xref: /llvm-project/clang/lib/Sema/SemaType.cpp (revision 6e58e99a07facd73547f7fa1a6f8c0719d8af30d)
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/LocInfoType.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeLocVisitor.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/DelayedDiagnostic.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/ParsedTemplate.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaCUDA.h"
40 #include "clang/Sema/SemaHLSL.h"
41 #include "clang/Sema/SemaObjC.h"
42 #include "clang/Sema/SemaOpenMP.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateInstCallback.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/STLForwardCompat.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <bitset>
51 #include <optional>
52 
53 using namespace clang;
54 
55 enum TypeDiagSelector {
56   TDS_Function,
57   TDS_Pointer,
58   TDS_ObjCObjOrBlock
59 };
60 
61 /// isOmittedBlockReturnType - Return true if this declarator is missing a
62 /// return type because this is a omitted return type on a block literal.
63 static bool isOmittedBlockReturnType(const Declarator &D) {
64   if (D.getContext() != DeclaratorContext::BlockLiteral ||
65       D.getDeclSpec().hasTypeSpecifier())
66     return false;
67 
68   if (D.getNumTypeObjects() == 0)
69     return true;   // ^{ ... }
70 
71   if (D.getNumTypeObjects() == 1 &&
72       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
73     return true;   // ^(int X, float Y) { ... }
74 
75   return false;
76 }
77 
78 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
79 /// doesn't apply to the given type.
80 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
81                                      QualType type) {
82   TypeDiagSelector WhichType;
83   bool useExpansionLoc = true;
84   switch (attr.getKind()) {
85   case ParsedAttr::AT_ObjCGC:
86     WhichType = TDS_Pointer;
87     break;
88   case ParsedAttr::AT_ObjCOwnership:
89     WhichType = TDS_ObjCObjOrBlock;
90     break;
91   default:
92     // Assume everything else was a function attribute.
93     WhichType = TDS_Function;
94     useExpansionLoc = false;
95     break;
96   }
97 
98   SourceLocation loc = attr.getLoc();
99   StringRef name = attr.getAttrName()->getName();
100 
101   // The GC attributes are usually written with macros;  special-case them.
102   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
103                                           : nullptr;
104   if (useExpansionLoc && loc.isMacroID() && II) {
105     if (II->isStr("strong")) {
106       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
107     } else if (II->isStr("weak")) {
108       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
109     }
110   }
111 
112   S.Diag(loc, attr.isRegularKeywordAttribute()
113                   ? diag::err_type_attribute_wrong_type
114                   : diag::warn_type_attribute_wrong_type)
115       << name << WhichType << type;
116 }
117 
118 // objc_gc applies to Objective-C pointers or, otherwise, to the
119 // smallest available pointer type (i.e. 'void*' in 'void**').
120 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
121   case ParsedAttr::AT_ObjCGC:                                                  \
122   case ParsedAttr::AT_ObjCOwnership
123 
124 // Calling convention attributes.
125 #define CALLING_CONV_ATTRS_CASELIST                                            \
126   case ParsedAttr::AT_CDecl:                                                   \
127   case ParsedAttr::AT_FastCall:                                                \
128   case ParsedAttr::AT_StdCall:                                                 \
129   case ParsedAttr::AT_ThisCall:                                                \
130   case ParsedAttr::AT_RegCall:                                                 \
131   case ParsedAttr::AT_Pascal:                                                  \
132   case ParsedAttr::AT_SwiftCall:                                               \
133   case ParsedAttr::AT_SwiftAsyncCall:                                          \
134   case ParsedAttr::AT_VectorCall:                                              \
135   case ParsedAttr::AT_AArch64VectorPcs:                                        \
136   case ParsedAttr::AT_AArch64SVEPcs:                                           \
137   case ParsedAttr::AT_AMDGPUKernelCall:                                        \
138   case ParsedAttr::AT_MSABI:                                                   \
139   case ParsedAttr::AT_SysVABI:                                                 \
140   case ParsedAttr::AT_Pcs:                                                     \
141   case ParsedAttr::AT_IntelOclBicc:                                            \
142   case ParsedAttr::AT_PreserveMost:                                            \
143   case ParsedAttr::AT_PreserveAll:                                             \
144   case ParsedAttr::AT_M68kRTD:                                                 \
145   case ParsedAttr::AT_PreserveNone:                                            \
146   case ParsedAttr::AT_RISCVVectorCC
147 
148 // Function type attributes.
149 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
150   case ParsedAttr::AT_NSReturnsRetained:                                       \
151   case ParsedAttr::AT_NoReturn:                                                \
152   case ParsedAttr::AT_NonBlocking:                                             \
153   case ParsedAttr::AT_NonAllocating:                                           \
154   case ParsedAttr::AT_Blocking:                                                \
155   case ParsedAttr::AT_Allocating:                                              \
156   case ParsedAttr::AT_Regparm:                                                 \
157   case ParsedAttr::AT_CmseNSCall:                                              \
158   case ParsedAttr::AT_ArmStreaming:                                            \
159   case ParsedAttr::AT_ArmStreamingCompatible:                                  \
160   case ParsedAttr::AT_ArmPreserves:                                            \
161   case ParsedAttr::AT_ArmIn:                                                   \
162   case ParsedAttr::AT_ArmOut:                                                  \
163   case ParsedAttr::AT_ArmInOut:                                                \
164   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
165   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
166     CALLING_CONV_ATTRS_CASELIST
167 
168 // Microsoft-specific type qualifiers.
169 #define MS_TYPE_ATTRS_CASELIST                                                 \
170   case ParsedAttr::AT_Ptr32:                                                   \
171   case ParsedAttr::AT_Ptr64:                                                   \
172   case ParsedAttr::AT_SPtr:                                                    \
173   case ParsedAttr::AT_UPtr
174 
175 // Nullability qualifiers.
176 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
177   case ParsedAttr::AT_TypeNonNull:                                             \
178   case ParsedAttr::AT_TypeNullable:                                            \
179   case ParsedAttr::AT_TypeNullableResult:                                      \
180   case ParsedAttr::AT_TypeNullUnspecified
181 
182 namespace {
183   /// An object which stores processing state for the entire
184   /// GetTypeForDeclarator process.
185   class TypeProcessingState {
186     Sema &sema;
187 
188     /// The declarator being processed.
189     Declarator &declarator;
190 
191     /// The index of the declarator chunk we're currently processing.
192     /// May be the total number of valid chunks, indicating the
193     /// DeclSpec.
194     unsigned chunkIndex;
195 
196     /// The original set of attributes on the DeclSpec.
197     SmallVector<ParsedAttr *, 2> savedAttrs;
198 
199     /// A list of attributes to diagnose the uselessness of when the
200     /// processing is complete.
201     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
202 
203     /// Attributes corresponding to AttributedTypeLocs that we have not yet
204     /// populated.
205     // FIXME: The two-phase mechanism by which we construct Types and fill
206     // their TypeLocs makes it hard to correctly assign these. We keep the
207     // attributes in creation order as an attempt to make them line up
208     // properly.
209     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
210     SmallVector<TypeAttrPair, 8> AttrsForTypes;
211     bool AttrsForTypesSorted = true;
212 
213     /// MacroQualifiedTypes mapping to macro expansion locations that will be
214     /// stored in a MacroQualifiedTypeLoc.
215     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
216 
217     /// Flag to indicate we parsed a noderef attribute. This is used for
218     /// validating that noderef was used on a pointer or array.
219     bool parsedNoDeref;
220 
221     // Flag to indicate that we already parsed a HLSL parameter modifier
222     // attribute. This prevents double-mutating the type.
223     bool ParsedHLSLParamMod;
224 
225   public:
226     TypeProcessingState(Sema &sema, Declarator &declarator)
227         : sema(sema), declarator(declarator),
228           chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false),
229           ParsedHLSLParamMod(false) {}
230 
231     Sema &getSema() const {
232       return sema;
233     }
234 
235     Declarator &getDeclarator() const {
236       return declarator;
237     }
238 
239     bool isProcessingDeclSpec() const {
240       return chunkIndex == declarator.getNumTypeObjects();
241     }
242 
243     unsigned getCurrentChunkIndex() const {
244       return chunkIndex;
245     }
246 
247     void setCurrentChunkIndex(unsigned idx) {
248       assert(idx <= declarator.getNumTypeObjects());
249       chunkIndex = idx;
250     }
251 
252     ParsedAttributesView &getCurrentAttributes() const {
253       if (isProcessingDeclSpec())
254         return getMutableDeclSpec().getAttributes();
255       return declarator.getTypeObject(chunkIndex).getAttrs();
256     }
257 
258     /// Save the current set of attributes on the DeclSpec.
259     void saveDeclSpecAttrs() {
260       // Don't try to save them multiple times.
261       if (!savedAttrs.empty())
262         return;
263 
264       DeclSpec &spec = getMutableDeclSpec();
265       llvm::append_range(savedAttrs,
266                          llvm::make_pointer_range(spec.getAttributes()));
267     }
268 
269     /// Record that we had nowhere to put the given type attribute.
270     /// We will diagnose such attributes later.
271     void addIgnoredTypeAttr(ParsedAttr &attr) {
272       ignoredTypeAttrs.push_back(&attr);
273     }
274 
275     /// Diagnose all the ignored type attributes, given that the
276     /// declarator worked out to the given type.
277     void diagnoseIgnoredTypeAttrs(QualType type) const {
278       for (auto *Attr : ignoredTypeAttrs)
279         diagnoseBadTypeAttribute(getSema(), *Attr, type);
280     }
281 
282     /// Get an attributed type for the given attribute, and remember the Attr
283     /// object so that we can attach it to the AttributedTypeLoc.
284     QualType getAttributedType(Attr *A, QualType ModifiedType,
285                                QualType EquivType) {
286       QualType T =
287           sema.Context.getAttributedType(A, ModifiedType, EquivType);
288       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
289       AttrsForTypesSorted = false;
290       return T;
291     }
292 
293     /// Get a BTFTagAttributed type for the btf_type_tag attribute.
294     QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
295                                      QualType WrappedType) {
296       return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
297     }
298 
299     /// Completely replace the \c auto in \p TypeWithAuto by
300     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
301     /// necessary.
302     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
303       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
304       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
305         // Attributed type still should be an attributed type after replacement.
306         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
307         for (TypeAttrPair &A : AttrsForTypes) {
308           if (A.first == AttrTy)
309             A.first = NewAttrTy;
310         }
311         AttrsForTypesSorted = false;
312       }
313       return T;
314     }
315 
316     /// Extract and remove the Attr* for a given attributed type.
317     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
318       if (!AttrsForTypesSorted) {
319         llvm::stable_sort(AttrsForTypes, llvm::less_first());
320         AttrsForTypesSorted = true;
321       }
322 
323       // FIXME: This is quadratic if we have lots of reuses of the same
324       // attributed type.
325       for (auto It = std::partition_point(
326                AttrsForTypes.begin(), AttrsForTypes.end(),
327                [=](const TypeAttrPair &A) { return A.first < AT; });
328            It != AttrsForTypes.end() && It->first == AT; ++It) {
329         if (It->second) {
330           const Attr *Result = It->second;
331           It->second = nullptr;
332           return Result;
333         }
334       }
335 
336       llvm_unreachable("no Attr* for AttributedType*");
337     }
338 
339     SourceLocation
340     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
341       auto FoundLoc = LocsForMacros.find(MQT);
342       assert(FoundLoc != LocsForMacros.end() &&
343              "Unable to find macro expansion location for MacroQualifedType");
344       return FoundLoc->second;
345     }
346 
347     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
348                                               SourceLocation Loc) {
349       LocsForMacros[MQT] = Loc;
350     }
351 
352     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
353 
354     bool didParseNoDeref() const { return parsedNoDeref; }
355 
356     void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; }
357 
358     bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; }
359 
360     ~TypeProcessingState() {
361       if (savedAttrs.empty())
362         return;
363 
364       getMutableDeclSpec().getAttributes().clearListOnly();
365       for (ParsedAttr *AL : savedAttrs)
366         getMutableDeclSpec().getAttributes().addAtEnd(AL);
367     }
368 
369   private:
370     DeclSpec &getMutableDeclSpec() const {
371       return const_cast<DeclSpec&>(declarator.getDeclSpec());
372     }
373   };
374 } // end anonymous namespace
375 
376 static void moveAttrFromListToList(ParsedAttr &attr,
377                                    ParsedAttributesView &fromList,
378                                    ParsedAttributesView &toList) {
379   fromList.remove(&attr);
380   toList.addAtEnd(&attr);
381 }
382 
383 /// The location of a type attribute.
384 enum TypeAttrLocation {
385   /// The attribute is in the decl-specifier-seq.
386   TAL_DeclSpec,
387   /// The attribute is part of a DeclaratorChunk.
388   TAL_DeclChunk,
389   /// The attribute is immediately after the declaration's name.
390   TAL_DeclName
391 };
392 
393 static void
394 processTypeAttrs(TypeProcessingState &state, QualType &type,
395                  TypeAttrLocation TAL, const ParsedAttributesView &attrs,
396                  CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
397 
398 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
399                                    QualType &type, CUDAFunctionTarget CFT);
400 
401 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
402                                              ParsedAttr &attr, QualType &type);
403 
404 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
405                                  QualType &type);
406 
407 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
408                                         ParsedAttr &attr, QualType &type);
409 
410 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
411                                       ParsedAttr &attr, QualType &type) {
412   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
413     return handleObjCGCTypeAttr(state, attr, type);
414   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
415   return handleObjCOwnershipTypeAttr(state, attr, type);
416 }
417 
418 /// Given the index of a declarator chunk, check whether that chunk
419 /// directly specifies the return type of a function and, if so, find
420 /// an appropriate place for it.
421 ///
422 /// \param i - a notional index which the search will start
423 ///   immediately inside
424 ///
425 /// \param onlyBlockPointers Whether we should only look into block
426 /// pointer types (vs. all pointer types).
427 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
428                                                 unsigned i,
429                                                 bool onlyBlockPointers) {
430   assert(i <= declarator.getNumTypeObjects());
431 
432   DeclaratorChunk *result = nullptr;
433 
434   // First, look inwards past parens for a function declarator.
435   for (; i != 0; --i) {
436     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
437     switch (fnChunk.Kind) {
438     case DeclaratorChunk::Paren:
439       continue;
440 
441     // If we find anything except a function, bail out.
442     case DeclaratorChunk::Pointer:
443     case DeclaratorChunk::BlockPointer:
444     case DeclaratorChunk::Array:
445     case DeclaratorChunk::Reference:
446     case DeclaratorChunk::MemberPointer:
447     case DeclaratorChunk::Pipe:
448       return result;
449 
450     // If we do find a function declarator, scan inwards from that,
451     // looking for a (block-)pointer declarator.
452     case DeclaratorChunk::Function:
453       for (--i; i != 0; --i) {
454         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
455         switch (ptrChunk.Kind) {
456         case DeclaratorChunk::Paren:
457         case DeclaratorChunk::Array:
458         case DeclaratorChunk::Function:
459         case DeclaratorChunk::Reference:
460         case DeclaratorChunk::Pipe:
461           continue;
462 
463         case DeclaratorChunk::MemberPointer:
464         case DeclaratorChunk::Pointer:
465           if (onlyBlockPointers)
466             continue;
467 
468           [[fallthrough]];
469 
470         case DeclaratorChunk::BlockPointer:
471           result = &ptrChunk;
472           goto continue_outer;
473         }
474         llvm_unreachable("bad declarator chunk kind");
475       }
476 
477       // If we run out of declarators doing that, we're done.
478       return result;
479     }
480     llvm_unreachable("bad declarator chunk kind");
481 
482     // Okay, reconsider from our new point.
483   continue_outer: ;
484   }
485 
486   // Ran out of chunks, bail out.
487   return result;
488 }
489 
490 /// Given that an objc_gc attribute was written somewhere on a
491 /// declaration *other* than on the declarator itself (for which, use
492 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
493 /// didn't apply in whatever position it was written in, try to move
494 /// it to a more appropriate position.
495 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
496                                           ParsedAttr &attr, QualType type) {
497   Declarator &declarator = state.getDeclarator();
498 
499   // Move it to the outermost normal or block pointer declarator.
500   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
501     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
502     switch (chunk.Kind) {
503     case DeclaratorChunk::Pointer:
504     case DeclaratorChunk::BlockPointer: {
505       // But don't move an ARC ownership attribute to the return type
506       // of a block.
507       DeclaratorChunk *destChunk = nullptr;
508       if (state.isProcessingDeclSpec() &&
509           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
510         destChunk = maybeMovePastReturnType(declarator, i - 1,
511                                             /*onlyBlockPointers=*/true);
512       if (!destChunk) destChunk = &chunk;
513 
514       moveAttrFromListToList(attr, state.getCurrentAttributes(),
515                              destChunk->getAttrs());
516       return;
517     }
518 
519     case DeclaratorChunk::Paren:
520     case DeclaratorChunk::Array:
521       continue;
522 
523     // We may be starting at the return type of a block.
524     case DeclaratorChunk::Function:
525       if (state.isProcessingDeclSpec() &&
526           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
527         if (DeclaratorChunk *dest = maybeMovePastReturnType(
528                                       declarator, i,
529                                       /*onlyBlockPointers=*/true)) {
530           moveAttrFromListToList(attr, state.getCurrentAttributes(),
531                                  dest->getAttrs());
532           return;
533         }
534       }
535       goto error;
536 
537     // Don't walk through these.
538     case DeclaratorChunk::Reference:
539     case DeclaratorChunk::MemberPointer:
540     case DeclaratorChunk::Pipe:
541       goto error;
542     }
543   }
544  error:
545 
546   diagnoseBadTypeAttribute(state.getSema(), attr, type);
547 }
548 
549 /// Distribute an objc_gc type attribute that was written on the
550 /// declarator.
551 static void distributeObjCPointerTypeAttrFromDeclarator(
552     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
553   Declarator &declarator = state.getDeclarator();
554 
555   // objc_gc goes on the innermost pointer to something that's not a
556   // pointer.
557   unsigned innermost = -1U;
558   bool considerDeclSpec = true;
559   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
560     DeclaratorChunk &chunk = declarator.getTypeObject(i);
561     switch (chunk.Kind) {
562     case DeclaratorChunk::Pointer:
563     case DeclaratorChunk::BlockPointer:
564       innermost = i;
565       continue;
566 
567     case DeclaratorChunk::Reference:
568     case DeclaratorChunk::MemberPointer:
569     case DeclaratorChunk::Paren:
570     case DeclaratorChunk::Array:
571     case DeclaratorChunk::Pipe:
572       continue;
573 
574     case DeclaratorChunk::Function:
575       considerDeclSpec = false;
576       goto done;
577     }
578   }
579  done:
580 
581   // That might actually be the decl spec if we weren't blocked by
582   // anything in the declarator.
583   if (considerDeclSpec) {
584     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
585       // Splice the attribute into the decl spec.  Prevents the
586       // attribute from being applied multiple times and gives
587       // the source-location-filler something to work with.
588       state.saveDeclSpecAttrs();
589       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
590           declarator.getAttributes(), &attr);
591       return;
592     }
593   }
594 
595   // Otherwise, if we found an appropriate chunk, splice the attribute
596   // into it.
597   if (innermost != -1U) {
598     moveAttrFromListToList(attr, declarator.getAttributes(),
599                            declarator.getTypeObject(innermost).getAttrs());
600     return;
601   }
602 
603   // Otherwise, diagnose when we're done building the type.
604   declarator.getAttributes().remove(&attr);
605   state.addIgnoredTypeAttr(attr);
606 }
607 
608 /// A function type attribute was written somewhere in a declaration
609 /// *other* than on the declarator itself or in the decl spec.  Given
610 /// that it didn't apply in whatever position it was written in, try
611 /// to move it to a more appropriate position.
612 static void distributeFunctionTypeAttr(TypeProcessingState &state,
613                                        ParsedAttr &attr, QualType type) {
614   Declarator &declarator = state.getDeclarator();
615 
616   // Try to push the attribute from the return type of a function to
617   // the function itself.
618   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
619     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
620     switch (chunk.Kind) {
621     case DeclaratorChunk::Function:
622       moveAttrFromListToList(attr, state.getCurrentAttributes(),
623                              chunk.getAttrs());
624       return;
625 
626     case DeclaratorChunk::Paren:
627     case DeclaratorChunk::Pointer:
628     case DeclaratorChunk::BlockPointer:
629     case DeclaratorChunk::Array:
630     case DeclaratorChunk::Reference:
631     case DeclaratorChunk::MemberPointer:
632     case DeclaratorChunk::Pipe:
633       continue;
634     }
635   }
636 
637   diagnoseBadTypeAttribute(state.getSema(), attr, type);
638 }
639 
640 /// Try to distribute a function type attribute to the innermost
641 /// function chunk or type.  Returns true if the attribute was
642 /// distributed, false if no location was found.
643 static bool distributeFunctionTypeAttrToInnermost(
644     TypeProcessingState &state, ParsedAttr &attr,
645     ParsedAttributesView &attrList, QualType &declSpecType,
646     CUDAFunctionTarget CFT) {
647   Declarator &declarator = state.getDeclarator();
648 
649   // Put it on the innermost function chunk, if there is one.
650   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
651     DeclaratorChunk &chunk = declarator.getTypeObject(i);
652     if (chunk.Kind != DeclaratorChunk::Function) continue;
653 
654     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
655     return true;
656   }
657 
658   return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
659 }
660 
661 /// A function type attribute was written in the decl spec.  Try to
662 /// apply it somewhere.
663 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
664                                                    ParsedAttr &attr,
665                                                    QualType &declSpecType,
666                                                    CUDAFunctionTarget CFT) {
667   state.saveDeclSpecAttrs();
668 
669   // Try to distribute to the innermost.
670   if (distributeFunctionTypeAttrToInnermost(
671           state, attr, state.getCurrentAttributes(), declSpecType, CFT))
672     return;
673 
674   // If that failed, diagnose the bad attribute when the declarator is
675   // fully built.
676   state.addIgnoredTypeAttr(attr);
677 }
678 
679 /// A function type attribute was written on the declarator or declaration.
680 /// Try to apply it somewhere.
681 /// `Attrs` is the attribute list containing the declaration (either of the
682 /// declarator or the declaration).
683 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
684                                                      ParsedAttr &attr,
685                                                      QualType &declSpecType,
686                                                      CUDAFunctionTarget CFT) {
687   Declarator &declarator = state.getDeclarator();
688 
689   // Try to distribute to the innermost.
690   if (distributeFunctionTypeAttrToInnermost(
691           state, attr, declarator.getAttributes(), declSpecType, CFT))
692     return;
693 
694   // If that failed, diagnose the bad attribute when the declarator is
695   // fully built.
696   declarator.getAttributes().remove(&attr);
697   state.addIgnoredTypeAttr(attr);
698 }
699 
700 /// Given that there are attributes written on the declarator or declaration
701 /// itself, try to distribute any type attributes to the appropriate
702 /// declarator chunk.
703 ///
704 /// These are attributes like the following:
705 ///   int f ATTR;
706 ///   int (f ATTR)();
707 /// but not necessarily this:
708 ///   int f() ATTR;
709 ///
710 /// `Attrs` is the attribute list containing the declaration (either of the
711 /// declarator or the declaration).
712 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
713                                               QualType &declSpecType,
714                                               CUDAFunctionTarget CFT) {
715   // The called functions in this loop actually remove things from the current
716   // list, so iterating over the existing list isn't possible.  Instead, make a
717   // non-owning copy and iterate over that.
718   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
719   for (ParsedAttr &attr : AttrsCopy) {
720     // Do not distribute [[]] attributes. They have strict rules for what
721     // they appertain to.
722     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
723       continue;
724 
725     switch (attr.getKind()) {
726     OBJC_POINTER_TYPE_ATTRS_CASELIST:
727       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
728       break;
729 
730     FUNCTION_TYPE_ATTRS_CASELIST:
731       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
732       break;
733 
734     MS_TYPE_ATTRS_CASELIST:
735       // Microsoft type attributes cannot go after the declarator-id.
736       continue;
737 
738     NULLABILITY_TYPE_ATTRS_CASELIST:
739       // Nullability specifiers cannot go after the declarator-id.
740 
741     // Objective-C __kindof does not get distributed.
742     case ParsedAttr::AT_ObjCKindOf:
743       continue;
744 
745     default:
746       break;
747     }
748   }
749 }
750 
751 /// Add a synthetic '()' to a block-literal declarator if it is
752 /// required, given the return type.
753 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
754                                           QualType declSpecType) {
755   Declarator &declarator = state.getDeclarator();
756 
757   // First, check whether the declarator would produce a function,
758   // i.e. whether the innermost semantic chunk is a function.
759   if (declarator.isFunctionDeclarator()) {
760     // If so, make that declarator a prototyped declarator.
761     declarator.getFunctionTypeInfo().hasPrototype = true;
762     return;
763   }
764 
765   // If there are any type objects, the type as written won't name a
766   // function, regardless of the decl spec type.  This is because a
767   // block signature declarator is always an abstract-declarator, and
768   // abstract-declarators can't just be parentheses chunks.  Therefore
769   // we need to build a function chunk unless there are no type
770   // objects and the decl spec type is a function.
771   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
772     return;
773 
774   // Note that there *are* cases with invalid declarators where
775   // declarators consist solely of parentheses.  In general, these
776   // occur only in failed efforts to make function declarators, so
777   // faking up the function chunk is still the right thing to do.
778 
779   // Otherwise, we need to fake up a function declarator.
780   SourceLocation loc = declarator.getBeginLoc();
781 
782   // ...and *prepend* it to the declarator.
783   SourceLocation NoLoc;
784   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
785       /*HasProto=*/true,
786       /*IsAmbiguous=*/false,
787       /*LParenLoc=*/NoLoc,
788       /*ArgInfo=*/nullptr,
789       /*NumParams=*/0,
790       /*EllipsisLoc=*/NoLoc,
791       /*RParenLoc=*/NoLoc,
792       /*RefQualifierIsLvalueRef=*/true,
793       /*RefQualifierLoc=*/NoLoc,
794       /*MutableLoc=*/NoLoc, EST_None,
795       /*ESpecRange=*/SourceRange(),
796       /*Exceptions=*/nullptr,
797       /*ExceptionRanges=*/nullptr,
798       /*NumExceptions=*/0,
799       /*NoexceptExpr=*/nullptr,
800       /*ExceptionSpecTokens=*/nullptr,
801       /*DeclsInPrototype=*/{}, loc, loc, declarator));
802 
803   // For consistency, make sure the state still has us as processing
804   // the decl spec.
805   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
806   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
807 }
808 
809 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
810                                             unsigned &TypeQuals,
811                                             QualType TypeSoFar,
812                                             unsigned RemoveTQs,
813                                             unsigned DiagID) {
814   // If this occurs outside a template instantiation, warn the user about
815   // it; they probably didn't mean to specify a redundant qualifier.
816   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
817   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
818                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
819                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
820                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
821     if (!(RemoveTQs & Qual.first))
822       continue;
823 
824     if (!S.inTemplateInstantiation()) {
825       if (TypeQuals & Qual.first)
826         S.Diag(Qual.second, DiagID)
827           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
828           << FixItHint::CreateRemoval(Qual.second);
829     }
830 
831     TypeQuals &= ~Qual.first;
832   }
833 }
834 
835 /// Return true if this is omitted block return type. Also check type
836 /// attributes and type qualifiers when returning true.
837 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
838                                         QualType Result) {
839   if (!isOmittedBlockReturnType(declarator))
840     return false;
841 
842   // Warn if we see type attributes for omitted return type on a block literal.
843   SmallVector<ParsedAttr *, 2> ToBeRemoved;
844   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
845     if (AL.isInvalid() || !AL.isTypeAttr())
846       continue;
847     S.Diag(AL.getLoc(),
848            diag::warn_block_literal_attributes_on_omitted_return_type)
849         << AL;
850     ToBeRemoved.push_back(&AL);
851   }
852   // Remove bad attributes from the list.
853   for (ParsedAttr *AL : ToBeRemoved)
854     declarator.getMutableDeclSpec().getAttributes().remove(AL);
855 
856   // Warn if we see type qualifiers for omitted return type on a block literal.
857   const DeclSpec &DS = declarator.getDeclSpec();
858   unsigned TypeQuals = DS.getTypeQualifiers();
859   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
860       diag::warn_block_literal_qualifiers_on_omitted_return_type);
861   declarator.getMutableDeclSpec().ClearTypeQualifiers();
862 
863   return true;
864 }
865 
866 static OpenCLAccessAttr::Spelling
867 getImageAccess(const ParsedAttributesView &Attrs) {
868   for (const ParsedAttr &AL : Attrs)
869     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
870       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
871   return OpenCLAccessAttr::Keyword_read_only;
872 }
873 
874 static UnaryTransformType::UTTKind
875 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
876   switch (SwitchTST) {
877 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
878   case TST_##Trait:                                                            \
879     return UnaryTransformType::Enum;
880 #include "clang/Basic/TransformTypeTraits.def"
881   default:
882     llvm_unreachable("attempted to parse a non-unary transform builtin");
883   }
884 }
885 
886 /// Convert the specified declspec to the appropriate type
887 /// object.
888 /// \param state Specifies the declarator containing the declaration specifier
889 /// to be converted, along with other associated processing state.
890 /// \returns The type described by the declaration specifiers.  This function
891 /// never returns null.
892 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
893   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
894   // checking.
895 
896   Sema &S = state.getSema();
897   Declarator &declarator = state.getDeclarator();
898   DeclSpec &DS = declarator.getMutableDeclSpec();
899   SourceLocation DeclLoc = declarator.getIdentifierLoc();
900   if (DeclLoc.isInvalid())
901     DeclLoc = DS.getBeginLoc();
902 
903   ASTContext &Context = S.Context;
904 
905   QualType Result;
906   switch (DS.getTypeSpecType()) {
907   case DeclSpec::TST_void:
908     Result = Context.VoidTy;
909     break;
910   case DeclSpec::TST_char:
911     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
912       Result = Context.CharTy;
913     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
914       Result = Context.SignedCharTy;
915     else {
916       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
917              "Unknown TSS value");
918       Result = Context.UnsignedCharTy;
919     }
920     break;
921   case DeclSpec::TST_wchar:
922     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
923       Result = Context.WCharTy;
924     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
925       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
926         << DS.getSpecifierName(DS.getTypeSpecType(),
927                                Context.getPrintingPolicy());
928       Result = Context.getSignedWCharType();
929     } else {
930       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
931              "Unknown TSS value");
932       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
933         << DS.getSpecifierName(DS.getTypeSpecType(),
934                                Context.getPrintingPolicy());
935       Result = Context.getUnsignedWCharType();
936     }
937     break;
938   case DeclSpec::TST_char8:
939     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
940            "Unknown TSS value");
941     Result = Context.Char8Ty;
942     break;
943   case DeclSpec::TST_char16:
944     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
945            "Unknown TSS value");
946     Result = Context.Char16Ty;
947     break;
948   case DeclSpec::TST_char32:
949     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
950            "Unknown TSS value");
951     Result = Context.Char32Ty;
952     break;
953   case DeclSpec::TST_unspecified:
954     // If this is a missing declspec in a block literal return context, then it
955     // is inferred from the return statements inside the block.
956     // The declspec is always missing in a lambda expr context; it is either
957     // specified with a trailing return type or inferred.
958     if (S.getLangOpts().CPlusPlus14 &&
959         declarator.getContext() == DeclaratorContext::LambdaExpr) {
960       // In C++1y, a lambda's implicit return type is 'auto'.
961       Result = Context.getAutoDeductType();
962       break;
963     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
964                checkOmittedBlockReturnType(S, declarator,
965                                            Context.DependentTy)) {
966       Result = Context.DependentTy;
967       break;
968     }
969 
970     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
971     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
972     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
973     // Note that the one exception to this is function definitions, which are
974     // allowed to be completely missing a declspec.  This is handled in the
975     // parser already though by it pretending to have seen an 'int' in this
976     // case.
977     if (S.getLangOpts().isImplicitIntRequired()) {
978       S.Diag(DeclLoc, diag::warn_missing_type_specifier)
979           << DS.getSourceRange()
980           << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
981     } else if (!DS.hasTypeSpecifier()) {
982       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
983       // "At least one type specifier shall be given in the declaration
984       // specifiers in each declaration, and in the specifier-qualifier list in
985       // each struct declaration and type name."
986       if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
987         S.Diag(DeclLoc, diag::err_missing_type_specifier)
988             << DS.getSourceRange();
989 
990         // When this occurs, often something is very broken with the value
991         // being declared, poison it as invalid so we don't get chains of
992         // errors.
993         declarator.setInvalidType(true);
994       } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
995                  DS.isTypeSpecPipe()) {
996         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
997             << DS.getSourceRange();
998         declarator.setInvalidType(true);
999       } else {
1000         assert(S.getLangOpts().isImplicitIntAllowed() &&
1001                "implicit int is disabled?");
1002         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1003             << DS.getSourceRange()
1004             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1005       }
1006     }
1007 
1008     [[fallthrough]];
1009   case DeclSpec::TST_int: {
1010     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1011       switch (DS.getTypeSpecWidth()) {
1012       case TypeSpecifierWidth::Unspecified:
1013         Result = Context.IntTy;
1014         break;
1015       case TypeSpecifierWidth::Short:
1016         Result = Context.ShortTy;
1017         break;
1018       case TypeSpecifierWidth::Long:
1019         Result = Context.LongTy;
1020         break;
1021       case TypeSpecifierWidth::LongLong:
1022         Result = Context.LongLongTy;
1023 
1024         // 'long long' is a C99 or C++11 feature.
1025         if (!S.getLangOpts().C99) {
1026           if (S.getLangOpts().CPlusPlus)
1027             S.Diag(DS.getTypeSpecWidthLoc(),
1028                    S.getLangOpts().CPlusPlus11 ?
1029                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1030           else
1031             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1032         }
1033         break;
1034       }
1035     } else {
1036       switch (DS.getTypeSpecWidth()) {
1037       case TypeSpecifierWidth::Unspecified:
1038         Result = Context.UnsignedIntTy;
1039         break;
1040       case TypeSpecifierWidth::Short:
1041         Result = Context.UnsignedShortTy;
1042         break;
1043       case TypeSpecifierWidth::Long:
1044         Result = Context.UnsignedLongTy;
1045         break;
1046       case TypeSpecifierWidth::LongLong:
1047         Result = Context.UnsignedLongLongTy;
1048 
1049         // 'long long' is a C99 or C++11 feature.
1050         if (!S.getLangOpts().C99) {
1051           if (S.getLangOpts().CPlusPlus)
1052             S.Diag(DS.getTypeSpecWidthLoc(),
1053                    S.getLangOpts().CPlusPlus11 ?
1054                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1055           else
1056             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1057         }
1058         break;
1059       }
1060     }
1061     break;
1062   }
1063   case DeclSpec::TST_bitint: {
1064     if (!S.Context.getTargetInfo().hasBitIntType())
1065       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1066     Result =
1067         S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1068                           DS.getRepAsExpr(), DS.getBeginLoc());
1069     if (Result.isNull()) {
1070       Result = Context.IntTy;
1071       declarator.setInvalidType(true);
1072     }
1073     break;
1074   }
1075   case DeclSpec::TST_accum: {
1076     switch (DS.getTypeSpecWidth()) {
1077     case TypeSpecifierWidth::Short:
1078       Result = Context.ShortAccumTy;
1079       break;
1080     case TypeSpecifierWidth::Unspecified:
1081       Result = Context.AccumTy;
1082       break;
1083     case TypeSpecifierWidth::Long:
1084       Result = Context.LongAccumTy;
1085       break;
1086     case TypeSpecifierWidth::LongLong:
1087       llvm_unreachable("Unable to specify long long as _Accum width");
1088     }
1089 
1090     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1091       Result = Context.getCorrespondingUnsignedType(Result);
1092 
1093     if (DS.isTypeSpecSat())
1094       Result = Context.getCorrespondingSaturatedType(Result);
1095 
1096     break;
1097   }
1098   case DeclSpec::TST_fract: {
1099     switch (DS.getTypeSpecWidth()) {
1100     case TypeSpecifierWidth::Short:
1101       Result = Context.ShortFractTy;
1102       break;
1103     case TypeSpecifierWidth::Unspecified:
1104       Result = Context.FractTy;
1105       break;
1106     case TypeSpecifierWidth::Long:
1107       Result = Context.LongFractTy;
1108       break;
1109     case TypeSpecifierWidth::LongLong:
1110       llvm_unreachable("Unable to specify long long as _Fract width");
1111     }
1112 
1113     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1114       Result = Context.getCorrespondingUnsignedType(Result);
1115 
1116     if (DS.isTypeSpecSat())
1117       Result = Context.getCorrespondingSaturatedType(Result);
1118 
1119     break;
1120   }
1121   case DeclSpec::TST_int128:
1122     if (!S.Context.getTargetInfo().hasInt128Type() &&
1123         !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1124           (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1125       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1126         << "__int128";
1127     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1128       Result = Context.UnsignedInt128Ty;
1129     else
1130       Result = Context.Int128Ty;
1131     break;
1132   case DeclSpec::TST_float16:
1133     // CUDA host and device may have different _Float16 support, therefore
1134     // do not diagnose _Float16 usage to avoid false alarm.
1135     // ToDo: more precise diagnostics for CUDA.
1136     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1137         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1138       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1139         << "_Float16";
1140     Result = Context.Float16Ty;
1141     break;
1142   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1143   case DeclSpec::TST_BFloat16:
1144     if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1145         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1146         !S.getLangOpts().SYCLIsDevice)
1147       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1148     Result = Context.BFloat16Ty;
1149     break;
1150   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1151   case DeclSpec::TST_double:
1152     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1153       Result = Context.LongDoubleTy;
1154     else
1155       Result = Context.DoubleTy;
1156     if (S.getLangOpts().OpenCL) {
1157       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1158         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1159             << 0 << Result
1160             << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1161                     ? "cl_khr_fp64 and __opencl_c_fp64"
1162                     : "cl_khr_fp64");
1163       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1164         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1165     }
1166     break;
1167   case DeclSpec::TST_float128:
1168     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1169         !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1170         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1171       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1172         << "__float128";
1173     Result = Context.Float128Ty;
1174     break;
1175   case DeclSpec::TST_ibm128:
1176     if (!S.Context.getTargetInfo().hasIbm128Type() &&
1177         !S.getLangOpts().SYCLIsDevice &&
1178         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1179       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1180     Result = Context.Ibm128Ty;
1181     break;
1182   case DeclSpec::TST_bool:
1183     Result = Context.BoolTy; // _Bool or bool
1184     break;
1185   case DeclSpec::TST_decimal32:    // _Decimal32
1186   case DeclSpec::TST_decimal64:    // _Decimal64
1187   case DeclSpec::TST_decimal128:   // _Decimal128
1188     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1189     Result = Context.IntTy;
1190     declarator.setInvalidType(true);
1191     break;
1192   case DeclSpec::TST_class:
1193   case DeclSpec::TST_enum:
1194   case DeclSpec::TST_union:
1195   case DeclSpec::TST_struct:
1196   case DeclSpec::TST_interface: {
1197     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1198     if (!D) {
1199       // This can happen in C++ with ambiguous lookups.
1200       Result = Context.IntTy;
1201       declarator.setInvalidType(true);
1202       break;
1203     }
1204 
1205     // If the type is deprecated or unavailable, diagnose it.
1206     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1207 
1208     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1209            DS.getTypeSpecComplex() == 0 &&
1210            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1211            "No qualifiers on tag names!");
1212 
1213     // TypeQuals handled by caller.
1214     Result = Context.getTypeDeclType(D);
1215 
1216     // In both C and C++, make an ElaboratedType.
1217     ElaboratedTypeKeyword Keyword
1218       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1219     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1220                                  DS.isTypeSpecOwned() ? D : nullptr);
1221     break;
1222   }
1223   case DeclSpec::TST_typename: {
1224     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1225            DS.getTypeSpecComplex() == 0 &&
1226            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1227            "Can't handle qualifiers on typedef names yet!");
1228     Result = S.GetTypeFromParser(DS.getRepAsType());
1229     if (Result.isNull()) {
1230       declarator.setInvalidType(true);
1231     }
1232 
1233     // TypeQuals handled by caller.
1234     break;
1235   }
1236   case DeclSpec::TST_typeof_unqualType:
1237   case DeclSpec::TST_typeofType:
1238     // FIXME: Preserve type source info.
1239     Result = S.GetTypeFromParser(DS.getRepAsType());
1240     assert(!Result.isNull() && "Didn't get a type for typeof?");
1241     if (!Result->isDependentType())
1242       if (const TagType *TT = Result->getAs<TagType>())
1243         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1244     // TypeQuals handled by caller.
1245     Result = Context.getTypeOfType(
1246         Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1247                     ? TypeOfKind::Unqualified
1248                     : TypeOfKind::Qualified);
1249     break;
1250   case DeclSpec::TST_typeof_unqualExpr:
1251   case DeclSpec::TST_typeofExpr: {
1252     Expr *E = DS.getRepAsExpr();
1253     assert(E && "Didn't get an expression for typeof?");
1254     // TypeQuals handled by caller.
1255     Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1256                                               DeclSpec::TST_typeof_unqualExpr
1257                                           ? TypeOfKind::Unqualified
1258                                           : TypeOfKind::Qualified);
1259     if (Result.isNull()) {
1260       Result = Context.IntTy;
1261       declarator.setInvalidType(true);
1262     }
1263     break;
1264   }
1265   case DeclSpec::TST_decltype: {
1266     Expr *E = DS.getRepAsExpr();
1267     assert(E && "Didn't get an expression for decltype?");
1268     // TypeQuals handled by caller.
1269     Result = S.BuildDecltypeType(E);
1270     if (Result.isNull()) {
1271       Result = Context.IntTy;
1272       declarator.setInvalidType(true);
1273     }
1274     break;
1275   }
1276   case DeclSpec::TST_typename_pack_indexing: {
1277     Expr *E = DS.getPackIndexingExpr();
1278     assert(E && "Didn't get an expression for pack indexing");
1279     QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1280     Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1281                                      DS.getEllipsisLoc());
1282     if (Result.isNull()) {
1283       declarator.setInvalidType(true);
1284       Result = Context.IntTy;
1285     }
1286     break;
1287   }
1288 
1289 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1290 #include "clang/Basic/TransformTypeTraits.def"
1291     Result = S.GetTypeFromParser(DS.getRepAsType());
1292     assert(!Result.isNull() && "Didn't get a type for the transformation?");
1293     Result = S.BuildUnaryTransformType(
1294         Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1295         DS.getTypeSpecTypeLoc());
1296     if (Result.isNull()) {
1297       Result = Context.IntTy;
1298       declarator.setInvalidType(true);
1299     }
1300     break;
1301 
1302   case DeclSpec::TST_auto:
1303   case DeclSpec::TST_decltype_auto: {
1304     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1305                       ? AutoTypeKeyword::DecltypeAuto
1306                       : AutoTypeKeyword::Auto;
1307 
1308     ConceptDecl *TypeConstraintConcept = nullptr;
1309     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1310     if (DS.isConstrainedAuto()) {
1311       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1312         TypeConstraintConcept =
1313             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1314         TemplateArgumentListInfo TemplateArgsInfo;
1315         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1316         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1317         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1318                                            TemplateId->NumArgs);
1319         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1320         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1321           TemplateArgs.push_back(ArgLoc.getArgument());
1322       } else {
1323         declarator.setInvalidType(true);
1324       }
1325     }
1326     Result = S.Context.getAutoType(QualType(), AutoKW,
1327                                    /*IsDependent*/ false, /*IsPack=*/false,
1328                                    TypeConstraintConcept, TemplateArgs);
1329     break;
1330   }
1331 
1332   case DeclSpec::TST_auto_type:
1333     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1334     break;
1335 
1336   case DeclSpec::TST_unknown_anytype:
1337     Result = Context.UnknownAnyTy;
1338     break;
1339 
1340   case DeclSpec::TST_atomic:
1341     Result = S.GetTypeFromParser(DS.getRepAsType());
1342     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1343     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1344     if (Result.isNull()) {
1345       Result = Context.IntTy;
1346       declarator.setInvalidType(true);
1347     }
1348     break;
1349 
1350 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1351   case DeclSpec::TST_##ImgType##_t:                                            \
1352     switch (getImageAccess(DS.getAttributes())) {                              \
1353     case OpenCLAccessAttr::Keyword_write_only:                                 \
1354       Result = Context.Id##WOTy;                                               \
1355       break;                                                                   \
1356     case OpenCLAccessAttr::Keyword_read_write:                                 \
1357       Result = Context.Id##RWTy;                                               \
1358       break;                                                                   \
1359     case OpenCLAccessAttr::Keyword_read_only:                                  \
1360       Result = Context.Id##ROTy;                                               \
1361       break;                                                                   \
1362     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1363       llvm_unreachable("Spelling not yet calculated");                         \
1364     }                                                                          \
1365     break;
1366 #include "clang/Basic/OpenCLImageTypes.def"
1367 
1368 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \
1369   case DeclSpec::TST_##Name:                                                   \
1370     Result = Context.SingletonId;                                              \
1371     break;
1372 #include "clang/Basic/HLSLIntangibleTypes.def"
1373 
1374   case DeclSpec::TST_error:
1375     Result = Context.IntTy;
1376     declarator.setInvalidType(true);
1377     break;
1378   }
1379 
1380   // FIXME: we want resulting declarations to be marked invalid, but claiming
1381   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1382   // a null type.
1383   if (Result->containsErrors())
1384     declarator.setInvalidType();
1385 
1386   if (S.getLangOpts().OpenCL) {
1387     const auto &OpenCLOptions = S.getOpenCLOptions();
1388     bool IsOpenCLC30Compatible =
1389         S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1390     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1391     // support.
1392     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1393     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1394     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1395     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1396     // only when the optional feature is supported
1397     if ((Result->isImageType() || Result->isSamplerT()) &&
1398         (IsOpenCLC30Compatible &&
1399          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1400       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1401           << 0 << Result << "__opencl_c_images";
1402       declarator.setInvalidType();
1403     } else if (Result->isOCLImage3dWOType() &&
1404                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1405                                           S.getLangOpts())) {
1406       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1407           << 0 << Result
1408           << (IsOpenCLC30Compatible
1409                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1410                   : "cl_khr_3d_image_writes");
1411       declarator.setInvalidType();
1412     }
1413   }
1414 
1415   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1416                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1417 
1418   // Only fixed point types can be saturated
1419   if (DS.isTypeSpecSat() && !IsFixedPointType)
1420     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1421         << DS.getSpecifierName(DS.getTypeSpecType(),
1422                                Context.getPrintingPolicy());
1423 
1424   // Handle complex types.
1425   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1426     if (S.getLangOpts().Freestanding)
1427       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1428     Result = Context.getComplexType(Result);
1429   } else if (DS.isTypeAltiVecVector()) {
1430     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1431     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1432     VectorKind VecKind = VectorKind::AltiVecVector;
1433     if (DS.isTypeAltiVecPixel())
1434       VecKind = VectorKind::AltiVecPixel;
1435     else if (DS.isTypeAltiVecBool())
1436       VecKind = VectorKind::AltiVecBool;
1437     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1438   }
1439 
1440   // _Imaginary was a feature of C99 through C23 but was never supported in
1441   // Clang. The feature was removed in C2y, but we retain the unsupported
1442   // diagnostic for an improved user experience.
1443   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1444     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1445 
1446   // Before we process any type attributes, synthesize a block literal
1447   // function declarator if necessary.
1448   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1449     maybeSynthesizeBlockSignature(state, Result);
1450 
1451   // Apply any type attributes from the decl spec.  This may cause the
1452   // list of type attributes to be temporarily saved while the type
1453   // attributes are pushed around.
1454   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1455   if (!DS.isTypeSpecPipe()) {
1456     // We also apply declaration attributes that "slide" to the decl spec.
1457     // Ordering can be important for attributes. The decalaration attributes
1458     // come syntactically before the decl spec attributes, so we process them
1459     // in that order.
1460     ParsedAttributesView SlidingAttrs;
1461     for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1462       if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1463         SlidingAttrs.addAtEnd(&AL);
1464 
1465         // For standard syntax attributes, which would normally appertain to the
1466         // declaration here, suggest moving them to the type instead. But only
1467         // do this for our own vendor attributes; moving other vendors'
1468         // attributes might hurt portability.
1469         // There's one special case that we need to deal with here: The
1470         // `MatrixType` attribute may only be used in a typedef declaration. If
1471         // it's being used anywhere else, don't output the warning as
1472         // ProcessDeclAttributes() will output an error anyway.
1473         if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1474             !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1475               DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1476           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1477               << AL;
1478         }
1479       }
1480     }
1481     // During this call to processTypeAttrs(),
1482     // TypeProcessingState::getCurrentAttributes() will erroneously return a
1483     // reference to the DeclSpec attributes, rather than the declaration
1484     // attributes. However, this doesn't matter, as getCurrentAttributes()
1485     // is only called when distributing attributes from one attribute list
1486     // to another. Declaration attributes are always C++11 attributes, and these
1487     // are never distributed.
1488     processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1489     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1490   }
1491 
1492   // Apply const/volatile/restrict qualifiers to T.
1493   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1494     // Warn about CV qualifiers on function types.
1495     // C99 6.7.3p8:
1496     //   If the specification of a function type includes any type qualifiers,
1497     //   the behavior is undefined.
1498     // C2y changed this behavior to be implementation-defined. Clang defines
1499     // the behavior in all cases to ignore the qualifier, as in C++.
1500     // C++11 [dcl.fct]p7:
1501     //   The effect of a cv-qualifier-seq in a function declarator is not the
1502     //   same as adding cv-qualification on top of the function type. In the
1503     //   latter case, the cv-qualifiers are ignored.
1504     if (Result->isFunctionType()) {
1505       unsigned DiagId = diag::warn_typecheck_function_qualifiers_ignored;
1506       if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C2y)
1507         DiagId = diag::ext_typecheck_function_qualifiers_unspecified;
1508       diagnoseAndRemoveTypeQualifiers(
1509           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1510           DiagId);
1511       // No diagnostic for 'restrict' or '_Atomic' applied to a
1512       // function type; we'll diagnose those later, in BuildQualifiedType.
1513     }
1514 
1515     // C++11 [dcl.ref]p1:
1516     //   Cv-qualified references are ill-formed except when the
1517     //   cv-qualifiers are introduced through the use of a typedef-name
1518     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1519     //
1520     // There don't appear to be any other contexts in which a cv-qualified
1521     // reference type could be formed, so the 'ill-formed' clause here appears
1522     // to never happen.
1523     if (TypeQuals && Result->isReferenceType()) {
1524       diagnoseAndRemoveTypeQualifiers(
1525           S, DS, TypeQuals, Result,
1526           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1527           diag::warn_typecheck_reference_qualifiers);
1528     }
1529 
1530     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1531     // than once in the same specifier-list or qualifier-list, either directly
1532     // or via one or more typedefs."
1533     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1534         && TypeQuals & Result.getCVRQualifiers()) {
1535       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1536         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1537           << "const";
1538       }
1539 
1540       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1541         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1542           << "volatile";
1543       }
1544 
1545       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1546       // produce a warning in this case.
1547     }
1548 
1549     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1550 
1551     // If adding qualifiers fails, just use the unqualified type.
1552     if (Qualified.isNull())
1553       declarator.setInvalidType(true);
1554     else
1555       Result = Qualified;
1556   }
1557 
1558   if (S.getLangOpts().HLSL)
1559     Result = S.HLSL().ProcessResourceTypeAttributes(Result);
1560 
1561   assert(!Result.isNull() && "This function should not return a null type");
1562   return Result;
1563 }
1564 
1565 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1566   if (Entity)
1567     return Entity.getAsString();
1568 
1569   return "type name";
1570 }
1571 
1572 static bool isDependentOrGNUAutoType(QualType T) {
1573   if (T->isDependentType())
1574     return true;
1575 
1576   const auto *AT = dyn_cast<AutoType>(T);
1577   return AT && AT->isGNUAutoType();
1578 }
1579 
1580 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1581                                   Qualifiers Qs, const DeclSpec *DS) {
1582   if (T.isNull())
1583     return QualType();
1584 
1585   // Ignore any attempt to form a cv-qualified reference.
1586   if (T->isReferenceType()) {
1587     Qs.removeConst();
1588     Qs.removeVolatile();
1589   }
1590 
1591   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1592   // object or incomplete types shall not be restrict-qualified."
1593   if (Qs.hasRestrict()) {
1594     unsigned DiagID = 0;
1595     QualType ProblemTy;
1596 
1597     if (T->isAnyPointerType() || T->isReferenceType() ||
1598         T->isMemberPointerType()) {
1599       QualType EltTy;
1600       if (T->isObjCObjectPointerType())
1601         EltTy = T;
1602       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1603         EltTy = PTy->getPointeeType();
1604       else
1605         EltTy = T->getPointeeType();
1606 
1607       // If we have a pointer or reference, the pointee must have an object
1608       // incomplete type.
1609       if (!EltTy->isIncompleteOrObjectType()) {
1610         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1611         ProblemTy = EltTy;
1612       }
1613     } else if (!isDependentOrGNUAutoType(T)) {
1614       // For an __auto_type variable, we may not have seen the initializer yet
1615       // and so have no idea whether the underlying type is a pointer type or
1616       // not.
1617       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1618       ProblemTy = T;
1619     }
1620 
1621     if (DiagID) {
1622       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1623       Qs.removeRestrict();
1624     }
1625   }
1626 
1627   return Context.getQualifiedType(T, Qs);
1628 }
1629 
1630 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1631                                   unsigned CVRAU, const DeclSpec *DS) {
1632   if (T.isNull())
1633     return QualType();
1634 
1635   // Ignore any attempt to form a cv-qualified reference.
1636   if (T->isReferenceType())
1637     CVRAU &=
1638         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1639 
1640   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1641   // TQ_unaligned;
1642   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1643 
1644   // C11 6.7.3/5:
1645   //   If the same qualifier appears more than once in the same
1646   //   specifier-qualifier-list, either directly or via one or more typedefs,
1647   //   the behavior is the same as if it appeared only once.
1648   //
1649   // It's not specified what happens when the _Atomic qualifier is applied to
1650   // a type specified with the _Atomic specifier, but we assume that this
1651   // should be treated as if the _Atomic qualifier appeared multiple times.
1652   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1653     // C11 6.7.3/5:
1654     //   If other qualifiers appear along with the _Atomic qualifier in a
1655     //   specifier-qualifier-list, the resulting type is the so-qualified
1656     //   atomic type.
1657     //
1658     // Don't need to worry about array types here, since _Atomic can't be
1659     // applied to such types.
1660     SplitQualType Split = T.getSplitUnqualifiedType();
1661     T = BuildAtomicType(QualType(Split.Ty, 0),
1662                         DS ? DS->getAtomicSpecLoc() : Loc);
1663     if (T.isNull())
1664       return T;
1665     Split.Quals.addCVRQualifiers(CVR);
1666     return BuildQualifiedType(T, Loc, Split.Quals);
1667   }
1668 
1669   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1670   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1671   return BuildQualifiedType(T, Loc, Q, DS);
1672 }
1673 
1674 QualType Sema::BuildParenType(QualType T) {
1675   return Context.getParenType(T);
1676 }
1677 
1678 /// Given that we're building a pointer or reference to the given
1679 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1680                                            SourceLocation loc,
1681                                            bool isReference) {
1682   // Bail out if retention is unrequired or already specified.
1683   if (!type->isObjCLifetimeType() ||
1684       type.getObjCLifetime() != Qualifiers::OCL_None)
1685     return type;
1686 
1687   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1688 
1689   // If the object type is const-qualified, we can safely use
1690   // __unsafe_unretained.  This is safe (because there are no read
1691   // barriers), and it'll be safe to coerce anything but __weak* to
1692   // the resulting type.
1693   if (type.isConstQualified()) {
1694     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1695 
1696   // Otherwise, check whether the static type does not require
1697   // retaining.  This currently only triggers for Class (possibly
1698   // protocol-qualifed, and arrays thereof).
1699   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1700     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1701 
1702   // If we are in an unevaluated context, like sizeof, skip adding a
1703   // qualification.
1704   } else if (S.isUnevaluatedContext()) {
1705     return type;
1706 
1707   // If that failed, give an error and recover using __strong.  __strong
1708   // is the option most likely to prevent spurious second-order diagnostics,
1709   // like when binding a reference to a field.
1710   } else {
1711     // These types can show up in private ivars in system headers, so
1712     // we need this to not be an error in those cases.  Instead we
1713     // want to delay.
1714     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1715       S.DelayedDiagnostics.add(
1716           sema::DelayedDiagnostic::makeForbiddenType(loc,
1717               diag::err_arc_indirect_no_ownership, type, isReference));
1718     } else {
1719       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1720     }
1721     implicitLifetime = Qualifiers::OCL_Strong;
1722   }
1723   assert(implicitLifetime && "didn't infer any lifetime!");
1724 
1725   Qualifiers qs;
1726   qs.addObjCLifetime(implicitLifetime);
1727   return S.Context.getQualifiedType(type, qs);
1728 }
1729 
1730 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1731   std::string Quals = FnTy->getMethodQuals().getAsString();
1732 
1733   switch (FnTy->getRefQualifier()) {
1734   case RQ_None:
1735     break;
1736 
1737   case RQ_LValue:
1738     if (!Quals.empty())
1739       Quals += ' ';
1740     Quals += '&';
1741     break;
1742 
1743   case RQ_RValue:
1744     if (!Quals.empty())
1745       Quals += ' ';
1746     Quals += "&&";
1747     break;
1748   }
1749 
1750   return Quals;
1751 }
1752 
1753 namespace {
1754 /// Kinds of declarator that cannot contain a qualified function type.
1755 ///
1756 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1757 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1758 ///     at the topmost level of a type.
1759 ///
1760 /// Parens and member pointers are permitted. We don't diagnose array and
1761 /// function declarators, because they don't allow function types at all.
1762 ///
1763 /// The values of this enum are used in diagnostics.
1764 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1765 } // end anonymous namespace
1766 
1767 /// Check whether the type T is a qualified function type, and if it is,
1768 /// diagnose that it cannot be contained within the given kind of declarator.
1769 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1770                                    QualifiedFunctionKind QFK) {
1771   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1772   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1773   if (!FPT ||
1774       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1775     return false;
1776 
1777   S.Diag(Loc, diag::err_compound_qualified_function_type)
1778     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1779     << getFunctionQualifiersAsString(FPT);
1780   return true;
1781 }
1782 
1783 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1784   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1785   if (!FPT ||
1786       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1787     return false;
1788 
1789   Diag(Loc, diag::err_qualified_function_typeid)
1790       << T << getFunctionQualifiersAsString(FPT);
1791   return true;
1792 }
1793 
1794 // Helper to deduce addr space of a pointee type in OpenCL mode.
1795 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1796   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1797       !PointeeType->isSamplerT() &&
1798       !PointeeType.hasAddressSpace())
1799     PointeeType = S.getASTContext().getAddrSpaceQualType(
1800         PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1801   return PointeeType;
1802 }
1803 
1804 QualType Sema::BuildPointerType(QualType T,
1805                                 SourceLocation Loc, DeclarationName Entity) {
1806   if (T->isReferenceType()) {
1807     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1808     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1809       << getPrintableNameForEntity(Entity) << T;
1810     return QualType();
1811   }
1812 
1813   if (T->isFunctionType() && getLangOpts().OpenCL &&
1814       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1815                                             getLangOpts())) {
1816     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1817     return QualType();
1818   }
1819 
1820   if (getLangOpts().HLSL && Loc.isValid()) {
1821     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1822     return QualType();
1823   }
1824 
1825   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1826     return QualType();
1827 
1828   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1829 
1830   // In ARC, it is forbidden to build pointers to unqualified pointers.
1831   if (getLangOpts().ObjCAutoRefCount)
1832     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1833 
1834   if (getLangOpts().OpenCL)
1835     T = deduceOpenCLPointeeAddrSpace(*this, T);
1836 
1837   // In WebAssembly, pointers to reference types and pointers to tables are
1838   // illegal.
1839   if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1840     if (T.isWebAssemblyReferenceType()) {
1841       Diag(Loc, diag::err_wasm_reference_pr) << 0;
1842       return QualType();
1843     }
1844 
1845     // We need to desugar the type here in case T is a ParenType.
1846     if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1847       Diag(Loc, diag::err_wasm_table_pr) << 0;
1848       return QualType();
1849     }
1850   }
1851 
1852   // Build the pointer type.
1853   return Context.getPointerType(T);
1854 }
1855 
1856 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1857                                   SourceLocation Loc,
1858                                   DeclarationName Entity) {
1859   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1860          "Unresolved overloaded function type");
1861 
1862   // C++0x [dcl.ref]p6:
1863   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1864   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1865   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1866   //   the type "lvalue reference to T", while an attempt to create the type
1867   //   "rvalue reference to cv TR" creates the type TR.
1868   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1869 
1870   // C++ [dcl.ref]p4: There shall be no references to references.
1871   //
1872   // According to C++ DR 106, references to references are only
1873   // diagnosed when they are written directly (e.g., "int & &"),
1874   // but not when they happen via a typedef:
1875   //
1876   //   typedef int& intref;
1877   //   typedef intref& intref2;
1878   //
1879   // Parser::ParseDeclaratorInternal diagnoses the case where
1880   // references are written directly; here, we handle the
1881   // collapsing of references-to-references as described in C++0x.
1882   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1883 
1884   // C++ [dcl.ref]p1:
1885   //   A declarator that specifies the type "reference to cv void"
1886   //   is ill-formed.
1887   if (T->isVoidType()) {
1888     Diag(Loc, diag::err_reference_to_void);
1889     return QualType();
1890   }
1891 
1892   if (getLangOpts().HLSL && Loc.isValid()) {
1893     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1894     return QualType();
1895   }
1896 
1897   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1898     return QualType();
1899 
1900   if (T->isFunctionType() && getLangOpts().OpenCL &&
1901       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1902                                             getLangOpts())) {
1903     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1904     return QualType();
1905   }
1906 
1907   // In ARC, it is forbidden to build references to unqualified pointers.
1908   if (getLangOpts().ObjCAutoRefCount)
1909     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1910 
1911   if (getLangOpts().OpenCL)
1912     T = deduceOpenCLPointeeAddrSpace(*this, T);
1913 
1914   // In WebAssembly, references to reference types and tables are illegal.
1915   if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1916       T.isWebAssemblyReferenceType()) {
1917     Diag(Loc, diag::err_wasm_reference_pr) << 1;
1918     return QualType();
1919   }
1920   if (T->isWebAssemblyTableType()) {
1921     Diag(Loc, diag::err_wasm_table_pr) << 1;
1922     return QualType();
1923   }
1924 
1925   // Handle restrict on references.
1926   if (LValueRef)
1927     return Context.getLValueReferenceType(T, SpelledAsLValue);
1928   return Context.getRValueReferenceType(T);
1929 }
1930 
1931 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1932   return Context.getReadPipeType(T);
1933 }
1934 
1935 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1936   return Context.getWritePipeType(T);
1937 }
1938 
1939 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1940                                SourceLocation Loc) {
1941   if (BitWidth->isInstantiationDependent())
1942     return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1943 
1944   llvm::APSInt Bits(32);
1945   ExprResult ICE =
1946       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1947 
1948   if (ICE.isInvalid())
1949     return QualType();
1950 
1951   size_t NumBits = Bits.getZExtValue();
1952   if (!IsUnsigned && NumBits < 2) {
1953     Diag(Loc, diag::err_bit_int_bad_size) << 0;
1954     return QualType();
1955   }
1956 
1957   if (IsUnsigned && NumBits < 1) {
1958     Diag(Loc, diag::err_bit_int_bad_size) << 1;
1959     return QualType();
1960   }
1961 
1962   const TargetInfo &TI = getASTContext().getTargetInfo();
1963   if (NumBits > TI.getMaxBitIntWidth()) {
1964     Diag(Loc, diag::err_bit_int_max_size)
1965         << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1966     return QualType();
1967   }
1968 
1969   return Context.getBitIntType(IsUnsigned, NumBits);
1970 }
1971 
1972 /// Check whether the specified array bound can be evaluated using the relevant
1973 /// language rules. If so, returns the possibly-converted expression and sets
1974 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1975 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1976 /// ExprError().
1977 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1978                                  llvm::APSInt &SizeVal, unsigned VLADiag,
1979                                  bool VLAIsError) {
1980   if (S.getLangOpts().CPlusPlus14 &&
1981       (VLAIsError ||
1982        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1983     // C++14 [dcl.array]p1:
1984     //   The constant-expression shall be a converted constant expression of
1985     //   type std::size_t.
1986     //
1987     // Don't apply this rule if we might be forming a VLA: in that case, we
1988     // allow non-constant expressions and constant-folding. We only need to use
1989     // the converted constant expression rules (to properly convert the source)
1990     // when the source expression is of class type.
1991     return S.CheckConvertedConstantExpression(
1992         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1993   }
1994 
1995   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1996   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1997   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1998   public:
1999     unsigned VLADiag;
2000     bool VLAIsError;
2001     bool IsVLA = false;
2002 
2003     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2004         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2005 
2006     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2007                                                    QualType T) override {
2008       return S.Diag(Loc, diag::err_array_size_non_int) << T;
2009     }
2010 
2011     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2012                                                SourceLocation Loc) override {
2013       IsVLA = !VLAIsError;
2014       return S.Diag(Loc, VLADiag);
2015     }
2016 
2017     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2018                                              SourceLocation Loc) override {
2019       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2020     }
2021   } Diagnoser(VLADiag, VLAIsError);
2022 
2023   ExprResult R =
2024       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2025   if (Diagnoser.IsVLA)
2026     return ExprResult();
2027   return R;
2028 }
2029 
2030 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2031   EltTy = Context.getBaseElementType(EltTy);
2032   if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2033       EltTy->isUndeducedType())
2034     return true;
2035 
2036   CharUnits Size = Context.getTypeSizeInChars(EltTy);
2037   CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2038 
2039   if (Size.isMultipleOf(Alignment))
2040     return true;
2041 
2042   Diag(Loc, diag::err_array_element_alignment)
2043       << EltTy << Size.getQuantity() << Alignment.getQuantity();
2044   return false;
2045 }
2046 
2047 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2048                               Expr *ArraySize, unsigned Quals,
2049                               SourceRange Brackets, DeclarationName Entity) {
2050 
2051   SourceLocation Loc = Brackets.getBegin();
2052   if (getLangOpts().CPlusPlus) {
2053     // C++ [dcl.array]p1:
2054     //   T is called the array element type; this type shall not be a reference
2055     //   type, the (possibly cv-qualified) type void, a function type or an
2056     //   abstract class type.
2057     //
2058     // C++ [dcl.array]p3:
2059     //   When several "array of" specifications are adjacent, [...] only the
2060     //   first of the constant expressions that specify the bounds of the arrays
2061     //   may be omitted.
2062     //
2063     // Note: function types are handled in the common path with C.
2064     if (T->isReferenceType()) {
2065       Diag(Loc, diag::err_illegal_decl_array_of_references)
2066       << getPrintableNameForEntity(Entity) << T;
2067       return QualType();
2068     }
2069 
2070     if (T->isVoidType() || T->isIncompleteArrayType()) {
2071       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2072       return QualType();
2073     }
2074 
2075     if (RequireNonAbstractType(Brackets.getBegin(), T,
2076                                diag::err_array_of_abstract_type))
2077       return QualType();
2078 
2079     // Mentioning a member pointer type for an array type causes us to lock in
2080     // an inheritance model, even if it's inside an unused typedef.
2081     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2082       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2083         if (!MPTy->getClass()->isDependentType())
2084           (void)isCompleteType(Loc, T);
2085 
2086   } else {
2087     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2088     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2089     if (!T.isWebAssemblyReferenceType() &&
2090         RequireCompleteSizedType(Loc, T,
2091                                  diag::err_array_incomplete_or_sizeless_type))
2092       return QualType();
2093   }
2094 
2095   // Multi-dimensional arrays of WebAssembly references are not allowed.
2096   if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2097     const auto *ATy = dyn_cast<ArrayType>(T);
2098     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2099       Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2100       return QualType();
2101     }
2102   }
2103 
2104   if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2105     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2106     return QualType();
2107   }
2108 
2109   if (T->isFunctionType()) {
2110     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2111       << getPrintableNameForEntity(Entity) << T;
2112     return QualType();
2113   }
2114 
2115   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2116     // If the element type is a struct or union that contains a variadic
2117     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2118     if (EltTy->getDecl()->hasFlexibleArrayMember())
2119       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2120   } else if (T->isObjCObjectType()) {
2121     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2122     return QualType();
2123   }
2124 
2125   if (!checkArrayElementAlignment(T, Loc))
2126     return QualType();
2127 
2128   // Do placeholder conversions on the array size expression.
2129   if (ArraySize && ArraySize->hasPlaceholderType()) {
2130     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2131     if (Result.isInvalid()) return QualType();
2132     ArraySize = Result.get();
2133   }
2134 
2135   // Do lvalue-to-rvalue conversions on the array size expression.
2136   if (ArraySize && !ArraySize->isPRValue()) {
2137     ExprResult Result = DefaultLvalueConversion(ArraySize);
2138     if (Result.isInvalid())
2139       return QualType();
2140 
2141     ArraySize = Result.get();
2142   }
2143 
2144   // C99 6.7.5.2p1: The size expression shall have integer type.
2145   // C++11 allows contextual conversions to such types.
2146   if (!getLangOpts().CPlusPlus11 &&
2147       ArraySize && !ArraySize->isTypeDependent() &&
2148       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2149     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2150         << ArraySize->getType() << ArraySize->getSourceRange();
2151     return QualType();
2152   }
2153 
2154   auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2155     if (!ArraySize)
2156       return false;
2157 
2158     // If the array size expression is a conditional expression whose branches
2159     // are both integer constant expressions, one negative and one positive,
2160     // then it's assumed to be like an old-style static assertion. e.g.,
2161     //   int old_style_assert[expr ? 1 : -1];
2162     // We will accept any integer constant expressions instead of assuming the
2163     // values 1 and -1 are always used.
2164     if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2165             ArraySize->IgnoreParenImpCasts())) {
2166       std::optional<llvm::APSInt> LHS =
2167           CondExpr->getLHS()->getIntegerConstantExpr(Context);
2168       std::optional<llvm::APSInt> RHS =
2169           CondExpr->getRHS()->getIntegerConstantExpr(Context);
2170       return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2171     }
2172     return false;
2173   };
2174 
2175   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2176   unsigned VLADiag;
2177   bool VLAIsError;
2178   if (getLangOpts().OpenCL) {
2179     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2180     VLADiag = diag::err_opencl_vla;
2181     VLAIsError = true;
2182   } else if (getLangOpts().C99) {
2183     VLADiag = diag::warn_vla_used;
2184     VLAIsError = false;
2185   } else if (isSFINAEContext()) {
2186     VLADiag = diag::err_vla_in_sfinae;
2187     VLAIsError = true;
2188   } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2189     VLADiag = diag::err_openmp_vla_in_task_untied;
2190     VLAIsError = true;
2191   } else if (getLangOpts().CPlusPlus) {
2192     if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2193       VLADiag = getLangOpts().GNUMode
2194                     ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2195                     : diag::ext_vla_cxx_static_assert;
2196     else
2197       VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2198                                       : diag::ext_vla_cxx;
2199     VLAIsError = false;
2200   } else {
2201     VLADiag = diag::ext_vla;
2202     VLAIsError = false;
2203   }
2204 
2205   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2206   if (!ArraySize) {
2207     if (ASM == ArraySizeModifier::Star) {
2208       Diag(Loc, VLADiag);
2209       if (VLAIsError)
2210         return QualType();
2211 
2212       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2213     } else {
2214       T = Context.getIncompleteArrayType(T, ASM, Quals);
2215     }
2216   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2217     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2218   } else {
2219     ExprResult R =
2220         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2221     if (R.isInvalid())
2222       return QualType();
2223 
2224     if (!R.isUsable()) {
2225       // C99: an array with a non-ICE size is a VLA. We accept any expression
2226       // that we can fold to a non-zero positive value as a non-VLA as an
2227       // extension.
2228       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2229     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2230                !T->isConstantSizeType()) {
2231       // C99: an array with an element type that has a non-constant-size is a
2232       // VLA.
2233       // FIXME: Add a note to explain why this isn't a VLA.
2234       Diag(Loc, VLADiag);
2235       if (VLAIsError)
2236         return QualType();
2237       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2238     } else {
2239       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2240       // have a value greater than zero.
2241       // In C++, this follows from narrowing conversions being disallowed.
2242       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2243         if (Entity)
2244           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2245               << getPrintableNameForEntity(Entity)
2246               << ArraySize->getSourceRange();
2247         else
2248           Diag(ArraySize->getBeginLoc(),
2249                diag::err_typecheck_negative_array_size)
2250               << ArraySize->getSourceRange();
2251         return QualType();
2252       }
2253       if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2254         // GCC accepts zero sized static arrays. We allow them when
2255         // we're not in a SFINAE context.
2256         Diag(ArraySize->getBeginLoc(),
2257              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2258                                : diag::ext_typecheck_zero_array_size)
2259             << 0 << ArraySize->getSourceRange();
2260       }
2261 
2262       // Is the array too large?
2263       unsigned ActiveSizeBits =
2264           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2265            !T->isIncompleteType() && !T->isUndeducedType())
2266               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2267               : ConstVal.getActiveBits();
2268       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2269         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2270             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2271         return QualType();
2272       }
2273 
2274       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2275     }
2276   }
2277 
2278   if (T->isVariableArrayType()) {
2279     if (!Context.getTargetInfo().isVLASupported()) {
2280       // CUDA device code and some other targets don't support VLAs.
2281       bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2282       targetDiag(Loc,
2283                  IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2284           << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2285     } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2286       // VLAs are supported on this target, but we may need to do delayed
2287       // checking that the VLA is not being used within a coroutine.
2288       FSI->setHasVLA(Loc);
2289     }
2290   }
2291 
2292   // If this is not C99, diagnose array size modifiers on non-VLAs.
2293   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2294       (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2295     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2296                                       : diag::ext_c99_array_usage)
2297         << llvm::to_underlying(ASM);
2298   }
2299 
2300   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2301   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2302   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2303   if (getLangOpts().OpenCL) {
2304     const QualType ArrType = Context.getBaseElementType(T);
2305     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2306         ArrType->isSamplerT() || ArrType->isImageType()) {
2307       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2308       return QualType();
2309     }
2310   }
2311 
2312   return T;
2313 }
2314 
2315 static bool CheckBitIntElementType(Sema &S, SourceLocation AttrLoc,
2316                                    const BitIntType *BIT,
2317                                    bool ForMatrixType = false) {
2318   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2319   unsigned NumBits = BIT->getNumBits();
2320   if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8)
2321     return S.Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2322            << ForMatrixType << (NumBits < 8);
2323   return false;
2324 }
2325 
2326 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2327                                SourceLocation AttrLoc) {
2328   // The base type must be integer (not Boolean or enumeration) or float, and
2329   // can't already be a vector.
2330   if ((!CurType->isDependentType() &&
2331        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2332         (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2333        !CurType->isBitIntType()) ||
2334       CurType->isArrayType()) {
2335     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2336     return QualType();
2337   }
2338 
2339   if (const auto *BIT = CurType->getAs<BitIntType>();
2340       BIT && CheckBitIntElementType(*this, AttrLoc, BIT))
2341     return QualType();
2342 
2343   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2344     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2345                                           VectorKind::Generic);
2346 
2347   std::optional<llvm::APSInt> VecSize =
2348       SizeExpr->getIntegerConstantExpr(Context);
2349   if (!VecSize) {
2350     Diag(AttrLoc, diag::err_attribute_argument_type)
2351         << "vector_size" << AANT_ArgumentIntegerConstant
2352         << SizeExpr->getSourceRange();
2353     return QualType();
2354   }
2355 
2356   if (CurType->isDependentType())
2357     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2358                                           VectorKind::Generic);
2359 
2360   // vecSize is specified in bytes - convert to bits.
2361   if (!VecSize->isIntN(61)) {
2362     // Bit size will overflow uint64.
2363     Diag(AttrLoc, diag::err_attribute_size_too_large)
2364         << SizeExpr->getSourceRange() << "vector";
2365     return QualType();
2366   }
2367   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2368   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2369 
2370   if (VectorSizeBits == 0) {
2371     Diag(AttrLoc, diag::err_attribute_zero_size)
2372         << SizeExpr->getSourceRange() << "vector";
2373     return QualType();
2374   }
2375 
2376   if (!TypeSize || VectorSizeBits % TypeSize) {
2377     Diag(AttrLoc, diag::err_attribute_invalid_size)
2378         << SizeExpr->getSourceRange();
2379     return QualType();
2380   }
2381 
2382   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2383     Diag(AttrLoc, diag::err_attribute_size_too_large)
2384         << SizeExpr->getSourceRange() << "vector";
2385     return QualType();
2386   }
2387 
2388   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2389                                VectorKind::Generic);
2390 }
2391 
2392 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2393                                   SourceLocation AttrLoc) {
2394   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2395   // in conjunction with complex types (pointers, arrays, functions, etc.).
2396   //
2397   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2398   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2399   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2400   // of bool aren't allowed.
2401   //
2402   // We explicitly allow bool elements in ext_vector_type for C/C++.
2403   bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2404   if ((!T->isDependentType() && !T->isIntegerType() &&
2405        !T->isRealFloatingType()) ||
2406       (IsNoBoolVecLang && T->isBooleanType())) {
2407     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2408     return QualType();
2409   }
2410 
2411   if (const auto *BIT = T->getAs<BitIntType>();
2412       BIT && CheckBitIntElementType(*this, AttrLoc, BIT))
2413     return QualType();
2414 
2415   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2416     std::optional<llvm::APSInt> vecSize =
2417         ArraySize->getIntegerConstantExpr(Context);
2418     if (!vecSize) {
2419       Diag(AttrLoc, diag::err_attribute_argument_type)
2420         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2421         << ArraySize->getSourceRange();
2422       return QualType();
2423     }
2424 
2425     if (!vecSize->isIntN(32)) {
2426       Diag(AttrLoc, diag::err_attribute_size_too_large)
2427           << ArraySize->getSourceRange() << "vector";
2428       return QualType();
2429     }
2430     // Unlike gcc's vector_size attribute, the size is specified as the
2431     // number of elements, not the number of bytes.
2432     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2433 
2434     if (vectorSize == 0) {
2435       Diag(AttrLoc, diag::err_attribute_zero_size)
2436           << ArraySize->getSourceRange() << "vector";
2437       return QualType();
2438     }
2439 
2440     return Context.getExtVectorType(T, vectorSize);
2441   }
2442 
2443   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2444 }
2445 
2446 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2447                                SourceLocation AttrLoc) {
2448   assert(Context.getLangOpts().MatrixTypes &&
2449          "Should never build a matrix type when it is disabled");
2450 
2451   // Check element type, if it is not dependent.
2452   if (!ElementTy->isDependentType() &&
2453       !MatrixType::isValidElementType(ElementTy)) {
2454     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2455     return QualType();
2456   }
2457 
2458   if (const auto *BIT = ElementTy->getAs<BitIntType>();
2459       BIT &&
2460       CheckBitIntElementType(*this, AttrLoc, BIT, /*ForMatrixType=*/true))
2461     return QualType();
2462 
2463   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2464       NumRows->isValueDependent() || NumCols->isValueDependent())
2465     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2466                                                AttrLoc);
2467 
2468   std::optional<llvm::APSInt> ValueRows =
2469       NumRows->getIntegerConstantExpr(Context);
2470   std::optional<llvm::APSInt> ValueColumns =
2471       NumCols->getIntegerConstantExpr(Context);
2472 
2473   auto const RowRange = NumRows->getSourceRange();
2474   auto const ColRange = NumCols->getSourceRange();
2475 
2476   // Both are row and column expressions are invalid.
2477   if (!ValueRows && !ValueColumns) {
2478     Diag(AttrLoc, diag::err_attribute_argument_type)
2479         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2480         << ColRange;
2481     return QualType();
2482   }
2483 
2484   // Only the row expression is invalid.
2485   if (!ValueRows) {
2486     Diag(AttrLoc, diag::err_attribute_argument_type)
2487         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2488     return QualType();
2489   }
2490 
2491   // Only the column expression is invalid.
2492   if (!ValueColumns) {
2493     Diag(AttrLoc, diag::err_attribute_argument_type)
2494         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2495     return QualType();
2496   }
2497 
2498   // Check the matrix dimensions.
2499   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2500   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2501   if (MatrixRows == 0 && MatrixColumns == 0) {
2502     Diag(AttrLoc, diag::err_attribute_zero_size)
2503         << "matrix" << RowRange << ColRange;
2504     return QualType();
2505   }
2506   if (MatrixRows == 0) {
2507     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2508     return QualType();
2509   }
2510   if (MatrixColumns == 0) {
2511     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2512     return QualType();
2513   }
2514   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2515     Diag(AttrLoc, diag::err_attribute_size_too_large)
2516         << RowRange << "matrix row";
2517     return QualType();
2518   }
2519   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2520     Diag(AttrLoc, diag::err_attribute_size_too_large)
2521         << ColRange << "matrix column";
2522     return QualType();
2523   }
2524   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2525 }
2526 
2527 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2528   if (T->isArrayType() || T->isFunctionType()) {
2529     Diag(Loc, diag::err_func_returning_array_function)
2530       << T->isFunctionType() << T;
2531     return true;
2532   }
2533 
2534   // Functions cannot return half FP.
2535   if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2536       !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2537     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2538       FixItHint::CreateInsertion(Loc, "*");
2539     return true;
2540   }
2541 
2542   // Methods cannot return interface types. All ObjC objects are
2543   // passed by reference.
2544   if (T->isObjCObjectType()) {
2545     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2546         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2547     return true;
2548   }
2549 
2550   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2551       T.hasNonTrivialToPrimitiveCopyCUnion())
2552     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2553                           NTCUK_Destruct|NTCUK_Copy);
2554 
2555   // C++2a [dcl.fct]p12:
2556   //   A volatile-qualified return type is deprecated
2557   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2558     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2559 
2560   if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2561     return true;
2562   return false;
2563 }
2564 
2565 /// Check the extended parameter information.  Most of the necessary
2566 /// checking should occur when applying the parameter attribute; the
2567 /// only other checks required are positional restrictions.
2568 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2569                     const FunctionProtoType::ExtProtoInfo &EPI,
2570                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2571   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2572 
2573   bool emittedError = false;
2574   auto actualCC = EPI.ExtInfo.getCC();
2575   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2576   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2577     bool isCompatible =
2578         (required == RequiredCC::OnlySwift)
2579             ? (actualCC == CC_Swift)
2580             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2581     if (isCompatible || emittedError)
2582       return;
2583     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2584         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2585         << (required == RequiredCC::OnlySwift);
2586     emittedError = true;
2587   };
2588   for (size_t paramIndex = 0, numParams = paramTypes.size();
2589           paramIndex != numParams; ++paramIndex) {
2590     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2591     // Nothing interesting to check for orindary-ABI parameters.
2592     case ParameterABI::Ordinary:
2593     case ParameterABI::HLSLOut:
2594     case ParameterABI::HLSLInOut:
2595       continue;
2596 
2597     // swift_indirect_result parameters must be a prefix of the function
2598     // arguments.
2599     case ParameterABI::SwiftIndirectResult:
2600       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2601       if (paramIndex != 0 &&
2602           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2603             != ParameterABI::SwiftIndirectResult) {
2604         S.Diag(getParamLoc(paramIndex),
2605                diag::err_swift_indirect_result_not_first);
2606       }
2607       continue;
2608 
2609     case ParameterABI::SwiftContext:
2610       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2611       continue;
2612 
2613     // SwiftAsyncContext is not limited to swiftasynccall functions.
2614     case ParameterABI::SwiftAsyncContext:
2615       continue;
2616 
2617     // swift_error parameters must be preceded by a swift_context parameter.
2618     case ParameterABI::SwiftErrorResult:
2619       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2620       if (paramIndex == 0 ||
2621           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2622               ParameterABI::SwiftContext) {
2623         S.Diag(getParamLoc(paramIndex),
2624                diag::err_swift_error_result_not_after_swift_context);
2625       }
2626       continue;
2627     }
2628     llvm_unreachable("bad ABI kind");
2629   }
2630 }
2631 
2632 QualType Sema::BuildFunctionType(QualType T,
2633                                  MutableArrayRef<QualType> ParamTypes,
2634                                  SourceLocation Loc, DeclarationName Entity,
2635                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2636   bool Invalid = false;
2637 
2638   Invalid |= CheckFunctionReturnType(T, Loc);
2639 
2640   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2641     // FIXME: Loc is too inprecise here, should use proper locations for args.
2642     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2643     if (ParamType->isVoidType()) {
2644       Diag(Loc, diag::err_param_with_void_type);
2645       Invalid = true;
2646     } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2647                !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2648       // Disallow half FP arguments.
2649       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2650         FixItHint::CreateInsertion(Loc, "*");
2651       Invalid = true;
2652     } else if (ParamType->isWebAssemblyTableType()) {
2653       Diag(Loc, diag::err_wasm_table_as_function_parameter);
2654       Invalid = true;
2655     }
2656 
2657     // C++2a [dcl.fct]p4:
2658     //   A parameter with volatile-qualified type is deprecated
2659     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2660       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2661 
2662     ParamTypes[Idx] = ParamType;
2663   }
2664 
2665   if (EPI.ExtParameterInfos) {
2666     checkExtParameterInfos(*this, ParamTypes, EPI,
2667                            [=](unsigned i) { return Loc; });
2668   }
2669 
2670   if (EPI.ExtInfo.getProducesResult()) {
2671     // This is just a warning, so we can't fail to build if we see it.
2672     ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2673   }
2674 
2675   if (Invalid)
2676     return QualType();
2677 
2678   return Context.getFunctionType(T, ParamTypes, EPI);
2679 }
2680 
2681 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2682                                       SourceLocation Loc,
2683                                       DeclarationName Entity) {
2684   // Verify that we're not building a pointer to pointer to function with
2685   // exception specification.
2686   if (CheckDistantExceptionSpec(T)) {
2687     Diag(Loc, diag::err_distant_exception_spec);
2688     return QualType();
2689   }
2690 
2691   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2692   //   with reference type, or "cv void."
2693   if (T->isReferenceType()) {
2694     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2695       << getPrintableNameForEntity(Entity) << T;
2696     return QualType();
2697   }
2698 
2699   if (T->isVoidType()) {
2700     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2701       << getPrintableNameForEntity(Entity);
2702     return QualType();
2703   }
2704 
2705   if (!Class->isDependentType() && !Class->isRecordType()) {
2706     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2707     return QualType();
2708   }
2709 
2710   if (T->isFunctionType() && getLangOpts().OpenCL &&
2711       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2712                                             getLangOpts())) {
2713     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2714     return QualType();
2715   }
2716 
2717   if (getLangOpts().HLSL && Loc.isValid()) {
2718     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2719     return QualType();
2720   }
2721 
2722   // Adjust the default free function calling convention to the default method
2723   // calling convention.
2724   bool IsCtorOrDtor =
2725       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2726       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2727   if (T->isFunctionType())
2728     adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2729 
2730   return Context.getMemberPointerType(T, Class.getTypePtr());
2731 }
2732 
2733 QualType Sema::BuildBlockPointerType(QualType T,
2734                                      SourceLocation Loc,
2735                                      DeclarationName Entity) {
2736   if (!T->isFunctionType()) {
2737     Diag(Loc, diag::err_nonfunction_block_type);
2738     return QualType();
2739   }
2740 
2741   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2742     return QualType();
2743 
2744   if (getLangOpts().OpenCL)
2745     T = deduceOpenCLPointeeAddrSpace(*this, T);
2746 
2747   return Context.getBlockPointerType(T);
2748 }
2749 
2750 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2751   QualType QT = Ty.get();
2752   if (QT.isNull()) {
2753     if (TInfo) *TInfo = nullptr;
2754     return QualType();
2755   }
2756 
2757   TypeSourceInfo *DI = nullptr;
2758   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2759     QT = LIT->getType();
2760     DI = LIT->getTypeSourceInfo();
2761   }
2762 
2763   if (TInfo) *TInfo = DI;
2764   return QT;
2765 }
2766 
2767 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2768                                             Qualifiers::ObjCLifetime ownership,
2769                                             unsigned chunkIndex);
2770 
2771 /// Given that this is the declaration of a parameter under ARC,
2772 /// attempt to infer attributes and such for pointer-to-whatever
2773 /// types.
2774 static void inferARCWriteback(TypeProcessingState &state,
2775                               QualType &declSpecType) {
2776   Sema &S = state.getSema();
2777   Declarator &declarator = state.getDeclarator();
2778 
2779   // TODO: should we care about decl qualifiers?
2780 
2781   // Check whether the declarator has the expected form.  We walk
2782   // from the inside out in order to make the block logic work.
2783   unsigned outermostPointerIndex = 0;
2784   bool isBlockPointer = false;
2785   unsigned numPointers = 0;
2786   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2787     unsigned chunkIndex = i;
2788     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2789     switch (chunk.Kind) {
2790     case DeclaratorChunk::Paren:
2791       // Ignore parens.
2792       break;
2793 
2794     case DeclaratorChunk::Reference:
2795     case DeclaratorChunk::Pointer:
2796       // Count the number of pointers.  Treat references
2797       // interchangeably as pointers; if they're mis-ordered, normal
2798       // type building will discover that.
2799       outermostPointerIndex = chunkIndex;
2800       numPointers++;
2801       break;
2802 
2803     case DeclaratorChunk::BlockPointer:
2804       // If we have a pointer to block pointer, that's an acceptable
2805       // indirect reference; anything else is not an application of
2806       // the rules.
2807       if (numPointers != 1) return;
2808       numPointers++;
2809       outermostPointerIndex = chunkIndex;
2810       isBlockPointer = true;
2811 
2812       // We don't care about pointer structure in return values here.
2813       goto done;
2814 
2815     case DeclaratorChunk::Array: // suppress if written (id[])?
2816     case DeclaratorChunk::Function:
2817     case DeclaratorChunk::MemberPointer:
2818     case DeclaratorChunk::Pipe:
2819       return;
2820     }
2821   }
2822  done:
2823 
2824   // If we have *one* pointer, then we want to throw the qualifier on
2825   // the declaration-specifiers, which means that it needs to be a
2826   // retainable object type.
2827   if (numPointers == 1) {
2828     // If it's not a retainable object type, the rule doesn't apply.
2829     if (!declSpecType->isObjCRetainableType()) return;
2830 
2831     // If it already has lifetime, don't do anything.
2832     if (declSpecType.getObjCLifetime()) return;
2833 
2834     // Otherwise, modify the type in-place.
2835     Qualifiers qs;
2836 
2837     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2838       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2839     else
2840       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2841     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2842 
2843   // If we have *two* pointers, then we want to throw the qualifier on
2844   // the outermost pointer.
2845   } else if (numPointers == 2) {
2846     // If we don't have a block pointer, we need to check whether the
2847     // declaration-specifiers gave us something that will turn into a
2848     // retainable object pointer after we slap the first pointer on it.
2849     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2850       return;
2851 
2852     // Look for an explicit lifetime attribute there.
2853     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2854     if (chunk.Kind != DeclaratorChunk::Pointer &&
2855         chunk.Kind != DeclaratorChunk::BlockPointer)
2856       return;
2857     for (const ParsedAttr &AL : chunk.getAttrs())
2858       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2859         return;
2860 
2861     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2862                                           outermostPointerIndex);
2863 
2864   // Any other number of pointers/references does not trigger the rule.
2865   } else return;
2866 
2867   // TODO: mark whether we did this inference?
2868 }
2869 
2870 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2871                                      SourceLocation FallbackLoc,
2872                                      SourceLocation ConstQualLoc,
2873                                      SourceLocation VolatileQualLoc,
2874                                      SourceLocation RestrictQualLoc,
2875                                      SourceLocation AtomicQualLoc,
2876                                      SourceLocation UnalignedQualLoc) {
2877   if (!Quals)
2878     return;
2879 
2880   struct Qual {
2881     const char *Name;
2882     unsigned Mask;
2883     SourceLocation Loc;
2884   } const QualKinds[5] = {
2885     { "const", DeclSpec::TQ_const, ConstQualLoc },
2886     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2887     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2888     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2889     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2890   };
2891 
2892   SmallString<32> QualStr;
2893   unsigned NumQuals = 0;
2894   SourceLocation Loc;
2895   FixItHint FixIts[5];
2896 
2897   // Build a string naming the redundant qualifiers.
2898   for (auto &E : QualKinds) {
2899     if (Quals & E.Mask) {
2900       if (!QualStr.empty()) QualStr += ' ';
2901       QualStr += E.Name;
2902 
2903       // If we have a location for the qualifier, offer a fixit.
2904       SourceLocation QualLoc = E.Loc;
2905       if (QualLoc.isValid()) {
2906         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2907         if (Loc.isInvalid() ||
2908             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2909           Loc = QualLoc;
2910       }
2911 
2912       ++NumQuals;
2913     }
2914   }
2915 
2916   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2917     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2918 }
2919 
2920 // Diagnose pointless type qualifiers on the return type of a function.
2921 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2922                                                   Declarator &D,
2923                                                   unsigned FunctionChunkIndex) {
2924   const DeclaratorChunk::FunctionTypeInfo &FTI =
2925       D.getTypeObject(FunctionChunkIndex).Fun;
2926   if (FTI.hasTrailingReturnType()) {
2927     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2928                                 RetTy.getLocalCVRQualifiers(),
2929                                 FTI.getTrailingReturnTypeLoc());
2930     return;
2931   }
2932 
2933   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2934                 End = D.getNumTypeObjects();
2935        OuterChunkIndex != End; ++OuterChunkIndex) {
2936     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2937     switch (OuterChunk.Kind) {
2938     case DeclaratorChunk::Paren:
2939       continue;
2940 
2941     case DeclaratorChunk::Pointer: {
2942       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2943       S.diagnoseIgnoredQualifiers(
2944           diag::warn_qual_return_type,
2945           PTI.TypeQuals,
2946           SourceLocation(),
2947           PTI.ConstQualLoc,
2948           PTI.VolatileQualLoc,
2949           PTI.RestrictQualLoc,
2950           PTI.AtomicQualLoc,
2951           PTI.UnalignedQualLoc);
2952       return;
2953     }
2954 
2955     case DeclaratorChunk::Function:
2956     case DeclaratorChunk::BlockPointer:
2957     case DeclaratorChunk::Reference:
2958     case DeclaratorChunk::Array:
2959     case DeclaratorChunk::MemberPointer:
2960     case DeclaratorChunk::Pipe:
2961       // FIXME: We can't currently provide an accurate source location and a
2962       // fix-it hint for these.
2963       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2964       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2965                                   RetTy.getCVRQualifiers() | AtomicQual,
2966                                   D.getIdentifierLoc());
2967       return;
2968     }
2969 
2970     llvm_unreachable("unknown declarator chunk kind");
2971   }
2972 
2973   // If the qualifiers come from a conversion function type, don't diagnose
2974   // them -- they're not necessarily redundant, since such a conversion
2975   // operator can be explicitly called as "x.operator const int()".
2976   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2977     return;
2978 
2979   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2980   // which are present there.
2981   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2982                               D.getDeclSpec().getTypeQualifiers(),
2983                               D.getIdentifierLoc(),
2984                               D.getDeclSpec().getConstSpecLoc(),
2985                               D.getDeclSpec().getVolatileSpecLoc(),
2986                               D.getDeclSpec().getRestrictSpecLoc(),
2987                               D.getDeclSpec().getAtomicSpecLoc(),
2988                               D.getDeclSpec().getUnalignedSpecLoc());
2989 }
2990 
2991 static std::pair<QualType, TypeSourceInfo *>
2992 InventTemplateParameter(TypeProcessingState &state, QualType T,
2993                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
2994                         InventedTemplateParameterInfo &Info) {
2995   Sema &S = state.getSema();
2996   Declarator &D = state.getDeclarator();
2997 
2998   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2999   const unsigned AutoParameterPosition = Info.TemplateParams.size();
3000   const bool IsParameterPack = D.hasEllipsis();
3001 
3002   // If auto is mentioned in a lambda parameter or abbreviated function
3003   // template context, convert it to a template parameter type.
3004 
3005   // Create the TemplateTypeParmDecl here to retrieve the corresponding
3006   // template parameter type. Template parameters are temporarily added
3007   // to the TU until the associated TemplateDecl is created.
3008   TemplateTypeParmDecl *InventedTemplateParam =
3009       TemplateTypeParmDecl::Create(
3010           S.Context, S.Context.getTranslationUnitDecl(),
3011           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3012           /*NameLoc=*/D.getIdentifierLoc(),
3013           TemplateParameterDepth, AutoParameterPosition,
3014           S.InventAbbreviatedTemplateParameterTypeName(
3015               D.getIdentifier(), AutoParameterPosition), false,
3016           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3017   InventedTemplateParam->setImplicit();
3018   Info.TemplateParams.push_back(InventedTemplateParam);
3019 
3020   // Attach type constraints to the new parameter.
3021   if (Auto->isConstrained()) {
3022     if (TrailingTSI) {
3023       // The 'auto' appears in a trailing return type we've already built;
3024       // extract its type constraints to attach to the template parameter.
3025       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3026       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3027       bool Invalid = false;
3028       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3029         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3030             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3031                                               Sema::UPPC_TypeConstraint))
3032           Invalid = true;
3033         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3034       }
3035 
3036       if (!Invalid) {
3037         S.AttachTypeConstraint(
3038             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3039             AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3040             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3041             InventedTemplateParam,
3042             S.Context.getTypeDeclType(InventedTemplateParam),
3043             D.getEllipsisLoc());
3044       }
3045     } else {
3046       // The 'auto' appears in the decl-specifiers; we've not finished forming
3047       // TypeSourceInfo for it yet.
3048       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3049       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3050                                                 TemplateId->RAngleLoc);
3051       bool Invalid = false;
3052       if (TemplateId->LAngleLoc.isValid()) {
3053         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3054                                            TemplateId->NumArgs);
3055         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3056 
3057         if (D.getEllipsisLoc().isInvalid()) {
3058           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3059             if (S.DiagnoseUnexpandedParameterPack(Arg,
3060                                                   Sema::UPPC_TypeConstraint)) {
3061               Invalid = true;
3062               break;
3063             }
3064           }
3065         }
3066       }
3067       if (!Invalid) {
3068         UsingShadowDecl *USD =
3069             TemplateId->Template.get().getAsUsingShadowDecl();
3070         auto *CD =
3071             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3072         S.AttachTypeConstraint(
3073             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3074             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3075                                 TemplateId->TemplateNameLoc),
3076             CD,
3077             /*FoundDecl=*/
3078             USD ? cast<NamedDecl>(USD) : CD,
3079             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3080             InventedTemplateParam,
3081             S.Context.getTypeDeclType(InventedTemplateParam),
3082             D.getEllipsisLoc());
3083       }
3084     }
3085   }
3086 
3087   // Replace the 'auto' in the function parameter with this invented
3088   // template type parameter.
3089   // FIXME: Retain some type sugar to indicate that this was written
3090   //  as 'auto'?
3091   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3092   QualType NewT = state.ReplaceAutoType(T, Replacement);
3093   TypeSourceInfo *NewTSI =
3094       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3095                   : nullptr;
3096   return {NewT, NewTSI};
3097 }
3098 
3099 static TypeSourceInfo *
3100 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3101                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3102 
3103 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3104                                              TypeSourceInfo *&ReturnTypeInfo) {
3105   Sema &SemaRef = state.getSema();
3106   Declarator &D = state.getDeclarator();
3107   QualType T;
3108   ReturnTypeInfo = nullptr;
3109 
3110   // The TagDecl owned by the DeclSpec.
3111   TagDecl *OwnedTagDecl = nullptr;
3112 
3113   switch (D.getName().getKind()) {
3114   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3115   case UnqualifiedIdKind::IK_OperatorFunctionId:
3116   case UnqualifiedIdKind::IK_Identifier:
3117   case UnqualifiedIdKind::IK_LiteralOperatorId:
3118   case UnqualifiedIdKind::IK_TemplateId:
3119     T = ConvertDeclSpecToType(state);
3120 
3121     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3122       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3123       // Owned declaration is embedded in declarator.
3124       OwnedTagDecl->setEmbeddedInDeclarator(true);
3125     }
3126     break;
3127 
3128   case UnqualifiedIdKind::IK_ConstructorName:
3129   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3130   case UnqualifiedIdKind::IK_DestructorName:
3131     // Constructors and destructors don't have return types. Use
3132     // "void" instead.
3133     T = SemaRef.Context.VoidTy;
3134     processTypeAttrs(state, T, TAL_DeclSpec,
3135                      D.getMutableDeclSpec().getAttributes());
3136     break;
3137 
3138   case UnqualifiedIdKind::IK_DeductionGuideName:
3139     // Deduction guides have a trailing return type and no type in their
3140     // decl-specifier sequence. Use a placeholder return type for now.
3141     T = SemaRef.Context.DependentTy;
3142     break;
3143 
3144   case UnqualifiedIdKind::IK_ConversionFunctionId:
3145     // The result type of a conversion function is the type that it
3146     // converts to.
3147     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3148                                   &ReturnTypeInfo);
3149     break;
3150   }
3151 
3152   // Note: We don't need to distribute declaration attributes (i.e.
3153   // D.getDeclarationAttributes()) because those are always C++11 attributes,
3154   // and those don't get distributed.
3155   distributeTypeAttrsFromDeclarator(
3156       state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3157 
3158   // Find the deduced type in this type. Look in the trailing return type if we
3159   // have one, otherwise in the DeclSpec type.
3160   // FIXME: The standard wording doesn't currently describe this.
3161   DeducedType *Deduced = T->getContainedDeducedType();
3162   bool DeducedIsTrailingReturnType = false;
3163   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3164     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3165     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3166     DeducedIsTrailingReturnType = true;
3167   }
3168 
3169   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3170   if (Deduced) {
3171     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3172     int Error = -1;
3173 
3174     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3175     // class template argument deduction)?
3176     bool IsCXXAutoType =
3177         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3178     bool IsDeducedReturnType = false;
3179 
3180     switch (D.getContext()) {
3181     case DeclaratorContext::LambdaExpr:
3182       // Declared return type of a lambda-declarator is implicit and is always
3183       // 'auto'.
3184       break;
3185     case DeclaratorContext::ObjCParameter:
3186     case DeclaratorContext::ObjCResult:
3187       Error = 0;
3188       break;
3189     case DeclaratorContext::RequiresExpr:
3190       Error = 22;
3191       break;
3192     case DeclaratorContext::Prototype:
3193     case DeclaratorContext::LambdaExprParameter: {
3194       InventedTemplateParameterInfo *Info = nullptr;
3195       if (D.getContext() == DeclaratorContext::Prototype) {
3196         // With concepts we allow 'auto' in function parameters.
3197         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3198             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3199           Error = 0;
3200           break;
3201         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3202           Error = 21;
3203           break;
3204         }
3205 
3206         Info = &SemaRef.InventedParameterInfos.back();
3207       } else {
3208         // In C++14, generic lambdas allow 'auto' in their parameters.
3209         if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3210             Auto->getKeyword() == AutoTypeKeyword::Auto) {
3211           Error = 25; // auto not allowed in lambda parameter (before C++14)
3212           break;
3213         } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3214           Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3215                       // parameter
3216           break;
3217         }
3218         Info = SemaRef.getCurLambda();
3219         assert(Info && "No LambdaScopeInfo on the stack!");
3220       }
3221 
3222       // We'll deal with inventing template parameters for 'auto' in trailing
3223       // return types when we pick up the trailing return type when processing
3224       // the function chunk.
3225       if (!DeducedIsTrailingReturnType)
3226         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3227       break;
3228     }
3229     case DeclaratorContext::Member: {
3230       if (D.isStaticMember() || D.isFunctionDeclarator())
3231         break;
3232       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3233       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3234         Error = 6; // Interface member.
3235       } else {
3236         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3237         case TagTypeKind::Enum:
3238           llvm_unreachable("unhandled tag kind");
3239         case TagTypeKind::Struct:
3240           Error = Cxx ? 1 : 2; /* Struct member */
3241           break;
3242         case TagTypeKind::Union:
3243           Error = Cxx ? 3 : 4; /* Union member */
3244           break;
3245         case TagTypeKind::Class:
3246           Error = 5; /* Class member */
3247           break;
3248         case TagTypeKind::Interface:
3249           Error = 6; /* Interface member */
3250           break;
3251         }
3252       }
3253       if (D.getDeclSpec().isFriendSpecified())
3254         Error = 20; // Friend type
3255       break;
3256     }
3257     case DeclaratorContext::CXXCatch:
3258     case DeclaratorContext::ObjCCatch:
3259       Error = 7; // Exception declaration
3260       break;
3261     case DeclaratorContext::TemplateParam:
3262       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3263           !SemaRef.getLangOpts().CPlusPlus20)
3264         Error = 19; // Template parameter (until C++20)
3265       else if (!SemaRef.getLangOpts().CPlusPlus17)
3266         Error = 8; // Template parameter (until C++17)
3267       break;
3268     case DeclaratorContext::BlockLiteral:
3269       Error = 9; // Block literal
3270       break;
3271     case DeclaratorContext::TemplateArg:
3272       // Within a template argument list, a deduced template specialization
3273       // type will be reinterpreted as a template template argument.
3274       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3275           !D.getNumTypeObjects() &&
3276           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3277         break;
3278       [[fallthrough]];
3279     case DeclaratorContext::TemplateTypeArg:
3280       Error = 10; // Template type argument
3281       break;
3282     case DeclaratorContext::AliasDecl:
3283     case DeclaratorContext::AliasTemplate:
3284       Error = 12; // Type alias
3285       break;
3286     case DeclaratorContext::TrailingReturn:
3287     case DeclaratorContext::TrailingReturnVar:
3288       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3289         Error = 13; // Function return type
3290       IsDeducedReturnType = true;
3291       break;
3292     case DeclaratorContext::ConversionId:
3293       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3294         Error = 14; // conversion-type-id
3295       IsDeducedReturnType = true;
3296       break;
3297     case DeclaratorContext::FunctionalCast:
3298       if (isa<DeducedTemplateSpecializationType>(Deduced))
3299         break;
3300       if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3301           !Auto->isDecltypeAuto())
3302         break; // auto(x)
3303       [[fallthrough]];
3304     case DeclaratorContext::TypeName:
3305     case DeclaratorContext::Association:
3306       Error = 15; // Generic
3307       break;
3308     case DeclaratorContext::File:
3309     case DeclaratorContext::Block:
3310     case DeclaratorContext::ForInit:
3311     case DeclaratorContext::SelectionInit:
3312     case DeclaratorContext::Condition:
3313       // FIXME: P0091R3 (erroneously) does not permit class template argument
3314       // deduction in conditions, for-init-statements, and other declarations
3315       // that are not simple-declarations.
3316       break;
3317     case DeclaratorContext::CXXNew:
3318       // FIXME: P0091R3 does not permit class template argument deduction here,
3319       // but we follow GCC and allow it anyway.
3320       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3321         Error = 17; // 'new' type
3322       break;
3323     case DeclaratorContext::KNRTypeList:
3324       Error = 18; // K&R function parameter
3325       break;
3326     }
3327 
3328     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3329       Error = 11;
3330 
3331     // In Objective-C it is an error to use 'auto' on a function declarator
3332     // (and everywhere for '__auto_type').
3333     if (D.isFunctionDeclarator() &&
3334         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3335       Error = 13;
3336 
3337     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3338     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3339       AutoRange = D.getName().getSourceRange();
3340 
3341     if (Error != -1) {
3342       unsigned Kind;
3343       if (Auto) {
3344         switch (Auto->getKeyword()) {
3345         case AutoTypeKeyword::Auto: Kind = 0; break;
3346         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3347         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3348         }
3349       } else {
3350         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3351                "unknown auto type");
3352         Kind = 3;
3353       }
3354 
3355       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3356       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3357 
3358       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3359         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3360         << QualType(Deduced, 0) << AutoRange;
3361       if (auto *TD = TN.getAsTemplateDecl())
3362         SemaRef.NoteTemplateLocation(*TD);
3363 
3364       T = SemaRef.Context.IntTy;
3365       D.setInvalidType(true);
3366     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3367       // If there was a trailing return type, we already got
3368       // warn_cxx98_compat_trailing_return_type in the parser.
3369       SemaRef.Diag(AutoRange.getBegin(),
3370                    D.getContext() == DeclaratorContext::LambdaExprParameter
3371                        ? diag::warn_cxx11_compat_generic_lambda
3372                    : IsDeducedReturnType
3373                        ? diag::warn_cxx11_compat_deduced_return_type
3374                        : diag::warn_cxx98_compat_auto_type_specifier)
3375           << AutoRange;
3376     }
3377   }
3378 
3379   if (SemaRef.getLangOpts().CPlusPlus &&
3380       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3381     // Check the contexts where C++ forbids the declaration of a new class
3382     // or enumeration in a type-specifier-seq.
3383     unsigned DiagID = 0;
3384     switch (D.getContext()) {
3385     case DeclaratorContext::TrailingReturn:
3386     case DeclaratorContext::TrailingReturnVar:
3387       // Class and enumeration definitions are syntactically not allowed in
3388       // trailing return types.
3389       llvm_unreachable("parser should not have allowed this");
3390       break;
3391     case DeclaratorContext::File:
3392     case DeclaratorContext::Member:
3393     case DeclaratorContext::Block:
3394     case DeclaratorContext::ForInit:
3395     case DeclaratorContext::SelectionInit:
3396     case DeclaratorContext::BlockLiteral:
3397     case DeclaratorContext::LambdaExpr:
3398       // C++11 [dcl.type]p3:
3399       //   A type-specifier-seq shall not define a class or enumeration unless
3400       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3401       //   the declaration of a template-declaration.
3402     case DeclaratorContext::AliasDecl:
3403       break;
3404     case DeclaratorContext::AliasTemplate:
3405       DiagID = diag::err_type_defined_in_alias_template;
3406       break;
3407     case DeclaratorContext::TypeName:
3408     case DeclaratorContext::FunctionalCast:
3409     case DeclaratorContext::ConversionId:
3410     case DeclaratorContext::TemplateParam:
3411     case DeclaratorContext::CXXNew:
3412     case DeclaratorContext::CXXCatch:
3413     case DeclaratorContext::ObjCCatch:
3414     case DeclaratorContext::TemplateArg:
3415     case DeclaratorContext::TemplateTypeArg:
3416     case DeclaratorContext::Association:
3417       DiagID = diag::err_type_defined_in_type_specifier;
3418       break;
3419     case DeclaratorContext::Prototype:
3420     case DeclaratorContext::LambdaExprParameter:
3421     case DeclaratorContext::ObjCParameter:
3422     case DeclaratorContext::ObjCResult:
3423     case DeclaratorContext::KNRTypeList:
3424     case DeclaratorContext::RequiresExpr:
3425       // C++ [dcl.fct]p6:
3426       //   Types shall not be defined in return or parameter types.
3427       DiagID = diag::err_type_defined_in_param_type;
3428       break;
3429     case DeclaratorContext::Condition:
3430       // C++ 6.4p2:
3431       // The type-specifier-seq shall not contain typedef and shall not declare
3432       // a new class or enumeration.
3433       DiagID = diag::err_type_defined_in_condition;
3434       break;
3435     }
3436 
3437     if (DiagID != 0) {
3438       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3439           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3440       D.setInvalidType(true);
3441     }
3442   }
3443 
3444   assert(!T.isNull() && "This function should not return a null type");
3445   return T;
3446 }
3447 
3448 /// Produce an appropriate diagnostic for an ambiguity between a function
3449 /// declarator and a C++ direct-initializer.
3450 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3451                                        DeclaratorChunk &DeclType, QualType RT) {
3452   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3453   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3454 
3455   // If the return type is void there is no ambiguity.
3456   if (RT->isVoidType())
3457     return;
3458 
3459   // An initializer for a non-class type can have at most one argument.
3460   if (!RT->isRecordType() && FTI.NumParams > 1)
3461     return;
3462 
3463   // An initializer for a reference must have exactly one argument.
3464   if (RT->isReferenceType() && FTI.NumParams != 1)
3465     return;
3466 
3467   // Only warn if this declarator is declaring a function at block scope, and
3468   // doesn't have a storage class (such as 'extern') specified.
3469   if (!D.isFunctionDeclarator() ||
3470       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3471       !S.CurContext->isFunctionOrMethod() ||
3472       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3473     return;
3474 
3475   // Inside a condition, a direct initializer is not permitted. We allow one to
3476   // be parsed in order to give better diagnostics in condition parsing.
3477   if (D.getContext() == DeclaratorContext::Condition)
3478     return;
3479 
3480   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3481 
3482   S.Diag(DeclType.Loc,
3483          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3484                        : diag::warn_empty_parens_are_function_decl)
3485       << ParenRange;
3486 
3487   // If the declaration looks like:
3488   //   T var1,
3489   //   f();
3490   // and name lookup finds a function named 'f', then the ',' was
3491   // probably intended to be a ';'.
3492   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3493     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3494     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3495     if (Comma.getFileID() != Name.getFileID() ||
3496         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3497       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3498                           Sema::LookupOrdinaryName);
3499       if (S.LookupName(Result, S.getCurScope()))
3500         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3501           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3502           << D.getIdentifier();
3503       Result.suppressDiagnostics();
3504     }
3505   }
3506 
3507   if (FTI.NumParams > 0) {
3508     // For a declaration with parameters, eg. "T var(T());", suggest adding
3509     // parens around the first parameter to turn the declaration into a
3510     // variable declaration.
3511     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3512     SourceLocation B = Range.getBegin();
3513     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3514     // FIXME: Maybe we should suggest adding braces instead of parens
3515     // in C++11 for classes that don't have an initializer_list constructor.
3516     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3517       << FixItHint::CreateInsertion(B, "(")
3518       << FixItHint::CreateInsertion(E, ")");
3519   } else {
3520     // For a declaration without parameters, eg. "T var();", suggest replacing
3521     // the parens with an initializer to turn the declaration into a variable
3522     // declaration.
3523     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3524 
3525     // Empty parens mean value-initialization, and no parens mean
3526     // default initialization. These are equivalent if the default
3527     // constructor is user-provided or if zero-initialization is a
3528     // no-op.
3529     if (RD && RD->hasDefinition() &&
3530         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3531       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3532         << FixItHint::CreateRemoval(ParenRange);
3533     else {
3534       std::string Init =
3535           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3536       if (Init.empty() && S.LangOpts.CPlusPlus11)
3537         Init = "{}";
3538       if (!Init.empty())
3539         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3540           << FixItHint::CreateReplacement(ParenRange, Init);
3541     }
3542   }
3543 }
3544 
3545 /// Produce an appropriate diagnostic for a declarator with top-level
3546 /// parentheses.
3547 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3548   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3549   assert(Paren.Kind == DeclaratorChunk::Paren &&
3550          "do not have redundant top-level parentheses");
3551 
3552   // This is a syntactic check; we're not interested in cases that arise
3553   // during template instantiation.
3554   if (S.inTemplateInstantiation())
3555     return;
3556 
3557   // Check whether this could be intended to be a construction of a temporary
3558   // object in C++ via a function-style cast.
3559   bool CouldBeTemporaryObject =
3560       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3561       !D.isInvalidType() && D.getIdentifier() &&
3562       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3563       (T->isRecordType() || T->isDependentType()) &&
3564       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3565 
3566   bool StartsWithDeclaratorId = true;
3567   for (auto &C : D.type_objects()) {
3568     switch (C.Kind) {
3569     case DeclaratorChunk::Paren:
3570       if (&C == &Paren)
3571         continue;
3572       [[fallthrough]];
3573     case DeclaratorChunk::Pointer:
3574       StartsWithDeclaratorId = false;
3575       continue;
3576 
3577     case DeclaratorChunk::Array:
3578       if (!C.Arr.NumElts)
3579         CouldBeTemporaryObject = false;
3580       continue;
3581 
3582     case DeclaratorChunk::Reference:
3583       // FIXME: Suppress the warning here if there is no initializer; we're
3584       // going to give an error anyway.
3585       // We assume that something like 'T (&x) = y;' is highly likely to not
3586       // be intended to be a temporary object.
3587       CouldBeTemporaryObject = false;
3588       StartsWithDeclaratorId = false;
3589       continue;
3590 
3591     case DeclaratorChunk::Function:
3592       // In a new-type-id, function chunks require parentheses.
3593       if (D.getContext() == DeclaratorContext::CXXNew)
3594         return;
3595       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3596       // redundant-parens warning, but we don't know whether the function
3597       // chunk was syntactically valid as an expression here.
3598       CouldBeTemporaryObject = false;
3599       continue;
3600 
3601     case DeclaratorChunk::BlockPointer:
3602     case DeclaratorChunk::MemberPointer:
3603     case DeclaratorChunk::Pipe:
3604       // These cannot appear in expressions.
3605       CouldBeTemporaryObject = false;
3606       StartsWithDeclaratorId = false;
3607       continue;
3608     }
3609   }
3610 
3611   // FIXME: If there is an initializer, assume that this is not intended to be
3612   // a construction of a temporary object.
3613 
3614   // Check whether the name has already been declared; if not, this is not a
3615   // function-style cast.
3616   if (CouldBeTemporaryObject) {
3617     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3618                         Sema::LookupOrdinaryName);
3619     if (!S.LookupName(Result, S.getCurScope()))
3620       CouldBeTemporaryObject = false;
3621     Result.suppressDiagnostics();
3622   }
3623 
3624   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3625 
3626   if (!CouldBeTemporaryObject) {
3627     // If we have A (::B), the parentheses affect the meaning of the program.
3628     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3629     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3630     // formally unambiguous.
3631     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3632       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3633            NNS = NNS->getPrefix()) {
3634         if (NNS->getKind() == NestedNameSpecifier::Global)
3635           return;
3636       }
3637     }
3638 
3639     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3640         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3641         << FixItHint::CreateRemoval(Paren.EndLoc);
3642     return;
3643   }
3644 
3645   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3646       << ParenRange << D.getIdentifier();
3647   auto *RD = T->getAsCXXRecordDecl();
3648   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3649     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3650         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3651         << D.getIdentifier();
3652   // FIXME: A cast to void is probably a better suggestion in cases where it's
3653   // valid (when there is no initializer and we're not in a condition).
3654   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3655       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3656       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3657   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3658       << FixItHint::CreateRemoval(Paren.Loc)
3659       << FixItHint::CreateRemoval(Paren.EndLoc);
3660 }
3661 
3662 /// Helper for figuring out the default CC for a function declarator type.  If
3663 /// this is the outermost chunk, then we can determine the CC from the
3664 /// declarator context.  If not, then this could be either a member function
3665 /// type or normal function type.
3666 static CallingConv getCCForDeclaratorChunk(
3667     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3668     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3669   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3670 
3671   // Check for an explicit CC attribute.
3672   for (const ParsedAttr &AL : AttrList) {
3673     switch (AL.getKind()) {
3674     CALLING_CONV_ATTRS_CASELIST : {
3675       // Ignore attributes that don't validate or can't apply to the
3676       // function type.  We'll diagnose the failure to apply them in
3677       // handleFunctionTypeAttr.
3678       CallingConv CC;
3679       if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3680                                   S.CUDA().IdentifyTarget(D.getAttributes())) &&
3681           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3682         return CC;
3683       }
3684       break;
3685     }
3686 
3687     default:
3688       break;
3689     }
3690   }
3691 
3692   bool IsCXXInstanceMethod = false;
3693 
3694   if (S.getLangOpts().CPlusPlus) {
3695     // Look inwards through parentheses to see if this chunk will form a
3696     // member pointer type or if we're the declarator.  Any type attributes
3697     // between here and there will override the CC we choose here.
3698     unsigned I = ChunkIndex;
3699     bool FoundNonParen = false;
3700     while (I && !FoundNonParen) {
3701       --I;
3702       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3703         FoundNonParen = true;
3704     }
3705 
3706     if (FoundNonParen) {
3707       // If we're not the declarator, we're a regular function type unless we're
3708       // in a member pointer.
3709       IsCXXInstanceMethod =
3710           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3711     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3712       // This can only be a call operator for a lambda, which is an instance
3713       // method, unless explicitly specified as 'static'.
3714       IsCXXInstanceMethod =
3715           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3716     } else {
3717       // We're the innermost decl chunk, so must be a function declarator.
3718       assert(D.isFunctionDeclarator());
3719 
3720       // If we're inside a record, we're declaring a method, but it could be
3721       // explicitly or implicitly static.
3722       IsCXXInstanceMethod =
3723           D.isFirstDeclarationOfMember() &&
3724           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3725           !D.isStaticMember();
3726     }
3727   }
3728 
3729   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3730                                                          IsCXXInstanceMethod);
3731 
3732   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3733   // and AMDGPU targets, hence it cannot be treated as a calling
3734   // convention attribute. This is the simplest place to infer
3735   // calling convention for OpenCL kernels.
3736   if (S.getLangOpts().OpenCL) {
3737     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3738       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3739         CC = CC_OpenCLKernel;
3740         break;
3741       }
3742     }
3743   } else if (S.getLangOpts().CUDA) {
3744     // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make
3745     // sure the kernels will be marked with the right calling convention so that
3746     // they will be visible by the APIs that ingest SPIR-V. We do not do this
3747     // when targeting AMDGCNSPIRV, as it does not rely on OpenCL.
3748     llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3749     if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) {
3750       for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3751         if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3752           CC = CC_OpenCLKernel;
3753           break;
3754         }
3755       }
3756     }
3757   }
3758 
3759   return CC;
3760 }
3761 
3762 namespace {
3763   /// A simple notion of pointer kinds, which matches up with the various
3764   /// pointer declarators.
3765   enum class SimplePointerKind {
3766     Pointer,
3767     BlockPointer,
3768     MemberPointer,
3769     Array,
3770   };
3771 } // end anonymous namespace
3772 
3773 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3774   switch (nullability) {
3775   case NullabilityKind::NonNull:
3776     if (!Ident__Nonnull)
3777       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3778     return Ident__Nonnull;
3779 
3780   case NullabilityKind::Nullable:
3781     if (!Ident__Nullable)
3782       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3783     return Ident__Nullable;
3784 
3785   case NullabilityKind::NullableResult:
3786     if (!Ident__Nullable_result)
3787       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3788     return Ident__Nullable_result;
3789 
3790   case NullabilityKind::Unspecified:
3791     if (!Ident__Null_unspecified)
3792       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3793     return Ident__Null_unspecified;
3794   }
3795   llvm_unreachable("Unknown nullability kind.");
3796 }
3797 
3798 /// Check whether there is a nullability attribute of any kind in the given
3799 /// attribute list.
3800 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3801   for (const ParsedAttr &AL : attrs) {
3802     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3803         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3804         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3805         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3806       return true;
3807   }
3808 
3809   return false;
3810 }
3811 
3812 namespace {
3813   /// Describes the kind of a pointer a declarator describes.
3814   enum class PointerDeclaratorKind {
3815     // Not a pointer.
3816     NonPointer,
3817     // Single-level pointer.
3818     SingleLevelPointer,
3819     // Multi-level pointer (of any pointer kind).
3820     MultiLevelPointer,
3821     // CFFooRef*
3822     MaybePointerToCFRef,
3823     // CFErrorRef*
3824     CFErrorRefPointer,
3825     // NSError**
3826     NSErrorPointerPointer,
3827   };
3828 
3829   /// Describes a declarator chunk wrapping a pointer that marks inference as
3830   /// unexpected.
3831   // These values must be kept in sync with diagnostics.
3832   enum class PointerWrappingDeclaratorKind {
3833     /// Pointer is top-level.
3834     None = -1,
3835     /// Pointer is an array element.
3836     Array = 0,
3837     /// Pointer is the referent type of a C++ reference.
3838     Reference = 1
3839   };
3840 } // end anonymous namespace
3841 
3842 /// Classify the given declarator, whose type-specified is \c type, based on
3843 /// what kind of pointer it refers to.
3844 ///
3845 /// This is used to determine the default nullability.
3846 static PointerDeclaratorKind
3847 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3848                           PointerWrappingDeclaratorKind &wrappingKind) {
3849   unsigned numNormalPointers = 0;
3850 
3851   // For any dependent type, we consider it a non-pointer.
3852   if (type->isDependentType())
3853     return PointerDeclaratorKind::NonPointer;
3854 
3855   // Look through the declarator chunks to identify pointers.
3856   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3857     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3858     switch (chunk.Kind) {
3859     case DeclaratorChunk::Array:
3860       if (numNormalPointers == 0)
3861         wrappingKind = PointerWrappingDeclaratorKind::Array;
3862       break;
3863 
3864     case DeclaratorChunk::Function:
3865     case DeclaratorChunk::Pipe:
3866       break;
3867 
3868     case DeclaratorChunk::BlockPointer:
3869     case DeclaratorChunk::MemberPointer:
3870       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3871                                    : PointerDeclaratorKind::SingleLevelPointer;
3872 
3873     case DeclaratorChunk::Paren:
3874       break;
3875 
3876     case DeclaratorChunk::Reference:
3877       if (numNormalPointers == 0)
3878         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3879       break;
3880 
3881     case DeclaratorChunk::Pointer:
3882       ++numNormalPointers;
3883       if (numNormalPointers > 2)
3884         return PointerDeclaratorKind::MultiLevelPointer;
3885       break;
3886     }
3887   }
3888 
3889   // Then, dig into the type specifier itself.
3890   unsigned numTypeSpecifierPointers = 0;
3891   do {
3892     // Decompose normal pointers.
3893     if (auto ptrType = type->getAs<PointerType>()) {
3894       ++numNormalPointers;
3895 
3896       if (numNormalPointers > 2)
3897         return PointerDeclaratorKind::MultiLevelPointer;
3898 
3899       type = ptrType->getPointeeType();
3900       ++numTypeSpecifierPointers;
3901       continue;
3902     }
3903 
3904     // Decompose block pointers.
3905     if (type->getAs<BlockPointerType>()) {
3906       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3907                                    : PointerDeclaratorKind::SingleLevelPointer;
3908     }
3909 
3910     // Decompose member pointers.
3911     if (type->getAs<MemberPointerType>()) {
3912       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3913                                    : PointerDeclaratorKind::SingleLevelPointer;
3914     }
3915 
3916     // Look at Objective-C object pointers.
3917     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3918       ++numNormalPointers;
3919       ++numTypeSpecifierPointers;
3920 
3921       // If this is NSError**, report that.
3922       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3923         if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3924             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3925           return PointerDeclaratorKind::NSErrorPointerPointer;
3926         }
3927       }
3928 
3929       break;
3930     }
3931 
3932     // Look at Objective-C class types.
3933     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3934       if (objcClass->getInterface()->getIdentifier() ==
3935           S.ObjC().getNSErrorIdent()) {
3936         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3937           return PointerDeclaratorKind::NSErrorPointerPointer;
3938       }
3939 
3940       break;
3941     }
3942 
3943     // If at this point we haven't seen a pointer, we won't see one.
3944     if (numNormalPointers == 0)
3945       return PointerDeclaratorKind::NonPointer;
3946 
3947     if (auto recordType = type->getAs<RecordType>()) {
3948       RecordDecl *recordDecl = recordType->getDecl();
3949 
3950       // If this is CFErrorRef*, report it as such.
3951       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3952           S.ObjC().isCFError(recordDecl)) {
3953         return PointerDeclaratorKind::CFErrorRefPointer;
3954       }
3955       break;
3956     }
3957 
3958     break;
3959   } while (true);
3960 
3961   switch (numNormalPointers) {
3962   case 0:
3963     return PointerDeclaratorKind::NonPointer;
3964 
3965   case 1:
3966     return PointerDeclaratorKind::SingleLevelPointer;
3967 
3968   case 2:
3969     return PointerDeclaratorKind::MaybePointerToCFRef;
3970 
3971   default:
3972     return PointerDeclaratorKind::MultiLevelPointer;
3973   }
3974 }
3975 
3976 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3977                                                     SourceLocation loc) {
3978   // If we're anywhere in a function, method, or closure context, don't perform
3979   // completeness checks.
3980   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3981     if (ctx->isFunctionOrMethod())
3982       return FileID();
3983 
3984     if (ctx->isFileContext())
3985       break;
3986   }
3987 
3988   // We only care about the expansion location.
3989   loc = S.SourceMgr.getExpansionLoc(loc);
3990   FileID file = S.SourceMgr.getFileID(loc);
3991   if (file.isInvalid())
3992     return FileID();
3993 
3994   // Retrieve file information.
3995   bool invalid = false;
3996   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3997   if (invalid || !sloc.isFile())
3998     return FileID();
3999 
4000   // We don't want to perform completeness checks on the main file or in
4001   // system headers.
4002   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4003   if (fileInfo.getIncludeLoc().isInvalid())
4004     return FileID();
4005   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4006       S.Diags.getSuppressSystemWarnings()) {
4007     return FileID();
4008   }
4009 
4010   return file;
4011 }
4012 
4013 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4014 /// taking into account whitespace before and after.
4015 template <typename DiagBuilderT>
4016 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4017                              SourceLocation PointerLoc,
4018                              NullabilityKind Nullability) {
4019   assert(PointerLoc.isValid());
4020   if (PointerLoc.isMacroID())
4021     return;
4022 
4023   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4024   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4025     return;
4026 
4027   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4028   if (!NextChar)
4029     return;
4030 
4031   SmallString<32> InsertionTextBuf{" "};
4032   InsertionTextBuf += getNullabilitySpelling(Nullability);
4033   InsertionTextBuf += " ";
4034   StringRef InsertionText = InsertionTextBuf.str();
4035 
4036   if (isWhitespace(*NextChar)) {
4037     InsertionText = InsertionText.drop_back();
4038   } else if (NextChar[-1] == '[') {
4039     if (NextChar[0] == ']')
4040       InsertionText = InsertionText.drop_back().drop_front();
4041     else
4042       InsertionText = InsertionText.drop_front();
4043   } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4044              !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4045     InsertionText = InsertionText.drop_back().drop_front();
4046   }
4047 
4048   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4049 }
4050 
4051 static void emitNullabilityConsistencyWarning(Sema &S,
4052                                               SimplePointerKind PointerKind,
4053                                               SourceLocation PointerLoc,
4054                                               SourceLocation PointerEndLoc) {
4055   assert(PointerLoc.isValid());
4056 
4057   if (PointerKind == SimplePointerKind::Array) {
4058     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4059   } else {
4060     S.Diag(PointerLoc, diag::warn_nullability_missing)
4061       << static_cast<unsigned>(PointerKind);
4062   }
4063 
4064   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4065   if (FixItLoc.isMacroID())
4066     return;
4067 
4068   auto addFixIt = [&](NullabilityKind Nullability) {
4069     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4070     Diag << static_cast<unsigned>(Nullability);
4071     Diag << static_cast<unsigned>(PointerKind);
4072     fixItNullability(S, Diag, FixItLoc, Nullability);
4073   };
4074   addFixIt(NullabilityKind::Nullable);
4075   addFixIt(NullabilityKind::NonNull);
4076 }
4077 
4078 /// Complains about missing nullability if the file containing \p pointerLoc
4079 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4080 /// pragma).
4081 ///
4082 /// If the file has \e not seen other uses of nullability, this particular
4083 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4084 static void
4085 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4086                             SourceLocation pointerLoc,
4087                             SourceLocation pointerEndLoc = SourceLocation()) {
4088   // Determine which file we're performing consistency checking for.
4089   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4090   if (file.isInvalid())
4091     return;
4092 
4093   // If we haven't seen any type nullability in this file, we won't warn now
4094   // about anything.
4095   FileNullability &fileNullability = S.NullabilityMap[file];
4096   if (!fileNullability.SawTypeNullability) {
4097     // If this is the first pointer declarator in the file, and the appropriate
4098     // warning is on, record it in case we need to diagnose it retroactively.
4099     diag::kind diagKind;
4100     if (pointerKind == SimplePointerKind::Array)
4101       diagKind = diag::warn_nullability_missing_array;
4102     else
4103       diagKind = diag::warn_nullability_missing;
4104 
4105     if (fileNullability.PointerLoc.isInvalid() &&
4106         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4107       fileNullability.PointerLoc = pointerLoc;
4108       fileNullability.PointerEndLoc = pointerEndLoc;
4109       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4110     }
4111 
4112     return;
4113   }
4114 
4115   // Complain about missing nullability.
4116   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4117 }
4118 
4119 /// Marks that a nullability feature has been used in the file containing
4120 /// \p loc.
4121 ///
4122 /// If this file already had pointer types in it that were missing nullability,
4123 /// the first such instance is retroactively diagnosed.
4124 ///
4125 /// \sa checkNullabilityConsistency
4126 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4127   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4128   if (file.isInvalid())
4129     return;
4130 
4131   FileNullability &fileNullability = S.NullabilityMap[file];
4132   if (fileNullability.SawTypeNullability)
4133     return;
4134   fileNullability.SawTypeNullability = true;
4135 
4136   // If we haven't seen any type nullability before, now we have. Retroactively
4137   // diagnose the first unannotated pointer, if there was one.
4138   if (fileNullability.PointerLoc.isInvalid())
4139     return;
4140 
4141   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4142   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4143                                     fileNullability.PointerEndLoc);
4144 }
4145 
4146 /// Returns true if any of the declarator chunks before \p endIndex include a
4147 /// level of indirection: array, pointer, reference, or pointer-to-member.
4148 ///
4149 /// Because declarator chunks are stored in outer-to-inner order, testing
4150 /// every chunk before \p endIndex is testing all chunks that embed the current
4151 /// chunk as part of their type.
4152 ///
4153 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4154 /// end index, in which case all chunks are tested.
4155 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4156   unsigned i = endIndex;
4157   while (i != 0) {
4158     // Walk outwards along the declarator chunks.
4159     --i;
4160     const DeclaratorChunk &DC = D.getTypeObject(i);
4161     switch (DC.Kind) {
4162     case DeclaratorChunk::Paren:
4163       break;
4164     case DeclaratorChunk::Array:
4165     case DeclaratorChunk::Pointer:
4166     case DeclaratorChunk::Reference:
4167     case DeclaratorChunk::MemberPointer:
4168       return true;
4169     case DeclaratorChunk::Function:
4170     case DeclaratorChunk::BlockPointer:
4171     case DeclaratorChunk::Pipe:
4172       // These are invalid anyway, so just ignore.
4173       break;
4174     }
4175   }
4176   return false;
4177 }
4178 
4179 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4180   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4181           Chunk.Kind == DeclaratorChunk::Array);
4182 }
4183 
4184 template<typename AttrT>
4185 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4186   AL.setUsedAsTypeAttr();
4187   return ::new (Ctx) AttrT(Ctx, AL);
4188 }
4189 
4190 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4191                                    NullabilityKind NK) {
4192   switch (NK) {
4193   case NullabilityKind::NonNull:
4194     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4195 
4196   case NullabilityKind::Nullable:
4197     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4198 
4199   case NullabilityKind::NullableResult:
4200     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4201 
4202   case NullabilityKind::Unspecified:
4203     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4204   }
4205   llvm_unreachable("unknown NullabilityKind");
4206 }
4207 
4208 // Diagnose whether this is a case with the multiple addr spaces.
4209 // Returns true if this is an invalid case.
4210 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4211 // by qualifiers for two or more different address spaces."
4212 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4213                                                 LangAS ASNew,
4214                                                 SourceLocation AttrLoc) {
4215   if (ASOld != LangAS::Default) {
4216     if (ASOld != ASNew) {
4217       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4218       return true;
4219     }
4220     // Emit a warning if they are identical; it's likely unintended.
4221     S.Diag(AttrLoc,
4222            diag::warn_attribute_address_multiple_identical_qualifiers);
4223   }
4224   return false;
4225 }
4226 
4227 // Whether this is a type broadly expected to have nullability attached.
4228 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4229 // will be diagnosed with -Wnullability-completeness.
4230 static bool shouldHaveNullability(QualType T) {
4231   return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4232          // For now, do not infer/require nullability on C++ smart pointers.
4233          // It's unclear whether the pragma's behavior is useful for C++.
4234          // e.g. treating type-aliases and template-type-parameters differently
4235          // from types of declarations can be surprising.
4236          !isa<RecordType, TemplateSpecializationType>(
4237              T->getCanonicalTypeInternal());
4238 }
4239 
4240 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4241                                                 QualType declSpecType,
4242                                                 TypeSourceInfo *TInfo) {
4243   // The TypeSourceInfo that this function returns will not be a null type.
4244   // If there is an error, this function will fill in a dummy type as fallback.
4245   QualType T = declSpecType;
4246   Declarator &D = state.getDeclarator();
4247   Sema &S = state.getSema();
4248   ASTContext &Context = S.Context;
4249   const LangOptions &LangOpts = S.getLangOpts();
4250 
4251   // The name we're declaring, if any.
4252   DeclarationName Name;
4253   if (D.getIdentifier())
4254     Name = D.getIdentifier();
4255 
4256   // Does this declaration declare a typedef-name?
4257   bool IsTypedefName =
4258       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4259       D.getContext() == DeclaratorContext::AliasDecl ||
4260       D.getContext() == DeclaratorContext::AliasTemplate;
4261 
4262   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4263   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4264       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4265        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4266 
4267   // If T is 'decltype(auto)', the only declarators we can have are parens
4268   // and at most one function declarator if this is a function declaration.
4269   // If T is a deduced class template specialization type, we can have no
4270   // declarator chunks at all.
4271   if (auto *DT = T->getAs<DeducedType>()) {
4272     const AutoType *AT = T->getAs<AutoType>();
4273     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4274     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4275       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4276         unsigned Index = E - I - 1;
4277         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4278         unsigned DiagId = IsClassTemplateDeduction
4279                               ? diag::err_deduced_class_template_compound_type
4280                               : diag::err_decltype_auto_compound_type;
4281         unsigned DiagKind = 0;
4282         switch (DeclChunk.Kind) {
4283         case DeclaratorChunk::Paren:
4284           // FIXME: Rejecting this is a little silly.
4285           if (IsClassTemplateDeduction) {
4286             DiagKind = 4;
4287             break;
4288           }
4289           continue;
4290         case DeclaratorChunk::Function: {
4291           if (IsClassTemplateDeduction) {
4292             DiagKind = 3;
4293             break;
4294           }
4295           unsigned FnIndex;
4296           if (D.isFunctionDeclarationContext() &&
4297               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4298             continue;
4299           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4300           break;
4301         }
4302         case DeclaratorChunk::Pointer:
4303         case DeclaratorChunk::BlockPointer:
4304         case DeclaratorChunk::MemberPointer:
4305           DiagKind = 0;
4306           break;
4307         case DeclaratorChunk::Reference:
4308           DiagKind = 1;
4309           break;
4310         case DeclaratorChunk::Array:
4311           DiagKind = 2;
4312           break;
4313         case DeclaratorChunk::Pipe:
4314           break;
4315         }
4316 
4317         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4318         D.setInvalidType(true);
4319         break;
4320       }
4321     }
4322   }
4323 
4324   // Determine whether we should infer _Nonnull on pointer types.
4325   std::optional<NullabilityKind> inferNullability;
4326   bool inferNullabilityCS = false;
4327   bool inferNullabilityInnerOnly = false;
4328   bool inferNullabilityInnerOnlyComplete = false;
4329 
4330   // Are we in an assume-nonnull region?
4331   bool inAssumeNonNullRegion = false;
4332   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4333   if (assumeNonNullLoc.isValid()) {
4334     inAssumeNonNullRegion = true;
4335     recordNullabilitySeen(S, assumeNonNullLoc);
4336   }
4337 
4338   // Whether to complain about missing nullability specifiers or not.
4339   enum {
4340     /// Never complain.
4341     CAMN_No,
4342     /// Complain on the inner pointers (but not the outermost
4343     /// pointer).
4344     CAMN_InnerPointers,
4345     /// Complain about any pointers that don't have nullability
4346     /// specified or inferred.
4347     CAMN_Yes
4348   } complainAboutMissingNullability = CAMN_No;
4349   unsigned NumPointersRemaining = 0;
4350   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4351 
4352   if (IsTypedefName) {
4353     // For typedefs, we do not infer any nullability (the default),
4354     // and we only complain about missing nullability specifiers on
4355     // inner pointers.
4356     complainAboutMissingNullability = CAMN_InnerPointers;
4357 
4358     if (shouldHaveNullability(T) && !T->getNullability()) {
4359       // Note that we allow but don't require nullability on dependent types.
4360       ++NumPointersRemaining;
4361     }
4362 
4363     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4364       DeclaratorChunk &chunk = D.getTypeObject(i);
4365       switch (chunk.Kind) {
4366       case DeclaratorChunk::Array:
4367       case DeclaratorChunk::Function:
4368       case DeclaratorChunk::Pipe:
4369         break;
4370 
4371       case DeclaratorChunk::BlockPointer:
4372       case DeclaratorChunk::MemberPointer:
4373         ++NumPointersRemaining;
4374         break;
4375 
4376       case DeclaratorChunk::Paren:
4377       case DeclaratorChunk::Reference:
4378         continue;
4379 
4380       case DeclaratorChunk::Pointer:
4381         ++NumPointersRemaining;
4382         continue;
4383       }
4384     }
4385   } else {
4386     bool isFunctionOrMethod = false;
4387     switch (auto context = state.getDeclarator().getContext()) {
4388     case DeclaratorContext::ObjCParameter:
4389     case DeclaratorContext::ObjCResult:
4390     case DeclaratorContext::Prototype:
4391     case DeclaratorContext::TrailingReturn:
4392     case DeclaratorContext::TrailingReturnVar:
4393       isFunctionOrMethod = true;
4394       [[fallthrough]];
4395 
4396     case DeclaratorContext::Member:
4397       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4398         complainAboutMissingNullability = CAMN_No;
4399         break;
4400       }
4401 
4402       // Weak properties are inferred to be nullable.
4403       if (state.getDeclarator().isObjCWeakProperty()) {
4404         // Weak properties cannot be nonnull, and should not complain about
4405         // missing nullable attributes during completeness checks.
4406         complainAboutMissingNullability = CAMN_No;
4407         if (inAssumeNonNullRegion) {
4408           inferNullability = NullabilityKind::Nullable;
4409         }
4410         break;
4411       }
4412 
4413       [[fallthrough]];
4414 
4415     case DeclaratorContext::File:
4416     case DeclaratorContext::KNRTypeList: {
4417       complainAboutMissingNullability = CAMN_Yes;
4418 
4419       // Nullability inference depends on the type and declarator.
4420       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4421       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4422       case PointerDeclaratorKind::NonPointer:
4423       case PointerDeclaratorKind::MultiLevelPointer:
4424         // Cannot infer nullability.
4425         break;
4426 
4427       case PointerDeclaratorKind::SingleLevelPointer:
4428         // Infer _Nonnull if we are in an assumes-nonnull region.
4429         if (inAssumeNonNullRegion) {
4430           complainAboutInferringWithinChunk = wrappingKind;
4431           inferNullability = NullabilityKind::NonNull;
4432           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4433                                 context == DeclaratorContext::ObjCResult);
4434         }
4435         break;
4436 
4437       case PointerDeclaratorKind::CFErrorRefPointer:
4438       case PointerDeclaratorKind::NSErrorPointerPointer:
4439         // Within a function or method signature, infer _Nullable at both
4440         // levels.
4441         if (isFunctionOrMethod && inAssumeNonNullRegion)
4442           inferNullability = NullabilityKind::Nullable;
4443         break;
4444 
4445       case PointerDeclaratorKind::MaybePointerToCFRef:
4446         if (isFunctionOrMethod) {
4447           // On pointer-to-pointer parameters marked cf_returns_retained or
4448           // cf_returns_not_retained, if the outer pointer is explicit then
4449           // infer the inner pointer as _Nullable.
4450           auto hasCFReturnsAttr =
4451               [](const ParsedAttributesView &AttrList) -> bool {
4452             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4453                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4454           };
4455           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4456             if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4457                 hasCFReturnsAttr(D.getAttributes()) ||
4458                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4459                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4460               inferNullability = NullabilityKind::Nullable;
4461               inferNullabilityInnerOnly = true;
4462             }
4463           }
4464         }
4465         break;
4466       }
4467       break;
4468     }
4469 
4470     case DeclaratorContext::ConversionId:
4471       complainAboutMissingNullability = CAMN_Yes;
4472       break;
4473 
4474     case DeclaratorContext::AliasDecl:
4475     case DeclaratorContext::AliasTemplate:
4476     case DeclaratorContext::Block:
4477     case DeclaratorContext::BlockLiteral:
4478     case DeclaratorContext::Condition:
4479     case DeclaratorContext::CXXCatch:
4480     case DeclaratorContext::CXXNew:
4481     case DeclaratorContext::ForInit:
4482     case DeclaratorContext::SelectionInit:
4483     case DeclaratorContext::LambdaExpr:
4484     case DeclaratorContext::LambdaExprParameter:
4485     case DeclaratorContext::ObjCCatch:
4486     case DeclaratorContext::TemplateParam:
4487     case DeclaratorContext::TemplateArg:
4488     case DeclaratorContext::TemplateTypeArg:
4489     case DeclaratorContext::TypeName:
4490     case DeclaratorContext::FunctionalCast:
4491     case DeclaratorContext::RequiresExpr:
4492     case DeclaratorContext::Association:
4493       // Don't infer in these contexts.
4494       break;
4495     }
4496   }
4497 
4498   // Local function that returns true if its argument looks like a va_list.
4499   auto isVaList = [&S](QualType T) -> bool {
4500     auto *typedefTy = T->getAs<TypedefType>();
4501     if (!typedefTy)
4502       return false;
4503     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4504     do {
4505       if (typedefTy->getDecl() == vaListTypedef)
4506         return true;
4507       if (auto *name = typedefTy->getDecl()->getIdentifier())
4508         if (name->isStr("va_list"))
4509           return true;
4510       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4511     } while (typedefTy);
4512     return false;
4513   };
4514 
4515   // Local function that checks the nullability for a given pointer declarator.
4516   // Returns true if _Nonnull was inferred.
4517   auto inferPointerNullability =
4518       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4519           SourceLocation pointerEndLoc,
4520           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4521     // We've seen a pointer.
4522     if (NumPointersRemaining > 0)
4523       --NumPointersRemaining;
4524 
4525     // If a nullability attribute is present, there's nothing to do.
4526     if (hasNullabilityAttr(attrs))
4527       return nullptr;
4528 
4529     // If we're supposed to infer nullability, do so now.
4530     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4531       ParsedAttr::Form form =
4532           inferNullabilityCS
4533               ? ParsedAttr::Form::ContextSensitiveKeyword()
4534               : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4535                                           false /*IsRegularKeywordAttribute*/);
4536       ParsedAttr *nullabilityAttr = Pool.create(
4537           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4538           nullptr, SourceLocation(), nullptr, 0, form);
4539 
4540       attrs.addAtEnd(nullabilityAttr);
4541 
4542       if (inferNullabilityCS) {
4543         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4544           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4545       }
4546 
4547       if (pointerLoc.isValid() &&
4548           complainAboutInferringWithinChunk !=
4549             PointerWrappingDeclaratorKind::None) {
4550         auto Diag =
4551             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4552         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4553         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4554       }
4555 
4556       if (inferNullabilityInnerOnly)
4557         inferNullabilityInnerOnlyComplete = true;
4558       return nullabilityAttr;
4559     }
4560 
4561     // If we're supposed to complain about missing nullability, do so
4562     // now if it's truly missing.
4563     switch (complainAboutMissingNullability) {
4564     case CAMN_No:
4565       break;
4566 
4567     case CAMN_InnerPointers:
4568       if (NumPointersRemaining == 0)
4569         break;
4570       [[fallthrough]];
4571 
4572     case CAMN_Yes:
4573       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4574     }
4575     return nullptr;
4576   };
4577 
4578   // If the type itself could have nullability but does not, infer pointer
4579   // nullability and perform consistency checking.
4580   if (S.CodeSynthesisContexts.empty()) {
4581     if (shouldHaveNullability(T) && !T->getNullability()) {
4582       if (isVaList(T)) {
4583         // Record that we've seen a pointer, but do nothing else.
4584         if (NumPointersRemaining > 0)
4585           --NumPointersRemaining;
4586       } else {
4587         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4588         if (T->isBlockPointerType())
4589           pointerKind = SimplePointerKind::BlockPointer;
4590         else if (T->isMemberPointerType())
4591           pointerKind = SimplePointerKind::MemberPointer;
4592 
4593         if (auto *attr = inferPointerNullability(
4594                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4595                 D.getDeclSpec().getEndLoc(),
4596                 D.getMutableDeclSpec().getAttributes(),
4597                 D.getMutableDeclSpec().getAttributePool())) {
4598           T = state.getAttributedType(
4599               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4600         }
4601       }
4602     }
4603 
4604     if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4605         !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4606         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4607       checkNullabilityConsistency(S, SimplePointerKind::Array,
4608                                   D.getDeclSpec().getTypeSpecTypeLoc());
4609     }
4610   }
4611 
4612   bool ExpectNoDerefChunk =
4613       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4614 
4615   // Walk the DeclTypeInfo, building the recursive type as we go.
4616   // DeclTypeInfos are ordered from the identifier out, which is
4617   // opposite of what we want :).
4618 
4619   // Track if the produced type matches the structure of the declarator.
4620   // This is used later to decide if we can fill `TypeLoc` from
4621   // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4622   // an error by replacing the type with `int`.
4623   bool AreDeclaratorChunksValid = true;
4624   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4625     unsigned chunkIndex = e - i - 1;
4626     state.setCurrentChunkIndex(chunkIndex);
4627     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4628     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4629     switch (DeclType.Kind) {
4630     case DeclaratorChunk::Paren:
4631       if (i == 0)
4632         warnAboutRedundantParens(S, D, T);
4633       T = S.BuildParenType(T);
4634       break;
4635     case DeclaratorChunk::BlockPointer:
4636       // If blocks are disabled, emit an error.
4637       if (!LangOpts.Blocks)
4638         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4639 
4640       // Handle pointer nullability.
4641       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4642                               DeclType.EndLoc, DeclType.getAttrs(),
4643                               state.getDeclarator().getAttributePool());
4644 
4645       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4646       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4647         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4648         // qualified with const.
4649         if (LangOpts.OpenCL)
4650           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4651         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4652       }
4653       break;
4654     case DeclaratorChunk::Pointer:
4655       // Verify that we're not building a pointer to pointer to function with
4656       // exception specification.
4657       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4658         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4659         D.setInvalidType(true);
4660         // Build the type anyway.
4661       }
4662 
4663       // Handle pointer nullability
4664       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4665                               DeclType.EndLoc, DeclType.getAttrs(),
4666                               state.getDeclarator().getAttributePool());
4667 
4668       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4669         T = Context.getObjCObjectPointerType(T);
4670         if (DeclType.Ptr.TypeQuals)
4671           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4672         break;
4673       }
4674 
4675       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4676       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4677       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4678       if (LangOpts.OpenCL) {
4679         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4680             T->isBlockPointerType()) {
4681           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4682           D.setInvalidType(true);
4683         }
4684       }
4685 
4686       T = S.BuildPointerType(T, DeclType.Loc, Name);
4687       if (DeclType.Ptr.TypeQuals)
4688         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4689       break;
4690     case DeclaratorChunk::Reference: {
4691       // Verify that we're not building a reference to pointer to function with
4692       // exception specification.
4693       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4694         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4695         D.setInvalidType(true);
4696         // Build the type anyway.
4697       }
4698       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4699 
4700       if (DeclType.Ref.HasRestrict)
4701         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4702       break;
4703     }
4704     case DeclaratorChunk::Array: {
4705       // Verify that we're not building an array of pointers to function with
4706       // exception specification.
4707       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4708         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4709         D.setInvalidType(true);
4710         // Build the type anyway.
4711       }
4712       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4713       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4714       ArraySizeModifier ASM;
4715 
4716       // Microsoft property fields can have multiple sizeless array chunks
4717       // (i.e. int x[][][]). Skip all of these except one to avoid creating
4718       // bad incomplete array types.
4719       if (chunkIndex != 0 && !ArraySize &&
4720           D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4721         // This is a sizeless chunk. If the next is also, skip this one.
4722         DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4723         if (NextDeclType.Kind == DeclaratorChunk::Array &&
4724             !NextDeclType.Arr.NumElts)
4725           break;
4726       }
4727 
4728       if (ATI.isStar)
4729         ASM = ArraySizeModifier::Star;
4730       else if (ATI.hasStatic)
4731         ASM = ArraySizeModifier::Static;
4732       else
4733         ASM = ArraySizeModifier::Normal;
4734       if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4735         // FIXME: This check isn't quite right: it allows star in prototypes
4736         // for function definitions, and disallows some edge cases detailed
4737         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4738         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4739         ASM = ArraySizeModifier::Normal;
4740         D.setInvalidType(true);
4741       }
4742 
4743       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4744       // shall appear only in a declaration of a function parameter with an
4745       // array type, ...
4746       if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4747         if (!(D.isPrototypeContext() ||
4748               D.getContext() == DeclaratorContext::KNRTypeList)) {
4749           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4750               << (ASM == ArraySizeModifier::Static ? "'static'"
4751                                                    : "type qualifier");
4752           // Remove the 'static' and the type qualifiers.
4753           if (ASM == ArraySizeModifier::Static)
4754             ASM = ArraySizeModifier::Normal;
4755           ATI.TypeQuals = 0;
4756           D.setInvalidType(true);
4757         }
4758 
4759         // C99 6.7.5.2p1: ... and then only in the outermost array type
4760         // derivation.
4761         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4762           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4763               << (ASM == ArraySizeModifier::Static ? "'static'"
4764                                                    : "type qualifier");
4765           if (ASM == ArraySizeModifier::Static)
4766             ASM = ArraySizeModifier::Normal;
4767           ATI.TypeQuals = 0;
4768           D.setInvalidType(true);
4769         }
4770       }
4771 
4772       // Array parameters can be marked nullable as well, although it's not
4773       // necessary if they're marked 'static'.
4774       if (complainAboutMissingNullability == CAMN_Yes &&
4775           !hasNullabilityAttr(DeclType.getAttrs()) &&
4776           ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4777           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4778         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4779       }
4780 
4781       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4782                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4783       break;
4784     }
4785     case DeclaratorChunk::Function: {
4786       // If the function declarator has a prototype (i.e. it is not () and
4787       // does not have a K&R-style identifier list), then the arguments are part
4788       // of the type, otherwise the argument list is ().
4789       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4790       IsQualifiedFunction =
4791           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4792 
4793       // Check for auto functions and trailing return type and adjust the
4794       // return type accordingly.
4795       if (!D.isInvalidType()) {
4796         auto IsClassType = [&](CXXScopeSpec &SS) {
4797           // If there already was an problem with the scope, don’t issue another
4798           // error about the explicit object parameter.
4799           return SS.isInvalid() ||
4800                  isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4801         };
4802 
4803         // C++23 [dcl.fct]p6:
4804         //
4805         // An explicit-object-parameter-declaration is a parameter-declaration
4806         // with a this specifier. An explicit-object-parameter-declaration shall
4807         // appear only as the first parameter-declaration of a
4808         // parameter-declaration-list of one of:
4809         //
4810         // - a declaration of a member function or member function template
4811         //   ([class.mem]), or
4812         //
4813         // - an explicit instantiation ([temp.explicit]) or explicit
4814         //   specialization ([temp.expl.spec]) of a templated member function,
4815         //   or
4816         //
4817         // - a lambda-declarator [expr.prim.lambda].
4818         DeclaratorContext C = D.getContext();
4819         ParmVarDecl *First =
4820             FTI.NumParams
4821                 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4822                 : nullptr;
4823 
4824         bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4825         if (First && First->isExplicitObjectParameter() &&
4826             C != DeclaratorContext::LambdaExpr &&
4827 
4828             // Either not a member or nested declarator in a member.
4829             //
4830             // Note that e.g. 'static' or 'friend' declarations are accepted
4831             // here; we diagnose them later when we build the member function
4832             // because it's easier that way.
4833             (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4834 
4835             // Allow out-of-line definitions of member functions.
4836             !IsClassType(D.getCXXScopeSpec())) {
4837           if (IsFunctionDecl)
4838             S.Diag(First->getBeginLoc(),
4839                    diag::err_explicit_object_parameter_nonmember)
4840                 << /*non-member*/ 2 << /*function*/ 0
4841                 << First->getSourceRange();
4842           else
4843             S.Diag(First->getBeginLoc(),
4844                    diag::err_explicit_object_parameter_invalid)
4845                 << First->getSourceRange();
4846 
4847           D.setInvalidType();
4848           AreDeclaratorChunksValid = false;
4849         }
4850 
4851         // trailing-return-type is only required if we're declaring a function,
4852         // and not, for instance, a pointer to a function.
4853         if (D.getDeclSpec().hasAutoTypeSpec() &&
4854             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4855           if (!S.getLangOpts().CPlusPlus14) {
4856             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4857                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4858                        ? diag::err_auto_missing_trailing_return
4859                        : diag::err_deduced_return_type);
4860             T = Context.IntTy;
4861             D.setInvalidType(true);
4862             AreDeclaratorChunksValid = false;
4863           } else {
4864             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4865                    diag::warn_cxx11_compat_deduced_return_type);
4866           }
4867         } else if (FTI.hasTrailingReturnType()) {
4868           // T must be exactly 'auto' at this point. See CWG issue 681.
4869           if (isa<ParenType>(T)) {
4870             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4871                 << T << D.getSourceRange();
4872             D.setInvalidType(true);
4873             // FIXME: recover and fill decls in `TypeLoc`s.
4874             AreDeclaratorChunksValid = false;
4875           } else if (D.getName().getKind() ==
4876                      UnqualifiedIdKind::IK_DeductionGuideName) {
4877             if (T != Context.DependentTy) {
4878               S.Diag(D.getDeclSpec().getBeginLoc(),
4879                      diag::err_deduction_guide_with_complex_decl)
4880                   << D.getSourceRange();
4881               D.setInvalidType(true);
4882               // FIXME: recover and fill decls in `TypeLoc`s.
4883               AreDeclaratorChunksValid = false;
4884             }
4885           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4886                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4887                       cast<AutoType>(T)->getKeyword() !=
4888                           AutoTypeKeyword::Auto ||
4889                       cast<AutoType>(T)->isConstrained())) {
4890             // Attach a valid source location for diagnostics on functions with
4891             // trailing return types missing 'auto'. Attempt to get the location
4892             // from the declared type; if invalid, fall back to the trailing
4893             // return type's location.
4894             SourceLocation Loc = D.getDeclSpec().getTypeSpecTypeLoc();
4895             SourceRange SR = D.getDeclSpec().getSourceRange();
4896             if (Loc.isInvalid()) {
4897               Loc = FTI.getTrailingReturnTypeLoc();
4898               SR = D.getSourceRange();
4899             }
4900             S.Diag(Loc, diag::err_trailing_return_without_auto) << T << SR;
4901             D.setInvalidType(true);
4902             // FIXME: recover and fill decls in `TypeLoc`s.
4903             AreDeclaratorChunksValid = false;
4904           }
4905           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4906           if (T.isNull()) {
4907             // An error occurred parsing the trailing return type.
4908             T = Context.IntTy;
4909             D.setInvalidType(true);
4910           } else if (AutoType *Auto = T->getContainedAutoType()) {
4911             // If the trailing return type contains an `auto`, we may need to
4912             // invent a template parameter for it, for cases like
4913             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4914             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4915             if (D.getContext() == DeclaratorContext::Prototype)
4916               InventedParamInfo = &S.InventedParameterInfos.back();
4917             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4918               InventedParamInfo = S.getCurLambda();
4919             if (InventedParamInfo) {
4920               std::tie(T, TInfo) = InventTemplateParameter(
4921                   state, T, TInfo, Auto, *InventedParamInfo);
4922             }
4923           }
4924         } else {
4925           // This function type is not the type of the entity being declared,
4926           // so checking the 'auto' is not the responsibility of this chunk.
4927         }
4928       }
4929 
4930       // C99 6.7.5.3p1: The return type may not be a function or array type.
4931       // For conversion functions, we'll diagnose this particular error later.
4932       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4933           (D.getName().getKind() !=
4934            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4935         unsigned diagID = diag::err_func_returning_array_function;
4936         // Last processing chunk in block context means this function chunk
4937         // represents the block.
4938         if (chunkIndex == 0 &&
4939             D.getContext() == DeclaratorContext::BlockLiteral)
4940           diagID = diag::err_block_returning_array_function;
4941         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4942         T = Context.IntTy;
4943         D.setInvalidType(true);
4944         AreDeclaratorChunksValid = false;
4945       }
4946 
4947       // Do not allow returning half FP value.
4948       // FIXME: This really should be in BuildFunctionType.
4949       if (T->isHalfType()) {
4950         if (S.getLangOpts().OpenCL) {
4951           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4952                                                       S.getLangOpts())) {
4953             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4954                 << T << 0 /*pointer hint*/;
4955             D.setInvalidType(true);
4956           }
4957         } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4958                    !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4959           S.Diag(D.getIdentifierLoc(),
4960             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4961           D.setInvalidType(true);
4962         }
4963       }
4964 
4965       if (LangOpts.OpenCL) {
4966         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4967         // function.
4968         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4969             T->isPipeType()) {
4970           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4971               << T << 1 /*hint off*/;
4972           D.setInvalidType(true);
4973         }
4974         // OpenCL doesn't support variadic functions and blocks
4975         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4976         // We also allow here any toolchain reserved identifiers.
4977         if (FTI.isVariadic &&
4978             !S.getOpenCLOptions().isAvailableOption(
4979                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4980             !(D.getIdentifier() &&
4981               ((D.getIdentifier()->getName() == "printf" &&
4982                 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4983                D.getIdentifier()->getName().starts_with("__")))) {
4984           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4985           D.setInvalidType(true);
4986         }
4987       }
4988 
4989       // Methods cannot return interface types. All ObjC objects are
4990       // passed by reference.
4991       if (T->isObjCObjectType()) {
4992         SourceLocation DiagLoc, FixitLoc;
4993         if (TInfo) {
4994           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4995           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4996         } else {
4997           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4998           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4999         }
5000         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5001           << 0 << T
5002           << FixItHint::CreateInsertion(FixitLoc, "*");
5003 
5004         T = Context.getObjCObjectPointerType(T);
5005         if (TInfo) {
5006           TypeLocBuilder TLB;
5007           TLB.pushFullCopy(TInfo->getTypeLoc());
5008           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5009           TLoc.setStarLoc(FixitLoc);
5010           TInfo = TLB.getTypeSourceInfo(Context, T);
5011         } else {
5012           AreDeclaratorChunksValid = false;
5013         }
5014 
5015         D.setInvalidType(true);
5016       }
5017 
5018       // cv-qualifiers on return types are pointless except when the type is a
5019       // class type in C++.
5020       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5021           !(S.getLangOpts().CPlusPlus &&
5022             (T->isDependentType() || T->isRecordType()))) {
5023         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5024             D.getFunctionDefinitionKind() ==
5025                 FunctionDefinitionKind::Definition) {
5026           // [6.9.1/3] qualified void return is invalid on a C
5027           // function definition.  Apparently ok on declarations and
5028           // in C++ though (!)
5029           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5030         } else
5031           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5032 
5033         // C++2a [dcl.fct]p12:
5034         //   A volatile-qualified return type is deprecated
5035         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5036           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5037       }
5038 
5039       // Objective-C ARC ownership qualifiers are ignored on the function
5040       // return type (by type canonicalization). Complain if this attribute
5041       // was written here.
5042       if (T.getQualifiers().hasObjCLifetime()) {
5043         SourceLocation AttrLoc;
5044         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5045           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5046           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5047             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5048               AttrLoc = AL.getLoc();
5049               break;
5050             }
5051           }
5052         }
5053         if (AttrLoc.isInvalid()) {
5054           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5055             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5056               AttrLoc = AL.getLoc();
5057               break;
5058             }
5059           }
5060         }
5061 
5062         if (AttrLoc.isValid()) {
5063           // The ownership attributes are almost always written via
5064           // the predefined
5065           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5066           if (AttrLoc.isMacroID())
5067             AttrLoc =
5068                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5069 
5070           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5071             << T.getQualifiers().getObjCLifetime();
5072         }
5073       }
5074 
5075       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5076         // C++ [dcl.fct]p6:
5077         //   Types shall not be defined in return or parameter types.
5078         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5079         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5080           << Context.getTypeDeclType(Tag);
5081       }
5082 
5083       // Exception specs are not allowed in typedefs. Complain, but add it
5084       // anyway.
5085       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5086         S.Diag(FTI.getExceptionSpecLocBeg(),
5087                diag::err_exception_spec_in_typedef)
5088             << (D.getContext() == DeclaratorContext::AliasDecl ||
5089                 D.getContext() == DeclaratorContext::AliasTemplate);
5090 
5091       // If we see "T var();" or "T var(T());" at block scope, it is probably
5092       // an attempt to initialize a variable, not a function declaration.
5093       if (FTI.isAmbiguous)
5094         warnAboutAmbiguousFunction(S, D, DeclType, T);
5095 
5096       FunctionType::ExtInfo EI(
5097           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5098 
5099       // OpenCL disallows functions without a prototype, but it doesn't enforce
5100       // strict prototypes as in C23 because it allows a function definition to
5101       // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5102       if (!FTI.NumParams && !FTI.isVariadic &&
5103           !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5104         // Simple void foo(), where the incoming T is the result type.
5105         T = Context.getFunctionNoProtoType(T, EI);
5106       } else {
5107         // We allow a zero-parameter variadic function in C if the
5108         // function is marked with the "overloadable" attribute. Scan
5109         // for this attribute now. We also allow it in C23 per WG14 N2975.
5110         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5111           if (LangOpts.C23)
5112             S.Diag(FTI.getEllipsisLoc(),
5113                    diag::warn_c17_compat_ellipsis_only_parameter);
5114           else if (!D.getDeclarationAttributes().hasAttribute(
5115                        ParsedAttr::AT_Overloadable) &&
5116                    !D.getAttributes().hasAttribute(
5117                        ParsedAttr::AT_Overloadable) &&
5118                    !D.getDeclSpec().getAttributes().hasAttribute(
5119                        ParsedAttr::AT_Overloadable))
5120             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5121         }
5122 
5123         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5124           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5125           // definition.
5126           S.Diag(FTI.Params[0].IdentLoc,
5127                  diag::err_ident_list_in_fn_declaration);
5128           D.setInvalidType(true);
5129           // Recover by creating a K&R-style function type, if possible.
5130           T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5131                   ? Context.getFunctionNoProtoType(T, EI)
5132                   : Context.IntTy;
5133           AreDeclaratorChunksValid = false;
5134           break;
5135         }
5136 
5137         FunctionProtoType::ExtProtoInfo EPI;
5138         EPI.ExtInfo = EI;
5139         EPI.Variadic = FTI.isVariadic;
5140         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5141         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5142         EPI.TypeQuals.addCVRUQualifiers(
5143             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5144                                  : 0);
5145         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5146                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5147                     : RQ_RValue;
5148 
5149         // Otherwise, we have a function with a parameter list that is
5150         // potentially variadic.
5151         SmallVector<QualType, 16> ParamTys;
5152         ParamTys.reserve(FTI.NumParams);
5153 
5154         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5155           ExtParameterInfos(FTI.NumParams);
5156         bool HasAnyInterestingExtParameterInfos = false;
5157 
5158         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5159           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5160           QualType ParamTy = Param->getType();
5161           assert(!ParamTy.isNull() && "Couldn't parse type?");
5162 
5163           // Look for 'void'.  void is allowed only as a single parameter to a
5164           // function with no other parameters (C99 6.7.5.3p10).  We record
5165           // int(void) as a FunctionProtoType with an empty parameter list.
5166           if (ParamTy->isVoidType()) {
5167             // If this is something like 'float(int, void)', reject it.  'void'
5168             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5169             // have parameters of incomplete type.
5170             if (FTI.NumParams != 1 || FTI.isVariadic) {
5171               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5172               ParamTy = Context.IntTy;
5173               Param->setType(ParamTy);
5174             } else if (FTI.Params[i].Ident) {
5175               // Reject, but continue to parse 'int(void abc)'.
5176               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5177               ParamTy = Context.IntTy;
5178               Param->setType(ParamTy);
5179             } else {
5180               // Reject, but continue to parse 'float(const void)'.
5181               if (ParamTy.hasQualifiers())
5182                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5183 
5184               // Reject, but continue to parse 'float(this void)' as
5185               // 'float(void)'.
5186               if (Param->isExplicitObjectParameter()) {
5187                 S.Diag(Param->getLocation(),
5188                        diag::err_void_explicit_object_param);
5189                 Param->setExplicitObjectParameterLoc(SourceLocation());
5190               }
5191 
5192               // Do not add 'void' to the list.
5193               break;
5194             }
5195           } else if (ParamTy->isHalfType()) {
5196             // Disallow half FP parameters.
5197             // FIXME: This really should be in BuildFunctionType.
5198             if (S.getLangOpts().OpenCL) {
5199               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5200                                                           S.getLangOpts())) {
5201                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5202                     << ParamTy << 0;
5203                 D.setInvalidType();
5204                 Param->setInvalidDecl();
5205               }
5206             } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5207                        !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5208               S.Diag(Param->getLocation(),
5209                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5210               D.setInvalidType();
5211             }
5212           } else if (!FTI.hasPrototype) {
5213             if (Context.isPromotableIntegerType(ParamTy)) {
5214               ParamTy = Context.getPromotedIntegerType(ParamTy);
5215               Param->setKNRPromoted(true);
5216             } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5217               if (BTy->getKind() == BuiltinType::Float) {
5218                 ParamTy = Context.DoubleTy;
5219                 Param->setKNRPromoted(true);
5220               }
5221             }
5222           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5223             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5224             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5225                 << ParamTy << 1 /*hint off*/;
5226             D.setInvalidType();
5227           }
5228 
5229           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5230             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5231             HasAnyInterestingExtParameterInfos = true;
5232           }
5233 
5234           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5235             ExtParameterInfos[i] =
5236               ExtParameterInfos[i].withABI(attr->getABI());
5237             HasAnyInterestingExtParameterInfos = true;
5238           }
5239 
5240           if (Param->hasAttr<PassObjectSizeAttr>()) {
5241             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5242             HasAnyInterestingExtParameterInfos = true;
5243           }
5244 
5245           if (Param->hasAttr<NoEscapeAttr>()) {
5246             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5247             HasAnyInterestingExtParameterInfos = true;
5248           }
5249 
5250           ParamTys.push_back(ParamTy);
5251         }
5252 
5253         if (HasAnyInterestingExtParameterInfos) {
5254           EPI.ExtParameterInfos = ExtParameterInfos.data();
5255           checkExtParameterInfos(S, ParamTys, EPI,
5256               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5257         }
5258 
5259         SmallVector<QualType, 4> Exceptions;
5260         SmallVector<ParsedType, 2> DynamicExceptions;
5261         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5262         Expr *NoexceptExpr = nullptr;
5263 
5264         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5265           // FIXME: It's rather inefficient to have to split into two vectors
5266           // here.
5267           unsigned N = FTI.getNumExceptions();
5268           DynamicExceptions.reserve(N);
5269           DynamicExceptionRanges.reserve(N);
5270           for (unsigned I = 0; I != N; ++I) {
5271             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5272             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5273           }
5274         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5275           NoexceptExpr = FTI.NoexceptExpr;
5276         }
5277 
5278         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5279                                       FTI.getExceptionSpecType(),
5280                                       DynamicExceptions,
5281                                       DynamicExceptionRanges,
5282                                       NoexceptExpr,
5283                                       Exceptions,
5284                                       EPI.ExceptionSpec);
5285 
5286         // FIXME: Set address space from attrs for C++ mode here.
5287         // OpenCLCPlusPlus: A class member function has an address space.
5288         auto IsClassMember = [&]() {
5289           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5290                   state.getDeclarator()
5291                           .getCXXScopeSpec()
5292                           .getScopeRep()
5293                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5294                  state.getDeclarator().getContext() ==
5295                      DeclaratorContext::Member ||
5296                  state.getDeclarator().getContext() ==
5297                      DeclaratorContext::LambdaExpr;
5298         };
5299 
5300         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5301           LangAS ASIdx = LangAS::Default;
5302           // Take address space attr if any and mark as invalid to avoid adding
5303           // them later while creating QualType.
5304           if (FTI.MethodQualifiers)
5305             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5306               LangAS ASIdxNew = attr.asOpenCLLangAS();
5307               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5308                                                       attr.getLoc()))
5309                 D.setInvalidType(true);
5310               else
5311                 ASIdx = ASIdxNew;
5312             }
5313           // If a class member function's address space is not set, set it to
5314           // __generic.
5315           LangAS AS =
5316               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5317                                         : ASIdx);
5318           EPI.TypeQuals.addAddressSpace(AS);
5319         }
5320         T = Context.getFunctionType(T, ParamTys, EPI);
5321       }
5322       break;
5323     }
5324     case DeclaratorChunk::MemberPointer: {
5325       // The scope spec must refer to a class, or be dependent.
5326       CXXScopeSpec &SS = DeclType.Mem.Scope();
5327       QualType ClsType;
5328 
5329       // Handle pointer nullability.
5330       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5331                               DeclType.EndLoc, DeclType.getAttrs(),
5332                               state.getDeclarator().getAttributePool());
5333 
5334       if (SS.isInvalid()) {
5335         // Avoid emitting extra errors if we already errored on the scope.
5336         D.setInvalidType(true);
5337       } else if (S.isDependentScopeSpecifier(SS) ||
5338                  isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5339         NestedNameSpecifier *NNS = SS.getScopeRep();
5340         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5341         switch (NNS->getKind()) {
5342         case NestedNameSpecifier::Identifier:
5343           ClsType = Context.getDependentNameType(
5344               ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5345           break;
5346 
5347         case NestedNameSpecifier::Namespace:
5348         case NestedNameSpecifier::NamespaceAlias:
5349         case NestedNameSpecifier::Global:
5350         case NestedNameSpecifier::Super:
5351           llvm_unreachable("Nested-name-specifier must name a type");
5352 
5353         case NestedNameSpecifier::TypeSpec:
5354         case NestedNameSpecifier::TypeSpecWithTemplate:
5355           const Type *NNSType = NNS->getAsType();
5356           ClsType = QualType(NNSType, 0);
5357           // Note: if the NNS has a prefix and ClsType is a nondependent
5358           // TemplateSpecializationType or a RecordType, then the NNS prefix is
5359           // NOT included in ClsType; hence we wrap ClsType into an
5360           // ElaboratedType. NOTE: in particular, no wrap occurs if ClsType
5361           // already is an Elaborated, DependentName, or
5362           // DependentTemplateSpecialization.
5363           if (isa<DependentTemplateSpecializationType>(NNSType)) {
5364             // FIXME: Rebuild DependentTemplateSpecializationType, adding the
5365             // Prefix.
5366           } else if (isa<TemplateSpecializationType, RecordType>(NNSType)) {
5367             // Either the dependent case (TemplateSpecializationType), or the
5368             // non-dependent one (RecordType).
5369             ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5370                                                 NNSPrefix, ClsType);
5371           }
5372           break;
5373         }
5374       } else {
5375         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5376              diag::err_illegal_decl_mempointer_in_nonclass)
5377           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5378           << DeclType.Mem.Scope().getRange();
5379         D.setInvalidType(true);
5380       }
5381 
5382       if (!ClsType.isNull())
5383         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5384                                      D.getIdentifier());
5385       else
5386         AreDeclaratorChunksValid = false;
5387 
5388       if (T.isNull()) {
5389         T = Context.IntTy;
5390         D.setInvalidType(true);
5391         AreDeclaratorChunksValid = false;
5392       } else if (DeclType.Mem.TypeQuals) {
5393         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5394       }
5395       break;
5396     }
5397 
5398     case DeclaratorChunk::Pipe: {
5399       T = S.BuildReadPipeType(T, DeclType.Loc);
5400       processTypeAttrs(state, T, TAL_DeclSpec,
5401                        D.getMutableDeclSpec().getAttributes());
5402       break;
5403     }
5404     }
5405 
5406     if (T.isNull()) {
5407       D.setInvalidType(true);
5408       T = Context.IntTy;
5409       AreDeclaratorChunksValid = false;
5410     }
5411 
5412     // See if there are any attributes on this declarator chunk.
5413     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5414                      S.CUDA().IdentifyTarget(D.getAttributes()));
5415 
5416     if (DeclType.Kind != DeclaratorChunk::Paren) {
5417       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5418         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5419 
5420       ExpectNoDerefChunk = state.didParseNoDeref();
5421     }
5422   }
5423 
5424   if (ExpectNoDerefChunk)
5425     S.Diag(state.getDeclarator().getBeginLoc(),
5426            diag::warn_noderef_on_non_pointer_or_array);
5427 
5428   // GNU warning -Wstrict-prototypes
5429   //   Warn if a function declaration or definition is without a prototype.
5430   //   This warning is issued for all kinds of unprototyped function
5431   //   declarations (i.e. function type typedef, function pointer etc.)
5432   //   C99 6.7.5.3p14:
5433   //   The empty list in a function declarator that is not part of a definition
5434   //   of that function specifies that no information about the number or types
5435   //   of the parameters is supplied.
5436   // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5437   // function declarations whose behavior changes in C23.
5438   if (!LangOpts.requiresStrictPrototypes()) {
5439     bool IsBlock = false;
5440     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5441       switch (DeclType.Kind) {
5442       case DeclaratorChunk::BlockPointer:
5443         IsBlock = true;
5444         break;
5445       case DeclaratorChunk::Function: {
5446         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5447         // We suppress the warning when there's no LParen location, as this
5448         // indicates the declaration was an implicit declaration, which gets
5449         // warned about separately via -Wimplicit-function-declaration. We also
5450         // suppress the warning when we know the function has a prototype.
5451         if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5452             FTI.getLParenLoc().isValid())
5453           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5454               << IsBlock
5455               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5456         IsBlock = false;
5457         break;
5458       }
5459       default:
5460         break;
5461       }
5462     }
5463   }
5464 
5465   assert(!T.isNull() && "T must not be null after this point");
5466 
5467   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5468     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5469     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5470 
5471     // C++ 8.3.5p4:
5472     //   A cv-qualifier-seq shall only be part of the function type
5473     //   for a nonstatic member function, the function type to which a pointer
5474     //   to member refers, or the top-level function type of a function typedef
5475     //   declaration.
5476     //
5477     // Core issue 547 also allows cv-qualifiers on function types that are
5478     // top-level template type arguments.
5479     enum {
5480       NonMember,
5481       Member,
5482       ExplicitObjectMember,
5483       DeductionGuide
5484     } Kind = NonMember;
5485     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5486       Kind = DeductionGuide;
5487     else if (!D.getCXXScopeSpec().isSet()) {
5488       if ((D.getContext() == DeclaratorContext::Member ||
5489            D.getContext() == DeclaratorContext::LambdaExpr) &&
5490           !D.getDeclSpec().isFriendSpecified())
5491         Kind = Member;
5492     } else {
5493       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5494       if (!DC || DC->isRecord())
5495         Kind = Member;
5496     }
5497 
5498     if (Kind == Member) {
5499       unsigned I;
5500       if (D.isFunctionDeclarator(I)) {
5501         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5502         if (Chunk.Fun.NumParams) {
5503           auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5504           if (P && P->isExplicitObjectParameter())
5505             Kind = ExplicitObjectMember;
5506         }
5507       }
5508     }
5509 
5510     // C++11 [dcl.fct]p6 (w/DR1417):
5511     // An attempt to specify a function type with a cv-qualifier-seq or a
5512     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5513     //  - the function type for a non-static member function,
5514     //  - the function type to which a pointer to member refers,
5515     //  - the top-level function type of a function typedef declaration or
5516     //    alias-declaration,
5517     //  - the type-id in the default argument of a type-parameter, or
5518     //  - the type-id of a template-argument for a type-parameter
5519     //
5520     // C++23 [dcl.fct]p6 (P0847R7)
5521     // ... A member-declarator with an explicit-object-parameter-declaration
5522     // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5523     // declared static or virtual ...
5524     //
5525     // FIXME: Checking this here is insufficient. We accept-invalid on:
5526     //
5527     //   template<typename T> struct S { void f(T); };
5528     //   S<int() const> s;
5529     //
5530     // ... for instance.
5531     if (IsQualifiedFunction &&
5532         // Check for non-static member function and not and
5533         // explicit-object-parameter-declaration
5534         (Kind != Member || D.isExplicitObjectMemberFunction() ||
5535          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5536          (D.getContext() == clang::DeclaratorContext::Member &&
5537           D.isStaticMember())) &&
5538         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5539         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5540       SourceLocation Loc = D.getBeginLoc();
5541       SourceRange RemovalRange;
5542       unsigned I;
5543       if (D.isFunctionDeclarator(I)) {
5544         SmallVector<SourceLocation, 4> RemovalLocs;
5545         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5546         assert(Chunk.Kind == DeclaratorChunk::Function);
5547 
5548         if (Chunk.Fun.hasRefQualifier())
5549           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5550 
5551         if (Chunk.Fun.hasMethodTypeQualifiers())
5552           Chunk.Fun.MethodQualifiers->forEachQualifier(
5553               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5554                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5555 
5556         if (!RemovalLocs.empty()) {
5557           llvm::sort(RemovalLocs,
5558                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5559           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5560           Loc = RemovalLocs.front();
5561         }
5562       }
5563 
5564       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5565         << Kind << D.isFunctionDeclarator() << T
5566         << getFunctionQualifiersAsString(FnTy)
5567         << FixItHint::CreateRemoval(RemovalRange);
5568 
5569       // Strip the cv-qualifiers and ref-qualifiers from the type.
5570       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5571       EPI.TypeQuals.removeCVRQualifiers();
5572       EPI.RefQualifier = RQ_None;
5573 
5574       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5575                                   EPI);
5576       // Rebuild any parens around the identifier in the function type.
5577       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5578         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5579           break;
5580         T = S.BuildParenType(T);
5581       }
5582     }
5583   }
5584 
5585   // Apply any undistributed attributes from the declaration or declarator.
5586   ParsedAttributesView NonSlidingAttrs;
5587   for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5588     if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5589       NonSlidingAttrs.addAtEnd(&AL);
5590     }
5591   }
5592   processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5593   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5594 
5595   // Diagnose any ignored type attributes.
5596   state.diagnoseIgnoredTypeAttrs(T);
5597 
5598   // C++0x [dcl.constexpr]p9:
5599   //  A constexpr specifier used in an object declaration declares the object
5600   //  as const.
5601   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5602       T->isObjectType())
5603     T.addConst();
5604 
5605   // C++2a [dcl.fct]p4:
5606   //   A parameter with volatile-qualified type is deprecated
5607   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5608       (D.getContext() == DeclaratorContext::Prototype ||
5609        D.getContext() == DeclaratorContext::LambdaExprParameter))
5610     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5611 
5612   // If there was an ellipsis in the declarator, the declaration declares a
5613   // parameter pack whose type may be a pack expansion type.
5614   if (D.hasEllipsis()) {
5615     // C++0x [dcl.fct]p13:
5616     //   A declarator-id or abstract-declarator containing an ellipsis shall
5617     //   only be used in a parameter-declaration. Such a parameter-declaration
5618     //   is a parameter pack (14.5.3). [...]
5619     switch (D.getContext()) {
5620     case DeclaratorContext::Prototype:
5621     case DeclaratorContext::LambdaExprParameter:
5622     case DeclaratorContext::RequiresExpr:
5623       // C++0x [dcl.fct]p13:
5624       //   [...] When it is part of a parameter-declaration-clause, the
5625       //   parameter pack is a function parameter pack (14.5.3). The type T
5626       //   of the declarator-id of the function parameter pack shall contain
5627       //   a template parameter pack; each template parameter pack in T is
5628       //   expanded by the function parameter pack.
5629       //
5630       // We represent function parameter packs as function parameters whose
5631       // type is a pack expansion.
5632       if (!T->containsUnexpandedParameterPack() &&
5633           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5634         S.Diag(D.getEllipsisLoc(),
5635              diag::err_function_parameter_pack_without_parameter_packs)
5636           << T <<  D.getSourceRange();
5637         D.setEllipsisLoc(SourceLocation());
5638       } else {
5639         T = Context.getPackExpansionType(T, std::nullopt,
5640                                          /*ExpectPackInType=*/false);
5641       }
5642       break;
5643     case DeclaratorContext::TemplateParam:
5644       // C++0x [temp.param]p15:
5645       //   If a template-parameter is a [...] is a parameter-declaration that
5646       //   declares a parameter pack (8.3.5), then the template-parameter is a
5647       //   template parameter pack (14.5.3).
5648       //
5649       // Note: core issue 778 clarifies that, if there are any unexpanded
5650       // parameter packs in the type of the non-type template parameter, then
5651       // it expands those parameter packs.
5652       if (T->containsUnexpandedParameterPack())
5653         T = Context.getPackExpansionType(T, std::nullopt);
5654       else
5655         S.Diag(D.getEllipsisLoc(),
5656                LangOpts.CPlusPlus11
5657                  ? diag::warn_cxx98_compat_variadic_templates
5658                  : diag::ext_variadic_templates);
5659       break;
5660 
5661     case DeclaratorContext::File:
5662     case DeclaratorContext::KNRTypeList:
5663     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5664     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5665     case DeclaratorContext::TypeName:
5666     case DeclaratorContext::FunctionalCast:
5667     case DeclaratorContext::CXXNew:
5668     case DeclaratorContext::AliasDecl:
5669     case DeclaratorContext::AliasTemplate:
5670     case DeclaratorContext::Member:
5671     case DeclaratorContext::Block:
5672     case DeclaratorContext::ForInit:
5673     case DeclaratorContext::SelectionInit:
5674     case DeclaratorContext::Condition:
5675     case DeclaratorContext::CXXCatch:
5676     case DeclaratorContext::ObjCCatch:
5677     case DeclaratorContext::BlockLiteral:
5678     case DeclaratorContext::LambdaExpr:
5679     case DeclaratorContext::ConversionId:
5680     case DeclaratorContext::TrailingReturn:
5681     case DeclaratorContext::TrailingReturnVar:
5682     case DeclaratorContext::TemplateArg:
5683     case DeclaratorContext::TemplateTypeArg:
5684     case DeclaratorContext::Association:
5685       // FIXME: We may want to allow parameter packs in block-literal contexts
5686       // in the future.
5687       S.Diag(D.getEllipsisLoc(),
5688              diag::err_ellipsis_in_declarator_not_parameter);
5689       D.setEllipsisLoc(SourceLocation());
5690       break;
5691     }
5692   }
5693 
5694   assert(!T.isNull() && "T must not be null at the end of this function");
5695   if (!AreDeclaratorChunksValid)
5696     return Context.getTrivialTypeSourceInfo(T);
5697 
5698   if (state.didParseHLSLParamMod() && !T->isConstantArrayType())
5699     T = S.HLSL().getInoutParameterType(T);
5700   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5701 }
5702 
5703 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5704   // Determine the type of the declarator. Not all forms of declarator
5705   // have a type.
5706 
5707   TypeProcessingState state(*this, D);
5708 
5709   TypeSourceInfo *ReturnTypeInfo = nullptr;
5710   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5711   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5712     inferARCWriteback(state, T);
5713 
5714   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5715 }
5716 
5717 static void transferARCOwnershipToDeclSpec(Sema &S,
5718                                            QualType &declSpecTy,
5719                                            Qualifiers::ObjCLifetime ownership) {
5720   if (declSpecTy->isObjCRetainableType() &&
5721       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5722     Qualifiers qs;
5723     qs.addObjCLifetime(ownership);
5724     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5725   }
5726 }
5727 
5728 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5729                                             Qualifiers::ObjCLifetime ownership,
5730                                             unsigned chunkIndex) {
5731   Sema &S = state.getSema();
5732   Declarator &D = state.getDeclarator();
5733 
5734   // Look for an explicit lifetime attribute.
5735   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5736   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5737     return;
5738 
5739   const char *attrStr = nullptr;
5740   switch (ownership) {
5741   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5742   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5743   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5744   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5745   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5746   }
5747 
5748   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5749   Arg->Ident = &S.Context.Idents.get(attrStr);
5750   Arg->Loc = SourceLocation();
5751 
5752   ArgsUnion Args(Arg);
5753 
5754   // If there wasn't one, add one (with an invalid source location
5755   // so that we don't make an AttributedType for it).
5756   ParsedAttr *attr = D.getAttributePool().create(
5757       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5758       /*scope*/ nullptr, SourceLocation(),
5759       /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5760   chunk.getAttrs().addAtEnd(attr);
5761   // TODO: mark whether we did this inference?
5762 }
5763 
5764 /// Used for transferring ownership in casts resulting in l-values.
5765 static void transferARCOwnership(TypeProcessingState &state,
5766                                  QualType &declSpecTy,
5767                                  Qualifiers::ObjCLifetime ownership) {
5768   Sema &S = state.getSema();
5769   Declarator &D = state.getDeclarator();
5770 
5771   int inner = -1;
5772   bool hasIndirection = false;
5773   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5774     DeclaratorChunk &chunk = D.getTypeObject(i);
5775     switch (chunk.Kind) {
5776     case DeclaratorChunk::Paren:
5777       // Ignore parens.
5778       break;
5779 
5780     case DeclaratorChunk::Array:
5781     case DeclaratorChunk::Reference:
5782     case DeclaratorChunk::Pointer:
5783       if (inner != -1)
5784         hasIndirection = true;
5785       inner = i;
5786       break;
5787 
5788     case DeclaratorChunk::BlockPointer:
5789       if (inner != -1)
5790         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5791       return;
5792 
5793     case DeclaratorChunk::Function:
5794     case DeclaratorChunk::MemberPointer:
5795     case DeclaratorChunk::Pipe:
5796       return;
5797     }
5798   }
5799 
5800   if (inner == -1)
5801     return;
5802 
5803   DeclaratorChunk &chunk = D.getTypeObject(inner);
5804   if (chunk.Kind == DeclaratorChunk::Pointer) {
5805     if (declSpecTy->isObjCRetainableType())
5806       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5807     if (declSpecTy->isObjCObjectType() && hasIndirection)
5808       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5809   } else {
5810     assert(chunk.Kind == DeclaratorChunk::Array ||
5811            chunk.Kind == DeclaratorChunk::Reference);
5812     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5813   }
5814 }
5815 
5816 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5817   TypeProcessingState state(*this, D);
5818 
5819   TypeSourceInfo *ReturnTypeInfo = nullptr;
5820   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5821 
5822   if (getLangOpts().ObjC) {
5823     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5824     if (ownership != Qualifiers::OCL_None)
5825       transferARCOwnership(state, declSpecTy, ownership);
5826   }
5827 
5828   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5829 }
5830 
5831 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5832                                   TypeProcessingState &State) {
5833   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5834 }
5835 
5836 static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL,
5837                                               TypeProcessingState &State) {
5838   HLSLAttributedResourceLocInfo LocInfo =
5839       State.getSema().HLSL().TakeLocForHLSLAttribute(TL.getTypePtr());
5840   TL.setSourceRange(LocInfo.Range);
5841   TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo);
5842 }
5843 
5844 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5845                               const ParsedAttributesView &Attrs) {
5846   for (const ParsedAttr &AL : Attrs) {
5847     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5848       MTL.setAttrNameLoc(AL.getLoc());
5849       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5850       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5851       MTL.setAttrOperandParensRange(SourceRange());
5852       return;
5853     }
5854   }
5855 
5856   llvm_unreachable("no matrix_type attribute found at the expected location!");
5857 }
5858 
5859 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5860   SourceLocation Loc;
5861   switch (Chunk.Kind) {
5862   case DeclaratorChunk::Function:
5863   case DeclaratorChunk::Array:
5864   case DeclaratorChunk::Paren:
5865   case DeclaratorChunk::Pipe:
5866     llvm_unreachable("cannot be _Atomic qualified");
5867 
5868   case DeclaratorChunk::Pointer:
5869     Loc = Chunk.Ptr.AtomicQualLoc;
5870     break;
5871 
5872   case DeclaratorChunk::BlockPointer:
5873   case DeclaratorChunk::Reference:
5874   case DeclaratorChunk::MemberPointer:
5875     // FIXME: Provide a source location for the _Atomic keyword.
5876     break;
5877   }
5878 
5879   ATL.setKWLoc(Loc);
5880   ATL.setParensRange(SourceRange());
5881 }
5882 
5883 namespace {
5884   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5885     Sema &SemaRef;
5886     ASTContext &Context;
5887     TypeProcessingState &State;
5888     const DeclSpec &DS;
5889 
5890   public:
5891     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5892                       const DeclSpec &DS)
5893         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5894 
5895     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5896       Visit(TL.getModifiedLoc());
5897       fillAttributedTypeLoc(TL, State);
5898     }
5899     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5900       Visit(TL.getWrappedLoc());
5901     }
5902     void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) {
5903       Visit(TL.getWrappedLoc());
5904       fillHLSLAttributedResourceTypeLoc(TL, State);
5905     }
5906     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5907       Visit(TL.getInnerLoc());
5908       TL.setExpansionLoc(
5909           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5910     }
5911     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5912       Visit(TL.getUnqualifiedLoc());
5913     }
5914     // Allow to fill pointee's type locations, e.g.,
5915     //   int __attr * __attr * __attr *p;
5916     void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5917     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5918       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5919     }
5920     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5921       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5922       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5923       // addition field. What we have is good enough for display of location
5924       // of 'fixit' on interface name.
5925       TL.setNameEndLoc(DS.getEndLoc());
5926     }
5927     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5928       TypeSourceInfo *RepTInfo = nullptr;
5929       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5930       TL.copy(RepTInfo->getTypeLoc());
5931     }
5932     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5933       TypeSourceInfo *RepTInfo = nullptr;
5934       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5935       TL.copy(RepTInfo->getTypeLoc());
5936     }
5937     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5938       TypeSourceInfo *TInfo = nullptr;
5939       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5940 
5941       // If we got no declarator info from previous Sema routines,
5942       // just fill with the typespec loc.
5943       if (!TInfo) {
5944         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5945         return;
5946       }
5947 
5948       TypeLoc OldTL = TInfo->getTypeLoc();
5949       if (TInfo->getType()->getAs<ElaboratedType>()) {
5950         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5951         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5952             .castAs<TemplateSpecializationTypeLoc>();
5953         TL.copy(NamedTL);
5954       } else {
5955         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5956         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5957       }
5958 
5959     }
5960     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5961       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5962              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5963       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5964       TL.setParensRange(DS.getTypeofParensRange());
5965     }
5966     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5967       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5968              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5969       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5970       TL.setParensRange(DS.getTypeofParensRange());
5971       assert(DS.getRepAsType());
5972       TypeSourceInfo *TInfo = nullptr;
5973       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5974       TL.setUnmodifiedTInfo(TInfo);
5975     }
5976     void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5977       assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5978       TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5979       TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5980     }
5981     void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5982       assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5983       TL.setEllipsisLoc(DS.getEllipsisLoc());
5984     }
5985     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5986       assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5987       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5988       TL.setParensRange(DS.getTypeofParensRange());
5989       assert(DS.getRepAsType());
5990       TypeSourceInfo *TInfo = nullptr;
5991       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5992       TL.setUnderlyingTInfo(TInfo);
5993     }
5994     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5995       // By default, use the source location of the type specifier.
5996       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5997       if (TL.needsExtraLocalData()) {
5998         // Set info for the written builtin specifiers.
5999         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
6000         // Try to have a meaningful source location.
6001         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
6002           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
6003         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
6004           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
6005       }
6006     }
6007     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
6008       if (DS.getTypeSpecType() == TST_typename) {
6009         TypeSourceInfo *TInfo = nullptr;
6010         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6011         if (TInfo)
6012           if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
6013             TL.copy(ETL);
6014             return;
6015           }
6016       }
6017       const ElaboratedType *T = TL.getTypePtr();
6018       TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
6019                                      ? DS.getTypeSpecTypeLoc()
6020                                      : SourceLocation());
6021       const CXXScopeSpec& SS = DS.getTypeSpecScope();
6022       TL.setQualifierLoc(SS.getWithLocInContext(Context));
6023       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6024     }
6025     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6026       assert(DS.getTypeSpecType() == TST_typename);
6027       TypeSourceInfo *TInfo = nullptr;
6028       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6029       assert(TInfo);
6030       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6031     }
6032     void VisitDependentTemplateSpecializationTypeLoc(
6033                                  DependentTemplateSpecializationTypeLoc TL) {
6034       assert(DS.getTypeSpecType() == TST_typename);
6035       TypeSourceInfo *TInfo = nullptr;
6036       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6037       assert(TInfo);
6038       TL.copy(
6039           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6040     }
6041     void VisitAutoTypeLoc(AutoTypeLoc TL) {
6042       assert(DS.getTypeSpecType() == TST_auto ||
6043              DS.getTypeSpecType() == TST_decltype_auto ||
6044              DS.getTypeSpecType() == TST_auto_type ||
6045              DS.getTypeSpecType() == TST_unspecified);
6046       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6047       if (DS.getTypeSpecType() == TST_decltype_auto)
6048         TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6049       if (!DS.isConstrainedAuto())
6050         return;
6051       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6052       if (!TemplateId)
6053         return;
6054 
6055       NestedNameSpecifierLoc NNS =
6056           (DS.getTypeSpecScope().isNotEmpty()
6057                ? DS.getTypeSpecScope().getWithLocInContext(Context)
6058                : NestedNameSpecifierLoc());
6059       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6060                                                 TemplateId->RAngleLoc);
6061       if (TemplateId->NumArgs > 0) {
6062         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6063                                            TemplateId->NumArgs);
6064         SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6065       }
6066       DeclarationNameInfo DNI = DeclarationNameInfo(
6067           TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6068           TemplateId->TemplateNameLoc);
6069 
6070       NamedDecl *FoundDecl;
6071       if (auto TN = TemplateId->Template.get();
6072           UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
6073         FoundDecl = cast<NamedDecl>(USD);
6074       else
6075         FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
6076 
6077       auto *CR = ConceptReference::Create(
6078           Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
6079           /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
6080           ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
6081       TL.setConceptReference(CR);
6082     }
6083     void VisitTagTypeLoc(TagTypeLoc TL) {
6084       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6085     }
6086     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6087       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6088       // or an _Atomic qualifier.
6089       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6090         TL.setKWLoc(DS.getTypeSpecTypeLoc());
6091         TL.setParensRange(DS.getTypeofParensRange());
6092 
6093         TypeSourceInfo *TInfo = nullptr;
6094         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6095         assert(TInfo);
6096         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6097       } else {
6098         TL.setKWLoc(DS.getAtomicSpecLoc());
6099         // No parens, to indicate this was spelled as an _Atomic qualifier.
6100         TL.setParensRange(SourceRange());
6101         Visit(TL.getValueLoc());
6102       }
6103     }
6104 
6105     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6106       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6107 
6108       TypeSourceInfo *TInfo = nullptr;
6109       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6110       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6111     }
6112 
6113     void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6114       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6115     }
6116 
6117     void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6118       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6119     }
6120 
6121     void VisitTypeLoc(TypeLoc TL) {
6122       // FIXME: add other typespec types and change this to an assert.
6123       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6124     }
6125   };
6126 
6127   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6128     ASTContext &Context;
6129     TypeProcessingState &State;
6130     const DeclaratorChunk &Chunk;
6131 
6132   public:
6133     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6134                         const DeclaratorChunk &Chunk)
6135         : Context(Context), State(State), Chunk(Chunk) {}
6136 
6137     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6138       llvm_unreachable("qualified type locs not expected here!");
6139     }
6140     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6141       llvm_unreachable("decayed type locs not expected here!");
6142     }
6143     void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6144       llvm_unreachable("array parameter type locs not expected here!");
6145     }
6146 
6147     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6148       fillAttributedTypeLoc(TL, State);
6149     }
6150     void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6151       // nothing
6152     }
6153     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6154       // nothing
6155     }
6156     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6157       // nothing
6158     }
6159     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6160       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6161       TL.setCaretLoc(Chunk.Loc);
6162     }
6163     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6164       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6165       TL.setStarLoc(Chunk.Loc);
6166     }
6167     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6168       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6169       TL.setStarLoc(Chunk.Loc);
6170     }
6171     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6172       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6173       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6174       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6175 
6176       const Type* ClsTy = TL.getClass();
6177       QualType ClsQT = QualType(ClsTy, 0);
6178       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6179       // Now copy source location info into the type loc component.
6180       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6181       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6182       case NestedNameSpecifier::Identifier:
6183         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6184         {
6185           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6186           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6187           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6188           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6189         }
6190         break;
6191 
6192       case NestedNameSpecifier::TypeSpec:
6193       case NestedNameSpecifier::TypeSpecWithTemplate:
6194         if (isa<ElaboratedType>(ClsTy)) {
6195           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6196           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6197           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6198           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6199           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6200         } else {
6201           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6202         }
6203         break;
6204 
6205       case NestedNameSpecifier::Namespace:
6206       case NestedNameSpecifier::NamespaceAlias:
6207       case NestedNameSpecifier::Global:
6208       case NestedNameSpecifier::Super:
6209         llvm_unreachable("Nested-name-specifier must name a type");
6210       }
6211 
6212       // Finally fill in MemberPointerLocInfo fields.
6213       TL.setStarLoc(Chunk.Mem.StarLoc);
6214       TL.setClassTInfo(ClsTInfo);
6215     }
6216     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6217       assert(Chunk.Kind == DeclaratorChunk::Reference);
6218       // 'Amp' is misleading: this might have been originally
6219       /// spelled with AmpAmp.
6220       TL.setAmpLoc(Chunk.Loc);
6221     }
6222     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6223       assert(Chunk.Kind == DeclaratorChunk::Reference);
6224       assert(!Chunk.Ref.LValueRef);
6225       TL.setAmpAmpLoc(Chunk.Loc);
6226     }
6227     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6228       assert(Chunk.Kind == DeclaratorChunk::Array);
6229       TL.setLBracketLoc(Chunk.Loc);
6230       TL.setRBracketLoc(Chunk.EndLoc);
6231       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6232     }
6233     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6234       assert(Chunk.Kind == DeclaratorChunk::Function);
6235       TL.setLocalRangeBegin(Chunk.Loc);
6236       TL.setLocalRangeEnd(Chunk.EndLoc);
6237 
6238       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6239       TL.setLParenLoc(FTI.getLParenLoc());
6240       TL.setRParenLoc(FTI.getRParenLoc());
6241       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6242         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6243         TL.setParam(tpi++, Param);
6244       }
6245       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6246     }
6247     void VisitParenTypeLoc(ParenTypeLoc TL) {
6248       assert(Chunk.Kind == DeclaratorChunk::Paren);
6249       TL.setLParenLoc(Chunk.Loc);
6250       TL.setRParenLoc(Chunk.EndLoc);
6251     }
6252     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6253       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6254       TL.setKWLoc(Chunk.Loc);
6255     }
6256     void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6257       TL.setNameLoc(Chunk.Loc);
6258     }
6259     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6260       TL.setExpansionLoc(Chunk.Loc);
6261     }
6262     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6263     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6264       TL.setNameLoc(Chunk.Loc);
6265     }
6266     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6267       TL.setNameLoc(Chunk.Loc);
6268     }
6269     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6270       fillAtomicQualLoc(TL, Chunk);
6271     }
6272     void
6273     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6274       TL.setNameLoc(Chunk.Loc);
6275     }
6276     void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6277       fillMatrixTypeLoc(TL, Chunk.getAttrs());
6278     }
6279 
6280     void VisitTypeLoc(TypeLoc TL) {
6281       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6282     }
6283   };
6284 } // end anonymous namespace
6285 
6286 static void
6287 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6288                                  const ParsedAttributesView &Attrs) {
6289   for (const ParsedAttr &AL : Attrs) {
6290     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6291       DASTL.setAttrNameLoc(AL.getLoc());
6292       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6293       DASTL.setAttrOperandParensRange(SourceRange());
6294       return;
6295     }
6296   }
6297 
6298   llvm_unreachable(
6299       "no address_space attribute found at the expected location!");
6300 }
6301 
6302 /// Create and instantiate a TypeSourceInfo with type source information.
6303 ///
6304 /// \param T QualType referring to the type as written in source code.
6305 ///
6306 /// \param ReturnTypeInfo For declarators whose return type does not show
6307 /// up in the normal place in the declaration specifiers (such as a C++
6308 /// conversion function), this pointer will refer to a type source information
6309 /// for that return type.
6310 static TypeSourceInfo *
6311 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6312                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6313   Sema &S = State.getSema();
6314   Declarator &D = State.getDeclarator();
6315 
6316   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6317   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6318 
6319   // Handle parameter packs whose type is a pack expansion.
6320   if (isa<PackExpansionType>(T)) {
6321     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6322     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6323   }
6324 
6325   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6326     // Microsoft property fields can have multiple sizeless array chunks
6327     // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6328     if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6329         D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6330       continue;
6331 
6332     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6333     // declarator chunk.
6334     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6335       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6336       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6337     }
6338 
6339     bool HasDesugaredTypeLoc = true;
6340     while (HasDesugaredTypeLoc) {
6341       switch (CurrTL.getTypeLocClass()) {
6342       case TypeLoc::MacroQualified: {
6343         auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6344         TL.setExpansionLoc(
6345             State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6346         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6347         break;
6348       }
6349 
6350       case TypeLoc::Attributed: {
6351         auto TL = CurrTL.castAs<AttributedTypeLoc>();
6352         fillAttributedTypeLoc(TL, State);
6353         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6354         break;
6355       }
6356 
6357       case TypeLoc::Adjusted:
6358       case TypeLoc::BTFTagAttributed: {
6359         CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6360         break;
6361       }
6362 
6363       case TypeLoc::DependentAddressSpace: {
6364         auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6365         fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6366         CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6367         break;
6368       }
6369 
6370       default:
6371         HasDesugaredTypeLoc = false;
6372         break;
6373       }
6374     }
6375 
6376     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6377     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6378   }
6379 
6380   // If we have different source information for the return type, use
6381   // that.  This really only applies to C++ conversion functions.
6382   if (ReturnTypeInfo) {
6383     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6384     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6385     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6386   } else {
6387     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6388   }
6389 
6390   return TInfo;
6391 }
6392 
6393 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6394 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6395   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6396   // and Sema during declaration parsing. Try deallocating/caching them when
6397   // it's appropriate, instead of allocating them and keeping them around.
6398   LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6399                                                         alignof(LocInfoType));
6400   new (LocT) LocInfoType(T, TInfo);
6401   assert(LocT->getTypeClass() != T->getTypeClass() &&
6402          "LocInfoType's TypeClass conflicts with an existing Type class");
6403   return ParsedType::make(QualType(LocT, 0));
6404 }
6405 
6406 void LocInfoType::getAsStringInternal(std::string &Str,
6407                                       const PrintingPolicy &Policy) const {
6408   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6409          " was used directly instead of getting the QualType through"
6410          " GetTypeFromParser");
6411 }
6412 
6413 TypeResult Sema::ActOnTypeName(Declarator &D) {
6414   // C99 6.7.6: Type names have no identifier.  This is already validated by
6415   // the parser.
6416   assert(D.getIdentifier() == nullptr &&
6417          "Type name should have no identifier!");
6418 
6419   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6420   QualType T = TInfo->getType();
6421   if (D.isInvalidType())
6422     return true;
6423 
6424   // Make sure there are no unused decl attributes on the declarator.
6425   // We don't want to do this for ObjC parameters because we're going
6426   // to apply them to the actual parameter declaration.
6427   // Likewise, we don't want to do this for alias declarations, because
6428   // we are actually going to build a declaration from this eventually.
6429   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6430       D.getContext() != DeclaratorContext::AliasDecl &&
6431       D.getContext() != DeclaratorContext::AliasTemplate)
6432     checkUnusedDeclAttributes(D);
6433 
6434   if (getLangOpts().CPlusPlus) {
6435     // Check that there are no default arguments (C++ only).
6436     CheckExtraCXXDefaultArguments(D);
6437   }
6438 
6439   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6440     const AutoType *AT = TL.getTypePtr();
6441     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6442   }
6443   return CreateParsedType(T, TInfo);
6444 }
6445 
6446 //===----------------------------------------------------------------------===//
6447 // Type Attribute Processing
6448 //===----------------------------------------------------------------------===//
6449 
6450 /// Build an AddressSpace index from a constant expression and diagnose any
6451 /// errors related to invalid address_spaces. Returns true on successfully
6452 /// building an AddressSpace index.
6453 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6454                                    const Expr *AddrSpace,
6455                                    SourceLocation AttrLoc) {
6456   if (!AddrSpace->isValueDependent()) {
6457     std::optional<llvm::APSInt> OptAddrSpace =
6458         AddrSpace->getIntegerConstantExpr(S.Context);
6459     if (!OptAddrSpace) {
6460       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6461           << "'address_space'" << AANT_ArgumentIntegerConstant
6462           << AddrSpace->getSourceRange();
6463       return false;
6464     }
6465     llvm::APSInt &addrSpace = *OptAddrSpace;
6466 
6467     // Bounds checking.
6468     if (addrSpace.isSigned()) {
6469       if (addrSpace.isNegative()) {
6470         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6471             << AddrSpace->getSourceRange();
6472         return false;
6473       }
6474       addrSpace.setIsSigned(false);
6475     }
6476 
6477     llvm::APSInt max(addrSpace.getBitWidth());
6478     max =
6479         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6480 
6481     if (addrSpace > max) {
6482       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6483           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6484       return false;
6485     }
6486 
6487     ASIdx =
6488         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6489     return true;
6490   }
6491 
6492   // Default value for DependentAddressSpaceTypes
6493   ASIdx = LangAS::Default;
6494   return true;
6495 }
6496 
6497 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6498                                      SourceLocation AttrLoc) {
6499   if (!AddrSpace->isValueDependent()) {
6500     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6501                                             AttrLoc))
6502       return QualType();
6503 
6504     return Context.getAddrSpaceQualType(T, ASIdx);
6505   }
6506 
6507   // A check with similar intentions as checking if a type already has an
6508   // address space except for on a dependent types, basically if the
6509   // current type is already a DependentAddressSpaceType then its already
6510   // lined up to have another address space on it and we can't have
6511   // multiple address spaces on the one pointer indirection
6512   if (T->getAs<DependentAddressSpaceType>()) {
6513     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6514     return QualType();
6515   }
6516 
6517   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6518 }
6519 
6520 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6521                                      SourceLocation AttrLoc) {
6522   LangAS ASIdx;
6523   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6524     return QualType();
6525   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6526 }
6527 
6528 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6529                                       TypeProcessingState &State) {
6530   Sema &S = State.getSema();
6531 
6532   // This attribute is only supported in C.
6533   // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp
6534   // such that it handles type attributes, and then call that from
6535   // processTypeAttrs() instead of one-off checks like this.
6536   if (!Attr.diagnoseLangOpts(S)) {
6537     Attr.setInvalid();
6538     return;
6539   }
6540 
6541   // Check the number of attribute arguments.
6542   if (Attr.getNumArgs() != 1) {
6543     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6544         << Attr << 1;
6545     Attr.setInvalid();
6546     return;
6547   }
6548 
6549   // Ensure the argument is a string.
6550   auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6551   if (!StrLiteral) {
6552     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6553         << Attr << AANT_ArgumentString;
6554     Attr.setInvalid();
6555     return;
6556   }
6557 
6558   ASTContext &Ctx = S.Context;
6559   StringRef BTFTypeTag = StrLiteral->getString();
6560   Type = State.getBTFTagAttributedType(
6561       ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6562 }
6563 
6564 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6565 /// specified type.  The attribute contains 1 argument, the id of the address
6566 /// space for the type.
6567 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6568                                             const ParsedAttr &Attr,
6569                                             TypeProcessingState &State) {
6570   Sema &S = State.getSema();
6571 
6572   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6573   // qualified by an address-space qualifier."
6574   if (Type->isFunctionType()) {
6575     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6576     Attr.setInvalid();
6577     return;
6578   }
6579 
6580   LangAS ASIdx;
6581   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6582 
6583     // Check the attribute arguments.
6584     if (Attr.getNumArgs() != 1) {
6585       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6586                                                                         << 1;
6587       Attr.setInvalid();
6588       return;
6589     }
6590 
6591     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6592     LangAS ASIdx;
6593     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6594       Attr.setInvalid();
6595       return;
6596     }
6597 
6598     ASTContext &Ctx = S.Context;
6599     auto *ASAttr =
6600         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6601 
6602     // If the expression is not value dependent (not templated), then we can
6603     // apply the address space qualifiers just to the equivalent type.
6604     // Otherwise, we make an AttributedType with the modified and equivalent
6605     // type the same, and wrap it in a DependentAddressSpaceType. When this
6606     // dependent type is resolved, the qualifier is added to the equivalent type
6607     // later.
6608     QualType T;
6609     if (!ASArgExpr->isValueDependent()) {
6610       QualType EquivType =
6611           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6612       if (EquivType.isNull()) {
6613         Attr.setInvalid();
6614         return;
6615       }
6616       T = State.getAttributedType(ASAttr, Type, EquivType);
6617     } else {
6618       T = State.getAttributedType(ASAttr, Type, Type);
6619       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6620     }
6621 
6622     if (!T.isNull())
6623       Type = T;
6624     else
6625       Attr.setInvalid();
6626   } else {
6627     // The keyword-based type attributes imply which address space to use.
6628     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6629                                          : Attr.asOpenCLLangAS();
6630     if (S.getLangOpts().HLSL)
6631       ASIdx = Attr.asHLSLLangAS();
6632 
6633     if (ASIdx == LangAS::Default)
6634       llvm_unreachable("Invalid address space");
6635 
6636     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6637                                             Attr.getLoc())) {
6638       Attr.setInvalid();
6639       return;
6640     }
6641 
6642     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6643   }
6644 }
6645 
6646 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6647 /// attribute on the specified type.
6648 ///
6649 /// Returns 'true' if the attribute was handled.
6650 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6651                                         ParsedAttr &attr, QualType &type) {
6652   bool NonObjCPointer = false;
6653 
6654   if (!type->isDependentType() && !type->isUndeducedType()) {
6655     if (const PointerType *ptr = type->getAs<PointerType>()) {
6656       QualType pointee = ptr->getPointeeType();
6657       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6658         return false;
6659       // It is important not to lose the source info that there was an attribute
6660       // applied to non-objc pointer. We will create an attributed type but
6661       // its type will be the same as the original type.
6662       NonObjCPointer = true;
6663     } else if (!type->isObjCRetainableType()) {
6664       return false;
6665     }
6666 
6667     // Don't accept an ownership attribute in the declspec if it would
6668     // just be the return type of a block pointer.
6669     if (state.isProcessingDeclSpec()) {
6670       Declarator &D = state.getDeclarator();
6671       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6672                                   /*onlyBlockPointers=*/true))
6673         return false;
6674     }
6675   }
6676 
6677   Sema &S = state.getSema();
6678   SourceLocation AttrLoc = attr.getLoc();
6679   if (AttrLoc.isMacroID())
6680     AttrLoc =
6681         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6682 
6683   if (!attr.isArgIdent(0)) {
6684     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6685                                                        << AANT_ArgumentString;
6686     attr.setInvalid();
6687     return true;
6688   }
6689 
6690   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6691   Qualifiers::ObjCLifetime lifetime;
6692   if (II->isStr("none"))
6693     lifetime = Qualifiers::OCL_ExplicitNone;
6694   else if (II->isStr("strong"))
6695     lifetime = Qualifiers::OCL_Strong;
6696   else if (II->isStr("weak"))
6697     lifetime = Qualifiers::OCL_Weak;
6698   else if (II->isStr("autoreleasing"))
6699     lifetime = Qualifiers::OCL_Autoreleasing;
6700   else {
6701     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6702     attr.setInvalid();
6703     return true;
6704   }
6705 
6706   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6707   // outside of ARC mode.
6708   if (!S.getLangOpts().ObjCAutoRefCount &&
6709       lifetime != Qualifiers::OCL_Weak &&
6710       lifetime != Qualifiers::OCL_ExplicitNone) {
6711     return true;
6712   }
6713 
6714   SplitQualType underlyingType = type.split();
6715 
6716   // Check for redundant/conflicting ownership qualifiers.
6717   if (Qualifiers::ObjCLifetime previousLifetime
6718         = type.getQualifiers().getObjCLifetime()) {
6719     // If it's written directly, that's an error.
6720     if (S.Context.hasDirectOwnershipQualifier(type)) {
6721       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6722         << type;
6723       return true;
6724     }
6725 
6726     // Otherwise, if the qualifiers actually conflict, pull sugar off
6727     // and remove the ObjCLifetime qualifiers.
6728     if (previousLifetime != lifetime) {
6729       // It's possible to have multiple local ObjCLifetime qualifiers. We
6730       // can't stop after we reach a type that is directly qualified.
6731       const Type *prevTy = nullptr;
6732       while (!prevTy || prevTy != underlyingType.Ty) {
6733         prevTy = underlyingType.Ty;
6734         underlyingType = underlyingType.getSingleStepDesugaredType();
6735       }
6736       underlyingType.Quals.removeObjCLifetime();
6737     }
6738   }
6739 
6740   underlyingType.Quals.addObjCLifetime(lifetime);
6741 
6742   if (NonObjCPointer) {
6743     StringRef name = attr.getAttrName()->getName();
6744     switch (lifetime) {
6745     case Qualifiers::OCL_None:
6746     case Qualifiers::OCL_ExplicitNone:
6747       break;
6748     case Qualifiers::OCL_Strong: name = "__strong"; break;
6749     case Qualifiers::OCL_Weak: name = "__weak"; break;
6750     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6751     }
6752     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6753       << TDS_ObjCObjOrBlock << type;
6754   }
6755 
6756   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6757   // because having both 'T' and '__unsafe_unretained T' exist in the type
6758   // system causes unfortunate widespread consistency problems.  (For example,
6759   // they're not considered compatible types, and we mangle them identicially
6760   // as template arguments.)  These problems are all individually fixable,
6761   // but it's easier to just not add the qualifier and instead sniff it out
6762   // in specific places using isObjCInertUnsafeUnretainedType().
6763   //
6764   // Doing this does means we miss some trivial consistency checks that
6765   // would've triggered in ARC, but that's better than trying to solve all
6766   // the coexistence problems with __unsafe_unretained.
6767   if (!S.getLangOpts().ObjCAutoRefCount &&
6768       lifetime == Qualifiers::OCL_ExplicitNone) {
6769     type = state.getAttributedType(
6770         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6771         type, type);
6772     return true;
6773   }
6774 
6775   QualType origType = type;
6776   if (!NonObjCPointer)
6777     type = S.Context.getQualifiedType(underlyingType);
6778 
6779   // If we have a valid source location for the attribute, use an
6780   // AttributedType instead.
6781   if (AttrLoc.isValid()) {
6782     type = state.getAttributedType(::new (S.Context)
6783                                        ObjCOwnershipAttr(S.Context, attr, II),
6784                                    origType, type);
6785   }
6786 
6787   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6788                             unsigned diagnostic, QualType type) {
6789     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6790       S.DelayedDiagnostics.add(
6791           sema::DelayedDiagnostic::makeForbiddenType(
6792               S.getSourceManager().getExpansionLoc(loc),
6793               diagnostic, type, /*ignored*/ 0));
6794     } else {
6795       S.Diag(loc, diagnostic);
6796     }
6797   };
6798 
6799   // Sometimes, __weak isn't allowed.
6800   if (lifetime == Qualifiers::OCL_Weak &&
6801       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6802 
6803     // Use a specialized diagnostic if the runtime just doesn't support them.
6804     unsigned diagnostic =
6805       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6806                                        : diag::err_arc_weak_no_runtime);
6807 
6808     // In any case, delay the diagnostic until we know what we're parsing.
6809     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6810 
6811     attr.setInvalid();
6812     return true;
6813   }
6814 
6815   // Forbid __weak for class objects marked as
6816   // objc_arc_weak_reference_unavailable
6817   if (lifetime == Qualifiers::OCL_Weak) {
6818     if (const ObjCObjectPointerType *ObjT =
6819           type->getAs<ObjCObjectPointerType>()) {
6820       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6821         if (Class->isArcWeakrefUnavailable()) {
6822           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6823           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6824                  diag::note_class_declared);
6825         }
6826       }
6827     }
6828   }
6829 
6830   return true;
6831 }
6832 
6833 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6834 /// attribute on the specified type.  Returns true to indicate that
6835 /// the attribute was handled, false to indicate that the type does
6836 /// not permit the attribute.
6837 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6838                                  QualType &type) {
6839   Sema &S = state.getSema();
6840 
6841   // Delay if this isn't some kind of pointer.
6842   if (!type->isPointerType() &&
6843       !type->isObjCObjectPointerType() &&
6844       !type->isBlockPointerType())
6845     return false;
6846 
6847   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6848     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6849     attr.setInvalid();
6850     return true;
6851   }
6852 
6853   // Check the attribute arguments.
6854   if (!attr.isArgIdent(0)) {
6855     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6856         << attr << AANT_ArgumentString;
6857     attr.setInvalid();
6858     return true;
6859   }
6860   Qualifiers::GC GCAttr;
6861   if (attr.getNumArgs() > 1) {
6862     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6863                                                                       << 1;
6864     attr.setInvalid();
6865     return true;
6866   }
6867 
6868   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6869   if (II->isStr("weak"))
6870     GCAttr = Qualifiers::Weak;
6871   else if (II->isStr("strong"))
6872     GCAttr = Qualifiers::Strong;
6873   else {
6874     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6875         << attr << II;
6876     attr.setInvalid();
6877     return true;
6878   }
6879 
6880   QualType origType = type;
6881   type = S.Context.getObjCGCQualType(origType, GCAttr);
6882 
6883   // Make an attributed type to preserve the source information.
6884   if (attr.getLoc().isValid())
6885     type = state.getAttributedType(
6886         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6887 
6888   return true;
6889 }
6890 
6891 namespace {
6892   /// A helper class to unwrap a type down to a function for the
6893   /// purposes of applying attributes there.
6894   ///
6895   /// Use:
6896   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6897   ///   if (unwrapped.isFunctionType()) {
6898   ///     const FunctionType *fn = unwrapped.get();
6899   ///     // change fn somehow
6900   ///     T = unwrapped.wrap(fn);
6901   ///   }
6902   struct FunctionTypeUnwrapper {
6903     enum WrapKind {
6904       Desugar,
6905       Attributed,
6906       Parens,
6907       Array,
6908       Pointer,
6909       BlockPointer,
6910       Reference,
6911       MemberPointer,
6912       MacroQualified,
6913     };
6914 
6915     QualType Original;
6916     const FunctionType *Fn;
6917     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6918 
6919     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6920       while (true) {
6921         const Type *Ty = T.getTypePtr();
6922         if (isa<FunctionType>(Ty)) {
6923           Fn = cast<FunctionType>(Ty);
6924           return;
6925         } else if (isa<ParenType>(Ty)) {
6926           T = cast<ParenType>(Ty)->getInnerType();
6927           Stack.push_back(Parens);
6928         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6929                    isa<IncompleteArrayType>(Ty)) {
6930           T = cast<ArrayType>(Ty)->getElementType();
6931           Stack.push_back(Array);
6932         } else if (isa<PointerType>(Ty)) {
6933           T = cast<PointerType>(Ty)->getPointeeType();
6934           Stack.push_back(Pointer);
6935         } else if (isa<BlockPointerType>(Ty)) {
6936           T = cast<BlockPointerType>(Ty)->getPointeeType();
6937           Stack.push_back(BlockPointer);
6938         } else if (isa<MemberPointerType>(Ty)) {
6939           T = cast<MemberPointerType>(Ty)->getPointeeType();
6940           Stack.push_back(MemberPointer);
6941         } else if (isa<ReferenceType>(Ty)) {
6942           T = cast<ReferenceType>(Ty)->getPointeeType();
6943           Stack.push_back(Reference);
6944         } else if (isa<AttributedType>(Ty)) {
6945           T = cast<AttributedType>(Ty)->getEquivalentType();
6946           Stack.push_back(Attributed);
6947         } else if (isa<MacroQualifiedType>(Ty)) {
6948           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6949           Stack.push_back(MacroQualified);
6950         } else {
6951           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6952           if (Ty == DTy) {
6953             Fn = nullptr;
6954             return;
6955           }
6956 
6957           T = QualType(DTy, 0);
6958           Stack.push_back(Desugar);
6959         }
6960       }
6961     }
6962 
6963     bool isFunctionType() const { return (Fn != nullptr); }
6964     const FunctionType *get() const { return Fn; }
6965 
6966     QualType wrap(Sema &S, const FunctionType *New) {
6967       // If T wasn't modified from the unwrapped type, do nothing.
6968       if (New == get()) return Original;
6969 
6970       Fn = New;
6971       return wrap(S.Context, Original, 0);
6972     }
6973 
6974   private:
6975     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6976       if (I == Stack.size())
6977         return C.getQualifiedType(Fn, Old.getQualifiers());
6978 
6979       // Build up the inner type, applying the qualifiers from the old
6980       // type to the new type.
6981       SplitQualType SplitOld = Old.split();
6982 
6983       // As a special case, tail-recurse if there are no qualifiers.
6984       if (SplitOld.Quals.empty())
6985         return wrap(C, SplitOld.Ty, I);
6986       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6987     }
6988 
6989     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6990       if (I == Stack.size()) return QualType(Fn, 0);
6991 
6992       switch (static_cast<WrapKind>(Stack[I++])) {
6993       case Desugar:
6994         // This is the point at which we potentially lose source
6995         // information.
6996         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6997 
6998       case Attributed:
6999         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
7000 
7001       case Parens: {
7002         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
7003         return C.getParenType(New);
7004       }
7005 
7006       case MacroQualified:
7007         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
7008 
7009       case Array: {
7010         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
7011           QualType New = wrap(C, CAT->getElementType(), I);
7012           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
7013                                         CAT->getSizeModifier(),
7014                                         CAT->getIndexTypeCVRQualifiers());
7015         }
7016 
7017         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
7018           QualType New = wrap(C, VAT->getElementType(), I);
7019           return C.getVariableArrayType(
7020               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
7021               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7022         }
7023 
7024         const auto *IAT = cast<IncompleteArrayType>(Old);
7025         QualType New = wrap(C, IAT->getElementType(), I);
7026         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7027                                         IAT->getIndexTypeCVRQualifiers());
7028       }
7029 
7030       case Pointer: {
7031         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7032         return C.getPointerType(New);
7033       }
7034 
7035       case BlockPointer: {
7036         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7037         return C.getBlockPointerType(New);
7038       }
7039 
7040       case MemberPointer: {
7041         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7042         QualType New = wrap(C, OldMPT->getPointeeType(), I);
7043         return C.getMemberPointerType(New, OldMPT->getClass());
7044       }
7045 
7046       case Reference: {
7047         const ReferenceType *OldRef = cast<ReferenceType>(Old);
7048         QualType New = wrap(C, OldRef->getPointeeType(), I);
7049         if (isa<LValueReferenceType>(OldRef))
7050           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7051         else
7052           return C.getRValueReferenceType(New);
7053       }
7054       }
7055 
7056       llvm_unreachable("unknown wrapping kind");
7057     }
7058   };
7059 } // end anonymous namespace
7060 
7061 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7062                                              ParsedAttr &PAttr, QualType &Type) {
7063   Sema &S = State.getSema();
7064 
7065   Attr *A;
7066   switch (PAttr.getKind()) {
7067   default: llvm_unreachable("Unknown attribute kind");
7068   case ParsedAttr::AT_Ptr32:
7069     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7070     break;
7071   case ParsedAttr::AT_Ptr64:
7072     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7073     break;
7074   case ParsedAttr::AT_SPtr:
7075     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7076     break;
7077   case ParsedAttr::AT_UPtr:
7078     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7079     break;
7080   }
7081 
7082   std::bitset<attr::LastAttr> Attrs;
7083   QualType Desugared = Type;
7084   for (;;) {
7085     if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7086       Desugared = TT->desugar();
7087       continue;
7088     } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7089       Desugared = ET->desugar();
7090       continue;
7091     }
7092     const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7093     if (!AT)
7094       break;
7095     Attrs[AT->getAttrKind()] = true;
7096     Desugared = AT->getModifiedType();
7097   }
7098 
7099   // You cannot specify duplicate type attributes, so if the attribute has
7100   // already been applied, flag it.
7101   attr::Kind NewAttrKind = A->getKind();
7102   if (Attrs[NewAttrKind]) {
7103     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7104     return true;
7105   }
7106   Attrs[NewAttrKind] = true;
7107 
7108   // You cannot have both __sptr and __uptr on the same type, nor can you
7109   // have __ptr32 and __ptr64.
7110   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7111     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7112         << "'__ptr32'"
7113         << "'__ptr64'" << /*isRegularKeyword=*/0;
7114     return true;
7115   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7116     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7117         << "'__sptr'"
7118         << "'__uptr'" << /*isRegularKeyword=*/0;
7119     return true;
7120   }
7121 
7122   // Check the raw (i.e., desugared) Canonical type to see if it
7123   // is a pointer type.
7124   if (!isa<PointerType>(Desugared)) {
7125     // Pointer type qualifiers can only operate on pointer types, but not
7126     // pointer-to-member types.
7127     if (Type->isMemberPointerType())
7128       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7129     else
7130       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7131     return true;
7132   }
7133 
7134   // Add address space to type based on its attributes.
7135   LangAS ASIdx = LangAS::Default;
7136   uint64_t PtrWidth =
7137       S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7138   if (PtrWidth == 32) {
7139     if (Attrs[attr::Ptr64])
7140       ASIdx = LangAS::ptr64;
7141     else if (Attrs[attr::UPtr])
7142       ASIdx = LangAS::ptr32_uptr;
7143   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7144     if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr])
7145       ASIdx = LangAS::ptr32_uptr;
7146     else
7147       ASIdx = LangAS::ptr32_sptr;
7148   }
7149 
7150   QualType Pointee = Type->getPointeeType();
7151   if (ASIdx != LangAS::Default)
7152     Pointee = S.Context.getAddrSpaceQualType(
7153         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7154   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7155   return false;
7156 }
7157 
7158 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7159                                          QualType &QT, ParsedAttr &PAttr) {
7160   assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7161 
7162   Sema &S = State.getSema();
7163   Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7164 
7165   std::bitset<attr::LastAttr> Attrs;
7166   attr::Kind NewAttrKind = A->getKind();
7167   const auto *AT = dyn_cast<AttributedType>(QT);
7168   while (AT) {
7169     Attrs[AT->getAttrKind()] = true;
7170     AT = dyn_cast<AttributedType>(AT->getModifiedType());
7171   }
7172 
7173   // You cannot specify duplicate type attributes, so if the attribute has
7174   // already been applied, flag it.
7175   if (Attrs[NewAttrKind]) {
7176     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7177     return true;
7178   }
7179 
7180   // Add address space to type based on its attributes.
7181   LangAS ASIdx = LangAS::wasm_funcref;
7182   QualType Pointee = QT->getPointeeType();
7183   Pointee = S.Context.getAddrSpaceQualType(
7184       S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7185   QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7186   return false;
7187 }
7188 
7189 static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL,
7190                             QualType &QT, ParsedAttr &PAttr) {
7191   if (TAL == TAL_DeclName)
7192     return;
7193 
7194   Sema &S = State.getSema();
7195   auto &D = State.getDeclarator();
7196 
7197   // If the attribute appears in declaration specifiers
7198   // it should be handled as a declaration attribute,
7199   // unless it's associated with a type or a function
7200   // prototype (i.e. appears on a parameter or result type).
7201   if (State.isProcessingDeclSpec()) {
7202     if (!(D.isPrototypeContext() ||
7203           D.getContext() == DeclaratorContext::TypeName))
7204       return;
7205 
7206     if (auto *chunk = D.getInnermostNonParenChunk()) {
7207       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7208                              const_cast<DeclaratorChunk *>(chunk)->getAttrs());
7209       return;
7210     }
7211   }
7212 
7213   StringRef Str;
7214   if (!S.checkStringLiteralArgumentAttr(PAttr, 0, Str)) {
7215     PAttr.setInvalid();
7216     return;
7217   }
7218 
7219   // If the attribute as attached to a paren move it closer to
7220   // the declarator. This can happen in block declarations when
7221   // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`.
7222   //
7223   // Note that it's actually invalid to use GNU style attributes
7224   // in a block but such cases are currently handled gracefully
7225   // but the parser and behavior should be consistent between
7226   // cases when attribute appears before/after block's result
7227   // type and inside (^).
7228   if (TAL == TAL_DeclChunk) {
7229     auto chunkIdx = State.getCurrentChunkIndex();
7230     if (chunkIdx >= 1 &&
7231         D.getTypeObject(chunkIdx).Kind == DeclaratorChunk::Paren) {
7232       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7233                              D.getTypeObject(chunkIdx - 1).getAttrs());
7234       return;
7235     }
7236   }
7237 
7238   auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str);
7239   QT = State.getAttributedType(A, QT, QT);
7240   PAttr.setUsedAsTypeAttr();
7241 }
7242 
7243 /// Rebuild an attributed type without the nullability attribute on it.
7244 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7245                                                         QualType Type) {
7246   auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7247   if (!Attributed)
7248     return Type;
7249 
7250   // Skip the nullability attribute; we're done.
7251   if (Attributed->getImmediateNullability())
7252     return Attributed->getModifiedType();
7253 
7254   // Build the modified type.
7255   QualType Modified = rebuildAttributedTypeWithoutNullability(
7256       Ctx, Attributed->getModifiedType());
7257   assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7258   return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7259                                Attributed->getEquivalentType(),
7260                                Attributed->getAttr());
7261 }
7262 
7263 /// Map a nullability attribute kind to a nullability kind.
7264 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7265   switch (kind) {
7266   case ParsedAttr::AT_TypeNonNull:
7267     return NullabilityKind::NonNull;
7268 
7269   case ParsedAttr::AT_TypeNullable:
7270     return NullabilityKind::Nullable;
7271 
7272   case ParsedAttr::AT_TypeNullableResult:
7273     return NullabilityKind::NullableResult;
7274 
7275   case ParsedAttr::AT_TypeNullUnspecified:
7276     return NullabilityKind::Unspecified;
7277 
7278   default:
7279     llvm_unreachable("not a nullability attribute kind");
7280   }
7281 }
7282 
7283 static bool CheckNullabilityTypeSpecifier(
7284     Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7285     NullabilityKind Nullability, SourceLocation NullabilityLoc,
7286     bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7287   bool Implicit = (State == nullptr);
7288   if (!Implicit)
7289     recordNullabilitySeen(S, NullabilityLoc);
7290 
7291   // Check for existing nullability attributes on the type.
7292   QualType Desugared = QT;
7293   while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7294     // Check whether there is already a null
7295     if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7296       // Duplicated nullability.
7297       if (Nullability == *ExistingNullability) {
7298         if (Implicit)
7299           break;
7300 
7301         S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7302             << DiagNullabilityKind(Nullability, IsContextSensitive)
7303             << FixItHint::CreateRemoval(NullabilityLoc);
7304 
7305         break;
7306       }
7307 
7308       if (!OverrideExisting) {
7309         // Conflicting nullability.
7310         S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7311             << DiagNullabilityKind(Nullability, IsContextSensitive)
7312             << DiagNullabilityKind(*ExistingNullability, false);
7313         return true;
7314       }
7315 
7316       // Rebuild the attributed type, dropping the existing nullability.
7317       QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7318     }
7319 
7320     Desugared = Attributed->getModifiedType();
7321   }
7322 
7323   // If there is already a different nullability specifier, complain.
7324   // This (unlike the code above) looks through typedefs that might
7325   // have nullability specifiers on them, which means we cannot
7326   // provide a useful Fix-It.
7327   if (auto ExistingNullability = Desugared->getNullability()) {
7328     if (Nullability != *ExistingNullability && !Implicit) {
7329       S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7330           << DiagNullabilityKind(Nullability, IsContextSensitive)
7331           << DiagNullabilityKind(*ExistingNullability, false);
7332 
7333       // Try to find the typedef with the existing nullability specifier.
7334       if (auto TT = Desugared->getAs<TypedefType>()) {
7335         TypedefNameDecl *typedefDecl = TT->getDecl();
7336         QualType underlyingType = typedefDecl->getUnderlyingType();
7337         if (auto typedefNullability =
7338                 AttributedType::stripOuterNullability(underlyingType)) {
7339           if (*typedefNullability == *ExistingNullability) {
7340             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7341                 << DiagNullabilityKind(*ExistingNullability, false);
7342           }
7343         }
7344       }
7345 
7346       return true;
7347     }
7348   }
7349 
7350   // If this definitely isn't a pointer type, reject the specifier.
7351   if (!Desugared->canHaveNullability() &&
7352       !(AllowOnArrayType && Desugared->isArrayType())) {
7353     if (!Implicit)
7354       S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7355           << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7356 
7357     return true;
7358   }
7359 
7360   // For the context-sensitive keywords/Objective-C property
7361   // attributes, require that the type be a single-level pointer.
7362   if (IsContextSensitive) {
7363     // Make sure that the pointee isn't itself a pointer type.
7364     const Type *pointeeType = nullptr;
7365     if (Desugared->isArrayType())
7366       pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7367     else if (Desugared->isAnyPointerType())
7368       pointeeType = Desugared->getPointeeType().getTypePtr();
7369 
7370     if (pointeeType && (pointeeType->isAnyPointerType() ||
7371                         pointeeType->isObjCObjectPointerType() ||
7372                         pointeeType->isMemberPointerType())) {
7373       S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7374           << DiagNullabilityKind(Nullability, true) << QT;
7375       S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7376           << DiagNullabilityKind(Nullability, false) << QT
7377           << FixItHint::CreateReplacement(NullabilityLoc,
7378                                           getNullabilitySpelling(Nullability));
7379       return true;
7380     }
7381   }
7382 
7383   // Form the attributed type.
7384   if (State) {
7385     assert(PAttr);
7386     Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7387     QT = State->getAttributedType(A, QT, QT);
7388   } else {
7389     QT = S.Context.getAttributedType(Nullability, QT, QT);
7390   }
7391   return false;
7392 }
7393 
7394 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7395                                           QualType &Type, ParsedAttr &Attr,
7396                                           bool AllowOnArrayType) {
7397   NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7398   SourceLocation NullabilityLoc = Attr.getLoc();
7399   bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7400 
7401   return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7402                                        Nullability, NullabilityLoc,
7403                                        IsContextSensitive, AllowOnArrayType,
7404                                        /*overrideExisting*/ false);
7405 }
7406 
7407 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7408                                                  NullabilityKind Nullability,
7409                                                  SourceLocation DiagLoc,
7410                                                  bool AllowArrayTypes,
7411                                                  bool OverrideExisting) {
7412   return CheckNullabilityTypeSpecifier(
7413       *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7414       /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7415 }
7416 
7417 /// Check the application of the Objective-C '__kindof' qualifier to
7418 /// the given type.
7419 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7420                                 ParsedAttr &attr) {
7421   Sema &S = state.getSema();
7422 
7423   if (isa<ObjCTypeParamType>(type)) {
7424     // Build the attributed type to record where __kindof occurred.
7425     type = state.getAttributedType(
7426         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7427     return false;
7428   }
7429 
7430   // Find out if it's an Objective-C object or object pointer type;
7431   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7432   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7433                                           : type->getAs<ObjCObjectType>();
7434 
7435   // If not, we can't apply __kindof.
7436   if (!objType) {
7437     // FIXME: Handle dependent types that aren't yet object types.
7438     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7439       << type;
7440     return true;
7441   }
7442 
7443   // Rebuild the "equivalent" type, which pushes __kindof down into
7444   // the object type.
7445   // There is no need to apply kindof on an unqualified id type.
7446   QualType equivType = S.Context.getObjCObjectType(
7447       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7448       objType->getProtocols(),
7449       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7450 
7451   // If we started with an object pointer type, rebuild it.
7452   if (ptrType) {
7453     equivType = S.Context.getObjCObjectPointerType(equivType);
7454     if (auto nullability = type->getNullability()) {
7455       // We create a nullability attribute from the __kindof attribute.
7456       // Make sure that will make sense.
7457       assert(attr.getAttributeSpellingListIndex() == 0 &&
7458              "multiple spellings for __kindof?");
7459       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7460       A->setImplicit(true);
7461       equivType = state.getAttributedType(A, equivType, equivType);
7462     }
7463   }
7464 
7465   // Build the attributed type to record where __kindof occurred.
7466   type = state.getAttributedType(
7467       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7468   return false;
7469 }
7470 
7471 /// Distribute a nullability type attribute that cannot be applied to
7472 /// the type specifier to a pointer, block pointer, or member pointer
7473 /// declarator, complaining if necessary.
7474 ///
7475 /// \returns true if the nullability annotation was distributed, false
7476 /// otherwise.
7477 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7478                                           QualType type, ParsedAttr &attr) {
7479   Declarator &declarator = state.getDeclarator();
7480 
7481   /// Attempt to move the attribute to the specified chunk.
7482   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7483     // If there is already a nullability attribute there, don't add
7484     // one.
7485     if (hasNullabilityAttr(chunk.getAttrs()))
7486       return false;
7487 
7488     // Complain about the nullability qualifier being in the wrong
7489     // place.
7490     enum {
7491       PK_Pointer,
7492       PK_BlockPointer,
7493       PK_MemberPointer,
7494       PK_FunctionPointer,
7495       PK_MemberFunctionPointer,
7496     } pointerKind
7497       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7498                                                              : PK_Pointer)
7499         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7500         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7501 
7502     auto diag = state.getSema().Diag(attr.getLoc(),
7503                                      diag::warn_nullability_declspec)
7504       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7505                              attr.isContextSensitiveKeywordAttribute())
7506       << type
7507       << static_cast<unsigned>(pointerKind);
7508 
7509     // FIXME: MemberPointer chunks don't carry the location of the *.
7510     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7511       diag << FixItHint::CreateRemoval(attr.getLoc())
7512            << FixItHint::CreateInsertion(
7513                   state.getSema().getPreprocessor().getLocForEndOfToken(
7514                       chunk.Loc),
7515                   " " + attr.getAttrName()->getName().str() + " ");
7516     }
7517 
7518     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7519                            chunk.getAttrs());
7520     return true;
7521   };
7522 
7523   // Move it to the outermost pointer, member pointer, or block
7524   // pointer declarator.
7525   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7526     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7527     switch (chunk.Kind) {
7528     case DeclaratorChunk::Pointer:
7529     case DeclaratorChunk::BlockPointer:
7530     case DeclaratorChunk::MemberPointer:
7531       return moveToChunk(chunk, false);
7532 
7533     case DeclaratorChunk::Paren:
7534     case DeclaratorChunk::Array:
7535       continue;
7536 
7537     case DeclaratorChunk::Function:
7538       // Try to move past the return type to a function/block/member
7539       // function pointer.
7540       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7541                                     declarator, i,
7542                                     /*onlyBlockPointers=*/false)) {
7543         return moveToChunk(*dest, true);
7544       }
7545 
7546       return false;
7547 
7548     // Don't walk through these.
7549     case DeclaratorChunk::Reference:
7550     case DeclaratorChunk::Pipe:
7551       return false;
7552     }
7553   }
7554 
7555   return false;
7556 }
7557 
7558 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7559   assert(!Attr.isInvalid());
7560   switch (Attr.getKind()) {
7561   default:
7562     llvm_unreachable("not a calling convention attribute");
7563   case ParsedAttr::AT_CDecl:
7564     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7565   case ParsedAttr::AT_FastCall:
7566     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7567   case ParsedAttr::AT_StdCall:
7568     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7569   case ParsedAttr::AT_ThisCall:
7570     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7571   case ParsedAttr::AT_RegCall:
7572     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7573   case ParsedAttr::AT_Pascal:
7574     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7575   case ParsedAttr::AT_SwiftCall:
7576     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7577   case ParsedAttr::AT_SwiftAsyncCall:
7578     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7579   case ParsedAttr::AT_VectorCall:
7580     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7581   case ParsedAttr::AT_AArch64VectorPcs:
7582     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7583   case ParsedAttr::AT_AArch64SVEPcs:
7584     return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7585   case ParsedAttr::AT_ArmStreaming:
7586     return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7587   case ParsedAttr::AT_AMDGPUKernelCall:
7588     return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7589   case ParsedAttr::AT_Pcs: {
7590     // The attribute may have had a fixit applied where we treated an
7591     // identifier as a string literal.  The contents of the string are valid,
7592     // but the form may not be.
7593     StringRef Str;
7594     if (Attr.isArgExpr(0))
7595       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7596     else
7597       Str = Attr.getArgAsIdent(0)->Ident->getName();
7598     PcsAttr::PCSType Type;
7599     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7600       llvm_unreachable("already validated the attribute");
7601     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7602   }
7603   case ParsedAttr::AT_IntelOclBicc:
7604     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7605   case ParsedAttr::AT_MSABI:
7606     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7607   case ParsedAttr::AT_SysVABI:
7608     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7609   case ParsedAttr::AT_PreserveMost:
7610     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7611   case ParsedAttr::AT_PreserveAll:
7612     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7613   case ParsedAttr::AT_M68kRTD:
7614     return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7615   case ParsedAttr::AT_PreserveNone:
7616     return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7617   case ParsedAttr::AT_RISCVVectorCC:
7618     return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7619   }
7620   llvm_unreachable("unexpected attribute kind!");
7621 }
7622 
7623 std::optional<FunctionEffectMode>
7624 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7625   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7626     return FunctionEffectMode::Dependent;
7627 
7628   std::optional<llvm::APSInt> ConditionValue =
7629       CondExpr->getIntegerConstantExpr(Context);
7630   if (!ConditionValue) {
7631     // FIXME: err_attribute_argument_type doesn't quote the attribute
7632     // name but needs to; users are inconsistent.
7633     Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7634         << AttributeName << AANT_ArgumentIntegerConstant
7635         << CondExpr->getSourceRange();
7636     return std::nullopt;
7637   }
7638   return !ConditionValue->isZero() ? FunctionEffectMode::True
7639                                    : FunctionEffectMode::False;
7640 }
7641 
7642 static bool
7643 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7644                                        ParsedAttr &PAttr, QualType &QT,
7645                                        FunctionTypeUnwrapper &Unwrapped) {
7646   // Delay if this is not a function type.
7647   if (!Unwrapped.isFunctionType())
7648     return false;
7649 
7650   Sema &S = TPState.getSema();
7651 
7652   // Require FunctionProtoType.
7653   auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7654   if (FPT == nullptr) {
7655     S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7656         << PAttr.getAttrName()->getName();
7657     return true;
7658   }
7659 
7660   // Parse the new  attribute.
7661   // non/blocking or non/allocating? Or conditional (computed)?
7662   bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7663                        PAttr.getKind() == ParsedAttr::AT_Blocking;
7664 
7665   FunctionEffectMode NewMode = FunctionEffectMode::None;
7666   Expr *CondExpr = nullptr; // only valid if dependent
7667 
7668   if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7669       PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7670     if (!PAttr.checkAtMostNumArgs(S, 1)) {
7671       PAttr.setInvalid();
7672       return true;
7673     }
7674 
7675     // Parse the condition, if any.
7676     if (PAttr.getNumArgs() == 1) {
7677       CondExpr = PAttr.getArgAsExpr(0);
7678       std::optional<FunctionEffectMode> MaybeMode =
7679           S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7680       if (!MaybeMode) {
7681         PAttr.setInvalid();
7682         return true;
7683       }
7684       NewMode = *MaybeMode;
7685       if (NewMode != FunctionEffectMode::Dependent)
7686         CondExpr = nullptr;
7687     } else {
7688       NewMode = FunctionEffectMode::True;
7689     }
7690   } else {
7691     // This is the `blocking` or `allocating` attribute.
7692     if (S.CheckAttrNoArgs(PAttr)) {
7693       // The attribute has been marked invalid.
7694       return true;
7695     }
7696     NewMode = FunctionEffectMode::False;
7697   }
7698 
7699   const FunctionEffect::Kind FEKind =
7700       (NewMode == FunctionEffectMode::False)
7701           ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7702                            : FunctionEffect::Kind::Allocating)
7703           : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7704                            : FunctionEffect::Kind::NonAllocating);
7705   const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7706                                           EffectConditionExpr(CondExpr)};
7707 
7708   if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7709                                           PAttr.getLoc())) {
7710     PAttr.setInvalid();
7711     return true;
7712   }
7713 
7714   // Add the effect to the FunctionProtoType.
7715   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7716   FunctionEffectSet FX(EPI.FunctionEffects);
7717   FunctionEffectSet::Conflicts Errs;
7718   [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7719   assert(Success && "effect conflicts should have been diagnosed above");
7720   EPI.FunctionEffects = FunctionEffectsRef(FX);
7721 
7722   QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7723                                                FPT->getParamTypes(), EPI);
7724   QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7725   return true;
7726 }
7727 
7728 static bool checkMutualExclusion(TypeProcessingState &state,
7729                                  const FunctionProtoType::ExtProtoInfo &EPI,
7730                                  ParsedAttr &Attr,
7731                                  AttributeCommonInfo::Kind OtherKind) {
7732   auto OtherAttr = std::find_if(
7733       state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7734       [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7735   if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7736     return false;
7737 
7738   Sema &S = state.getSema();
7739   S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7740       << *OtherAttr << Attr
7741       << (OtherAttr->isRegularKeywordAttribute() ||
7742           Attr.isRegularKeywordAttribute());
7743   S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7744   Attr.setInvalid();
7745   return true;
7746 }
7747 
7748 static bool handleArmStateAttribute(Sema &S,
7749                                     FunctionProtoType::ExtProtoInfo &EPI,
7750                                     ParsedAttr &Attr,
7751                                     FunctionType::ArmStateValue State) {
7752   if (!Attr.getNumArgs()) {
7753     S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7754     Attr.setInvalid();
7755     return true;
7756   }
7757 
7758   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7759     StringRef StateName;
7760     SourceLocation LiteralLoc;
7761     if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7762       return true;
7763 
7764     unsigned Shift;
7765     FunctionType::ArmStateValue ExistingState;
7766     if (StateName == "za") {
7767       Shift = FunctionType::SME_ZAShift;
7768       ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7769     } else if (StateName == "zt0") {
7770       Shift = FunctionType::SME_ZT0Shift;
7771       ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7772     } else {
7773       S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7774       Attr.setInvalid();
7775       return true;
7776     }
7777 
7778     // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7779     // are all mutually exclusive for the same S, so check if there are
7780     // conflicting attributes.
7781     if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7782       S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7783           << StateName;
7784       Attr.setInvalid();
7785       return true;
7786     }
7787 
7788     EPI.setArmSMEAttribute(
7789         (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7790   }
7791   return false;
7792 }
7793 
7794 /// Process an individual function attribute.  Returns true to
7795 /// indicate that the attribute was handled, false if it wasn't.
7796 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7797                                    QualType &type, CUDAFunctionTarget CFT) {
7798   Sema &S = state.getSema();
7799 
7800   FunctionTypeUnwrapper unwrapped(S, type);
7801 
7802   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7803     if (S.CheckAttrNoArgs(attr))
7804       return true;
7805 
7806     // Delay if this is not a function type.
7807     if (!unwrapped.isFunctionType())
7808       return false;
7809 
7810     // Otherwise we can process right away.
7811     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7812     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7813     return true;
7814   }
7815 
7816   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7817     // Delay if this is not a function type.
7818     if (!unwrapped.isFunctionType())
7819       return false;
7820 
7821     // Ignore if we don't have CMSE enabled.
7822     if (!S.getLangOpts().Cmse) {
7823       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7824       attr.setInvalid();
7825       return true;
7826     }
7827 
7828     // Otherwise we can process right away.
7829     FunctionType::ExtInfo EI =
7830         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7831     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7832     return true;
7833   }
7834 
7835   // ns_returns_retained is not always a type attribute, but if we got
7836   // here, we're treating it as one right now.
7837   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7838     if (attr.getNumArgs()) return true;
7839 
7840     // Delay if this is not a function type.
7841     if (!unwrapped.isFunctionType())
7842       return false;
7843 
7844     // Check whether the return type is reasonable.
7845     if (S.ObjC().checkNSReturnsRetainedReturnType(
7846             attr.getLoc(), unwrapped.get()->getReturnType()))
7847       return true;
7848 
7849     // Only actually change the underlying type in ARC builds.
7850     QualType origType = type;
7851     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7852       FunctionType::ExtInfo EI
7853         = unwrapped.get()->getExtInfo().withProducesResult(true);
7854       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7855     }
7856     type = state.getAttributedType(
7857         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7858         origType, type);
7859     return true;
7860   }
7861 
7862   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7863     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7864       return true;
7865 
7866     // Delay if this is not a function type.
7867     if (!unwrapped.isFunctionType())
7868       return false;
7869 
7870     FunctionType::ExtInfo EI =
7871         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7872     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7873     return true;
7874   }
7875 
7876   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7877     if (!S.getLangOpts().CFProtectionBranch) {
7878       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7879       attr.setInvalid();
7880       return true;
7881     }
7882 
7883     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7884       return true;
7885 
7886     // If this is not a function type, warning will be asserted by subject
7887     // check.
7888     if (!unwrapped.isFunctionType())
7889       return true;
7890 
7891     FunctionType::ExtInfo EI =
7892       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7893     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7894     return true;
7895   }
7896 
7897   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7898     unsigned value;
7899     if (S.CheckRegparmAttr(attr, value))
7900       return true;
7901 
7902     // Delay if this is not a function type.
7903     if (!unwrapped.isFunctionType())
7904       return false;
7905 
7906     // Diagnose regparm with fastcall.
7907     const FunctionType *fn = unwrapped.get();
7908     CallingConv CC = fn->getCallConv();
7909     if (CC == CC_X86FastCall) {
7910       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7911           << FunctionType::getNameForCallConv(CC) << "regparm"
7912           << attr.isRegularKeywordAttribute();
7913       attr.setInvalid();
7914       return true;
7915     }
7916 
7917     FunctionType::ExtInfo EI =
7918       unwrapped.get()->getExtInfo().withRegParm(value);
7919     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7920     return true;
7921   }
7922 
7923   if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7924       attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7925       attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7926       attr.getKind() == ParsedAttr::AT_ArmIn ||
7927       attr.getKind() == ParsedAttr::AT_ArmOut ||
7928       attr.getKind() == ParsedAttr::AT_ArmInOut) {
7929     if (S.CheckAttrTarget(attr))
7930       return true;
7931 
7932     if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7933         attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7934       if (S.CheckAttrNoArgs(attr))
7935         return true;
7936 
7937     if (!unwrapped.isFunctionType())
7938       return false;
7939 
7940     const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7941     if (!FnTy) {
7942       // SME ACLE attributes are not supported on K&R-style unprototyped C
7943       // functions.
7944       S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7945         attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7946       attr.setInvalid();
7947       return false;
7948     }
7949 
7950     FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7951     switch (attr.getKind()) {
7952     case ParsedAttr::AT_ArmStreaming:
7953       if (checkMutualExclusion(state, EPI, attr,
7954                                ParsedAttr::AT_ArmStreamingCompatible))
7955         return true;
7956       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7957       break;
7958     case ParsedAttr::AT_ArmStreamingCompatible:
7959       if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7960         return true;
7961       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7962       break;
7963     case ParsedAttr::AT_ArmPreserves:
7964       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7965         return true;
7966       break;
7967     case ParsedAttr::AT_ArmIn:
7968       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7969         return true;
7970       break;
7971     case ParsedAttr::AT_ArmOut:
7972       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7973         return true;
7974       break;
7975     case ParsedAttr::AT_ArmInOut:
7976       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7977         return true;
7978       break;
7979     default:
7980       llvm_unreachable("Unsupported attribute");
7981     }
7982 
7983     QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7984                                                  FnTy->getParamTypes(), EPI);
7985     type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7986     return true;
7987   }
7988 
7989   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7990     // Delay if this is not a function type.
7991     if (!unwrapped.isFunctionType())
7992       return false;
7993 
7994     if (S.CheckAttrNoArgs(attr)) {
7995       attr.setInvalid();
7996       return true;
7997     }
7998 
7999     // Otherwise we can process right away.
8000     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
8001 
8002     // MSVC ignores nothrow if it is in conflict with an explicit exception
8003     // specification.
8004     if (Proto->hasExceptionSpec()) {
8005       switch (Proto->getExceptionSpecType()) {
8006       case EST_None:
8007         llvm_unreachable("This doesn't have an exception spec!");
8008 
8009       case EST_DynamicNone:
8010       case EST_BasicNoexcept:
8011       case EST_NoexceptTrue:
8012       case EST_NoThrow:
8013         // Exception spec doesn't conflict with nothrow, so don't warn.
8014         [[fallthrough]];
8015       case EST_Unparsed:
8016       case EST_Uninstantiated:
8017       case EST_DependentNoexcept:
8018       case EST_Unevaluated:
8019         // We don't have enough information to properly determine if there is a
8020         // conflict, so suppress the warning.
8021         break;
8022       case EST_Dynamic:
8023       case EST_MSAny:
8024       case EST_NoexceptFalse:
8025         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
8026         break;
8027       }
8028       return true;
8029     }
8030 
8031     type = unwrapped.wrap(
8032         S, S.Context
8033                .getFunctionTypeWithExceptionSpec(
8034                    QualType{Proto, 0},
8035                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
8036                ->getAs<FunctionType>());
8037     return true;
8038   }
8039 
8040   if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
8041       attr.getKind() == ParsedAttr::AT_NonAllocating ||
8042       attr.getKind() == ParsedAttr::AT_Blocking ||
8043       attr.getKind() == ParsedAttr::AT_Allocating) {
8044     return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
8045   }
8046 
8047   // Delay if the type didn't work out to a function.
8048   if (!unwrapped.isFunctionType()) return false;
8049 
8050   // Otherwise, a calling convention.
8051   CallingConv CC;
8052   if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
8053     return true;
8054 
8055   const FunctionType *fn = unwrapped.get();
8056   CallingConv CCOld = fn->getCallConv();
8057   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
8058 
8059   if (CCOld != CC) {
8060     // Error out on when there's already an attribute on the type
8061     // and the CCs don't match.
8062     if (S.getCallingConvAttributedType(type)) {
8063       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8064           << FunctionType::getNameForCallConv(CC)
8065           << FunctionType::getNameForCallConv(CCOld)
8066           << attr.isRegularKeywordAttribute();
8067       attr.setInvalid();
8068       return true;
8069     }
8070   }
8071 
8072   // Diagnose use of variadic functions with calling conventions that
8073   // don't support them (e.g. because they're callee-cleanup).
8074   // We delay warning about this on unprototyped function declarations
8075   // until after redeclaration checking, just in case we pick up a
8076   // prototype that way.  And apparently we also "delay" warning about
8077   // unprototyped function types in general, despite not necessarily having
8078   // much ability to diagnose it later.
8079   if (!supportsVariadicCall(CC)) {
8080     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
8081     if (FnP && FnP->isVariadic()) {
8082       // stdcall and fastcall are ignored with a warning for GCC and MS
8083       // compatibility.
8084       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
8085         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
8086                << FunctionType::getNameForCallConv(CC)
8087                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
8088 
8089       attr.setInvalid();
8090       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8091              << FunctionType::getNameForCallConv(CC);
8092     }
8093   }
8094 
8095   // Also diagnose fastcall with regparm.
8096   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8097     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8098         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8099         << attr.isRegularKeywordAttribute();
8100     attr.setInvalid();
8101     return true;
8102   }
8103 
8104   // Modify the CC from the wrapped function type, wrap it all back, and then
8105   // wrap the whole thing in an AttributedType as written.  The modified type
8106   // might have a different CC if we ignored the attribute.
8107   QualType Equivalent;
8108   if (CCOld == CC) {
8109     Equivalent = type;
8110   } else {
8111     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
8112     Equivalent =
8113       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
8114   }
8115   type = state.getAttributedType(CCAttr, type, Equivalent);
8116   return true;
8117 }
8118 
8119 bool Sema::hasExplicitCallingConv(QualType T) {
8120   const AttributedType *AT;
8121 
8122   // Stop if we'd be stripping off a typedef sugar node to reach the
8123   // AttributedType.
8124   while ((AT = T->getAs<AttributedType>()) &&
8125          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8126     if (AT->isCallingConv())
8127       return true;
8128     T = AT->getModifiedType();
8129   }
8130   return false;
8131 }
8132 
8133 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8134                                   bool IsCtorOrDtor, SourceLocation Loc) {
8135   FunctionTypeUnwrapper Unwrapped(*this, T);
8136   const FunctionType *FT = Unwrapped.get();
8137   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8138                      cast<FunctionProtoType>(FT)->isVariadic());
8139   CallingConv CurCC = FT->getCallConv();
8140   CallingConv ToCC =
8141       Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8142 
8143   if (CurCC == ToCC)
8144     return;
8145 
8146   // MS compiler ignores explicit calling convention attributes on structors. We
8147   // should do the same.
8148   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8149     // Issue a warning on ignored calling convention -- except of __stdcall.
8150     // Again, this is what MS compiler does.
8151     if (CurCC != CC_X86StdCall)
8152       Diag(Loc, diag::warn_cconv_unsupported)
8153           << FunctionType::getNameForCallConv(CurCC)
8154           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8155   // Default adjustment.
8156   } else {
8157     // Only adjust types with the default convention.  For example, on Windows
8158     // we should adjust a __cdecl type to __thiscall for instance methods, and a
8159     // __thiscall type to __cdecl for static methods.
8160     CallingConv DefaultCC =
8161         Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8162 
8163     if (CurCC != DefaultCC)
8164       return;
8165 
8166     if (hasExplicitCallingConv(T))
8167       return;
8168   }
8169 
8170   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8171   QualType Wrapped = Unwrapped.wrap(*this, FT);
8172   T = Context.getAdjustedType(T, Wrapped);
8173 }
8174 
8175 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8176 /// and float scalars, although arrays, pointers, and function return values are
8177 /// allowed in conjunction with this construct. Aggregates with this attribute
8178 /// are invalid, even if they are of the same size as a corresponding scalar.
8179 /// The raw attribute should contain precisely 1 argument, the vector size for
8180 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8181 /// this routine will return a new vector type.
8182 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8183                                  Sema &S) {
8184   // Check the attribute arguments.
8185   if (Attr.getNumArgs() != 1) {
8186     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8187                                                                       << 1;
8188     Attr.setInvalid();
8189     return;
8190   }
8191 
8192   Expr *SizeExpr = Attr.getArgAsExpr(0);
8193   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8194   if (!T.isNull())
8195     CurType = T;
8196   else
8197     Attr.setInvalid();
8198 }
8199 
8200 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8201 /// a type.
8202 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8203                                     Sema &S) {
8204   // check the attribute arguments.
8205   if (Attr.getNumArgs() != 1) {
8206     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8207                                                                       << 1;
8208     return;
8209   }
8210 
8211   Expr *SizeExpr = Attr.getArgAsExpr(0);
8212   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8213   if (!T.isNull())
8214     CurType = T;
8215 }
8216 
8217 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8218   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8219   if (!BTy)
8220     return false;
8221 
8222   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8223 
8224   // Signed poly is mathematically wrong, but has been baked into some ABIs by
8225   // now.
8226   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8227                         Triple.getArch() == llvm::Triple::aarch64_32 ||
8228                         Triple.getArch() == llvm::Triple::aarch64_be;
8229   if (VecKind == VectorKind::NeonPoly) {
8230     if (IsPolyUnsigned) {
8231       // AArch64 polynomial vectors are unsigned.
8232       return BTy->getKind() == BuiltinType::UChar ||
8233              BTy->getKind() == BuiltinType::UShort ||
8234              BTy->getKind() == BuiltinType::ULong ||
8235              BTy->getKind() == BuiltinType::ULongLong;
8236     } else {
8237       // AArch32 polynomial vectors are signed.
8238       return BTy->getKind() == BuiltinType::SChar ||
8239              BTy->getKind() == BuiltinType::Short ||
8240              BTy->getKind() == BuiltinType::LongLong;
8241     }
8242   }
8243 
8244   // Non-polynomial vector types: the usual suspects are allowed, as well as
8245   // float64_t on AArch64.
8246   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8247       BTy->getKind() == BuiltinType::Double)
8248     return true;
8249 
8250   return BTy->getKind() == BuiltinType::SChar ||
8251          BTy->getKind() == BuiltinType::UChar ||
8252          BTy->getKind() == BuiltinType::Short ||
8253          BTy->getKind() == BuiltinType::UShort ||
8254          BTy->getKind() == BuiltinType::Int ||
8255          BTy->getKind() == BuiltinType::UInt ||
8256          BTy->getKind() == BuiltinType::Long ||
8257          BTy->getKind() == BuiltinType::ULong ||
8258          BTy->getKind() == BuiltinType::LongLong ||
8259          BTy->getKind() == BuiltinType::ULongLong ||
8260          BTy->getKind() == BuiltinType::Float ||
8261          BTy->getKind() == BuiltinType::Half ||
8262          BTy->getKind() == BuiltinType::BFloat16;
8263 }
8264 
8265 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8266                                            llvm::APSInt &Result) {
8267   const auto *AttrExpr = Attr.getArgAsExpr(0);
8268   if (!AttrExpr->isTypeDependent()) {
8269     if (std::optional<llvm::APSInt> Res =
8270             AttrExpr->getIntegerConstantExpr(S.Context)) {
8271       Result = *Res;
8272       return true;
8273     }
8274   }
8275   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8276       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8277   Attr.setInvalid();
8278   return false;
8279 }
8280 
8281 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8282 /// "neon_polyvector_type" attributes are used to create vector types that
8283 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
8284 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
8285 /// the argument to these Neon attributes is the number of vector elements,
8286 /// not the vector size in bytes.  The vector width and element type must
8287 /// match one of the standard Neon vector types.
8288 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8289                                      Sema &S, VectorKind VecKind) {
8290   bool IsTargetCUDAAndHostARM = false;
8291   if (S.getLangOpts().CUDAIsDevice) {
8292     const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8293     IsTargetCUDAAndHostARM =
8294         AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8295   }
8296 
8297   // Target must have NEON (or MVE, whose vectors are similar enough
8298   // not to need a separate attribute)
8299   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8300       VecKind == VectorKind::Neon &&
8301       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8302     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8303         << Attr << "'mve'";
8304     Attr.setInvalid();
8305     return;
8306   }
8307   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8308       VecKind == VectorKind::NeonPoly &&
8309       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8310     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8311         << Attr << "'mve'";
8312     Attr.setInvalid();
8313     return;
8314   }
8315 
8316   // Check the attribute arguments.
8317   if (Attr.getNumArgs() != 1) {
8318     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8319         << Attr << 1;
8320     Attr.setInvalid();
8321     return;
8322   }
8323   // The number of elements must be an ICE.
8324   llvm::APSInt numEltsInt(32);
8325   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8326     return;
8327 
8328   // Only certain element types are supported for Neon vectors.
8329   if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8330       !IsTargetCUDAAndHostARM) {
8331     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8332     Attr.setInvalid();
8333     return;
8334   }
8335 
8336   // The total size of the vector must be 64 or 128 bits.
8337   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8338   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8339   unsigned vecSize = typeSize * numElts;
8340   if (vecSize != 64 && vecSize != 128) {
8341     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8342     Attr.setInvalid();
8343     return;
8344   }
8345 
8346   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8347 }
8348 
8349 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8350 /// used to create fixed-length versions of sizeless SVE types defined by
8351 /// the ACLE, such as svint32_t and svbool_t.
8352 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8353                                            Sema &S) {
8354   // Target must have SVE.
8355   if (!S.Context.getTargetInfo().hasFeature("sve")) {
8356     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8357     Attr.setInvalid();
8358     return;
8359   }
8360 
8361   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8362   // if <bits>+ syntax is used.
8363   if (!S.getLangOpts().VScaleMin ||
8364       S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8365     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8366         << Attr;
8367     Attr.setInvalid();
8368     return;
8369   }
8370 
8371   // Check the attribute arguments.
8372   if (Attr.getNumArgs() != 1) {
8373     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8374         << Attr << 1;
8375     Attr.setInvalid();
8376     return;
8377   }
8378 
8379   // The vector size must be an integer constant expression.
8380   llvm::APSInt SveVectorSizeInBits(32);
8381   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8382     return;
8383 
8384   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8385 
8386   // The attribute vector size must match -msve-vector-bits.
8387   if (VecSize != S.getLangOpts().VScaleMin * 128) {
8388     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8389         << VecSize << S.getLangOpts().VScaleMin * 128;
8390     Attr.setInvalid();
8391     return;
8392   }
8393 
8394   // Attribute can only be attached to a single SVE vector or predicate type.
8395   if (!CurType->isSveVLSBuiltinType()) {
8396     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8397         << Attr << CurType;
8398     Attr.setInvalid();
8399     return;
8400   }
8401 
8402   const auto *BT = CurType->castAs<BuiltinType>();
8403 
8404   QualType EltType = CurType->getSveEltType(S.Context);
8405   unsigned TypeSize = S.Context.getTypeSize(EltType);
8406   VectorKind VecKind = VectorKind::SveFixedLengthData;
8407   if (BT->getKind() == BuiltinType::SveBool) {
8408     // Predicates are represented as i8.
8409     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8410     VecKind = VectorKind::SveFixedLengthPredicate;
8411   } else
8412     VecSize /= TypeSize;
8413   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8414 }
8415 
8416 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8417                                                QualType &CurType,
8418                                                ParsedAttr &Attr) {
8419   const VectorType *VT = dyn_cast<VectorType>(CurType);
8420   if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8421     State.getSema().Diag(Attr.getLoc(),
8422                          diag::err_attribute_arm_mve_polymorphism);
8423     Attr.setInvalid();
8424     return;
8425   }
8426 
8427   CurType =
8428       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8429                                   State.getSema().Context, Attr),
8430                               CurType, CurType);
8431 }
8432 
8433 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8434 /// used to create fixed-length versions of sizeless RVV types such as
8435 /// vint8m1_t_t.
8436 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8437                                              ParsedAttr &Attr, Sema &S) {
8438   // Target must have vector extension.
8439   if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8440     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8441         << Attr << "'zve32x'";
8442     Attr.setInvalid();
8443     return;
8444   }
8445 
8446   auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8447   if (!VScale || !VScale->first || VScale->first != VScale->second) {
8448     S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8449         << Attr;
8450     Attr.setInvalid();
8451     return;
8452   }
8453 
8454   // Check the attribute arguments.
8455   if (Attr.getNumArgs() != 1) {
8456     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8457         << Attr << 1;
8458     Attr.setInvalid();
8459     return;
8460   }
8461 
8462   // The vector size must be an integer constant expression.
8463   llvm::APSInt RVVVectorSizeInBits(32);
8464   if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8465     return;
8466 
8467   // Attribute can only be attached to a single RVV vector type.
8468   if (!CurType->isRVVVLSBuiltinType()) {
8469     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8470         << Attr << CurType;
8471     Attr.setInvalid();
8472     return;
8473   }
8474 
8475   unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8476 
8477   ASTContext::BuiltinVectorTypeInfo Info =
8478       S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8479   unsigned MinElts = Info.EC.getKnownMinValue();
8480 
8481   VectorKind VecKind = VectorKind::RVVFixedLengthData;
8482   unsigned ExpectedSize = VScale->first * MinElts;
8483   QualType EltType = CurType->getRVVEltType(S.Context);
8484   unsigned EltSize = S.Context.getTypeSize(EltType);
8485   unsigned NumElts;
8486   if (Info.ElementType == S.Context.BoolTy) {
8487     NumElts = VecSize / S.Context.getCharWidth();
8488     if (!NumElts) {
8489       NumElts = 1;
8490       switch (VecSize) {
8491       case 1:
8492         VecKind = VectorKind::RVVFixedLengthMask_1;
8493         break;
8494       case 2:
8495         VecKind = VectorKind::RVVFixedLengthMask_2;
8496         break;
8497       case 4:
8498         VecKind = VectorKind::RVVFixedLengthMask_4;
8499         break;
8500       }
8501     } else
8502       VecKind = VectorKind::RVVFixedLengthMask;
8503   } else {
8504     ExpectedSize *= EltSize;
8505     NumElts = VecSize / EltSize;
8506   }
8507 
8508   // The attribute vector size must match -mrvv-vector-bits.
8509   if (VecSize != ExpectedSize) {
8510     S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8511         << VecSize << ExpectedSize;
8512     Attr.setInvalid();
8513     return;
8514   }
8515 
8516   CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8517 }
8518 
8519 /// Handle OpenCL Access Qualifier Attribute.
8520 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8521                                    Sema &S) {
8522   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8523   if (!(CurType->isImageType() || CurType->isPipeType())) {
8524     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8525     Attr.setInvalid();
8526     return;
8527   }
8528 
8529   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8530     QualType BaseTy = TypedefTy->desugar();
8531 
8532     std::string PrevAccessQual;
8533     if (BaseTy->isPipeType()) {
8534       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8535         OpenCLAccessAttr *Attr =
8536             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8537         PrevAccessQual = Attr->getSpelling();
8538       } else {
8539         PrevAccessQual = "read_only";
8540       }
8541     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8542 
8543       switch (ImgType->getKind()) {
8544         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8545       case BuiltinType::Id:                                          \
8546         PrevAccessQual = #Access;                                    \
8547         break;
8548         #include "clang/Basic/OpenCLImageTypes.def"
8549       default:
8550         llvm_unreachable("Unable to find corresponding image type.");
8551       }
8552     } else {
8553       llvm_unreachable("unexpected type");
8554     }
8555     StringRef AttrName = Attr.getAttrName()->getName();
8556     if (PrevAccessQual == AttrName.ltrim("_")) {
8557       // Duplicated qualifiers
8558       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8559          << AttrName << Attr.getRange();
8560     } else {
8561       // Contradicting qualifiers
8562       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8563     }
8564 
8565     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8566            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8567   } else if (CurType->isPipeType()) {
8568     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8569       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8570       CurType = S.Context.getWritePipeType(ElemType);
8571     }
8572   }
8573 }
8574 
8575 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8576 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8577                                  Sema &S) {
8578   if (!S.getLangOpts().MatrixTypes) {
8579     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8580     return;
8581   }
8582 
8583   if (Attr.getNumArgs() != 2) {
8584     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8585         << Attr << 2;
8586     return;
8587   }
8588 
8589   Expr *RowsExpr = Attr.getArgAsExpr(0);
8590   Expr *ColsExpr = Attr.getArgAsExpr(1);
8591   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8592   if (!T.isNull())
8593     CurType = T;
8594 }
8595 
8596 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8597                                    QualType &CurType, const ParsedAttr &PA) {
8598   Sema &S = State.getSema();
8599 
8600   if (PA.getNumArgs() < 1) {
8601     S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8602     return;
8603   }
8604 
8605   // Make sure that there is a string literal as the annotation's first
8606   // argument.
8607   StringRef Str;
8608   if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8609     return;
8610 
8611   llvm::SmallVector<Expr *, 4> Args;
8612   Args.reserve(PA.getNumArgs() - 1);
8613   for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8614     assert(!PA.isArgIdent(Idx));
8615     Args.push_back(PA.getArgAsExpr(Idx));
8616   }
8617   if (!S.ConstantFoldAttrArgs(PA, Args))
8618     return;
8619   auto *AnnotateTypeAttr =
8620       AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8621   CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8622 }
8623 
8624 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8625                                     QualType &CurType,
8626                                     ParsedAttr &Attr) {
8627   if (State.getDeclarator().isDeclarationOfFunction()) {
8628     CurType = State.getAttributedType(
8629         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8630         CurType, CurType);
8631   }
8632 }
8633 
8634 static void HandleLifetimeCaptureByAttr(TypeProcessingState &State,
8635                                         QualType &CurType, ParsedAttr &PA) {
8636   if (State.getDeclarator().isDeclarationOfFunction()) {
8637     auto *Attr = State.getSema().ParseLifetimeCaptureByAttr(PA, "this");
8638     if (Attr)
8639       CurType = State.getAttributedType(Attr, CurType, CurType);
8640   }
8641 }
8642 
8643 static void HandleHLSLParamModifierAttr(TypeProcessingState &State,
8644                                         QualType &CurType,
8645                                         const ParsedAttr &Attr, Sema &S) {
8646   // Don't apply this attribute to template dependent types. It is applied on
8647   // substitution during template instantiation. Also skip parsing this if we've
8648   // already modified the type based on an earlier attribute.
8649   if (CurType->isDependentType() || State.didParseHLSLParamMod())
8650     return;
8651   if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8652       Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) {
8653     State.setParsedHLSLParamMod(true);
8654   }
8655 }
8656 
8657 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8658                              TypeAttrLocation TAL,
8659                              const ParsedAttributesView &attrs,
8660                              CUDAFunctionTarget CFT) {
8661 
8662   state.setParsedNoDeref(false);
8663   if (attrs.empty())
8664     return;
8665 
8666   // Scan through and apply attributes to this type where it makes sense.  Some
8667   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8668   // type, but others can be present in the type specifiers even though they
8669   // apply to the decl.  Here we apply type attributes and ignore the rest.
8670 
8671   // This loop modifies the list pretty frequently, but we still need to make
8672   // sure we visit every element once. Copy the attributes list, and iterate
8673   // over that.
8674   ParsedAttributesView AttrsCopy{attrs};
8675   for (ParsedAttr &attr : AttrsCopy) {
8676 
8677     // Skip attributes that were marked to be invalid.
8678     if (attr.isInvalid())
8679       continue;
8680 
8681     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8682       // [[gnu::...]] attributes are treated as declaration attributes, so may
8683       // not appertain to a DeclaratorChunk. If we handle them as type
8684       // attributes, accept them in that position and diagnose the GCC
8685       // incompatibility.
8686       if (attr.isGNUScope()) {
8687         assert(attr.isStandardAttributeSyntax());
8688         bool IsTypeAttr = attr.isTypeAttr();
8689         if (TAL == TAL_DeclChunk) {
8690           state.getSema().Diag(attr.getLoc(),
8691                                IsTypeAttr
8692                                    ? diag::warn_gcc_ignores_type_attr
8693                                    : diag::warn_cxx11_gnu_attribute_on_type)
8694               << attr;
8695           if (!IsTypeAttr)
8696             continue;
8697         }
8698       } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8699                  !attr.isTypeAttr()) {
8700         // Otherwise, only consider type processing for a C++11 attribute if
8701         // - it has actually been applied to a type (decl-specifier-seq or
8702         //   declarator chunk), or
8703         // - it is a type attribute, irrespective of where it was applied (so
8704         //   that we can support the legacy behavior of some type attributes
8705         //   that can be applied to the declaration name).
8706         continue;
8707       }
8708     }
8709 
8710     // If this is an attribute we can handle, do so now,
8711     // otherwise, add it to the FnAttrs list for rechaining.
8712     switch (attr.getKind()) {
8713     default:
8714       // A [[]] attribute on a declarator chunk must appertain to a type.
8715       if ((attr.isStandardAttributeSyntax() ||
8716            attr.isRegularKeywordAttribute()) &&
8717           TAL == TAL_DeclChunk) {
8718         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8719             << attr << attr.isRegularKeywordAttribute();
8720         attr.setUsedAsTypeAttr();
8721       }
8722       break;
8723 
8724     case ParsedAttr::UnknownAttribute:
8725       if (attr.isStandardAttributeSyntax()) {
8726         state.getSema().Diag(attr.getLoc(),
8727                              diag::warn_unknown_attribute_ignored)
8728             << attr << attr.getRange();
8729         // Mark the attribute as invalid so we don't emit the same diagnostic
8730         // multiple times.
8731         attr.setInvalid();
8732       }
8733       break;
8734 
8735     case ParsedAttr::IgnoredAttribute:
8736       break;
8737 
8738     case ParsedAttr::AT_BTFTypeTag:
8739       HandleBTFTypeTagAttribute(type, attr, state);
8740       attr.setUsedAsTypeAttr();
8741       break;
8742 
8743     case ParsedAttr::AT_MayAlias:
8744       // FIXME: This attribute needs to actually be handled, but if we ignore
8745       // it it breaks large amounts of Linux software.
8746       attr.setUsedAsTypeAttr();
8747       break;
8748     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8749     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8750     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8751     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8752     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8753     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8754     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8755     case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8756     case ParsedAttr::AT_AddressSpace:
8757       HandleAddressSpaceTypeAttribute(type, attr, state);
8758       attr.setUsedAsTypeAttr();
8759       break;
8760     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8761       if (!handleObjCPointerTypeAttr(state, attr, type))
8762         distributeObjCPointerTypeAttr(state, attr, type);
8763       attr.setUsedAsTypeAttr();
8764       break;
8765     case ParsedAttr::AT_VectorSize:
8766       HandleVectorSizeAttr(type, attr, state.getSema());
8767       attr.setUsedAsTypeAttr();
8768       break;
8769     case ParsedAttr::AT_ExtVectorType:
8770       HandleExtVectorTypeAttr(type, attr, state.getSema());
8771       attr.setUsedAsTypeAttr();
8772       break;
8773     case ParsedAttr::AT_NeonVectorType:
8774       HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8775       attr.setUsedAsTypeAttr();
8776       break;
8777     case ParsedAttr::AT_NeonPolyVectorType:
8778       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8779                                VectorKind::NeonPoly);
8780       attr.setUsedAsTypeAttr();
8781       break;
8782     case ParsedAttr::AT_ArmSveVectorBits:
8783       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8784       attr.setUsedAsTypeAttr();
8785       break;
8786     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8787       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8788       attr.setUsedAsTypeAttr();
8789       break;
8790     }
8791     case ParsedAttr::AT_RISCVRVVVectorBits:
8792       HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8793       attr.setUsedAsTypeAttr();
8794       break;
8795     case ParsedAttr::AT_OpenCLAccess:
8796       HandleOpenCLAccessAttr(type, attr, state.getSema());
8797       attr.setUsedAsTypeAttr();
8798       break;
8799     case ParsedAttr::AT_LifetimeBound:
8800       if (TAL == TAL_DeclChunk)
8801         HandleLifetimeBoundAttr(state, type, attr);
8802       break;
8803     case ParsedAttr::AT_LifetimeCaptureBy:
8804       if (TAL == TAL_DeclChunk)
8805         HandleLifetimeCaptureByAttr(state, type, attr);
8806       break;
8807 
8808     case ParsedAttr::AT_NoDeref: {
8809       // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8810       // See https://github.com/llvm/llvm-project/issues/55790 for details.
8811       // For the time being, we simply emit a warning that the attribute is
8812       // ignored.
8813       if (attr.isStandardAttributeSyntax()) {
8814         state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8815             << attr;
8816         break;
8817       }
8818       ASTContext &Ctx = state.getSema().Context;
8819       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8820                                      type, type);
8821       attr.setUsedAsTypeAttr();
8822       state.setParsedNoDeref(true);
8823       break;
8824     }
8825 
8826     case ParsedAttr::AT_MatrixType:
8827       HandleMatrixTypeAttr(type, attr, state.getSema());
8828       attr.setUsedAsTypeAttr();
8829       break;
8830 
8831     case ParsedAttr::AT_WebAssemblyFuncref: {
8832       if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8833         attr.setUsedAsTypeAttr();
8834       break;
8835     }
8836 
8837     case ParsedAttr::AT_HLSLParamModifier: {
8838       HandleHLSLParamModifierAttr(state, type, attr, state.getSema());
8839       attr.setUsedAsTypeAttr();
8840       break;
8841     }
8842 
8843     case ParsedAttr::AT_SwiftAttr: {
8844       HandleSwiftAttr(state, TAL, type, attr);
8845       break;
8846     }
8847 
8848     MS_TYPE_ATTRS_CASELIST:
8849       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8850         attr.setUsedAsTypeAttr();
8851       break;
8852 
8853 
8854     NULLABILITY_TYPE_ATTRS_CASELIST:
8855       // Either add nullability here or try to distribute it.  We
8856       // don't want to distribute the nullability specifier past any
8857       // dependent type, because that complicates the user model.
8858       if (type->canHaveNullability() || type->isDependentType() ||
8859           type->isArrayType() ||
8860           !distributeNullabilityTypeAttr(state, type, attr)) {
8861         unsigned endIndex;
8862         if (TAL == TAL_DeclChunk)
8863           endIndex = state.getCurrentChunkIndex();
8864         else
8865           endIndex = state.getDeclarator().getNumTypeObjects();
8866         bool allowOnArrayType =
8867             state.getDeclarator().isPrototypeContext() &&
8868             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8869         if (CheckNullabilityTypeSpecifier(state, type, attr,
8870                                           allowOnArrayType)) {
8871           attr.setInvalid();
8872         }
8873 
8874         attr.setUsedAsTypeAttr();
8875       }
8876       break;
8877 
8878     case ParsedAttr::AT_ObjCKindOf:
8879       // '__kindof' must be part of the decl-specifiers.
8880       switch (TAL) {
8881       case TAL_DeclSpec:
8882         break;
8883 
8884       case TAL_DeclChunk:
8885       case TAL_DeclName:
8886         state.getSema().Diag(attr.getLoc(),
8887                              diag::err_objc_kindof_wrong_position)
8888             << FixItHint::CreateRemoval(attr.getLoc())
8889             << FixItHint::CreateInsertion(
8890                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8891                    "__kindof ");
8892         break;
8893       }
8894 
8895       // Apply it regardless.
8896       if (checkObjCKindOfType(state, type, attr))
8897         attr.setInvalid();
8898       break;
8899 
8900     case ParsedAttr::AT_NoThrow:
8901     // Exception Specifications aren't generally supported in C mode throughout
8902     // clang, so revert to attribute-based handling for C.
8903       if (!state.getSema().getLangOpts().CPlusPlus)
8904         break;
8905       [[fallthrough]];
8906     FUNCTION_TYPE_ATTRS_CASELIST:
8907       attr.setUsedAsTypeAttr();
8908 
8909       // Attributes with standard syntax have strict rules for what they
8910       // appertain to and hence should not use the "distribution" logic below.
8911       if (attr.isStandardAttributeSyntax() ||
8912           attr.isRegularKeywordAttribute()) {
8913         if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8914           diagnoseBadTypeAttribute(state.getSema(), attr, type);
8915           attr.setInvalid();
8916         }
8917         break;
8918       }
8919 
8920       // Never process function type attributes as part of the
8921       // declaration-specifiers.
8922       if (TAL == TAL_DeclSpec)
8923         distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8924 
8925       // Otherwise, handle the possible delays.
8926       else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8927         distributeFunctionTypeAttr(state, attr, type);
8928       break;
8929     case ParsedAttr::AT_AcquireHandle: {
8930       if (!type->isFunctionType())
8931         return;
8932 
8933       if (attr.getNumArgs() != 1) {
8934         state.getSema().Diag(attr.getLoc(),
8935                              diag::err_attribute_wrong_number_arguments)
8936             << attr << 1;
8937         attr.setInvalid();
8938         return;
8939       }
8940 
8941       StringRef HandleType;
8942       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8943         return;
8944       type = state.getAttributedType(
8945           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8946           type, type);
8947       attr.setUsedAsTypeAttr();
8948       break;
8949     }
8950     case ParsedAttr::AT_AnnotateType: {
8951       HandleAnnotateTypeAttr(state, type, attr);
8952       attr.setUsedAsTypeAttr();
8953       break;
8954     }
8955     case ParsedAttr::AT_HLSLResourceClass:
8956     case ParsedAttr::AT_HLSLROV:
8957     case ParsedAttr::AT_HLSLRawBuffer:
8958     case ParsedAttr::AT_HLSLContainedType: {
8959       // Only collect HLSL resource type attributes that are in
8960       // decl-specifier-seq; do not collect attributes on declarations or those
8961       // that get to slide after declaration name.
8962       if (TAL == TAL_DeclSpec &&
8963           state.getSema().HLSL().handleResourceTypeAttr(type, attr))
8964         attr.setUsedAsTypeAttr();
8965       break;
8966     }
8967     }
8968 
8969     // Handle attributes that are defined in a macro. We do not want this to be
8970     // applied to ObjC builtin attributes.
8971     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8972         !type.getQualifiers().hasObjCLifetime() &&
8973         !type.getQualifiers().hasObjCGCAttr() &&
8974         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8975         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8976       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8977       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8978       state.setExpansionLocForMacroQualifiedType(
8979           cast<MacroQualifiedType>(type.getTypePtr()),
8980           attr.getMacroExpansionLoc());
8981     }
8982   }
8983 }
8984 
8985 void Sema::completeExprArrayBound(Expr *E) {
8986   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8987     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8988       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8989         auto *Def = Var->getDefinition();
8990         if (!Def) {
8991           SourceLocation PointOfInstantiation = E->getExprLoc();
8992           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8993             InstantiateVariableDefinition(PointOfInstantiation, Var);
8994           });
8995           Def = Var->getDefinition();
8996 
8997           // If we don't already have a point of instantiation, and we managed
8998           // to instantiate a definition, this is the point of instantiation.
8999           // Otherwise, we don't request an end-of-TU instantiation, so this is
9000           // not a point of instantiation.
9001           // FIXME: Is this really the right behavior?
9002           if (Var->getPointOfInstantiation().isInvalid() && Def) {
9003             assert(Var->getTemplateSpecializationKind() ==
9004                        TSK_ImplicitInstantiation &&
9005                    "explicit instantiation with no point of instantiation");
9006             Var->setTemplateSpecializationKind(
9007                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
9008           }
9009         }
9010 
9011         // Update the type to the definition's type both here and within the
9012         // expression.
9013         if (Def) {
9014           DRE->setDecl(Def);
9015           QualType T = Def->getType();
9016           DRE->setType(T);
9017           // FIXME: Update the type on all intervening expressions.
9018           E->setType(T);
9019         }
9020 
9021         // We still go on to try to complete the type independently, as it
9022         // may also require instantiations or diagnostics if it remains
9023         // incomplete.
9024       }
9025     }
9026   }
9027   if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
9028     QualType DestType = CastE->getTypeAsWritten();
9029     if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
9030       // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
9031       // this direct-initialization defines the type of the expression
9032       // as U[1]
9033       QualType ResultType = Context.getConstantArrayType(
9034           IAT->getElementType(),
9035           llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
9036           /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
9037           /*IndexTypeQuals=*/0);
9038       E->setType(ResultType);
9039     }
9040   }
9041 }
9042 
9043 QualType Sema::getCompletedType(Expr *E) {
9044   // Incomplete array types may be completed by the initializer attached to
9045   // their definitions. For static data members of class templates and for
9046   // variable templates, we need to instantiate the definition to get this
9047   // initializer and complete the type.
9048   if (E->getType()->isIncompleteArrayType())
9049     completeExprArrayBound(E);
9050 
9051   // FIXME: Are there other cases which require instantiating something other
9052   // than the type to complete the type of an expression?
9053 
9054   return E->getType();
9055 }
9056 
9057 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
9058                                    TypeDiagnoser &Diagnoser) {
9059   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
9060                              Diagnoser);
9061 }
9062 
9063 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
9064   BoundTypeDiagnoser<> Diagnoser(DiagID);
9065   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
9066 }
9067 
9068 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9069                                CompleteTypeKind Kind,
9070                                TypeDiagnoser &Diagnoser) {
9071   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
9072     return true;
9073   if (const TagType *Tag = T->getAs<TagType>()) {
9074     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
9075       Tag->getDecl()->setCompleteDefinitionRequired();
9076       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
9077     }
9078   }
9079   return false;
9080 }
9081 
9082 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
9083   StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls;
9084   if (!Suggested)
9085     return false;
9086 
9087   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9088   // and isolate from other C++ specific checks.
9089   StructuralEquivalenceContext Ctx(
9090       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
9091       StructuralEquivalenceKind::Default,
9092       false /*StrictTypeSpelling*/, true /*Complain*/,
9093       true /*ErrorOnTagTypeMismatch*/);
9094   return Ctx.IsEquivalent(D, Suggested);
9095 }
9096 
9097 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
9098                                    AcceptableKind Kind, bool OnlyNeedComplete) {
9099   // Easy case: if we don't have modules, all declarations are visible.
9100   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
9101     return true;
9102 
9103   // If this definition was instantiated from a template, map back to the
9104   // pattern from which it was instantiated.
9105   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
9106     // We're in the middle of defining it; this definition should be treated
9107     // as visible.
9108     return true;
9109   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9110     if (auto *Pattern = RD->getTemplateInstantiationPattern())
9111       RD = Pattern;
9112     D = RD->getDefinition();
9113   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
9114     if (auto *Pattern = ED->getTemplateInstantiationPattern())
9115       ED = Pattern;
9116     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9117       // If the enum has a fixed underlying type, it may have been forward
9118       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9119       // the enum and assign it the underlying type of `int`. Since we're only
9120       // looking for a complete type (not a definition), any visible declaration
9121       // of it will do.
9122       *Suggested = nullptr;
9123       for (auto *Redecl : ED->redecls()) {
9124         if (isAcceptable(Redecl, Kind))
9125           return true;
9126         if (Redecl->isThisDeclarationADefinition() ||
9127             (Redecl->isCanonicalDecl() && !*Suggested))
9128           *Suggested = Redecl;
9129       }
9130 
9131       return false;
9132     }
9133     D = ED->getDefinition();
9134   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
9135     if (auto *Pattern = FD->getTemplateInstantiationPattern())
9136       FD = Pattern;
9137     D = FD->getDefinition();
9138   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
9139     if (auto *Pattern = VD->getTemplateInstantiationPattern())
9140       VD = Pattern;
9141     D = VD->getDefinition();
9142   }
9143 
9144   assert(D && "missing definition for pattern of instantiated definition");
9145 
9146   *Suggested = D;
9147 
9148   auto DefinitionIsAcceptable = [&] {
9149     // The (primary) definition might be in a visible module.
9150     if (isAcceptable(D, Kind))
9151       return true;
9152 
9153     // A visible module might have a merged definition instead.
9154     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
9155                              : hasVisibleMergedDefinition(D)) {
9156       if (CodeSynthesisContexts.empty() &&
9157           !getLangOpts().ModulesLocalVisibility) {
9158         // Cache the fact that this definition is implicitly visible because
9159         // there is a visible merged definition.
9160         D->setVisibleDespiteOwningModule();
9161       }
9162       return true;
9163     }
9164 
9165     return false;
9166   };
9167 
9168   if (DefinitionIsAcceptable())
9169     return true;
9170 
9171   // The external source may have additional definitions of this entity that are
9172   // visible, so complete the redeclaration chain now and ask again.
9173   if (auto *Source = Context.getExternalSource()) {
9174     Source->CompleteRedeclChain(D);
9175     return DefinitionIsAcceptable();
9176   }
9177 
9178   return false;
9179 }
9180 
9181 /// Determine whether there is any declaration of \p D that was ever a
9182 ///        definition (perhaps before module merging) and is currently visible.
9183 /// \param D The definition of the entity.
9184 /// \param Suggested Filled in with the declaration that should be made visible
9185 ///        in order to provide a definition of this entity.
9186 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9187 ///        not defined. This only matters for enums with a fixed underlying
9188 ///        type, since in all other cases, a type is complete if and only if it
9189 ///        is defined.
9190 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9191                                 bool OnlyNeedComplete) {
9192   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9193                                  OnlyNeedComplete);
9194 }
9195 
9196 /// Determine whether there is any declaration of \p D that was ever a
9197 ///        definition (perhaps before module merging) and is currently
9198 ///        reachable.
9199 /// \param D The definition of the entity.
9200 /// \param Suggested Filled in with the declaration that should be made
9201 /// reachable
9202 ///        in order to provide a definition of this entity.
9203 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9204 ///        not defined. This only matters for enums with a fixed underlying
9205 ///        type, since in all other cases, a type is complete if and only if it
9206 ///        is defined.
9207 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9208                                   bool OnlyNeedComplete) {
9209   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9210                                  OnlyNeedComplete);
9211 }
9212 
9213 /// Locks in the inheritance model for the given class and all of its bases.
9214 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9215   RD = RD->getMostRecentNonInjectedDecl();
9216   if (!RD->hasAttr<MSInheritanceAttr>()) {
9217     MSInheritanceModel IM;
9218     bool BestCase = false;
9219     switch (S.MSPointerToMemberRepresentationMethod) {
9220     case LangOptions::PPTMK_BestCase:
9221       BestCase = true;
9222       IM = RD->calculateInheritanceModel();
9223       break;
9224     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9225       IM = MSInheritanceModel::Single;
9226       break;
9227     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9228       IM = MSInheritanceModel::Multiple;
9229       break;
9230     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9231       IM = MSInheritanceModel::Unspecified;
9232       break;
9233     }
9234 
9235     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9236                           ? S.ImplicitMSInheritanceAttrLoc
9237                           : RD->getSourceRange();
9238     RD->addAttr(MSInheritanceAttr::CreateImplicit(
9239         S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9240     S.Consumer.AssignInheritanceModel(RD);
9241   }
9242 }
9243 
9244 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9245                                    CompleteTypeKind Kind,
9246                                    TypeDiagnoser *Diagnoser) {
9247   // FIXME: Add this assertion to make sure we always get instantiation points.
9248   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9249   // FIXME: Add this assertion to help us flush out problems with
9250   // checking for dependent types and type-dependent expressions.
9251   //
9252   //  assert(!T->isDependentType() &&
9253   //         "Can't ask whether a dependent type is complete");
9254 
9255   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9256     if (!MPTy->getClass()->isDependentType()) {
9257       if (getLangOpts().CompleteMemberPointers &&
9258           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9259           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9260                               diag::err_memptr_incomplete))
9261         return true;
9262 
9263       // We lock in the inheritance model once somebody has asked us to ensure
9264       // that a pointer-to-member type is complete.
9265       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9266         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9267         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9268       }
9269     }
9270   }
9271 
9272   NamedDecl *Def = nullptr;
9273   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9274   bool Incomplete = (T->isIncompleteType(&Def) ||
9275                      (!AcceptSizeless && T->isSizelessBuiltinType()));
9276 
9277   // Check that any necessary explicit specializations are visible. For an
9278   // enum, we just need the declaration, so don't check this.
9279   if (Def && !isa<EnumDecl>(Def))
9280     checkSpecializationReachability(Loc, Def);
9281 
9282   // If we have a complete type, we're done.
9283   if (!Incomplete) {
9284     NamedDecl *Suggested = nullptr;
9285     if (Def &&
9286         !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9287       // If the user is going to see an error here, recover by making the
9288       // definition visible.
9289       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9290       if (Diagnoser && Suggested)
9291         diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9292                               /*Recover*/ TreatAsComplete);
9293       return !TreatAsComplete;
9294     } else if (Def && !TemplateInstCallbacks.empty()) {
9295       CodeSynthesisContext TempInst;
9296       TempInst.Kind = CodeSynthesisContext::Memoization;
9297       TempInst.Template = Def;
9298       TempInst.Entity = Def;
9299       TempInst.PointOfInstantiation = Loc;
9300       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9301       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9302     }
9303 
9304     return false;
9305   }
9306 
9307   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9308   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9309 
9310   // Give the external source a chance to provide a definition of the type.
9311   // This is kept separate from completing the redeclaration chain so that
9312   // external sources such as LLDB can avoid synthesizing a type definition
9313   // unless it's actually needed.
9314   if (Tag || IFace) {
9315     // Avoid diagnosing invalid decls as incomplete.
9316     if (Def->isInvalidDecl())
9317       return true;
9318 
9319     // Give the external AST source a chance to complete the type.
9320     if (auto *Source = Context.getExternalSource()) {
9321       if (Tag && Tag->hasExternalLexicalStorage())
9322           Source->CompleteType(Tag);
9323       if (IFace && IFace->hasExternalLexicalStorage())
9324           Source->CompleteType(IFace);
9325       // If the external source completed the type, go through the motions
9326       // again to ensure we're allowed to use the completed type.
9327       if (!T->isIncompleteType())
9328         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9329     }
9330   }
9331 
9332   // If we have a class template specialization or a class member of a
9333   // class template specialization, or an array with known size of such,
9334   // try to instantiate it.
9335   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9336     bool Instantiated = false;
9337     bool Diagnosed = false;
9338     if (RD->isDependentContext()) {
9339       // Don't try to instantiate a dependent class (eg, a member template of
9340       // an instantiated class template specialization).
9341       // FIXME: Can this ever happen?
9342     } else if (auto *ClassTemplateSpec =
9343             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9344       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9345         runWithSufficientStackSpace(Loc, [&] {
9346           Diagnosed = InstantiateClassTemplateSpecialization(
9347               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9348               /*Complain=*/Diagnoser);
9349         });
9350         Instantiated = true;
9351       }
9352     } else {
9353       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9354       if (!RD->isBeingDefined() && Pattern) {
9355         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9356         assert(MSI && "Missing member specialization information?");
9357         // This record was instantiated from a class within a template.
9358         if (MSI->getTemplateSpecializationKind() !=
9359             TSK_ExplicitSpecialization) {
9360           runWithSufficientStackSpace(Loc, [&] {
9361             Diagnosed = InstantiateClass(Loc, RD, Pattern,
9362                                          getTemplateInstantiationArgs(RD),
9363                                          TSK_ImplicitInstantiation,
9364                                          /*Complain=*/Diagnoser);
9365           });
9366           Instantiated = true;
9367         }
9368       }
9369     }
9370 
9371     if (Instantiated) {
9372       // Instantiate* might have already complained that the template is not
9373       // defined, if we asked it to.
9374       if (Diagnoser && Diagnosed)
9375         return true;
9376       // If we instantiated a definition, check that it's usable, even if
9377       // instantiation produced an error, so that repeated calls to this
9378       // function give consistent answers.
9379       if (!T->isIncompleteType())
9380         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9381     }
9382   }
9383 
9384   // FIXME: If we didn't instantiate a definition because of an explicit
9385   // specialization declaration, check that it's visible.
9386 
9387   if (!Diagnoser)
9388     return true;
9389 
9390   Diagnoser->diagnose(*this, Loc, T);
9391 
9392   // If the type was a forward declaration of a class/struct/union
9393   // type, produce a note.
9394   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9395     Diag(Tag->getLocation(),
9396          Tag->isBeingDefined() ? diag::note_type_being_defined
9397                                : diag::note_forward_declaration)
9398       << Context.getTagDeclType(Tag);
9399 
9400   // If the Objective-C class was a forward declaration, produce a note.
9401   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9402     Diag(IFace->getLocation(), diag::note_forward_class);
9403 
9404   // If we have external information that we can use to suggest a fix,
9405   // produce a note.
9406   if (ExternalSource)
9407     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9408 
9409   return true;
9410 }
9411 
9412 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9413                                CompleteTypeKind Kind, unsigned DiagID) {
9414   BoundTypeDiagnoser<> Diagnoser(DiagID);
9415   return RequireCompleteType(Loc, T, Kind, Diagnoser);
9416 }
9417 
9418 /// Get diagnostic %select index for tag kind for
9419 /// literal type diagnostic message.
9420 /// WARNING: Indexes apply to particular diagnostics only!
9421 ///
9422 /// \returns diagnostic %select index.
9423 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9424   switch (Tag) {
9425   case TagTypeKind::Struct:
9426     return 0;
9427   case TagTypeKind::Interface:
9428     return 1;
9429   case TagTypeKind::Class:
9430     return 2;
9431   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9432   }
9433 }
9434 
9435 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9436                               TypeDiagnoser &Diagnoser) {
9437   assert(!T->isDependentType() && "type should not be dependent");
9438 
9439   QualType ElemType = Context.getBaseElementType(T);
9440   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9441       T->isLiteralType(Context))
9442     return false;
9443 
9444   Diagnoser.diagnose(*this, Loc, T);
9445 
9446   if (T->isVariableArrayType())
9447     return true;
9448 
9449   const RecordType *RT = ElemType->getAs<RecordType>();
9450   if (!RT)
9451     return true;
9452 
9453   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9454 
9455   // A partially-defined class type can't be a literal type, because a literal
9456   // class type must have a trivial destructor (which can't be checked until
9457   // the class definition is complete).
9458   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9459     return true;
9460 
9461   // [expr.prim.lambda]p3:
9462   //   This class type is [not] a literal type.
9463   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9464     Diag(RD->getLocation(), diag::note_non_literal_lambda);
9465     return true;
9466   }
9467 
9468   // If the class has virtual base classes, then it's not an aggregate, and
9469   // cannot have any constexpr constructors or a trivial default constructor,
9470   // so is non-literal. This is better to diagnose than the resulting absence
9471   // of constexpr constructors.
9472   if (RD->getNumVBases()) {
9473     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9474       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9475     for (const auto &I : RD->vbases())
9476       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9477           << I.getSourceRange();
9478   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9479              !RD->hasTrivialDefaultConstructor()) {
9480     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9481   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9482     for (const auto &I : RD->bases()) {
9483       if (!I.getType()->isLiteralType(Context)) {
9484         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9485             << RD << I.getType() << I.getSourceRange();
9486         return true;
9487       }
9488     }
9489     for (const auto *I : RD->fields()) {
9490       if (!I->getType()->isLiteralType(Context) ||
9491           I->getType().isVolatileQualified()) {
9492         Diag(I->getLocation(), diag::note_non_literal_field)
9493           << RD << I << I->getType()
9494           << I->getType().isVolatileQualified();
9495         return true;
9496       }
9497     }
9498   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9499                                        : !RD->hasTrivialDestructor()) {
9500     // All fields and bases are of literal types, so have trivial or constexpr
9501     // destructors. If this class's destructor is non-trivial / non-constexpr,
9502     // it must be user-declared.
9503     CXXDestructorDecl *Dtor = RD->getDestructor();
9504     assert(Dtor && "class has literal fields and bases but no dtor?");
9505     if (!Dtor)
9506       return true;
9507 
9508     if (getLangOpts().CPlusPlus20) {
9509       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9510           << RD;
9511     } else {
9512       Diag(Dtor->getLocation(), Dtor->isUserProvided()
9513                                     ? diag::note_non_literal_user_provided_dtor
9514                                     : diag::note_non_literal_nontrivial_dtor)
9515           << RD;
9516       if (!Dtor->isUserProvided())
9517         SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9518                                TAH_IgnoreTrivialABI,
9519                                /*Diagnose*/ true);
9520     }
9521   }
9522 
9523   return true;
9524 }
9525 
9526 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9527   BoundTypeDiagnoser<> Diagnoser(DiagID);
9528   return RequireLiteralType(Loc, T, Diagnoser);
9529 }
9530 
9531 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9532                                  const CXXScopeSpec &SS, QualType T,
9533                                  TagDecl *OwnedTagDecl) {
9534   if (T.isNull())
9535     return T;
9536   return Context.getElaboratedType(
9537       Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9538 }
9539 
9540 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9541   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9542 
9543   if (!getLangOpts().CPlusPlus && E->refersToBitField())
9544     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9545         << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9546 
9547   if (!E->isTypeDependent()) {
9548     QualType T = E->getType();
9549     if (const TagType *TT = T->getAs<TagType>())
9550       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9551   }
9552   return Context.getTypeOfExprType(E, Kind);
9553 }
9554 
9555 static void
9556 BuildTypeCoupledDecls(Expr *E,
9557                       llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9558   // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9559   auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9560   Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9561 }
9562 
9563 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9564                                                       Expr *CountExpr,
9565                                                       bool CountInBytes,
9566                                                       bool OrNull) {
9567   assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9568 
9569   llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9570   BuildTypeCoupledDecls(CountExpr, Decls);
9571   /// When the resulting expression is invalid, we still create the AST using
9572   /// the original count expression for the sake of AST dump.
9573   return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9574                                         OrNull, Decls);
9575 }
9576 
9577 /// getDecltypeForExpr - Given an expr, will return the decltype for
9578 /// that expression, according to the rules in C++11
9579 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9580 QualType Sema::getDecltypeForExpr(Expr *E) {
9581 
9582   Expr *IDExpr = E;
9583   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9584     IDExpr = ImplCastExpr->getSubExpr();
9585 
9586   if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9587     if (E->isInstantiationDependent())
9588       IDExpr = PackExpr->getPackIdExpression();
9589     else
9590       IDExpr = PackExpr->getSelectedExpr();
9591   }
9592 
9593   if (E->isTypeDependent())
9594     return Context.DependentTy;
9595 
9596   // C++11 [dcl.type.simple]p4:
9597   //   The type denoted by decltype(e) is defined as follows:
9598 
9599   // C++20:
9600   //     - if E is an unparenthesized id-expression naming a non-type
9601   //       template-parameter (13.2), decltype(E) is the type of the
9602   //       template-parameter after performing any necessary type deduction
9603   // Note that this does not pick up the implicit 'const' for a template
9604   // parameter object. This rule makes no difference before C++20 so we apply
9605   // it unconditionally.
9606   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9607     return SNTTPE->getParameterType(Context);
9608 
9609   //     - if e is an unparenthesized id-expression or an unparenthesized class
9610   //       member access (5.2.5), decltype(e) is the type of the entity named
9611   //       by e. If there is no such entity, or if e names a set of overloaded
9612   //       functions, the program is ill-formed;
9613   //
9614   // We apply the same rules for Objective-C ivar and property references.
9615   if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9616     const ValueDecl *VD = DRE->getDecl();
9617     QualType T = VD->getType();
9618     return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9619   }
9620   if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9621     if (const auto *VD = ME->getMemberDecl())
9622       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9623         return VD->getType();
9624   } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9625     return IR->getDecl()->getType();
9626   } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9627     if (PR->isExplicitProperty())
9628       return PR->getExplicitProperty()->getType();
9629   } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9630     return PE->getType();
9631   }
9632 
9633   // C++11 [expr.lambda.prim]p18:
9634   //   Every occurrence of decltype((x)) where x is a possibly
9635   //   parenthesized id-expression that names an entity of automatic
9636   //   storage duration is treated as if x were transformed into an
9637   //   access to a corresponding data member of the closure type that
9638   //   would have been declared if x were an odr-use of the denoted
9639   //   entity.
9640   if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9641     if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9642       if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9643         QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9644         if (!T.isNull())
9645           return Context.getLValueReferenceType(T);
9646       }
9647     }
9648   }
9649 
9650   return Context.getReferenceQualifiedType(E);
9651 }
9652 
9653 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9654   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9655 
9656   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9657       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9658     // The expression operand for decltype is in an unevaluated expression
9659     // context, so side effects could result in unintended consequences.
9660     // Exclude instantiation-dependent expressions, because 'decltype' is often
9661     // used to build SFINAE gadgets.
9662     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9663   }
9664   return Context.getDecltypeType(E, getDecltypeForExpr(E));
9665 }
9666 
9667 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9668                                      SourceLocation Loc,
9669                                      SourceLocation EllipsisLoc) {
9670   if (!IndexExpr)
9671     return QualType();
9672 
9673   // Diagnose unexpanded packs but continue to improve recovery.
9674   if (!Pattern->containsUnexpandedParameterPack())
9675     Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9676 
9677   QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9678 
9679   if (!Type.isNull())
9680     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9681                                         : diag::ext_pack_indexing);
9682   return Type;
9683 }
9684 
9685 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9686                                      SourceLocation Loc,
9687                                      SourceLocation EllipsisLoc,
9688                                      bool FullySubstituted,
9689                                      ArrayRef<QualType> Expansions) {
9690 
9691   std::optional<int64_t> Index;
9692   if (FullySubstituted && !IndexExpr->isValueDependent() &&
9693       !IndexExpr->isTypeDependent()) {
9694     llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9695     ExprResult Res = CheckConvertedConstantExpression(
9696         IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9697     if (!Res.isUsable())
9698       return QualType();
9699     Index = Value.getExtValue();
9700     IndexExpr = Res.get();
9701   }
9702 
9703   if (FullySubstituted && Index) {
9704     if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9705       Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9706           << *Index << Pattern << Expansions.size();
9707       return QualType();
9708     }
9709   }
9710 
9711   return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9712                                      Expansions, Index.value_or(-1));
9713 }
9714 
9715 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9716                                       SourceLocation Loc) {
9717   assert(BaseType->isEnumeralType());
9718   EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9719   assert(ED && "EnumType has no EnumDecl");
9720 
9721   S.DiagnoseUseOfDecl(ED, Loc);
9722 
9723   QualType Underlying = ED->getIntegerType();
9724   assert(!Underlying.isNull());
9725 
9726   return Underlying;
9727 }
9728 
9729 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9730                                          SourceLocation Loc) {
9731   if (!BaseType->isEnumeralType()) {
9732     Diag(Loc, diag::err_only_enums_have_underlying_types);
9733     return QualType();
9734   }
9735 
9736   // The enum could be incomplete if we're parsing its definition or
9737   // recovering from an error.
9738   NamedDecl *FwdDecl = nullptr;
9739   if (BaseType->isIncompleteType(&FwdDecl)) {
9740     Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9741     Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9742     return QualType();
9743   }
9744 
9745   return GetEnumUnderlyingType(*this, BaseType, Loc);
9746 }
9747 
9748 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9749   QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9750                          ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9751                                             DeclarationName())
9752                          : BaseType;
9753 
9754   return Pointer.isNull() ? QualType() : Pointer;
9755 }
9756 
9757 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9758   // We don't want block pointers or ObjectiveC's id type.
9759   if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9760     return BaseType;
9761 
9762   return BaseType->getPointeeType();
9763 }
9764 
9765 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9766   QualType Underlying = BaseType.getNonReferenceType();
9767   if (Underlying->isArrayType())
9768     return Context.getDecayedType(Underlying);
9769 
9770   if (Underlying->isFunctionType())
9771     return BuiltinAddPointer(BaseType, Loc);
9772 
9773   SplitQualType Split = Underlying.getSplitUnqualifiedType();
9774   // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9775   // in the same group of qualifiers as 'const' and 'volatile', we're extending
9776   // '__decay(T)' so that it removes all qualifiers.
9777   Split.Quals.removeCVRQualifiers();
9778   return Context.getQualifiedType(Split);
9779 }
9780 
9781 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9782                                    SourceLocation Loc) {
9783   assert(LangOpts.CPlusPlus);
9784   QualType Reference =
9785       BaseType.isReferenceable()
9786           ? BuildReferenceType(BaseType,
9787                                UKind == UnaryTransformType::AddLvalueReference,
9788                                Loc, DeclarationName())
9789           : BaseType;
9790   return Reference.isNull() ? QualType() : Reference;
9791 }
9792 
9793 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9794                                    SourceLocation Loc) {
9795   if (UKind == UnaryTransformType::RemoveAllExtents)
9796     return Context.getBaseElementType(BaseType);
9797 
9798   if (const auto *AT = Context.getAsArrayType(BaseType))
9799     return AT->getElementType();
9800 
9801   return BaseType;
9802 }
9803 
9804 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9805                                       SourceLocation Loc) {
9806   assert(LangOpts.CPlusPlus);
9807   QualType T = BaseType.getNonReferenceType();
9808   if (UKind == UTTKind::RemoveCVRef &&
9809       (T.isConstQualified() || T.isVolatileQualified())) {
9810     Qualifiers Quals;
9811     QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9812     Quals.removeConst();
9813     Quals.removeVolatile();
9814     T = Context.getQualifiedType(Unqual, Quals);
9815   }
9816   return T;
9817 }
9818 
9819 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9820                                           SourceLocation Loc) {
9821   if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9822       BaseType->isFunctionType())
9823     return BaseType;
9824 
9825   Qualifiers Quals;
9826   QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9827 
9828   if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9829     Quals.removeConst();
9830   if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9831     Quals.removeVolatile();
9832   if (UKind == UTTKind::RemoveRestrict)
9833     Quals.removeRestrict();
9834 
9835   return Context.getQualifiedType(Unqual, Quals);
9836 }
9837 
9838 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9839                                          bool IsMakeSigned,
9840                                          SourceLocation Loc) {
9841   if (BaseType->isEnumeralType()) {
9842     QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9843     if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9844       unsigned int Bits = BitInt->getNumBits();
9845       if (Bits > 1)
9846         return S.Context.getBitIntType(!IsMakeSigned, Bits);
9847 
9848       S.Diag(Loc, diag::err_make_signed_integral_only)
9849           << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9850       return QualType();
9851     }
9852     if (Underlying->isBooleanType()) {
9853       S.Diag(Loc, diag::err_make_signed_integral_only)
9854           << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9855           << Underlying;
9856       return QualType();
9857     }
9858   }
9859 
9860   bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9861   std::array<CanQualType *, 6> AllSignedIntegers = {
9862       &S.Context.SignedCharTy, &S.Context.ShortTy,    &S.Context.IntTy,
9863       &S.Context.LongTy,       &S.Context.LongLongTy, &S.Context.Int128Ty};
9864   ArrayRef<CanQualType *> AvailableSignedIntegers(
9865       AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9866   std::array<CanQualType *, 6> AllUnsignedIntegers = {
9867       &S.Context.UnsignedCharTy,     &S.Context.UnsignedShortTy,
9868       &S.Context.UnsignedIntTy,      &S.Context.UnsignedLongTy,
9869       &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9870   ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9871                                                     AllUnsignedIntegers.size() -
9872                                                         Int128Unsupported);
9873   ArrayRef<CanQualType *> *Consider =
9874       IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9875 
9876   uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9877   auto *Result =
9878       llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9879         return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9880       });
9881 
9882   assert(Result != Consider->end());
9883   return QualType((*Result)->getTypePtr(), 0);
9884 }
9885 
9886 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9887                                        SourceLocation Loc) {
9888   bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9889   if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9890       BaseType->isBooleanType() ||
9891       (BaseType->isBitIntType() &&
9892        BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9893     Diag(Loc, diag::err_make_signed_integral_only)
9894         << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9895     return QualType();
9896   }
9897 
9898   bool IsNonIntIntegral =
9899       BaseType->isChar16Type() || BaseType->isChar32Type() ||
9900       BaseType->isWideCharType() || BaseType->isEnumeralType();
9901 
9902   QualType Underlying =
9903       IsNonIntIntegral
9904           ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9905       : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9906                      : Context.getCorrespondingUnsignedType(BaseType);
9907   if (Underlying.isNull())
9908     return Underlying;
9909   return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9910 }
9911 
9912 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9913                                        SourceLocation Loc) {
9914   if (BaseType->isDependentType())
9915     return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9916   QualType Result;
9917   switch (UKind) {
9918   case UnaryTransformType::EnumUnderlyingType: {
9919     Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9920     break;
9921   }
9922   case UnaryTransformType::AddPointer: {
9923     Result = BuiltinAddPointer(BaseType, Loc);
9924     break;
9925   }
9926   case UnaryTransformType::RemovePointer: {
9927     Result = BuiltinRemovePointer(BaseType, Loc);
9928     break;
9929   }
9930   case UnaryTransformType::Decay: {
9931     Result = BuiltinDecay(BaseType, Loc);
9932     break;
9933   }
9934   case UnaryTransformType::AddLvalueReference:
9935   case UnaryTransformType::AddRvalueReference: {
9936     Result = BuiltinAddReference(BaseType, UKind, Loc);
9937     break;
9938   }
9939   case UnaryTransformType::RemoveAllExtents:
9940   case UnaryTransformType::RemoveExtent: {
9941     Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9942     break;
9943   }
9944   case UnaryTransformType::RemoveCVRef:
9945   case UnaryTransformType::RemoveReference: {
9946     Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9947     break;
9948   }
9949   case UnaryTransformType::RemoveConst:
9950   case UnaryTransformType::RemoveCV:
9951   case UnaryTransformType::RemoveRestrict:
9952   case UnaryTransformType::RemoveVolatile: {
9953     Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9954     break;
9955   }
9956   case UnaryTransformType::MakeSigned:
9957   case UnaryTransformType::MakeUnsigned: {
9958     Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9959     break;
9960   }
9961   }
9962 
9963   return !Result.isNull()
9964              ? Context.getUnaryTransformType(BaseType, Result, UKind)
9965              : Result;
9966 }
9967 
9968 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9969   if (!isDependentOrGNUAutoType(T)) {
9970     // FIXME: It isn't entirely clear whether incomplete atomic types
9971     // are allowed or not; for simplicity, ban them for the moment.
9972     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9973       return QualType();
9974 
9975     int DisallowedKind = -1;
9976     if (T->isArrayType())
9977       DisallowedKind = 1;
9978     else if (T->isFunctionType())
9979       DisallowedKind = 2;
9980     else if (T->isReferenceType())
9981       DisallowedKind = 3;
9982     else if (T->isAtomicType())
9983       DisallowedKind = 4;
9984     else if (T.hasQualifiers())
9985       DisallowedKind = 5;
9986     else if (T->isSizelessType())
9987       DisallowedKind = 6;
9988     else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9989       // Some other non-trivially-copyable type (probably a C++ class)
9990       DisallowedKind = 7;
9991     else if (T->isBitIntType())
9992       DisallowedKind = 8;
9993     else if (getLangOpts().C23 && T->isUndeducedAutoType())
9994       // _Atomic auto is prohibited in C23
9995       DisallowedKind = 9;
9996 
9997     if (DisallowedKind != -1) {
9998       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9999       return QualType();
10000     }
10001 
10002     // FIXME: Do we need any handling for ARC here?
10003   }
10004 
10005   // Build the pointer type.
10006   return Context.getAtomicType(T);
10007 }
10008