete array types.
4719       if (chunkIndex != 0 && !ArraySize &&
4720           D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4721         // This is a sizeless chunk. If the next is also, skip this one.
4722         DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4723         if (NextDeclType.Kind == DeclaratorChunk::Array &&
4724             !NextDeclType.Arr.NumElts)
4725           break;
4726       }
4727 
4728       if (ATI.isStar)
4729         ASM = ArraySizeModifier::Star;
4730       else if (ATI.hasStatic)
4731         ASM = ArraySizeModifier::Static;
4732       else
4733         ASM = ArraySizeModifier::Normal;
4734       if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4735         // FIXME: This check isn't quite right: it allows star in prototypes
4736         // for function definitions, and disallows some edge cases detailed
4737         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4738         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4739         ASM = ArraySizeModifier::Normal;
4740         D.setInvalidType(true);
4741       }
4742 
4743       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4744       // shall appear only in a declaration of a function parameter with an
4745       // array type, ...
4746       if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4747         if (!(D.isPrototypeContext() ||
4748               D.getContext() == DeclaratorContext::KNRTypeList)) {
4749           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4750               << (ASM == ArraySizeModifier::Static ? "'static'"
4751                                                    : "type qualifier");
4752           // Remove the 'static' and the type qualifiers.
4753           if (ASM == ArraySizeModifier::Static)
4754             ASM = ArraySizeModifier::Normal;
4755           ATI.TypeQuals = 0;
4756           D.setInvalidType(true);
4757         }
4758 
4759         // C99 6.7.5.2p1: ... and then only in the outermost array type
4760         // derivation.
4761         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4762           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4763               << (ASM == ArraySizeModifier::Static ? "'static'"
4764                                                    : "type qualifier");
4765           if (ASM == ArraySizeModifier::Static)
4766             ASM = ArraySizeModifier::Normal;
4767           ATI.TypeQuals = 0;
4768           D.setInvalidType(true);
4769         }
4770       }
4771 
4772       // Array parameters can be marked nullable as well, although it's not
4773       // necessary if they're marked 'static'.
4774       if (complainAboutMissingNullability == CAMN_Yes &&
4775           !hasNullabilityAttr(DeclType.getAttrs()) &&
4776           ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4777           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4778         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4779       }
4780 
4781       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4782                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4783       break;
4784     }
4785     case DeclaratorChunk::Function: {
4786       // If the function declarator has a prototype (i.e. it is not () and
4787       // does not have a K&R-style identifier list), then the arguments are part
4788       // of the type, otherwise the argument list is ().
4789       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4790       IsQualifiedFunction =
4791           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4792 
4793       // Check for auto functions and trailing return type and adjust the
4794       // return type accordingly.
4795       if (!D.isInvalidType()) {
4796         auto IsClassType = [&](CXXScopeSpec &SS) {
4797           // If there already was an problem with the scope, don’t issue another
4798           // error about the explicit object parameter.
4799           return SS.isInvalid() ||
4800                  isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4801         };
4802 
4803         // C++23 [dcl.fct]p6:
4804         //
4805         // An explicit-object-parameter-declaration is a parameter-declaration
4806         // with a this specifier. An explicit-object-parameter-declaration shall
4807         // appear only as the first parameter-declaration of a
4808         // parameter-declaration-list of one of:
4809         //
4810         // - a declaration of a member function or member function template
4811         //   ([class.mem]), or
4812         //
4813         // - an explicit instantiation ([temp.explicit]) or explicit
4814         //   specialization ([temp.expl.spec]) of a templated member function,
4815         //   or
4816         //
4817         // - a lambda-declarator [expr.prim.lambda].
4818         DeclaratorContext C = D.getContext();
4819         ParmVarDecl *First =
4820             FTI.NumParams
4821                 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4822                 : nullptr;
4823 
4824         bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4825         if (First && First->isExplicitObjectParameter() &&
4826             C != DeclaratorContext::LambdaExpr &&
4827 
4828             // Either not a member or nested declarator in a member.
4829             //
4830             // Note that e.g. 'static' or 'friend' declarations are accepted
4831             // here; we diagnose them later when we build the member function
4832             // because it's easier that way.
4833             (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4834 
4835             // Allow out-of-line definitions of member functions.
4836             !IsClassType(D.getCXXScopeSpec())) {
4837           if (IsFunctionDecl)
4838             S.Diag(First->getBeginLoc(),
4839                    diag::err_explicit_object_parameter_nonmember)
4840                 << /*non-member*/ 2 << /*function*/ 0
4841                 << First->getSourceRange();
4842           else
4843             S.Diag(First->getBeginLoc(),
4844                    diag::err_explicit_object_parameter_invalid)
4845                 << First->getSourceRange();
4846 
4847           D.setInvalidType();
4848           AreDeclaratorChunksValid = false;
4849         }
4850 
4851         // trailing-return-type is only required if we're declaring a function,
4852         // and not, for instance, a pointer to a function.
4853         if (D.getDeclSpec().hasAutoTypeSpec() &&
4854             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4855           if (!S.getLangOpts().CPlusPlus14) {
4856             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4857                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4858                        ? diag::err_auto_missing_trailing_return
4859                        : diag::err_deduced_return_type);
4860             T = Context.IntTy;
4861             D.setInvalidType(true);
4862             AreDeclaratorChunksValid = false;
4863           } else {
4864             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4865                    diag::warn_cxx11_compat_deduced_return_type);
4866           }
4867         } else if (FTI.hasTrailingReturnType()) {
4868           // T must be exactly 'auto' at this point. See CWG issue 681.
4869           if (isa<ParenType>(T)) {
4870             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4871                 << T << D.getSourceRange();
4872             D.setInvalidType(true);
4873             // FIXME: recover and fill decls in `TypeLoc`s.
4874             AreDeclaratorChunksValid = false;
4875           } else if (D.getName().getKind() ==
4876                      UnqualifiedIdKind::IK_DeductionGuideName) {
4877             if (T != Context.DependentTy) {
4878               S.Diag(D.getDeclSpec().getBeginLoc(),
4879                      diag::err_deduction_guide_with_complex_decl)
4880                   << D.getSourceRange();
4881               D.setInvalidType(true);
4882               // FIXME: recover and fill decls in `TypeLoc`s.
4883               AreDeclaratorChunksValid = false;
4884             }
4885           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4886                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4887                       cast<AutoType>(T)->getKeyword() !=
4888                           AutoTypeKeyword::Auto ||
4889                       cast<AutoType>(T)->isConstrained())) {
4890             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4891                    diag::err_trailing_return_without_auto)
4892                 << T << D.getDeclSpec().getSourceRange();
4893             D.setInvalidType(true);
4894             // FIXME: recover and fill decls in `TypeLoc`s.
4895             AreDeclaratorChunksValid = false;
4896           }
4897           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4898           if (T.isNull()) {
4899             // An error occurred parsing the trailing return type.
4900             T = Context.IntTy;
4901             D.setInvalidType(true);
4902           } else if (AutoType *Auto = T->getContainedAutoType()) {
4903             // If the trailing return type contains an `auto`, we may need to
4904             // invent a template parameter for it, for cases like
4905             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4906             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4907             if (D.getContext() == DeclaratorContext::Prototype)
4908               InventedParamInfo = &S.InventedParameterInfos.back();
4909             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4910               InventedParamInfo = S.getCurLambda();
4911             if (InventedParamInfo) {
4912               std::tie(T, TInfo) = InventTemplateParameter(
4913                   state, T, TInfo, Auto, *InventedParamInfo);
4914             }
4915           }
4916         } else {
4917           // This function type is not the type of the entity being declared,
4918           // so checking the 'auto' is not the responsibility of this chunk.
4919         }
4920       }
4921 
4922       // C99 6.7.5.3p1: The return type may not be a function or array type.
4923       // For conversion functions, we'll diagnose this particular error later.
4924       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4925           (D.getName().getKind() !=
4926            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4927         unsigned diagID = diag::err_func_returning_array_function;
4928         // Last processing chunk in block context means this function chunk
4929         // represents the block.
4930         if (chunkIndex == 0 &&
4931             D.getContext() == DeclaratorContext::BlockLiteral)
4932           diagID = diag::err_block_returning_array_function;
4933         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4934         T = Context.IntTy;
4935         D.setInvalidType(true);
4936         AreDeclaratorChunksValid = false;
4937       }
4938 
4939       // Do not allow returning half FP value.
4940       // FIXME: This really should be in BuildFunctionType.
4941       if (T->isHalfType()) {
4942         if (S.getLangOpts().OpenCL) {
4943           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4944                                                       S.getLangOpts())) {
4945             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4946                 << T << 0 /*pointer hint*/;
4947             D.setInvalidType(true);
4948           }
4949         } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4950                    !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4951           S.Diag(D.getIdentifierLoc(),
4952             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4953           D.setInvalidType(true);
4954         }
4955       }
4956 
4957       if (LangOpts.OpenCL) {
4958         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4959         // function.
4960         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4961             T->isPipeType()) {
4962           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4963               << T << 1 /*hint off*/;
4964           D.setInvalidType(true);
4965         }
4966         // OpenCL doesn't support variadic functions and blocks
4967         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4968         // We also allow here any toolchain reserved identifiers.
4969         if (FTI.isVariadic &&
4970             !S.getOpenCLOptions().isAvailableOption(
4971                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4972             !(D.getIdentifier() &&
4973               ((D.getIdentifier()->getName() == "printf" &&
4974                 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4975                D.getIdentifier()->getName().starts_with("__")))) {
4976           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4977           D.setInvalidType(true);
4978         }
4979       }
4980 
4981       // Methods cannot return interface types. All ObjC objects are
4982       // passed by reference.
4983       if (T->isObjCObjectType()) {
4984         SourceLocation DiagLoc, FixitLoc;
4985         if (TInfo) {
4986           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4987           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4988         } else {
4989           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4990           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4991         }
4992         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4993           << 0 << T
4994           << FixItHint::CreateInsertion(FixitLoc, "*");
4995 
4996         T = Context.getObjCObjectPointerType(T);
4997         if (TInfo) {
4998           TypeLocBuilder TLB;
4999           TLB.pushFullCopy(TInfo->getTypeLoc());
5000           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5001           TLoc.setStarLoc(FixitLoc);
5002           TInfo = TLB.getTypeSourceInfo(Context, T);
5003         } else {
5004           AreDeclaratorChunksValid = false;
5005         }
5006 
5007         D.setInvalidType(true);
5008       }
5009 
5010       // cv-qualifiers on return types are pointless except when the type is a
5011       // class type in C++.
5012       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5013           !(S.getLangOpts().CPlusPlus &&
5014             (T->isDependentType() || T->isRecordType()))) {
5015         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5016             D.getFunctionDefinitionKind() ==
5017                 FunctionDefinitionKind::Definition) {
5018           // [6.9.1/3] qualified void return is invalid on a C
5019           // function definition.  Apparently ok on declarations and
5020           // in C++ though (!)
5021           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5022         } else
5023           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5024 
5025         // C++2a [dcl.fct]p12:
5026         //   A volatile-qualified return type is deprecated
5027         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5028           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5029       }
5030 
5031       // Objective-C ARC ownership qualifiers are ignored on the function
5032       // return type (by type canonicalization). Complain if this attribute
5033       // was written here.
5034       if (T.getQualifiers().hasObjCLifetime()) {
5035         SourceLocation AttrLoc;
5036         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5037           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5038           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5039             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5040               AttrLoc = AL.getLoc();
5041               break;
5042             }
5043           }
5044         }
5045         if (AttrLoc.isInvalid()) {
5046           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5047             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5048               AttrLoc = AL.getLoc();
5049               break;
5050             }
5051           }
5052         }
5053 
5054         if (AttrLoc.isValid()) {
5055           // The ownership attributes are almost always written via
5056           // the predefined
5057           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5058           if (AttrLoc.isMacroID())
5059             AttrLoc =
5060                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5061 
5062           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5063             << T.getQualifiers().getObjCLifetime();
5064         }
5065       }
5066 
5067       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5068         // C++ [dcl.fct]p6:
5069         //   Types shall not be defined in return or parameter types.
5070         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5071         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5072           << Context.getTypeDeclType(Tag);
5073       }
5074 
5075       // Exception specs are not allowed in typedefs. Complain, but add it
5076       // anyway.
5077       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5078         S.Diag(FTI.getExceptionSpecLocBeg(),
5079                diag::err_exception_spec_in_typedef)
5080             << (D.getContext() == DeclaratorContext::AliasDecl ||
5081                 D.getContext() == DeclaratorContext::AliasTemplate);
5082 
5083       // If we see "T var();" or "T var(T());" at block scope, it is probably
5084       // an attempt to initialize a variable, not a function declaration.
5085       if (FTI.isAmbiguous)
5086         warnAboutAmbiguousFunction(S, D, DeclType, T);
5087 
5088       FunctionType::ExtInfo EI(
5089           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5090 
5091       // OpenCL disallows functions without a prototype, but it doesn't enforce
5092       // strict prototypes as in C23 because it allows a function definition to
5093       // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5094       if (!FTI.NumParams && !FTI.isVariadic &&
5095           !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5096         // Simple void foo(), where the incoming T is the result type.
5097         T = Context.getFunctionNoProtoType(T, EI);
5098       } else {
5099         // We allow a zero-parameter variadic function in C if the
5100         // function is marked with the "overloadable" attribute. Scan
5101         // for this attribute now. We also allow it in C23 per WG14 N2975.
5102         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5103           if (LangOpts.C23)
5104             S.Diag(FTI.getEllipsisLoc(),
5105                    diag::warn_c17_compat_ellipsis_only_parameter);
5106           else if (!D.getDeclarationAttributes().hasAttribute(
5107                        ParsedAttr::AT_Overloadable) &&
5108                    !D.getAttributes().hasAttribute(
5109                        ParsedAttr::AT_Overloadable) &&
5110                    !D.getDeclSpec().getAttributes().hasAttribute(
5111                        ParsedAttr::AT_Overloadable))
5112             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5113         }
5114 
5115         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5116           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5117           // definition.
5118           S.Diag(FTI.Params[0].IdentLoc,
5119                  diag::err_ident_list_in_fn_declaration);
5120           D.setInvalidType(true);
5121           // Recover by creating a K&R-style function type, if possible.
5122           T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5123                   ? Context.getFunctionNoProtoType(T, EI)
5124                   : Context.IntTy;
5125           AreDeclaratorChunksValid = false;
5126           break;
5127         }
5128 
5129         FunctionProtoType::ExtProtoInfo EPI;
5130         EPI.ExtInfo = EI;
5131         EPI.Variadic = FTI.isVariadic;
5132         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5133         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5134         EPI.TypeQuals.addCVRUQualifiers(
5135             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5136                                  : 0);
5137         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5138                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5139                     : RQ_RValue;
5140 
5141         // Otherwise, we have a function with a parameter list that is
5142         // potentially variadic.
5143         SmallVector<QualType, 16> ParamTys;
5144         ParamTys.reserve(FTI.NumParams);
5145 
5146         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5147           ExtParameterInfos(FTI.NumParams);
5148         bool HasAnyInterestingExtParameterInfos = false;
5149 
5150         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5151           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5152           QualType ParamTy = Param->getType();
5153           assert(!ParamTy.isNull() && "Couldn't parse type?");
5154 
5155           // Look for 'void'.  void is allowed only as a single parameter to a
5156           // function with no other parameters (C99 6.7.5.3p10).  We record
5157           // int(void) as a FunctionProtoType with an empty parameter list.
5158           if (ParamTy->isVoidType()) {
5159             // If this is something like 'float(int, void)', reject it.  'void'
5160             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5161             // have parameters of incomplete type.
5162             if (FTI.NumParams != 1 || FTI.isVariadic) {
5163               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5164               ParamTy = Context.IntTy;
5165               Param->setType(ParamTy);
5166             } else if (FTI.Params[i].Ident) {
5167               // Reject, but continue to parse 'int(void abc)'.
5168               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5169               ParamTy = Context.IntTy;
5170               Param->setType(ParamTy);
5171             } else {
5172               // Reject, but continue to parse 'float(const void)'.
5173               if (ParamTy.hasQualifiers())
5174                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5175 
5176               // Reject, but continue to parse 'float(this void)' as
5177               // 'float(void)'.
5178               if (Param->isExplicitObjectParameter()) {
5179                 S.Diag(Param->getLocation(),
5180                        diag::err_void_explicit_object_param);
5181                 Param->setExplicitObjectParameterLoc(SourceLocation());
5182               }
5183 
5184               // Do not add 'void' to the list.
5185               break;
5186             }
5187           } else if (ParamTy->isHalfType()) {
5188             // Disallow half FP parameters.
5189             // FIXME: This really should be in BuildFunctionType.
5190             if (S.getLangOpts().OpenCL) {
5191               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5192                                                           S.getLangOpts())) {
5193                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5194                     << ParamTy << 0;
5195                 D.setInvalidType();
5196                 Param->setInvalidDecl();
5197               }
5198             } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5199                        !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5200               S.Diag(Param->getLocation(),
5201                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5202               D.setInvalidType();
5203             }
5204           } else if (!FTI.hasPrototype) {
5205             if (Context.isPromotableIntegerType(ParamTy)) {
5206               ParamTy = Context.getPromotedIntegerType(ParamTy);
5207               Param->setKNRPromoted(true);
5208             } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5209               if (BTy->getKind() == BuiltinType::Float) {
5210                 ParamTy = Context.DoubleTy;
5211                 Param->setKNRPromoted(true);
5212               }
5213             }
5214           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5215             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5216             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5217                 << ParamTy << 1 /*hint off*/;
5218             D.setInvalidType();
5219           }
5220 
5221           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5222             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5223             HasAnyInterestingExtParameterInfos = true;
5224           }
5225 
5226           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5227             ExtParameterInfos[i] =
5228               ExtParameterInfos[i].withABI(attr->getABI());
5229             HasAnyInterestingExtParameterInfos = true;
5230           }
5231 
5232           if (Param->hasAttr<PassObjectSizeAttr>()) {
5233             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5234             HasAnyInterestingExtParameterInfos = true;
5235           }
5236 
5237           if (Param->hasAttr<NoEscapeAttr>()) {
5238             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5239             HasAnyInterestingExtParameterInfos = true;
5240           }
5241 
5242           ParamTys.push_back(ParamTy);
5243         }
5244 
5245         if (HasAnyInterestingExtParameterInfos) {
5246           EPI.ExtParameterInfos = ExtParameterInfos.data();
5247           checkExtParameterInfos(S, ParamTys, EPI,
5248               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5249         }
5250 
5251         SmallVector<QualType, 4> Exceptions;
5252         SmallVector<ParsedType, 2> DynamicExceptions;
5253         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5254         Expr *NoexceptExpr = nullptr;
5255 
5256         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5257           // FIXME: It's rather inefficient to have to split into two vectors
5258           // here.
5259           unsigned N = FTI.getNumExceptions();
5260           DynamicExceptions.reserve(N);
5261           DynamicExceptionRanges.reserve(N);
5262           for (unsigned I = 0; I != N; ++I) {
5263             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5264             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5265           }
5266         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5267           NoexceptExpr = FTI.NoexceptExpr;
5268         }
5269 
5270         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5271                                       FTI.getExceptionSpecType(),
5272                                       DynamicExceptions,
5273                                       DynamicExceptionRanges,
5274                                       NoexceptExpr,
5275                                       Exceptions,
5276                                       EPI.ExceptionSpec);
5277 
5278         // FIXME: Set address space from attrs for C++ mode here.
5279         // OpenCLCPlusPlus: A class member function has an address space.
5280         auto IsClassMember = [&]() {
5281           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5282                   state.getDeclarator()
5283                           .getCXXScopeSpec()
5284                           .getScopeRep()
5285                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5286                  state.getDeclarator().getContext() ==
5287                      DeclaratorContext::Member ||
5288                  state.getDeclarator().getContext() ==
5289                      DeclaratorContext::LambdaExpr;
5290         };
5291 
5292         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5293           LangAS ASIdx = LangAS::Default;
5294           // Take address space attr if any and mark as invalid to avoid adding
5295           // them later while creating QualType.
5296           if (FTI.MethodQualifiers)
5297             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5298               LangAS ASIdxNew = attr.asOpenCLLangAS();
5299               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5300                                                       attr.getLoc()))
5301                 D.setInvalidType(true);
5302               else
5303                 ASIdx = ASIdxNew;
5304             }
5305           // If a class member function's address space is not set, set it to
5306           // __generic.
5307           LangAS AS =
5308               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5309                                         : ASIdx);
5310           EPI.TypeQuals.addAddressSpace(AS);
5311         }
5312         T = Context.getFunctionType(T, ParamTys, EPI);
5313       }
5314       break;
5315     }
5316     case DeclaratorChunk::MemberPointer: {
5317       // The scope spec must refer to a class, or be dependent.
5318       CXXScopeSpec &SS = DeclType.Mem.Scope();
5319       QualType ClsType;
5320 
5321       // Handle pointer nullability.
5322       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5323                               DeclType.EndLoc, DeclType.getAttrs(),
5324                               state.getDeclarator().getAttributePool());
5325 
5326       if (SS.isInvalid()) {
5327         // Avoid emitting extra errors if we already errored on the scope.
5328         D.setInvalidType(true);
5329       } else if (S.isDependentScopeSpecifier(SS) ||
5330                  isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5331         NestedNameSpecifier *NNS = SS.getScopeRep();
5332         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5333         switch (NNS->getKind()) {
5334         case NestedNameSpecifier::Identifier:
5335           ClsType = Context.getDependentNameType(
5336               ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5337           break;
5338 
5339         case NestedNameSpecifier::Namespace:
5340         case NestedNameSpecifier::NamespaceAlias:
5341         case NestedNameSpecifier::Global:
5342         case NestedNameSpecifier::Super:
5343           llvm_unreachable("Nested-name-specifier must name a type");
5344 
5345         case NestedNameSpecifier::TypeSpec:
5346         case NestedNameSpecifier::TypeSpecWithTemplate:
5347           ClsType = QualType(NNS->getAsType(), 0);
5348           // Note: if the NNS has a prefix and ClsType is a nondependent
5349           // TemplateSpecializationType, then the NNS prefix is NOT included
5350           // in ClsType; hence we wrap ClsType into an ElaboratedType.
5351           // NOTE: in particular, no wrap occurs if ClsType already is an
5352           // Elaborated, DependentName, or DependentTemplateSpecialization.
5353           if (isa<TemplateSpecializationType>(NNS->getAsType()))
5354             ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5355                                                 NNSPrefix, ClsType);
5356           break;
5357         }
5358       } else {
5359         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5360              diag::err_illegal_decl_mempointer_in_nonclass)
5361           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5362           << DeclType.Mem.Scope().getRange();
5363         D.setInvalidType(true);
5364       }
5365 
5366       if (!ClsType.isNull())
5367         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5368                                      D.getIdentifier());
5369       else
5370         AreDeclaratorChunksValid = false;
5371 
5372       if (T.isNull()) {
5373         T = Context.IntTy;
5374         D.setInvalidType(true);
5375         AreDeclaratorChunksValid = false;
5376       } else if (DeclType.Mem.TypeQuals) {
5377         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5378       }
5379       break;
5380     }
5381 
5382     case DeclaratorChunk::Pipe: {
5383       T = S.BuildReadPipeType(T, DeclType.Loc);
5384       processTypeAttrs(state, T, TAL_DeclSpec,
5385                        D.getMutableDeclSpec().getAttributes());
5386       break;
5387     }
5388     }
5389 
5390     if (T.isNull()) {
5391       D.setInvalidType(true);
5392       T = Context.IntTy;
5393       AreDeclaratorChunksValid = false;
5394     }
5395 
5396     // See if there are any attributes on this declarator chunk.
5397     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5398                      S.CUDA().IdentifyTarget(D.getAttributes()));
5399 
5400     if (DeclType.Kind != DeclaratorChunk::Paren) {
5401       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5402         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5403 
5404       ExpectNoDerefChunk = state.didParseNoDeref();
5405     }
5406   }
5407 
5408   if (ExpectNoDerefChunk)
5409     S.Diag(state.getDeclarator().getBeginLoc(),
5410            diag::warn_noderef_on_non_pointer_or_array);
5411 
5412   // GNU warning -Wstrict-prototypes
5413   //   Warn if a function declaration or definition is without a prototype.
5414   //   This warning is issued for all kinds of unprototyped function
5415   //   declarations (i.e. function type typedef, function pointer etc.)
5416   //   C99 6.7.5.3p14:
5417   //   The empty list in a function declarator that is not part of a definition
5418   //   of that function specifies that no information about the number or types
5419   //   of the parameters is supplied.
5420   // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5421   // function declarations whose behavior changes in C23.
5422   if (!LangOpts.requiresStrictPrototypes()) {
5423     bool IsBlock = false;
5424     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5425       switch (DeclType.Kind) {
5426       case DeclaratorChunk::BlockPointer:
5427         IsBlock = true;
5428         break;
5429       case DeclaratorChunk::Function: {
5430         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5431         // We suppress the warning when there's no LParen location, as this
5432         // indicates the declaration was an implicit declaration, which gets
5433         // warned about separately via -Wimplicit-function-declaration. We also
5434         // suppress the warning when we know the function has a prototype.
5435         if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5436             FTI.getLParenLoc().isValid())
5437           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5438               << IsBlock
5439               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5440         IsBlock = false;
5441         break;
5442       }
5443       default:
5444         break;
5445       }
5446     }
5447   }
5448 
5449   assert(!T.isNull() && "T must not be null after this point");
5450 
5451   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5452     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5453     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5454 
5455     // C++ 8.3.5p4:
5456     //   A cv-qualifier-seq shall only be part of the function type
5457     //   for a nonstatic member function, the function type to which a pointer
5458     //   to member refers, or the top-level function type of a function typedef
5459     //   declaration.
5460     //
5461     // Core issue 547 also allows cv-qualifiers on function types that are
5462     // top-level template type arguments.
5463     enum {
5464       NonMember,
5465       Member,
5466       ExplicitObjectMember,
5467       DeductionGuide
5468     } Kind = NonMember;
5469     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5470       Kind = DeductionGuide;
5471     else if (!D.getCXXScopeSpec().isSet()) {
5472       if ((D.getContext() == DeclaratorContext::Member ||
5473            D.getContext() == DeclaratorContext::LambdaExpr) &&
5474           !D.getDeclSpec().isFriendSpecified())
5475         Kind = Member;
5476     } else {
5477       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5478       if (!DC || DC->isRecord())
5479         Kind = Member;
5480     }
5481 
5482     if (Kind == Member) {
5483       unsigned I;
5484       if (D.isFunctionDeclarator(I)) {
5485         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5486         if (Chunk.Fun.NumParams) {
5487           auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5488           if (P && P->isExplicitObjectParameter())
5489             Kind = ExplicitObjectMember;
5490         }
5491       }
5492     }
5493 
5494     // C++11 [dcl.fct]p6 (w/DR1417):
5495     // An attempt to specify a function type with a cv-qualifier-seq or a
5496     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5497     //  - the function type for a non-static member function,
5498     //  - the function type to which a pointer to member refers,
5499     //  - the top-level function type of a function typedef declaration or
5500     //    alias-declaration,
5501     //  - the type-id in the default argument of a type-parameter, or
5502     //  - the type-id of a template-argument for a type-parameter
5503     //
5504     // C++23 [dcl.fct]p6 (P0847R7)
5505     // ... A member-declarator with an explicit-object-parameter-declaration
5506     // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5507     // declared static or virtual ...
5508     //
5509     // FIXME: Checking this here is insufficient. We accept-invalid on:
5510     //
5511     //   template<typename T> struct S { void f(T); };
5512     //   S<int() const> s;
5513     //
5514     // ... for instance.
5515     if (IsQualifiedFunction &&
5516         // Check for non-static member function and not and
5517         // explicit-object-parameter-declaration
5518         (Kind != Member || D.isExplicitObjectMemberFunction() ||
5519          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5520          (D.getContext() == clang::DeclaratorContext::Member &&
5521           D.isStaticMember())) &&
5522         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5523         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5524       SourceLocation Loc = D.getBeginLoc();
5525       SourceRange RemovalRange;
5526       unsigned I;
5527       if (D.isFunctionDeclarator(I)) {
5528         SmallVector<SourceLocation, 4> RemovalLocs;
5529         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5530         assert(Chunk.Kind == DeclaratorChunk::Function);
5531 
5532         if (Chunk.Fun.hasRefQualifier())
5533           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5534 
5535         if (Chunk.Fun.hasMethodTypeQualifiers())
5536           Chunk.Fun.MethodQualifiers->forEachQualifier(
5537               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5538                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5539 
5540         if (!RemovalLocs.empty()) {
5541           llvm::sort(RemovalLocs,
5542                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5543           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5544           Loc = RemovalLocs.front();
5545         }
5546       }
5547 
5548       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5549         << Kind << D.isFunctionDeclarator() << T
5550         << getFunctionQualifiersAsString(FnTy)
5551         << FixItHint::CreateRemoval(RemovalRange);
5552 
5553       // Strip the cv-qualifiers and ref-qualifiers from the type.
5554       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5555       EPI.TypeQuals.removeCVRQualifiers();
5556       EPI.RefQualifier = RQ_None;
5557 
5558       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5559                                   EPI);
5560       // Rebuild any parens around the identifier in the function type.
5561       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5562         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5563           break;
5564         T = S.BuildParenType(T);
5565       }
5566     }
5567   }
5568 
5569   // Apply any undistributed attributes from the declaration or declarator.
5570   ParsedAttributesView NonSlidingAttrs;
5571   for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5572     if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5573       NonSlidingAttrs.addAtEnd(&AL);
5574     }
5575   }
5576   processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5577   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5578 
5579   // Diagnose any ignored type attributes.
5580   state.diagnoseIgnoredTypeAttrs(T);
5581 
5582   // C++0x [dcl.constexpr]p9:
5583   //  A constexpr specifier used in an object declaration declares the object
5584   //  as const.
5585   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5586       T->isObjectType())
5587     T.addConst();
5588 
5589   // C++2a [dcl.fct]p4:
5590   //   A parameter with volatile-qualified type is deprecated
5591   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5592       (D.getContext() == DeclaratorContext::Prototype ||
5593        D.getContext() == DeclaratorContext::LambdaExprParameter))
5594     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5595 
5596   // If there was an ellipsis in the declarator, the declaration declares a
5597   // parameter pack whose type may be a pack expansion type.
5598   if (D.hasEllipsis()) {
5599     // C++0x [dcl.fct]p13:
5600     //   A declarator-id or abstract-declarator containing an ellipsis shall
5601     //   only be used in a parameter-declaration. Such a parameter-declaration
5602     //   is a parameter pack (14.5.3). [...]
5603     switch (D.getContext()) {
5604     case DeclaratorContext::Prototype:
5605     case DeclaratorContext::LambdaExprParameter:
5606     case DeclaratorContext::RequiresExpr:
5607       // C++0x [dcl.fct]p13:
5608       //   [...] When it is part of a parameter-declaration-clause, the
5609       //   parameter pack is a function parameter pack (14.5.3). The type T
5610       //   of the declarator-id of the function parameter pack shall contain
5611       //   a template parameter pack; each template parameter pack in T is
5612       //   expanded by the function parameter pack.
5613       //
5614       // We represent function parameter packs as function parameters whose
5615       // type is a pack expansion.
5616       if (!T->containsUnexpandedParameterPack() &&
5617           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5618         S.Diag(D.getEllipsisLoc(),
5619              diag::err_function_parameter_pack_without_parameter_packs)
5620           << T <<  D.getSourceRange();
5621         D.setEllipsisLoc(SourceLocation());
5622       } else {
5623         T = Context.getPackExpansionType(T, std::nullopt,
5624                                          /*ExpectPackInType=*/false);
5625       }
5626       break;
5627     case DeclaratorContext::TemplateParam:
5628       // C++0x [temp.param]p15:
5629       //   If a template-parameter is a [...] is a parameter-declaration that
5630       //   declares a parameter pack (8.3.5), then the template-parameter is a
5631       //   template parameter pack (14.5.3).
5632       //
5633       // Note: core issue 778 clarifies that, if there are any unexpanded
5634       // parameter packs in the type of the non-type template parameter, then
5635       // it expands those parameter packs.
5636       if (T->containsUnexpandedParameterPack())
5637         T = Context.getPackExpansionType(T, std::nullopt);
5638       else
5639         S.Diag(D.getEllipsisLoc(),
5640                LangOpts.CPlusPlus11
5641                  ? diag::warn_cxx98_compat_variadic_templates
5642                  : diag::ext_variadic_templates);
5643       break;
5644 
5645     case DeclaratorContext::File:
5646     case DeclaratorContext::KNRTypeList:
5647     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5648     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5649     case DeclaratorContext::TypeName:
5650     case DeclaratorContext::FunctionalCast:
5651     case DeclaratorContext::CXXNew:
5652     case DeclaratorContext::AliasDecl:
5653     case DeclaratorContext::AliasTemplate:
5654     case DeclaratorContext::Member:
5655     case DeclaratorContext::Block:
5656     case DeclaratorContext::ForInit:
5657     case DeclaratorContext::SelectionInit:
5658     case DeclaratorContext::Condition:
5659     case DeclaratorContext::CXXCatch:
5660     case DeclaratorContext::ObjCCatch:
5661     case DeclaratorContext::BlockLiteral:
5662     case DeclaratorContext::LambdaExpr:
5663     case DeclaratorContext::ConversionId:
5664     case DeclaratorContext::TrailingReturn:
5665     case DeclaratorContext::TrailingReturnVar:
5666     case DeclaratorContext::TemplateArg:
5667     case DeclaratorContext::TemplateTypeArg:
5668     case DeclaratorContext::Association:
5669       // FIXME: We may want to allow parameter packs in block-literal contexts
5670       // in the future.
5671       S.Diag(D.getEllipsisLoc(),
5672              diag::err_ellipsis_in_declarator_not_parameter);
5673       D.setEllipsisLoc(SourceLocation());
5674       break;
5675     }
5676   }
5677 
5678   assert(!T.isNull() && "T must not be null at the end of this function");
5679   if (!AreDeclaratorChunksValid)
5680     return Context.getTrivialTypeSourceInfo(T);
5681   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5682 }
5683 
5684 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5685   // Determine the type of the declarator. Not all forms of declarator
5686   // have a type.
5687 
5688   TypeProcessingState state(*this, D);
5689 
5690   TypeSourceInfo *ReturnTypeInfo = nullptr;
5691   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5692   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5693     inferARCWriteback(state, T);
5694 
5695   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5696 }
5697 
5698 static void transferARCOwnershipToDeclSpec(Sema &S,
5699                                            QualType &declSpecTy,
5700                                            Qualifiers::ObjCLifetime ownership) {
5701   if (declSpecTy->isObjCRetainableType() &&
5702       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5703     Qualifiers qs;
5704     qs.addObjCLifetime(ownership);
5705     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5706   }
5707 }
5708 
5709 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5710                                             Qualifiers::ObjCLifetime ownership,
5711                                             unsigned chunkIndex) {
5712   Sema &S = state.getSema();
5713   Declarator &D = state.getDeclarator();
5714 
5715   // Look for an explicit lifetime attribute.
5716   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5717   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5718     return;
5719 
5720   const char *attrStr = nullptr;
5721   switch (ownership) {
5722   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5723   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5724   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5725   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5726   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5727   }
5728 
5729   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5730   Arg->Ident = &S.Context.Idents.get(attrStr);
5731   Arg->Loc = SourceLocation();
5732 
5733   ArgsUnion Args(Arg);
5734 
5735   // If there wasn't one, add one (with an invalid source location
5736   // so that we don't make an AttributedType for it).
5737   ParsedAttr *attr = D.getAttributePool().create(
5738       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5739       /*scope*/ nullptr, SourceLocation(),
5740       /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5741   chunk.getAttrs().addAtEnd(attr);
5742   // TODO: mark whether we did this inference?
5743 }
5744 
5745 /// Used for transferring ownership in casts resulting in l-values.
5746 static void transferARCOwnership(TypeProcessingState &state,
5747                                  QualType &declSpecTy,
5748                                  Qualifiers::ObjCLifetime ownership) {
5749   Sema &S = state.getSema();
5750   Declarator &D = state.getDeclarator();
5751 
5752   int inner = -1;
5753   bool hasIndirection = false;
5754   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5755     DeclaratorChunk &chunk = D.getTypeObject(i);
5756     switch (chunk.Kind) {
5757     case DeclaratorChunk::Paren:
5758       // Ignore parens.
5759       break;
5760 
5761     case DeclaratorChunk::Array:
5762     case DeclaratorChunk::Reference:
5763     case DeclaratorChunk::Pointer:
5764       if (inner != -1)
5765         hasIndirection = true;
5766       inner = i;
5767       break;
5768 
5769     case DeclaratorChunk::BlockPointer:
5770       if (inner != -1)
5771         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5772       return;
5773 
5774     case DeclaratorChunk::Function:
5775     case DeclaratorChunk::MemberPointer:
5776     case DeclaratorChunk::Pipe:
5777       return;
5778     }
5779   }
5780 
5781   if (inner == -1)
5782     return;
5783 
5784   DeclaratorChunk &chunk = D.getTypeObject(inner);
5785   if (chunk.Kind == DeclaratorChunk::Pointer) {
5786     if (declSpecTy->isObjCRetainableType())
5787       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5788     if (declSpecTy->isObjCObjectType() && hasIndirection)
5789       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5790   } else {
5791     assert(chunk.Kind == DeclaratorChunk::Array ||
5792            chunk.Kind == DeclaratorChunk::Reference);
5793     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5794   }
5795 }
5796 
5797 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5798   TypeProcessingState state(*this, D);
5799 
5800   TypeSourceInfo *ReturnTypeInfo = nullptr;
5801   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5802 
5803   if (getLangOpts().ObjC) {
5804     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5805     if (ownership != Qualifiers::OCL_None)
5806       transferARCOwnership(state, declSpecTy, ownership);
5807   }
5808 
5809   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5810 }
5811 
5812 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5813                                   TypeProcessingState &State) {
5814   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5815 }
5816 
5817 static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL,
5818                                               TypeProcessingState &State) {
5819   HLSLAttributedResourceLocInfo LocInfo =
5820       State.getSema().HLSL().TakeLocForHLSLAttribute(TL.getTypePtr());
5821   TL.setSourceRange(LocInfo.Range);
5822   TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo);
5823 }
5824 
5825 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5826                               const ParsedAttributesView &Attrs) {
5827   for (const ParsedAttr &AL : Attrs) {
5828     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5829       MTL.setAttrNameLoc(AL.getLoc());
5830       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5831       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5832       MTL.setAttrOperandParensRange(SourceRange());
5833       return;
5834     }
5835   }
5836 
5837   llvm_unreachable("no matrix_type attribute found at the expected location!");
5838 }
5839 
5840 namespace {
5841   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5842     Sema &SemaRef;
5843     ASTContext &Context;
5844     TypeProcessingState &State;
5845     const DeclSpec &DS;
5846 
5847   public:
5848     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5849                       const DeclSpec &DS)
5850         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5851 
5852     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5853       Visit(TL.getModifiedLoc());
5854       fillAttributedTypeLoc(TL, State);
5855     }
5856     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5857       Visit(TL.getWrappedLoc());
5858     }
5859     void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) {
5860       Visit(TL.getWrappedLoc());
5861       fillHLSLAttributedResourceTypeLoc(TL, State);
5862     }
5863     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5864       Visit(TL.getInnerLoc());
5865       TL.setExpansionLoc(
5866           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5867     }
5868     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5869       Visit(TL.getUnqualifiedLoc());
5870     }
5871     // Allow to fill pointee's type locations, e.g.,
5872     //   int __attr * __attr * __attr *p;
5873     void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5874     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5875       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5876     }
5877     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5878       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5879       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5880       // addition field. What we have is good enough for display of location
5881       // of 'fixit' on interface name.
5882       TL.setNameEndLoc(DS.getEndLoc());
5883     }
5884     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5885       TypeSourceInfo *RepTInfo = nullptr;
5886       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5887       TL.copy(RepTInfo->getTypeLoc());
5888     }
5889     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5890       TypeSourceInfo *RepTInfo = nullptr;
5891       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5892       TL.copy(RepTInfo->getTypeLoc());
5893     }
5894     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5895       TypeSourceInfo *TInfo = nullptr;
5896       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5897 
5898       // If we got no declarator info from previous Sema routines,
5899       // just fill with the typespec loc.
5900       if (!TInfo) {
5901         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5902         return;
5903       }
5904 
5905       TypeLoc OldTL = TInfo->getTypeLoc();
5906       if (TInfo->getType()->getAs<ElaboratedType>()) {
5907         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5908         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5909             .castAs<TemplateSpecializationTypeLoc>();
5910         TL.copy(NamedTL);
5911       } else {
5912         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5913         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5914       }
5915 
5916     }
5917     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5918       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5919              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5920       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5921       TL.setParensRange(DS.getTypeofParensRange());
5922     }
5923     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5924       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5925              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5926       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5927       TL.setParensRange(DS.getTypeofParensRange());
5928       assert(DS.getRepAsType());
5929       TypeSourceInfo *TInfo = nullptr;
5930       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5931       TL.setUnmodifiedTInfo(TInfo);
5932     }
5933     void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5934       assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5935       TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5936       TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5937     }
5938     void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5939       assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5940       TL.setEllipsisLoc(DS.getEllipsisLoc());
5941     }
5942     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5943       assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5944       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5945       TL.setParensRange(DS.getTypeofParensRange());
5946       assert(DS.getRepAsType());
5947       TypeSourceInfo *TInfo = nullptr;
5948       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5949       TL.setUnderlyingTInfo(TInfo);
5950     }
5951     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5952       // By default, use the source location of the type specifier.
5953       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5954       if (TL.needsExtraLocalData()) {
5955         // Set info for the written builtin specifiers.
5956         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5957         // Try to have a meaningful source location.
5958         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5959           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5960         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5961           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5962       }
5963     }
5964     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5965       if (DS.getTypeSpecType() == TST_typename) {
5966         TypeSourceInfo *TInfo = nullptr;
5967         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5968         if (TInfo)
5969           if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
5970             TL.copy(ETL);
5971             return;
5972           }
5973       }
5974       const ElaboratedType *T = TL.getTypePtr();
5975       TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
5976                                      ? DS.getTypeSpecTypeLoc()
5977                                      : SourceLocation());
5978       const CXXScopeSpec& SS = DS.getTypeSpecScope();
5979       TL.setQualifierLoc(SS.getWithLocInContext(Context));
5980       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5981     }
5982     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5983       assert(DS.getTypeSpecType() == TST_typename);
5984       TypeSourceInfo *TInfo = nullptr;
5985       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5986       assert(TInfo);
5987       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5988     }
5989     void VisitDependentTemplateSpecializationTypeLoc(
5990                                  DependentTemplateSpecializationTypeLoc TL) {
5991       assert(DS.getTypeSpecType() == TST_typename);
5992       TypeSourceInfo *TInfo = nullptr;
5993       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5994       assert(TInfo);
5995       TL.copy(
5996           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5997     }
5998     void VisitAutoTypeLoc(AutoTypeLoc TL) {
5999       assert(DS.getTypeSpecType() == TST_auto ||
6000              DS.getTypeSpecType() == TST_decltype_auto ||
6001              DS.getTypeSpecType() == TST_auto_type ||
6002              DS.getTypeSpecType() == TST_unspecified);
6003       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6004       if (DS.getTypeSpecType() == TST_decltype_auto)
6005         TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6006       if (!DS.isConstrainedAuto())
6007         return;
6008       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6009       if (!TemplateId)
6010         return;
6011 
6012       NestedNameSpecifierLoc NNS =
6013           (DS.getTypeSpecScope().isNotEmpty()
6014                ? DS.getTypeSpecScope().getWithLocInContext(Context)
6015                : NestedNameSpecifierLoc());
6016       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6017                                                 TemplateId->RAngleLoc);
6018       if (TemplateId->NumArgs > 0) {
6019         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6020                                            TemplateId->NumArgs);
6021         SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6022       }
6023       DeclarationNameInfo DNI = DeclarationNameInfo(
6024           TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6025           TemplateId->TemplateNameLoc);
6026 
6027       NamedDecl *FoundDecl;
6028       if (auto TN = TemplateId->Template.get();
6029           UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
6030         FoundDecl = cast<NamedDecl>(USD);
6031       else
6032         FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
6033 
6034       auto *CR = ConceptReference::Create(
6035           Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
6036           /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
6037           ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
6038       TL.setConceptReference(CR);
6039     }
6040     void VisitTagTypeLoc(TagTypeLoc TL) {
6041       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6042     }
6043     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6044       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6045       // or an _Atomic qualifier.
6046       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6047         TL.setKWLoc(DS.getTypeSpecTypeLoc());
6048         TL.setParensRange(DS.getTypeofParensRange());
6049 
6050         TypeSourceInfo *TInfo = nullptr;
6051         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6052         assert(TInfo);
6053         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6054       } else {
6055         TL.setKWLoc(DS.getAtomicSpecLoc());
6056         // No parens, to indicate this was spelled as an _Atomic qualifier.
6057         TL.setParensRange(SourceRange());
6058         Visit(TL.getValueLoc());
6059       }
6060     }
6061 
6062     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6063       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6064 
6065       TypeSourceInfo *TInfo = nullptr;
6066       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6067       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6068     }
6069 
6070     void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6071       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6072     }
6073 
6074     void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6075       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6076     }
6077 
6078     void VisitTypeLoc(TypeLoc TL) {
6079       // FIXME: add other typespec types and change this to an assert.
6080       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6081     }
6082   };
6083 
6084   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6085     ASTContext &Context;
6086     TypeProcessingState &State;
6087     const DeclaratorChunk &Chunk;
6088 
6089   public:
6090     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6091                         const DeclaratorChunk &Chunk)
6092         : Context(Context), State(State), Chunk(Chunk) {}
6093 
6094     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6095       llvm_unreachable("qualified type locs not expected here!");
6096     }
6097     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6098       llvm_unreachable("decayed type locs not expected here!");
6099     }
6100     void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6101       llvm_unreachable("array parameter type locs not expected here!");
6102     }
6103 
6104     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6105       fillAttributedTypeLoc(TL, State);
6106     }
6107     void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6108       // nothing
6109     }
6110     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6111       // nothing
6112     }
6113     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6114       // nothing
6115     }
6116     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6117       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6118       TL.setCaretLoc(Chunk.Loc);
6119     }
6120     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6121       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6122       TL.setStarLoc(Chunk.Loc);
6123     }
6124     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6125       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6126       TL.setStarLoc(Chunk.Loc);
6127     }
6128     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6129       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6130       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6131       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6132 
6133       const Type* ClsTy = TL.getClass();
6134       QualType ClsQT = QualType(ClsTy, 0);
6135       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6136       // Now copy source location info into the type loc component.
6137       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6138       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6139       case NestedNameSpecifier::Identifier:
6140         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6141         {
6142           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6143           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6144           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6145           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6146         }
6147         break;
6148 
6149       case NestedNameSpecifier::TypeSpec:
6150       case NestedNameSpecifier::TypeSpecWithTemplate:
6151         if (isa<ElaboratedType>(ClsTy)) {
6152           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6153           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6154           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6155           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6156           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6157         } else {
6158           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6159         }
6160         break;
6161 
6162       case NestedNameSpecifier::Namespace:
6163       case NestedNameSpecifier::NamespaceAlias:
6164       case NestedNameSpecifier::Global:
6165       case NestedNameSpecifier::Super:
6166         llvm_unreachable("Nested-name-specifier must name a type");
6167       }
6168 
6169       // Finally fill in MemberPointerLocInfo fields.
6170       TL.setStarLoc(Chunk.Mem.StarLoc);
6171       TL.setClassTInfo(ClsTInfo);
6172     }
6173     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6174       assert(Chunk.Kind == DeclaratorChunk::Reference);
6175       // 'Amp' is misleading: this might have been originally
6176       /// spelled with AmpAmp.
6177       TL.setAmpLoc(Chunk.Loc);
6178     }
6179     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6180       assert(Chunk.Kind == DeclaratorChunk::Reference);
6181       assert(!Chunk.Ref.LValueRef);
6182       TL.setAmpAmpLoc(Chunk.Loc);
6183     }
6184     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6185       assert(Chunk.Kind == DeclaratorChunk::Array);
6186       TL.setLBracketLoc(Chunk.Loc);
6187       TL.setRBracketLoc(Chunk.EndLoc);
6188       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6189     }
6190     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6191       assert(Chunk.Kind == DeclaratorChunk::Function);
6192       TL.setLocalRangeBegin(Chunk.Loc);
6193       TL.setLocalRangeEnd(Chunk.EndLoc);
6194 
6195       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6196       TL.setLParenLoc(FTI.getLParenLoc());
6197       TL.setRParenLoc(FTI.getRParenLoc());
6198       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6199         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6200         TL.setParam(tpi++, Param);
6201       }
6202       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6203     }
6204     void VisitParenTypeLoc(ParenTypeLoc TL) {
6205       assert(Chunk.Kind == DeclaratorChunk::Paren);
6206       TL.setLParenLoc(Chunk.Loc);
6207       TL.setRParenLoc(Chunk.EndLoc);
6208     }
6209     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6210       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6211       TL.setKWLoc(Chunk.Loc);
6212     }
6213     void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6214       TL.setNameLoc(Chunk.Loc);
6215     }
6216     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6217       TL.setExpansionLoc(Chunk.Loc);
6218     }
6219     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6220     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6221       TL.setNameLoc(Chunk.Loc);
6222     }
6223     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6224       TL.setNameLoc(Chunk.Loc);
6225     }
6226     void
6227     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6228       TL.setNameLoc(Chunk.Loc);
6229     }
6230     void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6231       fillMatrixTypeLoc(TL, Chunk.getAttrs());
6232     }
6233 
6234     void VisitTypeLoc(TypeLoc TL) {
6235       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6236     }
6237   };
6238 } // end anonymous namespace
6239 
6240 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6241   SourceLocation Loc;
6242   switch (Chunk.Kind) {
6243   case DeclaratorChunk::Function:
6244   case DeclaratorChunk::Array:
6245   case DeclaratorChunk::Paren:
6246   case DeclaratorChunk::Pipe:
6247     llvm_unreachable("cannot be _Atomic qualified");
6248 
6249   case DeclaratorChunk::Pointer:
6250     Loc = Chunk.Ptr.AtomicQualLoc;
6251     break;
6252 
6253   case DeclaratorChunk::BlockPointer:
6254   case DeclaratorChunk::Reference:
6255   case DeclaratorChunk::MemberPointer:
6256     // FIXME: Provide a source location for the _Atomic keyword.
6257     break;
6258   }
6259 
6260   ATL.setKWLoc(Loc);
6261   ATL.setParensRange(SourceRange());
6262 }
6263 
6264 static void
6265 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6266                                  const ParsedAttributesView &Attrs) {
6267   for (const ParsedAttr &AL : Attrs) {
6268     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6269       DASTL.setAttrNameLoc(AL.getLoc());
6270       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6271       DASTL.setAttrOperandParensRange(SourceRange());
6272       return;
6273     }
6274   }
6275 
6276   llvm_unreachable(
6277       "no address_space attribute found at the expected location!");
6278 }
6279 
6280 /// Create and instantiate a TypeSourceInfo with type source information.
6281 ///
6282 /// \param T QualType referring to the type as written in source code.
6283 ///
6284 /// \param ReturnTypeInfo For declarators whose return type does not show
6285 /// up in the normal place in the declaration specifiers (such as a C++
6286 /// conversion function), this pointer will refer to a type source information
6287 /// for that return type.
6288 static TypeSourceInfo *
6289 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6290                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6291   Sema &S = State.getSema();
6292   Declarator &D = State.getDeclarator();
6293 
6294   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6295   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6296 
6297   // Handle parameter packs whose type is a pack expansion.
6298   if (isa<PackExpansionType>(T)) {
6299     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6300     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6301   }
6302 
6303   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6304     // Microsoft property fields can have multiple sizeless array chunks
6305     // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6306     if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6307         D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6308       continue;
6309 
6310     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6311     // declarator chunk.
6312     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6313       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6314       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6315     }
6316 
6317     bool HasDesugaredTypeLoc = true;
6318     while (HasDesugaredTypeLoc) {
6319       switch (CurrTL.getTypeLocClass()) {
6320       case TypeLoc::MacroQualified: {
6321         auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6322         TL.setExpansionLoc(
6323             State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6324         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6325         break;
6326       }
6327 
6328       case TypeLoc::Attributed: {
6329         auto TL = CurrTL.castAs<AttributedTypeLoc>();
6330         fillAttributedTypeLoc(TL, State);
6331         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6332         break;
6333       }
6334 
6335       case TypeLoc::Adjusted:
6336       case TypeLoc::BTFTagAttributed: {
6337         CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6338         break;
6339       }
6340 
6341       case TypeLoc::DependentAddressSpace: {
6342         auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6343         fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6344         CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6345         break;
6346       }
6347 
6348       default:
6349         HasDesugaredTypeLoc = false;
6350         break;
6351       }
6352     }
6353 
6354     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6355     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6356   }
6357 
6358   // If we have different source information for the return type, use
6359   // that.  This really only applies to C++ conversion functions.
6360   if (ReturnTypeInfo) {
6361     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6362     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6363     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6364   } else {
6365     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6366   }
6367 
6368   return TInfo;
6369 }
6370 
6371 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6372 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6373   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6374   // and Sema during declaration parsing. Try deallocating/caching them when
6375   // it's appropriate, instead of allocating them and keeping them around.
6376   LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6377                                                         alignof(LocInfoType));
6378   new (LocT) LocInfoType(T, TInfo);
6379   assert(LocT->getTypeClass() != T->getTypeClass() &&
6380          "LocInfoType's TypeClass conflicts with an existing Type class");
6381   return ParsedType::make(QualType(LocT, 0));
6382 }
6383 
6384 void LocInfoType::getAsStringInternal(std::string &Str,
6385                                       const PrintingPolicy &Policy) const {
6386   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6387          " was used directly instead of getting the QualType through"
6388          " GetTypeFromParser");
6389 }
6390 
6391 TypeResult Sema::ActOnTypeName(Declarator &D) {
6392   // C99 6.7.6: Type names have no identifier.  This is already validated by
6393   // the parser.
6394   assert(D.getIdentifier() == nullptr &&
6395          "Type name should have no identifier!");
6396 
6397   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6398   QualType T = TInfo->getType();
6399   if (D.isInvalidType())
6400     return true;
6401 
6402   // Make sure there are no unused decl attributes on the declarator.
6403   // We don't want to do this for ObjC parameters because we're going
6404   // to apply them to the actual parameter declaration.
6405   // Likewise, we don't want to do this for alias declarations, because
6406   // we are actually going to build a declaration from this eventually.
6407   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6408       D.getContext() != DeclaratorContext::AliasDecl &&
6409       D.getContext() != DeclaratorContext::AliasTemplate)
6410     checkUnusedDeclAttributes(D);
6411 
6412   if (getLangOpts().CPlusPlus) {
6413     // Check that there are no default arguments (C++ only).
6414     CheckExtraCXXDefaultArguments(D);
6415   }
6416 
6417   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6418     const AutoType *AT = TL.getTypePtr();
6419     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6420   }
6421   return CreateParsedType(T, TInfo);
6422 }
6423 
6424 //===----------------------------------------------------------------------===//
6425 // Type Attribute Processing
6426 //===----------------------------------------------------------------------===//
6427 
6428 /// Build an AddressSpace index from a constant expression and diagnose any
6429 /// errors related to invalid address_spaces. Returns true on successfully
6430 /// building an AddressSpace index.
6431 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6432                                    const Expr *AddrSpace,
6433                                    SourceLocation AttrLoc) {
6434   if (!AddrSpace->isValueDependent()) {
6435     std::optional<llvm::APSInt> OptAddrSpace =
6436         AddrSpace->getIntegerConstantExpr(S.Context);
6437     if (!OptAddrSpace) {
6438       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6439           << "'address_space'" << AANT_ArgumentIntegerConstant
6440           << AddrSpace->getSourceRange();
6441       return false;
6442     }
6443     llvm::APSInt &addrSpace = *OptAddrSpace;
6444 
6445     // Bounds checking.
6446     if (addrSpace.isSigned()) {
6447       if (addrSpace.isNegative()) {
6448         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6449             << AddrSpace->getSourceRange();
6450         return false;
6451       }
6452       addrSpace.setIsSigned(false);
6453     }
6454 
6455     llvm::APSInt max(addrSpace.getBitWidth());
6456     max =
6457         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6458 
6459     if (addrSpace > max) {
6460       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6461           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6462       return false;
6463     }
6464 
6465     ASIdx =
6466         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6467     return true;
6468   }
6469 
6470   // Default value for DependentAddressSpaceTypes
6471   ASIdx = LangAS::Default;
6472   return true;
6473 }
6474 
6475 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6476                                      SourceLocation AttrLoc) {
6477   if (!AddrSpace->isValueDependent()) {
6478     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6479                                             AttrLoc))
6480       return QualType();
6481 
6482     return Context.getAddrSpaceQualType(T, ASIdx);
6483   }
6484 
6485   // A check with similar intentions as checking if a type already has an
6486   // address space except for on a dependent types, basically if the
6487   // current type is already a DependentAddressSpaceType then its already
6488   // lined up to have another address space on it and we can't have
6489   // multiple address spaces on the one pointer indirection
6490   if (T->getAs<DependentAddressSpaceType>()) {
6491     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6492     return QualType();
6493   }
6494 
6495   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6496 }
6497 
6498 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6499                                      SourceLocation AttrLoc) {
6500   LangAS ASIdx;
6501   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6502     return QualType();
6503   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6504 }
6505 
6506 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6507                                       TypeProcessingState &State) {
6508   Sema &S = State.getSema();
6509 
6510   // This attribute is only supported in C.
6511   // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp
6512   // such that it handles type attributes, and then call that from
6513   // processTypeAttrs() instead of one-off checks like this.
6514   if (!Attr.diagnoseLangOpts(S)) {
6515     Attr.setInvalid();
6516     return;
6517   }
6518 
6519   // Check the number of attribute arguments.
6520   if (Attr.getNumArgs() != 1) {
6521     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6522         << Attr << 1;
6523     Attr.setInvalid();
6524     return;
6525   }
6526 
6527   // Ensure the argument is a string.
6528   auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6529   if (!StrLiteral) {
6530     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6531         << Attr << AANT_ArgumentString;
6532     Attr.setInvalid();
6533     return;
6534   }
6535 
6536   ASTContext &Ctx = S.Context;
6537   StringRef BTFTypeTag = StrLiteral->getString();
6538   Type = State.getBTFTagAttributedType(
6539       ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6540 }
6541 
6542 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6543 /// specified type.  The attribute contains 1 argument, the id of the address
6544 /// space for the type.
6545 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6546                                             const ParsedAttr &Attr,
6547                                             TypeProcessingState &State) {
6548   Sema &S = State.getSema();
6549 
6550   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6551   // qualified by an address-space qualifier."
6552   if (Type->isFunctionType()) {
6553     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6554     Attr.setInvalid();
6555     return;
6556   }
6557 
6558   LangAS ASIdx;
6559   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6560 
6561     // Check the attribute arguments.
6562     if (Attr.getNumArgs() != 1) {
6563       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6564                                                                         << 1;
6565       Attr.setInvalid();
6566       return;
6567     }
6568 
6569     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6570     LangAS ASIdx;
6571     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6572       Attr.setInvalid();
6573       return;
6574     }
6575 
6576     ASTContext &Ctx = S.Context;
6577     auto *ASAttr =
6578         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6579 
6580     // If the expression is not value dependent (not templated), then we can
6581     // apply the address space qualifiers just to the equivalent type.
6582     // Otherwise, we make an AttributedType with the modified and equivalent
6583     // type the same, and wrap it in a DependentAddressSpaceType. When this
6584     // dependent type is resolved, the qualifier is added to the equivalent type
6585     // later.
6586     QualType T;
6587     if (!ASArgExpr->isValueDependent()) {
6588       QualType EquivType =
6589           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6590       if (EquivType.isNull()) {
6591         Attr.setInvalid();
6592         return;
6593       }
6594       T = State.getAttributedType(ASAttr, Type, EquivType);
6595     } else {
6596       T = State.getAttributedType(ASAttr, Type, Type);
6597       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6598     }
6599 
6600     if (!T.isNull())
6601       Type = T;
6602     else
6603       Attr.setInvalid();
6604   } else {
6605     // The keyword-based type attributes imply which address space to use.
6606     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6607                                          : Attr.asOpenCLLangAS();
6608     if (S.getLangOpts().HLSL)
6609       ASIdx = Attr.asHLSLLangAS();
6610 
6611     if (ASIdx == LangAS::Default)
6612       llvm_unreachable("Invalid address space");
6613 
6614     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6615                                             Attr.getLoc())) {
6616       Attr.setInvalid();
6617       return;
6618     }
6619 
6620     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6621   }
6622 }
6623 
6624 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6625 /// attribute on the specified type.
6626 ///
6627 /// Returns 'true' if the attribute was handled.
6628 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6629                                         ParsedAttr &attr, QualType &type) {
6630   bool NonObjCPointer = false;
6631 
6632   if (!type->isDependentType() && !type->isUndeducedType()) {
6633     if (const PointerType *ptr = type->getAs<PointerType>()) {
6634       QualType pointee = ptr->getPointeeType();
6635       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6636         return false;
6637       // It is important not to lose the source info that there was an attribute
6638       // applied to non-objc pointer. We will create an attributed type but
6639       // its type will be the same as the original type.
6640       NonObjCPointer = true;
6641     } else if (!type->isObjCRetainableType()) {
6642       return false;
6643     }
6644 
6645     // Don't accept an ownership attribute in the declspec if it would
6646     // just be the return type of a block pointer.
6647     if (state.isProcessingDeclSpec()) {
6648       Declarator &D = state.getDeclarator();
6649       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6650                                   /*onlyBlockPointers=*/true))
6651         return false;
6652     }
6653   }
6654 
6655   Sema &S = state.getSema();
6656   SourceLocation AttrLoc = attr.getLoc();
6657   if (AttrLoc.isMacroID())
6658     AttrLoc =
6659         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6660 
6661   if (!attr.isArgIdent(0)) {
6662     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6663                                                        << AANT_ArgumentString;
6664     attr.setInvalid();
6665     return true;
6666   }
6667 
6668   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6669   Qualifiers::ObjCLifetime lifetime;
6670   if (II->isStr("none"))
6671     lifetime = Qualifiers::OCL_ExplicitNone;
6672   else if (II->isStr("strong"))
6673     lifetime = Qualifiers::OCL_Strong;
6674   else if (II->isStr("weak"))
6675     lifetime = Qualifiers::OCL_Weak;
6676   else if (II->isStr("autoreleasing"))
6677     lifetime = Qualifiers::OCL_Autoreleasing;
6678   else {
6679     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6680     attr.setInvalid();
6681     return true;
6682   }
6683 
6684   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6685   // outside of ARC mode.
6686   if (!S.getLangOpts().ObjCAutoRefCount &&
6687       lifetime != Qualifiers::OCL_Weak &&
6688       lifetime != Qualifiers::OCL_ExplicitNone) {
6689     return true;
6690   }
6691 
6692   SplitQualType underlyingType = type.split();
6693 
6694   // Check for redundant/conflicting ownership qualifiers.
6695   if (Qualifiers::ObjCLifetime previousLifetime
6696         = type.getQualifiers().getObjCLifetime()) {
6697     // If it's written directly, that's an error.
6698     if (S.Context.hasDirectOwnershipQualifier(type)) {
6699       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6700         << type;
6701       return true;
6702     }
6703 
6704     // Otherwise, if the qualifiers actually conflict, pull sugar off
6705     // and remove the ObjCLifetime qualifiers.
6706     if (previousLifetime != lifetime) {
6707       // It's possible to have multiple local ObjCLifetime qualifiers. We
6708       // can't stop after we reach a type that is directly qualified.
6709       const Type *prevTy = nullptr;
6710       while (!prevTy || prevTy != underlyingType.Ty) {
6711         prevTy = underlyingType.Ty;
6712         underlyingType = underlyingType.getSingleStepDesugaredType();
6713       }
6714       underlyingType.Quals.removeObjCLifetime();
6715     }
6716   }
6717 
6718   underlyingType.Quals.addObjCLifetime(lifetime);
6719 
6720   if (NonObjCPointer) {
6721     StringRef name = attr.getAttrName()->getName();
6722     switch (lifetime) {
6723     case Qualifiers::OCL_None:
6724     case Qualifiers::OCL_ExplicitNone:
6725       break;
6726     case Qualifiers::OCL_Strong: name = "__strong"; break;
6727     case Qualifiers::OCL_Weak: name = "__weak"; break;
6728     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6729     }
6730     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6731       << TDS_ObjCObjOrBlock << type;
6732   }
6733 
6734   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6735   // because having both 'T' and '__unsafe_unretained T' exist in the type
6736   // system causes unfortunate widespread consistency problems.  (For example,
6737   // they're not considered compatible types, and we mangle them identicially
6738   // as template arguments.)  These problems are all individually fixable,
6739   // but it's easier to just not add the qualifier and instead sniff it out
6740   // in specific places using isObjCInertUnsafeUnretainedType().
6741   //
6742   // Doing this does means we miss some trivial consistency checks that
6743   // would've triggered in ARC, but that's better than trying to solve all
6744   // the coexistence problems with __unsafe_unretained.
6745   if (!S.getLangOpts().ObjCAutoRefCount &&
6746       lifetime == Qualifiers::OCL_ExplicitNone) {
6747     type = state.getAttributedType(
6748         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6749         type, type);
6750     return true;
6751   }
6752 
6753   QualType origType = type;
6754   if (!NonObjCPointer)
6755     type = S.Context.getQualifiedType(underlyingType);
6756 
6757   // If we have a valid source location for the attribute, use an
6758   // AttributedType instead.
6759   if (AttrLoc.isValid()) {
6760     type = state.getAttributedType(::new (S.Context)
6761                                        ObjCOwnershipAttr(S.Context, attr, II),
6762                                    origType, type);
6763   }
6764 
6765   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6766                             unsigned diagnostic, QualType type) {
6767     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6768       S.DelayedDiagnostics.add(
6769           sema::DelayedDiagnostic::makeForbiddenType(
6770               S.getSourceManager().getExpansionLoc(loc),
6771               diagnostic, type, /*ignored*/ 0));
6772     } else {
6773       S.Diag(loc, diagnostic);
6774     }
6775   };
6776 
6777   // Sometimes, __weak isn't allowed.
6778   if (lifetime == Qualifiers::OCL_Weak &&
6779       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6780 
6781     // Use a specialized diagnostic if the runtime just doesn't support them.
6782     unsigned diagnostic =
6783       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6784                                        : diag::err_arc_weak_no_runtime);
6785 
6786     // In any case, delay the diagnostic until we know what we're parsing.
6787     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6788 
6789     attr.setInvalid();
6790     return true;
6791   }
6792 
6793   // Forbid __weak for class objects marked as
6794   // objc_arc_weak_reference_unavailable
6795   if (lifetime == Qualifiers::OCL_Weak) {
6796     if (const ObjCObjectPointerType *ObjT =
6797           type->getAs<ObjCObjectPointerType>()) {
6798       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6799         if (Class->isArcWeakrefUnavailable()) {
6800           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6801           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6802                  diag::note_class_declared);
6803         }
6804       }
6805     }
6806   }
6807 
6808   return true;
6809 }
6810 
6811 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6812 /// attribute on the specified type.  Returns true to indicate that
6813 /// the attribute was handled, false to indicate that the type does
6814 /// not permit the attribute.
6815 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6816                                  QualType &type) {
6817   Sema &S = state.getSema();
6818 
6819   // Delay if this isn't some kind of pointer.
6820   if (!type->isPointerType() &&
6821       !type->isObjCObjectPointerType() &&
6822       !type->isBlockPointerType())
6823     return false;
6824 
6825   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6826     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6827     attr.setInvalid();
6828     return true;
6829   }
6830 
6831   // Check the attribute arguments.
6832   if (!attr.isArgIdent(0)) {
6833     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6834         << attr << AANT_ArgumentString;
6835     attr.setInvalid();
6836     return true;
6837   }
6838   Qualifiers::GC GCAttr;
6839   if (attr.getNumArgs() > 1) {
6840     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6841                                                                       << 1;
6842     attr.setInvalid();
6843     return true;
6844   }
6845 
6846   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6847   if (II->isStr("weak"))
6848     GCAttr = Qualifiers::Weak;
6849   else if (II->isStr("strong"))
6850     GCAttr = Qualifiers::Strong;
6851   else {
6852     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6853         << attr << II;
6854     attr.setInvalid();
6855     return true;
6856   }
6857 
6858   QualType origType = type;
6859   type = S.Context.getObjCGCQualType(origType, GCAttr);
6860 
6861   // Make an attributed type to preserve the source information.
6862   if (attr.getLoc().isValid())
6863     type = state.getAttributedType(
6864         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6865 
6866   return true;
6867 }
6868 
6869 namespace {
6870   /// A helper class to unwrap a type down to a function for the
6871   /// purposes of applying attributes there.
6872   ///
6873   /// Use:
6874   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6875   ///   if (unwrapped.isFunctionType()) {
6876   ///     const FunctionType *fn = unwrapped.get();
6877   ///     // change fn somehow
6878   ///     T = unwrapped.wrap(fn);
6879   ///   }
6880   struct FunctionTypeUnwrapper {
6881     enum WrapKind {
6882       Desugar,
6883       Attributed,
6884       Parens,
6885       Array,
6886       Pointer,
6887       BlockPointer,
6888       Reference,
6889       MemberPointer,
6890       MacroQualified,
6891     };
6892 
6893     QualType Original;
6894     const FunctionType *Fn;
6895     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6896 
6897     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6898       while (true) {
6899         const Type *Ty = T.getTypePtr();
6900         if (isa<FunctionType>(Ty)) {
6901           Fn = cast<FunctionType>(Ty);
6902           return;
6903         } else if (isa<ParenType>(Ty)) {
6904           T = cast<ParenType>(Ty)->getInnerType();
6905           Stack.push_back(Parens);
6906         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6907                    isa<IncompleteArrayType>(Ty)) {
6908           T = cast<ArrayType>(Ty)->getElementType();
6909           Stack.push_back(Array);
6910         } else if (isa<PointerType>(Ty)) {
6911           T = cast<PointerType>(Ty)->getPointeeType();
6912           Stack.push_back(Pointer);
6913         } else if (isa<BlockPointerType>(Ty)) {
6914           T = cast<BlockPointerType>(Ty)->getPointeeType();
6915           Stack.push_back(BlockPointer);
6916         } else if (isa<MemberPointerType>(Ty)) {
6917           T = cast<MemberPointerType>(Ty)->getPointeeType();
6918           Stack.push_back(MemberPointer);
6919         } else if (isa<ReferenceType>(Ty)) {
6920           T = cast<ReferenceType>(Ty)->getPointeeType();
6921           Stack.push_back(Reference);
6922         } else if (isa<AttributedType>(Ty)) {
6923           T = cast<AttributedType>(Ty)->getEquivalentType();
6924           Stack.push_back(Attributed);
6925         } else if (isa<MacroQualifiedType>(Ty)) {
6926           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6927           Stack.push_back(MacroQualified);
6928         } else {
6929           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6930           if (Ty == DTy) {
6931             Fn = nullptr;
6932             return;
6933           }
6934 
6935           T = QualType(DTy, 0);
6936           Stack.push_back(Desugar);
6937         }
6938       }
6939     }
6940 
6941     bool isFunctionType() const { return (Fn != nullptr); }
6942     const FunctionType *get() const { return Fn; }
6943 
6944     QualType wrap(Sema &S, const FunctionType *New) {
6945       // If T wasn't modified from the unwrapped type, do nothing.
6946       if (New == get()) return Original;
6947 
6948       Fn = New;
6949       return wrap(S.Context, Original, 0);
6950     }
6951 
6952   private:
6953     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6954       if (I == Stack.size())
6955         return C.getQualifiedType(Fn, Old.getQualifiers());
6956 
6957       // Build up the inner type, applying the qualifiers from the old
6958       // type to the new type.
6959       SplitQualType SplitOld = Old.split();
6960 
6961       // As a special case, tail-recurse if there are no qualifiers.
6962       if (SplitOld.Quals.empty())
6963         return wrap(C, SplitOld.Ty, I);
6964       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6965     }
6966 
6967     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6968       if (I == Stack.size()) return QualType(Fn, 0);
6969 
6970       switch (static_cast<WrapKind>(Stack[I++])) {
6971       case Desugar:
6972         // This is the point at which we potentially lose source
6973         // information.
6974         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6975 
6976       case Attributed:
6977         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6978 
6979       case Parens: {
6980         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6981         return C.getParenType(New);
6982       }
6983 
6984       case MacroQualified:
6985         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6986 
6987       case Array: {
6988         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6989           QualType New = wrap(C, CAT->getElementType(), I);
6990           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6991                                         CAT->getSizeModifier(),
6992                                         CAT->getIndexTypeCVRQualifiers());
6993         }
6994 
6995         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6996           QualType New = wrap(C, VAT->getElementType(), I);
6997           return C.getVariableArrayType(
6998               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6999               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7000         }
7001 
7002         const auto *IAT = cast<IncompleteArrayType>(Old);
7003         QualType New = wrap(C, IAT->getElementType(), I);
7004         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7005                                         IAT->getIndexTypeCVRQualifiers());
7006       }
7007 
7008       case Pointer: {
7009         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7010         return C.getPointerType(New);
7011       }
7012 
7013       case BlockPointer: {
7014         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7015         return C.getBlockPointerType(New);
7016       }
7017 
7018       case MemberPointer: {
7019         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7020         QualType New = wrap(C, OldMPT->getPointeeType(), I);
7021         return C.getMemberPointerType(New, OldMPT->getClass());
7022       }
7023 
7024       case Reference: {
7025         const ReferenceType *OldRef = cast<ReferenceType>(Old);
7026         QualType New = wrap(C, OldRef->getPointeeType(), I);
7027         if (isa<LValueReferenceType>(OldRef))
7028           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7029         else
7030           return C.getRValueReferenceType(New);
7031       }
7032       }
7033 
7034       llvm_unreachable("unknown wrapping kind");
7035     }
7036   };
7037 } // end anonymous namespace
7038 
7039 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7040                                              ParsedAttr &PAttr, QualType &Type) {
7041   Sema &S = State.getSema();
7042 
7043   Attr *A;
7044   switch (PAttr.getKind()) {
7045   default: llvm_unreachable("Unknown attribute kind");
7046   case ParsedAttr::AT_Ptr32:
7047     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7048     break;
7049   case ParsedAttr::AT_Ptr64:
7050     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7051     break;
7052   case ParsedAttr::AT_SPtr:
7053     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7054     break;
7055   case ParsedAttr::AT_UPtr:
7056     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7057     break;
7058   }
7059 
7060   std::bitset<attr::LastAttr> Attrs;
7061   QualType Desugared = Type;
7062   for (;;) {
7063     if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7064       Desugared = TT->desugar();
7065       continue;
7066     } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7067       Desugared = ET->desugar();
7068       continue;
7069     }
7070     const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7071     if (!AT)
7072       break;
7073     Attrs[AT->getAttrKind()] = true;
7074     Desugared = AT->getModifiedType();
7075   }
7076 
7077   // You cannot specify duplicate type attributes, so if the attribute has
7078   // already been applied, flag it.
7079   attr::Kind NewAttrKind = A->getKind();
7080   if (Attrs[NewAttrKind]) {
7081     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7082     return true;
7083   }
7084   Attrs[NewAttrKind] = true;
7085 
7086   // You cannot have both __sptr and __uptr on the same type, nor can you
7087   // have __ptr32 and __ptr64.
7088   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7089     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7090         << "'__ptr32'"
7091         << "'__ptr64'" << /*isRegularKeyword=*/0;
7092     return true;
7093   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7094     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7095         << "'__sptr'"
7096         << "'__uptr'" << /*isRegularKeyword=*/0;
7097     return true;
7098   }
7099 
7100   // Check the raw (i.e., desugared) Canonical type to see if it
7101   // is a pointer type.
7102   if (!isa<PointerType>(Desugared)) {
7103     // Pointer type qualifiers can only operate on pointer types, but not
7104     // pointer-to-member types.
7105     if (Type->isMemberPointerType())
7106       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7107     else
7108       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7109     return true;
7110   }
7111 
7112   // Add address space to type based on its attributes.
7113   LangAS ASIdx = LangAS::Default;
7114   uint64_t PtrWidth =
7115       S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7116   if (PtrWidth == 32) {
7117     if (Attrs[attr::Ptr64])
7118       ASIdx = LangAS::ptr64;
7119     else if (Attrs[attr::UPtr])
7120       ASIdx = LangAS::ptr32_uptr;
7121   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7122     if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr])
7123       ASIdx = LangAS::ptr32_uptr;
7124     else
7125       ASIdx = LangAS::ptr32_sptr;
7126   }
7127 
7128   QualType Pointee = Type->getPointeeType();
7129   if (ASIdx != LangAS::Default)
7130     Pointee = S.Context.getAddrSpaceQualType(
7131         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7132   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7133   return false;
7134 }
7135 
7136 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7137                                          QualType &QT, ParsedAttr &PAttr) {
7138   assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7139 
7140   Sema &S = State.getSema();
7141   Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7142 
7143   std::bitset<attr::LastAttr> Attrs;
7144   attr::Kind NewAttrKind = A->getKind();
7145   const auto *AT = dyn_cast<AttributedType>(QT);
7146   while (AT) {
7147     Attrs[AT->getAttrKind()] = true;
7148     AT = dyn_cast<AttributedType>(AT->getModifiedType());
7149   }
7150 
7151   // You cannot specify duplicate type attributes, so if the attribute has
7152   // already been applied, flag it.
7153   if (Attrs[NewAttrKind]) {
7154     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7155     return true;
7156   }
7157 
7158   // Add address space to type based on its attributes.
7159   LangAS ASIdx = LangAS::wasm_funcref;
7160   QualType Pointee = QT->getPointeeType();
7161   Pointee = S.Context.getAddrSpaceQualType(
7162       S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7163   QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7164   return false;
7165 }
7166 
7167 static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL,
7168                             QualType &QT, ParsedAttr &PAttr) {
7169   if (TAL == TAL_DeclName)
7170     return;
7171 
7172   Sema &S = State.getSema();
7173   auto &D = State.getDeclarator();
7174 
7175   // If the attribute appears in declaration specifiers
7176   // it should be handled as a declaration attribute,
7177   // unless it's associated with a type or a function
7178   // prototype (i.e. appears on a parameter or result type).
7179   if (State.isProcessingDeclSpec()) {
7180     if (!(D.isPrototypeContext() ||
7181           D.getContext() == DeclaratorContext::TypeName))
7182       return;
7183 
7184     if (auto *chunk = D.getInnermostNonParenChunk()) {
7185       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7186                              const_cast<DeclaratorChunk *>(chunk)->getAttrs());
7187       return;
7188     }
7189   }
7190 
7191   StringRef Str;
7192   if (!S.checkStringLiteralArgumentAttr(PAttr, 0, Str)) {
7193     PAttr.setInvalid();
7194     return;
7195   }
7196 
7197   // If the attribute as attached to a paren move it closer to
7198   // the declarator. This can happen in block declarations when
7199   // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`.
7200   //
7201   // Note that it's actually invalid to use GNU style attributes
7202   // in a block but such cases are currently handled gracefully
7203   // but the parser and behavior should be consistent between
7204   // cases when attribute appears before/after block's result
7205   // type and inside (^).
7206   if (TAL == TAL_DeclChunk) {
7207     auto chunkIdx = State.getCurrentChunkIndex();
7208     if (chunkIdx >= 1 &&
7209         D.getTypeObject(chunkIdx).Kind == DeclaratorChunk::Paren) {
7210       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7211                              D.getTypeObject(chunkIdx - 1).getAttrs());
7212       return;
7213     }
7214   }
7215 
7216   auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str);
7217   QT = State.getAttributedType(A, QT, QT);
7218   PAttr.setUsedAsTypeAttr();
7219 }
7220 
7221 /// Rebuild an attributed type without the nullability attribute on it.
7222 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7223                                                         QualType Type) {
7224   auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7225   if (!Attributed)
7226     return Type;
7227 
7228   // Skip the nullability attribute; we're done.
7229   if (Attributed->getImmediateNullability())
7230     return Attributed->getModifiedType();
7231 
7232   // Build the modified type.
7233   QualType Modified = rebuildAttributedTypeWithoutNullability(
7234       Ctx, Attributed->getModifiedType());
7235   assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7236   return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7237                                Attributed->getEquivalentType(),
7238                                Attributed->getAttr());
7239 }
7240 
7241 /// Map a nullability attribute kind to a nullability kind.
7242 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7243   switch (kind) {
7244   case ParsedAttr::AT_TypeNonNull:
7245     return NullabilityKind::NonNull;
7246 
7247   case ParsedAttr::AT_TypeNullable:
7248     return NullabilityKind::Nullable;
7249 
7250   case ParsedAttr::AT_TypeNullableResult:
7251     return NullabilityKind::NullableResult;
7252 
7253   case ParsedAttr::AT_TypeNullUnspecified:
7254     return NullabilityKind::Unspecified;
7255 
7256   default:
7257     llvm_unreachable("not a nullability attribute kind");
7258   }
7259 }
7260 
7261 static bool CheckNullabilityTypeSpecifier(
7262     Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7263     NullabilityKind Nullability, SourceLocation NullabilityLoc,
7264     bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7265   bool Implicit = (State == nullptr);
7266   if (!Implicit)
7267     recordNullabilitySeen(S, NullabilityLoc);
7268 
7269   // Check for existing nullability attributes on the type.
7270   QualType Desugared = QT;
7271   while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7272     // Check whether there is already a null
7273     if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7274       // Duplicated nullability.
7275       if (Nullability == *ExistingNullability) {
7276         if (Implicit)
7277           break;
7278 
7279         S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7280             << DiagNullabilityKind(Nullability, IsContextSensitive)
7281             << FixItHint::CreateRemoval(NullabilityLoc);
7282 
7283         break;
7284       }
7285 
7286       if (!OverrideExisting) {
7287         // Conflicting nullability.
7288         S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7289             << DiagNullabilityKind(Nullability, IsContextSensitive)
7290             << DiagNullabilityKind(*ExistingNullability, false);
7291         return true;
7292       }
7293 
7294       // Rebuild the attributed type, dropping the existing nullability.
7295       QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7296     }
7297 
7298     Desugared = Attributed->getModifiedType();
7299   }
7300 
7301   // If there is already a different nullability specifier, complain.
7302   // This (unlike the code above) looks through typedefs that might
7303   // have nullability specifiers on them, which means we cannot
7304   // provide a useful Fix-It.
7305   if (auto ExistingNullability = Desugared->getNullability()) {
7306     if (Nullability != *ExistingNullability && !Implicit) {
7307       S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7308           << DiagNullabilityKind(Nullability, IsContextSensitive)
7309           << DiagNullabilityKind(*ExistingNullability, false);
7310 
7311       // Try to find the typedef with the existing nullability specifier.
7312       if (auto TT = Desugared->getAs<TypedefType>()) {
7313         TypedefNameDecl *typedefDecl = TT->getDecl();
7314         QualType underlyingType = typedefDecl->getUnderlyingType();
7315         if (auto typedefNullability =
7316                 AttributedType::stripOuterNullability(underlyingType)) {
7317           if (*typedefNullability == *ExistingNullability) {
7318             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7319                 << DiagNullabilityKind(*ExistingNullability, false);
7320           }
7321         }
7322       }
7323 
7324       return true;
7325     }
7326   }
7327 
7328   // If this definitely isn't a pointer type, reject the specifier.
7329   if (!Desugared->canHaveNullability() &&
7330       !(AllowOnArrayType && Desugared->isArrayType())) {
7331     if (!Implicit)
7332       S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7333           << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7334 
7335     return true;
7336   }
7337 
7338   // For the context-sensitive keywords/Objective-C property
7339   // attributes, require that the type be a single-level pointer.
7340   if (IsContextSensitive) {
7341     // Make sure that the pointee isn't itself a pointer type.
7342     const Type *pointeeType = nullptr;
7343     if (Desugared->isArrayType())
7344       pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7345     else if (Desugared->isAnyPointerType())
7346       pointeeType = Desugared->getPointeeType().getTypePtr();
7347 
7348     if (pointeeType && (pointeeType->isAnyPointerType() ||
7349                         pointeeType->isObjCObjectPointerType() ||
7350                         pointeeType->isMemberPointerType())) {
7351       S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7352           << DiagNullabilityKind(Nullability, true) << QT;
7353       S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7354           << DiagNullabilityKind(Nullability, false) << QT
7355           << FixItHint::CreateReplacement(NullabilityLoc,
7356                                           getNullabilitySpelling(Nullability));
7357       return true;
7358     }
7359   }
7360 
7361   // Form the attributed type.
7362   if (State) {
7363     assert(PAttr);
7364     Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7365     QT = State->getAttributedType(A, QT, QT);
7366   } else {
7367     QT = S.Context.getAttributedType(Nullability, QT, QT);
7368   }
7369   return false;
7370 }
7371 
7372 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7373                                           QualType &Type, ParsedAttr &Attr,
7374                                           bool AllowOnArrayType) {
7375   NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7376   SourceLocation NullabilityLoc = Attr.getLoc();
7377   bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7378 
7379   return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7380                                        Nullability, NullabilityLoc,
7381                                        IsContextSensitive, AllowOnArrayType,
7382                                        /*overrideExisting*/ false);
7383 }
7384 
7385 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7386                                                  NullabilityKind Nullability,
7387                                                  SourceLocation DiagLoc,
7388                                                  bool AllowArrayTypes,
7389                                                  bool OverrideExisting) {
7390   return CheckNullabilityTypeSpecifier(
7391       *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7392       /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7393 }
7394 
7395 /// Check the application of the Objective-C '__kindof' qualifier to
7396 /// the given type.
7397 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7398                                 ParsedAttr &attr) {
7399   Sema &S = state.getSema();
7400 
7401   if (isa<ObjCTypeParamType>(type)) {
7402     // Build the attributed type to record where __kindof occurred.
7403     type = state.getAttributedType(
7404         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7405     return false;
7406   }
7407 
7408   // Find out if it's an Objective-C object or object pointer type;
7409   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7410   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7411                                           : type->getAs<ObjCObjectType>();
7412 
7413   // If not, we can't apply __kindof.
7414   if (!objType) {
7415     // FIXME: Handle dependent types that aren't yet object types.
7416     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7417       << type;
7418     return true;
7419   }
7420 
7421   // Rebuild the "equivalent" type, which pushes __kindof down into
7422   // the object type.
7423   // There is no need to apply kindof on an unqualified id type.
7424   QualType equivType = S.Context.getObjCObjectType(
7425       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7426       objType->getProtocols(),
7427       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7428 
7429   // If we started with an object pointer type, rebuild it.
7430   if (ptrType) {
7431     equivType = S.Context.getObjCObjectPointerType(equivType);
7432     if (auto nullability = type->getNullability()) {
7433       // We create a nullability attribute from the __kindof attribute.
7434       // Make sure that will make sense.
7435       assert(attr.getAttributeSpellingListIndex() == 0 &&
7436              "multiple spellings for __kindof?");
7437       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7438       A->setImplicit(true);
7439       equivType = state.getAttributedType(A, equivType, equivType);
7440     }
7441   }
7442 
7443   // Build the attributed type to record where __kindof occurred.
7444   type = state.getAttributedType(
7445       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7446   return false;
7447 }
7448 
7449 /// Distribute a nullability type attribute that cannot be applied to
7450 /// the type specifier to a pointer, block pointer, or member pointer
7451 /// declarator, complaining if necessary.
7452 ///
7453 /// \returns true if the nullability annotation was distributed, false
7454 /// otherwise.
7455 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7456                                           QualType type, ParsedAttr &attr) {
7457   Declarator &declarator = state.getDeclarator();
7458 
7459   /// Attempt to move the attribute to the specified chunk.
7460   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7461     // If there is already a nullability attribute there, don't add
7462     // one.
7463     if (hasNullabilityAttr(chunk.getAttrs()))
7464       return false;
7465 
7466     // Complain about the nullability qualifier being in the wrong
7467     // place.
7468     enum {
7469       PK_Pointer,
7470       PK_BlockPointer,
7471       PK_MemberPointer,
7472       PK_FunctionPointer,
7473       PK_MemberFunctionPointer,
7474     } pointerKind
7475       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7476                                                              : PK_Pointer)
7477         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7478         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7479 
7480     auto diag = state.getSema().Diag(attr.getLoc(),
7481                                      diag::warn_nullability_declspec)
7482       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7483                              attr.isContextSensitiveKeywordAttribute())
7484       << type
7485       << static_cast<unsigned>(pointerKind);
7486 
7487     // FIXME: MemberPointer chunks don't carry the location of the *.
7488     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7489       diag << FixItHint::CreateRemoval(attr.getLoc())
7490            << FixItHint::CreateInsertion(
7491                   state.getSema().getPreprocessor().getLocForEndOfToken(
7492                       chunk.Loc),
7493                   " " + attr.getAttrName()->getName().str() + " ");
7494     }
7495 
7496     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7497                            chunk.getAttrs());
7498     return true;
7499   };
7500 
7501   // Move it to the outermost pointer, member pointer, or block
7502   // pointer declarator.
7503   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7504     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7505     switch (chunk.Kind) {
7506     case DeclaratorChunk::Pointer:
7507     case DeclaratorChunk::BlockPointer:
7508     case DeclaratorChunk::MemberPointer:
7509       return moveToChunk(chunk, false);
7510 
7511     case DeclaratorChunk::Paren:
7512     case DeclaratorChunk::Array:
7513       continue;
7514 
7515     case DeclaratorChunk::Function:
7516       // Try to move past the return type to a function/block/member
7517       // function pointer.
7518       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7519                                     declarator, i,
7520                                     /*onlyBlockPointers=*/false)) {
7521         return moveToChunk(*dest, true);
7522       }
7523 
7524       return false;
7525 
7526     // Don't walk through these.
7527     case DeclaratorChunk::Reference:
7528     case DeclaratorChunk::Pipe:
7529       return false;
7530     }
7531   }
7532 
7533   return false;
7534 }
7535 
7536 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7537   assert(!Attr.isInvalid());
7538   switch (Attr.getKind()) {
7539   default:
7540     llvm_unreachable("not a calling convention attribute");
7541   case ParsedAttr::AT_CDecl:
7542     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7543   case ParsedAttr::AT_FastCall:
7544     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7545   case ParsedAttr::AT_StdCall:
7546     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7547   case ParsedAttr::AT_ThisCall:
7548     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7549   case ParsedAttr::AT_RegCall:
7550     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7551   case ParsedAttr::AT_Pascal:
7552     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7553   case ParsedAttr::AT_SwiftCall:
7554     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7555   case ParsedAttr::AT_SwiftAsyncCall:
7556     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7557   case ParsedAttr::AT_VectorCall:
7558     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7559   case ParsedAttr::AT_AArch64VectorPcs:
7560     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7561   case ParsedAttr::AT_AArch64SVEPcs:
7562     return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7563   case ParsedAttr::AT_ArmStreaming:
7564     return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7565   case ParsedAttr::AT_AMDGPUKernelCall:
7566     return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7567   case ParsedAttr::AT_Pcs: {
7568     // The attribute may have had a fixit applied where we treated an
7569     // identifier as a string literal.  The contents of the string are valid,
7570     // but the form may not be.
7571     StringRef Str;
7572     if (Attr.isArgExpr(0))
7573       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7574     else
7575       Str = Attr.getArgAsIdent(0)->Ident->getName();
7576     PcsAttr::PCSType Type;
7577     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7578       llvm_unreachable("already validated the attribute");
7579     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7580   }
7581   case ParsedAttr::AT_IntelOclBicc:
7582     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7583   case ParsedAttr::AT_MSABI:
7584     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7585   case ParsedAttr::AT_SysVABI:
7586     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7587   case ParsedAttr::AT_PreserveMost:
7588     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7589   case ParsedAttr::AT_PreserveAll:
7590     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7591   case ParsedAttr::AT_M68kRTD:
7592     return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7593   case ParsedAttr::AT_PreserveNone:
7594     return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7595   case ParsedAttr::AT_RISCVVectorCC:
7596     return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7597   }
7598   llvm_unreachable("unexpected attribute kind!");
7599 }
7600 
7601 std::optional<FunctionEffectMode>
7602 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7603   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7604     return FunctionEffectMode::Dependent;
7605 
7606   std::optional<llvm::APSInt> ConditionValue =
7607       CondExpr->getIntegerConstantExpr(Context);
7608   if (!ConditionValue) {
7609     // FIXME: err_attribute_argument_type doesn't quote the attribute
7610     // name but needs to; users are inconsistent.
7611     Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7612         << AttributeName << AANT_ArgumentIntegerConstant
7613         << CondExpr->getSourceRange();
7614     return std::nullopt;
7615   }
7616   return !ConditionValue->isZero() ? FunctionEffectMode::True
7617                                    : FunctionEffectMode::False;
7618 }
7619 
7620 static bool
7621 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7622                                        ParsedAttr &PAttr, QualType &QT,
7623                                        FunctionTypeUnwrapper &Unwrapped) {
7624   // Delay if this is not a function type.
7625   if (!Unwrapped.isFunctionType())
7626     return false;
7627 
7628   Sema &S = TPState.getSema();
7629 
7630   // Require FunctionProtoType.
7631   auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7632   if (FPT == nullptr) {
7633     S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7634         << PAttr.getAttrName()->getName();
7635     return true;
7636   }
7637 
7638   // Parse the new  attribute.
7639   // non/blocking or non/allocating? Or conditional (computed)?
7640   bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7641                        PAttr.getKind() == ParsedAttr::AT_Blocking;
7642 
7643   FunctionEffectMode NewMode = FunctionEffectMode::None;
7644   Expr *CondExpr = nullptr; // only valid if dependent
7645 
7646   if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7647       PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7648     if (!PAttr.checkAtMostNumArgs(S, 1)) {
7649       PAttr.setInvalid();
7650       return true;
7651     }
7652 
7653     // Parse the condition, if any.
7654     if (PAttr.getNumArgs() == 1) {
7655       CondExpr = PAttr.getArgAsExpr(0);
7656       std::optional<FunctionEffectMode> MaybeMode =
7657           S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7658       if (!MaybeMode) {
7659         PAttr.setInvalid();
7660         return true;
7661       }
7662       NewMode = *MaybeMode;
7663       if (NewMode != FunctionEffectMode::Dependent)
7664         CondExpr = nullptr;
7665     } else {
7666       NewMode = FunctionEffectMode::True;
7667     }
7668   } else {
7669     // This is the `blocking` or `allocating` attribute.
7670     if (S.CheckAttrNoArgs(PAttr)) {
7671       // The attribute has been marked invalid.
7672       return true;
7673     }
7674     NewMode = FunctionEffectMode::False;
7675   }
7676 
7677   const FunctionEffect::Kind FEKind =
7678       (NewMode == FunctionEffectMode::False)
7679           ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7680                            : FunctionEffect::Kind::Allocating)
7681           : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7682                            : FunctionEffect::Kind::NonAllocating);
7683   const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7684                                           EffectConditionExpr(CondExpr)};
7685 
7686   if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7687                                           PAttr.getLoc())) {
7688     PAttr.setInvalid();
7689     return true;
7690   }
7691 
7692   // Add the effect to the FunctionProtoType.
7693   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7694   FunctionEffectSet FX(EPI.FunctionEffects);
7695   FunctionEffectSet::Conflicts Errs;
7696   [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7697   assert(Success && "effect conflicts should have been diagnosed above");
7698   EPI.FunctionEffects = FunctionEffectsRef(FX);
7699 
7700   QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7701                                                FPT->getParamTypes(), EPI);
7702   QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7703   return true;
7704 }
7705 
7706 static bool checkMutualExclusion(TypeProcessingState &state,
7707                                  const FunctionProtoType::ExtProtoInfo &EPI,
7708                                  ParsedAttr &Attr,
7709                                  AttributeCommonInfo::Kind OtherKind) {
7710   auto OtherAttr = std::find_if(
7711       state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7712       [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7713   if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7714     return false;
7715 
7716   Sema &S = state.getSema();
7717   S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7718       << *OtherAttr << Attr
7719       << (OtherAttr->isRegularKeywordAttribute() ||
7720           Attr.isRegularKeywordAttribute());
7721   S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7722   Attr.setInvalid();
7723   return true;
7724 }
7725 
7726 static bool handleArmStateAttribute(Sema &S,
7727                                     FunctionProtoType::ExtProtoInfo &EPI,
7728                                     ParsedAttr &Attr,
7729                                     FunctionType::ArmStateValue State) {
7730   if (!Attr.getNumArgs()) {
7731     S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7732     Attr.setInvalid();
7733     return true;
7734   }
7735 
7736   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7737     StringRef StateName;
7738     SourceLocation LiteralLoc;
7739     if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7740       return true;
7741 
7742     unsigned Shift;
7743     FunctionType::ArmStateValue ExistingState;
7744     if (StateName == "za") {
7745       Shift = FunctionType::SME_ZAShift;
7746       ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7747     } else if (StateName == "zt0") {
7748       Shift = FunctionType::SME_ZT0Shift;
7749       ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7750     } else {
7751       S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7752       Attr.setInvalid();
7753       return true;
7754     }
7755 
7756     // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7757     // are all mutually exclusive for the same S, so check if there are
7758     // conflicting attributes.
7759     if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7760       S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7761           << StateName;
7762       Attr.setInvalid();
7763       return true;
7764     }
7765 
7766     EPI.setArmSMEAttribute(
7767         (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7768   }
7769   return false;
7770 }
7771 
7772 /// Process an individual function attribute.  Returns true to
7773 /// indicate that the attribute was handled, false if it wasn't.
7774 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7775                                    QualType &type, CUDAFunctionTarget CFT) {
7776   Sema &S = state.getSema();
7777 
7778   FunctionTypeUnwrapper unwrapped(S, type);
7779 
7780   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7781     if (S.CheckAttrNoArgs(attr))
7782       return true;
7783 
7784     // Delay if this is not a function type.
7785     if (!unwrapped.isFunctionType())
7786       return false;
7787 
7788     // Otherwise we can process right away.
7789     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7790     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7791     return true;
7792   }
7793 
7794   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7795     // Delay if this is not a function type.
7796     if (!unwrapped.isFunctionType())
7797       return false;
7798 
7799     // Ignore if we don't have CMSE enabled.
7800     if (!S.getLangOpts().Cmse) {
7801       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7802       attr.setInvalid();
7803       return true;
7804     }
7805 
7806     // Otherwise we can process right away.
7807     FunctionType::ExtInfo EI =
7808         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7809     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7810     return true;
7811   }
7812 
7813   // ns_returns_retained is not always a type attribute, but if we got
7814   // here, we're treating it as one right now.
7815   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7816     if (attr.getNumArgs()) return true;
7817 
7818     // Delay if this is not a function type.
7819     if (!unwrapped.isFunctionType())
7820       return false;
7821 
7822     // Check whether the return type is reasonable.
7823     if (S.ObjC().checkNSReturnsRetainedReturnType(
7824             attr.getLoc(), unwrapped.get()->getReturnType()))
7825       return true;
7826 
7827     // Only actually change the underlying type in ARC builds.
7828     QualType origType = type;
7829     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7830       FunctionType::ExtInfo EI
7831         = unwrapped.get()->getExtInfo().withProducesResult(true);
7832       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7833     }
7834     type = state.getAttributedType(
7835         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7836         origType, type);
7837     return true;
7838   }
7839 
7840   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7841     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7842       return true;
7843 
7844     // Delay if this is not a function type.
7845     if (!unwrapped.isFunctionType())
7846       return false;
7847 
7848     FunctionType::ExtInfo EI =
7849         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7850     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7851     return true;
7852   }
7853 
7854   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7855     if (!S.getLangOpts().CFProtectionBranch) {
7856       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7857       attr.setInvalid();
7858       return true;
7859     }
7860 
7861     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7862       return true;
7863 
7864     // If this is not a function type, warning will be asserted by subject
7865     // check.
7866     if (!unwrapped.isFunctionType())
7867       return true;
7868 
7869     FunctionType::ExtInfo EI =
7870       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7871     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7872     return true;
7873   }
7874 
7875   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7876     unsigned value;
7877     if (S.CheckRegparmAttr(attr, value))
7878       return true;
7879 
7880     // Delay if this is not a function type.
7881     if (!unwrapped.isFunctionType())
7882       return false;
7883 
7884     // Diagnose regparm with fastcall.
7885     const FunctionType *fn = unwrapped.get();
7886     CallingConv CC = fn->getCallConv();
7887     if (CC == CC_X86FastCall) {
7888       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7889           << FunctionType::getNameForCallConv(CC) << "regparm"
7890           << attr.isRegularKeywordAttribute();
7891       attr.setInvalid();
7892       return true;
7893     }
7894 
7895     FunctionType::ExtInfo EI =
7896       unwrapped.get()->getExtInfo().withRegParm(value);
7897     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7898     return true;
7899   }
7900 
7901   if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7902       attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7903       attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7904       attr.getKind() == ParsedAttr::AT_ArmIn ||
7905       attr.getKind() == ParsedAttr::AT_ArmOut ||
7906       attr.getKind() == ParsedAttr::AT_ArmInOut) {
7907     if (S.CheckAttrTarget(attr))
7908       return true;
7909 
7910     if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7911         attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7912       if (S.CheckAttrNoArgs(attr))
7913         return true;
7914 
7915     if (!unwrapped.isFunctionType())
7916       return false;
7917 
7918     const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7919     if (!FnTy) {
7920       // SME ACLE attributes are not supported on K&R-style unprototyped C
7921       // functions.
7922       S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7923         attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7924       attr.setInvalid();
7925       return false;
7926     }
7927 
7928     FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7929     switch (attr.getKind()) {
7930     case ParsedAttr::AT_ArmStreaming:
7931       if (checkMutualExclusion(state, EPI, attr,
7932                                ParsedAttr::AT_ArmStreamingCompatible))
7933         return true;
7934       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7935       break;
7936     case ParsedAttr::AT_ArmStreamingCompatible:
7937       if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7938         return true;
7939       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7940       break;
7941     case ParsedAttr::AT_ArmPreserves:
7942       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7943         return true;
7944       break;
7945     case ParsedAttr::AT_ArmIn:
7946       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7947         return true;
7948       break;
7949     case ParsedAttr::AT_ArmOut:
7950       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7951         return true;
7952       break;
7953     case ParsedAttr::AT_ArmInOut:
7954       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7955         return true;
7956       break;
7957     default:
7958       llvm_unreachable("Unsupported attribute");
7959     }
7960 
7961     QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7962                                                  FnTy->getParamTypes(), EPI);
7963     type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7964     return true;
7965   }
7966 
7967   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7968     // Delay if this is not a function type.
7969     if (!unwrapped.isFunctionType())
7970       return false;
7971 
7972     if (S.CheckAttrNoArgs(attr)) {
7973       attr.setInvalid();
7974       return true;
7975     }
7976 
7977     // Otherwise we can process right away.
7978     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7979 
7980     // MSVC ignores nothrow if it is in conflict with an explicit exception
7981     // specification.
7982     if (Proto->hasExceptionSpec()) {
7983       switch (Proto->getExceptionSpecType()) {
7984       case EST_None:
7985         llvm_unreachable("This doesn't have an exception spec!");
7986 
7987       case EST_DynamicNone:
7988       case EST_BasicNoexcept:
7989       case EST_NoexceptTrue:
7990       case EST_NoThrow:
7991         // Exception spec doesn't conflict with nothrow, so don't warn.
7992         [[fallthrough]];
7993       case EST_Unparsed:
7994       case EST_Uninstantiated:
7995       case EST_DependentNoexcept:
7996       case EST_Unevaluated:
7997         // We don't have enough information to properly determine if there is a
7998         // conflict, so suppress the warning.
7999         break;
8000       case EST_Dynamic:
8001       case EST_MSAny:
8002       case EST_NoexceptFalse:
8003         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
8004         break;
8005       }
8006       return true;
8007     }
8008 
8009     type = unwrapped.wrap(
8010         S, S.Context
8011                .getFunctionTypeWithExceptionSpec(
8012                    QualType{Proto, 0},
8013                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
8014                ->getAs<FunctionType>());
8015     return true;
8016   }
8017 
8018   if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
8019       attr.getKind() == ParsedAttr::AT_NonAllocating ||
8020       attr.getKind() == ParsedAttr::AT_Blocking ||
8021       attr.getKind() == ParsedAttr::AT_Allocating) {
8022     return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
8023   }
8024 
8025   // Delay if the type didn't work out to a function.
8026   if (!unwrapped.isFunctionType()) return false;
8027 
8028   // Otherwise, a calling convention.
8029   CallingConv CC;
8030   if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
8031     return true;
8032 
8033   const FunctionType *fn = unwrapped.get();
8034   CallingConv CCOld = fn->getCallConv();
8035   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
8036 
8037   if (CCOld != CC) {
8038     // Error out on when there's already an attribute on the type
8039     // and the CCs don't match.
8040     if (S.getCallingConvAttributedType(type)) {
8041       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8042           << FunctionType::getNameForCallConv(CC)
8043           << FunctionType::getNameForCallConv(CCOld)
8044           << attr.isRegularKeywordAttribute();
8045       attr.setInvalid();
8046       return true;
8047     }
8048   }
8049 
8050   // Diagnose use of variadic functions with calling conventions that
8051   // don't support them (e.g. because they're callee-cleanup).
8052   // We delay warning about this on unprototyped function declarations
8053   // until after redeclaration checking, just in case we pick up a
8054   // prototype that way.  And apparently we also "delay" warning about
8055   // unprototyped function types in general, despite not necessarily having
8056   // much ability to diagnose it later.
8057   if (!supportsVariadicCall(CC)) {
8058     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
8059     if (FnP && FnP->isVariadic()) {
8060       // stdcall and fastcall are ignored with a warning for GCC and MS
8061       // compatibility.
8062       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
8063         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
8064                << FunctionType::getNameForCallConv(CC)
8065                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
8066 
8067       attr.setInvalid();
8068       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8069              << FunctionType::getNameForCallConv(CC);
8070     }
8071   }
8072 
8073   // Also diagnose fastcall with regparm.
8074   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8075     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8076         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8077         << attr.isRegularKeywordAttribute();
8078     attr.setInvalid();
8079     return true;
8080   }
8081 
8082   // Modify the CC from the wrapped function type, wrap it all back, and then
8083   // wrap the whole thing in an AttributedType as written.  The modified type
8084   // might have a different CC if we ignored the attribute.
8085   QualType Equivalent;
8086   if (CCOld == CC) {
8087     Equivalent = type;
8088   } else {
8089     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
8090     Equivalent =
8091       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
8092   }
8093   type = state.getAttributedType(CCAttr, type, Equivalent);
8094   return true;
8095 }
8096 
8097 bool Sema::hasExplicitCallingConv(QualType T) {
8098   const AttributedType *AT;
8099 
8100   // Stop if we'd be stripping off a typedef sugar node to reach the
8101   // AttributedType.
8102   while ((AT = T->getAs<AttributedType>()) &&
8103          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8104     if (AT->isCallingConv())
8105       return true;
8106     T = AT->getModifiedType();
8107   }
8108   return false;
8109 }
8110 
8111 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8112                                   bool IsCtorOrDtor, SourceLocation Loc) {
8113   FunctionTypeUnwrapper Unwrapped(*this, T);
8114   const FunctionType *FT = Unwrapped.get();
8115   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8116                      cast<FunctionProtoType>(FT)->isVariadic());
8117   CallingConv CurCC = FT->getCallConv();
8118   CallingConv ToCC =
8119       Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8120 
8121   if (CurCC == ToCC)
8122     return;
8123 
8124   // MS compiler ignores explicit calling convention attributes on structors. We
8125   // should do the same.
8126   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8127     // Issue a warning on ignored calling convention -- except of __stdcall.
8128     // Again, this is what MS compiler does.
8129     if (CurCC != CC_X86StdCall)
8130       Diag(Loc, diag::warn_cconv_unsupported)
8131           << FunctionType::getNameForCallConv(CurCC)
8132           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8133   // Default adjustment.
8134   } else {
8135     // Only adjust types with the default convention.  For example, on Windows
8136     // we should adjust a __cdecl type to __thiscall for instance methods, and a
8137     // __thiscall type to __cdecl for static methods.
8138     CallingConv DefaultCC =
8139         Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8140 
8141     if (CurCC != DefaultCC)
8142       return;
8143 
8144     if (hasExplicitCallingConv(T))
8145       return;
8146   }
8147 
8148   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8149   QualType Wrapped = Unwrapped.wrap(*this, FT);
8150   T = Context.getAdjustedType(T, Wrapped);
8151 }
8152 
8153 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8154 /// and float scalars, although arrays, pointers, and function return values are
8155 /// allowed in conjunction with this construct. Aggregates with this attribute
8156 /// are invalid, even if they are of the same size as a corresponding scalar.
8157 /// The raw attribute should contain precisely 1 argument, the vector size for
8158 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8159 /// this routine will return a new vector type.
8160 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8161                                  Sema &S) {
8162   // Check the attribute arguments.
8163   if (Attr.getNumArgs() != 1) {
8164     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8165                                                                       << 1;
8166     Attr.setInvalid();
8167     return;
8168   }
8169 
8170   Expr *SizeExpr = Attr.getArgAsExpr(0);
8171   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8172   if (!T.isNull())
8173     CurType = T;
8174   else
8175     Attr.setInvalid();
8176 }
8177 
8178 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8179 /// a type.
8180 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8181                                     Sema &S) {
8182   // check the attribute arguments.
8183   if (Attr.getNumArgs() != 1) {
8184     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8185                                                                       << 1;
8186     return;
8187   }
8188 
8189   Expr *SizeExpr = Attr.getArgAsExpr(0);
8190   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8191   if (!T.isNull())
8192     CurType = T;
8193 }
8194 
8195 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8196   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8197   if (!BTy)
8198     return false;
8199 
8200   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8201 
8202   // Signed poly is mathematically wrong, but has been baked into some ABIs by
8203   // now.
8204   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8205                         Triple.getArch() == llvm::Triple::aarch64_32 ||
8206                         Triple.getArch() == llvm::Triple::aarch64_be;
8207   if (VecKind == VectorKind::NeonPoly) {
8208     if (IsPolyUnsigned) {
8209       // AArch64 polynomial vectors are unsigned.
8210       return BTy->getKind() == BuiltinType::UChar ||
8211              BTy->getKind() == BuiltinType::UShort ||
8212              BTy->getKind() == BuiltinType::ULong ||
8213              BTy->getKind() == BuiltinType::ULongLong;
8214     } else {
8215       // AArch32 polynomial vectors are signed.
8216       return BTy->getKind() == BuiltinType::SChar ||
8217              BTy->getKind() == BuiltinType::Short ||
8218              BTy->getKind() == BuiltinType::LongLong;
8219     }
8220   }
8221 
8222   // Non-polynomial vector types: the usual suspects are allowed, as well as
8223   // float64_t on AArch64.
8224   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8225       BTy->getKind() == BuiltinType::Double)
8226     return true;
8227 
8228   return BTy->getKind() == BuiltinType::SChar ||
8229          BTy->getKind() == BuiltinType::UChar ||
8230          BTy->getKind() == BuiltinType::Short ||
8231          BTy->getKind() == BuiltinType::UShort ||
8232          BTy->getKind() == BuiltinType::Int ||
8233          BTy->getKind() == BuiltinType::UInt ||
8234          BTy->getKind() == BuiltinType::Long ||
8235          BTy->getKind() == BuiltinType::ULong ||
8236          BTy->getKind() == BuiltinType::LongLong ||
8237          BTy->getKind() == BuiltinType::ULongLong ||
8238          BTy->getKind() == BuiltinType::Float ||
8239          BTy->getKind() == BuiltinType::Half ||
8240          BTy->getKind() == BuiltinType::BFloat16;
8241 }
8242 
8243 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8244                                            llvm::APSInt &Result) {
8245   const auto *AttrExpr = Attr.getArgAsExpr(0);
8246   if (!AttrExpr->isTypeDependent()) {
8247     if (std::optional<llvm::APSInt> Res =
8248             AttrExpr->getIntegerConstantExpr(S.Context)) {
8249       Result = *Res;
8250       return true;
8251     }
8252   }
8253   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8254       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8255   Attr.setInvalid();
8256   return false;
8257 }
8258 
8259 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8260 /// "neon_polyvector_type" attributes are used to create vector types that
8261 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
8262 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
8263 /// the argument to these Neon attributes is the number of vector elements,
8264 /// not the vector size in bytes.  The vector width and element type must
8265 /// match one of the standard Neon vector types.
8266 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8267                                      Sema &S, VectorKind VecKind) {
8268   bool IsTargetCUDAAndHostARM = false;
8269   if (S.getLangOpts().CUDAIsDevice) {
8270     const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8271     IsTargetCUDAAndHostARM =
8272         AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8273   }
8274 
8275   // Target must have NEON (or MVE, whose vectors are similar enough
8276   // not to need a separate attribute)
8277   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8278       VecKind == VectorKind::Neon &&
8279       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8280     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8281         << Attr << "'mve'";
8282     Attr.setInvalid();
8283     return;
8284   }
8285   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8286       VecKind == VectorKind::NeonPoly &&
8287       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8288     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8289         << Attr << "'mve'";
8290     Attr.setInvalid();
8291     return;
8292   }
8293 
8294   // Check the attribute arguments.
8295   if (Attr.getNumArgs() != 1) {
8296     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8297         << Attr << 1;
8298     Attr.setInvalid();
8299     return;
8300   }
8301   // The number of elements must be an ICE.
8302   llvm::APSInt numEltsInt(32);
8303   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8304     return;
8305 
8306   // Only certain element types are supported for Neon vectors.
8307   if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8308       !IsTargetCUDAAndHostARM) {
8309     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8310     Attr.setInvalid();
8311     return;
8312   }
8313 
8314   // The total size of the vector must be 64 or 128 bits.
8315   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8316   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8317   unsigned vecSize = typeSize * numElts;
8318   if (vecSize != 64 && vecSize != 128) {
8319     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8320     Attr.setInvalid();
8321     return;
8322   }
8323 
8324   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8325 }
8326 
8327 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8328 /// used to create fixed-length versions of sizeless SVE types defined by
8329 /// the ACLE, such as svint32_t and svbool_t.
8330 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8331                                            Sema &S) {
8332   // Target must have SVE.
8333   if (!S.Context.getTargetInfo().hasFeature("sve")) {
8334     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8335     Attr.setInvalid();
8336     return;
8337   }
8338 
8339   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8340   // if <bits>+ syntax is used.
8341   if (!S.getLangOpts().VScaleMin ||
8342       S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8343     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8344         << Attr;
8345     Attr.setInvalid();
8346     return;
8347   }
8348 
8349   // Check the attribute arguments.
8350   if (Attr.getNumArgs() != 1) {
8351     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8352         << Attr << 1;
8353     Attr.setInvalid();
8354     return;
8355   }
8356 
8357   // The vector size must be an integer constant expression.
8358   llvm::APSInt SveVectorSizeInBits(32);
8359   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8360     return;
8361 
8362   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8363 
8364   // The attribute vector size must match -msve-vector-bits.
8365   if (VecSize != S.getLangOpts().VScaleMin * 128) {
8366     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8367         << VecSize << S.getLangOpts().VScaleMin * 128;
8368     Attr.setInvalid();
8369     return;
8370   }
8371 
8372   // Attribute can only be attached to a single SVE vector or predicate type.
8373   if (!CurType->isSveVLSBuiltinType()) {
8374     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8375         << Attr << CurType;
8376     Attr.setInvalid();
8377     return;
8378   }
8379 
8380   const auto *BT = CurType->castAs<BuiltinType>();
8381 
8382   QualType EltType = CurType->getSveEltType(S.Context);
8383   unsigned TypeSize = S.Context.getTypeSize(EltType);
8384   VectorKind VecKind = VectorKind::SveFixedLengthData;
8385   if (BT->getKind() == BuiltinType::SveBool) {
8386     // Predicates are represented as i8.
8387     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8388     VecKind = VectorKind::SveFixedLengthPredicate;
8389   } else
8390     VecSize /= TypeSize;
8391   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8392 }
8393 
8394 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8395                                                QualType &CurType,
8396                                                ParsedAttr &Attr) {
8397   const VectorType *VT = dyn_cast<VectorType>(CurType);
8398   if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8399     State.getSema().Diag(Attr.getLoc(),
8400                          diag::err_attribute_arm_mve_polymorphism);
8401     Attr.setInvalid();
8402     return;
8403   }
8404 
8405   CurType =
8406       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8407                                   State.getSema().Context, Attr),
8408                               CurType, CurType);
8409 }
8410 
8411 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8412 /// used to create fixed-length versions of sizeless RVV types such as
8413 /// vint8m1_t_t.
8414 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8415                                              ParsedAttr &Attr, Sema &S) {
8416   // Target must have vector extension.
8417   if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8418     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8419         << Attr << "'zve32x'";
8420     Attr.setInvalid();
8421     return;
8422   }
8423 
8424   auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8425   if (!VScale || !VScale->first || VScale->first != VScale->second) {
8426     S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8427         << Attr;
8428     Attr.setInvalid();
8429     return;
8430   }
8431 
8432   // Check the attribute arguments.
8433   if (Attr.getNumArgs() != 1) {
8434     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8435         << Attr << 1;
8436     Attr.setInvalid();
8437     return;
8438   }
8439 
8440   // The vector size must be an integer constant expression.
8441   llvm::APSInt RVVVectorSizeInBits(32);
8442   if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8443     return;
8444 
8445   // Attribute can only be attached to a single RVV vector type.
8446   if (!CurType->isRVVVLSBuiltinType()) {
8447     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8448         << Attr << CurType;
8449     Attr.setInvalid();
8450     return;
8451   }
8452 
8453   unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8454 
8455   ASTContext::BuiltinVectorTypeInfo Info =
8456       S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8457   unsigned MinElts = Info.EC.getKnownMinValue();
8458 
8459   VectorKind VecKind = VectorKind::RVVFixedLengthData;
8460   unsigned ExpectedSize = VScale->first * MinElts;
8461   QualType EltType = CurType->getRVVEltType(S.Context);
8462   unsigned EltSize = S.Context.getTypeSize(EltType);
8463   unsigned NumElts;
8464   if (Info.ElementType == S.Context.BoolTy) {
8465     NumElts = VecSize / S.Context.getCharWidth();
8466     if (!NumElts) {
8467       NumElts = 1;
8468       switch (VecSize) {
8469       case 1:
8470         VecKind = VectorKind::RVVFixedLengthMask_1;
8471         break;
8472       case 2:
8473         VecKind = VectorKind::RVVFixedLengthMask_2;
8474         break;
8475       case 4:
8476         VecKind = VectorKind::RVVFixedLengthMask_4;
8477         break;
8478       }
8479     } else
8480       VecKind = VectorKind::RVVFixedLengthMask;
8481   } else {
8482     ExpectedSize *= EltSize;
8483     NumElts = VecSize / EltSize;
8484   }
8485 
8486   // The attribute vector size must match -mrvv-vector-bits.
8487   if (VecSize != ExpectedSize) {
8488     S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8489         << VecSize << ExpectedSize;
8490     Attr.setInvalid();
8491     return;
8492   }
8493 
8494   CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8495 }
8496 
8497 /// Handle OpenCL Access Qualifier Attribute.
8498 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8499                                    Sema &S) {
8500   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8501   if (!(CurType->isImageType() || CurType->isPipeType())) {
8502     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8503     Attr.setInvalid();
8504     return;
8505   }
8506 
8507   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8508     QualType BaseTy = TypedefTy->desugar();
8509 
8510     std::string PrevAccessQual;
8511     if (BaseTy->isPipeType()) {
8512       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8513         OpenCLAccessAttr *Attr =
8514             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8515         PrevAccessQual = Attr->getSpelling();
8516       } else {
8517         PrevAccessQual = "read_only";
8518       }
8519     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8520 
8521       switch (ImgType->getKind()) {
8522         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8523       case BuiltinType::Id:                                          \
8524         PrevAccessQual = #Access;                                    \
8525         break;
8526         #include "clang/Basic/OpenCLImageTypes.def"
8527       default:
8528         llvm_unreachable("Unable to find corresponding image type.");
8529       }
8530     } else {
8531       llvm_unreachable("unexpected type");
8532     }
8533     StringRef AttrName = Attr.getAttrName()->getName();
8534     if (PrevAccessQual == AttrName.ltrim("_")) {
8535       // Duplicated qualifiers
8536       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8537          << AttrName << Attr.getRange();
8538     } else {
8539       // Contradicting qualifiers
8540       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8541     }
8542 
8543     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8544            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8545   } else if (CurType->isPipeType()) {
8546     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8547       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8548       CurType = S.Context.getWritePipeType(ElemType);
8549     }
8550   }
8551 }
8552 
8553 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8554 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8555                                  Sema &S) {
8556   if (!S.getLangOpts().MatrixTypes) {
8557     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8558     return;
8559   }
8560 
8561   if (Attr.getNumArgs() != 2) {
8562     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8563         << Attr << 2;
8564     return;
8565   }
8566 
8567   Expr *RowsExpr = Attr.getArgAsExpr(0);
8568   Expr *ColsExpr = Attr.getArgAsExpr(1);
8569   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8570   if (!T.isNull())
8571     CurType = T;
8572 }
8573 
8574 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8575                                    QualType &CurType, const ParsedAttr &PA) {
8576   Sema &S = State.getSema();
8577 
8578   if (PA.getNumArgs() < 1) {
8579     S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8580     return;
8581   }
8582 
8583   // Make sure that there is a string literal as the annotation's first
8584   // argument.
8585   StringRef Str;
8586   if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8587     return;
8588 
8589   llvm::SmallVector<Expr *, 4> Args;
8590   Args.reserve(PA.getNumArgs() - 1);
8591   for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8592     assert(!PA.isArgIdent(Idx));
8593     Args.push_back(PA.getArgAsExpr(Idx));
8594   }
8595   if (!S.ConstantFoldAttrArgs(PA, Args))
8596     return;
8597   auto *AnnotateTypeAttr =
8598       AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8599   CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8600 }
8601 
8602 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8603                                     QualType &CurType,
8604                                     ParsedAttr &Attr) {
8605   if (State.getDeclarator().isDeclarationOfFunction()) {
8606     CurType = State.getAttributedType(
8607         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8608         CurType, CurType);
8609   }
8610 }
8611 
8612 static void HandleLifetimeCaptureByAttr(TypeProcessingState &State,
8613                                         QualType &CurType, ParsedAttr &PA) {
8614   if (State.getDeclarator().isDeclarationOfFunction()) {
8615     auto *Attr = State.getSema().ParseLifetimeCaptureByAttr(PA, "this");
8616     if (Attr)
8617       CurType = State.getAttributedType(Attr, CurType, CurType);
8618   }
8619 }
8620 
8621 static void HandleHLSLParamModifierAttr(TypeProcessingState &State,
8622                                         QualType &CurType,
8623                                         const ParsedAttr &Attr, Sema &S) {
8624   // Don't apply this attribute to template dependent types. It is applied on
8625   // substitution during template instantiation. Also skip parsing this if we've
8626   // already modified the type based on an earlier attribute.
8627   if (CurType->isDependentType() || State.didParseHLSLParamMod())
8628     return;
8629   if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8630       Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) {
8631     CurType = S.HLSL().getInoutParameterType(CurType);
8632     State.setParsedHLSLParamMod(true);
8633   }
8634 }
8635 
8636 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8637                              TypeAttrLocation TAL,
8638                              const ParsedAttributesView &attrs,
8639                              CUDAFunctionTarget CFT) {
8640 
8641   state.setParsedNoDeref(false);
8642   if (attrs.empty())
8643     return;
8644 
8645   // Scan through and apply attributes to this type where it makes sense.  Some
8646   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8647   // type, but others can be present in the type specifiers even though they
8648   // apply to the decl.  Here we apply type attributes and ignore the rest.
8649 
8650   // This loop modifies the list pretty frequently, but we still need to make
8651   // sure we visit every element once. Copy the attributes list, and iterate
8652   // over that.
8653   ParsedAttributesView AttrsCopy{attrs};
8654   for (ParsedAttr &attr : AttrsCopy) {
8655 
8656     // Skip attributes that were marked to be invalid.
8657     if (attr.isInvalid())
8658       continue;
8659 
8660     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8661       // [[gnu::...]] attributes are treated as declaration attributes, so may
8662       // not appertain to a DeclaratorChunk. If we handle them as type
8663       // attributes, accept them in that position and diagnose the GCC
8664       // incompatibility.
8665       if (attr.isGNUScope()) {
8666         assert(attr.isStandardAttributeSyntax());
8667         bool IsTypeAttr = attr.isTypeAttr();
8668         if (TAL == TAL_DeclChunk) {
8669           state.getSema().Diag(attr.getLoc(),
8670                                IsTypeAttr
8671                                    ? diag::warn_gcc_ignores_type_attr
8672                                    : diag::warn_cxx11_gnu_attribute_on_type)
8673               << attr;
8674           if (!IsTypeAttr)
8675             continue;
8676         }
8677       } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8678                  !attr.isTypeAttr()) {
8679         // Otherwise, only consider type processing for a C++11 attribute if
8680         // - it has actually been applied to a type (decl-specifier-seq or
8681         //   declarator chunk), or
8682         // - it is a type attribute, irrespective of where it was applied (so
8683         //   that we can support the legacy behavior of some type attributes
8684         //   that can be applied to the declaration name).
8685         continue;
8686       }
8687     }
8688 
8689     // If this is an attribute we can handle, do so now,
8690     // otherwise, add it to the FnAttrs list for rechaining.
8691     switch (attr.getKind()) {
8692     default:
8693       // A [[]] attribute on a declarator chunk must appertain to a type.
8694       if ((attr.isStandardAttributeSyntax() ||
8695            attr.isRegularKeywordAttribute()) &&
8696           TAL == TAL_DeclChunk) {
8697         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8698             << attr << attr.isRegularKeywordAttribute();
8699         attr.setUsedAsTypeAttr();
8700       }
8701       break;
8702 
8703     case ParsedAttr::UnknownAttribute:
8704       if (attr.isStandardAttributeSyntax()) {
8705         state.getSema().Diag(attr.getLoc(),
8706                              diag::warn_unknown_attribute_ignored)
8707             << attr << attr.getRange();
8708         // Mark the attribute as invalid so we don't emit the same diagnostic
8709         // multiple times.
8710         attr.setInvalid();
8711       }
8712       break;
8713 
8714     case ParsedAttr::IgnoredAttribute:
8715       break;
8716 
8717     case ParsedAttr::AT_BTFTypeTag:
8718       HandleBTFTypeTagAttribute(type, attr, state);
8719       attr.setUsedAsTypeAttr();
8720       break;
8721 
8722     case ParsedAttr::AT_MayAlias:
8723       // FIXME: This attribute needs to actually be handled, but if we ignore
8724       // it it breaks large amounts of Linux software.
8725       attr.setUsedAsTypeAttr();
8726       break;
8727     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8728     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8729     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8730     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8731     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8732     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8733     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8734     case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8735     case ParsedAttr::AT_AddressSpace:
8736       HandleAddressSpaceTypeAttribute(type, attr, state);
8737       attr.setUsedAsTypeAttr();
8738       break;
8739     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8740       if (!handleObjCPointerTypeAttr(state, attr, type))
8741         distributeObjCPointerTypeAttr(state, attr, type);
8742       attr.setUsedAsTypeAttr();
8743       break;
8744     case ParsedAttr::AT_VectorSize:
8745       HandleVectorSizeAttr(type, attr, state.getSema());
8746       attr.setUsedAsTypeAttr();
8747       break;
8748     case ParsedAttr::AT_ExtVectorType:
8749       HandleExtVectorTypeAttr(type, attr, state.getSema());
8750       attr.setUsedAsTypeAttr();
8751       break;
8752     case ParsedAttr::AT_NeonVectorType:
8753       HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8754       attr.setUsedAsTypeAttr();
8755       break;
8756     case ParsedAttr::AT_NeonPolyVectorType:
8757       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8758                                VectorKind::NeonPoly);
8759       attr.setUsedAsTypeAttr();
8760       break;
8761     case ParsedAttr::AT_ArmSveVectorBits:
8762       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8763       attr.setUsedAsTypeAttr();
8764       break;
8765     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8766       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8767       attr.setUsedAsTypeAttr();
8768       break;
8769     }
8770     case ParsedAttr::AT_RISCVRVVVectorBits:
8771       HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8772       attr.setUsedAsTypeAttr();
8773       break;
8774     case ParsedAttr::AT_OpenCLAccess:
8775       HandleOpenCLAccessAttr(type, attr, state.getSema());
8776       attr.setUsedAsTypeAttr();
8777       break;
8778     case ParsedAttr::AT_LifetimeBound:
8779       if (TAL == TAL_DeclChunk)
8780         HandleLifetimeBoundAttr(state, type, attr);
8781       break;
8782     case ParsedAttr::AT_LifetimeCaptureBy:
8783       if (TAL == TAL_DeclChunk)
8784         HandleLifetimeCaptureByAttr(state, type, attr);
8785       break;
8786 
8787     case ParsedAttr::AT_NoDeref: {
8788       // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8789       // See https://github.com/llvm/llvm-project/issues/55790 for details.
8790       // For the time being, we simply emit a warning that the attribute is
8791       // ignored.
8792       if (attr.isStandardAttributeSyntax()) {
8793         state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8794             << attr;
8795         break;
8796       }
8797       ASTContext &Ctx = state.getSema().Context;
8798       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8799                                      type, type);
8800       attr.setUsedAsTypeAttr();
8801       state.setParsedNoDeref(true);
8802       break;
8803     }
8804 
8805     case ParsedAttr::AT_MatrixType:
8806       HandleMatrixTypeAttr(type, attr, state.getSema());
8807       attr.setUsedAsTypeAttr();
8808       break;
8809 
8810     case ParsedAttr::AT_WebAssemblyFuncref: {
8811       if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8812         attr.setUsedAsTypeAttr();
8813       break;
8814     }
8815 
8816     case ParsedAttr::AT_HLSLParamModifier: {
8817       HandleHLSLParamModifierAttr(state, type, attr, state.getSema());
8818       attr.setUsedAsTypeAttr();
8819       break;
8820     }
8821 
8822     case ParsedAttr::AT_SwiftAttr: {
8823       HandleSwiftAttr(state, TAL, type, attr);
8824       break;
8825     }
8826 
8827     MS_TYPE_ATTRS_CASELIST:
8828       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8829         attr.setUsedAsTypeAttr();
8830       break;
8831 
8832 
8833     NULLABILITY_TYPE_ATTRS_CASELIST:
8834       // Either add nullability here or try to distribute it.  We
8835       // don't want to distribute the nullability specifier past any
8836       // dependent type, because that complicates the user model.
8837       if (type->canHaveNullability() || type->isDependentType() ||
8838           type->isArrayType() ||
8839           !distributeNullabilityTypeAttr(state, type, attr)) {
8840         unsigned endIndex;
8841         if (TAL == TAL_DeclChunk)
8842           endIndex = state.getCurrentChunkIndex();
8843         else
8844           endIndex = state.getDeclarator().getNumTypeObjects();
8845         bool allowOnArrayType =
8846             state.getDeclarator().isPrototypeContext() &&
8847             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8848         if (CheckNullabilityTypeSpecifier(state, type, attr,
8849                                           allowOnArrayType)) {
8850           attr.setInvalid();
8851         }
8852 
8853         attr.setUsedAsTypeAttr();
8854       }
8855       break;
8856 
8857     case ParsedAttr::AT_ObjCKindOf:
8858       // '__kindof' must be part of the decl-specifiers.
8859       switch (TAL) {
8860       case TAL_DeclSpec:
8861         break;
8862 
8863       case TAL_DeclChunk:
8864       case TAL_DeclName:
8865         state.getSema().Diag(attr.getLoc(),
8866                              diag::err_objc_kindof_wrong_position)
8867             << FixItHint::CreateRemoval(attr.getLoc())
8868             << FixItHint::CreateInsertion(
8869                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8870                    "__kindof ");
8871         break;
8872       }
8873 
8874       // Apply it regardless.
8875       if (checkObjCKindOfType(state, type, attr))
8876         attr.setInvalid();
8877       break;
8878 
8879     case ParsedAttr::AT_NoThrow:
8880     // Exception Specifications aren't generally supported in C mode throughout
8881     // clang, so revert to attribute-based handling for C.
8882       if (!state.getSema().getLangOpts().CPlusPlus)
8883         break;
8884       [[fallthrough]];
8885     FUNCTION_TYPE_ATTRS_CASELIST:
8886       attr.setUsedAsTypeAttr();
8887 
8888       // Attributes with standard syntax have strict rules for what they
8889       // appertain to and hence should not use the "distribution" logic below.
8890       if (attr.isStandardAttributeSyntax() ||
8891           attr.isRegularKeywordAttribute()) {
8892         if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8893           diagnoseBadTypeAttribute(state.getSema(), attr, type);
8894           attr.setInvalid();
8895         }
8896         break;
8897       }
8898 
8899       // Never process function type attributes as part of the
8900       // declaration-specifiers.
8901       if (TAL == TAL_DeclSpec)
8902         distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8903 
8904       // Otherwise, handle the possible delays.
8905       else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8906         distributeFunctionTypeAttr(state, attr, type);
8907       break;
8908     case ParsedAttr::AT_AcquireHandle: {
8909       if (!type->isFunctionType())
8910         return;
8911 
8912       if (attr.getNumArgs() != 1) {
8913         state.getSema().Diag(attr.getLoc(),
8914                              diag::err_attribute_wrong_number_arguments)
8915             << attr << 1;
8916         attr.setInvalid();
8917         return;
8918       }
8919 
8920       StringRef HandleType;
8921       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8922         return;
8923       type = state.getAttributedType(
8924           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8925           type, type);
8926       attr.setUsedAsTypeAttr();
8927       break;
8928     }
8929     case ParsedAttr::AT_AnnotateType: {
8930       HandleAnnotateTypeAttr(state, type, attr);
8931       attr.setUsedAsTypeAttr();
8932       break;
8933     }
8934     case ParsedAttr::AT_HLSLResourceClass:
8935     case ParsedAttr::AT_HLSLROV:
8936     case ParsedAttr::AT_HLSLRawBuffer:
8937     case ParsedAttr::AT_HLSLContainedType: {
8938       // Only collect HLSL resource type attributes that are in
8939       // decl-specifier-seq; do not collect attributes on declarations or those
8940       // that get to slide after declaration name.
8941       if (TAL == TAL_DeclSpec &&
8942           state.getSema().HLSL().handleResourceTypeAttr(type, attr))
8943         attr.setUsedAsTypeAttr();
8944       break;
8945     }
8946     }
8947 
8948     // Handle attributes that are defined in a macro. We do not want this to be
8949     // applied to ObjC builtin attributes.
8950     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8951         !type.getQualifiers().hasObjCLifetime() &&
8952         !type.getQualifiers().hasObjCGCAttr() &&
8953         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8954         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8955       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8956       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8957       state.setExpansionLocForMacroQualifiedType(
8958           cast<MacroQualifiedType>(type.getTypePtr()),
8959           attr.getMacroExpansionLoc());
8960     }
8961   }
8962 }
8963 
8964 void Sema::completeExprArrayBound(Expr *E) {
8965   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8966     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8967       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8968         auto *Def = Var->getDefinition();
8969         if (!Def) {
8970           SourceLocation PointOfInstantiation = E->getExprLoc();
8971           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8972             InstantiateVariableDefinition(PointOfInstantiation, Var);
8973           });
8974           Def = Var->getDefinition();
8975 
8976           // If we don't already have a point of instantiation, and we managed
8977           // to instantiate a definition, this is the point of instantiation.
8978           // Otherwise, we don't request an end-of-TU instantiation, so this is
8979           // not a point of instantiation.
8980           // FIXME: Is this really the right behavior?
8981           if (Var->getPointOfInstantiation().isInvalid() && Def) {
8982             assert(Var->getTemplateSpecializationKind() ==
8983                        TSK_ImplicitInstantiation &&
8984                    "explicit instantiation with no point of instantiation");
8985             Var->setTemplateSpecializationKind(
8986                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8987           }
8988         }
8989 
8990         // Update the type to the definition's type both here and within the
8991         // expression.
8992         if (Def) {
8993           DRE->setDecl(Def);
8994           QualType T = Def->getType();
8995           DRE->setType(T);
8996           // FIXME: Update the type on all intervening expressions.
8997           E->setType(T);
8998         }
8999 
9000         // We still go on to try to complete the type independently, as it
9001         // may also require instantiations or diagnostics if it remains
9002         // incomplete.
9003       }
9004     }
9005   }
9006   if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
9007     QualType DestType = CastE->getTypeAsWritten();
9008     if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
9009       // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
9010       // this direct-initialization defines the type of the expression
9011       // as U[1]
9012       QualType ResultType = Context.getConstantArrayType(
9013           IAT->getElementType(),
9014           llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
9015           /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
9016           /*IndexTypeQuals=*/0);
9017       E->setType(ResultType);
9018     }
9019   }
9020 }
9021 
9022 QualType Sema::getCompletedType(Expr *E) {
9023   // Incomplete array types may be completed by the initializer attached to
9024   // their definitions. For static data members of class templates and for
9025   // variable templates, we need to instantiate the definition to get this
9026   // initializer and complete the type.
9027   if (E->getType()->isIncompleteArrayType())
9028     completeExprArrayBound(E);
9029 
9030   // FIXME: Are there other cases which require instantiating something other
9031   // than the type to complete the type of an expression?
9032 
9033   return E->getType();
9034 }
9035 
9036 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
9037                                    TypeDiagnoser &Diagnoser) {
9038   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
9039                              Diagnoser);
9040 }
9041 
9042 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
9043   BoundTypeDiagnoser<> Diagnoser(DiagID);
9044   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
9045 }
9046 
9047 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9048                                CompleteTypeKind Kind,
9049                                TypeDiagnoser &Diagnoser) {
9050   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
9051     return true;
9052   if (const TagType *Tag = T->getAs<TagType>()) {
9053     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
9054       Tag->getDecl()->setCompleteDefinitionRequired();
9055       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
9056     }
9057   }
9058   return false;
9059 }
9060 
9061 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
9062   llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
9063   if (!Suggested)
9064     return false;
9065 
9066   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9067   // and isolate from other C++ specific checks.
9068   StructuralEquivalenceContext Ctx(
9069       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
9070       StructuralEquivalenceKind::Default,
9071       false /*StrictTypeSpelling*/, true /*Complain*/,
9072       true /*ErrorOnTagTypeMismatch*/);
9073   return Ctx.IsEquivalent(D, Suggested);
9074 }
9075 
9076 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
9077                                    AcceptableKind Kind, bool OnlyNeedComplete) {
9078   // Easy case: if we don't have modules, all declarations are visible.
9079   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
9080     return true;
9081 
9082   // If this definition was instantiated from a template, map back to the
9083   // pattern from which it was instantiated.
9084   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
9085     // We're in the middle of defining it; this definition should be treated
9086     // as visible.
9087     return true;
9088   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9089     if (auto *Pattern = RD->getTemplateInstantiationPattern())
9090       RD = Pattern;
9091     D = RD->getDefinition();
9092   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
9093     if (auto *Pattern = ED->getTemplateInstantiationPattern())
9094       ED = Pattern;
9095     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9096       // If the enum has a fixed underlying type, it may have been forward
9097       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9098       // the enum and assign it the underlying type of `int`. Since we're only
9099       // looking for a complete type (not a definition), any visible declaration
9100       // of it will do.
9101       *Suggested = nullptr;
9102       for (auto *Redecl : ED->redecls()) {
9103         if (isAcceptable(Redecl, Kind))
9104           return true;
9105         if (Redecl->isThisDeclarationADefinition() ||
9106             (Redecl->isCanonicalDecl() && !*Suggested))
9107           *Suggested = Redecl;
9108       }
9109 
9110       return false;
9111     }
9112     D = ED->getDefinition();
9113   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
9114     if (auto *Pattern = FD->getTemplateInstantiationPattern())
9115       FD = Pattern;
9116     D = FD->getDefinition();
9117   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
9118     if (auto *Pattern = VD->getTemplateInstantiationPattern())
9119       VD = Pattern;
9120     D = VD->getDefinition();
9121   }
9122 
9123   assert(D && "missing definition for pattern of instantiated definition");
9124 
9125   *Suggested = D;
9126 
9127   auto DefinitionIsAcceptable = [&] {
9128     // The (primary) definition might be in a visible module.
9129     if (isAcceptable(D, Kind))
9130       return true;
9131 
9132     // A visible module might have a merged definition instead.
9133     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
9134                              : hasVisibleMergedDefinition(D)) {
9135       if (CodeSynthesisContexts.empty() &&
9136           !getLangOpts().ModulesLocalVisibility) {
9137         // Cache the fact that this definition is implicitly visible because
9138         // there is a visible merged definition.
9139         D->setVisibleDespiteOwningModule();
9140       }
9141       return true;
9142     }
9143 
9144     return false;
9145   };
9146 
9147   if (DefinitionIsAcceptable())
9148     return true;
9149 
9150   // The external source may have additional definitions of this entity that are
9151   // visible, so complete the redeclaration chain now and ask again.
9152   if (auto *Source = Context.getExternalSource()) {
9153     Source->CompleteRedeclChain(D);
9154     return DefinitionIsAcceptable();
9155   }
9156 
9157   return false;
9158 }
9159 
9160 /// Determine whether there is any declaration of \p D that was ever a
9161 ///        definition (perhaps before module merging) and is currently visible.
9162 /// \param D The definition of the entity.
9163 /// \param Suggested Filled in with the declaration that should be made visible
9164 ///        in order to provide a definition of this entity.
9165 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9166 ///        not defined. This only matters for enums with a fixed underlying
9167 ///        type, since in all other cases, a type is complete if and only if it
9168 ///        is defined.
9169 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9170                                 bool OnlyNeedComplete) {
9171   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9172                                  OnlyNeedComplete);
9173 }
9174 
9175 /// Determine whether there is any declaration of \p D that was ever a
9176 ///        definition (perhaps before module merging) and is currently
9177 ///        reachable.
9178 /// \param D The definition of the entity.
9179 /// \param Suggested Filled in with the declaration that should be made
9180 /// reachable
9181 ///        in order to provide a definition of this entity.
9182 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9183 ///        not defined. This only matters for enums with a fixed underlying
9184 ///        type, since in all other cases, a type is complete if and only if it
9185 ///        is defined.
9186 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9187                                   bool OnlyNeedComplete) {
9188   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9189                                  OnlyNeedComplete);
9190 }
9191 
9192 /// Locks in the inheritance model for the given class and all of its bases.
9193 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9194   RD = RD->getMostRecentNonInjectedDecl();
9195   if (!RD->hasAttr<MSInheritanceAttr>()) {
9196     MSInheritanceModel IM;
9197     bool BestCase = false;
9198     switch (S.MSPointerToMemberRepresentationMethod) {
9199     case LangOptions::PPTMK_BestCase:
9200       BestCase = true;
9201       IM = RD->calculateInheritanceModel();
9202       break;
9203     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9204       IM = MSInheritanceModel::Single;
9205       break;
9206     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9207       IM = MSInheritanceModel::Multiple;
9208       break;
9209     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9210       IM = MSInheritanceModel::Unspecified;
9211       break;
9212     }
9213 
9214     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9215                           ? S.ImplicitMSInheritanceAttrLoc
9216                           : RD->getSourceRange();
9217     RD->addAttr(MSInheritanceAttr::CreateImplicit(
9218         S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9219     S.Consumer.AssignInheritanceModel(RD);
9220   }
9221 }
9222 
9223 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9224                                    CompleteTypeKind Kind,
9225                                    TypeDiagnoser *Diagnoser) {
9226   // FIXME: Add this assertion to make sure we always get instantiation points.
9227   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9228   // FIXME: Add this assertion to help us flush out problems with
9229   // checking for dependent types and type-dependent expressions.
9230   //
9231   //  assert(!T->isDependentType() &&
9232   //         "Can't ask whether a dependent type is complete");
9233 
9234   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9235     if (!MPTy->getClass()->isDependentType()) {
9236       if (getLangOpts().CompleteMemberPointers &&
9237           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9238           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9239                               diag::err_memptr_incomplete))
9240         return true;
9241 
9242       // We lock in the inheritance model once somebody has asked us to ensure
9243       // that a pointer-to-member type is complete.
9244       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9245         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9246         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9247       }
9248     }
9249   }
9250 
9251   NamedDecl *Def = nullptr;
9252   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9253   bool Incomplete = (T->isIncompleteType(&Def) ||
9254                      (!AcceptSizeless && T->isSizelessBuiltinType()));
9255 
9256   // Check that any necessary explicit specializations are visible. For an
9257   // enum, we just need the declaration, so don't check this.
9258   if (Def && !isa<EnumDecl>(Def))
9259     checkSpecializationReachability(Loc, Def);
9260 
9261   // If we have a complete type, we're done.
9262   if (!Incomplete) {
9263     NamedDecl *Suggested = nullptr;
9264     if (Def &&
9265         !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9266       // If the user is going to see an error here, recover by making the
9267       // definition visible.
9268       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9269       if (Diagnoser && Suggested)
9270         diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9271                               /*Recover*/ TreatAsComplete);
9272       return !TreatAsComplete;
9273     } else if (Def && !TemplateInstCallbacks.empty()) {
9274       CodeSynthesisContext TempInst;
9275       TempInst.Kind = CodeSynthesisContext::Memoization;
9276       TempInst.Template = Def;
9277       TempInst.Entity = Def;
9278       TempInst.PointOfInstantiation = Loc;
9279       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9280       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9281     }
9282 
9283     return false;
9284   }
9285 
9286   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9287   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9288 
9289   // Give the external source a chance to provide a definition of the type.
9290   // This is kept separate from completing the redeclaration chain so that
9291   // external sources such as LLDB can avoid synthesizing a type definition
9292   // unless it's actually needed.
9293   if (Tag || IFace) {
9294     // Avoid diagnosing invalid decls as incomplete.
9295     if (Def->isInvalidDecl())
9296       return true;
9297 
9298     // Give the external AST source a chance to complete the type.
9299     if (auto *Source = Context.getExternalSource()) {
9300       if (Tag && Tag->hasExternalLexicalStorage())
9301           Source->CompleteType(Tag);
9302       if (IFace && IFace->hasExternalLexicalStorage())
9303           Source->CompleteType(IFace);
9304       // If the external source completed the type, go through the motions
9305       // again to ensure we're allowed to use the completed type.
9306       if (!T->isIncompleteType())
9307         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9308     }
9309   }
9310 
9311   // If we have a class template specialization or a class member of a
9312   // class template specialization, or an array with known size of such,
9313   // try to instantiate it.
9314   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9315     bool Instantiated = false;
9316     bool Diagnosed = false;
9317     if (RD->isDependentContext()) {
9318       // Don't try to instantiate a dependent class (eg, a member template of
9319       // an instantiated class template specialization).
9320       // FIXME: Can this ever happen?
9321     } else if (auto *ClassTemplateSpec =
9322             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9323       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9324         runWithSufficientStackSpace(Loc, [&] {
9325           Diagnosed = InstantiateClassTemplateSpecialization(
9326               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9327               /*Complain=*/Diagnoser);
9328         });
9329         Instantiated = true;
9330       }
9331     } else {
9332       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9333       if (!RD->isBeingDefined() && Pattern) {
9334         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9335         assert(MSI && "Missing member specialization information?");
9336         // This record was instantiated from a class within a template.
9337         if (MSI->getTemplateSpecializationKind() !=
9338             TSK_ExplicitSpecialization) {
9339           runWithSufficientStackSpace(Loc, [&] {
9340             Diagnosed = InstantiateClass(Loc, RD, Pattern,
9341                                          getTemplateInstantiationArgs(RD),
9342                                          TSK_ImplicitInstantiation,
9343                                          /*Complain=*/Diagnoser);
9344           });
9345           Instantiated = true;
9346         }
9347       }
9348     }
9349 
9350     if (Instantiated) {
9351       // Instantiate* might have already complained that the template is not
9352       // defined, if we asked it to.
9353       if (Diagnoser && Diagnosed)
9354         return true;
9355       // If we instantiated a definition, check that it's usable, even if
9356       // instantiation produced an error, so that repeated calls to this
9357       // function give consistent answers.
9358       if (!T->isIncompleteType())
9359         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9360     }
9361   }
9362 
9363   // FIXME: If we didn't instantiate a definition because of an explicit
9364   // specialization declaration, check that it's visible.
9365 
9366   if (!Diagnoser)
9367     return true;
9368 
9369   Diagnoser->diagnose(*this, Loc, T);
9370 
9371   // If the type was a forward declaration of a class/struct/union
9372   // type, produce a note.
9373   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9374     Diag(Tag->getLocation(),
9375          Tag->isBeingDefined() ? diag::note_type_being_defined
9376                                : diag::note_forward_declaration)
9377       << Context.getTagDeclType(Tag);
9378 
9379   // If the Objective-C class was a forward declaration, produce a note.
9380   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9381     Diag(IFace->getLocation(), diag::note_forward_class);
9382 
9383   // If we have external information that we can use to suggest a fix,
9384   // produce a note.
9385   if (ExternalSource)
9386     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9387 
9388   return true;
9389 }
9390 
9391 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9392                                CompleteTypeKind Kind, unsigned DiagID) {
9393   BoundTypeDiagnoser<> Diagnoser(DiagID);
9394   return RequireCompleteType(Loc, T, Kind, Diagnoser);
9395 }
9396 
9397 /// Get diagnostic %select index for tag kind for
9398 /// literal type diagnostic message.
9399 /// WARNING: Indexes apply to particular diagnostics only!
9400 ///
9401 /// \returns diagnostic %select index.
9402 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9403   switch (Tag) {
9404   case TagTypeKind::Struct:
9405     return 0;
9406   case TagTypeKind::Interface:
9407     return 1;
9408   case TagTypeKind::Class:
9409     return 2;
9410   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9411   }
9412 }
9413 
9414 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9415                               TypeDiagnoser &Diagnoser) {
9416   assert(!T->isDependentType() && "type should not be dependent");
9417 
9418   QualType ElemType = Context.getBaseElementType(T);
9419   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9420       T->isLiteralType(Context))
9421     return false;
9422 
9423   Diagnoser.diagnose(*this, Loc, T);
9424 
9425   if (T->isVariableArrayType())
9426     return true;
9427 
9428   const RecordType *RT = ElemType->getAs<RecordType>();
9429   if (!RT)
9430     return true;
9431 
9432   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9433 
9434   // A partially-defined class type can't be a literal type, because a literal
9435   // class type must have a trivial destructor (which can't be checked until
9436   // the class definition is complete).
9437   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9438     return true;
9439 
9440   // [expr.prim.lambda]p3:
9441   //   This class type is [not] a literal type.
9442   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9443     Diag(RD->getLocation(), diag::note_non_literal_lambda);
9444     return true;
9445   }
9446 
9447   // If the class has virtual base classes, then it's not an aggregate, and
9448   // cannot have any constexpr constructors or a trivial default constructor,
9449   // so is non-literal. This is better to diagnose than the resulting absence
9450   // of constexpr constructors.
9451   if (RD->getNumVBases()) {
9452     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9453       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9454     for (const auto &I : RD->vbases())
9455       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9456           << I.getSourceRange();
9457   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9458              !RD->hasTrivialDefaultConstructor()) {
9459     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9460   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9461     for (const auto &I : RD->bases()) {
9462       if (!I.getType()->isLiteralType(Context)) {
9463         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9464             << RD << I.getType() << I.getSourceRange();
9465         return true;
9466       }
9467     }
9468     for (const auto *I : RD->fields()) {
9469       if (!I->getType()->isLiteralType(Context) ||
9470           I->getType().isVolatileQualified()) {
9471         Diag(I->getLocation(), diag::note_non_literal_field)
9472           << RD << I << I->getType()
9473           << I->getType().isVolatileQualified();
9474         return true;
9475       }
9476     }
9477   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9478                                        : !RD->hasTrivialDestructor()) {
9479     // All fields and bases are of literal types, so have trivial or constexpr
9480     // destructors. If this class's destructor is non-trivial / non-constexpr,
9481     // it must be user-declared.
9482     CXXDestructorDecl *Dtor = RD->getDestructor();
9483     assert(Dtor && "class has literal fields and bases but no dtor?");
9484     if (!Dtor)
9485       return true;
9486 
9487     if (getLangOpts().CPlusPlus20) {
9488       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9489           << RD;
9490     } else {
9491       Diag(Dtor->getLocation(), Dtor->isUserProvided()
9492                                     ? diag::note_non_literal_user_provided_dtor
9493                                     : diag::note_non_literal_nontrivial_dtor)
9494           << RD;
9495       if (!Dtor->isUserProvided())
9496         SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9497                                TAH_IgnoreTrivialABI,
9498                                /*Diagnose*/ true);
9499     }
9500   }
9501 
9502   return true;
9503 }
9504 
9505 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9506   BoundTypeDiagnoser<> Diagnoser(DiagID);
9507   return RequireLiteralType(Loc, T, Diagnoser);
9508 }
9509 
9510 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9511                                  const CXXScopeSpec &SS, QualType T,
9512                                  TagDecl *OwnedTagDecl) {
9513   if (T.isNull())
9514     return T;
9515   return Context.getElaboratedType(
9516       Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9517 }
9518 
9519 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9520   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9521 
9522   if (!getLangOpts().CPlusPlus && E->refersToBitField())
9523     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9524         << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9525 
9526   if (!E->isTypeDependent()) {
9527     QualType T = E->getType();
9528     if (const TagType *TT = T->getAs<TagType>())
9529       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9530   }
9531   return Context.getTypeOfExprType(E, Kind);
9532 }
9533 
9534 static void
9535 BuildTypeCoupledDecls(Expr *E,
9536                       llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9537   // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9538   auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9539   Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9540 }
9541 
9542 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9543                                                       Expr *CountExpr,
9544                                                       bool CountInBytes,
9545                                                       bool OrNull) {
9546   assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9547 
9548   llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9549   BuildTypeCoupledDecls(CountExpr, Decls);
9550   /// When the resulting expression is invalid, we still create the AST using
9551   /// the original count expression for the sake of AST dump.
9552   return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9553                                         OrNull, Decls);
9554 }
9555 
9556 /// getDecltypeForExpr - Given an expr, will return the decltype for
9557 /// that expression, according to the rules in C++11
9558 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9559 QualType Sema::getDecltypeForExpr(Expr *E) {
9560 
9561   Expr *IDExpr = E;
9562   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9563     IDExpr = ImplCastExpr->getSubExpr();
9564 
9565   if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9566     if (E->isInstantiationDependent())
9567       IDExpr = PackExpr->getPackIdExpression();
9568     else
9569       IDExpr = PackExpr->getSelectedExpr();
9570   }
9571 
9572   if (E->isTypeDependent())
9573     return Context.DependentTy;
9574 
9575   // C++11 [dcl.type.simple]p4:
9576   //   The type denoted by decltype(e) is defined as follows:
9577 
9578   // C++20:
9579   //     - if E is an unparenthesized id-expression naming a non-type
9580   //       template-parameter (13.2), decltype(E) is the type of the
9581   //       template-parameter after performing any necessary type deduction
9582   // Note that this does not pick up the implicit 'const' for a template
9583   // parameter object. This rule makes no difference before C++20 so we apply
9584   // it unconditionally.
9585   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9586     return SNTTPE->getParameterType(Context);
9587 
9588   //     - if e is an unparenthesized id-expression or an unparenthesized class
9589   //       member access (5.2.5), decltype(e) is the type of the entity named
9590   //       by e. If there is no such entity, or if e names a set of overloaded
9591   //       functions, the program is ill-formed;
9592   //
9593   // We apply the same rules for Objective-C ivar and property references.
9594   if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9595     const ValueDecl *VD = DRE->getDecl();
9596     QualType T = VD->getType();
9597     return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9598   }
9599   if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9600     if (const auto *VD = ME->getMemberDecl())
9601       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9602         return VD->getType();
9603   } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9604     return IR->getDecl()->getType();
9605   } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9606     if (PR->isExplicitProperty())
9607       return PR->getExplicitProperty()->getType();
9608   } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9609     return PE->getType();
9610   }
9611 
9612   // C++11 [expr.lambda.prim]p18:
9613   //   Every occurrence of decltype((x)) where x is a possibly
9614   //   parenthesized id-expression that names an entity of automatic
9615   //   storage duration is treated as if x were transformed into an
9616   //   access to a corresponding data member of the closure type that
9617   //   would have been declared if x were an odr-use of the denoted
9618   //   entity.
9619   if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9620     if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9621       if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9622         QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9623         if (!T.isNull())
9624           return Context.getLValueReferenceType(T);
9625       }
9626     }
9627   }
9628 
9629   return Context.getReferenceQualifiedType(E);
9630 }
9631 
9632 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9633   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9634 
9635   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9636       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9637     // The expression operand for decltype is in an unevaluated expression
9638     // context, so side effects could result in unintended consequences.
9639     // Exclude instantiation-dependent expressions, because 'decltype' is often
9640     // used to build SFINAE gadgets.
9641     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9642   }
9643   return Context.getDecltypeType(E, getDecltypeForExpr(E));
9644 }
9645 
9646 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9647                                      SourceLocation Loc,
9648                                      SourceLocation EllipsisLoc) {
9649   if (!IndexExpr)
9650     return QualType();
9651 
9652   // Diagnose unexpanded packs but continue to improve recovery.
9653   if (!Pattern->containsUnexpandedParameterPack())
9654     Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9655 
9656   QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9657 
9658   if (!Type.isNull())
9659     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9660                                         : diag::ext_pack_indexing);
9661   return Type;
9662 }
9663 
9664 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9665                                      SourceLocation Loc,
9666                                      SourceLocation EllipsisLoc,
9667                                      bool FullySubstituted,
9668                                      ArrayRef<QualType> Expansions) {
9669 
9670   std::optional<int64_t> Index;
9671   if (FullySubstituted && !IndexExpr->isValueDependent() &&
9672       !IndexExpr->isTypeDependent()) {
9673     llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9674     ExprResult Res = CheckConvertedConstantExpression(
9675         IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9676     if (!Res.isUsable())
9677       return QualType();
9678     Index = Value.getExtValue();
9679     IndexExpr = Res.get();
9680   }
9681 
9682   if (FullySubstituted && Index) {
9683     if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9684       Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9685           << *Index << Pattern << Expansions.size();
9686       return QualType();
9687     }
9688   }
9689 
9690   return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9691                                      Expansions, Index.value_or(-1));
9692 }
9693 
9694 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9695                                       SourceLocation Loc) {
9696   assert(BaseType->isEnumeralType());
9697   EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9698   assert(ED && "EnumType has no EnumDecl");
9699 
9700   S.DiagnoseUseOfDecl(ED, Loc);
9701 
9702   QualType Underlying = ED->getIntegerType();
9703   assert(!Underlying.isNull());
9704 
9705   return Underlying;
9706 }
9707 
9708 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9709                                          SourceLocation Loc) {
9710   if (!BaseType->isEnumeralType()) {
9711     Diag(Loc, diag::err_only_enums_have_underlying_types);
9712     return QualType();
9713   }
9714 
9715   // The enum could be incomplete if we're parsing its definition or
9716   // recovering from an error.
9717   NamedDecl *FwdDecl = nullptr;
9718   if (BaseType->isIncompleteType(&FwdDecl)) {
9719     Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9720     Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9721     return QualType();
9722   }
9723 
9724   return GetEnumUnderlyingType(*this, BaseType, Loc);
9725 }
9726 
9727 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9728   QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9729                          ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9730                                             DeclarationName())
9731                          : BaseType;
9732 
9733   return Pointer.isNull() ? QualType() : Pointer;
9734 }
9735 
9736 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9737   // We don't want block pointers or ObjectiveC's id type.
9738   if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9739     return BaseType;
9740 
9741   return BaseType->getPointeeType();
9742 }
9743 
9744 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9745   QualType Underlying = BaseType.getNonReferenceType();
9746   if (Underlying->isArrayType())
9747     return Context.getDecayedType(Underlying);
9748 
9749   if (Underlying->isFunctionType())
9750     return BuiltinAddPointer(BaseType, Loc);
9751 
9752   SplitQualType Split = Underlying.getSplitUnqualifiedType();
9753   // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9754   // in the same group of qualifiers as 'const' and 'volatile', we're extending
9755   // '__decay(T)' so that it removes all qualifiers.
9756   Split.Quals.removeCVRQualifiers();
9757   return Context.getQualifiedType(Split);
9758 }
9759 
9760 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9761                                    SourceLocation Loc) {
9762   assert(LangOpts.CPlusPlus);
9763   QualType Reference =
9764       BaseType.isReferenceable()
9765           ? BuildReferenceType(BaseType,
9766                                UKind == UnaryTransformType::AddLvalueReference,
9767                                Loc, DeclarationName())
9768           : BaseType;
9769   return Reference.isNull() ? QualType() : Reference;
9770 }
9771 
9772 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9773                                    SourceLocation Loc) {
9774   if (UKind == UnaryTransformType::RemoveAllExtents)
9775     return Context.getBaseElementType(BaseType);
9776 
9777   if (const auto *AT = Context.getAsArrayType(BaseType))
9778     return AT->getElementType();
9779 
9780   return BaseType;
9781 }
9782 
9783 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9784                                       SourceLocation Loc) {
9785   assert(LangOpts.CPlusPlus);
9786   QualType T = BaseType.getNonReferenceType();
9787   if (UKind == UTTKind::RemoveCVRef &&
9788       (T.isConstQualified() || T.isVolatileQualified())) {
9789     Qualifiers Quals;
9790     QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9791     Quals.removeConst();
9792     Quals.removeVolatile();
9793     T = Context.getQualifiedType(Unqual, Quals);
9794   }
9795   return T;
9796 }
9797 
9798 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9799                                           SourceLocation Loc) {
9800   if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9801       BaseType->isFunctionType())
9802     return BaseType;
9803 
9804   Qualifiers Quals;
9805   QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9806 
9807   if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9808     Quals.removeConst();
9809   if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9810     Quals.removeVolatile();
9811   if (UKind == UTTKind::RemoveRestrict)
9812     Quals.removeRestrict();
9813 
9814   return Context.getQualifiedType(Unqual, Quals);
9815 }
9816 
9817 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9818                                          bool IsMakeSigned,
9819                                          SourceLocation Loc) {
9820   if (BaseType->isEnumeralType()) {
9821     QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9822     if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9823       unsigned int Bits = BitInt->getNumBits();
9824       if (Bits > 1)
9825         return S.Context.getBitIntType(!IsMakeSigned, Bits);
9826 
9827       S.Diag(Loc, diag::err_make_signed_integral_only)
9828           << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9829       return QualType();
9830     }
9831     if (Underlying->isBooleanType()) {
9832       S.Diag(Loc, diag::err_make_signed_integral_only)
9833           << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9834           << Underlying;
9835       return QualType();
9836     }
9837   }
9838 
9839   bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9840   std::array<CanQualType *, 6> AllSignedIntegers = {
9841       &S.Context.SignedCharTy, &S.Context.ShortTy,    &S.Context.IntTy,
9842       &S.Context.LongTy,       &S.Context.LongLongTy, &S.Context.Int128Ty};
9843   ArrayRef<CanQualType *> AvailableSignedIntegers(
9844       AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9845   std::array<CanQualType *, 6> AllUnsignedIntegers = {
9846       &S.Context.UnsignedCharTy,     &S.Context.UnsignedShortTy,
9847       &S.Context.UnsignedIntTy,      &S.Context.UnsignedLongTy,
9848       &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9849   ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9850                                                     AllUnsignedIntegers.size() -
9851                                                         Int128Unsupported);
9852   ArrayRef<CanQualType *> *Consider =
9853       IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9854 
9855   uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9856   auto *Result =
9857       llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9858         return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9859       });
9860 
9861   assert(Result != Consider->end());
9862   return QualType((*Result)->getTypePtr(), 0);
9863 }
9864 
9865 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9866                                        SourceLocation Loc) {
9867   bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9868   if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9869       BaseType->isBooleanType() ||
9870       (BaseType->isBitIntType() &&
9871        BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9872     Diag(Loc, diag::err_make_signed_integral_only)
9873         << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9874     return QualType();
9875   }
9876 
9877   bool IsNonIntIntegral =
9878       BaseType->isChar16Type() || BaseType->isChar32Type() ||
9879       BaseType->isWideCharType() || BaseType->isEnumeralType();
9880 
9881   QualType Underlying =
9882       IsNonIntIntegral
9883           ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9884       : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9885                      : Context.getCorrespondingUnsignedType(BaseType);
9886   if (Underlying.isNull())
9887     return Underlying;
9888   return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9889 }
9890 
9891 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9892                                        SourceLocation Loc) {
9893   if (BaseType->isDependentType())
9894     return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9895   QualType Result;
9896   switch (UKind) {
9897   case UnaryTransformType::EnumUnderlyingType: {
9898     Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9899     break;
9900   }
9901   case UnaryTransformType::AddPointer: {
9902     Result = BuiltinAddPointer(BaseType, Loc);
9903     break;
9904   }
9905   case UnaryTransformType::RemovePointer: {
9906     Result = BuiltinRemovePointer(BaseType, Loc);
9907     break;
9908   }
9909   case UnaryTransformType::Decay: {
9910     Result = BuiltinDecay(BaseType, Loc);
9911     break;
9912   }
9913   case UnaryTransformType::AddLvalueReference:
9914   case UnaryTransformType::AddRvalueReference: {
9915     Result = BuiltinAddReference(BaseType, UKind, Loc);
9916     break;
9917   }
9918   case UnaryTransformType::RemoveAllExtents:
9919   case UnaryTransformType::RemoveExtent: {
9920     Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9921     break;
9922   }
9923   case UnaryTransformType::RemoveCVRef:
9924   case UnaryTransformType::RemoveReference: {
9925     Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9926     break;
9927   }
9928   case UnaryTransformType::RemoveConst:
9929   case UnaryTransformType::RemoveCV:
9930   case UnaryTransformType::RemoveRestrict:
9931   case UnaryTransformType::RemoveVolatile: {
9932     Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9933     break;
9934   }
9935   case UnaryTransformType::MakeSigned:
9936   case UnaryTransformType::MakeUnsigned: {
9937     Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9938     break;
9939   }
9940   }
9941 
9942   return !Result.isNull()
9943              ? Context.getUnaryTransformType(BaseType, Result, UKind)
9944              : Result;
9945 }
9946 
9947 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9948   if (!isDependentOrGNUAutoType(T)) {
9949     // FIXME: It isn't entirely clear whether incomplete atomic types
9950     // are allowed or not; for simplicity, ban them for the moment.
9951     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9952       return QualType();
9953 
9954     int DisallowedKind = -1;
9955     if (T->isArrayType())
9956       DisallowedKind = 1;
9957     else if (T->isFunctionType())
9958       DisallowedKind = 2;
9959     else if (T->isReferenceType())
9960       DisallowedKind = 3;
9961     else if (T->isAtomicType())
9962       DisallowedKind = 4;
9963     else if (T.hasQualifiers())
9964       DisallowedKind = 5;
9965     else if (T->isSizelessType())
9966       DisallowedKind = 6;
9967     else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9968       // Some other non-trivially-copyable type (probably a C++ class)
9969       DisallowedKind = 7;
9970     else if (T->isBitIntType())
9971       DisallowedKind = 8;
9972     else if (getLangOpts().C23 && T->isUndeducedAutoType())
9973       // _Atomic auto is prohibited in C23
9974       DisallowedKind = 9;
9975 
9976     if (DisallowedKind != -1) {
9977       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9978       return QualType();
9979     }
9980 
9981     // FIXME: Do we need any handling for ARC here?
9982   }
9983 
9984   // Build the pointer type.
9985   return Context.getAtomicType(T);
9986 }
9987