xref: /llvm-project/clang/lib/Sema/SemaType.cpp (revision 5df1b79372a89648cdb4ab798f1c74985e00ac6e)
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/LocInfoType.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeLocVisitor.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/Specifiers.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Lookup.h"
37 #include "clang/Sema/ParsedAttr.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaCUDA.h"
41 #include "clang/Sema/SemaHLSL.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "clang/Sema/SemaObjC.h"
44 #include "clang/Sema/SemaOpenMP.h"
45 #include "clang/Sema/Template.h"
46 #include "clang/Sema/TemplateInstCallback.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/STLForwardCompat.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include <bitset>
56 #include <optional>
57 
58 using namespace clang;
59 
60 enum TypeDiagSelector {
61   TDS_Function,
62   TDS_Pointer,
63   TDS_ObjCObjOrBlock
64 };
65 
66 /// isOmittedBlockReturnType - Return true if this declarator is missing a
67 /// return type because this is a omitted return type on a block literal.
68 static bool isOmittedBlockReturnType(const Declarator &D) {
69   if (D.getContext() != DeclaratorContext::BlockLiteral ||
70       D.getDeclSpec().hasTypeSpecifier())
71     return false;
72 
73   if (D.getNumTypeObjects() == 0)
74     return true;   // ^{ ... }
75 
76   if (D.getNumTypeObjects() == 1 &&
77       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
78     return true;   // ^(int X, float Y) { ... }
79 
80   return false;
81 }
82 
83 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
84 /// doesn't apply to the given type.
85 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
86                                      QualType type) {
87   TypeDiagSelector WhichType;
88   bool useExpansionLoc = true;
89   switch (attr.getKind()) {
90   case ParsedAttr::AT_ObjCGC:
91     WhichType = TDS_Pointer;
92     break;
93   case ParsedAttr::AT_ObjCOwnership:
94     WhichType = TDS_ObjCObjOrBlock;
95     break;
96   default:
97     // Assume everything else was a function attribute.
98     WhichType = TDS_Function;
99     useExpansionLoc = false;
100     break;
101   }
102 
103   SourceLocation loc = attr.getLoc();
104   StringRef name = attr.getAttrName()->getName();
105 
106   // The GC attributes are usually written with macros;  special-case them.
107   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
108                                           : nullptr;
109   if (useExpansionLoc && loc.isMacroID() && II) {
110     if (II->isStr("strong")) {
111       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
112     } else if (II->isStr("weak")) {
113       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
114     }
115   }
116 
117   S.Diag(loc, attr.isRegularKeywordAttribute()
118                   ? diag::err_type_attribute_wrong_type
119                   : diag::warn_type_attribute_wrong_type)
120       << name << WhichType << type;
121 }
122 
123 // objc_gc applies to Objective-C pointers or, otherwise, to the
124 // smallest available pointer type (i.e. 'void*' in 'void**').
125 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
126   case ParsedAttr::AT_ObjCGC:                                                  \
127   case ParsedAttr::AT_ObjCOwnership
128 
129 // Calling convention attributes.
130 #define CALLING_CONV_ATTRS_CASELIST                                            \
131   case ParsedAttr::AT_CDecl:                                                   \
132   case ParsedAttr::AT_FastCall:                                                \
133   case ParsedAttr::AT_StdCall:                                                 \
134   case ParsedAttr::AT_ThisCall:                                                \
135   case ParsedAttr::AT_RegCall:                                                 \
136   case ParsedAttr::AT_Pascal:                                                  \
137   case ParsedAttr::AT_SwiftCall:                                               \
138   case ParsedAttr::AT_SwiftAsyncCall:                                          \
139   case ParsedAttr::AT_VectorCall:                                              \
140   case ParsedAttr::AT_AArch64VectorPcs:                                        \
141   case ParsedAttr::AT_AArch64SVEPcs:                                           \
142   case ParsedAttr::AT_AMDGPUKernelCall:                                        \
143   case ParsedAttr::AT_MSABI:                                                   \
144   case ParsedAttr::AT_SysVABI:                                                 \
145   case ParsedAttr::AT_Pcs:                                                     \
146   case ParsedAttr::AT_IntelOclBicc:                                            \
147   case ParsedAttr::AT_PreserveMost:                                            \
148   case ParsedAttr::AT_PreserveAll:                                             \
149   case ParsedAttr::AT_M68kRTD:                                                 \
150   case ParsedAttr::AT_PreserveNone:                                            \
151   case ParsedAttr::AT_RISCVVectorCC
152 
153 // Function type attributes.
154 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
155   case ParsedAttr::AT_NSReturnsRetained:                                       \
156   case ParsedAttr::AT_NoReturn:                                                \
157   case ParsedAttr::AT_NonBlocking:                                             \
158   case ParsedAttr::AT_NonAllocating:                                           \
159   case ParsedAttr::AT_Blocking:                                                \
160   case ParsedAttr::AT_Allocating:                                              \
161   case ParsedAttr::AT_Regparm:                                                 \
162   case ParsedAttr::AT_CmseNSCall:                                              \
163   case ParsedAttr::AT_ArmStreaming:                                            \
164   case ParsedAttr::AT_ArmStreamingCompatible:                                  \
165   case ParsedAttr::AT_ArmPreserves:                                            \
166   case ParsedAttr::AT_ArmIn:                                                   \
167   case ParsedAttr::AT_ArmOut:                                                  \
168   case ParsedAttr::AT_ArmInOut:                                                \
169   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
170   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
171     CALLING_CONV_ATTRS_CASELIST
172 
173 // Microsoft-specific type qualifiers.
174 #define MS_TYPE_ATTRS_CASELIST                                                 \
175   case ParsedAttr::AT_Ptr32:                                                   \
176   case ParsedAttr::AT_Ptr64:                                                   \
177   case ParsedAttr::AT_SPtr:                                                    \
178   case ParsedAttr::AT_UPtr
179 
180 // Nullability qualifiers.
181 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
182   case ParsedAttr::AT_TypeNonNull:                                             \
183   case ParsedAttr::AT_TypeNullable:                                            \
184   case ParsedAttr::AT_TypeNullableResult:                                      \
185   case ParsedAttr::AT_TypeNullUnspecified
186 
187 namespace {
188   /// An object which stores processing state for the entire
189   /// GetTypeForDeclarator process.
190   class TypeProcessingState {
191     Sema &sema;
192 
193     /// The declarator being processed.
194     Declarator &declarator;
195 
196     /// The index of the declarator chunk we're currently processing.
197     /// May be the total number of valid chunks, indicating the
198     /// DeclSpec.
199     unsigned chunkIndex;
200 
201     /// The original set of attributes on the DeclSpec.
202     SmallVector<ParsedAttr *, 2> savedAttrs;
203 
204     /// A list of attributes to diagnose the uselessness of when the
205     /// processing is complete.
206     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
207 
208     /// Attributes corresponding to AttributedTypeLocs that we have not yet
209     /// populated.
210     // FIXME: The two-phase mechanism by which we construct Types and fill
211     // their TypeLocs makes it hard to correctly assign these. We keep the
212     // attributes in creation order as an attempt to make them line up
213     // properly.
214     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
215     SmallVector<TypeAttrPair, 8> AttrsForTypes;
216     bool AttrsForTypesSorted = true;
217 
218     /// MacroQualifiedTypes mapping to macro expansion locations that will be
219     /// stored in a MacroQualifiedTypeLoc.
220     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
221 
222     /// Flag to indicate we parsed a noderef attribute. This is used for
223     /// validating that noderef was used on a pointer or array.
224     bool parsedNoDeref;
225 
226     // Flag to indicate that we already parsed a HLSL parameter modifier
227     // attribute. This prevents double-mutating the type.
228     bool ParsedHLSLParamMod;
229 
230   public:
231     TypeProcessingState(Sema &sema, Declarator &declarator)
232         : sema(sema), declarator(declarator),
233           chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false),
234           ParsedHLSLParamMod(false) {}
235 
236     Sema &getSema() const {
237       return sema;
238     }
239 
240     Declarator &getDeclarator() const {
241       return declarator;
242     }
243 
244     bool isProcessingDeclSpec() const {
245       return chunkIndex == declarator.getNumTypeObjects();
246     }
247 
248     unsigned getCurrentChunkIndex() const {
249       return chunkIndex;
250     }
251 
252     void setCurrentChunkIndex(unsigned idx) {
253       assert(idx <= declarator.getNumTypeObjects());
254       chunkIndex = idx;
255     }
256 
257     ParsedAttributesView &getCurrentAttributes() const {
258       if (isProcessingDeclSpec())
259         return getMutableDeclSpec().getAttributes();
260       return declarator.getTypeObject(chunkIndex).getAttrs();
261     }
262 
263     /// Save the current set of attributes on the DeclSpec.
264     void saveDeclSpecAttrs() {
265       // Don't try to save them multiple times.
266       if (!savedAttrs.empty())
267         return;
268 
269       DeclSpec &spec = getMutableDeclSpec();
270       llvm::append_range(savedAttrs,
271                          llvm::make_pointer_range(spec.getAttributes()));
272     }
273 
274     /// Record that we had nowhere to put the given type attribute.
275     /// We will diagnose such attributes later.
276     void addIgnoredTypeAttr(ParsedAttr &attr) {
277       ignoredTypeAttrs.push_back(&attr);
278     }
279 
280     /// Diagnose all the ignored type attributes, given that the
281     /// declarator worked out to the given type.
282     void diagnoseIgnoredTypeAttrs(QualType type) const {
283       for (auto *Attr : ignoredTypeAttrs)
284         diagnoseBadTypeAttribute(getSema(), *Attr, type);
285     }
286 
287     /// Get an attributed type for the given attribute, and remember the Attr
288     /// object so that we can attach it to the AttributedTypeLoc.
289     QualType getAttributedType(Attr *A, QualType ModifiedType,
290                                QualType EquivType) {
291       QualType T =
292           sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
293       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
294       AttrsForTypesSorted = false;
295       return T;
296     }
297 
298     /// Get a BTFTagAttributed type for the btf_type_tag attribute.
299     QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
300                                      QualType WrappedType) {
301       return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
302     }
303 
304     /// Completely replace the \c auto in \p TypeWithAuto by
305     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
306     /// necessary.
307     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
308       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
309       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
310         // Attributed type still should be an attributed type after replacement.
311         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
312         for (TypeAttrPair &A : AttrsForTypes) {
313           if (A.first == AttrTy)
314             A.first = NewAttrTy;
315         }
316         AttrsForTypesSorted = false;
317       }
318       return T;
319     }
320 
321     /// Extract and remove the Attr* for a given attributed type.
322     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
323       if (!AttrsForTypesSorted) {
324         llvm::stable_sort(AttrsForTypes, llvm::less_first());
325         AttrsForTypesSorted = true;
326       }
327 
328       // FIXME: This is quadratic if we have lots of reuses of the same
329       // attributed type.
330       for (auto It = std::partition_point(
331                AttrsForTypes.begin(), AttrsForTypes.end(),
332                [=](const TypeAttrPair &A) { return A.first < AT; });
333            It != AttrsForTypes.end() && It->first == AT; ++It) {
334         if (It->second) {
335           const Attr *Result = It->second;
336           It->second = nullptr;
337           return Result;
338         }
339       }
340 
341       llvm_unreachable("no Attr* for AttributedType*");
342     }
343 
344     SourceLocation
345     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
346       auto FoundLoc = LocsForMacros.find(MQT);
347       assert(FoundLoc != LocsForMacros.end() &&
348              "Unable to find macro expansion location for MacroQualifedType");
349       return FoundLoc->second;
350     }
351 
352     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
353                                               SourceLocation Loc) {
354       LocsForMacros[MQT] = Loc;
355     }
356 
357     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
358 
359     bool didParseNoDeref() const { return parsedNoDeref; }
360 
361     void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; }
362 
363     bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; }
364 
365     ~TypeProcessingState() {
366       if (savedAttrs.empty())
367         return;
368 
369       getMutableDeclSpec().getAttributes().clearListOnly();
370       for (ParsedAttr *AL : savedAttrs)
371         getMutableDeclSpec().getAttributes().addAtEnd(AL);
372     }
373 
374   private:
375     DeclSpec &getMutableDeclSpec() const {
376       return const_cast<DeclSpec&>(declarator.getDeclSpec());
377     }
378   };
379 } // end anonymous namespace
380 
381 static void moveAttrFromListToList(ParsedAttr &attr,
382                                    ParsedAttributesView &fromList,
383                                    ParsedAttributesView &toList) {
384   fromList.remove(&attr);
385   toList.addAtEnd(&attr);
386 }
387 
388 /// The location of a type attribute.
389 enum TypeAttrLocation {
390   /// The attribute is in the decl-specifier-seq.
391   TAL_DeclSpec,
392   /// The attribute is part of a DeclaratorChunk.
393   TAL_DeclChunk,
394   /// The attribute is immediately after the declaration's name.
395   TAL_DeclName
396 };
397 
398 static void
399 processTypeAttrs(TypeProcessingState &state, QualType &type,
400                  TypeAttrLocation TAL, const ParsedAttributesView &attrs,
401                  CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
402 
403 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
404                                    QualType &type, CUDAFunctionTarget CFT);
405 
406 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
407                                              ParsedAttr &attr, QualType &type);
408 
409 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
410                                  QualType &type);
411 
412 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
413                                         ParsedAttr &attr, QualType &type);
414 
415 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
416                                       ParsedAttr &attr, QualType &type) {
417   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
418     return handleObjCGCTypeAttr(state, attr, type);
419   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
420   return handleObjCOwnershipTypeAttr(state, attr, type);
421 }
422 
423 /// Given the index of a declarator chunk, check whether that chunk
424 /// directly specifies the return type of a function and, if so, find
425 /// an appropriate place for it.
426 ///
427 /// \param i - a notional index which the search will start
428 ///   immediately inside
429 ///
430 /// \param onlyBlockPointers Whether we should only look into block
431 /// pointer types (vs. all pointer types).
432 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
433                                                 unsigned i,
434                                                 bool onlyBlockPointers) {
435   assert(i <= declarator.getNumTypeObjects());
436 
437   DeclaratorChunk *result = nullptr;
438 
439   // First, look inwards past parens for a function declarator.
440   for (; i != 0; --i) {
441     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
442     switch (fnChunk.Kind) {
443     case DeclaratorChunk::Paren:
444       continue;
445 
446     // If we find anything except a function, bail out.
447     case DeclaratorChunk::Pointer:
448     case DeclaratorChunk::BlockPointer:
449     case DeclaratorChunk::Array:
450     case DeclaratorChunk::Reference:
451     case DeclaratorChunk::MemberPointer:
452     case DeclaratorChunk::Pipe:
453       return result;
454 
455     // If we do find a function declarator, scan inwards from that,
456     // looking for a (block-)pointer declarator.
457     case DeclaratorChunk::Function:
458       for (--i; i != 0; --i) {
459         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
460         switch (ptrChunk.Kind) {
461         case DeclaratorChunk::Paren:
462         case DeclaratorChunk::Array:
463         case DeclaratorChunk::Function:
464         case DeclaratorChunk::Reference:
465         case DeclaratorChunk::Pipe:
466           continue;
467 
468         case DeclaratorChunk::MemberPointer:
469         case DeclaratorChunk::Pointer:
470           if (onlyBlockPointers)
471             continue;
472 
473           [[fallthrough]];
474 
475         case DeclaratorChunk::BlockPointer:
476           result = &ptrChunk;
477           goto continue_outer;
478         }
479         llvm_unreachable("bad declarator chunk kind");
480       }
481 
482       // If we run out of declarators doing that, we're done.
483       return result;
484     }
485     llvm_unreachable("bad declarator chunk kind");
486 
487     // Okay, reconsider from our new point.
488   continue_outer: ;
489   }
490 
491   // Ran out of chunks, bail out.
492   return result;
493 }
494 
495 /// Given that an objc_gc attribute was written somewhere on a
496 /// declaration *other* than on the declarator itself (for which, use
497 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
498 /// didn't apply in whatever position it was written in, try to move
499 /// it to a more appropriate position.
500 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
501                                           ParsedAttr &attr, QualType type) {
502   Declarator &declarator = state.getDeclarator();
503 
504   // Move it to the outermost normal or block pointer declarator.
505   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
506     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
507     switch (chunk.Kind) {
508     case DeclaratorChunk::Pointer:
509     case DeclaratorChunk::BlockPointer: {
510       // But don't move an ARC ownership attribute to the return type
511       // of a block.
512       DeclaratorChunk *destChunk = nullptr;
513       if (state.isProcessingDeclSpec() &&
514           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
515         destChunk = maybeMovePastReturnType(declarator, i - 1,
516                                             /*onlyBlockPointers=*/true);
517       if (!destChunk) destChunk = &chunk;
518 
519       moveAttrFromListToList(attr, state.getCurrentAttributes(),
520                              destChunk->getAttrs());
521       return;
522     }
523 
524     case DeclaratorChunk::Paren:
525     case DeclaratorChunk::Array:
526       continue;
527 
528     // We may be starting at the return type of a block.
529     case DeclaratorChunk::Function:
530       if (state.isProcessingDeclSpec() &&
531           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
532         if (DeclaratorChunk *dest = maybeMovePastReturnType(
533                                       declarator, i,
534                                       /*onlyBlockPointers=*/true)) {
535           moveAttrFromListToList(attr, state.getCurrentAttributes(),
536                                  dest->getAttrs());
537           return;
538         }
539       }
540       goto error;
541 
542     // Don't walk through these.
543     case DeclaratorChunk::Reference:
544     case DeclaratorChunk::MemberPointer:
545     case DeclaratorChunk::Pipe:
546       goto error;
547     }
548   }
549  error:
550 
551   diagnoseBadTypeAttribute(state.getSema(), attr, type);
552 }
553 
554 /// Distribute an objc_gc type attribute that was written on the
555 /// declarator.
556 static void distributeObjCPointerTypeAttrFromDeclarator(
557     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
558   Declarator &declarator = state.getDeclarator();
559 
560   // objc_gc goes on the innermost pointer to something that's not a
561   // pointer.
562   unsigned innermost = -1U;
563   bool considerDeclSpec = true;
564   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
565     DeclaratorChunk &chunk = declarator.getTypeObject(i);
566     switch (chunk.Kind) {
567     case DeclaratorChunk::Pointer:
568     case DeclaratorChunk::BlockPointer:
569       innermost = i;
570       continue;
571 
572     case DeclaratorChunk::Reference:
573     case DeclaratorChunk::MemberPointer:
574     case DeclaratorChunk::Paren:
575     case DeclaratorChunk::Array:
576     case DeclaratorChunk::Pipe:
577       continue;
578 
579     case DeclaratorChunk::Function:
580       considerDeclSpec = false;
581       goto done;
582     }
583   }
584  done:
585 
586   // That might actually be the decl spec if we weren't blocked by
587   // anything in the declarator.
588   if (considerDeclSpec) {
589     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
590       // Splice the attribute into the decl spec.  Prevents the
591       // attribute from being applied multiple times and gives
592       // the source-location-filler something to work with.
593       state.saveDeclSpecAttrs();
594       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
595           declarator.getAttributes(), &attr);
596       return;
597     }
598   }
599 
600   // Otherwise, if we found an appropriate chunk, splice the attribute
601   // into it.
602   if (innermost != -1U) {
603     moveAttrFromListToList(attr, declarator.getAttributes(),
604                            declarator.getTypeObject(innermost).getAttrs());
605     return;
606   }
607 
608   // Otherwise, diagnose when we're done building the type.
609   declarator.getAttributes().remove(&attr);
610   state.addIgnoredTypeAttr(attr);
611 }
612 
613 /// A function type attribute was written somewhere in a declaration
614 /// *other* than on the declarator itself or in the decl spec.  Given
615 /// that it didn't apply in whatever position it was written in, try
616 /// to move it to a more appropriate position.
617 static void distributeFunctionTypeAttr(TypeProcessingState &state,
618                                        ParsedAttr &attr, QualType type) {
619   Declarator &declarator = state.getDeclarator();
620 
621   // Try to push the attribute from the return type of a function to
622   // the function itself.
623   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
624     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
625     switch (chunk.Kind) {
626     case DeclaratorChunk::Function:
627       moveAttrFromListToList(attr, state.getCurrentAttributes(),
628                              chunk.getAttrs());
629       return;
630 
631     case DeclaratorChunk::Paren:
632     case DeclaratorChunk::Pointer:
633     case DeclaratorChunk::BlockPointer:
634     case DeclaratorChunk::Array:
635     case DeclaratorChunk::Reference:
636     case DeclaratorChunk::MemberPointer:
637     case DeclaratorChunk::Pipe:
638       continue;
639     }
640   }
641 
642   diagnoseBadTypeAttribute(state.getSema(), attr, type);
643 }
644 
645 /// Try to distribute a function type attribute to the innermost
646 /// function chunk or type.  Returns true if the attribute was
647 /// distributed, false if no location was found.
648 static bool distributeFunctionTypeAttrToInnermost(
649     TypeProcessingState &state, ParsedAttr &attr,
650     ParsedAttributesView &attrList, QualType &declSpecType,
651     CUDAFunctionTarget CFT) {
652   Declarator &declarator = state.getDeclarator();
653 
654   // Put it on the innermost function chunk, if there is one.
655   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
656     DeclaratorChunk &chunk = declarator.getTypeObject(i);
657     if (chunk.Kind != DeclaratorChunk::Function) continue;
658 
659     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
660     return true;
661   }
662 
663   return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
664 }
665 
666 /// A function type attribute was written in the decl spec.  Try to
667 /// apply it somewhere.
668 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
669                                                    ParsedAttr &attr,
670                                                    QualType &declSpecType,
671                                                    CUDAFunctionTarget CFT) {
672   state.saveDeclSpecAttrs();
673 
674   // Try to distribute to the innermost.
675   if (distributeFunctionTypeAttrToInnermost(
676           state, attr, state.getCurrentAttributes(), declSpecType, CFT))
677     return;
678 
679   // If that failed, diagnose the bad attribute when the declarator is
680   // fully built.
681   state.addIgnoredTypeAttr(attr);
682 }
683 
684 /// A function type attribute was written on the declarator or declaration.
685 /// Try to apply it somewhere.
686 /// `Attrs` is the attribute list containing the declaration (either of the
687 /// declarator or the declaration).
688 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
689                                                      ParsedAttr &attr,
690                                                      QualType &declSpecType,
691                                                      CUDAFunctionTarget CFT) {
692   Declarator &declarator = state.getDeclarator();
693 
694   // Try to distribute to the innermost.
695   if (distributeFunctionTypeAttrToInnermost(
696           state, attr, declarator.getAttributes(), declSpecType, CFT))
697     return;
698 
699   // If that failed, diagnose the bad attribute when the declarator is
700   // fully built.
701   declarator.getAttributes().remove(&attr);
702   state.addIgnoredTypeAttr(attr);
703 }
704 
705 /// Given that there are attributes written on the declarator or declaration
706 /// itself, try to distribute any type attributes to the appropriate
707 /// declarator chunk.
708 ///
709 /// These are attributes like the following:
710 ///   int f ATTR;
711 ///   int (f ATTR)();
712 /// but not necessarily this:
713 ///   int f() ATTR;
714 ///
715 /// `Attrs` is the attribute list containing the declaration (either of the
716 /// declarator or the declaration).
717 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
718                                               QualType &declSpecType,
719                                               CUDAFunctionTarget CFT) {
720   // The called functions in this loop actually remove things from the current
721   // list, so iterating over the existing list isn't possible.  Instead, make a
722   // non-owning copy and iterate over that.
723   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
724   for (ParsedAttr &attr : AttrsCopy) {
725     // Do not distribute [[]] attributes. They have strict rules for what
726     // they appertain to.
727     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
728       continue;
729 
730     switch (attr.getKind()) {
731     OBJC_POINTER_TYPE_ATTRS_CASELIST:
732       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
733       break;
734 
735     FUNCTION_TYPE_ATTRS_CASELIST:
736       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
737       break;
738 
739     MS_TYPE_ATTRS_CASELIST:
740       // Microsoft type attributes cannot go after the declarator-id.
741       continue;
742 
743     NULLABILITY_TYPE_ATTRS_CASELIST:
744       // Nullability specifiers cannot go after the declarator-id.
745 
746     // Objective-C __kindof does not get distributed.
747     case ParsedAttr::AT_ObjCKindOf:
748       continue;
749 
750     default:
751       break;
752     }
753   }
754 }
755 
756 /// Add a synthetic '()' to a block-literal declarator if it is
757 /// required, given the return type.
758 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
759                                           QualType declSpecType) {
760   Declarator &declarator = state.getDeclarator();
761 
762   // First, check whether the declarator would produce a function,
763   // i.e. whether the innermost semantic chunk is a function.
764   if (declarator.isFunctionDeclarator()) {
765     // If so, make that declarator a prototyped declarator.
766     declarator.getFunctionTypeInfo().hasPrototype = true;
767     return;
768   }
769 
770   // If there are any type objects, the type as written won't name a
771   // function, regardless of the decl spec type.  This is because a
772   // block signature declarator is always an abstract-declarator, and
773   // abstract-declarators can't just be parentheses chunks.  Therefore
774   // we need to build a function chunk unless there are no type
775   // objects and the decl spec type is a function.
776   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
777     return;
778 
779   // Note that there *are* cases with invalid declarators where
780   // declarators consist solely of parentheses.  In general, these
781   // occur only in failed efforts to make function declarators, so
782   // faking up the function chunk is still the right thing to do.
783 
784   // Otherwise, we need to fake up a function declarator.
785   SourceLocation loc = declarator.getBeginLoc();
786 
787   // ...and *prepend* it to the declarator.
788   SourceLocation NoLoc;
789   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
790       /*HasProto=*/true,
791       /*IsAmbiguous=*/false,
792       /*LParenLoc=*/NoLoc,
793       /*ArgInfo=*/nullptr,
794       /*NumParams=*/0,
795       /*EllipsisLoc=*/NoLoc,
796       /*RParenLoc=*/NoLoc,
797       /*RefQualifierIsLvalueRef=*/true,
798       /*RefQualifierLoc=*/NoLoc,
799       /*MutableLoc=*/NoLoc, EST_None,
800       /*ESpecRange=*/SourceRange(),
801       /*Exceptions=*/nullptr,
802       /*ExceptionRanges=*/nullptr,
803       /*NumExceptions=*/0,
804       /*NoexceptExpr=*/nullptr,
805       /*ExceptionSpecTokens=*/nullptr,
806       /*DeclsInPrototype=*/std::nullopt, loc, loc, declarator));
807 
808   // For consistency, make sure the state still has us as processing
809   // the decl spec.
810   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
811   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
812 }
813 
814 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
815                                             unsigned &TypeQuals,
816                                             QualType TypeSoFar,
817                                             unsigned RemoveTQs,
818                                             unsigned DiagID) {
819   // If this occurs outside a template instantiation, warn the user about
820   // it; they probably didn't mean to specify a redundant qualifier.
821   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
822   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
823                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
824                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
825                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
826     if (!(RemoveTQs & Qual.first))
827       continue;
828 
829     if (!S.inTemplateInstantiation()) {
830       if (TypeQuals & Qual.first)
831         S.Diag(Qual.second, DiagID)
832           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
833           << FixItHint::CreateRemoval(Qual.second);
834     }
835 
836     TypeQuals &= ~Qual.first;
837   }
838 }
839 
840 /// Return true if this is omitted block return type. Also check type
841 /// attributes and type qualifiers when returning true.
842 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
843                                         QualType Result) {
844   if (!isOmittedBlockReturnType(declarator))
845     return false;
846 
847   // Warn if we see type attributes for omitted return type on a block literal.
848   SmallVector<ParsedAttr *, 2> ToBeRemoved;
849   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
850     if (AL.isInvalid() || !AL.isTypeAttr())
851       continue;
852     S.Diag(AL.getLoc(),
853            diag::warn_block_literal_attributes_on_omitted_return_type)
854         << AL;
855     ToBeRemoved.push_back(&AL);
856   }
857   // Remove bad attributes from the list.
858   for (ParsedAttr *AL : ToBeRemoved)
859     declarator.getMutableDeclSpec().getAttributes().remove(AL);
860 
861   // Warn if we see type qualifiers for omitted return type on a block literal.
862   const DeclSpec &DS = declarator.getDeclSpec();
863   unsigned TypeQuals = DS.getTypeQualifiers();
864   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
865       diag::warn_block_literal_qualifiers_on_omitted_return_type);
866   declarator.getMutableDeclSpec().ClearTypeQualifiers();
867 
868   return true;
869 }
870 
871 static OpenCLAccessAttr::Spelling
872 getImageAccess(const ParsedAttributesView &Attrs) {
873   for (const ParsedAttr &AL : Attrs)
874     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
875       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
876   return OpenCLAccessAttr::Keyword_read_only;
877 }
878 
879 static UnaryTransformType::UTTKind
880 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
881   switch (SwitchTST) {
882 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
883   case TST_##Trait:                                                            \
884     return UnaryTransformType::Enum;
885 #include "clang/Basic/TransformTypeTraits.def"
886   default:
887     llvm_unreachable("attempted to parse a non-unary transform builtin");
888   }
889 }
890 
891 /// Convert the specified declspec to the appropriate type
892 /// object.
893 /// \param state Specifies the declarator containing the declaration specifier
894 /// to be converted, along with other associated processing state.
895 /// \returns The type described by the declaration specifiers.  This function
896 /// never returns null.
897 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
898   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
899   // checking.
900 
901   Sema &S = state.getSema();
902   Declarator &declarator = state.getDeclarator();
903   DeclSpec &DS = declarator.getMutableDeclSpec();
904   SourceLocation DeclLoc = declarator.getIdentifierLoc();
905   if (DeclLoc.isInvalid())
906     DeclLoc = DS.getBeginLoc();
907 
908   ASTContext &Context = S.Context;
909 
910   QualType Result;
911   switch (DS.getTypeSpecType()) {
912   case DeclSpec::TST_void:
913     Result = Context.VoidTy;
914     break;
915   case DeclSpec::TST_char:
916     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
917       Result = Context.CharTy;
918     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
919       Result = Context.SignedCharTy;
920     else {
921       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
922              "Unknown TSS value");
923       Result = Context.UnsignedCharTy;
924     }
925     break;
926   case DeclSpec::TST_wchar:
927     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
928       Result = Context.WCharTy;
929     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
930       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
931         << DS.getSpecifierName(DS.getTypeSpecType(),
932                                Context.getPrintingPolicy());
933       Result = Context.getSignedWCharType();
934     } else {
935       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
936              "Unknown TSS value");
937       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
938         << DS.getSpecifierName(DS.getTypeSpecType(),
939                                Context.getPrintingPolicy());
940       Result = Context.getUnsignedWCharType();
941     }
942     break;
943   case DeclSpec::TST_char8:
944     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
945            "Unknown TSS value");
946     Result = Context.Char8Ty;
947     break;
948   case DeclSpec::TST_char16:
949     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
950            "Unknown TSS value");
951     Result = Context.Char16Ty;
952     break;
953   case DeclSpec::TST_char32:
954     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
955            "Unknown TSS value");
956     Result = Context.Char32Ty;
957     break;
958   case DeclSpec::TST_unspecified:
959     // If this is a missing declspec in a block literal return context, then it
960     // is inferred from the return statements inside the block.
961     // The declspec is always missing in a lambda expr context; it is either
962     // specified with a trailing return type or inferred.
963     if (S.getLangOpts().CPlusPlus14 &&
964         declarator.getContext() == DeclaratorContext::LambdaExpr) {
965       // In C++1y, a lambda's implicit return type is 'auto'.
966       Result = Context.getAutoDeductType();
967       break;
968     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
969                checkOmittedBlockReturnType(S, declarator,
970                                            Context.DependentTy)) {
971       Result = Context.DependentTy;
972       break;
973     }
974 
975     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
976     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
977     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
978     // Note that the one exception to this is function definitions, which are
979     // allowed to be completely missing a declspec.  This is handled in the
980     // parser already though by it pretending to have seen an 'int' in this
981     // case.
982     if (S.getLangOpts().isImplicitIntRequired()) {
983       S.Diag(DeclLoc, diag::warn_missing_type_specifier)
984           << DS.getSourceRange()
985           << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
986     } else if (!DS.hasTypeSpecifier()) {
987       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
988       // "At least one type specifier shall be given in the declaration
989       // specifiers in each declaration, and in the specifier-qualifier list in
990       // each struct declaration and type name."
991       if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
992         S.Diag(DeclLoc, diag::err_missing_type_specifier)
993             << DS.getSourceRange();
994 
995         // When this occurs, often something is very broken with the value
996         // being declared, poison it as invalid so we don't get chains of
997         // errors.
998         declarator.setInvalidType(true);
999       } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1000                  DS.isTypeSpecPipe()) {
1001         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1002             << DS.getSourceRange();
1003         declarator.setInvalidType(true);
1004       } else {
1005         assert(S.getLangOpts().isImplicitIntAllowed() &&
1006                "implicit int is disabled?");
1007         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1008             << DS.getSourceRange()
1009             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1010       }
1011     }
1012 
1013     [[fallthrough]];
1014   case DeclSpec::TST_int: {
1015     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1016       switch (DS.getTypeSpecWidth()) {
1017       case TypeSpecifierWidth::Unspecified:
1018         Result = Context.IntTy;
1019         break;
1020       case TypeSpecifierWidth::Short:
1021         Result = Context.ShortTy;
1022         break;
1023       case TypeSpecifierWidth::Long:
1024         Result = Context.LongTy;
1025         break;
1026       case TypeSpecifierWidth::LongLong:
1027         Result = Context.LongLongTy;
1028 
1029         // 'long long' is a C99 or C++11 feature.
1030         if (!S.getLangOpts().C99) {
1031           if (S.getLangOpts().CPlusPlus)
1032             S.Diag(DS.getTypeSpecWidthLoc(),
1033                    S.getLangOpts().CPlusPlus11 ?
1034                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1035           else
1036             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1037         }
1038         break;
1039       }
1040     } else {
1041       switch (DS.getTypeSpecWidth()) {
1042       case TypeSpecifierWidth::Unspecified:
1043         Result = Context.UnsignedIntTy;
1044         break;
1045       case TypeSpecifierWidth::Short:
1046         Result = Context.UnsignedShortTy;
1047         break;
1048       case TypeSpecifierWidth::Long:
1049         Result = Context.UnsignedLongTy;
1050         break;
1051       case TypeSpecifierWidth::LongLong:
1052         Result = Context.UnsignedLongLongTy;
1053 
1054         // 'long long' is a C99 or C++11 feature.
1055         if (!S.getLangOpts().C99) {
1056           if (S.getLangOpts().CPlusPlus)
1057             S.Diag(DS.getTypeSpecWidthLoc(),
1058                    S.getLangOpts().CPlusPlus11 ?
1059                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1060           else
1061             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1062         }
1063         break;
1064       }
1065     }
1066     break;
1067   }
1068   case DeclSpec::TST_bitint: {
1069     if (!S.Context.getTargetInfo().hasBitIntType())
1070       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1071     Result =
1072         S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1073                           DS.getRepAsExpr(), DS.getBeginLoc());
1074     if (Result.isNull()) {
1075       Result = Context.IntTy;
1076       declarator.setInvalidType(true);
1077     }
1078     break;
1079   }
1080   case DeclSpec::TST_accum: {
1081     switch (DS.getTypeSpecWidth()) {
1082     case TypeSpecifierWidth::Short:
1083       Result = Context.ShortAccumTy;
1084       break;
1085     case TypeSpecifierWidth::Unspecified:
1086       Result = Context.AccumTy;
1087       break;
1088     case TypeSpecifierWidth::Long:
1089       Result = Context.LongAccumTy;
1090       break;
1091     case TypeSpecifierWidth::LongLong:
1092       llvm_unreachable("Unable to specify long long as _Accum width");
1093     }
1094 
1095     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1096       Result = Context.getCorrespondingUnsignedType(Result);
1097 
1098     if (DS.isTypeSpecSat())
1099       Result = Context.getCorrespondingSaturatedType(Result);
1100 
1101     break;
1102   }
1103   case DeclSpec::TST_fract: {
1104     switch (DS.getTypeSpecWidth()) {
1105     case TypeSpecifierWidth::Short:
1106       Result = Context.ShortFractTy;
1107       break;
1108     case TypeSpecifierWidth::Unspecified:
1109       Result = Context.FractTy;
1110       break;
1111     case TypeSpecifierWidth::Long:
1112       Result = Context.LongFractTy;
1113       break;
1114     case TypeSpecifierWidth::LongLong:
1115       llvm_unreachable("Unable to specify long long as _Fract width");
1116     }
1117 
1118     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1119       Result = Context.getCorrespondingUnsignedType(Result);
1120 
1121     if (DS.isTypeSpecSat())
1122       Result = Context.getCorrespondingSaturatedType(Result);
1123 
1124     break;
1125   }
1126   case DeclSpec::TST_int128:
1127     if (!S.Context.getTargetInfo().hasInt128Type() &&
1128         !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1129           (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1130       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1131         << "__int128";
1132     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1133       Result = Context.UnsignedInt128Ty;
1134     else
1135       Result = Context.Int128Ty;
1136     break;
1137   case DeclSpec::TST_float16:
1138     // CUDA host and device may have different _Float16 support, therefore
1139     // do not diagnose _Float16 usage to avoid false alarm.
1140     // ToDo: more precise diagnostics for CUDA.
1141     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1142         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1143       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1144         << "_Float16";
1145     Result = Context.Float16Ty;
1146     break;
1147   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1148   case DeclSpec::TST_BFloat16:
1149     if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1150         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1151         !S.getLangOpts().SYCLIsDevice)
1152       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1153     Result = Context.BFloat16Ty;
1154     break;
1155   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1156   case DeclSpec::TST_double:
1157     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1158       Result = Context.LongDoubleTy;
1159     else
1160       Result = Context.DoubleTy;
1161     if (S.getLangOpts().OpenCL) {
1162       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1163         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1164             << 0 << Result
1165             << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1166                     ? "cl_khr_fp64 and __opencl_c_fp64"
1167                     : "cl_khr_fp64");
1168       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1169         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1170     }
1171     break;
1172   case DeclSpec::TST_float128:
1173     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1174         !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1175         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1176       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1177         << "__float128";
1178     Result = Context.Float128Ty;
1179     break;
1180   case DeclSpec::TST_ibm128:
1181     if (!S.Context.getTargetInfo().hasIbm128Type() &&
1182         !S.getLangOpts().SYCLIsDevice &&
1183         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1184       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1185     Result = Context.Ibm128Ty;
1186     break;
1187   case DeclSpec::TST_bool:
1188     Result = Context.BoolTy; // _Bool or bool
1189     break;
1190   case DeclSpec::TST_decimal32:    // _Decimal32
1191   case DeclSpec::TST_decimal64:    // _Decimal64
1192   case DeclSpec::TST_decimal128:   // _Decimal128
1193     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1194     Result = Context.IntTy;
1195     declarator.setInvalidType(true);
1196     break;
1197   case DeclSpec::TST_class:
1198   case DeclSpec::TST_enum:
1199   case DeclSpec::TST_union:
1200   case DeclSpec::TST_struct:
1201   case DeclSpec::TST_interface: {
1202     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1203     if (!D) {
1204       // This can happen in C++ with ambiguous lookups.
1205       Result = Context.IntTy;
1206       declarator.setInvalidType(true);
1207       break;
1208     }
1209 
1210     // If the type is deprecated or unavailable, diagnose it.
1211     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1212 
1213     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1214            DS.getTypeSpecComplex() == 0 &&
1215            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1216            "No qualifiers on tag names!");
1217 
1218     // TypeQuals handled by caller.
1219     Result = Context.getTypeDeclType(D);
1220 
1221     // In both C and C++, make an ElaboratedType.
1222     ElaboratedTypeKeyword Keyword
1223       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1224     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1225                                  DS.isTypeSpecOwned() ? D : nullptr);
1226     break;
1227   }
1228   case DeclSpec::TST_typename: {
1229     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1230            DS.getTypeSpecComplex() == 0 &&
1231            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1232            "Can't handle qualifiers on typedef names yet!");
1233     Result = S.GetTypeFromParser(DS.getRepAsType());
1234     if (Result.isNull()) {
1235       declarator.setInvalidType(true);
1236     }
1237 
1238     // TypeQuals handled by caller.
1239     break;
1240   }
1241   case DeclSpec::TST_typeof_unqualType:
1242   case DeclSpec::TST_typeofType:
1243     // FIXME: Preserve type source info.
1244     Result = S.GetTypeFromParser(DS.getRepAsType());
1245     assert(!Result.isNull() && "Didn't get a type for typeof?");
1246     if (!Result->isDependentType())
1247       if (const TagType *TT = Result->getAs<TagType>())
1248         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1249     // TypeQuals handled by caller.
1250     Result = Context.getTypeOfType(
1251         Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1252                     ? TypeOfKind::Unqualified
1253                     : TypeOfKind::Qualified);
1254     break;
1255   case DeclSpec::TST_typeof_unqualExpr:
1256   case DeclSpec::TST_typeofExpr: {
1257     Expr *E = DS.getRepAsExpr();
1258     assert(E && "Didn't get an expression for typeof?");
1259     // TypeQuals handled by caller.
1260     Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1261                                               DeclSpec::TST_typeof_unqualExpr
1262                                           ? TypeOfKind::Unqualified
1263                                           : TypeOfKind::Qualified);
1264     if (Result.isNull()) {
1265       Result = Context.IntTy;
1266       declarator.setInvalidType(true);
1267     }
1268     break;
1269   }
1270   case DeclSpec::TST_decltype: {
1271     Expr *E = DS.getRepAsExpr();
1272     assert(E && "Didn't get an expression for decltype?");
1273     // TypeQuals handled by caller.
1274     Result = S.BuildDecltypeType(E);
1275     if (Result.isNull()) {
1276       Result = Context.IntTy;
1277       declarator.setInvalidType(true);
1278     }
1279     break;
1280   }
1281   case DeclSpec::TST_typename_pack_indexing: {
1282     Expr *E = DS.getPackIndexingExpr();
1283     assert(E && "Didn't get an expression for pack indexing");
1284     QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1285     Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1286                                      DS.getEllipsisLoc());
1287     if (Result.isNull()) {
1288       declarator.setInvalidType(true);
1289       Result = Context.IntTy;
1290     }
1291     break;
1292   }
1293 
1294 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1295 #include "clang/Basic/TransformTypeTraits.def"
1296     Result = S.GetTypeFromParser(DS.getRepAsType());
1297     assert(!Result.isNull() && "Didn't get a type for the transformation?");
1298     Result = S.BuildUnaryTransformType(
1299         Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1300         DS.getTypeSpecTypeLoc());
1301     if (Result.isNull()) {
1302       Result = Context.IntTy;
1303       declarator.setInvalidType(true);
1304     }
1305     break;
1306 
1307   case DeclSpec::TST_auto:
1308   case DeclSpec::TST_decltype_auto: {
1309     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1310                       ? AutoTypeKeyword::DecltypeAuto
1311                       : AutoTypeKeyword::Auto;
1312 
1313     ConceptDecl *TypeConstraintConcept = nullptr;
1314     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1315     if (DS.isConstrainedAuto()) {
1316       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1317         TypeConstraintConcept =
1318             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1319         TemplateArgumentListInfo TemplateArgsInfo;
1320         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1321         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1322         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1323                                            TemplateId->NumArgs);
1324         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1325         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1326           TemplateArgs.push_back(ArgLoc.getArgument());
1327       } else {
1328         declarator.setInvalidType(true);
1329       }
1330     }
1331     Result = S.Context.getAutoType(QualType(), AutoKW,
1332                                    /*IsDependent*/ false, /*IsPack=*/false,
1333                                    TypeConstraintConcept, TemplateArgs);
1334     break;
1335   }
1336 
1337   case DeclSpec::TST_auto_type:
1338     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1339     break;
1340 
1341   case DeclSpec::TST_unknown_anytype:
1342     Result = Context.UnknownAnyTy;
1343     break;
1344 
1345   case DeclSpec::TST_atomic:
1346     Result = S.GetTypeFromParser(DS.getRepAsType());
1347     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1348     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1349     if (Result.isNull()) {
1350       Result = Context.IntTy;
1351       declarator.setInvalidType(true);
1352     }
1353     break;
1354 
1355 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1356   case DeclSpec::TST_##ImgType##_t:                                            \
1357     switch (getImageAccess(DS.getAttributes())) {                              \
1358     case OpenCLAccessAttr::Keyword_write_only:                                 \
1359       Result = Context.Id##WOTy;                                               \
1360       break;                                                                   \
1361     case OpenCLAccessAttr::Keyword_read_write:                                 \
1362       Result = Context.Id##RWTy;                                               \
1363       break;                                                                   \
1364     case OpenCLAccessAttr::Keyword_read_only:                                  \
1365       Result = Context.Id##ROTy;                                               \
1366       break;                                                                   \
1367     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1368       llvm_unreachable("Spelling not yet calculated");                         \
1369     }                                                                          \
1370     break;
1371 #include "clang/Basic/OpenCLImageTypes.def"
1372 
1373 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \
1374   case DeclSpec::TST_##Name:                                                   \
1375     Result = Context.SingletonId;                                              \
1376     break;
1377 #include "clang/Basic/HLSLIntangibleTypes.def"
1378 
1379   case DeclSpec::TST_error:
1380     Result = Context.IntTy;
1381     declarator.setInvalidType(true);
1382     break;
1383   }
1384 
1385   // FIXME: we want resulting declarations to be marked invalid, but claiming
1386   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1387   // a null type.
1388   if (Result->containsErrors())
1389     declarator.setInvalidType();
1390 
1391   if (S.getLangOpts().OpenCL) {
1392     const auto &OpenCLOptions = S.getOpenCLOptions();
1393     bool IsOpenCLC30Compatible =
1394         S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1395     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1396     // support.
1397     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1398     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1399     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1400     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1401     // only when the optional feature is supported
1402     if ((Result->isImageType() || Result->isSamplerT()) &&
1403         (IsOpenCLC30Compatible &&
1404          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1405       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1406           << 0 << Result << "__opencl_c_images";
1407       declarator.setInvalidType();
1408     } else if (Result->isOCLImage3dWOType() &&
1409                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1410                                           S.getLangOpts())) {
1411       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1412           << 0 << Result
1413           << (IsOpenCLC30Compatible
1414                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1415                   : "cl_khr_3d_image_writes");
1416       declarator.setInvalidType();
1417     }
1418   }
1419 
1420   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1421                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1422 
1423   // Only fixed point types can be saturated
1424   if (DS.isTypeSpecSat() && !IsFixedPointType)
1425     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1426         << DS.getSpecifierName(DS.getTypeSpecType(),
1427                                Context.getPrintingPolicy());
1428 
1429   // Handle complex types.
1430   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1431     if (S.getLangOpts().Freestanding)
1432       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1433     Result = Context.getComplexType(Result);
1434   } else if (DS.isTypeAltiVecVector()) {
1435     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1436     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1437     VectorKind VecKind = VectorKind::AltiVecVector;
1438     if (DS.isTypeAltiVecPixel())
1439       VecKind = VectorKind::AltiVecPixel;
1440     else if (DS.isTypeAltiVecBool())
1441       VecKind = VectorKind::AltiVecBool;
1442     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1443   }
1444 
1445   // _Imaginary was a feature of C99 through C23 but was never supported in
1446   // Clang. The feature was removed in C2y, but we retain the unsupported
1447   // diagnostic for an improved user experience.
1448   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1449     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1450 
1451   // Before we process any type attributes, synthesize a block literal
1452   // function declarator if necessary.
1453   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1454     maybeSynthesizeBlockSignature(state, Result);
1455 
1456   // Apply any type attributes from the decl spec.  This may cause the
1457   // list of type attributes to be temporarily saved while the type
1458   // attributes are pushed around.
1459   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1460   if (!DS.isTypeSpecPipe()) {
1461     // We also apply declaration attributes that "slide" to the decl spec.
1462     // Ordering can be important for attributes. The decalaration attributes
1463     // come syntactically before the decl spec attributes, so we process them
1464     // in that order.
1465     ParsedAttributesView SlidingAttrs;
1466     for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1467       if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1468         SlidingAttrs.addAtEnd(&AL);
1469 
1470         // For standard syntax attributes, which would normally appertain to the
1471         // declaration here, suggest moving them to the type instead. But only
1472         // do this for our own vendor attributes; moving other vendors'
1473         // attributes might hurt portability.
1474         // There's one special case that we need to deal with here: The
1475         // `MatrixType` attribute may only be used in a typedef declaration. If
1476         // it's being used anywhere else, don't output the warning as
1477         // ProcessDeclAttributes() will output an error anyway.
1478         if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1479             !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1480               DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1481           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1482               << AL;
1483         }
1484       }
1485     }
1486     // During this call to processTypeAttrs(),
1487     // TypeProcessingState::getCurrentAttributes() will erroneously return a
1488     // reference to the DeclSpec attributes, rather than the declaration
1489     // attributes. However, this doesn't matter, as getCurrentAttributes()
1490     // is only called when distributing attributes from one attribute list
1491     // to another. Declaration attributes are always C++11 attributes, and these
1492     // are never distributed.
1493     processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1494     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1495   }
1496 
1497   // Apply const/volatile/restrict qualifiers to T.
1498   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1499     // Warn about CV qualifiers on function types.
1500     // C99 6.7.3p8:
1501     //   If the specification of a function type includes any type qualifiers,
1502     //   the behavior is undefined.
1503     // C++11 [dcl.fct]p7:
1504     //   The effect of a cv-qualifier-seq in a function declarator is not the
1505     //   same as adding cv-qualification on top of the function type. In the
1506     //   latter case, the cv-qualifiers are ignored.
1507     if (Result->isFunctionType()) {
1508       diagnoseAndRemoveTypeQualifiers(
1509           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1510           S.getLangOpts().CPlusPlus
1511               ? diag::warn_typecheck_function_qualifiers_ignored
1512               : diag::warn_typecheck_function_qualifiers_unspecified);
1513       // No diagnostic for 'restrict' or '_Atomic' applied to a
1514       // function type; we'll diagnose those later, in BuildQualifiedType.
1515     }
1516 
1517     // C++11 [dcl.ref]p1:
1518     //   Cv-qualified references are ill-formed except when the
1519     //   cv-qualifiers are introduced through the use of a typedef-name
1520     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1521     //
1522     // There don't appear to be any other contexts in which a cv-qualified
1523     // reference type could be formed, so the 'ill-formed' clause here appears
1524     // to never happen.
1525     if (TypeQuals && Result->isReferenceType()) {
1526       diagnoseAndRemoveTypeQualifiers(
1527           S, DS, TypeQuals, Result,
1528           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1529           diag::warn_typecheck_reference_qualifiers);
1530     }
1531 
1532     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1533     // than once in the same specifier-list or qualifier-list, either directly
1534     // or via one or more typedefs."
1535     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1536         && TypeQuals & Result.getCVRQualifiers()) {
1537       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1538         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1539           << "const";
1540       }
1541 
1542       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1543         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1544           << "volatile";
1545       }
1546 
1547       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1548       // produce a warning in this case.
1549     }
1550 
1551     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1552 
1553     // If adding qualifiers fails, just use the unqualified type.
1554     if (Qualified.isNull())
1555       declarator.setInvalidType(true);
1556     else
1557       Result = Qualified;
1558   }
1559 
1560   if (S.getLangOpts().HLSL)
1561     Result = S.HLSL().ProcessResourceTypeAttributes(Result);
1562 
1563   assert(!Result.isNull() && "This function should not return a null type");
1564   return Result;
1565 }
1566 
1567 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1568   if (Entity)
1569     return Entity.getAsString();
1570 
1571   return "type name";
1572 }
1573 
1574 static bool isDependentOrGNUAutoType(QualType T) {
1575   if (T->isDependentType())
1576     return true;
1577 
1578   const auto *AT = dyn_cast<AutoType>(T);
1579   return AT && AT->isGNUAutoType();
1580 }
1581 
1582 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1583                                   Qualifiers Qs, const DeclSpec *DS) {
1584   if (T.isNull())
1585     return QualType();
1586 
1587   // Ignore any attempt to form a cv-qualified reference.
1588   if (T->isReferenceType()) {
1589     Qs.removeConst();
1590     Qs.removeVolatile();
1591   }
1592 
1593   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1594   // object or incomplete types shall not be restrict-qualified."
1595   if (Qs.hasRestrict()) {
1596     unsigned DiagID = 0;
1597     QualType ProblemTy;
1598 
1599     if (T->isAnyPointerType() || T->isReferenceType() ||
1600         T->isMemberPointerType()) {
1601       QualType EltTy;
1602       if (T->isObjCObjectPointerType())
1603         EltTy = T;
1604       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1605         EltTy = PTy->getPointeeType();
1606       else
1607         EltTy = T->getPointeeType();
1608 
1609       // If we have a pointer or reference, the pointee must have an object
1610       // incomplete type.
1611       if (!EltTy->isIncompleteOrObjectType()) {
1612         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1613         ProblemTy = EltTy;
1614       }
1615     } else if (!isDependentOrGNUAutoType(T)) {
1616       // For an __auto_type variable, we may not have seen the initializer yet
1617       // and so have no idea whether the underlying type is a pointer type or
1618       // not.
1619       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1620       ProblemTy = T;
1621     }
1622 
1623     if (DiagID) {
1624       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1625       Qs.removeRestrict();
1626     }
1627   }
1628 
1629   return Context.getQualifiedType(T, Qs);
1630 }
1631 
1632 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1633                                   unsigned CVRAU, const DeclSpec *DS) {
1634   if (T.isNull())
1635     return QualType();
1636 
1637   // Ignore any attempt to form a cv-qualified reference.
1638   if (T->isReferenceType())
1639     CVRAU &=
1640         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1641 
1642   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1643   // TQ_unaligned;
1644   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1645 
1646   // C11 6.7.3/5:
1647   //   If the same qualifier appears more than once in the same
1648   //   specifier-qualifier-list, either directly or via one or more typedefs,
1649   //   the behavior is the same as if it appeared only once.
1650   //
1651   // It's not specified what happens when the _Atomic qualifier is applied to
1652   // a type specified with the _Atomic specifier, but we assume that this
1653   // should be treated as if the _Atomic qualifier appeared multiple times.
1654   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1655     // C11 6.7.3/5:
1656     //   If other qualifiers appear along with the _Atomic qualifier in a
1657     //   specifier-qualifier-list, the resulting type is the so-qualified
1658     //   atomic type.
1659     //
1660     // Don't need to worry about array types here, since _Atomic can't be
1661     // applied to such types.
1662     SplitQualType Split = T.getSplitUnqualifiedType();
1663     T = BuildAtomicType(QualType(Split.Ty, 0),
1664                         DS ? DS->getAtomicSpecLoc() : Loc);
1665     if (T.isNull())
1666       return T;
1667     Split.Quals.addCVRQualifiers(CVR);
1668     return BuildQualifiedType(T, Loc, Split.Quals);
1669   }
1670 
1671   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1672   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1673   return BuildQualifiedType(T, Loc, Q, DS);
1674 }
1675 
1676 QualType Sema::BuildParenType(QualType T) {
1677   return Context.getParenType(T);
1678 }
1679 
1680 /// Given that we're building a pointer or reference to the given
1681 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1682                                            SourceLocation loc,
1683                                            bool isReference) {
1684   // Bail out if retention is unrequired or already specified.
1685   if (!type->isObjCLifetimeType() ||
1686       type.getObjCLifetime() != Qualifiers::OCL_None)
1687     return type;
1688 
1689   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1690 
1691   // If the object type is const-qualified, we can safely use
1692   // __unsafe_unretained.  This is safe (because there are no read
1693   // barriers), and it'll be safe to coerce anything but __weak* to
1694   // the resulting type.
1695   if (type.isConstQualified()) {
1696     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1697 
1698   // Otherwise, check whether the static type does not require
1699   // retaining.  This currently only triggers for Class (possibly
1700   // protocol-qualifed, and arrays thereof).
1701   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1702     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1703 
1704   // If we are in an unevaluated context, like sizeof, skip adding a
1705   // qualification.
1706   } else if (S.isUnevaluatedContext()) {
1707     return type;
1708 
1709   // If that failed, give an error and recover using __strong.  __strong
1710   // is the option most likely to prevent spurious second-order diagnostics,
1711   // like when binding a reference to a field.
1712   } else {
1713     // These types can show up in private ivars in system headers, so
1714     // we need this to not be an error in those cases.  Instead we
1715     // want to delay.
1716     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1717       S.DelayedDiagnostics.add(
1718           sema::DelayedDiagnostic::makeForbiddenType(loc,
1719               diag::err_arc_indirect_no_ownership, type, isReference));
1720     } else {
1721       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1722     }
1723     implicitLifetime = Qualifiers::OCL_Strong;
1724   }
1725   assert(implicitLifetime && "didn't infer any lifetime!");
1726 
1727   Qualifiers qs;
1728   qs.addObjCLifetime(implicitLifetime);
1729   return S.Context.getQualifiedType(type, qs);
1730 }
1731 
1732 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1733   std::string Quals = FnTy->getMethodQuals().getAsString();
1734 
1735   switch (FnTy->getRefQualifier()) {
1736   case RQ_None:
1737     break;
1738 
1739   case RQ_LValue:
1740     if (!Quals.empty())
1741       Quals += ' ';
1742     Quals += '&';
1743     break;
1744 
1745   case RQ_RValue:
1746     if (!Quals.empty())
1747       Quals += ' ';
1748     Quals += "&&";
1749     break;
1750   }
1751 
1752   return Quals;
1753 }
1754 
1755 namespace {
1756 /// Kinds of declarator that cannot contain a qualified function type.
1757 ///
1758 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1759 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1760 ///     at the topmost level of a type.
1761 ///
1762 /// Parens and member pointers are permitted. We don't diagnose array and
1763 /// function declarators, because they don't allow function types at all.
1764 ///
1765 /// The values of this enum are used in diagnostics.
1766 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1767 } // end anonymous namespace
1768 
1769 /// Check whether the type T is a qualified function type, and if it is,
1770 /// diagnose that it cannot be contained within the given kind of declarator.
1771 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1772                                    QualifiedFunctionKind QFK) {
1773   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1774   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1775   if (!FPT ||
1776       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1777     return false;
1778 
1779   S.Diag(Loc, diag::err_compound_qualified_function_type)
1780     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1781     << getFunctionQualifiersAsString(FPT);
1782   return true;
1783 }
1784 
1785 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1786   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1787   if (!FPT ||
1788       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1789     return false;
1790 
1791   Diag(Loc, diag::err_qualified_function_typeid)
1792       << T << getFunctionQualifiersAsString(FPT);
1793   return true;
1794 }
1795 
1796 // Helper to deduce addr space of a pointee type in OpenCL mode.
1797 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1798   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1799       !PointeeType->isSamplerT() &&
1800       !PointeeType.hasAddressSpace())
1801     PointeeType = S.getASTContext().getAddrSpaceQualType(
1802         PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1803   return PointeeType;
1804 }
1805 
1806 QualType Sema::BuildPointerType(QualType T,
1807                                 SourceLocation Loc, DeclarationName Entity) {
1808   if (T->isReferenceType()) {
1809     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1810     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1811       << getPrintableNameForEntity(Entity) << T;
1812     return QualType();
1813   }
1814 
1815   if (T->isFunctionType() && getLangOpts().OpenCL &&
1816       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1817                                             getLangOpts())) {
1818     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1819     return QualType();
1820   }
1821 
1822   if (getLangOpts().HLSL && Loc.isValid()) {
1823     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1824     return QualType();
1825   }
1826 
1827   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1828     return QualType();
1829 
1830   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1831 
1832   // In ARC, it is forbidden to build pointers to unqualified pointers.
1833   if (getLangOpts().ObjCAutoRefCount)
1834     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1835 
1836   if (getLangOpts().OpenCL)
1837     T = deduceOpenCLPointeeAddrSpace(*this, T);
1838 
1839   // In WebAssembly, pointers to reference types and pointers to tables are
1840   // illegal.
1841   if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1842     if (T.isWebAssemblyReferenceType()) {
1843       Diag(Loc, diag::err_wasm_reference_pr) << 0;
1844       return QualType();
1845     }
1846 
1847     // We need to desugar the type here in case T is a ParenType.
1848     if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1849       Diag(Loc, diag::err_wasm_table_pr) << 0;
1850       return QualType();
1851     }
1852   }
1853 
1854   // Build the pointer type.
1855   return Context.getPointerType(T);
1856 }
1857 
1858 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1859                                   SourceLocation Loc,
1860                                   DeclarationName Entity) {
1861   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1862          "Unresolved overloaded function type");
1863 
1864   // C++0x [dcl.ref]p6:
1865   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1866   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1867   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1868   //   the type "lvalue reference to T", while an attempt to create the type
1869   //   "rvalue reference to cv TR" creates the type TR.
1870   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1871 
1872   // C++ [dcl.ref]p4: There shall be no references to references.
1873   //
1874   // According to C++ DR 106, references to references are only
1875   // diagnosed when they are written directly (e.g., "int & &"),
1876   // but not when they happen via a typedef:
1877   //
1878   //   typedef int& intref;
1879   //   typedef intref& intref2;
1880   //
1881   // Parser::ParseDeclaratorInternal diagnoses the case where
1882   // references are written directly; here, we handle the
1883   // collapsing of references-to-references as described in C++0x.
1884   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1885 
1886   // C++ [dcl.ref]p1:
1887   //   A declarator that specifies the type "reference to cv void"
1888   //   is ill-formed.
1889   if (T->isVoidType()) {
1890     Diag(Loc, diag::err_reference_to_void);
1891     return QualType();
1892   }
1893 
1894   if (getLangOpts().HLSL && Loc.isValid()) {
1895     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1896     return QualType();
1897   }
1898 
1899   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1900     return QualType();
1901 
1902   if (T->isFunctionType() && getLangOpts().OpenCL &&
1903       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1904                                             getLangOpts())) {
1905     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1906     return QualType();
1907   }
1908 
1909   // In ARC, it is forbidden to build references to unqualified pointers.
1910   if (getLangOpts().ObjCAutoRefCount)
1911     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1912 
1913   if (getLangOpts().OpenCL)
1914     T = deduceOpenCLPointeeAddrSpace(*this, T);
1915 
1916   // In WebAssembly, references to reference types and tables are illegal.
1917   if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1918       T.isWebAssemblyReferenceType()) {
1919     Diag(Loc, diag::err_wasm_reference_pr) << 1;
1920     return QualType();
1921   }
1922   if (T->isWebAssemblyTableType()) {
1923     Diag(Loc, diag::err_wasm_table_pr) << 1;
1924     return QualType();
1925   }
1926 
1927   // Handle restrict on references.
1928   if (LValueRef)
1929     return Context.getLValueReferenceType(T, SpelledAsLValue);
1930   return Context.getRValueReferenceType(T);
1931 }
1932 
1933 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1934   return Context.getReadPipeType(T);
1935 }
1936 
1937 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1938   return Context.getWritePipeType(T);
1939 }
1940 
1941 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1942                                SourceLocation Loc) {
1943   if (BitWidth->isInstantiationDependent())
1944     return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1945 
1946   llvm::APSInt Bits(32);
1947   ExprResult ICE =
1948       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1949 
1950   if (ICE.isInvalid())
1951     return QualType();
1952 
1953   size_t NumBits = Bits.getZExtValue();
1954   if (!IsUnsigned && NumBits < 2) {
1955     Diag(Loc, diag::err_bit_int_bad_size) << 0;
1956     return QualType();
1957   }
1958 
1959   if (IsUnsigned && NumBits < 1) {
1960     Diag(Loc, diag::err_bit_int_bad_size) << 1;
1961     return QualType();
1962   }
1963 
1964   const TargetInfo &TI = getASTContext().getTargetInfo();
1965   if (NumBits > TI.getMaxBitIntWidth()) {
1966     Diag(Loc, diag::err_bit_int_max_size)
1967         << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1968     return QualType();
1969   }
1970 
1971   return Context.getBitIntType(IsUnsigned, NumBits);
1972 }
1973 
1974 /// Check whether the specified array bound can be evaluated using the relevant
1975 /// language rules. If so, returns the possibly-converted expression and sets
1976 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1977 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1978 /// ExprError().
1979 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1980                                  llvm::APSInt &SizeVal, unsigned VLADiag,
1981                                  bool VLAIsError) {
1982   if (S.getLangOpts().CPlusPlus14 &&
1983       (VLAIsError ||
1984        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1985     // C++14 [dcl.array]p1:
1986     //   The constant-expression shall be a converted constant expression of
1987     //   type std::size_t.
1988     //
1989     // Don't apply this rule if we might be forming a VLA: in that case, we
1990     // allow non-constant expressions and constant-folding. We only need to use
1991     // the converted constant expression rules (to properly convert the source)
1992     // when the source expression is of class type.
1993     return S.CheckConvertedConstantExpression(
1994         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1995   }
1996 
1997   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1998   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1999   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2000   public:
2001     unsigned VLADiag;
2002     bool VLAIsError;
2003     bool IsVLA = false;
2004 
2005     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2006         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2007 
2008     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2009                                                    QualType T) override {
2010       return S.Diag(Loc, diag::err_array_size_non_int) << T;
2011     }
2012 
2013     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2014                                                SourceLocation Loc) override {
2015       IsVLA = !VLAIsError;
2016       return S.Diag(Loc, VLADiag);
2017     }
2018 
2019     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2020                                              SourceLocation Loc) override {
2021       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2022     }
2023   } Diagnoser(VLADiag, VLAIsError);
2024 
2025   ExprResult R =
2026       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2027   if (Diagnoser.IsVLA)
2028     return ExprResult();
2029   return R;
2030 }
2031 
2032 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2033   EltTy = Context.getBaseElementType(EltTy);
2034   if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2035       EltTy->isUndeducedType())
2036     return true;
2037 
2038   CharUnits Size = Context.getTypeSizeInChars(EltTy);
2039   CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2040 
2041   if (Size.isMultipleOf(Alignment))
2042     return true;
2043 
2044   Diag(Loc, diag::err_array_element_alignment)
2045       << EltTy << Size.getQuantity() << Alignment.getQuantity();
2046   return false;
2047 }
2048 
2049 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2050                               Expr *ArraySize, unsigned Quals,
2051                               SourceRange Brackets, DeclarationName Entity) {
2052 
2053   SourceLocation Loc = Brackets.getBegin();
2054   if (getLangOpts().CPlusPlus) {
2055     // C++ [dcl.array]p1:
2056     //   T is called the array element type; this type shall not be a reference
2057     //   type, the (possibly cv-qualified) type void, a function type or an
2058     //   abstract class type.
2059     //
2060     // C++ [dcl.array]p3:
2061     //   When several "array of" specifications are adjacent, [...] only the
2062     //   first of the constant expressions that specify the bounds of the arrays
2063     //   may be omitted.
2064     //
2065     // Note: function types are handled in the common path with C.
2066     if (T->isReferenceType()) {
2067       Diag(Loc, diag::err_illegal_decl_array_of_references)
2068       << getPrintableNameForEntity(Entity) << T;
2069       return QualType();
2070     }
2071 
2072     if (T->isVoidType() || T->isIncompleteArrayType()) {
2073       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2074       return QualType();
2075     }
2076 
2077     if (RequireNonAbstractType(Brackets.getBegin(), T,
2078                                diag::err_array_of_abstract_type))
2079       return QualType();
2080 
2081     // Mentioning a member pointer type for an array type causes us to lock in
2082     // an inheritance model, even if it's inside an unused typedef.
2083     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2084       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2085         if (!MPTy->getClass()->isDependentType())
2086           (void)isCompleteType(Loc, T);
2087 
2088   } else {
2089     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2090     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2091     if (!T.isWebAssemblyReferenceType() &&
2092         RequireCompleteSizedType(Loc, T,
2093                                  diag::err_array_incomplete_or_sizeless_type))
2094       return QualType();
2095   }
2096 
2097   // Multi-dimensional arrays of WebAssembly references are not allowed.
2098   if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2099     const auto *ATy = dyn_cast<ArrayType>(T);
2100     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2101       Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2102       return QualType();
2103     }
2104   }
2105 
2106   if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2107     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2108     return QualType();
2109   }
2110 
2111   if (T->isFunctionType()) {
2112     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2113       << getPrintableNameForEntity(Entity) << T;
2114     return QualType();
2115   }
2116 
2117   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2118     // If the element type is a struct or union that contains a variadic
2119     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2120     if (EltTy->getDecl()->hasFlexibleArrayMember())
2121       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2122   } else if (T->isObjCObjectType()) {
2123     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2124     return QualType();
2125   }
2126 
2127   if (!checkArrayElementAlignment(T, Loc))
2128     return QualType();
2129 
2130   // Do placeholder conversions on the array size expression.
2131   if (ArraySize && ArraySize->hasPlaceholderType()) {
2132     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2133     if (Result.isInvalid()) return QualType();
2134     ArraySize = Result.get();
2135   }
2136 
2137   // Do lvalue-to-rvalue conversions on the array size expression.
2138   if (ArraySize && !ArraySize->isPRValue()) {
2139     ExprResult Result = DefaultLvalueConversion(ArraySize);
2140     if (Result.isInvalid())
2141       return QualType();
2142 
2143     ArraySize = Result.get();
2144   }
2145 
2146   // C99 6.7.5.2p1: The size expression shall have integer type.
2147   // C++11 allows contextual conversions to such types.
2148   if (!getLangOpts().CPlusPlus11 &&
2149       ArraySize && !ArraySize->isTypeDependent() &&
2150       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2151     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2152         << ArraySize->getType() << ArraySize->getSourceRange();
2153     return QualType();
2154   }
2155 
2156   auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2157     if (!ArraySize)
2158       return false;
2159 
2160     // If the array size expression is a conditional expression whose branches
2161     // are both integer constant expressions, one negative and one positive,
2162     // then it's assumed to be like an old-style static assertion. e.g.,
2163     //   int old_style_assert[expr ? 1 : -1];
2164     // We will accept any integer constant expressions instead of assuming the
2165     // values 1 and -1 are always used.
2166     if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2167             ArraySize->IgnoreParenImpCasts())) {
2168       std::optional<llvm::APSInt> LHS =
2169           CondExpr->getLHS()->getIntegerConstantExpr(Context);
2170       std::optional<llvm::APSInt> RHS =
2171           CondExpr->getRHS()->getIntegerConstantExpr(Context);
2172       return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2173     }
2174     return false;
2175   };
2176 
2177   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2178   unsigned VLADiag;
2179   bool VLAIsError;
2180   if (getLangOpts().OpenCL) {
2181     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2182     VLADiag = diag::err_opencl_vla;
2183     VLAIsError = true;
2184   } else if (getLangOpts().C99) {
2185     VLADiag = diag::warn_vla_used;
2186     VLAIsError = false;
2187   } else if (isSFINAEContext()) {
2188     VLADiag = diag::err_vla_in_sfinae;
2189     VLAIsError = true;
2190   } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2191     VLADiag = diag::err_openmp_vla_in_task_untied;
2192     VLAIsError = true;
2193   } else if (getLangOpts().CPlusPlus) {
2194     if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2195       VLADiag = getLangOpts().GNUMode
2196                     ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2197                     : diag::ext_vla_cxx_static_assert;
2198     else
2199       VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2200                                       : diag::ext_vla_cxx;
2201     VLAIsError = false;
2202   } else {
2203     VLADiag = diag::ext_vla;
2204     VLAIsError = false;
2205   }
2206 
2207   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2208   if (!ArraySize) {
2209     if (ASM == ArraySizeModifier::Star) {
2210       Diag(Loc, VLADiag);
2211       if (VLAIsError)
2212         return QualType();
2213 
2214       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2215     } else {
2216       T = Context.getIncompleteArrayType(T, ASM, Quals);
2217     }
2218   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2219     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2220   } else {
2221     ExprResult R =
2222         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2223     if (R.isInvalid())
2224       return QualType();
2225 
2226     if (!R.isUsable()) {
2227       // C99: an array with a non-ICE size is a VLA. We accept any expression
2228       // that we can fold to a non-zero positive value as a non-VLA as an
2229       // extension.
2230       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2231     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2232                !T->isConstantSizeType()) {
2233       // C99: an array with an element type that has a non-constant-size is a
2234       // VLA.
2235       // FIXME: Add a note to explain why this isn't a VLA.
2236       Diag(Loc, VLADiag);
2237       if (VLAIsError)
2238         return QualType();
2239       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2240     } else {
2241       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2242       // have a value greater than zero.
2243       // In C++, this follows from narrowing conversions being disallowed.
2244       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2245         if (Entity)
2246           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2247               << getPrintableNameForEntity(Entity)
2248               << ArraySize->getSourceRange();
2249         else
2250           Diag(ArraySize->getBeginLoc(),
2251                diag::err_typecheck_negative_array_size)
2252               << ArraySize->getSourceRange();
2253         return QualType();
2254       }
2255       if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2256         // GCC accepts zero sized static arrays. We allow them when
2257         // we're not in a SFINAE context.
2258         Diag(ArraySize->getBeginLoc(),
2259              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2260                                : diag::ext_typecheck_zero_array_size)
2261             << 0 << ArraySize->getSourceRange();
2262       }
2263 
2264       // Is the array too large?
2265       unsigned ActiveSizeBits =
2266           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2267            !T->isIncompleteType() && !T->isUndeducedType())
2268               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2269               : ConstVal.getActiveBits();
2270       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2271         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2272             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2273         return QualType();
2274       }
2275 
2276       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2277     }
2278   }
2279 
2280   if (T->isVariableArrayType()) {
2281     if (!Context.getTargetInfo().isVLASupported()) {
2282       // CUDA device code and some other targets don't support VLAs.
2283       bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2284       targetDiag(Loc,
2285                  IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2286           << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2287     } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2288       // VLAs are supported on this target, but we may need to do delayed
2289       // checking that the VLA is not being used within a coroutine.
2290       FSI->setHasVLA(Loc);
2291     }
2292   }
2293 
2294   // If this is not C99, diagnose array size modifiers on non-VLAs.
2295   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2296       (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2297     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2298                                       : diag::ext_c99_array_usage)
2299         << llvm::to_underlying(ASM);
2300   }
2301 
2302   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2303   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2304   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2305   if (getLangOpts().OpenCL) {
2306     const QualType ArrType = Context.getBaseElementType(T);
2307     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2308         ArrType->isSamplerT() || ArrType->isImageType()) {
2309       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2310       return QualType();
2311     }
2312   }
2313 
2314   return T;
2315 }
2316 
2317 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2318                                SourceLocation AttrLoc) {
2319   // The base type must be integer (not Boolean or enumeration) or float, and
2320   // can't already be a vector.
2321   if ((!CurType->isDependentType() &&
2322        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2323         (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2324        !CurType->isBitIntType()) ||
2325       CurType->isArrayType()) {
2326     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2327     return QualType();
2328   }
2329   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2330   if (const auto *BIT = CurType->getAs<BitIntType>()) {
2331     unsigned NumBits = BIT->getNumBits();
2332     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2333       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2334           << (NumBits < 8);
2335       return QualType();
2336     }
2337   }
2338 
2339   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2340     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2341                                           VectorKind::Generic);
2342 
2343   std::optional<llvm::APSInt> VecSize =
2344       SizeExpr->getIntegerConstantExpr(Context);
2345   if (!VecSize) {
2346     Diag(AttrLoc, diag::err_attribute_argument_type)
2347         << "vector_size" << AANT_ArgumentIntegerConstant
2348         << SizeExpr->getSourceRange();
2349     return QualType();
2350   }
2351 
2352   if (CurType->isDependentType())
2353     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2354                                           VectorKind::Generic);
2355 
2356   // vecSize is specified in bytes - convert to bits.
2357   if (!VecSize->isIntN(61)) {
2358     // Bit size will overflow uint64.
2359     Diag(AttrLoc, diag::err_attribute_size_too_large)
2360         << SizeExpr->getSourceRange() << "vector";
2361     return QualType();
2362   }
2363   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2364   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2365 
2366   if (VectorSizeBits == 0) {
2367     Diag(AttrLoc, diag::err_attribute_zero_size)
2368         << SizeExpr->getSourceRange() << "vector";
2369     return QualType();
2370   }
2371 
2372   if (!TypeSize || VectorSizeBits % TypeSize) {
2373     Diag(AttrLoc, diag::err_attribute_invalid_size)
2374         << SizeExpr->getSourceRange();
2375     return QualType();
2376   }
2377 
2378   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2379     Diag(AttrLoc, diag::err_attribute_size_too_large)
2380         << SizeExpr->getSourceRange() << "vector";
2381     return QualType();
2382   }
2383 
2384   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2385                                VectorKind::Generic);
2386 }
2387 
2388 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2389                                   SourceLocation AttrLoc) {
2390   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2391   // in conjunction with complex types (pointers, arrays, functions, etc.).
2392   //
2393   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2394   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2395   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2396   // of bool aren't allowed.
2397   //
2398   // We explicitly allow bool elements in ext_vector_type for C/C++.
2399   bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2400   if ((!T->isDependentType() && !T->isIntegerType() &&
2401        !T->isRealFloatingType()) ||
2402       (IsNoBoolVecLang && T->isBooleanType())) {
2403     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2404     return QualType();
2405   }
2406 
2407   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2408   if (T->isBitIntType()) {
2409     unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2410     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2411       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2412           << (NumBits < 8);
2413       return QualType();
2414     }
2415   }
2416 
2417   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2418     std::optional<llvm::APSInt> vecSize =
2419         ArraySize->getIntegerConstantExpr(Context);
2420     if (!vecSize) {
2421       Diag(AttrLoc, diag::err_attribute_argument_type)
2422         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2423         << ArraySize->getSourceRange();
2424       return QualType();
2425     }
2426 
2427     if (!vecSize->isIntN(32)) {
2428       Diag(AttrLoc, diag::err_attribute_size_too_large)
2429           << ArraySize->getSourceRange() << "vector";
2430       return QualType();
2431     }
2432     // Unlike gcc's vector_size attribute, the size is specified as the
2433     // number of elements, not the number of bytes.
2434     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2435 
2436     if (vectorSize == 0) {
2437       Diag(AttrLoc, diag::err_attribute_zero_size)
2438           << ArraySize->getSourceRange() << "vector";
2439       return QualType();
2440     }
2441 
2442     return Context.getExtVectorType(T, vectorSize);
2443   }
2444 
2445   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2446 }
2447 
2448 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2449                                SourceLocation AttrLoc) {
2450   assert(Context.getLangOpts().MatrixTypes &&
2451          "Should never build a matrix type when it is disabled");
2452 
2453   // Check element type, if it is not dependent.
2454   if (!ElementTy->isDependentType() &&
2455       !MatrixType::isValidElementType(ElementTy)) {
2456     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2457     return QualType();
2458   }
2459 
2460   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2461       NumRows->isValueDependent() || NumCols->isValueDependent())
2462     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2463                                                AttrLoc);
2464 
2465   std::optional<llvm::APSInt> ValueRows =
2466       NumRows->getIntegerConstantExpr(Context);
2467   std::optional<llvm::APSInt> ValueColumns =
2468       NumCols->getIntegerConstantExpr(Context);
2469 
2470   auto const RowRange = NumRows->getSourceRange();
2471   auto const ColRange = NumCols->getSourceRange();
2472 
2473   // Both are row and column expressions are invalid.
2474   if (!ValueRows && !ValueColumns) {
2475     Diag(AttrLoc, diag::err_attribute_argument_type)
2476         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2477         << ColRange;
2478     return QualType();
2479   }
2480 
2481   // Only the row expression is invalid.
2482   if (!ValueRows) {
2483     Diag(AttrLoc, diag::err_attribute_argument_type)
2484         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2485     return QualType();
2486   }
2487 
2488   // Only the column expression is invalid.
2489   if (!ValueColumns) {
2490     Diag(AttrLoc, diag::err_attribute_argument_type)
2491         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2492     return QualType();
2493   }
2494 
2495   // Check the matrix dimensions.
2496   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2497   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2498   if (MatrixRows == 0 && MatrixColumns == 0) {
2499     Diag(AttrLoc, diag::err_attribute_zero_size)
2500         << "matrix" << RowRange << ColRange;
2501     return QualType();
2502   }
2503   if (MatrixRows == 0) {
2504     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2505     return QualType();
2506   }
2507   if (MatrixColumns == 0) {
2508     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2509     return QualType();
2510   }
2511   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2512     Diag(AttrLoc, diag::err_attribute_size_too_large)
2513         << RowRange << "matrix row";
2514     return QualType();
2515   }
2516   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2517     Diag(AttrLoc, diag::err_attribute_size_too_large)
2518         << ColRange << "matrix column";
2519     return QualType();
2520   }
2521   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2522 }
2523 
2524 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2525   if (T->isArrayType() || T->isFunctionType()) {
2526     Diag(Loc, diag::err_func_returning_array_function)
2527       << T->isFunctionType() << T;
2528     return true;
2529   }
2530 
2531   // Functions cannot return half FP.
2532   if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2533       !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2534     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2535       FixItHint::CreateInsertion(Loc, "*");
2536     return true;
2537   }
2538 
2539   // Methods cannot return interface types. All ObjC objects are
2540   // passed by reference.
2541   if (T->isObjCObjectType()) {
2542     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2543         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2544     return true;
2545   }
2546 
2547   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2548       T.hasNonTrivialToPrimitiveCopyCUnion())
2549     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2550                           NTCUK_Destruct|NTCUK_Copy);
2551 
2552   // C++2a [dcl.fct]p12:
2553   //   A volatile-qualified return type is deprecated
2554   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2555     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2556 
2557   if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2558     return true;
2559   return false;
2560 }
2561 
2562 /// Check the extended parameter information.  Most of the necessary
2563 /// checking should occur when applying the parameter attribute; the
2564 /// only other checks required are positional restrictions.
2565 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2566                     const FunctionProtoType::ExtProtoInfo &EPI,
2567                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2568   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2569 
2570   bool emittedError = false;
2571   auto actualCC = EPI.ExtInfo.getCC();
2572   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2573   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2574     bool isCompatible =
2575         (required == RequiredCC::OnlySwift)
2576             ? (actualCC == CC_Swift)
2577             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2578     if (isCompatible || emittedError)
2579       return;
2580     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2581         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2582         << (required == RequiredCC::OnlySwift);
2583     emittedError = true;
2584   };
2585   for (size_t paramIndex = 0, numParams = paramTypes.size();
2586           paramIndex != numParams; ++paramIndex) {
2587     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2588     // Nothing interesting to check for orindary-ABI parameters.
2589     case ParameterABI::Ordinary:
2590     case ParameterABI::HLSLOut:
2591     case ParameterABI::HLSLInOut:
2592       continue;
2593 
2594     // swift_indirect_result parameters must be a prefix of the function
2595     // arguments.
2596     case ParameterABI::SwiftIndirectResult:
2597       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2598       if (paramIndex != 0 &&
2599           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2600             != ParameterABI::SwiftIndirectResult) {
2601         S.Diag(getParamLoc(paramIndex),
2602                diag::err_swift_indirect_result_not_first);
2603       }
2604       continue;
2605 
2606     case ParameterABI::SwiftContext:
2607       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2608       continue;
2609 
2610     // SwiftAsyncContext is not limited to swiftasynccall functions.
2611     case ParameterABI::SwiftAsyncContext:
2612       continue;
2613 
2614     // swift_error parameters must be preceded by a swift_context parameter.
2615     case ParameterABI::SwiftErrorResult:
2616       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2617       if (paramIndex == 0 ||
2618           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2619               ParameterABI::SwiftContext) {
2620         S.Diag(getParamLoc(paramIndex),
2621                diag::err_swift_error_result_not_after_swift_context);
2622       }
2623       continue;
2624     }
2625     llvm_unreachable("bad ABI kind");
2626   }
2627 }
2628 
2629 QualType Sema::BuildFunctionType(QualType T,
2630                                  MutableArrayRef<QualType> ParamTypes,
2631                                  SourceLocation Loc, DeclarationName Entity,
2632                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2633   bool Invalid = false;
2634 
2635   Invalid |= CheckFunctionReturnType(T, Loc);
2636 
2637   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2638     // FIXME: Loc is too inprecise here, should use proper locations for args.
2639     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2640     if (ParamType->isVoidType()) {
2641       Diag(Loc, diag::err_param_with_void_type);
2642       Invalid = true;
2643     } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2644                !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2645       // Disallow half FP arguments.
2646       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2647         FixItHint::CreateInsertion(Loc, "*");
2648       Invalid = true;
2649     } else if (ParamType->isWebAssemblyTableType()) {
2650       Diag(Loc, diag::err_wasm_table_as_function_parameter);
2651       Invalid = true;
2652     }
2653 
2654     // C++2a [dcl.fct]p4:
2655     //   A parameter with volatile-qualified type is deprecated
2656     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2657       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2658 
2659     ParamTypes[Idx] = ParamType;
2660   }
2661 
2662   if (EPI.ExtParameterInfos) {
2663     checkExtParameterInfos(*this, ParamTypes, EPI,
2664                            [=](unsigned i) { return Loc; });
2665   }
2666 
2667   if (EPI.ExtInfo.getProducesResult()) {
2668     // This is just a warning, so we can't fail to build if we see it.
2669     ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2670   }
2671 
2672   if (Invalid)
2673     return QualType();
2674 
2675   return Context.getFunctionType(T, ParamTypes, EPI);
2676 }
2677 
2678 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2679                                       SourceLocation Loc,
2680                                       DeclarationName Entity) {
2681   // Verify that we're not building a pointer to pointer to function with
2682   // exception specification.
2683   if (CheckDistantExceptionSpec(T)) {
2684     Diag(Loc, diag::err_distant_exception_spec);
2685     return QualType();
2686   }
2687 
2688   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2689   //   with reference type, or "cv void."
2690   if (T->isReferenceType()) {
2691     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2692       << getPrintableNameForEntity(Entity) << T;
2693     return QualType();
2694   }
2695 
2696   if (T->isVoidType()) {
2697     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2698       << getPrintableNameForEntity(Entity);
2699     return QualType();
2700   }
2701 
2702   if (!Class->isDependentType() && !Class->isRecordType()) {
2703     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2704     return QualType();
2705   }
2706 
2707   if (T->isFunctionType() && getLangOpts().OpenCL &&
2708       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2709                                             getLangOpts())) {
2710     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2711     return QualType();
2712   }
2713 
2714   if (getLangOpts().HLSL && Loc.isValid()) {
2715     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2716     return QualType();
2717   }
2718 
2719   // Adjust the default free function calling convention to the default method
2720   // calling convention.
2721   bool IsCtorOrDtor =
2722       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2723       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2724   if (T->isFunctionType())
2725     adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2726 
2727   return Context.getMemberPointerType(T, Class.getTypePtr());
2728 }
2729 
2730 QualType Sema::BuildBlockPointerType(QualType T,
2731                                      SourceLocation Loc,
2732                                      DeclarationName Entity) {
2733   if (!T->isFunctionType()) {
2734     Diag(Loc, diag::err_nonfunction_block_type);
2735     return QualType();
2736   }
2737 
2738   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2739     return QualType();
2740 
2741   if (getLangOpts().OpenCL)
2742     T = deduceOpenCLPointeeAddrSpace(*this, T);
2743 
2744   return Context.getBlockPointerType(T);
2745 }
2746 
2747 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2748   QualType QT = Ty.get();
2749   if (QT.isNull()) {
2750     if (TInfo) *TInfo = nullptr;
2751     return QualType();
2752   }
2753 
2754   TypeSourceInfo *DI = nullptr;
2755   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2756     QT = LIT->getType();
2757     DI = LIT->getTypeSourceInfo();
2758   }
2759 
2760   if (TInfo) *TInfo = DI;
2761   return QT;
2762 }
2763 
2764 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2765                                             Qualifiers::ObjCLifetime ownership,
2766                                             unsigned chunkIndex);
2767 
2768 /// Given that this is the declaration of a parameter under ARC,
2769 /// attempt to infer attributes and such for pointer-to-whatever
2770 /// types.
2771 static void inferARCWriteback(TypeProcessingState &state,
2772                               QualType &declSpecType) {
2773   Sema &S = state.getSema();
2774   Declarator &declarator = state.getDeclarator();
2775 
2776   // TODO: should we care about decl qualifiers?
2777 
2778   // Check whether the declarator has the expected form.  We walk
2779   // from the inside out in order to make the block logic work.
2780   unsigned outermostPointerIndex = 0;
2781   bool isBlockPointer = false;
2782   unsigned numPointers = 0;
2783   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2784     unsigned chunkIndex = i;
2785     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2786     switch (chunk.Kind) {
2787     case DeclaratorChunk::Paren:
2788       // Ignore parens.
2789       break;
2790 
2791     case DeclaratorChunk::Reference:
2792     case DeclaratorChunk::Pointer:
2793       // Count the number of pointers.  Treat references
2794       // interchangeably as pointers; if they're mis-ordered, normal
2795       // type building will discover that.
2796       outermostPointerIndex = chunkIndex;
2797       numPointers++;
2798       break;
2799 
2800     case DeclaratorChunk::BlockPointer:
2801       // If we have a pointer to block pointer, that's an acceptable
2802       // indirect reference; anything else is not an application of
2803       // the rules.
2804       if (numPointers != 1) return;
2805       numPointers++;
2806       outermostPointerIndex = chunkIndex;
2807       isBlockPointer = true;
2808 
2809       // We don't care about pointer structure in return values here.
2810       goto done;
2811 
2812     case DeclaratorChunk::Array: // suppress if written (id[])?
2813     case DeclaratorChunk::Function:
2814     case DeclaratorChunk::MemberPointer:
2815     case DeclaratorChunk::Pipe:
2816       return;
2817     }
2818   }
2819  done:
2820 
2821   // If we have *one* pointer, then we want to throw the qualifier on
2822   // the declaration-specifiers, which means that it needs to be a
2823   // retainable object type.
2824   if (numPointers == 1) {
2825     // If it's not a retainable object type, the rule doesn't apply.
2826     if (!declSpecType->isObjCRetainableType()) return;
2827 
2828     // If it already has lifetime, don't do anything.
2829     if (declSpecType.getObjCLifetime()) return;
2830 
2831     // Otherwise, modify the type in-place.
2832     Qualifiers qs;
2833 
2834     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2835       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2836     else
2837       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2838     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2839 
2840   // If we have *two* pointers, then we want to throw the qualifier on
2841   // the outermost pointer.
2842   } else if (numPointers == 2) {
2843     // If we don't have a block pointer, we need to check whether the
2844     // declaration-specifiers gave us something that will turn into a
2845     // retainable object pointer after we slap the first pointer on it.
2846     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2847       return;
2848 
2849     // Look for an explicit lifetime attribute there.
2850     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2851     if (chunk.Kind != DeclaratorChunk::Pointer &&
2852         chunk.Kind != DeclaratorChunk::BlockPointer)
2853       return;
2854     for (const ParsedAttr &AL : chunk.getAttrs())
2855       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2856         return;
2857 
2858     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2859                                           outermostPointerIndex);
2860 
2861   // Any other number of pointers/references does not trigger the rule.
2862   } else return;
2863 
2864   // TODO: mark whether we did this inference?
2865 }
2866 
2867 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2868                                      SourceLocation FallbackLoc,
2869                                      SourceLocation ConstQualLoc,
2870                                      SourceLocation VolatileQualLoc,
2871                                      SourceLocation RestrictQualLoc,
2872                                      SourceLocation AtomicQualLoc,
2873                                      SourceLocation UnalignedQualLoc) {
2874   if (!Quals)
2875     return;
2876 
2877   struct Qual {
2878     const char *Name;
2879     unsigned Mask;
2880     SourceLocation Loc;
2881   } const QualKinds[5] = {
2882     { "const", DeclSpec::TQ_const, ConstQualLoc },
2883     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2884     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2885     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2886     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2887   };
2888 
2889   SmallString<32> QualStr;
2890   unsigned NumQuals = 0;
2891   SourceLocation Loc;
2892   FixItHint FixIts[5];
2893 
2894   // Build a string naming the redundant qualifiers.
2895   for (auto &E : QualKinds) {
2896     if (Quals & E.Mask) {
2897       if (!QualStr.empty()) QualStr += ' ';
2898       QualStr += E.Name;
2899 
2900       // If we have a location for the qualifier, offer a fixit.
2901       SourceLocation QualLoc = E.Loc;
2902       if (QualLoc.isValid()) {
2903         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2904         if (Loc.isInvalid() ||
2905             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2906           Loc = QualLoc;
2907       }
2908 
2909       ++NumQuals;
2910     }
2911   }
2912 
2913   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2914     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2915 }
2916 
2917 // Diagnose pointless type qualifiers on the return type of a function.
2918 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2919                                                   Declarator &D,
2920                                                   unsigned FunctionChunkIndex) {
2921   const DeclaratorChunk::FunctionTypeInfo &FTI =
2922       D.getTypeObject(FunctionChunkIndex).Fun;
2923   if (FTI.hasTrailingReturnType()) {
2924     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2925                                 RetTy.getLocalCVRQualifiers(),
2926                                 FTI.getTrailingReturnTypeLoc());
2927     return;
2928   }
2929 
2930   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2931                 End = D.getNumTypeObjects();
2932        OuterChunkIndex != End; ++OuterChunkIndex) {
2933     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2934     switch (OuterChunk.Kind) {
2935     case DeclaratorChunk::Paren:
2936       continue;
2937 
2938     case DeclaratorChunk::Pointer: {
2939       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2940       S.diagnoseIgnoredQualifiers(
2941           diag::warn_qual_return_type,
2942           PTI.TypeQuals,
2943           SourceLocation(),
2944           PTI.ConstQualLoc,
2945           PTI.VolatileQualLoc,
2946           PTI.RestrictQualLoc,
2947           PTI.AtomicQualLoc,
2948           PTI.UnalignedQualLoc);
2949       return;
2950     }
2951 
2952     case DeclaratorChunk::Function:
2953     case DeclaratorChunk::BlockPointer:
2954     case DeclaratorChunk::Reference:
2955     case DeclaratorChunk::Array:
2956     case DeclaratorChunk::MemberPointer:
2957     case DeclaratorChunk::Pipe:
2958       // FIXME: We can't currently provide an accurate source location and a
2959       // fix-it hint for these.
2960       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2961       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2962                                   RetTy.getCVRQualifiers() | AtomicQual,
2963                                   D.getIdentifierLoc());
2964       return;
2965     }
2966 
2967     llvm_unreachable("unknown declarator chunk kind");
2968   }
2969 
2970   // If the qualifiers come from a conversion function type, don't diagnose
2971   // them -- they're not necessarily redundant, since such a conversion
2972   // operator can be explicitly called as "x.operator const int()".
2973   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2974     return;
2975 
2976   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2977   // which are present there.
2978   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2979                               D.getDeclSpec().getTypeQualifiers(),
2980                               D.getIdentifierLoc(),
2981                               D.getDeclSpec().getConstSpecLoc(),
2982                               D.getDeclSpec().getVolatileSpecLoc(),
2983                               D.getDeclSpec().getRestrictSpecLoc(),
2984                               D.getDeclSpec().getAtomicSpecLoc(),
2985                               D.getDeclSpec().getUnalignedSpecLoc());
2986 }
2987 
2988 static std::pair<QualType, TypeSourceInfo *>
2989 InventTemplateParameter(TypeProcessingState &state, QualType T,
2990                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
2991                         InventedTemplateParameterInfo &Info) {
2992   Sema &S = state.getSema();
2993   Declarator &D = state.getDeclarator();
2994 
2995   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2996   const unsigned AutoParameterPosition = Info.TemplateParams.size();
2997   const bool IsParameterPack = D.hasEllipsis();
2998 
2999   // If auto is mentioned in a lambda parameter or abbreviated function
3000   // template context, convert it to a template parameter type.
3001 
3002   // Create the TemplateTypeParmDecl here to retrieve the corresponding
3003   // template parameter type. Template parameters are temporarily added
3004   // to the TU until the associated TemplateDecl is created.
3005   TemplateTypeParmDecl *InventedTemplateParam =
3006       TemplateTypeParmDecl::Create(
3007           S.Context, S.Context.getTranslationUnitDecl(),
3008           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3009           /*NameLoc=*/D.getIdentifierLoc(),
3010           TemplateParameterDepth, AutoParameterPosition,
3011           S.InventAbbreviatedTemplateParameterTypeName(
3012               D.getIdentifier(), AutoParameterPosition), false,
3013           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3014   InventedTemplateParam->setImplicit();
3015   Info.TemplateParams.push_back(InventedTemplateParam);
3016 
3017   // Attach type constraints to the new parameter.
3018   if (Auto->isConstrained()) {
3019     if (TrailingTSI) {
3020       // The 'auto' appears in a trailing return type we've already built;
3021       // extract its type constraints to attach to the template parameter.
3022       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3023       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3024       bool Invalid = false;
3025       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3026         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3027             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3028                                               Sema::UPPC_TypeConstraint))
3029           Invalid = true;
3030         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3031       }
3032 
3033       if (!Invalid) {
3034         S.AttachTypeConstraint(
3035             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3036             AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3037             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3038             InventedTemplateParam, D.getEllipsisLoc());
3039       }
3040     } else {
3041       // The 'auto' appears in the decl-specifiers; we've not finished forming
3042       // TypeSourceInfo for it yet.
3043       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3044       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3045                                                 TemplateId->RAngleLoc);
3046       bool Invalid = false;
3047       if (TemplateId->LAngleLoc.isValid()) {
3048         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3049                                            TemplateId->NumArgs);
3050         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3051 
3052         if (D.getEllipsisLoc().isInvalid()) {
3053           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3054             if (S.DiagnoseUnexpandedParameterPack(Arg,
3055                                                   Sema::UPPC_TypeConstraint)) {
3056               Invalid = true;
3057               break;
3058             }
3059           }
3060         }
3061       }
3062       if (!Invalid) {
3063         UsingShadowDecl *USD =
3064             TemplateId->Template.get().getAsUsingShadowDecl();
3065         auto *CD =
3066             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3067         S.AttachTypeConstraint(
3068             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3069             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3070                                 TemplateId->TemplateNameLoc),
3071             CD,
3072             /*FoundDecl=*/
3073             USD ? cast<NamedDecl>(USD) : CD,
3074             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3075             InventedTemplateParam, D.getEllipsisLoc());
3076       }
3077     }
3078   }
3079 
3080   // Replace the 'auto' in the function parameter with this invented
3081   // template type parameter.
3082   // FIXME: Retain some type sugar to indicate that this was written
3083   //  as 'auto'?
3084   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3085   QualType NewT = state.ReplaceAutoType(T, Replacement);
3086   TypeSourceInfo *NewTSI =
3087       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3088                   : nullptr;
3089   return {NewT, NewTSI};
3090 }
3091 
3092 static TypeSourceInfo *
3093 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3094                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3095 
3096 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3097                                              TypeSourceInfo *&ReturnTypeInfo) {
3098   Sema &SemaRef = state.getSema();
3099   Declarator &D = state.getDeclarator();
3100   QualType T;
3101   ReturnTypeInfo = nullptr;
3102 
3103   // The TagDecl owned by the DeclSpec.
3104   TagDecl *OwnedTagDecl = nullptr;
3105 
3106   switch (D.getName().getKind()) {
3107   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3108   case UnqualifiedIdKind::IK_OperatorFunctionId:
3109   case UnqualifiedIdKind::IK_Identifier:
3110   case UnqualifiedIdKind::IK_LiteralOperatorId:
3111   case UnqualifiedIdKind::IK_TemplateId:
3112     T = ConvertDeclSpecToType(state);
3113 
3114     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3115       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3116       // Owned declaration is embedded in declarator.
3117       OwnedTagDecl->setEmbeddedInDeclarator(true);
3118     }
3119     break;
3120 
3121   case UnqualifiedIdKind::IK_ConstructorName:
3122   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3123   case UnqualifiedIdKind::IK_DestructorName:
3124     // Constructors and destructors don't have return types. Use
3125     // "void" instead.
3126     T = SemaRef.Context.VoidTy;
3127     processTypeAttrs(state, T, TAL_DeclSpec,
3128                      D.getMutableDeclSpec().getAttributes());
3129     break;
3130 
3131   case UnqualifiedIdKind::IK_DeductionGuideName:
3132     // Deduction guides have a trailing return type and no type in their
3133     // decl-specifier sequence. Use a placeholder return type for now.
3134     T = SemaRef.Context.DependentTy;
3135     break;
3136 
3137   case UnqualifiedIdKind::IK_ConversionFunctionId:
3138     // The result type of a conversion function is the type that it
3139     // converts to.
3140     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3141                                   &ReturnTypeInfo);
3142     break;
3143   }
3144 
3145   // Note: We don't need to distribute declaration attributes (i.e.
3146   // D.getDeclarationAttributes()) because those are always C++11 attributes,
3147   // and those don't get distributed.
3148   distributeTypeAttrsFromDeclarator(
3149       state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3150 
3151   // Find the deduced type in this type. Look in the trailing return type if we
3152   // have one, otherwise in the DeclSpec type.
3153   // FIXME: The standard wording doesn't currently describe this.
3154   DeducedType *Deduced = T->getContainedDeducedType();
3155   bool DeducedIsTrailingReturnType = false;
3156   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3157     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3158     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3159     DeducedIsTrailingReturnType = true;
3160   }
3161 
3162   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3163   if (Deduced) {
3164     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3165     int Error = -1;
3166 
3167     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3168     // class template argument deduction)?
3169     bool IsCXXAutoType =
3170         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3171     bool IsDeducedReturnType = false;
3172 
3173     switch (D.getContext()) {
3174     case DeclaratorContext::LambdaExpr:
3175       // Declared return type of a lambda-declarator is implicit and is always
3176       // 'auto'.
3177       break;
3178     case DeclaratorContext::ObjCParameter:
3179     case DeclaratorContext::ObjCResult:
3180       Error = 0;
3181       break;
3182     case DeclaratorContext::RequiresExpr:
3183       Error = 22;
3184       break;
3185     case DeclaratorContext::Prototype:
3186     case DeclaratorContext::LambdaExprParameter: {
3187       InventedTemplateParameterInfo *Info = nullptr;
3188       if (D.getContext() == DeclaratorContext::Prototype) {
3189         // With concepts we allow 'auto' in function parameters.
3190         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3191             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3192           Error = 0;
3193           break;
3194         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3195           Error = 21;
3196           break;
3197         }
3198 
3199         Info = &SemaRef.InventedParameterInfos.back();
3200       } else {
3201         // In C++14, generic lambdas allow 'auto' in their parameters.
3202         if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3203             Auto->getKeyword() == AutoTypeKeyword::Auto) {
3204           Error = 25; // auto not allowed in lambda parameter (before C++14)
3205           break;
3206         } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3207           Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3208                       // parameter
3209           break;
3210         }
3211         Info = SemaRef.getCurLambda();
3212         assert(Info && "No LambdaScopeInfo on the stack!");
3213       }
3214 
3215       // We'll deal with inventing template parameters for 'auto' in trailing
3216       // return types when we pick up the trailing return type when processing
3217       // the function chunk.
3218       if (!DeducedIsTrailingReturnType)
3219         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3220       break;
3221     }
3222     case DeclaratorContext::Member: {
3223       if (D.isStaticMember() || D.isFunctionDeclarator())
3224         break;
3225       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3226       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3227         Error = 6; // Interface member.
3228       } else {
3229         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3230         case TagTypeKind::Enum:
3231           llvm_unreachable("unhandled tag kind");
3232         case TagTypeKind::Struct:
3233           Error = Cxx ? 1 : 2; /* Struct member */
3234           break;
3235         case TagTypeKind::Union:
3236           Error = Cxx ? 3 : 4; /* Union member */
3237           break;
3238         case TagTypeKind::Class:
3239           Error = 5; /* Class member */
3240           break;
3241         case TagTypeKind::Interface:
3242           Error = 6; /* Interface member */
3243           break;
3244         }
3245       }
3246       if (D.getDeclSpec().isFriendSpecified())
3247         Error = 20; // Friend type
3248       break;
3249     }
3250     case DeclaratorContext::CXXCatch:
3251     case DeclaratorContext::ObjCCatch:
3252       Error = 7; // Exception declaration
3253       break;
3254     case DeclaratorContext::TemplateParam:
3255       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3256           !SemaRef.getLangOpts().CPlusPlus20)
3257         Error = 19; // Template parameter (until C++20)
3258       else if (!SemaRef.getLangOpts().CPlusPlus17)
3259         Error = 8; // Template parameter (until C++17)
3260       break;
3261     case DeclaratorContext::BlockLiteral:
3262       Error = 9; // Block literal
3263       break;
3264     case DeclaratorContext::TemplateArg:
3265       // Within a template argument list, a deduced template specialization
3266       // type will be reinterpreted as a template template argument.
3267       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3268           !D.getNumTypeObjects() &&
3269           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3270         break;
3271       [[fallthrough]];
3272     case DeclaratorContext::TemplateTypeArg:
3273       Error = 10; // Template type argument
3274       break;
3275     case DeclaratorContext::AliasDecl:
3276     case DeclaratorContext::AliasTemplate:
3277       Error = 12; // Type alias
3278       break;
3279     case DeclaratorContext::TrailingReturn:
3280     case DeclaratorContext::TrailingReturnVar:
3281       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3282         Error = 13; // Function return type
3283       IsDeducedReturnType = true;
3284       break;
3285     case DeclaratorContext::ConversionId:
3286       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3287         Error = 14; // conversion-type-id
3288       IsDeducedReturnType = true;
3289       break;
3290     case DeclaratorContext::FunctionalCast:
3291       if (isa<DeducedTemplateSpecializationType>(Deduced))
3292         break;
3293       if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3294           !Auto->isDecltypeAuto())
3295         break; // auto(x)
3296       [[fallthrough]];
3297     case DeclaratorContext::TypeName:
3298     case DeclaratorContext::Association:
3299       Error = 15; // Generic
3300       break;
3301     case DeclaratorContext::File:
3302     case DeclaratorContext::Block:
3303     case DeclaratorContext::ForInit:
3304     case DeclaratorContext::SelectionInit:
3305     case DeclaratorContext::Condition:
3306       // FIXME: P0091R3 (erroneously) does not permit class template argument
3307       // deduction in conditions, for-init-statements, and other declarations
3308       // that are not simple-declarations.
3309       break;
3310     case DeclaratorContext::CXXNew:
3311       // FIXME: P0091R3 does not permit class template argument deduction here,
3312       // but we follow GCC and allow it anyway.
3313       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3314         Error = 17; // 'new' type
3315       break;
3316     case DeclaratorContext::KNRTypeList:
3317       Error = 18; // K&R function parameter
3318       break;
3319     }
3320 
3321     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3322       Error = 11;
3323 
3324     // In Objective-C it is an error to use 'auto' on a function declarator
3325     // (and everywhere for '__auto_type').
3326     if (D.isFunctionDeclarator() &&
3327         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3328       Error = 13;
3329 
3330     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3331     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3332       AutoRange = D.getName().getSourceRange();
3333 
3334     if (Error != -1) {
3335       unsigned Kind;
3336       if (Auto) {
3337         switch (Auto->getKeyword()) {
3338         case AutoTypeKeyword::Auto: Kind = 0; break;
3339         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3340         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3341         }
3342       } else {
3343         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3344                "unknown auto type");
3345         Kind = 3;
3346       }
3347 
3348       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3349       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3350 
3351       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3352         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3353         << QualType(Deduced, 0) << AutoRange;
3354       if (auto *TD = TN.getAsTemplateDecl())
3355         SemaRef.NoteTemplateLocation(*TD);
3356 
3357       T = SemaRef.Context.IntTy;
3358       D.setInvalidType(true);
3359     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3360       // If there was a trailing return type, we already got
3361       // warn_cxx98_compat_trailing_return_type in the parser.
3362       SemaRef.Diag(AutoRange.getBegin(),
3363                    D.getContext() == DeclaratorContext::LambdaExprParameter
3364                        ? diag::warn_cxx11_compat_generic_lambda
3365                    : IsDeducedReturnType
3366                        ? diag::warn_cxx11_compat_deduced_return_type
3367                        : diag::warn_cxx98_compat_auto_type_specifier)
3368           << AutoRange;
3369     }
3370   }
3371 
3372   if (SemaRef.getLangOpts().CPlusPlus &&
3373       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3374     // Check the contexts where C++ forbids the declaration of a new class
3375     // or enumeration in a type-specifier-seq.
3376     unsigned DiagID = 0;
3377     switch (D.getContext()) {
3378     case DeclaratorContext::TrailingReturn:
3379     case DeclaratorContext::TrailingReturnVar:
3380       // Class and enumeration definitions are syntactically not allowed in
3381       // trailing return types.
3382       llvm_unreachable("parser should not have allowed this");
3383       break;
3384     case DeclaratorContext::File:
3385     case DeclaratorContext::Member:
3386     case DeclaratorContext::Block:
3387     case DeclaratorContext::ForInit:
3388     case DeclaratorContext::SelectionInit:
3389     case DeclaratorContext::BlockLiteral:
3390     case DeclaratorContext::LambdaExpr:
3391       // C++11 [dcl.type]p3:
3392       //   A type-specifier-seq shall not define a class or enumeration unless
3393       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3394       //   the declaration of a template-declaration.
3395     case DeclaratorContext::AliasDecl:
3396       break;
3397     case DeclaratorContext::AliasTemplate:
3398       DiagID = diag::err_type_defined_in_alias_template;
3399       break;
3400     case DeclaratorContext::TypeName:
3401     case DeclaratorContext::FunctionalCast:
3402     case DeclaratorContext::ConversionId:
3403     case DeclaratorContext::TemplateParam:
3404     case DeclaratorContext::CXXNew:
3405     case DeclaratorContext::CXXCatch:
3406     case DeclaratorContext::ObjCCatch:
3407     case DeclaratorContext::TemplateArg:
3408     case DeclaratorContext::TemplateTypeArg:
3409     case DeclaratorContext::Association:
3410       DiagID = diag::err_type_defined_in_type_specifier;
3411       break;
3412     case DeclaratorContext::Prototype:
3413     case DeclaratorContext::LambdaExprParameter:
3414     case DeclaratorContext::ObjCParameter:
3415     case DeclaratorContext::ObjCResult:
3416     case DeclaratorContext::KNRTypeList:
3417     case DeclaratorContext::RequiresExpr:
3418       // C++ [dcl.fct]p6:
3419       //   Types shall not be defined in return or parameter types.
3420       DiagID = diag::err_type_defined_in_param_type;
3421       break;
3422     case DeclaratorContext::Condition:
3423       // C++ 6.4p2:
3424       // The type-specifier-seq shall not contain typedef and shall not declare
3425       // a new class or enumeration.
3426       DiagID = diag::err_type_defined_in_condition;
3427       break;
3428     }
3429 
3430     if (DiagID != 0) {
3431       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3432           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3433       D.setInvalidType(true);
3434     }
3435   }
3436 
3437   assert(!T.isNull() && "This function should not return a null type");
3438   return T;
3439 }
3440 
3441 /// Produce an appropriate diagnostic for an ambiguity between a function
3442 /// declarator and a C++ direct-initializer.
3443 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3444                                        DeclaratorChunk &DeclType, QualType RT) {
3445   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3446   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3447 
3448   // If the return type is void there is no ambiguity.
3449   if (RT->isVoidType())
3450     return;
3451 
3452   // An initializer for a non-class type can have at most one argument.
3453   if (!RT->isRecordType() && FTI.NumParams > 1)
3454     return;
3455 
3456   // An initializer for a reference must have exactly one argument.
3457   if (RT->isReferenceType() && FTI.NumParams != 1)
3458     return;
3459 
3460   // Only warn if this declarator is declaring a function at block scope, and
3461   // doesn't have a storage class (such as 'extern') specified.
3462   if (!D.isFunctionDeclarator() ||
3463       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3464       !S.CurContext->isFunctionOrMethod() ||
3465       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3466     return;
3467 
3468   // Inside a condition, a direct initializer is not permitted. We allow one to
3469   // be parsed in order to give better diagnostics in condition parsing.
3470   if (D.getContext() == DeclaratorContext::Condition)
3471     return;
3472 
3473   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3474 
3475   S.Diag(DeclType.Loc,
3476          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3477                        : diag::warn_empty_parens_are_function_decl)
3478       << ParenRange;
3479 
3480   // If the declaration looks like:
3481   //   T var1,
3482   //   f();
3483   // and name lookup finds a function named 'f', then the ',' was
3484   // probably intended to be a ';'.
3485   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3486     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3487     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3488     if (Comma.getFileID() != Name.getFileID() ||
3489         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3490       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3491                           Sema::LookupOrdinaryName);
3492       if (S.LookupName(Result, S.getCurScope()))
3493         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3494           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3495           << D.getIdentifier();
3496       Result.suppressDiagnostics();
3497     }
3498   }
3499 
3500   if (FTI.NumParams > 0) {
3501     // For a declaration with parameters, eg. "T var(T());", suggest adding
3502     // parens around the first parameter to turn the declaration into a
3503     // variable declaration.
3504     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3505     SourceLocation B = Range.getBegin();
3506     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3507     // FIXME: Maybe we should suggest adding braces instead of parens
3508     // in C++11 for classes that don't have an initializer_list constructor.
3509     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3510       << FixItHint::CreateInsertion(B, "(")
3511       << FixItHint::CreateInsertion(E, ")");
3512   } else {
3513     // For a declaration without parameters, eg. "T var();", suggest replacing
3514     // the parens with an initializer to turn the declaration into a variable
3515     // declaration.
3516     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3517 
3518     // Empty parens mean value-initialization, and no parens mean
3519     // default initialization. These are equivalent if the default
3520     // constructor is user-provided or if zero-initialization is a
3521     // no-op.
3522     if (RD && RD->hasDefinition() &&
3523         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3524       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3525         << FixItHint::CreateRemoval(ParenRange);
3526     else {
3527       std::string Init =
3528           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3529       if (Init.empty() && S.LangOpts.CPlusPlus11)
3530         Init = "{}";
3531       if (!Init.empty())
3532         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3533           << FixItHint::CreateReplacement(ParenRange, Init);
3534     }
3535   }
3536 }
3537 
3538 /// Produce an appropriate diagnostic for a declarator with top-level
3539 /// parentheses.
3540 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3541   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3542   assert(Paren.Kind == DeclaratorChunk::Paren &&
3543          "do not have redundant top-level parentheses");
3544 
3545   // This is a syntactic check; we're not interested in cases that arise
3546   // during template instantiation.
3547   if (S.inTemplateInstantiation())
3548     return;
3549 
3550   // Check whether this could be intended to be a construction of a temporary
3551   // object in C++ via a function-style cast.
3552   bool CouldBeTemporaryObject =
3553       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3554       !D.isInvalidType() && D.getIdentifier() &&
3555       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3556       (T->isRecordType() || T->isDependentType()) &&
3557       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3558 
3559   bool StartsWithDeclaratorId = true;
3560   for (auto &C : D.type_objects()) {
3561     switch (C.Kind) {
3562     case DeclaratorChunk::Paren:
3563       if (&C == &Paren)
3564         continue;
3565       [[fallthrough]];
3566     case DeclaratorChunk::Pointer:
3567       StartsWithDeclaratorId = false;
3568       continue;
3569 
3570     case DeclaratorChunk::Array:
3571       if (!C.Arr.NumElts)
3572         CouldBeTemporaryObject = false;
3573       continue;
3574 
3575     case DeclaratorChunk::Reference:
3576       // FIXME: Suppress the warning here if there is no initializer; we're
3577       // going to give an error anyway.
3578       // We assume that something like 'T (&x) = y;' is highly likely to not
3579       // be intended to be a temporary object.
3580       CouldBeTemporaryObject = false;
3581       StartsWithDeclaratorId = false;
3582       continue;
3583 
3584     case DeclaratorChunk::Function:
3585       // In a new-type-id, function chunks require parentheses.
3586       if (D.getContext() == DeclaratorContext::CXXNew)
3587         return;
3588       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3589       // redundant-parens warning, but we don't know whether the function
3590       // chunk was syntactically valid as an expression here.
3591       CouldBeTemporaryObject = false;
3592       continue;
3593 
3594     case DeclaratorChunk::BlockPointer:
3595     case DeclaratorChunk::MemberPointer:
3596     case DeclaratorChunk::Pipe:
3597       // These cannot appear in expressions.
3598       CouldBeTemporaryObject = false;
3599       StartsWithDeclaratorId = false;
3600       continue;
3601     }
3602   }
3603 
3604   // FIXME: If there is an initializer, assume that this is not intended to be
3605   // a construction of a temporary object.
3606 
3607   // Check whether the name has already been declared; if not, this is not a
3608   // function-style cast.
3609   if (CouldBeTemporaryObject) {
3610     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3611                         Sema::LookupOrdinaryName);
3612     if (!S.LookupName(Result, S.getCurScope()))
3613       CouldBeTemporaryObject = false;
3614     Result.suppressDiagnostics();
3615   }
3616 
3617   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3618 
3619   if (!CouldBeTemporaryObject) {
3620     // If we have A (::B), the parentheses affect the meaning of the program.
3621     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3622     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3623     // formally unambiguous.
3624     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3625       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3626            NNS = NNS->getPrefix()) {
3627         if (NNS->getKind() == NestedNameSpecifier::Global)
3628           return;
3629       }
3630     }
3631 
3632     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3633         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3634         << FixItHint::CreateRemoval(Paren.EndLoc);
3635     return;
3636   }
3637 
3638   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3639       << ParenRange << D.getIdentifier();
3640   auto *RD = T->getAsCXXRecordDecl();
3641   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3642     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3643         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3644         << D.getIdentifier();
3645   // FIXME: A cast to void is probably a better suggestion in cases where it's
3646   // valid (when there is no initializer and we're not in a condition).
3647   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3648       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3649       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3650   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3651       << FixItHint::CreateRemoval(Paren.Loc)
3652       << FixItHint::CreateRemoval(Paren.EndLoc);
3653 }
3654 
3655 /// Helper for figuring out the default CC for a function declarator type.  If
3656 /// this is the outermost chunk, then we can determine the CC from the
3657 /// declarator context.  If not, then this could be either a member function
3658 /// type or normal function type.
3659 static CallingConv getCCForDeclaratorChunk(
3660     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3661     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3662   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3663 
3664   // Check for an explicit CC attribute.
3665   for (const ParsedAttr &AL : AttrList) {
3666     switch (AL.getKind()) {
3667     CALLING_CONV_ATTRS_CASELIST : {
3668       // Ignore attributes that don't validate or can't apply to the
3669       // function type.  We'll diagnose the failure to apply them in
3670       // handleFunctionTypeAttr.
3671       CallingConv CC;
3672       if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3673                                   S.CUDA().IdentifyTarget(D.getAttributes())) &&
3674           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3675         return CC;
3676       }
3677       break;
3678     }
3679 
3680     default:
3681       break;
3682     }
3683   }
3684 
3685   bool IsCXXInstanceMethod = false;
3686 
3687   if (S.getLangOpts().CPlusPlus) {
3688     // Look inwards through parentheses to see if this chunk will form a
3689     // member pointer type or if we're the declarator.  Any type attributes
3690     // between here and there will override the CC we choose here.
3691     unsigned I = ChunkIndex;
3692     bool FoundNonParen = false;
3693     while (I && !FoundNonParen) {
3694       --I;
3695       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3696         FoundNonParen = true;
3697     }
3698 
3699     if (FoundNonParen) {
3700       // If we're not the declarator, we're a regular function type unless we're
3701       // in a member pointer.
3702       IsCXXInstanceMethod =
3703           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3704     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3705       // This can only be a call operator for a lambda, which is an instance
3706       // method, unless explicitly specified as 'static'.
3707       IsCXXInstanceMethod =
3708           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3709     } else {
3710       // We're the innermost decl chunk, so must be a function declarator.
3711       assert(D.isFunctionDeclarator());
3712 
3713       // If we're inside a record, we're declaring a method, but it could be
3714       // explicitly or implicitly static.
3715       IsCXXInstanceMethod =
3716           D.isFirstDeclarationOfMember() &&
3717           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3718           !D.isStaticMember();
3719     }
3720   }
3721 
3722   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3723                                                          IsCXXInstanceMethod);
3724 
3725   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3726   // and AMDGPU targets, hence it cannot be treated as a calling
3727   // convention attribute. This is the simplest place to infer
3728   // calling convention for OpenCL kernels.
3729   if (S.getLangOpts().OpenCL) {
3730     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3731       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3732         CC = CC_OpenCLKernel;
3733         break;
3734       }
3735     }
3736   } else if (S.getLangOpts().CUDA) {
3737     // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
3738     // sure the kernels will be marked with the right calling convention so that
3739     // they will be visible by the APIs that ingest SPIR-V.
3740     llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3741     if (Triple.getArch() == llvm::Triple::spirv32 ||
3742         Triple.getArch() == llvm::Triple::spirv64) {
3743       for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3744         if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3745           CC = CC_OpenCLKernel;
3746           break;
3747         }
3748       }
3749     }
3750   }
3751 
3752   return CC;
3753 }
3754 
3755 namespace {
3756   /// A simple notion of pointer kinds, which matches up with the various
3757   /// pointer declarators.
3758   enum class SimplePointerKind {
3759     Pointer,
3760     BlockPointer,
3761     MemberPointer,
3762     Array,
3763   };
3764 } // end anonymous namespace
3765 
3766 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3767   switch (nullability) {
3768   case NullabilityKind::NonNull:
3769     if (!Ident__Nonnull)
3770       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3771     return Ident__Nonnull;
3772 
3773   case NullabilityKind::Nullable:
3774     if (!Ident__Nullable)
3775       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3776     return Ident__Nullable;
3777 
3778   case NullabilityKind::NullableResult:
3779     if (!Ident__Nullable_result)
3780       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3781     return Ident__Nullable_result;
3782 
3783   case NullabilityKind::Unspecified:
3784     if (!Ident__Null_unspecified)
3785       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3786     return Ident__Null_unspecified;
3787   }
3788   llvm_unreachable("Unknown nullability kind.");
3789 }
3790 
3791 /// Check whether there is a nullability attribute of any kind in the given
3792 /// attribute list.
3793 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3794   for (const ParsedAttr &AL : attrs) {
3795     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3796         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3797         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3798         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3799       return true;
3800   }
3801 
3802   return false;
3803 }
3804 
3805 namespace {
3806   /// Describes the kind of a pointer a declarator describes.
3807   enum class PointerDeclaratorKind {
3808     // Not a pointer.
3809     NonPointer,
3810     // Single-level pointer.
3811     SingleLevelPointer,
3812     // Multi-level pointer (of any pointer kind).
3813     MultiLevelPointer,
3814     // CFFooRef*
3815     MaybePointerToCFRef,
3816     // CFErrorRef*
3817     CFErrorRefPointer,
3818     // NSError**
3819     NSErrorPointerPointer,
3820   };
3821 
3822   /// Describes a declarator chunk wrapping a pointer that marks inference as
3823   /// unexpected.
3824   // These values must be kept in sync with diagnostics.
3825   enum class PointerWrappingDeclaratorKind {
3826     /// Pointer is top-level.
3827     None = -1,
3828     /// Pointer is an array element.
3829     Array = 0,
3830     /// Pointer is the referent type of a C++ reference.
3831     Reference = 1
3832   };
3833 } // end anonymous namespace
3834 
3835 /// Classify the given declarator, whose type-specified is \c type, based on
3836 /// what kind of pointer it refers to.
3837 ///
3838 /// This is used to determine the default nullability.
3839 static PointerDeclaratorKind
3840 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3841                           PointerWrappingDeclaratorKind &wrappingKind) {
3842   unsigned numNormalPointers = 0;
3843 
3844   // For any dependent type, we consider it a non-pointer.
3845   if (type->isDependentType())
3846     return PointerDeclaratorKind::NonPointer;
3847 
3848   // Look through the declarator chunks to identify pointers.
3849   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3850     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3851     switch (chunk.Kind) {
3852     case DeclaratorChunk::Array:
3853       if (numNormalPointers == 0)
3854         wrappingKind = PointerWrappingDeclaratorKind::Array;
3855       break;
3856 
3857     case DeclaratorChunk::Function:
3858     case DeclaratorChunk::Pipe:
3859       break;
3860 
3861     case DeclaratorChunk::BlockPointer:
3862     case DeclaratorChunk::MemberPointer:
3863       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3864                                    : PointerDeclaratorKind::SingleLevelPointer;
3865 
3866     case DeclaratorChunk::Paren:
3867       break;
3868 
3869     case DeclaratorChunk::Reference:
3870       if (numNormalPointers == 0)
3871         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3872       break;
3873 
3874     case DeclaratorChunk::Pointer:
3875       ++numNormalPointers;
3876       if (numNormalPointers > 2)
3877         return PointerDeclaratorKind::MultiLevelPointer;
3878       break;
3879     }
3880   }
3881 
3882   // Then, dig into the type specifier itself.
3883   unsigned numTypeSpecifierPointers = 0;
3884   do {
3885     // Decompose normal pointers.
3886     if (auto ptrType = type->getAs<PointerType>()) {
3887       ++numNormalPointers;
3888 
3889       if (numNormalPointers > 2)
3890         return PointerDeclaratorKind::MultiLevelPointer;
3891 
3892       type = ptrType->getPointeeType();
3893       ++numTypeSpecifierPointers;
3894       continue;
3895     }
3896 
3897     // Decompose block pointers.
3898     if (type->getAs<BlockPointerType>()) {
3899       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3900                                    : PointerDeclaratorKind::SingleLevelPointer;
3901     }
3902 
3903     // Decompose member pointers.
3904     if (type->getAs<MemberPointerType>()) {
3905       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3906                                    : PointerDeclaratorKind::SingleLevelPointer;
3907     }
3908 
3909     // Look at Objective-C object pointers.
3910     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3911       ++numNormalPointers;
3912       ++numTypeSpecifierPointers;
3913 
3914       // If this is NSError**, report that.
3915       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3916         if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3917             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3918           return PointerDeclaratorKind::NSErrorPointerPointer;
3919         }
3920       }
3921 
3922       break;
3923     }
3924 
3925     // Look at Objective-C class types.
3926     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3927       if (objcClass->getInterface()->getIdentifier() ==
3928           S.ObjC().getNSErrorIdent()) {
3929         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3930           return PointerDeclaratorKind::NSErrorPointerPointer;
3931       }
3932 
3933       break;
3934     }
3935 
3936     // If at this point we haven't seen a pointer, we won't see one.
3937     if (numNormalPointers == 0)
3938       return PointerDeclaratorKind::NonPointer;
3939 
3940     if (auto recordType = type->getAs<RecordType>()) {
3941       RecordDecl *recordDecl = recordType->getDecl();
3942 
3943       // If this is CFErrorRef*, report it as such.
3944       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3945           S.ObjC().isCFError(recordDecl)) {
3946         return PointerDeclaratorKind::CFErrorRefPointer;
3947       }
3948       break;
3949     }
3950 
3951     break;
3952   } while (true);
3953 
3954   switch (numNormalPointers) {
3955   case 0:
3956     return PointerDeclaratorKind::NonPointer;
3957 
3958   case 1:
3959     return PointerDeclaratorKind::SingleLevelPointer;
3960 
3961   case 2:
3962     return PointerDeclaratorKind::MaybePointerToCFRef;
3963 
3964   default:
3965     return PointerDeclaratorKind::MultiLevelPointer;
3966   }
3967 }
3968 
3969 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3970                                                     SourceLocation loc) {
3971   // If we're anywhere in a function, method, or closure context, don't perform
3972   // completeness checks.
3973   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3974     if (ctx->isFunctionOrMethod())
3975       return FileID();
3976 
3977     if (ctx->isFileContext())
3978       break;
3979   }
3980 
3981   // We only care about the expansion location.
3982   loc = S.SourceMgr.getExpansionLoc(loc);
3983   FileID file = S.SourceMgr.getFileID(loc);
3984   if (file.isInvalid())
3985     return FileID();
3986 
3987   // Retrieve file information.
3988   bool invalid = false;
3989   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3990   if (invalid || !sloc.isFile())
3991     return FileID();
3992 
3993   // We don't want to perform completeness checks on the main file or in
3994   // system headers.
3995   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3996   if (fileInfo.getIncludeLoc().isInvalid())
3997     return FileID();
3998   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3999       S.Diags.getSuppressSystemWarnings()) {
4000     return FileID();
4001   }
4002 
4003   return file;
4004 }
4005 
4006 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4007 /// taking into account whitespace before and after.
4008 template <typename DiagBuilderT>
4009 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4010                              SourceLocation PointerLoc,
4011                              NullabilityKind Nullability) {
4012   assert(PointerLoc.isValid());
4013   if (PointerLoc.isMacroID())
4014     return;
4015 
4016   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4017   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4018     return;
4019 
4020   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4021   if (!NextChar)
4022     return;
4023 
4024   SmallString<32> InsertionTextBuf{" "};
4025   InsertionTextBuf += getNullabilitySpelling(Nullability);
4026   InsertionTextBuf += " ";
4027   StringRef InsertionText = InsertionTextBuf.str();
4028 
4029   if (isWhitespace(*NextChar)) {
4030     InsertionText = InsertionText.drop_back();
4031   } else if (NextChar[-1] == '[') {
4032     if (NextChar[0] == ']')
4033       InsertionText = InsertionText.drop_back().drop_front();
4034     else
4035       InsertionText = InsertionText.drop_front();
4036   } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4037              !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4038     InsertionText = InsertionText.drop_back().drop_front();
4039   }
4040 
4041   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4042 }
4043 
4044 static void emitNullabilityConsistencyWarning(Sema &S,
4045                                               SimplePointerKind PointerKind,
4046                                               SourceLocation PointerLoc,
4047                                               SourceLocation PointerEndLoc) {
4048   assert(PointerLoc.isValid());
4049 
4050   if (PointerKind == SimplePointerKind::Array) {
4051     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4052   } else {
4053     S.Diag(PointerLoc, diag::warn_nullability_missing)
4054       << static_cast<unsigned>(PointerKind);
4055   }
4056 
4057   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4058   if (FixItLoc.isMacroID())
4059     return;
4060 
4061   auto addFixIt = [&](NullabilityKind Nullability) {
4062     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4063     Diag << static_cast<unsigned>(Nullability);
4064     Diag << static_cast<unsigned>(PointerKind);
4065     fixItNullability(S, Diag, FixItLoc, Nullability);
4066   };
4067   addFixIt(NullabilityKind::Nullable);
4068   addFixIt(NullabilityKind::NonNull);
4069 }
4070 
4071 /// Complains about missing nullability if the file containing \p pointerLoc
4072 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4073 /// pragma).
4074 ///
4075 /// If the file has \e not seen other uses of nullability, this particular
4076 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4077 static void
4078 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4079                             SourceLocation pointerLoc,
4080                             SourceLocation pointerEndLoc = SourceLocation()) {
4081   // Determine which file we're performing consistency checking for.
4082   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4083   if (file.isInvalid())
4084     return;
4085 
4086   // If we haven't seen any type nullability in this file, we won't warn now
4087   // about anything.
4088   FileNullability &fileNullability = S.NullabilityMap[file];
4089   if (!fileNullability.SawTypeNullability) {
4090     // If this is the first pointer declarator in the file, and the appropriate
4091     // warning is on, record it in case we need to diagnose it retroactively.
4092     diag::kind diagKind;
4093     if (pointerKind == SimplePointerKind::Array)
4094       diagKind = diag::warn_nullability_missing_array;
4095     else
4096       diagKind = diag::warn_nullability_missing;
4097 
4098     if (fileNullability.PointerLoc.isInvalid() &&
4099         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4100       fileNullability.PointerLoc = pointerLoc;
4101       fileNullability.PointerEndLoc = pointerEndLoc;
4102       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4103     }
4104 
4105     return;
4106   }
4107 
4108   // Complain about missing nullability.
4109   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4110 }
4111 
4112 /// Marks that a nullability feature has been used in the file containing
4113 /// \p loc.
4114 ///
4115 /// If this file already had pointer types in it that were missing nullability,
4116 /// the first such instance is retroactively diagnosed.
4117 ///
4118 /// \sa checkNullabilityConsistency
4119 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4120   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4121   if (file.isInvalid())
4122     return;
4123 
4124   FileNullability &fileNullability = S.NullabilityMap[file];
4125   if (fileNullability.SawTypeNullability)
4126     return;
4127   fileNullability.SawTypeNullability = true;
4128 
4129   // If we haven't seen any type nullability before, now we have. Retroactively
4130   // diagnose the first unannotated pointer, if there was one.
4131   if (fileNullability.PointerLoc.isInvalid())
4132     return;
4133 
4134   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4135   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4136                                     fileNullability.PointerEndLoc);
4137 }
4138 
4139 /// Returns true if any of the declarator chunks before \p endIndex include a
4140 /// level of indirection: array, pointer, reference, or pointer-to-member.
4141 ///
4142 /// Because declarator chunks are stored in outer-to-inner order, testing
4143 /// every chunk before \p endIndex is testing all chunks that embed the current
4144 /// chunk as part of their type.
4145 ///
4146 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4147 /// end index, in which case all chunks are tested.
4148 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4149   unsigned i = endIndex;
4150   while (i != 0) {
4151     // Walk outwards along the declarator chunks.
4152     --i;
4153     const DeclaratorChunk &DC = D.getTypeObject(i);
4154     switch (DC.Kind) {
4155     case DeclaratorChunk::Paren:
4156       break;
4157     case DeclaratorChunk::Array:
4158     case DeclaratorChunk::Pointer:
4159     case DeclaratorChunk::Reference:
4160     case DeclaratorChunk::MemberPointer:
4161       return true;
4162     case DeclaratorChunk::Function:
4163     case DeclaratorChunk::BlockPointer:
4164     case DeclaratorChunk::Pipe:
4165       // These are invalid anyway, so just ignore.
4166       break;
4167     }
4168   }
4169   return false;
4170 }
4171 
4172 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4173   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4174           Chunk.Kind == DeclaratorChunk::Array);
4175 }
4176 
4177 template<typename AttrT>
4178 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4179   AL.setUsedAsTypeAttr();
4180   return ::new (Ctx) AttrT(Ctx, AL);
4181 }
4182 
4183 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4184                                    NullabilityKind NK) {
4185   switch (NK) {
4186   case NullabilityKind::NonNull:
4187     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4188 
4189   case NullabilityKind::Nullable:
4190     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4191 
4192   case NullabilityKind::NullableResult:
4193     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4194 
4195   case NullabilityKind::Unspecified:
4196     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4197   }
4198   llvm_unreachable("unknown NullabilityKind");
4199 }
4200 
4201 // Diagnose whether this is a case with the multiple addr spaces.
4202 // Returns true if this is an invalid case.
4203 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4204 // by qualifiers for two or more different address spaces."
4205 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4206                                                 LangAS ASNew,
4207                                                 SourceLocation AttrLoc) {
4208   if (ASOld != LangAS::Default) {
4209     if (ASOld != ASNew) {
4210       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4211       return true;
4212     }
4213     // Emit a warning if they are identical; it's likely unintended.
4214     S.Diag(AttrLoc,
4215            diag::warn_attribute_address_multiple_identical_qualifiers);
4216   }
4217   return false;
4218 }
4219 
4220 // Whether this is a type broadly expected to have nullability attached.
4221 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4222 // will be diagnosed with -Wnullability-completeness.
4223 static bool shouldHaveNullability(QualType T) {
4224   return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4225          // For now, do not infer/require nullability on C++ smart pointers.
4226          // It's unclear whether the pragma's behavior is useful for C++.
4227          // e.g. treating type-aliases and template-type-parameters differently
4228          // from types of declarations can be surprising.
4229          !isa<RecordType, TemplateSpecializationType>(
4230              T->getCanonicalTypeInternal());
4231 }
4232 
4233 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4234                                                 QualType declSpecType,
4235                                                 TypeSourceInfo *TInfo) {
4236   // The TypeSourceInfo that this function returns will not be a null type.
4237   // If there is an error, this function will fill in a dummy type as fallback.
4238   QualType T = declSpecType;
4239   Declarator &D = state.getDeclarator();
4240   Sema &S = state.getSema();
4241   ASTContext &Context = S.Context;
4242   const LangOptions &LangOpts = S.getLangOpts();
4243 
4244   // The name we're declaring, if any.
4245   DeclarationName Name;
4246   if (D.getIdentifier())
4247     Name = D.getIdentifier();
4248 
4249   // Does this declaration declare a typedef-name?
4250   bool IsTypedefName =
4251       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4252       D.getContext() == DeclaratorContext::AliasDecl ||
4253       D.getContext() == DeclaratorContext::AliasTemplate;
4254 
4255   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4256   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4257       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4258        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4259 
4260   // If T is 'decltype(auto)', the only declarators we can have are parens
4261   // and at most one function declarator if this is a function declaration.
4262   // If T is a deduced class template specialization type, we can have no
4263   // declarator chunks at all.
4264   if (auto *DT = T->getAs<DeducedType>()) {
4265     const AutoType *AT = T->getAs<AutoType>();
4266     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4267     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4268       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4269         unsigned Index = E - I - 1;
4270         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4271         unsigned DiagId = IsClassTemplateDeduction
4272                               ? diag::err_deduced_class_template_compound_type
4273                               : diag::err_decltype_auto_compound_type;
4274         unsigned DiagKind = 0;
4275         switch (DeclChunk.Kind) {
4276         case DeclaratorChunk::Paren:
4277           // FIXME: Rejecting this is a little silly.
4278           if (IsClassTemplateDeduction) {
4279             DiagKind = 4;
4280             break;
4281           }
4282           continue;
4283         case DeclaratorChunk::Function: {
4284           if (IsClassTemplateDeduction) {
4285             DiagKind = 3;
4286             break;
4287           }
4288           unsigned FnIndex;
4289           if (D.isFunctionDeclarationContext() &&
4290               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4291             continue;
4292           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4293           break;
4294         }
4295         case DeclaratorChunk::Pointer:
4296         case DeclaratorChunk::BlockPointer:
4297         case DeclaratorChunk::MemberPointer:
4298           DiagKind = 0;
4299           break;
4300         case DeclaratorChunk::Reference:
4301           DiagKind = 1;
4302           break;
4303         case DeclaratorChunk::Array:
4304           DiagKind = 2;
4305           break;
4306         case DeclaratorChunk::Pipe:
4307           break;
4308         }
4309 
4310         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4311         D.setInvalidType(true);
4312         break;
4313       }
4314     }
4315   }
4316 
4317   // Determine whether we should infer _Nonnull on pointer types.
4318   std::optional<NullabilityKind> inferNullability;
4319   bool inferNullabilityCS = false;
4320   bool inferNullabilityInnerOnly = false;
4321   bool inferNullabilityInnerOnlyComplete = false;
4322 
4323   // Are we in an assume-nonnull region?
4324   bool inAssumeNonNullRegion = false;
4325   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4326   if (assumeNonNullLoc.isValid()) {
4327     inAssumeNonNullRegion = true;
4328     recordNullabilitySeen(S, assumeNonNullLoc);
4329   }
4330 
4331   // Whether to complain about missing nullability specifiers or not.
4332   enum {
4333     /// Never complain.
4334     CAMN_No,
4335     /// Complain on the inner pointers (but not the outermost
4336     /// pointer).
4337     CAMN_InnerPointers,
4338     /// Complain about any pointers that don't have nullability
4339     /// specified or inferred.
4340     CAMN_Yes
4341   } complainAboutMissingNullability = CAMN_No;
4342   unsigned NumPointersRemaining = 0;
4343   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4344 
4345   if (IsTypedefName) {
4346     // For typedefs, we do not infer any nullability (the default),
4347     // and we only complain about missing nullability specifiers on
4348     // inner pointers.
4349     complainAboutMissingNullability = CAMN_InnerPointers;
4350 
4351     if (shouldHaveNullability(T) && !T->getNullability()) {
4352       // Note that we allow but don't require nullability on dependent types.
4353       ++NumPointersRemaining;
4354     }
4355 
4356     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4357       DeclaratorChunk &chunk = D.getTypeObject(i);
4358       switch (chunk.Kind) {
4359       case DeclaratorChunk::Array:
4360       case DeclaratorChunk::Function:
4361       case DeclaratorChunk::Pipe:
4362         break;
4363 
4364       case DeclaratorChunk::BlockPointer:
4365       case DeclaratorChunk::MemberPointer:
4366         ++NumPointersRemaining;
4367         break;
4368 
4369       case DeclaratorChunk::Paren:
4370       case DeclaratorChunk::Reference:
4371         continue;
4372 
4373       case DeclaratorChunk::Pointer:
4374         ++NumPointersRemaining;
4375         continue;
4376       }
4377     }
4378   } else {
4379     bool isFunctionOrMethod = false;
4380     switch (auto context = state.getDeclarator().getContext()) {
4381     case DeclaratorContext::ObjCParameter:
4382     case DeclaratorContext::ObjCResult:
4383     case DeclaratorContext::Prototype:
4384     case DeclaratorContext::TrailingReturn:
4385     case DeclaratorContext::TrailingReturnVar:
4386       isFunctionOrMethod = true;
4387       [[fallthrough]];
4388 
4389     case DeclaratorContext::Member:
4390       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4391         complainAboutMissingNullability = CAMN_No;
4392         break;
4393       }
4394 
4395       // Weak properties are inferred to be nullable.
4396       if (state.getDeclarator().isObjCWeakProperty()) {
4397         // Weak properties cannot be nonnull, and should not complain about
4398         // missing nullable attributes during completeness checks.
4399         complainAboutMissingNullability = CAMN_No;
4400         if (inAssumeNonNullRegion) {
4401           inferNullability = NullabilityKind::Nullable;
4402         }
4403         break;
4404       }
4405 
4406       [[fallthrough]];
4407 
4408     case DeclaratorContext::File:
4409     case DeclaratorContext::KNRTypeList: {
4410       complainAboutMissingNullability = CAMN_Yes;
4411 
4412       // Nullability inference depends on the type and declarator.
4413       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4414       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4415       case PointerDeclaratorKind::NonPointer:
4416       case PointerDeclaratorKind::MultiLevelPointer:
4417         // Cannot infer nullability.
4418         break;
4419 
4420       case PointerDeclaratorKind::SingleLevelPointer:
4421         // Infer _Nonnull if we are in an assumes-nonnull region.
4422         if (inAssumeNonNullRegion) {
4423           complainAboutInferringWithinChunk = wrappingKind;
4424           inferNullability = NullabilityKind::NonNull;
4425           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4426                                 context == DeclaratorContext::ObjCResult);
4427         }
4428         break;
4429 
4430       case PointerDeclaratorKind::CFErrorRefPointer:
4431       case PointerDeclaratorKind::NSErrorPointerPointer:
4432         // Within a function or method signature, infer _Nullable at both
4433         // levels.
4434         if (isFunctionOrMethod && inAssumeNonNullRegion)
4435           inferNullability = NullabilityKind::Nullable;
4436         break;
4437 
4438       case PointerDeclaratorKind::MaybePointerToCFRef:
4439         if (isFunctionOrMethod) {
4440           // On pointer-to-pointer parameters marked cf_returns_retained or
4441           // cf_returns_not_retained, if the outer pointer is explicit then
4442           // infer the inner pointer as _Nullable.
4443           auto hasCFReturnsAttr =
4444               [](const ParsedAttributesView &AttrList) -> bool {
4445             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4446                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4447           };
4448           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4449             if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4450                 hasCFReturnsAttr(D.getAttributes()) ||
4451                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4452                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4453               inferNullability = NullabilityKind::Nullable;
4454               inferNullabilityInnerOnly = true;
4455             }
4456           }
4457         }
4458         break;
4459       }
4460       break;
4461     }
4462 
4463     case DeclaratorContext::ConversionId:
4464       complainAboutMissingNullability = CAMN_Yes;
4465       break;
4466 
4467     case DeclaratorContext::AliasDecl:
4468     case DeclaratorContext::AliasTemplate:
4469     case DeclaratorContext::Block:
4470     case DeclaratorContext::BlockLiteral:
4471     case DeclaratorContext::Condition:
4472     case DeclaratorContext::CXXCatch:
4473     case DeclaratorContext::CXXNew:
4474     case DeclaratorContext::ForInit:
4475     case DeclaratorContext::SelectionInit:
4476     case DeclaratorContext::LambdaExpr:
4477     case DeclaratorContext::LambdaExprParameter:
4478     case DeclaratorContext::ObjCCatch:
4479     case DeclaratorContext::TemplateParam:
4480     case DeclaratorContext::TemplateArg:
4481     case DeclaratorContext::TemplateTypeArg:
4482     case DeclaratorContext::TypeName:
4483     case DeclaratorContext::FunctionalCast:
4484     case DeclaratorContext::RequiresExpr:
4485     case DeclaratorContext::Association:
4486       // Don't infer in these contexts.
4487       break;
4488     }
4489   }
4490 
4491   // Local function that returns true if its argument looks like a va_list.
4492   auto isVaList = [&S](QualType T) -> bool {
4493     auto *typedefTy = T->getAs<TypedefType>();
4494     if (!typedefTy)
4495       return false;
4496     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4497     do {
4498       if (typedefTy->getDecl() == vaListTypedef)
4499         return true;
4500       if (auto *name = typedefTy->getDecl()->getIdentifier())
4501         if (name->isStr("va_list"))
4502           return true;
4503       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4504     } while (typedefTy);
4505     return false;
4506   };
4507 
4508   // Local function that checks the nullability for a given pointer declarator.
4509   // Returns true if _Nonnull was inferred.
4510   auto inferPointerNullability =
4511       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4512           SourceLocation pointerEndLoc,
4513           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4514     // We've seen a pointer.
4515     if (NumPointersRemaining > 0)
4516       --NumPointersRemaining;
4517 
4518     // If a nullability attribute is present, there's nothing to do.
4519     if (hasNullabilityAttr(attrs))
4520       return nullptr;
4521 
4522     // If we're supposed to infer nullability, do so now.
4523     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4524       ParsedAttr::Form form =
4525           inferNullabilityCS
4526               ? ParsedAttr::Form::ContextSensitiveKeyword()
4527               : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4528                                           false /*IsRegularKeywordAttribute*/);
4529       ParsedAttr *nullabilityAttr = Pool.create(
4530           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4531           nullptr, SourceLocation(), nullptr, 0, form);
4532 
4533       attrs.addAtEnd(nullabilityAttr);
4534 
4535       if (inferNullabilityCS) {
4536         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4537           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4538       }
4539 
4540       if (pointerLoc.isValid() &&
4541           complainAboutInferringWithinChunk !=
4542             PointerWrappingDeclaratorKind::None) {
4543         auto Diag =
4544             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4545         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4546         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4547       }
4548 
4549       if (inferNullabilityInnerOnly)
4550         inferNullabilityInnerOnlyComplete = true;
4551       return nullabilityAttr;
4552     }
4553 
4554     // If we're supposed to complain about missing nullability, do so
4555     // now if it's truly missing.
4556     switch (complainAboutMissingNullability) {
4557     case CAMN_No:
4558       break;
4559 
4560     case CAMN_InnerPointers:
4561       if (NumPointersRemaining == 0)
4562         break;
4563       [[fallthrough]];
4564 
4565     case CAMN_Yes:
4566       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4567     }
4568     return nullptr;
4569   };
4570 
4571   // If the type itself could have nullability but does not, infer pointer
4572   // nullability and perform consistency checking.
4573   if (S.CodeSynthesisContexts.empty()) {
4574     if (shouldHaveNullability(T) && !T->getNullability()) {
4575       if (isVaList(T)) {
4576         // Record that we've seen a pointer, but do nothing else.
4577         if (NumPointersRemaining > 0)
4578           --NumPointersRemaining;
4579       } else {
4580         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4581         if (T->isBlockPointerType())
4582           pointerKind = SimplePointerKind::BlockPointer;
4583         else if (T->isMemberPointerType())
4584           pointerKind = SimplePointerKind::MemberPointer;
4585 
4586         if (auto *attr = inferPointerNullability(
4587                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4588                 D.getDeclSpec().getEndLoc(),
4589                 D.getMutableDeclSpec().getAttributes(),
4590                 D.getMutableDeclSpec().getAttributePool())) {
4591           T = state.getAttributedType(
4592               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4593         }
4594       }
4595     }
4596 
4597     if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4598         !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4599         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4600       checkNullabilityConsistency(S, SimplePointerKind::Array,
4601                                   D.getDeclSpec().getTypeSpecTypeLoc());
4602     }
4603   }
4604 
4605   bool ExpectNoDerefChunk =
4606       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4607 
4608   // Walk the DeclTypeInfo, building the recursive type as we go.
4609   // DeclTypeInfos are ordered from the identifier out, which is
4610   // opposite of what we want :).
4611 
4612   // Track if the produced type matches the structure of the declarator.
4613   // This is used later to decide if we can fill `TypeLoc` from
4614   // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4615   // an error by replacing the type with `int`.
4616   bool AreDeclaratorChunksValid = true;
4617   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4618     unsigned chunkIndex = e - i - 1;
4619     state.setCurrentChunkIndex(chunkIndex);
4620     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4621     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4622     switch (DeclType.Kind) {
4623     case DeclaratorChunk::Paren:
4624       if (i == 0)
4625         warnAboutRedundantParens(S, D, T);
4626       T = S.BuildParenType(T);
4627       break;
4628     case DeclaratorChunk::BlockPointer:
4629       // If blocks are disabled, emit an error.
4630       if (!LangOpts.Blocks)
4631         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4632 
4633       // Handle pointer nullability.
4634       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4635                               DeclType.EndLoc, DeclType.getAttrs(),
4636                               state.getDeclarator().getAttributePool());
4637 
4638       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4639       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4640         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4641         // qualified with const.
4642         if (LangOpts.OpenCL)
4643           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4644         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4645       }
4646       break;
4647     case DeclaratorChunk::Pointer:
4648       // Verify that we're not building a pointer to pointer to function with
4649       // exception specification.
4650       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4651         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4652         D.setInvalidType(true);
4653         // Build the type anyway.
4654       }
4655 
4656       // Handle pointer nullability
4657       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4658                               DeclType.EndLoc, DeclType.getAttrs(),
4659                               state.getDeclarator().getAttributePool());
4660 
4661       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4662         T = Context.getObjCObjectPointerType(T);
4663         if (DeclType.Ptr.TypeQuals)
4664           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4665         break;
4666       }
4667 
4668       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4669       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4670       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4671       if (LangOpts.OpenCL) {
4672         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4673             T->isBlockPointerType()) {
4674           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4675           D.setInvalidType(true);
4676         }
4677       }
4678 
4679       T = S.BuildPointerType(T, DeclType.Loc, Name);
4680       if (DeclType.Ptr.TypeQuals)
4681         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4682       break;
4683     case DeclaratorChunk::Reference: {
4684       // Verify that we're not building a reference to pointer to function with
4685       // exception specification.
4686       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4687         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4688         D.setInvalidType(true);
4689         // Build the type anyway.
4690       }
4691       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4692 
4693       if (DeclType.Ref.HasRestrict)
4694         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4695       break;
4696     }
4697     case DeclaratorChunk::Array: {
4698       // Verify that we're not building an array of pointers to function with
4699       // exception specification.
4700       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4701         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4702         D.setInvalidType(true);
4703         // Build the type anyway.
4704       }
4705       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4706       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4707       ArraySizeModifier ASM;
4708 
4709       // Microsoft property fields can have multiple sizeless array chunks
4710       // (i.e. int x[][][]). Skip all of these except one to avoid creating
4711       // bad incomplete array types.
4712       if (chunkIndex != 0 && !ArraySize &&
4713           D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4714         // This is a sizeless chunk. If the next is also, skip this one.
4715         DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4716         if (NextDeclType.Kind == DeclaratorChunk::Array &&
4717             !NextDeclType.Arr.NumElts)
4718           break;
4719       }
4720 
4721       if (ATI.isStar)
4722         ASM = ArraySizeModifier::Star;
4723       else if (ATI.hasStatic)
4724         ASM = ArraySizeModifier::Static;
4725       else
4726         ASM = ArraySizeModifier::Normal;
4727       if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4728         // FIXME: This check isn't quite right: it allows star in prototypes
4729         // for function definitions, and disallows some edge cases detailed
4730         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4731         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4732         ASM = ArraySizeModifier::Normal;
4733         D.setInvalidType(true);
4734       }
4735 
4736       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4737       // shall appear only in a declaration of a function parameter with an
4738       // array type, ...
4739       if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4740         if (!(D.isPrototypeContext() ||
4741               D.getContext() == DeclaratorContext::KNRTypeList)) {
4742           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4743               << (ASM == ArraySizeModifier::Static ? "'static'"
4744                                                    : "type qualifier");
4745           // Remove the 'static' and the type qualifiers.
4746           if (ASM == ArraySizeModifier::Static)
4747             ASM = ArraySizeModifier::Normal;
4748           ATI.TypeQuals = 0;
4749           D.setInvalidType(true);
4750         }
4751 
4752         // C99 6.7.5.2p1: ... and then only in the outermost array type
4753         // derivation.
4754         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4755           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4756               << (ASM == ArraySizeModifier::Static ? "'static'"
4757                                                    : "type qualifier");
4758           if (ASM == ArraySizeModifier::Static)
4759             ASM = ArraySizeModifier::Normal;
4760           ATI.TypeQuals = 0;
4761           D.setInvalidType(true);
4762         }
4763       }
4764 
4765       // Array parameters can be marked nullable as well, although it's not
4766       // necessary if they're marked 'static'.
4767       if (complainAboutMissingNullability == CAMN_Yes &&
4768           !hasNullabilityAttr(DeclType.getAttrs()) &&
4769           ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4770           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4771         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4772       }
4773 
4774       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4775                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4776       break;
4777     }
4778     case DeclaratorChunk::Function: {
4779       // If the function declarator has a prototype (i.e. it is not () and
4780       // does not have a K&R-style identifier list), then the arguments are part
4781       // of the type, otherwise the argument list is ().
4782       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4783       IsQualifiedFunction =
4784           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4785 
4786       // Check for auto functions and trailing return type and adjust the
4787       // return type accordingly.
4788       if (!D.isInvalidType()) {
4789         auto IsClassType = [&](CXXScopeSpec &SS) {
4790           // If there already was an problem with the scope, don’t issue another
4791           // error about the explicit object parameter.
4792           return SS.isInvalid() ||
4793                  isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4794         };
4795 
4796         // C++23 [dcl.fct]p6:
4797         //
4798         // An explicit-object-parameter-declaration is a parameter-declaration
4799         // with a this specifier. An explicit-object-parameter-declaration shall
4800         // appear only as the first parameter-declaration of a
4801         // parameter-declaration-list of one of:
4802         //
4803         // - a declaration of a member function or member function template
4804         //   ([class.mem]), or
4805         //
4806         // - an explicit instantiation ([temp.explicit]) or explicit
4807         //   specialization ([temp.expl.spec]) of a templated member function,
4808         //   or
4809         //
4810         // - a lambda-declarator [expr.prim.lambda].
4811         DeclaratorContext C = D.getContext();
4812         ParmVarDecl *First =
4813             FTI.NumParams
4814                 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4815                 : nullptr;
4816 
4817         bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4818         if (First && First->isExplicitObjectParameter() &&
4819             C != DeclaratorContext::LambdaExpr &&
4820 
4821             // Either not a member or nested declarator in a member.
4822             //
4823             // Note that e.g. 'static' or 'friend' declarations are accepted
4824             // here; we diagnose them later when we build the member function
4825             // because it's easier that way.
4826             (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4827 
4828             // Allow out-of-line definitions of member functions.
4829             !IsClassType(D.getCXXScopeSpec())) {
4830           if (IsFunctionDecl)
4831             S.Diag(First->getBeginLoc(),
4832                    diag::err_explicit_object_parameter_nonmember)
4833                 << /*non-member*/ 2 << /*function*/ 0
4834                 << First->getSourceRange();
4835           else
4836             S.Diag(First->getBeginLoc(),
4837                    diag::err_explicit_object_parameter_invalid)
4838                 << First->getSourceRange();
4839 
4840           D.setInvalidType();
4841           AreDeclaratorChunksValid = false;
4842         }
4843 
4844         // trailing-return-type is only required if we're declaring a function,
4845         // and not, for instance, a pointer to a function.
4846         if (D.getDeclSpec().hasAutoTypeSpec() &&
4847             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4848           if (!S.getLangOpts().CPlusPlus14) {
4849             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4850                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4851                        ? diag::err_auto_missing_trailing_return
4852                        : diag::err_deduced_return_type);
4853             T = Context.IntTy;
4854             D.setInvalidType(true);
4855             AreDeclaratorChunksValid = false;
4856           } else {
4857             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4858                    diag::warn_cxx11_compat_deduced_return_type);
4859           }
4860         } else if (FTI.hasTrailingReturnType()) {
4861           // T must be exactly 'auto' at this point. See CWG issue 681.
4862           if (isa<ParenType>(T)) {
4863             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4864                 << T << D.getSourceRange();
4865             D.setInvalidType(true);
4866             // FIXME: recover and fill decls in `TypeLoc`s.
4867             AreDeclaratorChunksValid = false;
4868           } else if (D.getName().getKind() ==
4869                      UnqualifiedIdKind::IK_DeductionGuideName) {
4870             if (T != Context.DependentTy) {
4871               S.Diag(D.getDeclSpec().getBeginLoc(),
4872                      diag::err_deduction_guide_with_complex_decl)
4873                   << D.getSourceRange();
4874               D.setInvalidType(true);
4875               // FIXME: recover and fill decls in `TypeLoc`s.
4876               AreDeclaratorChunksValid = false;
4877             }
4878           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4879                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4880                       cast<AutoType>(T)->getKeyword() !=
4881                           AutoTypeKeyword::Auto ||
4882                       cast<AutoType>(T)->isConstrained())) {
4883             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4884                    diag::err_trailing_return_without_auto)
4885                 << T << D.getDeclSpec().getSourceRange();
4886             D.setInvalidType(true);
4887             // FIXME: recover and fill decls in `TypeLoc`s.
4888             AreDeclaratorChunksValid = false;
4889           }
4890           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4891           if (T.isNull()) {
4892             // An error occurred parsing the trailing return type.
4893             T = Context.IntTy;
4894             D.setInvalidType(true);
4895           } else if (AutoType *Auto = T->getContainedAutoType()) {
4896             // If the trailing return type contains an `auto`, we may need to
4897             // invent a template parameter for it, for cases like
4898             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4899             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4900             if (D.getContext() == DeclaratorContext::Prototype)
4901               InventedParamInfo = &S.InventedParameterInfos.back();
4902             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4903               InventedParamInfo = S.getCurLambda();
4904             if (InventedParamInfo) {
4905               std::tie(T, TInfo) = InventTemplateParameter(
4906                   state, T, TInfo, Auto, *InventedParamInfo);
4907             }
4908           }
4909         } else {
4910           // This function type is not the type of the entity being declared,
4911           // so checking the 'auto' is not the responsibility of this chunk.
4912         }
4913       }
4914 
4915       // C99 6.7.5.3p1: The return type may not be a function or array type.
4916       // For conversion functions, we'll diagnose this particular error later.
4917       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4918           (D.getName().getKind() !=
4919            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4920         unsigned diagID = diag::err_func_returning_array_function;
4921         // Last processing chunk in block context means this function chunk
4922         // represents the block.
4923         if (chunkIndex == 0 &&
4924             D.getContext() == DeclaratorContext::BlockLiteral)
4925           diagID = diag::err_block_returning_array_function;
4926         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4927         T = Context.IntTy;
4928         D.setInvalidType(true);
4929         AreDeclaratorChunksValid = false;
4930       }
4931 
4932       // Do not allow returning half FP value.
4933       // FIXME: This really should be in BuildFunctionType.
4934       if (T->isHalfType()) {
4935         if (S.getLangOpts().OpenCL) {
4936           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4937                                                       S.getLangOpts())) {
4938             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4939                 << T << 0 /*pointer hint*/;
4940             D.setInvalidType(true);
4941           }
4942         } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4943                    !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4944           S.Diag(D.getIdentifierLoc(),
4945             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4946           D.setInvalidType(true);
4947         }
4948       }
4949 
4950       if (LangOpts.OpenCL) {
4951         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4952         // function.
4953         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4954             T->isPipeType()) {
4955           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4956               << T << 1 /*hint off*/;
4957           D.setInvalidType(true);
4958         }
4959         // OpenCL doesn't support variadic functions and blocks
4960         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4961         // We also allow here any toolchain reserved identifiers.
4962         if (FTI.isVariadic &&
4963             !S.getOpenCLOptions().isAvailableOption(
4964                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4965             !(D.getIdentifier() &&
4966               ((D.getIdentifier()->getName() == "printf" &&
4967                 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4968                D.getIdentifier()->getName().starts_with("__")))) {
4969           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4970           D.setInvalidType(true);
4971         }
4972       }
4973 
4974       // Methods cannot return interface types. All ObjC objects are
4975       // passed by reference.
4976       if (T->isObjCObjectType()) {
4977         SourceLocation DiagLoc, FixitLoc;
4978         if (TInfo) {
4979           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4980           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4981         } else {
4982           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4983           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4984         }
4985         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4986           << 0 << T
4987           << FixItHint::CreateInsertion(FixitLoc, "*");
4988 
4989         T = Context.getObjCObjectPointerType(T);
4990         if (TInfo) {
4991           TypeLocBuilder TLB;
4992           TLB.pushFullCopy(TInfo->getTypeLoc());
4993           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
4994           TLoc.setStarLoc(FixitLoc);
4995           TInfo = TLB.getTypeSourceInfo(Context, T);
4996         } else {
4997           AreDeclaratorChunksValid = false;
4998         }
4999 
5000         D.setInvalidType(true);
5001       }
5002 
5003       // cv-qualifiers on return types are pointless except when the type is a
5004       // class type in C++.
5005       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5006           !(S.getLangOpts().CPlusPlus &&
5007             (T->isDependentType() || T->isRecordType()))) {
5008         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5009             D.getFunctionDefinitionKind() ==
5010                 FunctionDefinitionKind::Definition) {
5011           // [6.9.1/3] qualified void return is invalid on a C
5012           // function definition.  Apparently ok on declarations and
5013           // in C++ though (!)
5014           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5015         } else
5016           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5017 
5018         // C++2a [dcl.fct]p12:
5019         //   A volatile-qualified return type is deprecated
5020         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5021           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5022       }
5023 
5024       // Objective-C ARC ownership qualifiers are ignored on the function
5025       // return type (by type canonicalization). Complain if this attribute
5026       // was written here.
5027       if (T.getQualifiers().hasObjCLifetime()) {
5028         SourceLocation AttrLoc;
5029         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5030           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5031           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5032             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5033               AttrLoc = AL.getLoc();
5034               break;
5035             }
5036           }
5037         }
5038         if (AttrLoc.isInvalid()) {
5039           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5040             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5041               AttrLoc = AL.getLoc();
5042               break;
5043             }
5044           }
5045         }
5046 
5047         if (AttrLoc.isValid()) {
5048           // The ownership attributes are almost always written via
5049           // the predefined
5050           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5051           if (AttrLoc.isMacroID())
5052             AttrLoc =
5053                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5054 
5055           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5056             << T.getQualifiers().getObjCLifetime();
5057         }
5058       }
5059 
5060       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5061         // C++ [dcl.fct]p6:
5062         //   Types shall not be defined in return or parameter types.
5063         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5064         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5065           << Context.getTypeDeclType(Tag);
5066       }
5067 
5068       // Exception specs are not allowed in typedefs. Complain, but add it
5069       // anyway.
5070       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5071         S.Diag(FTI.getExceptionSpecLocBeg(),
5072                diag::err_exception_spec_in_typedef)
5073             << (D.getContext() == DeclaratorContext::AliasDecl ||
5074                 D.getContext() == DeclaratorContext::AliasTemplate);
5075 
5076       // If we see "T var();" or "T var(T());" at block scope, it is probably
5077       // an attempt to initialize a variable, not a function declaration.
5078       if (FTI.isAmbiguous)
5079         warnAboutAmbiguousFunction(S, D, DeclType, T);
5080 
5081       FunctionType::ExtInfo EI(
5082           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5083 
5084       // OpenCL disallows functions without a prototype, but it doesn't enforce
5085       // strict prototypes as in C23 because it allows a function definition to
5086       // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5087       if (!FTI.NumParams && !FTI.isVariadic &&
5088           !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5089         // Simple void foo(), where the incoming T is the result type.
5090         T = Context.getFunctionNoProtoType(T, EI);
5091       } else {
5092         // We allow a zero-parameter variadic function in C if the
5093         // function is marked with the "overloadable" attribute. Scan
5094         // for this attribute now. We also allow it in C23 per WG14 N2975.
5095         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5096           if (LangOpts.C23)
5097             S.Diag(FTI.getEllipsisLoc(),
5098                    diag::warn_c17_compat_ellipsis_only_parameter);
5099           else if (!D.getDeclarationAttributes().hasAttribute(
5100                        ParsedAttr::AT_Overloadable) &&
5101                    !D.getAttributes().hasAttribute(
5102                        ParsedAttr::AT_Overloadable) &&
5103                    !D.getDeclSpec().getAttributes().hasAttribute(
5104                        ParsedAttr::AT_Overloadable))
5105             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5106         }
5107 
5108         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5109           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5110           // definition.
5111           S.Diag(FTI.Params[0].IdentLoc,
5112                  diag::err_ident_list_in_fn_declaration);
5113           D.setInvalidType(true);
5114           // Recover by creating a K&R-style function type, if possible.
5115           T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5116                   ? Context.getFunctionNoProtoType(T, EI)
5117                   : Context.IntTy;
5118           AreDeclaratorChunksValid = false;
5119           break;
5120         }
5121 
5122         FunctionProtoType::ExtProtoInfo EPI;
5123         EPI.ExtInfo = EI;
5124         EPI.Variadic = FTI.isVariadic;
5125         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5126         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5127         EPI.TypeQuals.addCVRUQualifiers(
5128             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5129                                  : 0);
5130         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5131                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5132                     : RQ_RValue;
5133 
5134         // Otherwise, we have a function with a parameter list that is
5135         // potentially variadic.
5136         SmallVector<QualType, 16> ParamTys;
5137         ParamTys.reserve(FTI.NumParams);
5138 
5139         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5140           ExtParameterInfos(FTI.NumParams);
5141         bool HasAnyInterestingExtParameterInfos = false;
5142 
5143         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5144           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5145           QualType ParamTy = Param->getType();
5146           assert(!ParamTy.isNull() && "Couldn't parse type?");
5147 
5148           // Look for 'void'.  void is allowed only as a single parameter to a
5149           // function with no other parameters (C99 6.7.5.3p10).  We record
5150           // int(void) as a FunctionProtoType with an empty parameter list.
5151           if (ParamTy->isVoidType()) {
5152             // If this is something like 'float(int, void)', reject it.  'void'
5153             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5154             // have parameters of incomplete type.
5155             if (FTI.NumParams != 1 || FTI.isVariadic) {
5156               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5157               ParamTy = Context.IntTy;
5158               Param->setType(ParamTy);
5159             } else if (FTI.Params[i].Ident) {
5160               // Reject, but continue to parse 'int(void abc)'.
5161               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5162               ParamTy = Context.IntTy;
5163               Param->setType(ParamTy);
5164             } else {
5165               // Reject, but continue to parse 'float(const void)'.
5166               if (ParamTy.hasQualifiers())
5167                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5168 
5169               // Do not add 'void' to the list.
5170               break;
5171             }
5172           } else if (ParamTy->isHalfType()) {
5173             // Disallow half FP parameters.
5174             // FIXME: This really should be in BuildFunctionType.
5175             if (S.getLangOpts().OpenCL) {
5176               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5177                                                           S.getLangOpts())) {
5178                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5179                     << ParamTy << 0;
5180                 D.setInvalidType();
5181                 Param->setInvalidDecl();
5182               }
5183             } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5184                        !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5185               S.Diag(Param->getLocation(),
5186                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5187               D.setInvalidType();
5188             }
5189           } else if (!FTI.hasPrototype) {
5190             if (Context.isPromotableIntegerType(ParamTy)) {
5191               ParamTy = Context.getPromotedIntegerType(ParamTy);
5192               Param->setKNRPromoted(true);
5193             } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5194               if (BTy->getKind() == BuiltinType::Float) {
5195                 ParamTy = Context.DoubleTy;
5196                 Param->setKNRPromoted(true);
5197               }
5198             }
5199           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5200             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5201             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5202                 << ParamTy << 1 /*hint off*/;
5203             D.setInvalidType();
5204           }
5205 
5206           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5207             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5208             HasAnyInterestingExtParameterInfos = true;
5209           }
5210 
5211           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5212             ExtParameterInfos[i] =
5213               ExtParameterInfos[i].withABI(attr->getABI());
5214             HasAnyInterestingExtParameterInfos = true;
5215           }
5216 
5217           if (Param->hasAttr<PassObjectSizeAttr>()) {
5218             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5219             HasAnyInterestingExtParameterInfos = true;
5220           }
5221 
5222           if (Param->hasAttr<NoEscapeAttr>()) {
5223             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5224             HasAnyInterestingExtParameterInfos = true;
5225           }
5226 
5227           ParamTys.push_back(ParamTy);
5228         }
5229 
5230         if (HasAnyInterestingExtParameterInfos) {
5231           EPI.ExtParameterInfos = ExtParameterInfos.data();
5232           checkExtParameterInfos(S, ParamTys, EPI,
5233               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5234         }
5235 
5236         SmallVector<QualType, 4> Exceptions;
5237         SmallVector<ParsedType, 2> DynamicExceptions;
5238         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5239         Expr *NoexceptExpr = nullptr;
5240 
5241         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5242           // FIXME: It's rather inefficient to have to split into two vectors
5243           // here.
5244           unsigned N = FTI.getNumExceptions();
5245           DynamicExceptions.reserve(N);
5246           DynamicExceptionRanges.reserve(N);
5247           for (unsigned I = 0; I != N; ++I) {
5248             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5249             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5250           }
5251         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5252           NoexceptExpr = FTI.NoexceptExpr;
5253         }
5254 
5255         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5256                                       FTI.getExceptionSpecType(),
5257                                       DynamicExceptions,
5258                                       DynamicExceptionRanges,
5259                                       NoexceptExpr,
5260                                       Exceptions,
5261                                       EPI.ExceptionSpec);
5262 
5263         // FIXME: Set address space from attrs for C++ mode here.
5264         // OpenCLCPlusPlus: A class member function has an address space.
5265         auto IsClassMember = [&]() {
5266           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5267                   state.getDeclarator()
5268                           .getCXXScopeSpec()
5269                           .getScopeRep()
5270                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5271                  state.getDeclarator().getContext() ==
5272                      DeclaratorContext::Member ||
5273                  state.getDeclarator().getContext() ==
5274                      DeclaratorContext::LambdaExpr;
5275         };
5276 
5277         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5278           LangAS ASIdx = LangAS::Default;
5279           // Take address space attr if any and mark as invalid to avoid adding
5280           // them later while creating QualType.
5281           if (FTI.MethodQualifiers)
5282             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5283               LangAS ASIdxNew = attr.asOpenCLLangAS();
5284               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5285                                                       attr.getLoc()))
5286                 D.setInvalidType(true);
5287               else
5288                 ASIdx = ASIdxNew;
5289             }
5290           // If a class member function's address space is not set, set it to
5291           // __generic.
5292           LangAS AS =
5293               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5294                                         : ASIdx);
5295           EPI.TypeQuals.addAddressSpace(AS);
5296         }
5297         T = Context.getFunctionType(T, ParamTys, EPI);
5298       }
5299       break;
5300     }
5301     case DeclaratorChunk::MemberPointer: {
5302       // The scope spec must refer to a class, or be dependent.
5303       CXXScopeSpec &SS = DeclType.Mem.Scope();
5304       QualType ClsType;
5305 
5306       // Handle pointer nullability.
5307       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5308                               DeclType.EndLoc, DeclType.getAttrs(),
5309                               state.getDeclarator().getAttributePool());
5310 
5311       if (SS.isInvalid()) {
5312         // Avoid emitting extra errors if we already errored on the scope.
5313         D.setInvalidType(true);
5314       } else if (S.isDependentScopeSpecifier(SS) ||
5315                  isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5316         NestedNameSpecifier *NNS = SS.getScopeRep();
5317         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5318         switch (NNS->getKind()) {
5319         case NestedNameSpecifier::Identifier:
5320           ClsType = Context.getDependentNameType(
5321               ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5322           break;
5323 
5324         case NestedNameSpecifier::Namespace:
5325         case NestedNameSpecifier::NamespaceAlias:
5326         case NestedNameSpecifier::Global:
5327         case NestedNameSpecifier::Super:
5328           llvm_unreachable("Nested-name-specifier must name a type");
5329 
5330         case NestedNameSpecifier::TypeSpec:
5331         case NestedNameSpecifier::TypeSpecWithTemplate:
5332           ClsType = QualType(NNS->getAsType(), 0);
5333           // Note: if the NNS has a prefix and ClsType is a nondependent
5334           // TemplateSpecializationType, then the NNS prefix is NOT included
5335           // in ClsType; hence we wrap ClsType into an ElaboratedType.
5336           // NOTE: in particular, no wrap occurs if ClsType already is an
5337           // Elaborated, DependentName, or DependentTemplateSpecialization.
5338           if (isa<TemplateSpecializationType>(NNS->getAsType()))
5339             ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5340                                                 NNSPrefix, ClsType);
5341           break;
5342         }
5343       } else {
5344         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5345              diag::err_illegal_decl_mempointer_in_nonclass)
5346           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5347           << DeclType.Mem.Scope().getRange();
5348         D.setInvalidType(true);
5349       }
5350 
5351       if (!ClsType.isNull())
5352         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5353                                      D.getIdentifier());
5354       else
5355         AreDeclaratorChunksValid = false;
5356 
5357       if (T.isNull()) {
5358         T = Context.IntTy;
5359         D.setInvalidType(true);
5360         AreDeclaratorChunksValid = false;
5361       } else if (DeclType.Mem.TypeQuals) {
5362         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5363       }
5364       break;
5365     }
5366 
5367     case DeclaratorChunk::Pipe: {
5368       T = S.BuildReadPipeType(T, DeclType.Loc);
5369       processTypeAttrs(state, T, TAL_DeclSpec,
5370                        D.getMutableDeclSpec().getAttributes());
5371       break;
5372     }
5373     }
5374 
5375     if (T.isNull()) {
5376       D.setInvalidType(true);
5377       T = Context.IntTy;
5378       AreDeclaratorChunksValid = false;
5379     }
5380 
5381     // See if there are any attributes on this declarator chunk.
5382     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5383                      S.CUDA().IdentifyTarget(D.getAttributes()));
5384 
5385     if (DeclType.Kind != DeclaratorChunk::Paren) {
5386       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5387         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5388 
5389       ExpectNoDerefChunk = state.didParseNoDeref();
5390     }
5391   }
5392 
5393   if (ExpectNoDerefChunk)
5394     S.Diag(state.getDeclarator().getBeginLoc(),
5395            diag::warn_noderef_on_non_pointer_or_array);
5396 
5397   // GNU warning -Wstrict-prototypes
5398   //   Warn if a function declaration or definition is without a prototype.
5399   //   This warning is issued for all kinds of unprototyped function
5400   //   declarations (i.e. function type typedef, function pointer etc.)
5401   //   C99 6.7.5.3p14:
5402   //   The empty list in a function declarator that is not part of a definition
5403   //   of that function specifies that no information about the number or types
5404   //   of the parameters is supplied.
5405   // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5406   // function declarations whose behavior changes in C23.
5407   if (!LangOpts.requiresStrictPrototypes()) {
5408     bool IsBlock = false;
5409     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5410       switch (DeclType.Kind) {
5411       case DeclaratorChunk::BlockPointer:
5412         IsBlock = true;
5413         break;
5414       case DeclaratorChunk::Function: {
5415         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5416         // We suppress the warning when there's no LParen location, as this
5417         // indicates the declaration was an implicit declaration, which gets
5418         // warned about separately via -Wimplicit-function-declaration. We also
5419         // suppress the warning when we know the function has a prototype.
5420         if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5421             FTI.getLParenLoc().isValid())
5422           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5423               << IsBlock
5424               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5425         IsBlock = false;
5426         break;
5427       }
5428       default:
5429         break;
5430       }
5431     }
5432   }
5433 
5434   assert(!T.isNull() && "T must not be null after this point");
5435 
5436   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5437     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5438     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5439 
5440     // C++ 8.3.5p4:
5441     //   A cv-qualifier-seq shall only be part of the function type
5442     //   for a nonstatic member function, the function type to which a pointer
5443     //   to member refers, or the top-level function type of a function typedef
5444     //   declaration.
5445     //
5446     // Core issue 547 also allows cv-qualifiers on function types that are
5447     // top-level template type arguments.
5448     enum {
5449       NonMember,
5450       Member,
5451       ExplicitObjectMember,
5452       DeductionGuide
5453     } Kind = NonMember;
5454     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5455       Kind = DeductionGuide;
5456     else if (!D.getCXXScopeSpec().isSet()) {
5457       if ((D.getContext() == DeclaratorContext::Member ||
5458            D.getContext() == DeclaratorContext::LambdaExpr) &&
5459           !D.getDeclSpec().isFriendSpecified())
5460         Kind = Member;
5461     } else {
5462       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5463       if (!DC || DC->isRecord())
5464         Kind = Member;
5465     }
5466 
5467     if (Kind == Member) {
5468       unsigned I;
5469       if (D.isFunctionDeclarator(I)) {
5470         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5471         if (Chunk.Fun.NumParams) {
5472           auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5473           if (P && P->isExplicitObjectParameter())
5474             Kind = ExplicitObjectMember;
5475         }
5476       }
5477     }
5478 
5479     // C++11 [dcl.fct]p6 (w/DR1417):
5480     // An attempt to specify a function type with a cv-qualifier-seq or a
5481     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5482     //  - the function type for a non-static member function,
5483     //  - the function type to which a pointer to member refers,
5484     //  - the top-level function type of a function typedef declaration or
5485     //    alias-declaration,
5486     //  - the type-id in the default argument of a type-parameter, or
5487     //  - the type-id of a template-argument for a type-parameter
5488     //
5489     // C++23 [dcl.fct]p6 (P0847R7)
5490     // ... A member-declarator with an explicit-object-parameter-declaration
5491     // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5492     // declared static or virtual ...
5493     //
5494     // FIXME: Checking this here is insufficient. We accept-invalid on:
5495     //
5496     //   template<typename T> struct S { void f(T); };
5497     //   S<int() const> s;
5498     //
5499     // ... for instance.
5500     if (IsQualifiedFunction &&
5501         // Check for non-static member function and not and
5502         // explicit-object-parameter-declaration
5503         (Kind != Member || D.isExplicitObjectMemberFunction() ||
5504          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5505          (D.getContext() == clang::DeclaratorContext::Member &&
5506           D.isStaticMember())) &&
5507         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5508         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5509       SourceLocation Loc = D.getBeginLoc();
5510       SourceRange RemovalRange;
5511       unsigned I;
5512       if (D.isFunctionDeclarator(I)) {
5513         SmallVector<SourceLocation, 4> RemovalLocs;
5514         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5515         assert(Chunk.Kind == DeclaratorChunk::Function);
5516 
5517         if (Chunk.Fun.hasRefQualifier())
5518           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5519 
5520         if (Chunk.Fun.hasMethodTypeQualifiers())
5521           Chunk.Fun.MethodQualifiers->forEachQualifier(
5522               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5523                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5524 
5525         if (!RemovalLocs.empty()) {
5526           llvm::sort(RemovalLocs,
5527                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5528           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5529           Loc = RemovalLocs.front();
5530         }
5531       }
5532 
5533       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5534         << Kind << D.isFunctionDeclarator() << T
5535         << getFunctionQualifiersAsString(FnTy)
5536         << FixItHint::CreateRemoval(RemovalRange);
5537 
5538       // Strip the cv-qualifiers and ref-qualifiers from the type.
5539       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5540       EPI.TypeQuals.removeCVRQualifiers();
5541       EPI.RefQualifier = RQ_None;
5542 
5543       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5544                                   EPI);
5545       // Rebuild any parens around the identifier in the function type.
5546       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5547         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5548           break;
5549         T = S.BuildParenType(T);
5550       }
5551     }
5552   }
5553 
5554   // Apply any undistributed attributes from the declaration or declarator.
5555   ParsedAttributesView NonSlidingAttrs;
5556   for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5557     if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5558       NonSlidingAttrs.addAtEnd(&AL);
5559     }
5560   }
5561   processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5562   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5563 
5564   // Diagnose any ignored type attributes.
5565   state.diagnoseIgnoredTypeAttrs(T);
5566 
5567   // C++0x [dcl.constexpr]p9:
5568   //  A constexpr specifier used in an object declaration declares the object
5569   //  as const.
5570   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5571       T->isObjectType())
5572     T.addConst();
5573 
5574   // C++2a [dcl.fct]p4:
5575   //   A parameter with volatile-qualified type is deprecated
5576   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5577       (D.getContext() == DeclaratorContext::Prototype ||
5578        D.getContext() == DeclaratorContext::LambdaExprParameter))
5579     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5580 
5581   // If there was an ellipsis in the declarator, the declaration declares a
5582   // parameter pack whose type may be a pack expansion type.
5583   if (D.hasEllipsis()) {
5584     // C++0x [dcl.fct]p13:
5585     //   A declarator-id or abstract-declarator containing an ellipsis shall
5586     //   only be used in a parameter-declaration. Such a parameter-declaration
5587     //   is a parameter pack (14.5.3). [...]
5588     switch (D.getContext()) {
5589     case DeclaratorContext::Prototype:
5590     case DeclaratorContext::LambdaExprParameter:
5591     case DeclaratorContext::RequiresExpr:
5592       // C++0x [dcl.fct]p13:
5593       //   [...] When it is part of a parameter-declaration-clause, the
5594       //   parameter pack is a function parameter pack (14.5.3). The type T
5595       //   of the declarator-id of the function parameter pack shall contain
5596       //   a template parameter pack; each template parameter pack in T is
5597       //   expanded by the function parameter pack.
5598       //
5599       // We represent function parameter packs as function parameters whose
5600       // type is a pack expansion.
5601       if (!T->containsUnexpandedParameterPack() &&
5602           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5603         S.Diag(D.getEllipsisLoc(),
5604              diag::err_function_parameter_pack_without_parameter_packs)
5605           << T <<  D.getSourceRange();
5606         D.setEllipsisLoc(SourceLocation());
5607       } else {
5608         T = Context.getPackExpansionType(T, std::nullopt,
5609                                          /*ExpectPackInType=*/false);
5610       }
5611       break;
5612     case DeclaratorContext::TemplateParam:
5613       // C++0x [temp.param]p15:
5614       //   If a template-parameter is a [...] is a parameter-declaration that
5615       //   declares a parameter pack (8.3.5), then the template-parameter is a
5616       //   template parameter pack (14.5.3).
5617       //
5618       // Note: core issue 778 clarifies that, if there are any unexpanded
5619       // parameter packs in the type of the non-type template parameter, then
5620       // it expands those parameter packs.
5621       if (T->containsUnexpandedParameterPack())
5622         T = Context.getPackExpansionType(T, std::nullopt);
5623       else
5624         S.Diag(D.getEllipsisLoc(),
5625                LangOpts.CPlusPlus11
5626                  ? diag::warn_cxx98_compat_variadic_templates
5627                  : diag::ext_variadic_templates);
5628       break;
5629 
5630     case DeclaratorContext::File:
5631     case DeclaratorContext::KNRTypeList:
5632     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5633     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5634     case DeclaratorContext::TypeName:
5635     case DeclaratorContext::FunctionalCast:
5636     case DeclaratorContext::CXXNew:
5637     case DeclaratorContext::AliasDecl:
5638     case DeclaratorContext::AliasTemplate:
5639     case DeclaratorContext::Member:
5640     case DeclaratorContext::Block:
5641     case DeclaratorContext::ForInit:
5642     case DeclaratorContext::SelectionInit:
5643     case DeclaratorContext::Condition:
5644     case DeclaratorContext::CXXCatch:
5645     case DeclaratorContext::ObjCCatch:
5646     case DeclaratorContext::BlockLiteral:
5647     case DeclaratorContext::LambdaExpr:
5648     case DeclaratorContext::ConversionId:
5649     case DeclaratorContext::TrailingReturn:
5650     case DeclaratorContext::TrailingReturnVar:
5651     case DeclaratorContext::TemplateArg:
5652     case DeclaratorContext::TemplateTypeArg:
5653     case DeclaratorContext::Association:
5654       // FIXME: We may want to allow parameter packs in block-literal contexts
5655       // in the future.
5656       S.Diag(D.getEllipsisLoc(),
5657              diag::err_ellipsis_in_declarator_not_parameter);
5658       D.setEllipsisLoc(SourceLocation());
5659       break;
5660     }
5661   }
5662 
5663   assert(!T.isNull() && "T must not be null at the end of this function");
5664   if (!AreDeclaratorChunksValid)
5665     return Context.getTrivialTypeSourceInfo(T);
5666   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5667 }
5668 
5669 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5670   // Determine the type of the declarator. Not all forms of declarator
5671   // have a type.
5672 
5673   TypeProcessingState state(*this, D);
5674 
5675   TypeSourceInfo *ReturnTypeInfo = nullptr;
5676   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5677   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5678     inferARCWriteback(state, T);
5679 
5680   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5681 }
5682 
5683 static void transferARCOwnershipToDeclSpec(Sema &S,
5684                                            QualType &declSpecTy,
5685                                            Qualifiers::ObjCLifetime ownership) {
5686   if (declSpecTy->isObjCRetainableType() &&
5687       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5688     Qualifiers qs;
5689     qs.addObjCLifetime(ownership);
5690     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5691   }
5692 }
5693 
5694 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5695                                             Qualifiers::ObjCLifetime ownership,
5696                                             unsigned chunkIndex) {
5697   Sema &S = state.getSema();
5698   Declarator &D = state.getDeclarator();
5699 
5700   // Look for an explicit lifetime attribute.
5701   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5702   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5703     return;
5704 
5705   const char *attrStr = nullptr;
5706   switch (ownership) {
5707   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5708   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5709   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5710   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5711   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5712   }
5713 
5714   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5715   Arg->Ident = &S.Context.Idents.get(attrStr);
5716   Arg->Loc = SourceLocation();
5717 
5718   ArgsUnion Args(Arg);
5719 
5720   // If there wasn't one, add one (with an invalid source location
5721   // so that we don't make an AttributedType for it).
5722   ParsedAttr *attr = D.getAttributePool().create(
5723       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5724       /*scope*/ nullptr, SourceLocation(),
5725       /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5726   chunk.getAttrs().addAtEnd(attr);
5727   // TODO: mark whether we did this inference?
5728 }
5729 
5730 /// Used for transferring ownership in casts resulting in l-values.
5731 static void transferARCOwnership(TypeProcessingState &state,
5732                                  QualType &declSpecTy,
5733                                  Qualifiers::ObjCLifetime ownership) {
5734   Sema &S = state.getSema();
5735   Declarator &D = state.getDeclarator();
5736 
5737   int inner = -1;
5738   bool hasIndirection = false;
5739   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5740     DeclaratorChunk &chunk = D.getTypeObject(i);
5741     switch (chunk.Kind) {
5742     case DeclaratorChunk::Paren:
5743       // Ignore parens.
5744       break;
5745 
5746     case DeclaratorChunk::Array:
5747     case DeclaratorChunk::Reference:
5748     case DeclaratorChunk::Pointer:
5749       if (inner != -1)
5750         hasIndirection = true;
5751       inner = i;
5752       break;
5753 
5754     case DeclaratorChunk::BlockPointer:
5755       if (inner != -1)
5756         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5757       return;
5758 
5759     case DeclaratorChunk::Function:
5760     case DeclaratorChunk::MemberPointer:
5761     case DeclaratorChunk::Pipe:
5762       return;
5763     }
5764   }
5765 
5766   if (inner == -1)
5767     return;
5768 
5769   DeclaratorChunk &chunk = D.getTypeObject(inner);
5770   if (chunk.Kind == DeclaratorChunk::Pointer) {
5771     if (declSpecTy->isObjCRetainableType())
5772       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5773     if (declSpecTy->isObjCObjectType() && hasIndirection)
5774       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5775   } else {
5776     assert(chunk.Kind == DeclaratorChunk::Array ||
5777            chunk.Kind == DeclaratorChunk::Reference);
5778     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5779   }
5780 }
5781 
5782 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5783   TypeProcessingState state(*this, D);
5784 
5785   TypeSourceInfo *ReturnTypeInfo = nullptr;
5786   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5787 
5788   if (getLangOpts().ObjC) {
5789     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5790     if (ownership != Qualifiers::OCL_None)
5791       transferARCOwnership(state, declSpecTy, ownership);
5792   }
5793 
5794   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5795 }
5796 
5797 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5798                                   TypeProcessingState &State) {
5799   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5800 }
5801 
5802 static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL,
5803                                               TypeProcessingState &State) {
5804   HLSLAttributedResourceLocInfo LocInfo =
5805       State.getSema().HLSL().TakeLocForHLSLAttribute(TL.getTypePtr());
5806   TL.setSourceRange(LocInfo.Range);
5807   TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo);
5808 }
5809 
5810 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5811                               const ParsedAttributesView &Attrs) {
5812   for (const ParsedAttr &AL : Attrs) {
5813     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5814       MTL.setAttrNameLoc(AL.getLoc());
5815       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5816       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5817       MTL.setAttrOperandParensRange(SourceRange());
5818       return;
5819     }
5820   }
5821 
5822   llvm_unreachable("no matrix_type attribute found at the expected location!");
5823 }
5824 
5825 namespace {
5826   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5827     Sema &SemaRef;
5828     ASTContext &Context;
5829     TypeProcessingState &State;
5830     const DeclSpec &DS;
5831 
5832   public:
5833     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5834                       const DeclSpec &DS)
5835         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5836 
5837     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5838       Visit(TL.getModifiedLoc());
5839       fillAttributedTypeLoc(TL, State);
5840     }
5841     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5842       Visit(TL.getWrappedLoc());
5843     }
5844     void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) {
5845       Visit(TL.getWrappedLoc());
5846       fillHLSLAttributedResourceTypeLoc(TL, State);
5847     }
5848     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5849       Visit(TL.getInnerLoc());
5850       TL.setExpansionLoc(
5851           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5852     }
5853     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5854       Visit(TL.getUnqualifiedLoc());
5855     }
5856     // Allow to fill pointee's type locations, e.g.,
5857     //   int __attr * __attr * __attr *p;
5858     void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5859     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5860       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5861     }
5862     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5863       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5864       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5865       // addition field. What we have is good enough for display of location
5866       // of 'fixit' on interface name.
5867       TL.setNameEndLoc(DS.getEndLoc());
5868     }
5869     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5870       TypeSourceInfo *RepTInfo = nullptr;
5871       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5872       TL.copy(RepTInfo->getTypeLoc());
5873     }
5874     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5875       TypeSourceInfo *RepTInfo = nullptr;
5876       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5877       TL.copy(RepTInfo->getTypeLoc());
5878     }
5879     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5880       TypeSourceInfo *TInfo = nullptr;
5881       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5882 
5883       // If we got no declarator info from previous Sema routines,
5884       // just fill with the typespec loc.
5885       if (!TInfo) {
5886         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5887         return;
5888       }
5889 
5890       TypeLoc OldTL = TInfo->getTypeLoc();
5891       if (TInfo->getType()->getAs<ElaboratedType>()) {
5892         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5893         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5894             .castAs<TemplateSpecializationTypeLoc>();
5895         TL.copy(NamedTL);
5896       } else {
5897         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5898         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5899       }
5900 
5901     }
5902     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5903       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5904              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5905       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5906       TL.setParensRange(DS.getTypeofParensRange());
5907     }
5908     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5909       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5910              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5911       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5912       TL.setParensRange(DS.getTypeofParensRange());
5913       assert(DS.getRepAsType());
5914       TypeSourceInfo *TInfo = nullptr;
5915       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5916       TL.setUnmodifiedTInfo(TInfo);
5917     }
5918     void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5919       assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5920       TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5921       TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5922     }
5923     void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5924       assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5925       TL.setEllipsisLoc(DS.getEllipsisLoc());
5926     }
5927     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5928       assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5929       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5930       TL.setParensRange(DS.getTypeofParensRange());
5931       assert(DS.getRepAsType());
5932       TypeSourceInfo *TInfo = nullptr;
5933       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5934       TL.setUnderlyingTInfo(TInfo);
5935     }
5936     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5937       // By default, use the source location of the type specifier.
5938       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5939       if (TL.needsExtraLocalData()) {
5940         // Set info for the written builtin specifiers.
5941         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5942         // Try to have a meaningful source location.
5943         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5944           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5945         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5946           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5947       }
5948     }
5949     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5950       if (DS.getTypeSpecType() == TST_typename) {
5951         TypeSourceInfo *TInfo = nullptr;
5952         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5953         if (TInfo)
5954           if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
5955             TL.copy(ETL);
5956             return;
5957           }
5958       }
5959       const ElaboratedType *T = TL.getTypePtr();
5960       TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
5961                                      ? DS.getTypeSpecTypeLoc()
5962                                      : SourceLocation());
5963       const CXXScopeSpec& SS = DS.getTypeSpecScope();
5964       TL.setQualifierLoc(SS.getWithLocInContext(Context));
5965       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5966     }
5967     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5968       assert(DS.getTypeSpecType() == TST_typename);
5969       TypeSourceInfo *TInfo = nullptr;
5970       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5971       assert(TInfo);
5972       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
5973     }
5974     void VisitDependentTemplateSpecializationTypeLoc(
5975                                  DependentTemplateSpecializationTypeLoc TL) {
5976       assert(DS.getTypeSpecType() == TST_typename);
5977       TypeSourceInfo *TInfo = nullptr;
5978       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5979       assert(TInfo);
5980       TL.copy(
5981           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
5982     }
5983     void VisitAutoTypeLoc(AutoTypeLoc TL) {
5984       assert(DS.getTypeSpecType() == TST_auto ||
5985              DS.getTypeSpecType() == TST_decltype_auto ||
5986              DS.getTypeSpecType() == TST_auto_type ||
5987              DS.getTypeSpecType() == TST_unspecified);
5988       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5989       if (DS.getTypeSpecType() == TST_decltype_auto)
5990         TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5991       if (!DS.isConstrainedAuto())
5992         return;
5993       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
5994       if (!TemplateId)
5995         return;
5996 
5997       NestedNameSpecifierLoc NNS =
5998           (DS.getTypeSpecScope().isNotEmpty()
5999                ? DS.getTypeSpecScope().getWithLocInContext(Context)
6000                : NestedNameSpecifierLoc());
6001       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6002                                                 TemplateId->RAngleLoc);
6003       if (TemplateId->NumArgs > 0) {
6004         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6005                                            TemplateId->NumArgs);
6006         SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6007       }
6008       DeclarationNameInfo DNI = DeclarationNameInfo(
6009           TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6010           TemplateId->TemplateNameLoc);
6011 
6012       NamedDecl *FoundDecl;
6013       if (auto TN = TemplateId->Template.get();
6014           UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
6015         FoundDecl = cast<NamedDecl>(USD);
6016       else
6017         FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
6018 
6019       auto *CR = ConceptReference::Create(
6020           Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
6021           /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
6022           ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
6023       TL.setConceptReference(CR);
6024     }
6025     void VisitTagTypeLoc(TagTypeLoc TL) {
6026       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6027     }
6028     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6029       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6030       // or an _Atomic qualifier.
6031       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6032         TL.setKWLoc(DS.getTypeSpecTypeLoc());
6033         TL.setParensRange(DS.getTypeofParensRange());
6034 
6035         TypeSourceInfo *TInfo = nullptr;
6036         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6037         assert(TInfo);
6038         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6039       } else {
6040         TL.setKWLoc(DS.getAtomicSpecLoc());
6041         // No parens, to indicate this was spelled as an _Atomic qualifier.
6042         TL.setParensRange(SourceRange());
6043         Visit(TL.getValueLoc());
6044       }
6045     }
6046 
6047     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6048       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6049 
6050       TypeSourceInfo *TInfo = nullptr;
6051       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6052       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6053     }
6054 
6055     void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6056       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6057     }
6058 
6059     void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6060       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6061     }
6062 
6063     void VisitTypeLoc(TypeLoc TL) {
6064       // FIXME: add other typespec types and change this to an assert.
6065       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6066     }
6067   };
6068 
6069   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6070     ASTContext &Context;
6071     TypeProcessingState &State;
6072     const DeclaratorChunk &Chunk;
6073 
6074   public:
6075     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6076                         const DeclaratorChunk &Chunk)
6077         : Context(Context), State(State), Chunk(Chunk) {}
6078 
6079     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6080       llvm_unreachable("qualified type locs not expected here!");
6081     }
6082     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6083       llvm_unreachable("decayed type locs not expected here!");
6084     }
6085     void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6086       llvm_unreachable("array parameter type locs not expected here!");
6087     }
6088 
6089     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6090       fillAttributedTypeLoc(TL, State);
6091     }
6092     void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6093       // nothing
6094     }
6095     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6096       // nothing
6097     }
6098     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6099       // nothing
6100     }
6101     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6102       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6103       TL.setCaretLoc(Chunk.Loc);
6104     }
6105     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6106       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6107       TL.setStarLoc(Chunk.Loc);
6108     }
6109     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6110       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6111       TL.setStarLoc(Chunk.Loc);
6112     }
6113     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6114       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6115       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6116       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6117 
6118       const Type* ClsTy = TL.getClass();
6119       QualType ClsQT = QualType(ClsTy, 0);
6120       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6121       // Now copy source location info into the type loc component.
6122       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6123       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6124       case NestedNameSpecifier::Identifier:
6125         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6126         {
6127           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6128           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6129           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6130           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6131         }
6132         break;
6133 
6134       case NestedNameSpecifier::TypeSpec:
6135       case NestedNameSpecifier::TypeSpecWithTemplate:
6136         if (isa<ElaboratedType>(ClsTy)) {
6137           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6138           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6139           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6140           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6141           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6142         } else {
6143           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6144         }
6145         break;
6146 
6147       case NestedNameSpecifier::Namespace:
6148       case NestedNameSpecifier::NamespaceAlias:
6149       case NestedNameSpecifier::Global:
6150       case NestedNameSpecifier::Super:
6151         llvm_unreachable("Nested-name-specifier must name a type");
6152       }
6153 
6154       // Finally fill in MemberPointerLocInfo fields.
6155       TL.setStarLoc(Chunk.Mem.StarLoc);
6156       TL.setClassTInfo(ClsTInfo);
6157     }
6158     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6159       assert(Chunk.Kind == DeclaratorChunk::Reference);
6160       // 'Amp' is misleading: this might have been originally
6161       /// spelled with AmpAmp.
6162       TL.setAmpLoc(Chunk.Loc);
6163     }
6164     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6165       assert(Chunk.Kind == DeclaratorChunk::Reference);
6166       assert(!Chunk.Ref.LValueRef);
6167       TL.setAmpAmpLoc(Chunk.Loc);
6168     }
6169     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6170       assert(Chunk.Kind == DeclaratorChunk::Array);
6171       TL.setLBracketLoc(Chunk.Loc);
6172       TL.setRBracketLoc(Chunk.EndLoc);
6173       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6174     }
6175     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6176       assert(Chunk.Kind == DeclaratorChunk::Function);
6177       TL.setLocalRangeBegin(Chunk.Loc);
6178       TL.setLocalRangeEnd(Chunk.EndLoc);
6179 
6180       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6181       TL.setLParenLoc(FTI.getLParenLoc());
6182       TL.setRParenLoc(FTI.getRParenLoc());
6183       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6184         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6185         TL.setParam(tpi++, Param);
6186       }
6187       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6188     }
6189     void VisitParenTypeLoc(ParenTypeLoc TL) {
6190       assert(Chunk.Kind == DeclaratorChunk::Paren);
6191       TL.setLParenLoc(Chunk.Loc);
6192       TL.setRParenLoc(Chunk.EndLoc);
6193     }
6194     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6195       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6196       TL.setKWLoc(Chunk.Loc);
6197     }
6198     void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6199       TL.setNameLoc(Chunk.Loc);
6200     }
6201     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6202       TL.setExpansionLoc(Chunk.Loc);
6203     }
6204     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6205     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6206       TL.setNameLoc(Chunk.Loc);
6207     }
6208     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6209       TL.setNameLoc(Chunk.Loc);
6210     }
6211     void
6212     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6213       TL.setNameLoc(Chunk.Loc);
6214     }
6215     void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6216       fillMatrixTypeLoc(TL, Chunk.getAttrs());
6217     }
6218 
6219     void VisitTypeLoc(TypeLoc TL) {
6220       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6221     }
6222   };
6223 } // end anonymous namespace
6224 
6225 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6226   SourceLocation Loc;
6227   switch (Chunk.Kind) {
6228   case DeclaratorChunk::Function:
6229   case DeclaratorChunk::Array:
6230   case DeclaratorChunk::Paren:
6231   case DeclaratorChunk::Pipe:
6232     llvm_unreachable("cannot be _Atomic qualified");
6233 
6234   case DeclaratorChunk::Pointer:
6235     Loc = Chunk.Ptr.AtomicQualLoc;
6236     break;
6237 
6238   case DeclaratorChunk::BlockPointer:
6239   case DeclaratorChunk::Reference:
6240   case DeclaratorChunk::MemberPointer:
6241     // FIXME: Provide a source location for the _Atomic keyword.
6242     break;
6243   }
6244 
6245   ATL.setKWLoc(Loc);
6246   ATL.setParensRange(SourceRange());
6247 }
6248 
6249 static void
6250 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6251                                  const ParsedAttributesView &Attrs) {
6252   for (const ParsedAttr &AL : Attrs) {
6253     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6254       DASTL.setAttrNameLoc(AL.getLoc());
6255       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6256       DASTL.setAttrOperandParensRange(SourceRange());
6257       return;
6258     }
6259   }
6260 
6261   llvm_unreachable(
6262       "no address_space attribute found at the expected location!");
6263 }
6264 
6265 /// Create and instantiate a TypeSourceInfo with type source information.
6266 ///
6267 /// \param T QualType referring to the type as written in source code.
6268 ///
6269 /// \param ReturnTypeInfo For declarators whose return type does not show
6270 /// up in the normal place in the declaration specifiers (such as a C++
6271 /// conversion function), this pointer will refer to a type source information
6272 /// for that return type.
6273 static TypeSourceInfo *
6274 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6275                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6276   Sema &S = State.getSema();
6277   Declarator &D = State.getDeclarator();
6278 
6279   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6280   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6281 
6282   // Handle parameter packs whose type is a pack expansion.
6283   if (isa<PackExpansionType>(T)) {
6284     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6285     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6286   }
6287 
6288   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6289     // Microsoft property fields can have multiple sizeless array chunks
6290     // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6291     if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6292         D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6293       continue;
6294 
6295     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6296     // declarator chunk.
6297     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6298       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6299       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6300     }
6301 
6302     bool HasDesugaredTypeLoc = true;
6303     while (HasDesugaredTypeLoc) {
6304       switch (CurrTL.getTypeLocClass()) {
6305       case TypeLoc::MacroQualified: {
6306         auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6307         TL.setExpansionLoc(
6308             State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6309         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6310         break;
6311       }
6312 
6313       case TypeLoc::Attributed: {
6314         auto TL = CurrTL.castAs<AttributedTypeLoc>();
6315         fillAttributedTypeLoc(TL, State);
6316         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6317         break;
6318       }
6319 
6320       case TypeLoc::Adjusted:
6321       case TypeLoc::BTFTagAttributed: {
6322         CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6323         break;
6324       }
6325 
6326       case TypeLoc::DependentAddressSpace: {
6327         auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6328         fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6329         CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6330         break;
6331       }
6332 
6333       default:
6334         HasDesugaredTypeLoc = false;
6335         break;
6336       }
6337     }
6338 
6339     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6340     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6341   }
6342 
6343   // If we have different source information for the return type, use
6344   // that.  This really only applies to C++ conversion functions.
6345   if (ReturnTypeInfo) {
6346     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6347     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6348     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6349   } else {
6350     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6351   }
6352 
6353   return TInfo;
6354 }
6355 
6356 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6357 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6358   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6359   // and Sema during declaration parsing. Try deallocating/caching them when
6360   // it's appropriate, instead of allocating them and keeping them around.
6361   LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6362                                                         alignof(LocInfoType));
6363   new (LocT) LocInfoType(T, TInfo);
6364   assert(LocT->getTypeClass() != T->getTypeClass() &&
6365          "LocInfoType's TypeClass conflicts with an existing Type class");
6366   return ParsedType::make(QualType(LocT, 0));
6367 }
6368 
6369 void LocInfoType::getAsStringInternal(std::string &Str,
6370                                       const PrintingPolicy &Policy) const {
6371   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6372          " was used directly instead of getting the QualType through"
6373          " GetTypeFromParser");
6374 }
6375 
6376 TypeResult Sema::ActOnTypeName(Declarator &D) {
6377   // C99 6.7.6: Type names have no identifier.  This is already validated by
6378   // the parser.
6379   assert(D.getIdentifier() == nullptr &&
6380          "Type name should have no identifier!");
6381 
6382   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6383   QualType T = TInfo->getType();
6384   if (D.isInvalidType())
6385     return true;
6386 
6387   // Make sure there are no unused decl attributes on the declarator.
6388   // We don't want to do this for ObjC parameters because we're going
6389   // to apply them to the actual parameter declaration.
6390   // Likewise, we don't want to do this for alias declarations, because
6391   // we are actually going to build a declaration from this eventually.
6392   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6393       D.getContext() != DeclaratorContext::AliasDecl &&
6394       D.getContext() != DeclaratorContext::AliasTemplate)
6395     checkUnusedDeclAttributes(D);
6396 
6397   if (getLangOpts().CPlusPlus) {
6398     // Check that there are no default arguments (C++ only).
6399     CheckExtraCXXDefaultArguments(D);
6400   }
6401 
6402   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6403     const AutoType *AT = TL.getTypePtr();
6404     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6405   }
6406   return CreateParsedType(T, TInfo);
6407 }
6408 
6409 //===----------------------------------------------------------------------===//
6410 // Type Attribute Processing
6411 //===----------------------------------------------------------------------===//
6412 
6413 /// Build an AddressSpace index from a constant expression and diagnose any
6414 /// errors related to invalid address_spaces. Returns true on successfully
6415 /// building an AddressSpace index.
6416 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6417                                    const Expr *AddrSpace,
6418                                    SourceLocation AttrLoc) {
6419   if (!AddrSpace->isValueDependent()) {
6420     std::optional<llvm::APSInt> OptAddrSpace =
6421         AddrSpace->getIntegerConstantExpr(S.Context);
6422     if (!OptAddrSpace) {
6423       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6424           << "'address_space'" << AANT_ArgumentIntegerConstant
6425           << AddrSpace->getSourceRange();
6426       return false;
6427     }
6428     llvm::APSInt &addrSpace = *OptAddrSpace;
6429 
6430     // Bounds checking.
6431     if (addrSpace.isSigned()) {
6432       if (addrSpace.isNegative()) {
6433         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6434             << AddrSpace->getSourceRange();
6435         return false;
6436       }
6437       addrSpace.setIsSigned(false);
6438     }
6439 
6440     llvm::APSInt max(addrSpace.getBitWidth());
6441     max =
6442         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6443 
6444     if (addrSpace > max) {
6445       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6446           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6447       return false;
6448     }
6449 
6450     ASIdx =
6451         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6452     return true;
6453   }
6454 
6455   // Default value for DependentAddressSpaceTypes
6456   ASIdx = LangAS::Default;
6457   return true;
6458 }
6459 
6460 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6461                                      SourceLocation AttrLoc) {
6462   if (!AddrSpace->isValueDependent()) {
6463     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6464                                             AttrLoc))
6465       return QualType();
6466 
6467     return Context.getAddrSpaceQualType(T, ASIdx);
6468   }
6469 
6470   // A check with similar intentions as checking if a type already has an
6471   // address space except for on a dependent types, basically if the
6472   // current type is already a DependentAddressSpaceType then its already
6473   // lined up to have another address space on it and we can't have
6474   // multiple address spaces on the one pointer indirection
6475   if (T->getAs<DependentAddressSpaceType>()) {
6476     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6477     return QualType();
6478   }
6479 
6480   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6481 }
6482 
6483 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6484                                      SourceLocation AttrLoc) {
6485   LangAS ASIdx;
6486   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6487     return QualType();
6488   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6489 }
6490 
6491 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6492                                       TypeProcessingState &State) {
6493   Sema &S = State.getSema();
6494 
6495   // This attribute is only supported in C.
6496   // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp
6497   // such that it handles type attributes, and then call that from
6498   // processTypeAttrs() instead of one-off checks like this.
6499   if (!Attr.diagnoseLangOpts(S)) {
6500     Attr.setInvalid();
6501     return;
6502   }
6503 
6504   // Check the number of attribute arguments.
6505   if (Attr.getNumArgs() != 1) {
6506     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6507         << Attr << 1;
6508     Attr.setInvalid();
6509     return;
6510   }
6511 
6512   // Ensure the argument is a string.
6513   auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6514   if (!StrLiteral) {
6515     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6516         << Attr << AANT_ArgumentString;
6517     Attr.setInvalid();
6518     return;
6519   }
6520 
6521   ASTContext &Ctx = S.Context;
6522   StringRef BTFTypeTag = StrLiteral->getString();
6523   Type = State.getBTFTagAttributedType(
6524       ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6525 }
6526 
6527 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6528 /// specified type.  The attribute contains 1 argument, the id of the address
6529 /// space for the type.
6530 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6531                                             const ParsedAttr &Attr,
6532                                             TypeProcessingState &State) {
6533   Sema &S = State.getSema();
6534 
6535   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6536   // qualified by an address-space qualifier."
6537   if (Type->isFunctionType()) {
6538     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6539     Attr.setInvalid();
6540     return;
6541   }
6542 
6543   LangAS ASIdx;
6544   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6545 
6546     // Check the attribute arguments.
6547     if (Attr.getNumArgs() != 1) {
6548       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6549                                                                         << 1;
6550       Attr.setInvalid();
6551       return;
6552     }
6553 
6554     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6555     LangAS ASIdx;
6556     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6557       Attr.setInvalid();
6558       return;
6559     }
6560 
6561     ASTContext &Ctx = S.Context;
6562     auto *ASAttr =
6563         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6564 
6565     // If the expression is not value dependent (not templated), then we can
6566     // apply the address space qualifiers just to the equivalent type.
6567     // Otherwise, we make an AttributedType with the modified and equivalent
6568     // type the same, and wrap it in a DependentAddressSpaceType. When this
6569     // dependent type is resolved, the qualifier is added to the equivalent type
6570     // later.
6571     QualType T;
6572     if (!ASArgExpr->isValueDependent()) {
6573       QualType EquivType =
6574           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6575       if (EquivType.isNull()) {
6576         Attr.setInvalid();
6577         return;
6578       }
6579       T = State.getAttributedType(ASAttr, Type, EquivType);
6580     } else {
6581       T = State.getAttributedType(ASAttr, Type, Type);
6582       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6583     }
6584 
6585     if (!T.isNull())
6586       Type = T;
6587     else
6588       Attr.setInvalid();
6589   } else {
6590     // The keyword-based type attributes imply which address space to use.
6591     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6592                                          : Attr.asOpenCLLangAS();
6593     if (S.getLangOpts().HLSL)
6594       ASIdx = Attr.asHLSLLangAS();
6595 
6596     if (ASIdx == LangAS::Default)
6597       llvm_unreachable("Invalid address space");
6598 
6599     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6600                                             Attr.getLoc())) {
6601       Attr.setInvalid();
6602       return;
6603     }
6604 
6605     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6606   }
6607 }
6608 
6609 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6610 /// attribute on the specified type.
6611 ///
6612 /// Returns 'true' if the attribute was handled.
6613 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6614                                         ParsedAttr &attr, QualType &type) {
6615   bool NonObjCPointer = false;
6616 
6617   if (!type->isDependentType() && !type->isUndeducedType()) {
6618     if (const PointerType *ptr = type->getAs<PointerType>()) {
6619       QualType pointee = ptr->getPointeeType();
6620       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6621         return false;
6622       // It is important not to lose the source info that there was an attribute
6623       // applied to non-objc pointer. We will create an attributed type but
6624       // its type will be the same as the original type.
6625       NonObjCPointer = true;
6626     } else if (!type->isObjCRetainableType()) {
6627       return false;
6628     }
6629 
6630     // Don't accept an ownership attribute in the declspec if it would
6631     // just be the return type of a block pointer.
6632     if (state.isProcessingDeclSpec()) {
6633       Declarator &D = state.getDeclarator();
6634       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6635                                   /*onlyBlockPointers=*/true))
6636         return false;
6637     }
6638   }
6639 
6640   Sema &S = state.getSema();
6641   SourceLocation AttrLoc = attr.getLoc();
6642   if (AttrLoc.isMacroID())
6643     AttrLoc =
6644         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6645 
6646   if (!attr.isArgIdent(0)) {
6647     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6648                                                        << AANT_ArgumentString;
6649     attr.setInvalid();
6650     return true;
6651   }
6652 
6653   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6654   Qualifiers::ObjCLifetime lifetime;
6655   if (II->isStr("none"))
6656     lifetime = Qualifiers::OCL_ExplicitNone;
6657   else if (II->isStr("strong"))
6658     lifetime = Qualifiers::OCL_Strong;
6659   else if (II->isStr("weak"))
6660     lifetime = Qualifiers::OCL_Weak;
6661   else if (II->isStr("autoreleasing"))
6662     lifetime = Qualifiers::OCL_Autoreleasing;
6663   else {
6664     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6665     attr.setInvalid();
6666     return true;
6667   }
6668 
6669   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6670   // outside of ARC mode.
6671   if (!S.getLangOpts().ObjCAutoRefCount &&
6672       lifetime != Qualifiers::OCL_Weak &&
6673       lifetime != Qualifiers::OCL_ExplicitNone) {
6674     return true;
6675   }
6676 
6677   SplitQualType underlyingType = type.split();
6678 
6679   // Check for redundant/conflicting ownership qualifiers.
6680   if (Qualifiers::ObjCLifetime previousLifetime
6681         = type.getQualifiers().getObjCLifetime()) {
6682     // If it's written directly, that's an error.
6683     if (S.Context.hasDirectOwnershipQualifier(type)) {
6684       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6685         << type;
6686       return true;
6687     }
6688 
6689     // Otherwise, if the qualifiers actually conflict, pull sugar off
6690     // and remove the ObjCLifetime qualifiers.
6691     if (previousLifetime != lifetime) {
6692       // It's possible to have multiple local ObjCLifetime qualifiers. We
6693       // can't stop after we reach a type that is directly qualified.
6694       const Type *prevTy = nullptr;
6695       while (!prevTy || prevTy != underlyingType.Ty) {
6696         prevTy = underlyingType.Ty;
6697         underlyingType = underlyingType.getSingleStepDesugaredType();
6698       }
6699       underlyingType.Quals.removeObjCLifetime();
6700     }
6701   }
6702 
6703   underlyingType.Quals.addObjCLifetime(lifetime);
6704 
6705   if (NonObjCPointer) {
6706     StringRef name = attr.getAttrName()->getName();
6707     switch (lifetime) {
6708     case Qualifiers::OCL_None:
6709     case Qualifiers::OCL_ExplicitNone:
6710       break;
6711     case Qualifiers::OCL_Strong: name = "__strong"; break;
6712     case Qualifiers::OCL_Weak: name = "__weak"; break;
6713     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6714     }
6715     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6716       << TDS_ObjCObjOrBlock << type;
6717   }
6718 
6719   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6720   // because having both 'T' and '__unsafe_unretained T' exist in the type
6721   // system causes unfortunate widespread consistency problems.  (For example,
6722   // they're not considered compatible types, and we mangle them identicially
6723   // as template arguments.)  These problems are all individually fixable,
6724   // but it's easier to just not add the qualifier and instead sniff it out
6725   // in specific places using isObjCInertUnsafeUnretainedType().
6726   //
6727   // Doing this does means we miss some trivial consistency checks that
6728   // would've triggered in ARC, but that's better than trying to solve all
6729   // the coexistence problems with __unsafe_unretained.
6730   if (!S.getLangOpts().ObjCAutoRefCount &&
6731       lifetime == Qualifiers::OCL_ExplicitNone) {
6732     type = state.getAttributedType(
6733         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6734         type, type);
6735     return true;
6736   }
6737 
6738   QualType origType = type;
6739   if (!NonObjCPointer)
6740     type = S.Context.getQualifiedType(underlyingType);
6741 
6742   // If we have a valid source location for the attribute, use an
6743   // AttributedType instead.
6744   if (AttrLoc.isValid()) {
6745     type = state.getAttributedType(::new (S.Context)
6746                                        ObjCOwnershipAttr(S.Context, attr, II),
6747                                    origType, type);
6748   }
6749 
6750   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6751                             unsigned diagnostic, QualType type) {
6752     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6753       S.DelayedDiagnostics.add(
6754           sema::DelayedDiagnostic::makeForbiddenType(
6755               S.getSourceManager().getExpansionLoc(loc),
6756               diagnostic, type, /*ignored*/ 0));
6757     } else {
6758       S.Diag(loc, diagnostic);
6759     }
6760   };
6761 
6762   // Sometimes, __weak isn't allowed.
6763   if (lifetime == Qualifiers::OCL_Weak &&
6764       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6765 
6766     // Use a specialized diagnostic if the runtime just doesn't support them.
6767     unsigned diagnostic =
6768       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6769                                        : diag::err_arc_weak_no_runtime);
6770 
6771     // In any case, delay the diagnostic until we know what we're parsing.
6772     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6773 
6774     attr.setInvalid();
6775     return true;
6776   }
6777 
6778   // Forbid __weak for class objects marked as
6779   // objc_arc_weak_reference_unavailable
6780   if (lifetime == Qualifiers::OCL_Weak) {
6781     if (const ObjCObjectPointerType *ObjT =
6782           type->getAs<ObjCObjectPointerType>()) {
6783       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6784         if (Class->isArcWeakrefUnavailable()) {
6785           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6786           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6787                  diag::note_class_declared);
6788         }
6789       }
6790     }
6791   }
6792 
6793   return true;
6794 }
6795 
6796 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6797 /// attribute on the specified type.  Returns true to indicate that
6798 /// the attribute was handled, false to indicate that the type does
6799 /// not permit the attribute.
6800 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6801                                  QualType &type) {
6802   Sema &S = state.getSema();
6803 
6804   // Delay if this isn't some kind of pointer.
6805   if (!type->isPointerType() &&
6806       !type->isObjCObjectPointerType() &&
6807       !type->isBlockPointerType())
6808     return false;
6809 
6810   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6811     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6812     attr.setInvalid();
6813     return true;
6814   }
6815 
6816   // Check the attribute arguments.
6817   if (!attr.isArgIdent(0)) {
6818     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6819         << attr << AANT_ArgumentString;
6820     attr.setInvalid();
6821     return true;
6822   }
6823   Qualifiers::GC GCAttr;
6824   if (attr.getNumArgs() > 1) {
6825     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6826                                                                       << 1;
6827     attr.setInvalid();
6828     return true;
6829   }
6830 
6831   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6832   if (II->isStr("weak"))
6833     GCAttr = Qualifiers::Weak;
6834   else if (II->isStr("strong"))
6835     GCAttr = Qualifiers::Strong;
6836   else {
6837     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6838         << attr << II;
6839     attr.setInvalid();
6840     return true;
6841   }
6842 
6843   QualType origType = type;
6844   type = S.Context.getObjCGCQualType(origType, GCAttr);
6845 
6846   // Make an attributed type to preserve the source information.
6847   if (attr.getLoc().isValid())
6848     type = state.getAttributedType(
6849         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6850 
6851   return true;
6852 }
6853 
6854 namespace {
6855   /// A helper class to unwrap a type down to a function for the
6856   /// purposes of applying attributes there.
6857   ///
6858   /// Use:
6859   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6860   ///   if (unwrapped.isFunctionType()) {
6861   ///     const FunctionType *fn = unwrapped.get();
6862   ///     // change fn somehow
6863   ///     T = unwrapped.wrap(fn);
6864   ///   }
6865   struct FunctionTypeUnwrapper {
6866     enum WrapKind {
6867       Desugar,
6868       Attributed,
6869       Parens,
6870       Array,
6871       Pointer,
6872       BlockPointer,
6873       Reference,
6874       MemberPointer,
6875       MacroQualified,
6876     };
6877 
6878     QualType Original;
6879     const FunctionType *Fn;
6880     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6881 
6882     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6883       while (true) {
6884         const Type *Ty = T.getTypePtr();
6885         if (isa<FunctionType>(Ty)) {
6886           Fn = cast<FunctionType>(Ty);
6887           return;
6888         } else if (isa<ParenType>(Ty)) {
6889           T = cast<ParenType>(Ty)->getInnerType();
6890           Stack.push_back(Parens);
6891         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6892                    isa<IncompleteArrayType>(Ty)) {
6893           T = cast<ArrayType>(Ty)->getElementType();
6894           Stack.push_back(Array);
6895         } else if (isa<PointerType>(Ty)) {
6896           T = cast<PointerType>(Ty)->getPointeeType();
6897           Stack.push_back(Pointer);
6898         } else if (isa<BlockPointerType>(Ty)) {
6899           T = cast<BlockPointerType>(Ty)->getPointeeType();
6900           Stack.push_back(BlockPointer);
6901         } else if (isa<MemberPointerType>(Ty)) {
6902           T = cast<MemberPointerType>(Ty)->getPointeeType();
6903           Stack.push_back(MemberPointer);
6904         } else if (isa<ReferenceType>(Ty)) {
6905           T = cast<ReferenceType>(Ty)->getPointeeType();
6906           Stack.push_back(Reference);
6907         } else if (isa<AttributedType>(Ty)) {
6908           T = cast<AttributedType>(Ty)->getEquivalentType();
6909           Stack.push_back(Attributed);
6910         } else if (isa<MacroQualifiedType>(Ty)) {
6911           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6912           Stack.push_back(MacroQualified);
6913         } else {
6914           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6915           if (Ty == DTy) {
6916             Fn = nullptr;
6917             return;
6918           }
6919 
6920           T = QualType(DTy, 0);
6921           Stack.push_back(Desugar);
6922         }
6923       }
6924     }
6925 
6926     bool isFunctionType() const { return (Fn != nullptr); }
6927     const FunctionType *get() const { return Fn; }
6928 
6929     QualType wrap(Sema &S, const FunctionType *New) {
6930       // If T wasn't modified from the unwrapped type, do nothing.
6931       if (New == get()) return Original;
6932 
6933       Fn = New;
6934       return wrap(S.Context, Original, 0);
6935     }
6936 
6937   private:
6938     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6939       if (I == Stack.size())
6940         return C.getQualifiedType(Fn, Old.getQualifiers());
6941 
6942       // Build up the inner type, applying the qualifiers from the old
6943       // type to the new type.
6944       SplitQualType SplitOld = Old.split();
6945 
6946       // As a special case, tail-recurse if there are no qualifiers.
6947       if (SplitOld.Quals.empty())
6948         return wrap(C, SplitOld.Ty, I);
6949       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6950     }
6951 
6952     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6953       if (I == Stack.size()) return QualType(Fn, 0);
6954 
6955       switch (static_cast<WrapKind>(Stack[I++])) {
6956       case Desugar:
6957         // This is the point at which we potentially lose source
6958         // information.
6959         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6960 
6961       case Attributed:
6962         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6963 
6964       case Parens: {
6965         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6966         return C.getParenType(New);
6967       }
6968 
6969       case MacroQualified:
6970         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6971 
6972       case Array: {
6973         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6974           QualType New = wrap(C, CAT->getElementType(), I);
6975           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6976                                         CAT->getSizeModifier(),
6977                                         CAT->getIndexTypeCVRQualifiers());
6978         }
6979 
6980         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6981           QualType New = wrap(C, VAT->getElementType(), I);
6982           return C.getVariableArrayType(
6983               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6984               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6985         }
6986 
6987         const auto *IAT = cast<IncompleteArrayType>(Old);
6988         QualType New = wrap(C, IAT->getElementType(), I);
6989         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
6990                                         IAT->getIndexTypeCVRQualifiers());
6991       }
6992 
6993       case Pointer: {
6994         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6995         return C.getPointerType(New);
6996       }
6997 
6998       case BlockPointer: {
6999         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7000         return C.getBlockPointerType(New);
7001       }
7002 
7003       case MemberPointer: {
7004         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7005         QualType New = wrap(C, OldMPT->getPointeeType(), I);
7006         return C.getMemberPointerType(New, OldMPT->getClass());
7007       }
7008 
7009       case Reference: {
7010         const ReferenceType *OldRef = cast<ReferenceType>(Old);
7011         QualType New = wrap(C, OldRef->getPointeeType(), I);
7012         if (isa<LValueReferenceType>(OldRef))
7013           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7014         else
7015           return C.getRValueReferenceType(New);
7016       }
7017       }
7018 
7019       llvm_unreachable("unknown wrapping kind");
7020     }
7021   };
7022 } // end anonymous namespace
7023 
7024 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7025                                              ParsedAttr &PAttr, QualType &Type) {
7026   Sema &S = State.getSema();
7027 
7028   Attr *A;
7029   switch (PAttr.getKind()) {
7030   default: llvm_unreachable("Unknown attribute kind");
7031   case ParsedAttr::AT_Ptr32:
7032     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7033     break;
7034   case ParsedAttr::AT_Ptr64:
7035     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7036     break;
7037   case ParsedAttr::AT_SPtr:
7038     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7039     break;
7040   case ParsedAttr::AT_UPtr:
7041     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7042     break;
7043   }
7044 
7045   std::bitset<attr::LastAttr> Attrs;
7046   QualType Desugared = Type;
7047   for (;;) {
7048     if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7049       Desugared = TT->desugar();
7050       continue;
7051     } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7052       Desugared = ET->desugar();
7053       continue;
7054     }
7055     const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7056     if (!AT)
7057       break;
7058     Attrs[AT->getAttrKind()] = true;
7059     Desugared = AT->getModifiedType();
7060   }
7061 
7062   // You cannot specify duplicate type attributes, so if the attribute has
7063   // already been applied, flag it.
7064   attr::Kind NewAttrKind = A->getKind();
7065   if (Attrs[NewAttrKind]) {
7066     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7067     return true;
7068   }
7069   Attrs[NewAttrKind] = true;
7070 
7071   // You cannot have both __sptr and __uptr on the same type, nor can you
7072   // have __ptr32 and __ptr64.
7073   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7074     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7075         << "'__ptr32'"
7076         << "'__ptr64'" << /*isRegularKeyword=*/0;
7077     return true;
7078   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7079     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7080         << "'__sptr'"
7081         << "'__uptr'" << /*isRegularKeyword=*/0;
7082     return true;
7083   }
7084 
7085   // Check the raw (i.e., desugared) Canonical type to see if it
7086   // is a pointer type.
7087   if (!isa<PointerType>(Desugared)) {
7088     // Pointer type qualifiers can only operate on pointer types, but not
7089     // pointer-to-member types.
7090     if (Type->isMemberPointerType())
7091       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7092     else
7093       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7094     return true;
7095   }
7096 
7097   // Add address space to type based on its attributes.
7098   LangAS ASIdx = LangAS::Default;
7099   uint64_t PtrWidth =
7100       S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7101   if (PtrWidth == 32) {
7102     if (Attrs[attr::Ptr64])
7103       ASIdx = LangAS::ptr64;
7104     else if (Attrs[attr::UPtr])
7105       ASIdx = LangAS::ptr32_uptr;
7106   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7107     if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr])
7108       ASIdx = LangAS::ptr32_uptr;
7109     else
7110       ASIdx = LangAS::ptr32_sptr;
7111   }
7112 
7113   QualType Pointee = Type->getPointeeType();
7114   if (ASIdx != LangAS::Default)
7115     Pointee = S.Context.getAddrSpaceQualType(
7116         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7117   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7118   return false;
7119 }
7120 
7121 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7122                                          QualType &QT, ParsedAttr &PAttr) {
7123   assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7124 
7125   Sema &S = State.getSema();
7126   Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7127 
7128   std::bitset<attr::LastAttr> Attrs;
7129   attr::Kind NewAttrKind = A->getKind();
7130   const auto *AT = dyn_cast<AttributedType>(QT);
7131   while (AT) {
7132     Attrs[AT->getAttrKind()] = true;
7133     AT = dyn_cast<AttributedType>(AT->getModifiedType());
7134   }
7135 
7136   // You cannot specify duplicate type attributes, so if the attribute has
7137   // already been applied, flag it.
7138   if (Attrs[NewAttrKind]) {
7139     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7140     return true;
7141   }
7142 
7143   // Add address space to type based on its attributes.
7144   LangAS ASIdx = LangAS::wasm_funcref;
7145   QualType Pointee = QT->getPointeeType();
7146   Pointee = S.Context.getAddrSpaceQualType(
7147       S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7148   QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7149   return false;
7150 }
7151 
7152 /// Rebuild an attributed type without the nullability attribute on it.
7153 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7154                                                         QualType Type) {
7155   auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7156   if (!Attributed)
7157     return Type;
7158 
7159   // Skip the nullability attribute; we're done.
7160   if (Attributed->getImmediateNullability())
7161     return Attributed->getModifiedType();
7162 
7163   // Build the modified type.
7164   QualType Modified = rebuildAttributedTypeWithoutNullability(
7165       Ctx, Attributed->getModifiedType());
7166   assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7167   return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7168                                Attributed->getEquivalentType());
7169 }
7170 
7171 /// Map a nullability attribute kind to a nullability kind.
7172 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7173   switch (kind) {
7174   case ParsedAttr::AT_TypeNonNull:
7175     return NullabilityKind::NonNull;
7176 
7177   case ParsedAttr::AT_TypeNullable:
7178     return NullabilityKind::Nullable;
7179 
7180   case ParsedAttr::AT_TypeNullableResult:
7181     return NullabilityKind::NullableResult;
7182 
7183   case ParsedAttr::AT_TypeNullUnspecified:
7184     return NullabilityKind::Unspecified;
7185 
7186   default:
7187     llvm_unreachable("not a nullability attribute kind");
7188   }
7189 }
7190 
7191 static bool CheckNullabilityTypeSpecifier(
7192     Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7193     NullabilityKind Nullability, SourceLocation NullabilityLoc,
7194     bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7195   bool Implicit = (State == nullptr);
7196   if (!Implicit)
7197     recordNullabilitySeen(S, NullabilityLoc);
7198 
7199   // Check for existing nullability attributes on the type.
7200   QualType Desugared = QT;
7201   while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7202     // Check whether there is already a null
7203     if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7204       // Duplicated nullability.
7205       if (Nullability == *ExistingNullability) {
7206         if (Implicit)
7207           break;
7208 
7209         S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7210             << DiagNullabilityKind(Nullability, IsContextSensitive)
7211             << FixItHint::CreateRemoval(NullabilityLoc);
7212 
7213         break;
7214       }
7215 
7216       if (!OverrideExisting) {
7217         // Conflicting nullability.
7218         S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7219             << DiagNullabilityKind(Nullability, IsContextSensitive)
7220             << DiagNullabilityKind(*ExistingNullability, false);
7221         return true;
7222       }
7223 
7224       // Rebuild the attributed type, dropping the existing nullability.
7225       QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7226     }
7227 
7228     Desugared = Attributed->getModifiedType();
7229   }
7230 
7231   // If there is already a different nullability specifier, complain.
7232   // This (unlike the code above) looks through typedefs that might
7233   // have nullability specifiers on them, which means we cannot
7234   // provide a useful Fix-It.
7235   if (auto ExistingNullability = Desugared->getNullability()) {
7236     if (Nullability != *ExistingNullability && !Implicit) {
7237       S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7238           << DiagNullabilityKind(Nullability, IsContextSensitive)
7239           << DiagNullabilityKind(*ExistingNullability, false);
7240 
7241       // Try to find the typedef with the existing nullability specifier.
7242       if (auto TT = Desugared->getAs<TypedefType>()) {
7243         TypedefNameDecl *typedefDecl = TT->getDecl();
7244         QualType underlyingType = typedefDecl->getUnderlyingType();
7245         if (auto typedefNullability =
7246                 AttributedType::stripOuterNullability(underlyingType)) {
7247           if (*typedefNullability == *ExistingNullability) {
7248             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7249                 << DiagNullabilityKind(*ExistingNullability, false);
7250           }
7251         }
7252       }
7253 
7254       return true;
7255     }
7256   }
7257 
7258   // If this definitely isn't a pointer type, reject the specifier.
7259   if (!Desugared->canHaveNullability() &&
7260       !(AllowOnArrayType && Desugared->isArrayType())) {
7261     if (!Implicit)
7262       S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7263           << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7264 
7265     return true;
7266   }
7267 
7268   // For the context-sensitive keywords/Objective-C property
7269   // attributes, require that the type be a single-level pointer.
7270   if (IsContextSensitive) {
7271     // Make sure that the pointee isn't itself a pointer type.
7272     const Type *pointeeType = nullptr;
7273     if (Desugared->isArrayType())
7274       pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7275     else if (Desugared->isAnyPointerType())
7276       pointeeType = Desugared->getPointeeType().getTypePtr();
7277 
7278     if (pointeeType && (pointeeType->isAnyPointerType() ||
7279                         pointeeType->isObjCObjectPointerType() ||
7280                         pointeeType->isMemberPointerType())) {
7281       S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7282           << DiagNullabilityKind(Nullability, true) << QT;
7283       S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7284           << DiagNullabilityKind(Nullability, false) << QT
7285           << FixItHint::CreateReplacement(NullabilityLoc,
7286                                           getNullabilitySpelling(Nullability));
7287       return true;
7288     }
7289   }
7290 
7291   // Form the attributed type.
7292   if (State) {
7293     assert(PAttr);
7294     Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7295     QT = State->getAttributedType(A, QT, QT);
7296   } else {
7297     attr::Kind attrKind = AttributedType::getNullabilityAttrKind(Nullability);
7298     QT = S.Context.getAttributedType(attrKind, QT, QT);
7299   }
7300   return false;
7301 }
7302 
7303 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7304                                           QualType &Type, ParsedAttr &Attr,
7305                                           bool AllowOnArrayType) {
7306   NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7307   SourceLocation NullabilityLoc = Attr.getLoc();
7308   bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7309 
7310   return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7311                                        Nullability, NullabilityLoc,
7312                                        IsContextSensitive, AllowOnArrayType,
7313                                        /*overrideExisting*/ false);
7314 }
7315 
7316 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7317                                                  NullabilityKind Nullability,
7318                                                  SourceLocation DiagLoc,
7319                                                  bool AllowArrayTypes,
7320                                                  bool OverrideExisting) {
7321   return CheckNullabilityTypeSpecifier(
7322       *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7323       /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7324 }
7325 
7326 /// Check the application of the Objective-C '__kindof' qualifier to
7327 /// the given type.
7328 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7329                                 ParsedAttr &attr) {
7330   Sema &S = state.getSema();
7331 
7332   if (isa<ObjCTypeParamType>(type)) {
7333     // Build the attributed type to record where __kindof occurred.
7334     type = state.getAttributedType(
7335         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7336     return false;
7337   }
7338 
7339   // Find out if it's an Objective-C object or object pointer type;
7340   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7341   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7342                                           : type->getAs<ObjCObjectType>();
7343 
7344   // If not, we can't apply __kindof.
7345   if (!objType) {
7346     // FIXME: Handle dependent types that aren't yet object types.
7347     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7348       << type;
7349     return true;
7350   }
7351 
7352   // Rebuild the "equivalent" type, which pushes __kindof down into
7353   // the object type.
7354   // There is no need to apply kindof on an unqualified id type.
7355   QualType equivType = S.Context.getObjCObjectType(
7356       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7357       objType->getProtocols(),
7358       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7359 
7360   // If we started with an object pointer type, rebuild it.
7361   if (ptrType) {
7362     equivType = S.Context.getObjCObjectPointerType(equivType);
7363     if (auto nullability = type->getNullability()) {
7364       // We create a nullability attribute from the __kindof attribute.
7365       // Make sure that will make sense.
7366       assert(attr.getAttributeSpellingListIndex() == 0 &&
7367              "multiple spellings for __kindof?");
7368       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7369       A->setImplicit(true);
7370       equivType = state.getAttributedType(A, equivType, equivType);
7371     }
7372   }
7373 
7374   // Build the attributed type to record where __kindof occurred.
7375   type = state.getAttributedType(
7376       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7377   return false;
7378 }
7379 
7380 /// Distribute a nullability type attribute that cannot be applied to
7381 /// the type specifier to a pointer, block pointer, or member pointer
7382 /// declarator, complaining if necessary.
7383 ///
7384 /// \returns true if the nullability annotation was distributed, false
7385 /// otherwise.
7386 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7387                                           QualType type, ParsedAttr &attr) {
7388   Declarator &declarator = state.getDeclarator();
7389 
7390   /// Attempt to move the attribute to the specified chunk.
7391   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7392     // If there is already a nullability attribute there, don't add
7393     // one.
7394     if (hasNullabilityAttr(chunk.getAttrs()))
7395       return false;
7396 
7397     // Complain about the nullability qualifier being in the wrong
7398     // place.
7399     enum {
7400       PK_Pointer,
7401       PK_BlockPointer,
7402       PK_MemberPointer,
7403       PK_FunctionPointer,
7404       PK_MemberFunctionPointer,
7405     } pointerKind
7406       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7407                                                              : PK_Pointer)
7408         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7409         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7410 
7411     auto diag = state.getSema().Diag(attr.getLoc(),
7412                                      diag::warn_nullability_declspec)
7413       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7414                              attr.isContextSensitiveKeywordAttribute())
7415       << type
7416       << static_cast<unsigned>(pointerKind);
7417 
7418     // FIXME: MemberPointer chunks don't carry the location of the *.
7419     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7420       diag << FixItHint::CreateRemoval(attr.getLoc())
7421            << FixItHint::CreateInsertion(
7422                   state.getSema().getPreprocessor().getLocForEndOfToken(
7423                       chunk.Loc),
7424                   " " + attr.getAttrName()->getName().str() + " ");
7425     }
7426 
7427     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7428                            chunk.getAttrs());
7429     return true;
7430   };
7431 
7432   // Move it to the outermost pointer, member pointer, or block
7433   // pointer declarator.
7434   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7435     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7436     switch (chunk.Kind) {
7437     case DeclaratorChunk::Pointer:
7438     case DeclaratorChunk::BlockPointer:
7439     case DeclaratorChunk::MemberPointer:
7440       return moveToChunk(chunk, false);
7441 
7442     case DeclaratorChunk::Paren:
7443     case DeclaratorChunk::Array:
7444       continue;
7445 
7446     case DeclaratorChunk::Function:
7447       // Try to move past the return type to a function/block/member
7448       // function pointer.
7449       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7450                                     declarator, i,
7451                                     /*onlyBlockPointers=*/false)) {
7452         return moveToChunk(*dest, true);
7453       }
7454 
7455       return false;
7456 
7457     // Don't walk through these.
7458     case DeclaratorChunk::Reference:
7459     case DeclaratorChunk::Pipe:
7460       return false;
7461     }
7462   }
7463 
7464   return false;
7465 }
7466 
7467 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7468   assert(!Attr.isInvalid());
7469   switch (Attr.getKind()) {
7470   default:
7471     llvm_unreachable("not a calling convention attribute");
7472   case ParsedAttr::AT_CDecl:
7473     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7474   case ParsedAttr::AT_FastCall:
7475     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7476   case ParsedAttr::AT_StdCall:
7477     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7478   case ParsedAttr::AT_ThisCall:
7479     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7480   case ParsedAttr::AT_RegCall:
7481     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7482   case ParsedAttr::AT_Pascal:
7483     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7484   case ParsedAttr::AT_SwiftCall:
7485     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7486   case ParsedAttr::AT_SwiftAsyncCall:
7487     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7488   case ParsedAttr::AT_VectorCall:
7489     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7490   case ParsedAttr::AT_AArch64VectorPcs:
7491     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7492   case ParsedAttr::AT_AArch64SVEPcs:
7493     return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7494   case ParsedAttr::AT_ArmStreaming:
7495     return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7496   case ParsedAttr::AT_AMDGPUKernelCall:
7497     return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7498   case ParsedAttr::AT_Pcs: {
7499     // The attribute may have had a fixit applied where we treated an
7500     // identifier as a string literal.  The contents of the string are valid,
7501     // but the form may not be.
7502     StringRef Str;
7503     if (Attr.isArgExpr(0))
7504       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7505     else
7506       Str = Attr.getArgAsIdent(0)->Ident->getName();
7507     PcsAttr::PCSType Type;
7508     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7509       llvm_unreachable("already validated the attribute");
7510     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7511   }
7512   case ParsedAttr::AT_IntelOclBicc:
7513     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7514   case ParsedAttr::AT_MSABI:
7515     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7516   case ParsedAttr::AT_SysVABI:
7517     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7518   case ParsedAttr::AT_PreserveMost:
7519     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7520   case ParsedAttr::AT_PreserveAll:
7521     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7522   case ParsedAttr::AT_M68kRTD:
7523     return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7524   case ParsedAttr::AT_PreserveNone:
7525     return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7526   case ParsedAttr::AT_RISCVVectorCC:
7527     return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7528   }
7529   llvm_unreachable("unexpected attribute kind!");
7530 }
7531 
7532 std::optional<FunctionEffectMode>
7533 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7534   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7535     return FunctionEffectMode::Dependent;
7536 
7537   std::optional<llvm::APSInt> ConditionValue =
7538       CondExpr->getIntegerConstantExpr(Context);
7539   if (!ConditionValue) {
7540     // FIXME: err_attribute_argument_type doesn't quote the attribute
7541     // name but needs to; users are inconsistent.
7542     Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7543         << AttributeName << AANT_ArgumentIntegerConstant
7544         << CondExpr->getSourceRange();
7545     return std::nullopt;
7546   }
7547   return !ConditionValue->isZero() ? FunctionEffectMode::True
7548                                    : FunctionEffectMode::False;
7549 }
7550 
7551 static bool
7552 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7553                                        ParsedAttr &PAttr, QualType &QT,
7554                                        FunctionTypeUnwrapper &Unwrapped) {
7555   // Delay if this is not a function type.
7556   if (!Unwrapped.isFunctionType())
7557     return false;
7558 
7559   Sema &S = TPState.getSema();
7560 
7561   // Require FunctionProtoType.
7562   auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7563   if (FPT == nullptr) {
7564     S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7565         << PAttr.getAttrName()->getName();
7566     return true;
7567   }
7568 
7569   // Parse the new  attribute.
7570   // non/blocking or non/allocating? Or conditional (computed)?
7571   bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7572                        PAttr.getKind() == ParsedAttr::AT_Blocking;
7573 
7574   FunctionEffectMode NewMode = FunctionEffectMode::None;
7575   Expr *CondExpr = nullptr; // only valid if dependent
7576 
7577   if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7578       PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7579     if (!PAttr.checkAtMostNumArgs(S, 1)) {
7580       PAttr.setInvalid();
7581       return true;
7582     }
7583 
7584     // Parse the condition, if any.
7585     if (PAttr.getNumArgs() == 1) {
7586       CondExpr = PAttr.getArgAsExpr(0);
7587       std::optional<FunctionEffectMode> MaybeMode =
7588           S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7589       if (!MaybeMode) {
7590         PAttr.setInvalid();
7591         return true;
7592       }
7593       NewMode = *MaybeMode;
7594       if (NewMode != FunctionEffectMode::Dependent)
7595         CondExpr = nullptr;
7596     } else {
7597       NewMode = FunctionEffectMode::True;
7598     }
7599   } else {
7600     // This is the `blocking` or `allocating` attribute.
7601     if (S.CheckAttrNoArgs(PAttr)) {
7602       // The attribute has been marked invalid.
7603       return true;
7604     }
7605     NewMode = FunctionEffectMode::False;
7606   }
7607 
7608   const FunctionEffect::Kind FEKind =
7609       (NewMode == FunctionEffectMode::False)
7610           ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7611                            : FunctionEffect::Kind::Allocating)
7612           : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7613                            : FunctionEffect::Kind::NonAllocating);
7614   const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7615                                           EffectConditionExpr(CondExpr)};
7616 
7617   if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7618                                           PAttr.getLoc())) {
7619     PAttr.setInvalid();
7620     return true;
7621   }
7622 
7623   // Add the effect to the FunctionProtoType.
7624   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7625   FunctionEffectSet FX(EPI.FunctionEffects);
7626   FunctionEffectSet::Conflicts Errs;
7627   [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7628   assert(Success && "effect conflicts should have been diagnosed above");
7629   EPI.FunctionEffects = FunctionEffectsRef(FX);
7630 
7631   QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7632                                                FPT->getParamTypes(), EPI);
7633   QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7634   return true;
7635 }
7636 
7637 static bool checkMutualExclusion(TypeProcessingState &state,
7638                                  const FunctionProtoType::ExtProtoInfo &EPI,
7639                                  ParsedAttr &Attr,
7640                                  AttributeCommonInfo::Kind OtherKind) {
7641   auto OtherAttr = std::find_if(
7642       state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7643       [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7644   if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7645     return false;
7646 
7647   Sema &S = state.getSema();
7648   S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7649       << *OtherAttr << Attr
7650       << (OtherAttr->isRegularKeywordAttribute() ||
7651           Attr.isRegularKeywordAttribute());
7652   S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7653   Attr.setInvalid();
7654   return true;
7655 }
7656 
7657 static bool handleArmStateAttribute(Sema &S,
7658                                     FunctionProtoType::ExtProtoInfo &EPI,
7659                                     ParsedAttr &Attr,
7660                                     FunctionType::ArmStateValue State) {
7661   if (!Attr.getNumArgs()) {
7662     S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7663     Attr.setInvalid();
7664     return true;
7665   }
7666 
7667   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7668     StringRef StateName;
7669     SourceLocation LiteralLoc;
7670     if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7671       return true;
7672 
7673     unsigned Shift;
7674     FunctionType::ArmStateValue ExistingState;
7675     if (StateName == "za") {
7676       Shift = FunctionType::SME_ZAShift;
7677       ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7678     } else if (StateName == "zt0") {
7679       Shift = FunctionType::SME_ZT0Shift;
7680       ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7681     } else {
7682       S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7683       Attr.setInvalid();
7684       return true;
7685     }
7686 
7687     // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7688     // are all mutually exclusive for the same S, so check if there are
7689     // conflicting attributes.
7690     if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7691       S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7692           << StateName;
7693       Attr.setInvalid();
7694       return true;
7695     }
7696 
7697     EPI.setArmSMEAttribute(
7698         (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7699   }
7700   return false;
7701 }
7702 
7703 /// Process an individual function attribute.  Returns true to
7704 /// indicate that the attribute was handled, false if it wasn't.
7705 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7706                                    QualType &type, CUDAFunctionTarget CFT) {
7707   Sema &S = state.getSema();
7708 
7709   FunctionTypeUnwrapper unwrapped(S, type);
7710 
7711   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7712     if (S.CheckAttrNoArgs(attr))
7713       return true;
7714 
7715     // Delay if this is not a function type.
7716     if (!unwrapped.isFunctionType())
7717       return false;
7718 
7719     // Otherwise we can process right away.
7720     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7721     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7722     return true;
7723   }
7724 
7725   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7726     // Delay if this is not a function type.
7727     if (!unwrapped.isFunctionType())
7728       return false;
7729 
7730     // Ignore if we don't have CMSE enabled.
7731     if (!S.getLangOpts().Cmse) {
7732       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7733       attr.setInvalid();
7734       return true;
7735     }
7736 
7737     // Otherwise we can process right away.
7738     FunctionType::ExtInfo EI =
7739         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7740     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7741     return true;
7742   }
7743 
7744   // ns_returns_retained is not always a type attribute, but if we got
7745   // here, we're treating it as one right now.
7746   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7747     if (attr.getNumArgs()) return true;
7748 
7749     // Delay if this is not a function type.
7750     if (!unwrapped.isFunctionType())
7751       return false;
7752 
7753     // Check whether the return type is reasonable.
7754     if (S.ObjC().checkNSReturnsRetainedReturnType(
7755             attr.getLoc(), unwrapped.get()->getReturnType()))
7756       return true;
7757 
7758     // Only actually change the underlying type in ARC builds.
7759     QualType origType = type;
7760     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7761       FunctionType::ExtInfo EI
7762         = unwrapped.get()->getExtInfo().withProducesResult(true);
7763       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7764     }
7765     type = state.getAttributedType(
7766         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7767         origType, type);
7768     return true;
7769   }
7770 
7771   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7772     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7773       return true;
7774 
7775     // Delay if this is not a function type.
7776     if (!unwrapped.isFunctionType())
7777       return false;
7778 
7779     FunctionType::ExtInfo EI =
7780         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7781     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7782     return true;
7783   }
7784 
7785   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7786     if (!S.getLangOpts().CFProtectionBranch) {
7787       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7788       attr.setInvalid();
7789       return true;
7790     }
7791 
7792     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7793       return true;
7794 
7795     // If this is not a function type, warning will be asserted by subject
7796     // check.
7797     if (!unwrapped.isFunctionType())
7798       return true;
7799 
7800     FunctionType::ExtInfo EI =
7801       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7802     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7803     return true;
7804   }
7805 
7806   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7807     unsigned value;
7808     if (S.CheckRegparmAttr(attr, value))
7809       return true;
7810 
7811     // Delay if this is not a function type.
7812     if (!unwrapped.isFunctionType())
7813       return false;
7814 
7815     // Diagnose regparm with fastcall.
7816     const FunctionType *fn = unwrapped.get();
7817     CallingConv CC = fn->getCallConv();
7818     if (CC == CC_X86FastCall) {
7819       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7820           << FunctionType::getNameForCallConv(CC) << "regparm"
7821           << attr.isRegularKeywordAttribute();
7822       attr.setInvalid();
7823       return true;
7824     }
7825 
7826     FunctionType::ExtInfo EI =
7827       unwrapped.get()->getExtInfo().withRegParm(value);
7828     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7829     return true;
7830   }
7831 
7832   if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7833       attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7834       attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7835       attr.getKind() == ParsedAttr::AT_ArmIn ||
7836       attr.getKind() == ParsedAttr::AT_ArmOut ||
7837       attr.getKind() == ParsedAttr::AT_ArmInOut) {
7838     if (S.CheckAttrTarget(attr))
7839       return true;
7840 
7841     if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7842         attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7843       if (S.CheckAttrNoArgs(attr))
7844         return true;
7845 
7846     if (!unwrapped.isFunctionType())
7847       return false;
7848 
7849     const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7850     if (!FnTy) {
7851       // SME ACLE attributes are not supported on K&R-style unprototyped C
7852       // functions.
7853       S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7854         attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7855       attr.setInvalid();
7856       return false;
7857     }
7858 
7859     FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7860     switch (attr.getKind()) {
7861     case ParsedAttr::AT_ArmStreaming:
7862       if (checkMutualExclusion(state, EPI, attr,
7863                                ParsedAttr::AT_ArmStreamingCompatible))
7864         return true;
7865       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7866       break;
7867     case ParsedAttr::AT_ArmStreamingCompatible:
7868       if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7869         return true;
7870       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7871       break;
7872     case ParsedAttr::AT_ArmPreserves:
7873       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7874         return true;
7875       break;
7876     case ParsedAttr::AT_ArmIn:
7877       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7878         return true;
7879       break;
7880     case ParsedAttr::AT_ArmOut:
7881       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7882         return true;
7883       break;
7884     case ParsedAttr::AT_ArmInOut:
7885       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7886         return true;
7887       break;
7888     default:
7889       llvm_unreachable("Unsupported attribute");
7890     }
7891 
7892     QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7893                                                  FnTy->getParamTypes(), EPI);
7894     type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7895     return true;
7896   }
7897 
7898   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7899     // Delay if this is not a function type.
7900     if (!unwrapped.isFunctionType())
7901       return false;
7902 
7903     if (S.CheckAttrNoArgs(attr)) {
7904       attr.setInvalid();
7905       return true;
7906     }
7907 
7908     // Otherwise we can process right away.
7909     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7910 
7911     // MSVC ignores nothrow if it is in conflict with an explicit exception
7912     // specification.
7913     if (Proto->hasExceptionSpec()) {
7914       switch (Proto->getExceptionSpecType()) {
7915       case EST_None:
7916         llvm_unreachable("This doesn't have an exception spec!");
7917 
7918       case EST_DynamicNone:
7919       case EST_BasicNoexcept:
7920       case EST_NoexceptTrue:
7921       case EST_NoThrow:
7922         // Exception spec doesn't conflict with nothrow, so don't warn.
7923         [[fallthrough]];
7924       case EST_Unparsed:
7925       case EST_Uninstantiated:
7926       case EST_DependentNoexcept:
7927       case EST_Unevaluated:
7928         // We don't have enough information to properly determine if there is a
7929         // conflict, so suppress the warning.
7930         break;
7931       case EST_Dynamic:
7932       case EST_MSAny:
7933       case EST_NoexceptFalse:
7934         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7935         break;
7936       }
7937       return true;
7938     }
7939 
7940     type = unwrapped.wrap(
7941         S, S.Context
7942                .getFunctionTypeWithExceptionSpec(
7943                    QualType{Proto, 0},
7944                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7945                ->getAs<FunctionType>());
7946     return true;
7947   }
7948 
7949   if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
7950       attr.getKind() == ParsedAttr::AT_NonAllocating ||
7951       attr.getKind() == ParsedAttr::AT_Blocking ||
7952       attr.getKind() == ParsedAttr::AT_Allocating) {
7953     return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
7954   }
7955 
7956   // Delay if the type didn't work out to a function.
7957   if (!unwrapped.isFunctionType()) return false;
7958 
7959   // Otherwise, a calling convention.
7960   CallingConv CC;
7961   if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
7962     return true;
7963 
7964   const FunctionType *fn = unwrapped.get();
7965   CallingConv CCOld = fn->getCallConv();
7966   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7967 
7968   if (CCOld != CC) {
7969     // Error out on when there's already an attribute on the type
7970     // and the CCs don't match.
7971     if (S.getCallingConvAttributedType(type)) {
7972       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7973           << FunctionType::getNameForCallConv(CC)
7974           << FunctionType::getNameForCallConv(CCOld)
7975           << attr.isRegularKeywordAttribute();
7976       attr.setInvalid();
7977       return true;
7978     }
7979   }
7980 
7981   // Diagnose use of variadic functions with calling conventions that
7982   // don't support them (e.g. because they're callee-cleanup).
7983   // We delay warning about this on unprototyped function declarations
7984   // until after redeclaration checking, just in case we pick up a
7985   // prototype that way.  And apparently we also "delay" warning about
7986   // unprototyped function types in general, despite not necessarily having
7987   // much ability to diagnose it later.
7988   if (!supportsVariadicCall(CC)) {
7989     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7990     if (FnP && FnP->isVariadic()) {
7991       // stdcall and fastcall are ignored with a warning for GCC and MS
7992       // compatibility.
7993       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7994         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7995                << FunctionType::getNameForCallConv(CC)
7996                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7997 
7998       attr.setInvalid();
7999       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8000              << FunctionType::getNameForCallConv(CC);
8001     }
8002   }
8003 
8004   // Also diagnose fastcall with regparm.
8005   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8006     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8007         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8008         << attr.isRegularKeywordAttribute();
8009     attr.setInvalid();
8010     return true;
8011   }
8012 
8013   // Modify the CC from the wrapped function type, wrap it all back, and then
8014   // wrap the whole thing in an AttributedType as written.  The modified type
8015   // might have a different CC if we ignored the attribute.
8016   QualType Equivalent;
8017   if (CCOld == CC) {
8018     Equivalent = type;
8019   } else {
8020     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
8021     Equivalent =
8022       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
8023   }
8024   type = state.getAttributedType(CCAttr, type, Equivalent);
8025   return true;
8026 }
8027 
8028 bool Sema::hasExplicitCallingConv(QualType T) {
8029   const AttributedType *AT;
8030 
8031   // Stop if we'd be stripping off a typedef sugar node to reach the
8032   // AttributedType.
8033   while ((AT = T->getAs<AttributedType>()) &&
8034          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8035     if (AT->isCallingConv())
8036       return true;
8037     T = AT->getModifiedType();
8038   }
8039   return false;
8040 }
8041 
8042 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8043                                   bool IsCtorOrDtor, SourceLocation Loc) {
8044   FunctionTypeUnwrapper Unwrapped(*this, T);
8045   const FunctionType *FT = Unwrapped.get();
8046   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8047                      cast<FunctionProtoType>(FT)->isVariadic());
8048   CallingConv CurCC = FT->getCallConv();
8049   CallingConv ToCC =
8050       Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8051 
8052   if (CurCC == ToCC)
8053     return;
8054 
8055   // MS compiler ignores explicit calling convention attributes on structors. We
8056   // should do the same.
8057   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8058     // Issue a warning on ignored calling convention -- except of __stdcall.
8059     // Again, this is what MS compiler does.
8060     if (CurCC != CC_X86StdCall)
8061       Diag(Loc, diag::warn_cconv_unsupported)
8062           << FunctionType::getNameForCallConv(CurCC)
8063           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8064   // Default adjustment.
8065   } else {
8066     // Only adjust types with the default convention.  For example, on Windows
8067     // we should adjust a __cdecl type to __thiscall for instance methods, and a
8068     // __thiscall type to __cdecl for static methods.
8069     CallingConv DefaultCC =
8070         Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8071 
8072     if (CurCC != DefaultCC)
8073       return;
8074 
8075     if (hasExplicitCallingConv(T))
8076       return;
8077   }
8078 
8079   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8080   QualType Wrapped = Unwrapped.wrap(*this, FT);
8081   T = Context.getAdjustedType(T, Wrapped);
8082 }
8083 
8084 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8085 /// and float scalars, although arrays, pointers, and function return values are
8086 /// allowed in conjunction with this construct. Aggregates with this attribute
8087 /// are invalid, even if they are of the same size as a corresponding scalar.
8088 /// The raw attribute should contain precisely 1 argument, the vector size for
8089 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8090 /// this routine will return a new vector type.
8091 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8092                                  Sema &S) {
8093   // Check the attribute arguments.
8094   if (Attr.getNumArgs() != 1) {
8095     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8096                                                                       << 1;
8097     Attr.setInvalid();
8098     return;
8099   }
8100 
8101   Expr *SizeExpr = Attr.getArgAsExpr(0);
8102   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8103   if (!T.isNull())
8104     CurType = T;
8105   else
8106     Attr.setInvalid();
8107 }
8108 
8109 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8110 /// a type.
8111 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8112                                     Sema &S) {
8113   // check the attribute arguments.
8114   if (Attr.getNumArgs() != 1) {
8115     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8116                                                                       << 1;
8117     return;
8118   }
8119 
8120   Expr *SizeExpr = Attr.getArgAsExpr(0);
8121   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8122   if (!T.isNull())
8123     CurType = T;
8124 }
8125 
8126 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8127   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8128   if (!BTy)
8129     return false;
8130 
8131   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8132 
8133   // Signed poly is mathematically wrong, but has been baked into some ABIs by
8134   // now.
8135   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8136                         Triple.getArch() == llvm::Triple::aarch64_32 ||
8137                         Triple.getArch() == llvm::Triple::aarch64_be;
8138   if (VecKind == VectorKind::NeonPoly) {
8139     if (IsPolyUnsigned) {
8140       // AArch64 polynomial vectors are unsigned.
8141       return BTy->getKind() == BuiltinType::UChar ||
8142              BTy->getKind() == BuiltinType::UShort ||
8143              BTy->getKind() == BuiltinType::ULong ||
8144              BTy->getKind() == BuiltinType::ULongLong;
8145     } else {
8146       // AArch32 polynomial vectors are signed.
8147       return BTy->getKind() == BuiltinType::SChar ||
8148              BTy->getKind() == BuiltinType::Short ||
8149              BTy->getKind() == BuiltinType::LongLong;
8150     }
8151   }
8152 
8153   // Non-polynomial vector types: the usual suspects are allowed, as well as
8154   // float64_t on AArch64.
8155   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8156       BTy->getKind() == BuiltinType::Double)
8157     return true;
8158 
8159   return BTy->getKind() == BuiltinType::SChar ||
8160          BTy->getKind() == BuiltinType::UChar ||
8161          BTy->getKind() == BuiltinType::Short ||
8162          BTy->getKind() == BuiltinType::UShort ||
8163          BTy->getKind() == BuiltinType::Int ||
8164          BTy->getKind() == BuiltinType::UInt ||
8165          BTy->getKind() == BuiltinType::Long ||
8166          BTy->getKind() == BuiltinType::ULong ||
8167          BTy->getKind() == BuiltinType::LongLong ||
8168          BTy->getKind() == BuiltinType::ULongLong ||
8169          BTy->getKind() == BuiltinType::Float ||
8170          BTy->getKind() == BuiltinType::Half ||
8171          BTy->getKind() == BuiltinType::BFloat16;
8172 }
8173 
8174 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8175                                            llvm::APSInt &Result) {
8176   const auto *AttrExpr = Attr.getArgAsExpr(0);
8177   if (!AttrExpr->isTypeDependent()) {
8178     if (std::optional<llvm::APSInt> Res =
8179             AttrExpr->getIntegerConstantExpr(S.Context)) {
8180       Result = *Res;
8181       return true;
8182     }
8183   }
8184   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8185       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8186   Attr.setInvalid();
8187   return false;
8188 }
8189 
8190 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8191 /// "neon_polyvector_type" attributes are used to create vector types that
8192 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
8193 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
8194 /// the argument to these Neon attributes is the number of vector elements,
8195 /// not the vector size in bytes.  The vector width and element type must
8196 /// match one of the standard Neon vector types.
8197 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8198                                      Sema &S, VectorKind VecKind) {
8199   bool IsTargetCUDAAndHostARM = false;
8200   if (S.getLangOpts().CUDAIsDevice) {
8201     const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8202     IsTargetCUDAAndHostARM =
8203         AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8204   }
8205 
8206   // Target must have NEON (or MVE, whose vectors are similar enough
8207   // not to need a separate attribute)
8208   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8209       VecKind == VectorKind::Neon &&
8210       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8211     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8212         << Attr << "'mve'";
8213     Attr.setInvalid();
8214     return;
8215   }
8216   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8217       VecKind == VectorKind::NeonPoly &&
8218       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8219     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8220         << Attr << "'mve'";
8221     Attr.setInvalid();
8222     return;
8223   }
8224 
8225   // Check the attribute arguments.
8226   if (Attr.getNumArgs() != 1) {
8227     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8228         << Attr << 1;
8229     Attr.setInvalid();
8230     return;
8231   }
8232   // The number of elements must be an ICE.
8233   llvm::APSInt numEltsInt(32);
8234   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8235     return;
8236 
8237   // Only certain element types are supported for Neon vectors.
8238   if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8239       !IsTargetCUDAAndHostARM) {
8240     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8241     Attr.setInvalid();
8242     return;
8243   }
8244 
8245   // The total size of the vector must be 64 or 128 bits.
8246   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8247   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8248   unsigned vecSize = typeSize * numElts;
8249   if (vecSize != 64 && vecSize != 128) {
8250     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8251     Attr.setInvalid();
8252     return;
8253   }
8254 
8255   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8256 }
8257 
8258 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8259 /// used to create fixed-length versions of sizeless SVE types defined by
8260 /// the ACLE, such as svint32_t and svbool_t.
8261 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8262                                            Sema &S) {
8263   // Target must have SVE.
8264   if (!S.Context.getTargetInfo().hasFeature("sve")) {
8265     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8266     Attr.setInvalid();
8267     return;
8268   }
8269 
8270   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8271   // if <bits>+ syntax is used.
8272   if (!S.getLangOpts().VScaleMin ||
8273       S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8274     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8275         << Attr;
8276     Attr.setInvalid();
8277     return;
8278   }
8279 
8280   // Check the attribute arguments.
8281   if (Attr.getNumArgs() != 1) {
8282     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8283         << Attr << 1;
8284     Attr.setInvalid();
8285     return;
8286   }
8287 
8288   // The vector size must be an integer constant expression.
8289   llvm::APSInt SveVectorSizeInBits(32);
8290   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8291     return;
8292 
8293   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8294 
8295   // The attribute vector size must match -msve-vector-bits.
8296   if (VecSize != S.getLangOpts().VScaleMin * 128) {
8297     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8298         << VecSize << S.getLangOpts().VScaleMin * 128;
8299     Attr.setInvalid();
8300     return;
8301   }
8302 
8303   // Attribute can only be attached to a single SVE vector or predicate type.
8304   if (!CurType->isSveVLSBuiltinType()) {
8305     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8306         << Attr << CurType;
8307     Attr.setInvalid();
8308     return;
8309   }
8310 
8311   const auto *BT = CurType->castAs<BuiltinType>();
8312 
8313   QualType EltType = CurType->getSveEltType(S.Context);
8314   unsigned TypeSize = S.Context.getTypeSize(EltType);
8315   VectorKind VecKind = VectorKind::SveFixedLengthData;
8316   if (BT->getKind() == BuiltinType::SveBool) {
8317     // Predicates are represented as i8.
8318     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8319     VecKind = VectorKind::SveFixedLengthPredicate;
8320   } else
8321     VecSize /= TypeSize;
8322   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8323 }
8324 
8325 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8326                                                QualType &CurType,
8327                                                ParsedAttr &Attr) {
8328   const VectorType *VT = dyn_cast<VectorType>(CurType);
8329   if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8330     State.getSema().Diag(Attr.getLoc(),
8331                          diag::err_attribute_arm_mve_polymorphism);
8332     Attr.setInvalid();
8333     return;
8334   }
8335 
8336   CurType =
8337       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8338                                   State.getSema().Context, Attr),
8339                               CurType, CurType);
8340 }
8341 
8342 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8343 /// used to create fixed-length versions of sizeless RVV types such as
8344 /// vint8m1_t_t.
8345 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8346                                              ParsedAttr &Attr, Sema &S) {
8347   // Target must have vector extension.
8348   if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8349     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8350         << Attr << "'zve32x'";
8351     Attr.setInvalid();
8352     return;
8353   }
8354 
8355   auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8356   if (!VScale || !VScale->first || VScale->first != VScale->second) {
8357     S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8358         << Attr;
8359     Attr.setInvalid();
8360     return;
8361   }
8362 
8363   // Check the attribute arguments.
8364   if (Attr.getNumArgs() != 1) {
8365     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8366         << Attr << 1;
8367     Attr.setInvalid();
8368     return;
8369   }
8370 
8371   // The vector size must be an integer constant expression.
8372   llvm::APSInt RVVVectorSizeInBits(32);
8373   if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8374     return;
8375 
8376   // Attribute can only be attached to a single RVV vector type.
8377   if (!CurType->isRVVVLSBuiltinType()) {
8378     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8379         << Attr << CurType;
8380     Attr.setInvalid();
8381     return;
8382   }
8383 
8384   unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8385 
8386   ASTContext::BuiltinVectorTypeInfo Info =
8387       S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8388   unsigned MinElts = Info.EC.getKnownMinValue();
8389 
8390   VectorKind VecKind = VectorKind::RVVFixedLengthData;
8391   unsigned ExpectedSize = VScale->first * MinElts;
8392   QualType EltType = CurType->getRVVEltType(S.Context);
8393   unsigned EltSize = S.Context.getTypeSize(EltType);
8394   unsigned NumElts;
8395   if (Info.ElementType == S.Context.BoolTy) {
8396     NumElts = VecSize / S.Context.getCharWidth();
8397     if (!NumElts) {
8398       NumElts = 1;
8399       switch (VecSize) {
8400       case 1:
8401         VecKind = VectorKind::RVVFixedLengthMask_1;
8402         break;
8403       case 2:
8404         VecKind = VectorKind::RVVFixedLengthMask_2;
8405         break;
8406       case 4:
8407         VecKind = VectorKind::RVVFixedLengthMask_4;
8408         break;
8409       }
8410     } else
8411       VecKind = VectorKind::RVVFixedLengthMask;
8412   } else {
8413     ExpectedSize *= EltSize;
8414     NumElts = VecSize / EltSize;
8415   }
8416 
8417   // The attribute vector size must match -mrvv-vector-bits.
8418   if (VecSize != ExpectedSize) {
8419     S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8420         << VecSize << ExpectedSize;
8421     Attr.setInvalid();
8422     return;
8423   }
8424 
8425   CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8426 }
8427 
8428 /// Handle OpenCL Access Qualifier Attribute.
8429 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8430                                    Sema &S) {
8431   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8432   if (!(CurType->isImageType() || CurType->isPipeType())) {
8433     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8434     Attr.setInvalid();
8435     return;
8436   }
8437 
8438   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8439     QualType BaseTy = TypedefTy->desugar();
8440 
8441     std::string PrevAccessQual;
8442     if (BaseTy->isPipeType()) {
8443       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8444         OpenCLAccessAttr *Attr =
8445             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8446         PrevAccessQual = Attr->getSpelling();
8447       } else {
8448         PrevAccessQual = "read_only";
8449       }
8450     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8451 
8452       switch (ImgType->getKind()) {
8453         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8454       case BuiltinType::Id:                                          \
8455         PrevAccessQual = #Access;                                    \
8456         break;
8457         #include "clang/Basic/OpenCLImageTypes.def"
8458       default:
8459         llvm_unreachable("Unable to find corresponding image type.");
8460       }
8461     } else {
8462       llvm_unreachable("unexpected type");
8463     }
8464     StringRef AttrName = Attr.getAttrName()->getName();
8465     if (PrevAccessQual == AttrName.ltrim("_")) {
8466       // Duplicated qualifiers
8467       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8468          << AttrName << Attr.getRange();
8469     } else {
8470       // Contradicting qualifiers
8471       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8472     }
8473 
8474     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8475            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8476   } else if (CurType->isPipeType()) {
8477     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8478       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8479       CurType = S.Context.getWritePipeType(ElemType);
8480     }
8481   }
8482 }
8483 
8484 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8485 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8486                                  Sema &S) {
8487   if (!S.getLangOpts().MatrixTypes) {
8488     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8489     return;
8490   }
8491 
8492   if (Attr.getNumArgs() != 2) {
8493     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8494         << Attr << 2;
8495     return;
8496   }
8497 
8498   Expr *RowsExpr = Attr.getArgAsExpr(0);
8499   Expr *ColsExpr = Attr.getArgAsExpr(1);
8500   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8501   if (!T.isNull())
8502     CurType = T;
8503 }
8504 
8505 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8506                                    QualType &CurType, const ParsedAttr &PA) {
8507   Sema &S = State.getSema();
8508 
8509   if (PA.getNumArgs() < 1) {
8510     S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8511     return;
8512   }
8513 
8514   // Make sure that there is a string literal as the annotation's first
8515   // argument.
8516   StringRef Str;
8517   if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8518     return;
8519 
8520   llvm::SmallVector<Expr *, 4> Args;
8521   Args.reserve(PA.getNumArgs() - 1);
8522   for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8523     assert(!PA.isArgIdent(Idx));
8524     Args.push_back(PA.getArgAsExpr(Idx));
8525   }
8526   if (!S.ConstantFoldAttrArgs(PA, Args))
8527     return;
8528   auto *AnnotateTypeAttr =
8529       AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8530   CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8531 }
8532 
8533 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8534                                     QualType &CurType,
8535                                     ParsedAttr &Attr) {
8536   if (State.getDeclarator().isDeclarationOfFunction()) {
8537     CurType = State.getAttributedType(
8538         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8539         CurType, CurType);
8540   }
8541 }
8542 
8543 static void HandleHLSLParamModifierAttr(TypeProcessingState &State,
8544                                         QualType &CurType,
8545                                         const ParsedAttr &Attr, Sema &S) {
8546   // Don't apply this attribute to template dependent types. It is applied on
8547   // substitution during template instantiation. Also skip parsing this if we've
8548   // already modified the type based on an earlier attribute.
8549   if (CurType->isDependentType() || State.didParseHLSLParamMod())
8550     return;
8551   if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8552       Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) {
8553     CurType = S.HLSL().getInoutParameterType(CurType);
8554     State.setParsedHLSLParamMod(true);
8555   }
8556 }
8557 
8558 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8559                              TypeAttrLocation TAL,
8560                              const ParsedAttributesView &attrs,
8561                              CUDAFunctionTarget CFT) {
8562 
8563   state.setParsedNoDeref(false);
8564   if (attrs.empty())
8565     return;
8566 
8567   // Scan through and apply attributes to this type where it makes sense.  Some
8568   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8569   // type, but others can be present in the type specifiers even though they
8570   // apply to the decl.  Here we apply type attributes and ignore the rest.
8571 
8572   // This loop modifies the list pretty frequently, but we still need to make
8573   // sure we visit every element once. Copy the attributes list, and iterate
8574   // over that.
8575   ParsedAttributesView AttrsCopy{attrs};
8576   for (ParsedAttr &attr : AttrsCopy) {
8577 
8578     // Skip attributes that were marked to be invalid.
8579     if (attr.isInvalid())
8580       continue;
8581 
8582     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8583       // [[gnu::...]] attributes are treated as declaration attributes, so may
8584       // not appertain to a DeclaratorChunk. If we handle them as type
8585       // attributes, accept them in that position and diagnose the GCC
8586       // incompatibility.
8587       if (attr.isGNUScope()) {
8588         assert(attr.isStandardAttributeSyntax());
8589         bool IsTypeAttr = attr.isTypeAttr();
8590         if (TAL == TAL_DeclChunk) {
8591           state.getSema().Diag(attr.getLoc(),
8592                                IsTypeAttr
8593                                    ? diag::warn_gcc_ignores_type_attr
8594                                    : diag::warn_cxx11_gnu_attribute_on_type)
8595               << attr;
8596           if (!IsTypeAttr)
8597             continue;
8598         }
8599       } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8600                  !attr.isTypeAttr()) {
8601         // Otherwise, only consider type processing for a C++11 attribute if
8602         // - it has actually been applied to a type (decl-specifier-seq or
8603         //   declarator chunk), or
8604         // - it is a type attribute, irrespective of where it was applied (so
8605         //   that we can support the legacy behavior of some type attributes
8606         //   that can be applied to the declaration name).
8607         continue;
8608       }
8609     }
8610 
8611     // If this is an attribute we can handle, do so now,
8612     // otherwise, add it to the FnAttrs list for rechaining.
8613     switch (attr.getKind()) {
8614     default:
8615       // A [[]] attribute on a declarator chunk must appertain to a type.
8616       if ((attr.isStandardAttributeSyntax() ||
8617            attr.isRegularKeywordAttribute()) &&
8618           TAL == TAL_DeclChunk) {
8619         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8620             << attr << attr.isRegularKeywordAttribute();
8621         attr.setUsedAsTypeAttr();
8622       }
8623       break;
8624 
8625     case ParsedAttr::UnknownAttribute:
8626       if (attr.isStandardAttributeSyntax()) {
8627         state.getSema().Diag(attr.getLoc(),
8628                              diag::warn_unknown_attribute_ignored)
8629             << attr << attr.getRange();
8630         // Mark the attribute as invalid so we don't emit the same diagnostic
8631         // multiple times.
8632         attr.setInvalid();
8633       }
8634       break;
8635 
8636     case ParsedAttr::IgnoredAttribute:
8637       break;
8638 
8639     case ParsedAttr::AT_BTFTypeTag:
8640       HandleBTFTypeTagAttribute(type, attr, state);
8641       attr.setUsedAsTypeAttr();
8642       break;
8643 
8644     case ParsedAttr::AT_MayAlias:
8645       // FIXME: This attribute needs to actually be handled, but if we ignore
8646       // it it breaks large amounts of Linux software.
8647       attr.setUsedAsTypeAttr();
8648       break;
8649     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8650     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8651     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8652     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8653     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8654     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8655     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8656     case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8657     case ParsedAttr::AT_AddressSpace:
8658       HandleAddressSpaceTypeAttribute(type, attr, state);
8659       attr.setUsedAsTypeAttr();
8660       break;
8661     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8662       if (!handleObjCPointerTypeAttr(state, attr, type))
8663         distributeObjCPointerTypeAttr(state, attr, type);
8664       attr.setUsedAsTypeAttr();
8665       break;
8666     case ParsedAttr::AT_VectorSize:
8667       HandleVectorSizeAttr(type, attr, state.getSema());
8668       attr.setUsedAsTypeAttr();
8669       break;
8670     case ParsedAttr::AT_ExtVectorType:
8671       HandleExtVectorTypeAttr(type, attr, state.getSema());
8672       attr.setUsedAsTypeAttr();
8673       break;
8674     case ParsedAttr::AT_NeonVectorType:
8675       HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8676       attr.setUsedAsTypeAttr();
8677       break;
8678     case ParsedAttr::AT_NeonPolyVectorType:
8679       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8680                                VectorKind::NeonPoly);
8681       attr.setUsedAsTypeAttr();
8682       break;
8683     case ParsedAttr::AT_ArmSveVectorBits:
8684       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8685       attr.setUsedAsTypeAttr();
8686       break;
8687     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8688       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8689       attr.setUsedAsTypeAttr();
8690       break;
8691     }
8692     case ParsedAttr::AT_RISCVRVVVectorBits:
8693       HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8694       attr.setUsedAsTypeAttr();
8695       break;
8696     case ParsedAttr::AT_OpenCLAccess:
8697       HandleOpenCLAccessAttr(type, attr, state.getSema());
8698       attr.setUsedAsTypeAttr();
8699       break;
8700     case ParsedAttr::AT_LifetimeBound:
8701       if (TAL == TAL_DeclChunk)
8702         HandleLifetimeBoundAttr(state, type, attr);
8703       break;
8704 
8705     case ParsedAttr::AT_NoDeref: {
8706       // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8707       // See https://github.com/llvm/llvm-project/issues/55790 for details.
8708       // For the time being, we simply emit a warning that the attribute is
8709       // ignored.
8710       if (attr.isStandardAttributeSyntax()) {
8711         state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8712             << attr;
8713         break;
8714       }
8715       ASTContext &Ctx = state.getSema().Context;
8716       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8717                                      type, type);
8718       attr.setUsedAsTypeAttr();
8719       state.setParsedNoDeref(true);
8720       break;
8721     }
8722 
8723     case ParsedAttr::AT_MatrixType:
8724       HandleMatrixTypeAttr(type, attr, state.getSema());
8725       attr.setUsedAsTypeAttr();
8726       break;
8727 
8728     case ParsedAttr::AT_WebAssemblyFuncref: {
8729       if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8730         attr.setUsedAsTypeAttr();
8731       break;
8732     }
8733 
8734     case ParsedAttr::AT_HLSLParamModifier: {
8735       HandleHLSLParamModifierAttr(state, type, attr, state.getSema());
8736       attr.setUsedAsTypeAttr();
8737       break;
8738     }
8739 
8740     MS_TYPE_ATTRS_CASELIST:
8741       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8742         attr.setUsedAsTypeAttr();
8743       break;
8744 
8745 
8746     NULLABILITY_TYPE_ATTRS_CASELIST:
8747       // Either add nullability here or try to distribute it.  We
8748       // don't want to distribute the nullability specifier past any
8749       // dependent type, because that complicates the user model.
8750       if (type->canHaveNullability() || type->isDependentType() ||
8751           type->isArrayType() ||
8752           !distributeNullabilityTypeAttr(state, type, attr)) {
8753         unsigned endIndex;
8754         if (TAL == TAL_DeclChunk)
8755           endIndex = state.getCurrentChunkIndex();
8756         else
8757           endIndex = state.getDeclarator().getNumTypeObjects();
8758         bool allowOnArrayType =
8759             state.getDeclarator().isPrototypeContext() &&
8760             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8761         if (CheckNullabilityTypeSpecifier(state, type, attr,
8762                                           allowOnArrayType)) {
8763           attr.setInvalid();
8764         }
8765 
8766         attr.setUsedAsTypeAttr();
8767       }
8768       break;
8769 
8770     case ParsedAttr::AT_ObjCKindOf:
8771       // '__kindof' must be part of the decl-specifiers.
8772       switch (TAL) {
8773       case TAL_DeclSpec:
8774         break;
8775 
8776       case TAL_DeclChunk:
8777       case TAL_DeclName:
8778         state.getSema().Diag(attr.getLoc(),
8779                              diag::err_objc_kindof_wrong_position)
8780             << FixItHint::CreateRemoval(attr.getLoc())
8781             << FixItHint::CreateInsertion(
8782                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8783                    "__kindof ");
8784         break;
8785       }
8786 
8787       // Apply it regardless.
8788       if (checkObjCKindOfType(state, type, attr))
8789         attr.setInvalid();
8790       break;
8791 
8792     case ParsedAttr::AT_NoThrow:
8793     // Exception Specifications aren't generally supported in C mode throughout
8794     // clang, so revert to attribute-based handling for C.
8795       if (!state.getSema().getLangOpts().CPlusPlus)
8796         break;
8797       [[fallthrough]];
8798     FUNCTION_TYPE_ATTRS_CASELIST:
8799       attr.setUsedAsTypeAttr();
8800 
8801       // Attributes with standard syntax have strict rules for what they
8802       // appertain to and hence should not use the "distribution" logic below.
8803       if (attr.isStandardAttributeSyntax() ||
8804           attr.isRegularKeywordAttribute()) {
8805         if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8806           diagnoseBadTypeAttribute(state.getSema(), attr, type);
8807           attr.setInvalid();
8808         }
8809         break;
8810       }
8811 
8812       // Never process function type attributes as part of the
8813       // declaration-specifiers.
8814       if (TAL == TAL_DeclSpec)
8815         distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8816 
8817       // Otherwise, handle the possible delays.
8818       else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8819         distributeFunctionTypeAttr(state, attr, type);
8820       break;
8821     case ParsedAttr::AT_AcquireHandle: {
8822       if (!type->isFunctionType())
8823         return;
8824 
8825       if (attr.getNumArgs() != 1) {
8826         state.getSema().Diag(attr.getLoc(),
8827                              diag::err_attribute_wrong_number_arguments)
8828             << attr << 1;
8829         attr.setInvalid();
8830         return;
8831       }
8832 
8833       StringRef HandleType;
8834       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8835         return;
8836       type = state.getAttributedType(
8837           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8838           type, type);
8839       attr.setUsedAsTypeAttr();
8840       break;
8841     }
8842     case ParsedAttr::AT_AnnotateType: {
8843       HandleAnnotateTypeAttr(state, type, attr);
8844       attr.setUsedAsTypeAttr();
8845       break;
8846     }
8847     case ParsedAttr::AT_HLSLResourceClass:
8848     case ParsedAttr::AT_HLSLROV:
8849     case ParsedAttr::AT_HLSLRawBuffer:
8850     case ParsedAttr::AT_HLSLContainedType: {
8851       // Only collect HLSL resource type attributes that are in
8852       // decl-specifier-seq; do not collect attributes on declarations or those
8853       // that get to slide after declaration name.
8854       if (TAL == TAL_DeclSpec &&
8855           state.getSema().HLSL().handleResourceTypeAttr(attr))
8856         attr.setUsedAsTypeAttr();
8857       break;
8858     }
8859     }
8860 
8861     // Handle attributes that are defined in a macro. We do not want this to be
8862     // applied to ObjC builtin attributes.
8863     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8864         !type.getQualifiers().hasObjCLifetime() &&
8865         !type.getQualifiers().hasObjCGCAttr() &&
8866         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8867         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8868       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8869       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8870       state.setExpansionLocForMacroQualifiedType(
8871           cast<MacroQualifiedType>(type.getTypePtr()),
8872           attr.getMacroExpansionLoc());
8873     }
8874   }
8875 }
8876 
8877 void Sema::completeExprArrayBound(Expr *E) {
8878   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8879     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8880       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8881         auto *Def = Var->getDefinition();
8882         if (!Def) {
8883           SourceLocation PointOfInstantiation = E->getExprLoc();
8884           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8885             InstantiateVariableDefinition(PointOfInstantiation, Var);
8886           });
8887           Def = Var->getDefinition();
8888 
8889           // If we don't already have a point of instantiation, and we managed
8890           // to instantiate a definition, this is the point of instantiation.
8891           // Otherwise, we don't request an end-of-TU instantiation, so this is
8892           // not a point of instantiation.
8893           // FIXME: Is this really the right behavior?
8894           if (Var->getPointOfInstantiation().isInvalid() && Def) {
8895             assert(Var->getTemplateSpecializationKind() ==
8896                        TSK_ImplicitInstantiation &&
8897                    "explicit instantiation with no point of instantiation");
8898             Var->setTemplateSpecializationKind(
8899                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8900           }
8901         }
8902 
8903         // Update the type to the definition's type both here and within the
8904         // expression.
8905         if (Def) {
8906           DRE->setDecl(Def);
8907           QualType T = Def->getType();
8908           DRE->setType(T);
8909           // FIXME: Update the type on all intervening expressions.
8910           E->setType(T);
8911         }
8912 
8913         // We still go on to try to complete the type independently, as it
8914         // may also require instantiations or diagnostics if it remains
8915         // incomplete.
8916       }
8917     }
8918   }
8919   if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
8920     QualType DestType = CastE->getTypeAsWritten();
8921     if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
8922       // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
8923       // this direct-initialization defines the type of the expression
8924       // as U[1]
8925       QualType ResultType = Context.getConstantArrayType(
8926           IAT->getElementType(),
8927           llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
8928           /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
8929           /*IndexTypeQuals=*/0);
8930       E->setType(ResultType);
8931     }
8932   }
8933 }
8934 
8935 QualType Sema::getCompletedType(Expr *E) {
8936   // Incomplete array types may be completed by the initializer attached to
8937   // their definitions. For static data members of class templates and for
8938   // variable templates, we need to instantiate the definition to get this
8939   // initializer and complete the type.
8940   if (E->getType()->isIncompleteArrayType())
8941     completeExprArrayBound(E);
8942 
8943   // FIXME: Are there other cases which require instantiating something other
8944   // than the type to complete the type of an expression?
8945 
8946   return E->getType();
8947 }
8948 
8949 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8950                                    TypeDiagnoser &Diagnoser) {
8951   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8952                              Diagnoser);
8953 }
8954 
8955 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8956   BoundTypeDiagnoser<> Diagnoser(DiagID);
8957   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8958 }
8959 
8960 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8961                                CompleteTypeKind Kind,
8962                                TypeDiagnoser &Diagnoser) {
8963   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8964     return true;
8965   if (const TagType *Tag = T->getAs<TagType>()) {
8966     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8967       Tag->getDecl()->setCompleteDefinitionRequired();
8968       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8969     }
8970   }
8971   return false;
8972 }
8973 
8974 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8975   llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8976   if (!Suggested)
8977     return false;
8978 
8979   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8980   // and isolate from other C++ specific checks.
8981   StructuralEquivalenceContext Ctx(
8982       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8983       StructuralEquivalenceKind::Default,
8984       false /*StrictTypeSpelling*/, true /*Complain*/,
8985       true /*ErrorOnTagTypeMismatch*/);
8986   return Ctx.IsEquivalent(D, Suggested);
8987 }
8988 
8989 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
8990                                    AcceptableKind Kind, bool OnlyNeedComplete) {
8991   // Easy case: if we don't have modules, all declarations are visible.
8992   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8993     return true;
8994 
8995   // If this definition was instantiated from a template, map back to the
8996   // pattern from which it was instantiated.
8997   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8998     // We're in the middle of defining it; this definition should be treated
8999     // as visible.
9000     return true;
9001   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9002     if (auto *Pattern = RD->getTemplateInstantiationPattern())
9003       RD = Pattern;
9004     D = RD->getDefinition();
9005   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
9006     if (auto *Pattern = ED->getTemplateInstantiationPattern())
9007       ED = Pattern;
9008     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9009       // If the enum has a fixed underlying type, it may have been forward
9010       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9011       // the enum and assign it the underlying type of `int`. Since we're only
9012       // looking for a complete type (not a definition), any visible declaration
9013       // of it will do.
9014       *Suggested = nullptr;
9015       for (auto *Redecl : ED->redecls()) {
9016         if (isAcceptable(Redecl, Kind))
9017           return true;
9018         if (Redecl->isThisDeclarationADefinition() ||
9019             (Redecl->isCanonicalDecl() && !*Suggested))
9020           *Suggested = Redecl;
9021       }
9022 
9023       return false;
9024     }
9025     D = ED->getDefinition();
9026   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
9027     if (auto *Pattern = FD->getTemplateInstantiationPattern())
9028       FD = Pattern;
9029     D = FD->getDefinition();
9030   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
9031     if (auto *Pattern = VD->getTemplateInstantiationPattern())
9032       VD = Pattern;
9033     D = VD->getDefinition();
9034   }
9035 
9036   assert(D && "missing definition for pattern of instantiated definition");
9037 
9038   *Suggested = D;
9039 
9040   auto DefinitionIsAcceptable = [&] {
9041     // The (primary) definition might be in a visible module.
9042     if (isAcceptable(D, Kind))
9043       return true;
9044 
9045     // A visible module might have a merged definition instead.
9046     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
9047                              : hasVisibleMergedDefinition(D)) {
9048       if (CodeSynthesisContexts.empty() &&
9049           !getLangOpts().ModulesLocalVisibility) {
9050         // Cache the fact that this definition is implicitly visible because
9051         // there is a visible merged definition.
9052         D->setVisibleDespiteOwningModule();
9053       }
9054       return true;
9055     }
9056 
9057     return false;
9058   };
9059 
9060   if (DefinitionIsAcceptable())
9061     return true;
9062 
9063   // The external source may have additional definitions of this entity that are
9064   // visible, so complete the redeclaration chain now and ask again.
9065   if (auto *Source = Context.getExternalSource()) {
9066     Source->CompleteRedeclChain(D);
9067     return DefinitionIsAcceptable();
9068   }
9069 
9070   return false;
9071 }
9072 
9073 /// Determine whether there is any declaration of \p D that was ever a
9074 ///        definition (perhaps before module merging) and is currently visible.
9075 /// \param D The definition of the entity.
9076 /// \param Suggested Filled in with the declaration that should be made visible
9077 ///        in order to provide a definition of this entity.
9078 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9079 ///        not defined. This only matters for enums with a fixed underlying
9080 ///        type, since in all other cases, a type is complete if and only if it
9081 ///        is defined.
9082 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9083                                 bool OnlyNeedComplete) {
9084   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9085                                  OnlyNeedComplete);
9086 }
9087 
9088 /// Determine whether there is any declaration of \p D that was ever a
9089 ///        definition (perhaps before module merging) and is currently
9090 ///        reachable.
9091 /// \param D The definition of the entity.
9092 /// \param Suggested Filled in with the declaration that should be made
9093 /// reachable
9094 ///        in order to provide a definition of this entity.
9095 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9096 ///        not defined. This only matters for enums with a fixed underlying
9097 ///        type, since in all other cases, a type is complete if and only if it
9098 ///        is defined.
9099 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9100                                   bool OnlyNeedComplete) {
9101   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9102                                  OnlyNeedComplete);
9103 }
9104 
9105 /// Locks in the inheritance model for the given class and all of its bases.
9106 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9107   RD = RD->getMostRecentNonInjectedDecl();
9108   if (!RD->hasAttr<MSInheritanceAttr>()) {
9109     MSInheritanceModel IM;
9110     bool BestCase = false;
9111     switch (S.MSPointerToMemberRepresentationMethod) {
9112     case LangOptions::PPTMK_BestCase:
9113       BestCase = true;
9114       IM = RD->calculateInheritanceModel();
9115       break;
9116     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9117       IM = MSInheritanceModel::Single;
9118       break;
9119     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9120       IM = MSInheritanceModel::Multiple;
9121       break;
9122     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9123       IM = MSInheritanceModel::Unspecified;
9124       break;
9125     }
9126 
9127     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9128                           ? S.ImplicitMSInheritanceAttrLoc
9129                           : RD->getSourceRange();
9130     RD->addAttr(MSInheritanceAttr::CreateImplicit(
9131         S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9132     S.Consumer.AssignInheritanceModel(RD);
9133   }
9134 }
9135 
9136 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9137                                    CompleteTypeKind Kind,
9138                                    TypeDiagnoser *Diagnoser) {
9139   // FIXME: Add this assertion to make sure we always get instantiation points.
9140   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9141   // FIXME: Add this assertion to help us flush out problems with
9142   // checking for dependent types and type-dependent expressions.
9143   //
9144   //  assert(!T->isDependentType() &&
9145   //         "Can't ask whether a dependent type is complete");
9146 
9147   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9148     if (!MPTy->getClass()->isDependentType()) {
9149       if (getLangOpts().CompleteMemberPointers &&
9150           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9151           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9152                               diag::err_memptr_incomplete))
9153         return true;
9154 
9155       // We lock in the inheritance model once somebody has asked us to ensure
9156       // that a pointer-to-member type is complete.
9157       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9158         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9159         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9160       }
9161     }
9162   }
9163 
9164   NamedDecl *Def = nullptr;
9165   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9166   bool Incomplete = (T->isIncompleteType(&Def) ||
9167                      (!AcceptSizeless && T->isSizelessBuiltinType()));
9168 
9169   // Check that any necessary explicit specializations are visible. For an
9170   // enum, we just need the declaration, so don't check this.
9171   if (Def && !isa<EnumDecl>(Def))
9172     checkSpecializationReachability(Loc, Def);
9173 
9174   // If we have a complete type, we're done.
9175   if (!Incomplete) {
9176     NamedDecl *Suggested = nullptr;
9177     if (Def &&
9178         !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9179       // If the user is going to see an error here, recover by making the
9180       // definition visible.
9181       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9182       if (Diagnoser && Suggested)
9183         diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9184                               /*Recover*/ TreatAsComplete);
9185       return !TreatAsComplete;
9186     } else if (Def && !TemplateInstCallbacks.empty()) {
9187       CodeSynthesisContext TempInst;
9188       TempInst.Kind = CodeSynthesisContext::Memoization;
9189       TempInst.Template = Def;
9190       TempInst.Entity = Def;
9191       TempInst.PointOfInstantiation = Loc;
9192       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9193       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9194     }
9195 
9196     return false;
9197   }
9198 
9199   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9200   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9201 
9202   // Give the external source a chance to provide a definition of the type.
9203   // This is kept separate from completing the redeclaration chain so that
9204   // external sources such as LLDB can avoid synthesizing a type definition
9205   // unless it's actually needed.
9206   if (Tag || IFace) {
9207     // Avoid diagnosing invalid decls as incomplete.
9208     if (Def->isInvalidDecl())
9209       return true;
9210 
9211     // Give the external AST source a chance to complete the type.
9212     if (auto *Source = Context.getExternalSource()) {
9213       if (Tag && Tag->hasExternalLexicalStorage())
9214           Source->CompleteType(Tag);
9215       if (IFace && IFace->hasExternalLexicalStorage())
9216           Source->CompleteType(IFace);
9217       // If the external source completed the type, go through the motions
9218       // again to ensure we're allowed to use the completed type.
9219       if (!T->isIncompleteType())
9220         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9221     }
9222   }
9223 
9224   // If we have a class template specialization or a class member of a
9225   // class template specialization, or an array with known size of such,
9226   // try to instantiate it.
9227   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9228     bool Instantiated = false;
9229     bool Diagnosed = false;
9230     if (RD->isDependentContext()) {
9231       // Don't try to instantiate a dependent class (eg, a member template of
9232       // an instantiated class template specialization).
9233       // FIXME: Can this ever happen?
9234     } else if (auto *ClassTemplateSpec =
9235             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9236       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9237         runWithSufficientStackSpace(Loc, [&] {
9238           Diagnosed = InstantiateClassTemplateSpecialization(
9239               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9240               /*Complain=*/Diagnoser);
9241         });
9242         Instantiated = true;
9243       }
9244     } else {
9245       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9246       if (!RD->isBeingDefined() && Pattern) {
9247         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9248         assert(MSI && "Missing member specialization information?");
9249         // This record was instantiated from a class within a template.
9250         if (MSI->getTemplateSpecializationKind() !=
9251             TSK_ExplicitSpecialization) {
9252           runWithSufficientStackSpace(Loc, [&] {
9253             Diagnosed = InstantiateClass(Loc, RD, Pattern,
9254                                          getTemplateInstantiationArgs(RD),
9255                                          TSK_ImplicitInstantiation,
9256                                          /*Complain=*/Diagnoser);
9257           });
9258           Instantiated = true;
9259         }
9260       }
9261     }
9262 
9263     if (Instantiated) {
9264       // Instantiate* might have already complained that the template is not
9265       // defined, if we asked it to.
9266       if (Diagnoser && Diagnosed)
9267         return true;
9268       // If we instantiated a definition, check that it's usable, even if
9269       // instantiation produced an error, so that repeated calls to this
9270       // function give consistent answers.
9271       if (!T->isIncompleteType())
9272         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9273     }
9274   }
9275 
9276   // FIXME: If we didn't instantiate a definition because of an explicit
9277   // specialization declaration, check that it's visible.
9278 
9279   if (!Diagnoser)
9280     return true;
9281 
9282   Diagnoser->diagnose(*this, Loc, T);
9283 
9284   // If the type was a forward declaration of a class/struct/union
9285   // type, produce a note.
9286   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9287     Diag(Tag->getLocation(),
9288          Tag->isBeingDefined() ? diag::note_type_being_defined
9289                                : diag::note_forward_declaration)
9290       << Context.getTagDeclType(Tag);
9291 
9292   // If the Objective-C class was a forward declaration, produce a note.
9293   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9294     Diag(IFace->getLocation(), diag::note_forward_class);
9295 
9296   // If we have external information that we can use to suggest a fix,
9297   // produce a note.
9298   if (ExternalSource)
9299     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9300 
9301   return true;
9302 }
9303 
9304 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9305                                CompleteTypeKind Kind, unsigned DiagID) {
9306   BoundTypeDiagnoser<> Diagnoser(DiagID);
9307   return RequireCompleteType(Loc, T, Kind, Diagnoser);
9308 }
9309 
9310 /// Get diagnostic %select index for tag kind for
9311 /// literal type diagnostic message.
9312 /// WARNING: Indexes apply to particular diagnostics only!
9313 ///
9314 /// \returns diagnostic %select index.
9315 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9316   switch (Tag) {
9317   case TagTypeKind::Struct:
9318     return 0;
9319   case TagTypeKind::Interface:
9320     return 1;
9321   case TagTypeKind::Class:
9322     return 2;
9323   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9324   }
9325 }
9326 
9327 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9328                               TypeDiagnoser &Diagnoser) {
9329   assert(!T->isDependentType() && "type should not be dependent");
9330 
9331   QualType ElemType = Context.getBaseElementType(T);
9332   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9333       T->isLiteralType(Context))
9334     return false;
9335 
9336   Diagnoser.diagnose(*this, Loc, T);
9337 
9338   if (T->isVariableArrayType())
9339     return true;
9340 
9341   const RecordType *RT = ElemType->getAs<RecordType>();
9342   if (!RT)
9343     return true;
9344 
9345   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9346 
9347   // A partially-defined class type can't be a literal type, because a literal
9348   // class type must have a trivial destructor (which can't be checked until
9349   // the class definition is complete).
9350   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9351     return true;
9352 
9353   // [expr.prim.lambda]p3:
9354   //   This class type is [not] a literal type.
9355   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9356     Diag(RD->getLocation(), diag::note_non_literal_lambda);
9357     return true;
9358   }
9359 
9360   // If the class has virtual base classes, then it's not an aggregate, and
9361   // cannot have any constexpr constructors or a trivial default constructor,
9362   // so is non-literal. This is better to diagnose than the resulting absence
9363   // of constexpr constructors.
9364   if (RD->getNumVBases()) {
9365     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9366       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9367     for (const auto &I : RD->vbases())
9368       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9369           << I.getSourceRange();
9370   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9371              !RD->hasTrivialDefaultConstructor()) {
9372     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9373   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9374     for (const auto &I : RD->bases()) {
9375       if (!I.getType()->isLiteralType(Context)) {
9376         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9377             << RD << I.getType() << I.getSourceRange();
9378         return true;
9379       }
9380     }
9381     for (const auto *I : RD->fields()) {
9382       if (!I->getType()->isLiteralType(Context) ||
9383           I->getType().isVolatileQualified()) {
9384         Diag(I->getLocation(), diag::note_non_literal_field)
9385           << RD << I << I->getType()
9386           << I->getType().isVolatileQualified();
9387         return true;
9388       }
9389     }
9390   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9391                                        : !RD->hasTrivialDestructor()) {
9392     // All fields and bases are of literal types, so have trivial or constexpr
9393     // destructors. If this class's destructor is non-trivial / non-constexpr,
9394     // it must be user-declared.
9395     CXXDestructorDecl *Dtor = RD->getDestructor();
9396     assert(Dtor && "class has literal fields and bases but no dtor?");
9397     if (!Dtor)
9398       return true;
9399 
9400     if (getLangOpts().CPlusPlus20) {
9401       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9402           << RD;
9403     } else {
9404       Diag(Dtor->getLocation(), Dtor->isUserProvided()
9405                                     ? diag::note_non_literal_user_provided_dtor
9406                                     : diag::note_non_literal_nontrivial_dtor)
9407           << RD;
9408       if (!Dtor->isUserProvided())
9409         SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9410                                TAH_IgnoreTrivialABI,
9411                                /*Diagnose*/ true);
9412     }
9413   }
9414 
9415   return true;
9416 }
9417 
9418 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9419   BoundTypeDiagnoser<> Diagnoser(DiagID);
9420   return RequireLiteralType(Loc, T, Diagnoser);
9421 }
9422 
9423 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9424                                  const CXXScopeSpec &SS, QualType T,
9425                                  TagDecl *OwnedTagDecl) {
9426   if (T.isNull())
9427     return T;
9428   return Context.getElaboratedType(
9429       Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9430 }
9431 
9432 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9433   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9434 
9435   if (!getLangOpts().CPlusPlus && E->refersToBitField())
9436     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9437         << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9438 
9439   if (!E->isTypeDependent()) {
9440     QualType T = E->getType();
9441     if (const TagType *TT = T->getAs<TagType>())
9442       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9443   }
9444   return Context.getTypeOfExprType(E, Kind);
9445 }
9446 
9447 static void
9448 BuildTypeCoupledDecls(Expr *E,
9449                       llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9450   // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9451   auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9452   Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9453 }
9454 
9455 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9456                                                       Expr *CountExpr,
9457                                                       bool CountInBytes,
9458                                                       bool OrNull) {
9459   assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9460 
9461   llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9462   BuildTypeCoupledDecls(CountExpr, Decls);
9463   /// When the resulting expression is invalid, we still create the AST using
9464   /// the original count expression for the sake of AST dump.
9465   return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9466                                         OrNull, Decls);
9467 }
9468 
9469 /// getDecltypeForExpr - Given an expr, will return the decltype for
9470 /// that expression, according to the rules in C++11
9471 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9472 QualType Sema::getDecltypeForExpr(Expr *E) {
9473 
9474   Expr *IDExpr = E;
9475   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9476     IDExpr = ImplCastExpr->getSubExpr();
9477 
9478   if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9479     if (E->isInstantiationDependent())
9480       IDExpr = PackExpr->getPackIdExpression();
9481     else
9482       IDExpr = PackExpr->getSelectedExpr();
9483   }
9484 
9485   if (E->isTypeDependent())
9486     return Context.DependentTy;
9487 
9488   // C++11 [dcl.type.simple]p4:
9489   //   The type denoted by decltype(e) is defined as follows:
9490 
9491   // C++20:
9492   //     - if E is an unparenthesized id-expression naming a non-type
9493   //       template-parameter (13.2), decltype(E) is the type of the
9494   //       template-parameter after performing any necessary type deduction
9495   // Note that this does not pick up the implicit 'const' for a template
9496   // parameter object. This rule makes no difference before C++20 so we apply
9497   // it unconditionally.
9498   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9499     return SNTTPE->getParameterType(Context);
9500 
9501   //     - if e is an unparenthesized id-expression or an unparenthesized class
9502   //       member access (5.2.5), decltype(e) is the type of the entity named
9503   //       by e. If there is no such entity, or if e names a set of overloaded
9504   //       functions, the program is ill-formed;
9505   //
9506   // We apply the same rules for Objective-C ivar and property references.
9507   if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9508     const ValueDecl *VD = DRE->getDecl();
9509     QualType T = VD->getType();
9510     return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9511   }
9512   if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9513     if (const auto *VD = ME->getMemberDecl())
9514       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9515         return VD->getType();
9516   } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9517     return IR->getDecl()->getType();
9518   } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9519     if (PR->isExplicitProperty())
9520       return PR->getExplicitProperty()->getType();
9521   } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9522     return PE->getType();
9523   }
9524 
9525   // C++11 [expr.lambda.prim]p18:
9526   //   Every occurrence of decltype((x)) where x is a possibly
9527   //   parenthesized id-expression that names an entity of automatic
9528   //   storage duration is treated as if x were transformed into an
9529   //   access to a corresponding data member of the closure type that
9530   //   would have been declared if x were an odr-use of the denoted
9531   //   entity.
9532   if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9533     if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9534       if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9535         QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9536         if (!T.isNull())
9537           return Context.getLValueReferenceType(T);
9538       }
9539     }
9540   }
9541 
9542   return Context.getReferenceQualifiedType(E);
9543 }
9544 
9545 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9546   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9547 
9548   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9549       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9550     // The expression operand for decltype is in an unevaluated expression
9551     // context, so side effects could result in unintended consequences.
9552     // Exclude instantiation-dependent expressions, because 'decltype' is often
9553     // used to build SFINAE gadgets.
9554     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9555   }
9556   return Context.getDecltypeType(E, getDecltypeForExpr(E));
9557 }
9558 
9559 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9560                                      SourceLocation Loc,
9561                                      SourceLocation EllipsisLoc) {
9562   if (!IndexExpr)
9563     return QualType();
9564 
9565   // Diagnose unexpanded packs but continue to improve recovery.
9566   if (!Pattern->containsUnexpandedParameterPack())
9567     Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9568 
9569   QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9570 
9571   if (!Type.isNull())
9572     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9573                                         : diag::ext_pack_indexing);
9574   return Type;
9575 }
9576 
9577 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9578                                      SourceLocation Loc,
9579                                      SourceLocation EllipsisLoc,
9580                                      bool FullySubstituted,
9581                                      ArrayRef<QualType> Expansions) {
9582 
9583   std::optional<int64_t> Index;
9584   if (FullySubstituted && !IndexExpr->isValueDependent() &&
9585       !IndexExpr->isTypeDependent()) {
9586     llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9587     ExprResult Res = CheckConvertedConstantExpression(
9588         IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9589     if (!Res.isUsable())
9590       return QualType();
9591     Index = Value.getExtValue();
9592     IndexExpr = Res.get();
9593   }
9594 
9595   if (FullySubstituted && Index) {
9596     if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9597       Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9598           << *Index << Pattern << Expansions.size();
9599       return QualType();
9600     }
9601   }
9602 
9603   return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9604                                      Expansions, Index.value_or(-1));
9605 }
9606 
9607 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9608                                       SourceLocation Loc) {
9609   assert(BaseType->isEnumeralType());
9610   EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9611   assert(ED && "EnumType has no EnumDecl");
9612 
9613   S.DiagnoseUseOfDecl(ED, Loc);
9614 
9615   QualType Underlying = ED->getIntegerType();
9616   assert(!Underlying.isNull());
9617 
9618   return Underlying;
9619 }
9620 
9621 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9622                                          SourceLocation Loc) {
9623   if (!BaseType->isEnumeralType()) {
9624     Diag(Loc, diag::err_only_enums_have_underlying_types);
9625     return QualType();
9626   }
9627 
9628   // The enum could be incomplete if we're parsing its definition or
9629   // recovering from an error.
9630   NamedDecl *FwdDecl = nullptr;
9631   if (BaseType->isIncompleteType(&FwdDecl)) {
9632     Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9633     Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9634     return QualType();
9635   }
9636 
9637   return GetEnumUnderlyingType(*this, BaseType, Loc);
9638 }
9639 
9640 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9641   QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9642                          ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9643                                             DeclarationName())
9644                          : BaseType;
9645 
9646   return Pointer.isNull() ? QualType() : Pointer;
9647 }
9648 
9649 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9650   // We don't want block pointers or ObjectiveC's id type.
9651   if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9652     return BaseType;
9653 
9654   return BaseType->getPointeeType();
9655 }
9656 
9657 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9658   QualType Underlying = BaseType.getNonReferenceType();
9659   if (Underlying->isArrayType())
9660     return Context.getDecayedType(Underlying);
9661 
9662   if (Underlying->isFunctionType())
9663     return BuiltinAddPointer(BaseType, Loc);
9664 
9665   SplitQualType Split = Underlying.getSplitUnqualifiedType();
9666   // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9667   // in the same group of qualifiers as 'const' and 'volatile', we're extending
9668   // '__decay(T)' so that it removes all qualifiers.
9669   Split.Quals.removeCVRQualifiers();
9670   return Context.getQualifiedType(Split);
9671 }
9672 
9673 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9674                                    SourceLocation Loc) {
9675   assert(LangOpts.CPlusPlus);
9676   QualType Reference =
9677       BaseType.isReferenceable()
9678           ? BuildReferenceType(BaseType,
9679                                UKind == UnaryTransformType::AddLvalueReference,
9680                                Loc, DeclarationName())
9681           : BaseType;
9682   return Reference.isNull() ? QualType() : Reference;
9683 }
9684 
9685 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9686                                    SourceLocation Loc) {
9687   if (UKind == UnaryTransformType::RemoveAllExtents)
9688     return Context.getBaseElementType(BaseType);
9689 
9690   if (const auto *AT = Context.getAsArrayType(BaseType))
9691     return AT->getElementType();
9692 
9693   return BaseType;
9694 }
9695 
9696 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9697                                       SourceLocation Loc) {
9698   assert(LangOpts.CPlusPlus);
9699   QualType T = BaseType.getNonReferenceType();
9700   if (UKind == UTTKind::RemoveCVRef &&
9701       (T.isConstQualified() || T.isVolatileQualified())) {
9702     Qualifiers Quals;
9703     QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9704     Quals.removeConst();
9705     Quals.removeVolatile();
9706     T = Context.getQualifiedType(Unqual, Quals);
9707   }
9708   return T;
9709 }
9710 
9711 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9712                                           SourceLocation Loc) {
9713   if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9714       BaseType->isFunctionType())
9715     return BaseType;
9716 
9717   Qualifiers Quals;
9718   QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9719 
9720   if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9721     Quals.removeConst();
9722   if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9723     Quals.removeVolatile();
9724   if (UKind == UTTKind::RemoveRestrict)
9725     Quals.removeRestrict();
9726 
9727   return Context.getQualifiedType(Unqual, Quals);
9728 }
9729 
9730 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9731                                          bool IsMakeSigned,
9732                                          SourceLocation Loc) {
9733   if (BaseType->isEnumeralType()) {
9734     QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9735     if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9736       unsigned int Bits = BitInt->getNumBits();
9737       if (Bits > 1)
9738         return S.Context.getBitIntType(!IsMakeSigned, Bits);
9739 
9740       S.Diag(Loc, diag::err_make_signed_integral_only)
9741           << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9742       return QualType();
9743     }
9744     if (Underlying->isBooleanType()) {
9745       S.Diag(Loc, diag::err_make_signed_integral_only)
9746           << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9747           << Underlying;
9748       return QualType();
9749     }
9750   }
9751 
9752   bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9753   std::array<CanQualType *, 6> AllSignedIntegers = {
9754       &S.Context.SignedCharTy, &S.Context.ShortTy,    &S.Context.IntTy,
9755       &S.Context.LongTy,       &S.Context.LongLongTy, &S.Context.Int128Ty};
9756   ArrayRef<CanQualType *> AvailableSignedIntegers(
9757       AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9758   std::array<CanQualType *, 6> AllUnsignedIntegers = {
9759       &S.Context.UnsignedCharTy,     &S.Context.UnsignedShortTy,
9760       &S.Context.UnsignedIntTy,      &S.Context.UnsignedLongTy,
9761       &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9762   ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9763                                                     AllUnsignedIntegers.size() -
9764                                                         Int128Unsupported);
9765   ArrayRef<CanQualType *> *Consider =
9766       IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9767 
9768   uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9769   auto *Result =
9770       llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9771         return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9772       });
9773 
9774   assert(Result != Consider->end());
9775   return QualType((*Result)->getTypePtr(), 0);
9776 }
9777 
9778 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9779                                        SourceLocation Loc) {
9780   bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9781   if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9782       BaseType->isBooleanType() ||
9783       (BaseType->isBitIntType() &&
9784        BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9785     Diag(Loc, diag::err_make_signed_integral_only)
9786         << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9787     return QualType();
9788   }
9789 
9790   bool IsNonIntIntegral =
9791       BaseType->isChar16Type() || BaseType->isChar32Type() ||
9792       BaseType->isWideCharType() || BaseType->isEnumeralType();
9793 
9794   QualType Underlying =
9795       IsNonIntIntegral
9796           ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9797       : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9798                      : Context.getCorrespondingUnsignedType(BaseType);
9799   if (Underlying.isNull())
9800     return Underlying;
9801   return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9802 }
9803 
9804 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9805                                        SourceLocation Loc) {
9806   if (BaseType->isDependentType())
9807     return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9808   QualType Result;
9809   switch (UKind) {
9810   case UnaryTransformType::EnumUnderlyingType: {
9811     Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9812     break;
9813   }
9814   case UnaryTransformType::AddPointer: {
9815     Result = BuiltinAddPointer(BaseType, Loc);
9816     break;
9817   }
9818   case UnaryTransformType::RemovePointer: {
9819     Result = BuiltinRemovePointer(BaseType, Loc);
9820     break;
9821   }
9822   case UnaryTransformType::Decay: {
9823     Result = BuiltinDecay(BaseType, Loc);
9824     break;
9825   }
9826   case UnaryTransformType::AddLvalueReference:
9827   case UnaryTransformType::AddRvalueReference: {
9828     Result = BuiltinAddReference(BaseType, UKind, Loc);
9829     break;
9830   }
9831   case UnaryTransformType::RemoveAllExtents:
9832   case UnaryTransformType::RemoveExtent: {
9833     Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9834     break;
9835   }
9836   case UnaryTransformType::RemoveCVRef:
9837   case UnaryTransformType::RemoveReference: {
9838     Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9839     break;
9840   }
9841   case UnaryTransformType::RemoveConst:
9842   case UnaryTransformType::RemoveCV:
9843   case UnaryTransformType::RemoveRestrict:
9844   case UnaryTransformType::RemoveVolatile: {
9845     Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9846     break;
9847   }
9848   case UnaryTransformType::MakeSigned:
9849   case UnaryTransformType::MakeUnsigned: {
9850     Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9851     break;
9852   }
9853   }
9854 
9855   return !Result.isNull()
9856              ? Context.getUnaryTransformType(BaseType, Result, UKind)
9857              : Result;
9858 }
9859 
9860 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9861   if (!isDependentOrGNUAutoType(T)) {
9862     // FIXME: It isn't entirely clear whether incomplete atomic types
9863     // are allowed or not; for simplicity, ban them for the moment.
9864     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9865       return QualType();
9866 
9867     int DisallowedKind = -1;
9868     if (T->isArrayType())
9869       DisallowedKind = 1;
9870     else if (T->isFunctionType())
9871       DisallowedKind = 2;
9872     else if (T->isReferenceType())
9873       DisallowedKind = 3;
9874     else if (T->isAtomicType())
9875       DisallowedKind = 4;
9876     else if (T.hasQualifiers())
9877       DisallowedKind = 5;
9878     else if (T->isSizelessType())
9879       DisallowedKind = 6;
9880     else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9881       // Some other non-trivially-copyable type (probably a C++ class)
9882       DisallowedKind = 7;
9883     else if (T->isBitIntType())
9884       DisallowedKind = 8;
9885     else if (getLangOpts().C23 && T->isUndeducedAutoType())
9886       // _Atomic auto is prohibited in C23
9887       DisallowedKind = 9;
9888 
9889     if (DisallowedKind != -1) {
9890       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9891       return QualType();
9892     }
9893 
9894     // FIXME: Do we need any handling for ARC here?
9895   }
9896 
9897   // Build the pointer type.
9898   return Context.getAtomicType(T);
9899 }
9900