xref: /llvm-project/clang/lib/Sema/SemaType.cpp (revision 43f84e7937d12a4d868a51244e9b3572812a1572)
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related semantic analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/LocInfoType.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeLocVisitor.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/DelayedDiagnostic.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/ParsedTemplate.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaCUDA.h"
40 #include "clang/Sema/SemaHLSL.h"
41 #include "clang/Sema/SemaObjC.h"
42 #include "clang/Sema/SemaOpenMP.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateInstCallback.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/STLForwardCompat.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <bitset>
51 #include <optional>
52 
53 using namespace clang;
54 
55 enum TypeDiagSelector {
56   TDS_Function,
57   TDS_Pointer,
58   TDS_ObjCObjOrBlock
59 };
60 
61 /// isOmittedBlockReturnType - Return true if this declarator is missing a
62 /// return type because this is a omitted return type on a block literal.
63 static bool isOmittedBlockReturnType(const Declarator &D) {
64   if (D.getContext() != DeclaratorContext::BlockLiteral ||
65       D.getDeclSpec().hasTypeSpecifier())
66     return false;
67 
68   if (D.getNumTypeObjects() == 0)
69     return true;   // ^{ ... }
70 
71   if (D.getNumTypeObjects() == 1 &&
72       D.getTypeObject(0).Kind == DeclaratorChunk::Function)
73     return true;   // ^(int X, float Y) { ... }
74 
75   return false;
76 }
77 
78 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
79 /// doesn't apply to the given type.
80 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
81                                      QualType type) {
82   TypeDiagSelector WhichType;
83   bool useExpansionLoc = true;
84   switch (attr.getKind()) {
85   case ParsedAttr::AT_ObjCGC:
86     WhichType = TDS_Pointer;
87     break;
88   case ParsedAttr::AT_ObjCOwnership:
89     WhichType = TDS_ObjCObjOrBlock;
90     break;
91   default:
92     // Assume everything else was a function attribute.
93     WhichType = TDS_Function;
94     useExpansionLoc = false;
95     break;
96   }
97 
98   SourceLocation loc = attr.getLoc();
99   StringRef name = attr.getAttrName()->getName();
100 
101   // The GC attributes are usually written with macros;  special-case them.
102   IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
103                                           : nullptr;
104   if (useExpansionLoc && loc.isMacroID() && II) {
105     if (II->isStr("strong")) {
106       if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
107     } else if (II->isStr("weak")) {
108       if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
109     }
110   }
111 
112   S.Diag(loc, attr.isRegularKeywordAttribute()
113                   ? diag::err_type_attribute_wrong_type
114                   : diag::warn_type_attribute_wrong_type)
115       << name << WhichType << type;
116 }
117 
118 // objc_gc applies to Objective-C pointers or, otherwise, to the
119 // smallest available pointer type (i.e. 'void*' in 'void**').
120 #define OBJC_POINTER_TYPE_ATTRS_CASELIST                                       \
121   case ParsedAttr::AT_ObjCGC:                                                  \
122   case ParsedAttr::AT_ObjCOwnership
123 
124 // Calling convention attributes.
125 #define CALLING_CONV_ATTRS_CASELIST                                            \
126   case ParsedAttr::AT_CDecl:                                                   \
127   case ParsedAttr::AT_FastCall:                                                \
128   case ParsedAttr::AT_StdCall:                                                 \
129   case ParsedAttr::AT_ThisCall:                                                \
130   case ParsedAttr::AT_RegCall:                                                 \
131   case ParsedAttr::AT_Pascal:                                                  \
132   case ParsedAttr::AT_SwiftCall:                                               \
133   case ParsedAttr::AT_SwiftAsyncCall:                                          \
134   case ParsedAttr::AT_VectorCall:                                              \
135   case ParsedAttr::AT_AArch64VectorPcs:                                        \
136   case ParsedAttr::AT_AArch64SVEPcs:                                           \
137   case ParsedAttr::AT_AMDGPUKernelCall:                                        \
138   case ParsedAttr::AT_MSABI:                                                   \
139   case ParsedAttr::AT_SysVABI:                                                 \
140   case ParsedAttr::AT_Pcs:                                                     \
141   case ParsedAttr::AT_IntelOclBicc:                                            \
142   case ParsedAttr::AT_PreserveMost:                                            \
143   case ParsedAttr::AT_PreserveAll:                                             \
144   case ParsedAttr::AT_M68kRTD:                                                 \
145   case ParsedAttr::AT_PreserveNone:                                            \
146   case ParsedAttr::AT_RISCVVectorCC
147 
148 // Function type attributes.
149 #define FUNCTION_TYPE_ATTRS_CASELIST                                           \
150   case ParsedAttr::AT_NSReturnsRetained:                                       \
151   case ParsedAttr::AT_NoReturn:                                                \
152   case ParsedAttr::AT_NonBlocking:                                             \
153   case ParsedAttr::AT_NonAllocating:                                           \
154   case ParsedAttr::AT_Blocking:                                                \
155   case ParsedAttr::AT_Allocating:                                              \
156   case ParsedAttr::AT_Regparm:                                                 \
157   case ParsedAttr::AT_CmseNSCall:                                              \
158   case ParsedAttr::AT_ArmStreaming:                                            \
159   case ParsedAttr::AT_ArmStreamingCompatible:                                  \
160   case ParsedAttr::AT_ArmPreserves:                                            \
161   case ParsedAttr::AT_ArmIn:                                                   \
162   case ParsedAttr::AT_ArmOut:                                                  \
163   case ParsedAttr::AT_ArmInOut:                                                \
164   case ParsedAttr::AT_AnyX86NoCallerSavedRegisters:                            \
165   case ParsedAttr::AT_AnyX86NoCfCheck:                                         \
166     CALLING_CONV_ATTRS_CASELIST
167 
168 // Microsoft-specific type qualifiers.
169 #define MS_TYPE_ATTRS_CASELIST                                                 \
170   case ParsedAttr::AT_Ptr32:                                                   \
171   case ParsedAttr::AT_Ptr64:                                                   \
172   case ParsedAttr::AT_SPtr:                                                    \
173   case ParsedAttr::AT_UPtr
174 
175 // Nullability qualifiers.
176 #define NULLABILITY_TYPE_ATTRS_CASELIST                                        \
177   case ParsedAttr::AT_TypeNonNull:                                             \
178   case ParsedAttr::AT_TypeNullable:                                            \
179   case ParsedAttr::AT_TypeNullableResult:                                      \
180   case ParsedAttr::AT_TypeNullUnspecified
181 
182 namespace {
183   /// An object which stores processing state for the entire
184   /// GetTypeForDeclarator process.
185   class TypeProcessingState {
186     Sema &sema;
187 
188     /// The declarator being processed.
189     Declarator &declarator;
190 
191     /// The index of the declarator chunk we're currently processing.
192     /// May be the total number of valid chunks, indicating the
193     /// DeclSpec.
194     unsigned chunkIndex;
195 
196     /// The original set of attributes on the DeclSpec.
197     SmallVector<ParsedAttr *, 2> savedAttrs;
198 
199     /// A list of attributes to diagnose the uselessness of when the
200     /// processing is complete.
201     SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
202 
203     /// Attributes corresponding to AttributedTypeLocs that we have not yet
204     /// populated.
205     // FIXME: The two-phase mechanism by which we construct Types and fill
206     // their TypeLocs makes it hard to correctly assign these. We keep the
207     // attributes in creation order as an attempt to make them line up
208     // properly.
209     using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
210     SmallVector<TypeAttrPair, 8> AttrsForTypes;
211     bool AttrsForTypesSorted = true;
212 
213     /// MacroQualifiedTypes mapping to macro expansion locations that will be
214     /// stored in a MacroQualifiedTypeLoc.
215     llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
216 
217     /// Flag to indicate we parsed a noderef attribute. This is used for
218     /// validating that noderef was used on a pointer or array.
219     bool parsedNoDeref;
220 
221     // Flag to indicate that we already parsed a HLSL parameter modifier
222     // attribute. This prevents double-mutating the type.
223     bool ParsedHLSLParamMod;
224 
225   public:
226     TypeProcessingState(Sema &sema, Declarator &declarator)
227         : sema(sema), declarator(declarator),
228           chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false),
229           ParsedHLSLParamMod(false) {}
230 
231     Sema &getSema() const {
232       return sema;
233     }
234 
235     Declarator &getDeclarator() const {
236       return declarator;
237     }
238 
239     bool isProcessingDeclSpec() const {
240       return chunkIndex == declarator.getNumTypeObjects();
241     }
242 
243     unsigned getCurrentChunkIndex() const {
244       return chunkIndex;
245     }
246 
247     void setCurrentChunkIndex(unsigned idx) {
248       assert(idx <= declarator.getNumTypeObjects());
249       chunkIndex = idx;
250     }
251 
252     ParsedAttributesView &getCurrentAttributes() const {
253       if (isProcessingDeclSpec())
254         return getMutableDeclSpec().getAttributes();
255       return declarator.getTypeObject(chunkIndex).getAttrs();
256     }
257 
258     /// Save the current set of attributes on the DeclSpec.
259     void saveDeclSpecAttrs() {
260       // Don't try to save them multiple times.
261       if (!savedAttrs.empty())
262         return;
263 
264       DeclSpec &spec = getMutableDeclSpec();
265       llvm::append_range(savedAttrs,
266                          llvm::make_pointer_range(spec.getAttributes()));
267     }
268 
269     /// Record that we had nowhere to put the given type attribute.
270     /// We will diagnose such attributes later.
271     void addIgnoredTypeAttr(ParsedAttr &attr) {
272       ignoredTypeAttrs.push_back(&attr);
273     }
274 
275     /// Diagnose all the ignored type attributes, given that the
276     /// declarator worked out to the given type.
277     void diagnoseIgnoredTypeAttrs(QualType type) const {
278       for (auto *Attr : ignoredTypeAttrs)
279         diagnoseBadTypeAttribute(getSema(), *Attr, type);
280     }
281 
282     /// Get an attributed type for the given attribute, and remember the Attr
283     /// object so that we can attach it to the AttributedTypeLoc.
284     QualType getAttributedType(Attr *A, QualType ModifiedType,
285                                QualType EquivType) {
286       QualType T =
287           sema.Context.getAttributedType(A, ModifiedType, EquivType);
288       AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
289       AttrsForTypesSorted = false;
290       return T;
291     }
292 
293     /// Get a BTFTagAttributed type for the btf_type_tag attribute.
294     QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
295                                      QualType WrappedType) {
296       return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
297     }
298 
299     /// Completely replace the \c auto in \p TypeWithAuto by
300     /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
301     /// necessary.
302     QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
303       QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
304       if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
305         // Attributed type still should be an attributed type after replacement.
306         auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
307         for (TypeAttrPair &A : AttrsForTypes) {
308           if (A.first == AttrTy)
309             A.first = NewAttrTy;
310         }
311         AttrsForTypesSorted = false;
312       }
313       return T;
314     }
315 
316     /// Extract and remove the Attr* for a given attributed type.
317     const Attr *takeAttrForAttributedType(const AttributedType *AT) {
318       if (!AttrsForTypesSorted) {
319         llvm::stable_sort(AttrsForTypes, llvm::less_first());
320         AttrsForTypesSorted = true;
321       }
322 
323       // FIXME: This is quadratic if we have lots of reuses of the same
324       // attributed type.
325       for (auto It = std::partition_point(
326                AttrsForTypes.begin(), AttrsForTypes.end(),
327                [=](const TypeAttrPair &A) { return A.first < AT; });
328            It != AttrsForTypes.end() && It->first == AT; ++It) {
329         if (It->second) {
330           const Attr *Result = It->second;
331           It->second = nullptr;
332           return Result;
333         }
334       }
335 
336       llvm_unreachable("no Attr* for AttributedType*");
337     }
338 
339     SourceLocation
340     getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
341       auto FoundLoc = LocsForMacros.find(MQT);
342       assert(FoundLoc != LocsForMacros.end() &&
343              "Unable to find macro expansion location for MacroQualifedType");
344       return FoundLoc->second;
345     }
346 
347     void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
348                                               SourceLocation Loc) {
349       LocsForMacros[MQT] = Loc;
350     }
351 
352     void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
353 
354     bool didParseNoDeref() const { return parsedNoDeref; }
355 
356     void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; }
357 
358     bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; }
359 
360     ~TypeProcessingState() {
361       if (savedAttrs.empty())
362         return;
363 
364       getMutableDeclSpec().getAttributes().clearListOnly();
365       for (ParsedAttr *AL : savedAttrs)
366         getMutableDeclSpec().getAttributes().addAtEnd(AL);
367     }
368 
369   private:
370     DeclSpec &getMutableDeclSpec() const {
371       return const_cast<DeclSpec&>(declarator.getDeclSpec());
372     }
373   };
374 } // end anonymous namespace
375 
376 static void moveAttrFromListToList(ParsedAttr &attr,
377                                    ParsedAttributesView &fromList,
378                                    ParsedAttributesView &toList) {
379   fromList.remove(&attr);
380   toList.addAtEnd(&attr);
381 }
382 
383 /// The location of a type attribute.
384 enum TypeAttrLocation {
385   /// The attribute is in the decl-specifier-seq.
386   TAL_DeclSpec,
387   /// The attribute is part of a DeclaratorChunk.
388   TAL_DeclChunk,
389   /// The attribute is immediately after the declaration's name.
390   TAL_DeclName
391 };
392 
393 static void
394 processTypeAttrs(TypeProcessingState &state, QualType &type,
395                  TypeAttrLocation TAL, const ParsedAttributesView &attrs,
396                  CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
397 
398 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
399                                    QualType &type, CUDAFunctionTarget CFT);
400 
401 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
402                                              ParsedAttr &attr, QualType &type);
403 
404 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
405                                  QualType &type);
406 
407 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
408                                         ParsedAttr &attr, QualType &type);
409 
410 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
411                                       ParsedAttr &attr, QualType &type) {
412   if (attr.getKind() == ParsedAttr::AT_ObjCGC)
413     return handleObjCGCTypeAttr(state, attr, type);
414   assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
415   return handleObjCOwnershipTypeAttr(state, attr, type);
416 }
417 
418 /// Given the index of a declarator chunk, check whether that chunk
419 /// directly specifies the return type of a function and, if so, find
420 /// an appropriate place for it.
421 ///
422 /// \param i - a notional index which the search will start
423 ///   immediately inside
424 ///
425 /// \param onlyBlockPointers Whether we should only look into block
426 /// pointer types (vs. all pointer types).
427 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
428                                                 unsigned i,
429                                                 bool onlyBlockPointers) {
430   assert(i <= declarator.getNumTypeObjects());
431 
432   DeclaratorChunk *result = nullptr;
433 
434   // First, look inwards past parens for a function declarator.
435   for (; i != 0; --i) {
436     DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
437     switch (fnChunk.Kind) {
438     case DeclaratorChunk::Paren:
439       continue;
440 
441     // If we find anything except a function, bail out.
442     case DeclaratorChunk::Pointer:
443     case DeclaratorChunk::BlockPointer:
444     case DeclaratorChunk::Array:
445     case DeclaratorChunk::Reference:
446     case DeclaratorChunk::MemberPointer:
447     case DeclaratorChunk::Pipe:
448       return result;
449 
450     // If we do find a function declarator, scan inwards from that,
451     // looking for a (block-)pointer declarator.
452     case DeclaratorChunk::Function:
453       for (--i; i != 0; --i) {
454         DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
455         switch (ptrChunk.Kind) {
456         case DeclaratorChunk::Paren:
457         case DeclaratorChunk::Array:
458         case DeclaratorChunk::Function:
459         case DeclaratorChunk::Reference:
460         case DeclaratorChunk::Pipe:
461           continue;
462 
463         case DeclaratorChunk::MemberPointer:
464         case DeclaratorChunk::Pointer:
465           if (onlyBlockPointers)
466             continue;
467 
468           [[fallthrough]];
469 
470         case DeclaratorChunk::BlockPointer:
471           result = &ptrChunk;
472           goto continue_outer;
473         }
474         llvm_unreachable("bad declarator chunk kind");
475       }
476 
477       // If we run out of declarators doing that, we're done.
478       return result;
479     }
480     llvm_unreachable("bad declarator chunk kind");
481 
482     // Okay, reconsider from our new point.
483   continue_outer: ;
484   }
485 
486   // Ran out of chunks, bail out.
487   return result;
488 }
489 
490 /// Given that an objc_gc attribute was written somewhere on a
491 /// declaration *other* than on the declarator itself (for which, use
492 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
493 /// didn't apply in whatever position it was written in, try to move
494 /// it to a more appropriate position.
495 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
496                                           ParsedAttr &attr, QualType type) {
497   Declarator &declarator = state.getDeclarator();
498 
499   // Move it to the outermost normal or block pointer declarator.
500   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
501     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
502     switch (chunk.Kind) {
503     case DeclaratorChunk::Pointer:
504     case DeclaratorChunk::BlockPointer: {
505       // But don't move an ARC ownership attribute to the return type
506       // of a block.
507       DeclaratorChunk *destChunk = nullptr;
508       if (state.isProcessingDeclSpec() &&
509           attr.getKind() == ParsedAttr::AT_ObjCOwnership)
510         destChunk = maybeMovePastReturnType(declarator, i - 1,
511                                             /*onlyBlockPointers=*/true);
512       if (!destChunk) destChunk = &chunk;
513 
514       moveAttrFromListToList(attr, state.getCurrentAttributes(),
515                              destChunk->getAttrs());
516       return;
517     }
518 
519     case DeclaratorChunk::Paren:
520     case DeclaratorChunk::Array:
521       continue;
522 
523     // We may be starting at the return type of a block.
524     case DeclaratorChunk::Function:
525       if (state.isProcessingDeclSpec() &&
526           attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
527         if (DeclaratorChunk *dest = maybeMovePastReturnType(
528                                       declarator, i,
529                                       /*onlyBlockPointers=*/true)) {
530           moveAttrFromListToList(attr, state.getCurrentAttributes(),
531                                  dest->getAttrs());
532           return;
533         }
534       }
535       goto error;
536 
537     // Don't walk through these.
538     case DeclaratorChunk::Reference:
539     case DeclaratorChunk::MemberPointer:
540     case DeclaratorChunk::Pipe:
541       goto error;
542     }
543   }
544  error:
545 
546   diagnoseBadTypeAttribute(state.getSema(), attr, type);
547 }
548 
549 /// Distribute an objc_gc type attribute that was written on the
550 /// declarator.
551 static void distributeObjCPointerTypeAttrFromDeclarator(
552     TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
553   Declarator &declarator = state.getDeclarator();
554 
555   // objc_gc goes on the innermost pointer to something that's not a
556   // pointer.
557   unsigned innermost = -1U;
558   bool considerDeclSpec = true;
559   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
560     DeclaratorChunk &chunk = declarator.getTypeObject(i);
561     switch (chunk.Kind) {
562     case DeclaratorChunk::Pointer:
563     case DeclaratorChunk::BlockPointer:
564       innermost = i;
565       continue;
566 
567     case DeclaratorChunk::Reference:
568     case DeclaratorChunk::MemberPointer:
569     case DeclaratorChunk::Paren:
570     case DeclaratorChunk::Array:
571     case DeclaratorChunk::Pipe:
572       continue;
573 
574     case DeclaratorChunk::Function:
575       considerDeclSpec = false;
576       goto done;
577     }
578   }
579  done:
580 
581   // That might actually be the decl spec if we weren't blocked by
582   // anything in the declarator.
583   if (considerDeclSpec) {
584     if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
585       // Splice the attribute into the decl spec.  Prevents the
586       // attribute from being applied multiple times and gives
587       // the source-location-filler something to work with.
588       state.saveDeclSpecAttrs();
589       declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
590           declarator.getAttributes(), &attr);
591       return;
592     }
593   }
594 
595   // Otherwise, if we found an appropriate chunk, splice the attribute
596   // into it.
597   if (innermost != -1U) {
598     moveAttrFromListToList(attr, declarator.getAttributes(),
599                            declarator.getTypeObject(innermost).getAttrs());
600     return;
601   }
602 
603   // Otherwise, diagnose when we're done building the type.
604   declarator.getAttributes().remove(&attr);
605   state.addIgnoredTypeAttr(attr);
606 }
607 
608 /// A function type attribute was written somewhere in a declaration
609 /// *other* than on the declarator itself or in the decl spec.  Given
610 /// that it didn't apply in whatever position it was written in, try
611 /// to move it to a more appropriate position.
612 static void distributeFunctionTypeAttr(TypeProcessingState &state,
613                                        ParsedAttr &attr, QualType type) {
614   Declarator &declarator = state.getDeclarator();
615 
616   // Try to push the attribute from the return type of a function to
617   // the function itself.
618   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
619     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
620     switch (chunk.Kind) {
621     case DeclaratorChunk::Function:
622       moveAttrFromListToList(attr, state.getCurrentAttributes(),
623                              chunk.getAttrs());
624       return;
625 
626     case DeclaratorChunk::Paren:
627     case DeclaratorChunk::Pointer:
628     case DeclaratorChunk::BlockPointer:
629     case DeclaratorChunk::Array:
630     case DeclaratorChunk::Reference:
631     case DeclaratorChunk::MemberPointer:
632     case DeclaratorChunk::Pipe:
633       continue;
634     }
635   }
636 
637   diagnoseBadTypeAttribute(state.getSema(), attr, type);
638 }
639 
640 /// Try to distribute a function type attribute to the innermost
641 /// function chunk or type.  Returns true if the attribute was
642 /// distributed, false if no location was found.
643 static bool distributeFunctionTypeAttrToInnermost(
644     TypeProcessingState &state, ParsedAttr &attr,
645     ParsedAttributesView &attrList, QualType &declSpecType,
646     CUDAFunctionTarget CFT) {
647   Declarator &declarator = state.getDeclarator();
648 
649   // Put it on the innermost function chunk, if there is one.
650   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
651     DeclaratorChunk &chunk = declarator.getTypeObject(i);
652     if (chunk.Kind != DeclaratorChunk::Function) continue;
653 
654     moveAttrFromListToList(attr, attrList, chunk.getAttrs());
655     return true;
656   }
657 
658   return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
659 }
660 
661 /// A function type attribute was written in the decl spec.  Try to
662 /// apply it somewhere.
663 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
664                                                    ParsedAttr &attr,
665                                                    QualType &declSpecType,
666                                                    CUDAFunctionTarget CFT) {
667   state.saveDeclSpecAttrs();
668 
669   // Try to distribute to the innermost.
670   if (distributeFunctionTypeAttrToInnermost(
671           state, attr, state.getCurrentAttributes(), declSpecType, CFT))
672     return;
673 
674   // If that failed, diagnose the bad attribute when the declarator is
675   // fully built.
676   state.addIgnoredTypeAttr(attr);
677 }
678 
679 /// A function type attribute was written on the declarator or declaration.
680 /// Try to apply it somewhere.
681 /// `Attrs` is the attribute list containing the declaration (either of the
682 /// declarator or the declaration).
683 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
684                                                      ParsedAttr &attr,
685                                                      QualType &declSpecType,
686                                                      CUDAFunctionTarget CFT) {
687   Declarator &declarator = state.getDeclarator();
688 
689   // Try to distribute to the innermost.
690   if (distributeFunctionTypeAttrToInnermost(
691           state, attr, declarator.getAttributes(), declSpecType, CFT))
692     return;
693 
694   // If that failed, diagnose the bad attribute when the declarator is
695   // fully built.
696   declarator.getAttributes().remove(&attr);
697   state.addIgnoredTypeAttr(attr);
698 }
699 
700 /// Given that there are attributes written on the declarator or declaration
701 /// itself, try to distribute any type attributes to the appropriate
702 /// declarator chunk.
703 ///
704 /// These are attributes like the following:
705 ///   int f ATTR;
706 ///   int (f ATTR)();
707 /// but not necessarily this:
708 ///   int f() ATTR;
709 ///
710 /// `Attrs` is the attribute list containing the declaration (either of the
711 /// declarator or the declaration).
712 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
713                                               QualType &declSpecType,
714                                               CUDAFunctionTarget CFT) {
715   // The called functions in this loop actually remove things from the current
716   // list, so iterating over the existing list isn't possible.  Instead, make a
717   // non-owning copy and iterate over that.
718   ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
719   for (ParsedAttr &attr : AttrsCopy) {
720     // Do not distribute [[]] attributes. They have strict rules for what
721     // they appertain to.
722     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
723       continue;
724 
725     switch (attr.getKind()) {
726     OBJC_POINTER_TYPE_ATTRS_CASELIST:
727       distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
728       break;
729 
730     FUNCTION_TYPE_ATTRS_CASELIST:
731       distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
732       break;
733 
734     MS_TYPE_ATTRS_CASELIST:
735       // Microsoft type attributes cannot go after the declarator-id.
736       continue;
737 
738     NULLABILITY_TYPE_ATTRS_CASELIST:
739       // Nullability specifiers cannot go after the declarator-id.
740 
741     // Objective-C __kindof does not get distributed.
742     case ParsedAttr::AT_ObjCKindOf:
743       continue;
744 
745     default:
746       break;
747     }
748   }
749 }
750 
751 /// Add a synthetic '()' to a block-literal declarator if it is
752 /// required, given the return type.
753 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
754                                           QualType declSpecType) {
755   Declarator &declarator = state.getDeclarator();
756 
757   // First, check whether the declarator would produce a function,
758   // i.e. whether the innermost semantic chunk is a function.
759   if (declarator.isFunctionDeclarator()) {
760     // If so, make that declarator a prototyped declarator.
761     declarator.getFunctionTypeInfo().hasPrototype = true;
762     return;
763   }
764 
765   // If there are any type objects, the type as written won't name a
766   // function, regardless of the decl spec type.  This is because a
767   // block signature declarator is always an abstract-declarator, and
768   // abstract-declarators can't just be parentheses chunks.  Therefore
769   // we need to build a function chunk unless there are no type
770   // objects and the decl spec type is a function.
771   if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
772     return;
773 
774   // Note that there *are* cases with invalid declarators where
775   // declarators consist solely of parentheses.  In general, these
776   // occur only in failed efforts to make function declarators, so
777   // faking up the function chunk is still the right thing to do.
778 
779   // Otherwise, we need to fake up a function declarator.
780   SourceLocation loc = declarator.getBeginLoc();
781 
782   // ...and *prepend* it to the declarator.
783   SourceLocation NoLoc;
784   declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
785       /*HasProto=*/true,
786       /*IsAmbiguous=*/false,
787       /*LParenLoc=*/NoLoc,
788       /*ArgInfo=*/nullptr,
789       /*NumParams=*/0,
790       /*EllipsisLoc=*/NoLoc,
791       /*RParenLoc=*/NoLoc,
792       /*RefQualifierIsLvalueRef=*/true,
793       /*RefQualifierLoc=*/NoLoc,
794       /*MutableLoc=*/NoLoc, EST_None,
795       /*ESpecRange=*/SourceRange(),
796       /*Exceptions=*/nullptr,
797       /*ExceptionRanges=*/nullptr,
798       /*NumExceptions=*/0,
799       /*NoexceptExpr=*/nullptr,
800       /*ExceptionSpecTokens=*/nullptr,
801       /*DeclsInPrototype=*/{}, loc, loc, declarator));
802 
803   // For consistency, make sure the state still has us as processing
804   // the decl spec.
805   assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
806   state.setCurrentChunkIndex(declarator.getNumTypeObjects());
807 }
808 
809 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
810                                             unsigned &TypeQuals,
811                                             QualType TypeSoFar,
812                                             unsigned RemoveTQs,
813                                             unsigned DiagID) {
814   // If this occurs outside a template instantiation, warn the user about
815   // it; they probably didn't mean to specify a redundant qualifier.
816   typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
817   for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
818                        QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
819                        QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
820                        QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
821     if (!(RemoveTQs & Qual.first))
822       continue;
823 
824     if (!S.inTemplateInstantiation()) {
825       if (TypeQuals & Qual.first)
826         S.Diag(Qual.second, DiagID)
827           << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
828           << FixItHint::CreateRemoval(Qual.second);
829     }
830 
831     TypeQuals &= ~Qual.first;
832   }
833 }
834 
835 /// Return true if this is omitted block return type. Also check type
836 /// attributes and type qualifiers when returning true.
837 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
838                                         QualType Result) {
839   if (!isOmittedBlockReturnType(declarator))
840     return false;
841 
842   // Warn if we see type attributes for omitted return type on a block literal.
843   SmallVector<ParsedAttr *, 2> ToBeRemoved;
844   for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
845     if (AL.isInvalid() || !AL.isTypeAttr())
846       continue;
847     S.Diag(AL.getLoc(),
848            diag::warn_block_literal_attributes_on_omitted_return_type)
849         << AL;
850     ToBeRemoved.push_back(&AL);
851   }
852   // Remove bad attributes from the list.
853   for (ParsedAttr *AL : ToBeRemoved)
854     declarator.getMutableDeclSpec().getAttributes().remove(AL);
855 
856   // Warn if we see type qualifiers for omitted return type on a block literal.
857   const DeclSpec &DS = declarator.getDeclSpec();
858   unsigned TypeQuals = DS.getTypeQualifiers();
859   diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
860       diag::warn_block_literal_qualifiers_on_omitted_return_type);
861   declarator.getMutableDeclSpec().ClearTypeQualifiers();
862 
863   return true;
864 }
865 
866 static OpenCLAccessAttr::Spelling
867 getImageAccess(const ParsedAttributesView &Attrs) {
868   for (const ParsedAttr &AL : Attrs)
869     if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
870       return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
871   return OpenCLAccessAttr::Keyword_read_only;
872 }
873 
874 static UnaryTransformType::UTTKind
875 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
876   switch (SwitchTST) {
877 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
878   case TST_##Trait:                                                            \
879     return UnaryTransformType::Enum;
880 #include "clang/Basic/TransformTypeTraits.def"
881   default:
882     llvm_unreachable("attempted to parse a non-unary transform builtin");
883   }
884 }
885 
886 /// Convert the specified declspec to the appropriate type
887 /// object.
888 /// \param state Specifies the declarator containing the declaration specifier
889 /// to be converted, along with other associated processing state.
890 /// \returns The type described by the declaration specifiers.  This function
891 /// never returns null.
892 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
893   // FIXME: Should move the logic from DeclSpec::Finish to here for validity
894   // checking.
895 
896   Sema &S = state.getSema();
897   Declarator &declarator = state.getDeclarator();
898   DeclSpec &DS = declarator.getMutableDeclSpec();
899   SourceLocation DeclLoc = declarator.getIdentifierLoc();
900   if (DeclLoc.isInvalid())
901     DeclLoc = DS.getBeginLoc();
902 
903   ASTContext &Context = S.Context;
904 
905   QualType Result;
906   switch (DS.getTypeSpecType()) {
907   case DeclSpec::TST_void:
908     Result = Context.VoidTy;
909     break;
910   case DeclSpec::TST_char:
911     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
912       Result = Context.CharTy;
913     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
914       Result = Context.SignedCharTy;
915     else {
916       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
917              "Unknown TSS value");
918       Result = Context.UnsignedCharTy;
919     }
920     break;
921   case DeclSpec::TST_wchar:
922     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
923       Result = Context.WCharTy;
924     else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
925       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
926         << DS.getSpecifierName(DS.getTypeSpecType(),
927                                Context.getPrintingPolicy());
928       Result = Context.getSignedWCharType();
929     } else {
930       assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
931              "Unknown TSS value");
932       S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
933         << DS.getSpecifierName(DS.getTypeSpecType(),
934                                Context.getPrintingPolicy());
935       Result = Context.getUnsignedWCharType();
936     }
937     break;
938   case DeclSpec::TST_char8:
939     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
940            "Unknown TSS value");
941     Result = Context.Char8Ty;
942     break;
943   case DeclSpec::TST_char16:
944     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
945            "Unknown TSS value");
946     Result = Context.Char16Ty;
947     break;
948   case DeclSpec::TST_char32:
949     assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
950            "Unknown TSS value");
951     Result = Context.Char32Ty;
952     break;
953   case DeclSpec::TST_unspecified:
954     // If this is a missing declspec in a block literal return context, then it
955     // is inferred from the return statements inside the block.
956     // The declspec is always missing in a lambda expr context; it is either
957     // specified with a trailing return type or inferred.
958     if (S.getLangOpts().CPlusPlus14 &&
959         declarator.getContext() == DeclaratorContext::LambdaExpr) {
960       // In C++1y, a lambda's implicit return type is 'auto'.
961       Result = Context.getAutoDeductType();
962       break;
963     } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
964                checkOmittedBlockReturnType(S, declarator,
965                                            Context.DependentTy)) {
966       Result = Context.DependentTy;
967       break;
968     }
969 
970     // Unspecified typespec defaults to int in C90.  However, the C90 grammar
971     // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
972     // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
973     // Note that the one exception to this is function definitions, which are
974     // allowed to be completely missing a declspec.  This is handled in the
975     // parser already though by it pretending to have seen an 'int' in this
976     // case.
977     if (S.getLangOpts().isImplicitIntRequired()) {
978       S.Diag(DeclLoc, diag::warn_missing_type_specifier)
979           << DS.getSourceRange()
980           << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
981     } else if (!DS.hasTypeSpecifier()) {
982       // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
983       // "At least one type specifier shall be given in the declaration
984       // specifiers in each declaration, and in the specifier-qualifier list in
985       // each struct declaration and type name."
986       if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
987         S.Diag(DeclLoc, diag::err_missing_type_specifier)
988             << DS.getSourceRange();
989 
990         // When this occurs, often something is very broken with the value
991         // being declared, poison it as invalid so we don't get chains of
992         // errors.
993         declarator.setInvalidType(true);
994       } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
995                  DS.isTypeSpecPipe()) {
996         S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
997             << DS.getSourceRange();
998         declarator.setInvalidType(true);
999       } else {
1000         assert(S.getLangOpts().isImplicitIntAllowed() &&
1001                "implicit int is disabled?");
1002         S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1003             << DS.getSourceRange()
1004             << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1005       }
1006     }
1007 
1008     [[fallthrough]];
1009   case DeclSpec::TST_int: {
1010     if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1011       switch (DS.getTypeSpecWidth()) {
1012       case TypeSpecifierWidth::Unspecified:
1013         Result = Context.IntTy;
1014         break;
1015       case TypeSpecifierWidth::Short:
1016         Result = Context.ShortTy;
1017         break;
1018       case TypeSpecifierWidth::Long:
1019         Result = Context.LongTy;
1020         break;
1021       case TypeSpecifierWidth::LongLong:
1022         Result = Context.LongLongTy;
1023 
1024         // 'long long' is a C99 or C++11 feature.
1025         if (!S.getLangOpts().C99) {
1026           if (S.getLangOpts().CPlusPlus)
1027             S.Diag(DS.getTypeSpecWidthLoc(),
1028                    S.getLangOpts().CPlusPlus11 ?
1029                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1030           else
1031             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1032         }
1033         break;
1034       }
1035     } else {
1036       switch (DS.getTypeSpecWidth()) {
1037       case TypeSpecifierWidth::Unspecified:
1038         Result = Context.UnsignedIntTy;
1039         break;
1040       case TypeSpecifierWidth::Short:
1041         Result = Context.UnsignedShortTy;
1042         break;
1043       case TypeSpecifierWidth::Long:
1044         Result = Context.UnsignedLongTy;
1045         break;
1046       case TypeSpecifierWidth::LongLong:
1047         Result = Context.UnsignedLongLongTy;
1048 
1049         // 'long long' is a C99 or C++11 feature.
1050         if (!S.getLangOpts().C99) {
1051           if (S.getLangOpts().CPlusPlus)
1052             S.Diag(DS.getTypeSpecWidthLoc(),
1053                    S.getLangOpts().CPlusPlus11 ?
1054                    diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1055           else
1056             S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1057         }
1058         break;
1059       }
1060     }
1061     break;
1062   }
1063   case DeclSpec::TST_bitint: {
1064     if (!S.Context.getTargetInfo().hasBitIntType())
1065       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1066     Result =
1067         S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1068                           DS.getRepAsExpr(), DS.getBeginLoc());
1069     if (Result.isNull()) {
1070       Result = Context.IntTy;
1071       declarator.setInvalidType(true);
1072     }
1073     break;
1074   }
1075   case DeclSpec::TST_accum: {
1076     switch (DS.getTypeSpecWidth()) {
1077     case TypeSpecifierWidth::Short:
1078       Result = Context.ShortAccumTy;
1079       break;
1080     case TypeSpecifierWidth::Unspecified:
1081       Result = Context.AccumTy;
1082       break;
1083     case TypeSpecifierWidth::Long:
1084       Result = Context.LongAccumTy;
1085       break;
1086     case TypeSpecifierWidth::LongLong:
1087       llvm_unreachable("Unable to specify long long as _Accum width");
1088     }
1089 
1090     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1091       Result = Context.getCorrespondingUnsignedType(Result);
1092 
1093     if (DS.isTypeSpecSat())
1094       Result = Context.getCorrespondingSaturatedType(Result);
1095 
1096     break;
1097   }
1098   case DeclSpec::TST_fract: {
1099     switch (DS.getTypeSpecWidth()) {
1100     case TypeSpecifierWidth::Short:
1101       Result = Context.ShortFractTy;
1102       break;
1103     case TypeSpecifierWidth::Unspecified:
1104       Result = Context.FractTy;
1105       break;
1106     case TypeSpecifierWidth::Long:
1107       Result = Context.LongFractTy;
1108       break;
1109     case TypeSpecifierWidth::LongLong:
1110       llvm_unreachable("Unable to specify long long as _Fract width");
1111     }
1112 
1113     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1114       Result = Context.getCorrespondingUnsignedType(Result);
1115 
1116     if (DS.isTypeSpecSat())
1117       Result = Context.getCorrespondingSaturatedType(Result);
1118 
1119     break;
1120   }
1121   case DeclSpec::TST_int128:
1122     if (!S.Context.getTargetInfo().hasInt128Type() &&
1123         !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1124           (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1125       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1126         << "__int128";
1127     if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1128       Result = Context.UnsignedInt128Ty;
1129     else
1130       Result = Context.Int128Ty;
1131     break;
1132   case DeclSpec::TST_float16:
1133     // CUDA host and device may have different _Float16 support, therefore
1134     // do not diagnose _Float16 usage to avoid false alarm.
1135     // ToDo: more precise diagnostics for CUDA.
1136     if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1137         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1138       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1139         << "_Float16";
1140     Result = Context.Float16Ty;
1141     break;
1142   case DeclSpec::TST_half:    Result = Context.HalfTy; break;
1143   case DeclSpec::TST_BFloat16:
1144     if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1145         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1146         !S.getLangOpts().SYCLIsDevice)
1147       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1148     Result = Context.BFloat16Ty;
1149     break;
1150   case DeclSpec::TST_float:   Result = Context.FloatTy; break;
1151   case DeclSpec::TST_double:
1152     if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1153       Result = Context.LongDoubleTy;
1154     else
1155       Result = Context.DoubleTy;
1156     if (S.getLangOpts().OpenCL) {
1157       if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1158         S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1159             << 0 << Result
1160             << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1161                     ? "cl_khr_fp64 and __opencl_c_fp64"
1162                     : "cl_khr_fp64");
1163       else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1164         S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1165     }
1166     break;
1167   case DeclSpec::TST_float128:
1168     if (!S.Context.getTargetInfo().hasFloat128Type() &&
1169         !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1170         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1171       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1172         << "__float128";
1173     Result = Context.Float128Ty;
1174     break;
1175   case DeclSpec::TST_ibm128:
1176     if (!S.Context.getTargetInfo().hasIbm128Type() &&
1177         !S.getLangOpts().SYCLIsDevice &&
1178         !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1179       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1180     Result = Context.Ibm128Ty;
1181     break;
1182   case DeclSpec::TST_bool:
1183     Result = Context.BoolTy; // _Bool or bool
1184     break;
1185   case DeclSpec::TST_decimal32:    // _Decimal32
1186   case DeclSpec::TST_decimal64:    // _Decimal64
1187   case DeclSpec::TST_decimal128:   // _Decimal128
1188     S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1189     Result = Context.IntTy;
1190     declarator.setInvalidType(true);
1191     break;
1192   case DeclSpec::TST_class:
1193   case DeclSpec::TST_enum:
1194   case DeclSpec::TST_union:
1195   case DeclSpec::TST_struct:
1196   case DeclSpec::TST_interface: {
1197     TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1198     if (!D) {
1199       // This can happen in C++ with ambiguous lookups.
1200       Result = Context.IntTy;
1201       declarator.setInvalidType(true);
1202       break;
1203     }
1204 
1205     // If the type is deprecated or unavailable, diagnose it.
1206     S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1207 
1208     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1209            DS.getTypeSpecComplex() == 0 &&
1210            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1211            "No qualifiers on tag names!");
1212 
1213     // TypeQuals handled by caller.
1214     Result = Context.getTypeDeclType(D);
1215 
1216     // In both C and C++, make an ElaboratedType.
1217     ElaboratedTypeKeyword Keyword
1218       = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1219     Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1220                                  DS.isTypeSpecOwned() ? D : nullptr);
1221     break;
1222   }
1223   case DeclSpec::TST_typename: {
1224     assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1225            DS.getTypeSpecComplex() == 0 &&
1226            DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1227            "Can't handle qualifiers on typedef names yet!");
1228     Result = S.GetTypeFromParser(DS.getRepAsType());
1229     if (Result.isNull()) {
1230       declarator.setInvalidType(true);
1231     }
1232 
1233     // TypeQuals handled by caller.
1234     break;
1235   }
1236   case DeclSpec::TST_typeof_unqualType:
1237   case DeclSpec::TST_typeofType:
1238     // FIXME: Preserve type source info.
1239     Result = S.GetTypeFromParser(DS.getRepAsType());
1240     assert(!Result.isNull() && "Didn't get a type for typeof?");
1241     if (!Result->isDependentType())
1242       if (const TagType *TT = Result->getAs<TagType>())
1243         S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1244     // TypeQuals handled by caller.
1245     Result = Context.getTypeOfType(
1246         Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1247                     ? TypeOfKind::Unqualified
1248                     : TypeOfKind::Qualified);
1249     break;
1250   case DeclSpec::TST_typeof_unqualExpr:
1251   case DeclSpec::TST_typeofExpr: {
1252     Expr *E = DS.getRepAsExpr();
1253     assert(E && "Didn't get an expression for typeof?");
1254     // TypeQuals handled by caller.
1255     Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1256                                               DeclSpec::TST_typeof_unqualExpr
1257                                           ? TypeOfKind::Unqualified
1258                                           : TypeOfKind::Qualified);
1259     if (Result.isNull()) {
1260       Result = Context.IntTy;
1261       declarator.setInvalidType(true);
1262     }
1263     break;
1264   }
1265   case DeclSpec::TST_decltype: {
1266     Expr *E = DS.getRepAsExpr();
1267     assert(E && "Didn't get an expression for decltype?");
1268     // TypeQuals handled by caller.
1269     Result = S.BuildDecltypeType(E);
1270     if (Result.isNull()) {
1271       Result = Context.IntTy;
1272       declarator.setInvalidType(true);
1273     }
1274     break;
1275   }
1276   case DeclSpec::TST_typename_pack_indexing: {
1277     Expr *E = DS.getPackIndexingExpr();
1278     assert(E && "Didn't get an expression for pack indexing");
1279     QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1280     Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1281                                      DS.getEllipsisLoc());
1282     if (Result.isNull()) {
1283       declarator.setInvalidType(true);
1284       Result = Context.IntTy;
1285     }
1286     break;
1287   }
1288 
1289 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1290 #include "clang/Basic/TransformTypeTraits.def"
1291     Result = S.GetTypeFromParser(DS.getRepAsType());
1292     assert(!Result.isNull() && "Didn't get a type for the transformation?");
1293     Result = S.BuildUnaryTransformType(
1294         Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1295         DS.getTypeSpecTypeLoc());
1296     if (Result.isNull()) {
1297       Result = Context.IntTy;
1298       declarator.setInvalidType(true);
1299     }
1300     break;
1301 
1302   case DeclSpec::TST_auto:
1303   case DeclSpec::TST_decltype_auto: {
1304     auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1305                       ? AutoTypeKeyword::DecltypeAuto
1306                       : AutoTypeKeyword::Auto;
1307 
1308     ConceptDecl *TypeConstraintConcept = nullptr;
1309     llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1310     if (DS.isConstrainedAuto()) {
1311       if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1312         TypeConstraintConcept =
1313             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1314         TemplateArgumentListInfo TemplateArgsInfo;
1315         TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1316         TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1317         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1318                                            TemplateId->NumArgs);
1319         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1320         for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1321           TemplateArgs.push_back(ArgLoc.getArgument());
1322       } else {
1323         declarator.setInvalidType(true);
1324       }
1325     }
1326     Result = S.Context.getAutoType(QualType(), AutoKW,
1327                                    /*IsDependent*/ false, /*IsPack=*/false,
1328                                    TypeConstraintConcept, TemplateArgs);
1329     break;
1330   }
1331 
1332   case DeclSpec::TST_auto_type:
1333     Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1334     break;
1335 
1336   case DeclSpec::TST_unknown_anytype:
1337     Result = Context.UnknownAnyTy;
1338     break;
1339 
1340   case DeclSpec::TST_atomic:
1341     Result = S.GetTypeFromParser(DS.getRepAsType());
1342     assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1343     Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1344     if (Result.isNull()) {
1345       Result = Context.IntTy;
1346       declarator.setInvalidType(true);
1347     }
1348     break;
1349 
1350 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
1351   case DeclSpec::TST_##ImgType##_t:                                            \
1352     switch (getImageAccess(DS.getAttributes())) {                              \
1353     case OpenCLAccessAttr::Keyword_write_only:                                 \
1354       Result = Context.Id##WOTy;                                               \
1355       break;                                                                   \
1356     case OpenCLAccessAttr::Keyword_read_write:                                 \
1357       Result = Context.Id##RWTy;                                               \
1358       break;                                                                   \
1359     case OpenCLAccessAttr::Keyword_read_only:                                  \
1360       Result = Context.Id##ROTy;                                               \
1361       break;                                                                   \
1362     case OpenCLAccessAttr::SpellingNotCalculated:                              \
1363       llvm_unreachable("Spelling not yet calculated");                         \
1364     }                                                                          \
1365     break;
1366 #include "clang/Basic/OpenCLImageTypes.def"
1367 
1368 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \
1369   case DeclSpec::TST_##Name:                                                   \
1370     Result = Context.SingletonId;                                              \
1371     break;
1372 #include "clang/Basic/HLSLIntangibleTypes.def"
1373 
1374   case DeclSpec::TST_error:
1375     Result = Context.IntTy;
1376     declarator.setInvalidType(true);
1377     break;
1378   }
1379 
1380   // FIXME: we want resulting declarations to be marked invalid, but claiming
1381   // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1382   // a null type.
1383   if (Result->containsErrors())
1384     declarator.setInvalidType();
1385 
1386   if (S.getLangOpts().OpenCL) {
1387     const auto &OpenCLOptions = S.getOpenCLOptions();
1388     bool IsOpenCLC30Compatible =
1389         S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1390     // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1391     // support.
1392     // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1393     // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1394     // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1395     // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1396     // only when the optional feature is supported
1397     if ((Result->isImageType() || Result->isSamplerT()) &&
1398         (IsOpenCLC30Compatible &&
1399          !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1400       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1401           << 0 << Result << "__opencl_c_images";
1402       declarator.setInvalidType();
1403     } else if (Result->isOCLImage3dWOType() &&
1404                !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1405                                           S.getLangOpts())) {
1406       S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1407           << 0 << Result
1408           << (IsOpenCLC30Compatible
1409                   ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1410                   : "cl_khr_3d_image_writes");
1411       declarator.setInvalidType();
1412     }
1413   }
1414 
1415   bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1416                           DS.getTypeSpecType() == DeclSpec::TST_fract;
1417 
1418   // Only fixed point types can be saturated
1419   if (DS.isTypeSpecSat() && !IsFixedPointType)
1420     S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1421         << DS.getSpecifierName(DS.getTypeSpecType(),
1422                                Context.getPrintingPolicy());
1423 
1424   // Handle complex types.
1425   if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1426     if (S.getLangOpts().Freestanding)
1427       S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1428     Result = Context.getComplexType(Result);
1429   } else if (DS.isTypeAltiVecVector()) {
1430     unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1431     assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1432     VectorKind VecKind = VectorKind::AltiVecVector;
1433     if (DS.isTypeAltiVecPixel())
1434       VecKind = VectorKind::AltiVecPixel;
1435     else if (DS.isTypeAltiVecBool())
1436       VecKind = VectorKind::AltiVecBool;
1437     Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1438   }
1439 
1440   // _Imaginary was a feature of C99 through C23 but was never supported in
1441   // Clang. The feature was removed in C2y, but we retain the unsupported
1442   // diagnostic for an improved user experience.
1443   if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1444     S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1445 
1446   // Before we process any type attributes, synthesize a block literal
1447   // function declarator if necessary.
1448   if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1449     maybeSynthesizeBlockSignature(state, Result);
1450 
1451   // Apply any type attributes from the decl spec.  This may cause the
1452   // list of type attributes to be temporarily saved while the type
1453   // attributes are pushed around.
1454   // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1455   if (!DS.isTypeSpecPipe()) {
1456     // We also apply declaration attributes that "slide" to the decl spec.
1457     // Ordering can be important for attributes. The decalaration attributes
1458     // come syntactically before the decl spec attributes, so we process them
1459     // in that order.
1460     ParsedAttributesView SlidingAttrs;
1461     for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1462       if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1463         SlidingAttrs.addAtEnd(&AL);
1464 
1465         // For standard syntax attributes, which would normally appertain to the
1466         // declaration here, suggest moving them to the type instead. But only
1467         // do this for our own vendor attributes; moving other vendors'
1468         // attributes might hurt portability.
1469         // There's one special case that we need to deal with here: The
1470         // `MatrixType` attribute may only be used in a typedef declaration. If
1471         // it's being used anywhere else, don't output the warning as
1472         // ProcessDeclAttributes() will output an error anyway.
1473         if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1474             !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1475               DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1476           S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1477               << AL;
1478         }
1479       }
1480     }
1481     // During this call to processTypeAttrs(),
1482     // TypeProcessingState::getCurrentAttributes() will erroneously return a
1483     // reference to the DeclSpec attributes, rather than the declaration
1484     // attributes. However, this doesn't matter, as getCurrentAttributes()
1485     // is only called when distributing attributes from one attribute list
1486     // to another. Declaration attributes are always C++11 attributes, and these
1487     // are never distributed.
1488     processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1489     processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1490   }
1491 
1492   // Apply const/volatile/restrict qualifiers to T.
1493   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1494     // Warn about CV qualifiers on function types.
1495     // C99 6.7.3p8:
1496     //   If the specification of a function type includes any type qualifiers,
1497     //   the behavior is undefined.
1498     // C2y changed this behavior to be implementation-defined. Clang defines
1499     // the behavior in all cases to ignore the qualifier, as in C++.
1500     // C++11 [dcl.fct]p7:
1501     //   The effect of a cv-qualifier-seq in a function declarator is not the
1502     //   same as adding cv-qualification on top of the function type. In the
1503     //   latter case, the cv-qualifiers are ignored.
1504     if (Result->isFunctionType()) {
1505       unsigned DiagId = diag::warn_typecheck_function_qualifiers_ignored;
1506       if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C2y)
1507         DiagId = diag::ext_typecheck_function_qualifiers_unspecified;
1508       diagnoseAndRemoveTypeQualifiers(
1509           S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1510           DiagId);
1511       // No diagnostic for 'restrict' or '_Atomic' applied to a
1512       // function type; we'll diagnose those later, in BuildQualifiedType.
1513     }
1514 
1515     // C++11 [dcl.ref]p1:
1516     //   Cv-qualified references are ill-formed except when the
1517     //   cv-qualifiers are introduced through the use of a typedef-name
1518     //   or decltype-specifier, in which case the cv-qualifiers are ignored.
1519     //
1520     // There don't appear to be any other contexts in which a cv-qualified
1521     // reference type could be formed, so the 'ill-formed' clause here appears
1522     // to never happen.
1523     if (TypeQuals && Result->isReferenceType()) {
1524       diagnoseAndRemoveTypeQualifiers(
1525           S, DS, TypeQuals, Result,
1526           DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1527           diag::warn_typecheck_reference_qualifiers);
1528     }
1529 
1530     // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1531     // than once in the same specifier-list or qualifier-list, either directly
1532     // or via one or more typedefs."
1533     if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1534         && TypeQuals & Result.getCVRQualifiers()) {
1535       if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1536         S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1537           << "const";
1538       }
1539 
1540       if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1541         S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1542           << "volatile";
1543       }
1544 
1545       // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1546       // produce a warning in this case.
1547     }
1548 
1549     QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1550 
1551     // If adding qualifiers fails, just use the unqualified type.
1552     if (Qualified.isNull())
1553       declarator.setInvalidType(true);
1554     else
1555       Result = Qualified;
1556   }
1557 
1558   if (S.getLangOpts().HLSL)
1559     Result = S.HLSL().ProcessResourceTypeAttributes(Result);
1560 
1561   assert(!Result.isNull() && "This function should not return a null type");
1562   return Result;
1563 }
1564 
1565 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1566   if (Entity)
1567     return Entity.getAsString();
1568 
1569   return "type name";
1570 }
1571 
1572 static bool isDependentOrGNUAutoType(QualType T) {
1573   if (T->isDependentType())
1574     return true;
1575 
1576   const auto *AT = dyn_cast<AutoType>(T);
1577   return AT && AT->isGNUAutoType();
1578 }
1579 
1580 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1581                                   Qualifiers Qs, const DeclSpec *DS) {
1582   if (T.isNull())
1583     return QualType();
1584 
1585   // Ignore any attempt to form a cv-qualified reference.
1586   if (T->isReferenceType()) {
1587     Qs.removeConst();
1588     Qs.removeVolatile();
1589   }
1590 
1591   // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1592   // object or incomplete types shall not be restrict-qualified."
1593   if (Qs.hasRestrict()) {
1594     unsigned DiagID = 0;
1595     QualType ProblemTy;
1596 
1597     if (T->isAnyPointerType() || T->isReferenceType() ||
1598         T->isMemberPointerType()) {
1599       QualType EltTy;
1600       if (T->isObjCObjectPointerType())
1601         EltTy = T;
1602       else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1603         EltTy = PTy->getPointeeType();
1604       else
1605         EltTy = T->getPointeeType();
1606 
1607       // If we have a pointer or reference, the pointee must have an object
1608       // incomplete type.
1609       if (!EltTy->isIncompleteOrObjectType()) {
1610         DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1611         ProblemTy = EltTy;
1612       }
1613     } else if (!isDependentOrGNUAutoType(T)) {
1614       // For an __auto_type variable, we may not have seen the initializer yet
1615       // and so have no idea whether the underlying type is a pointer type or
1616       // not.
1617       DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1618       ProblemTy = T;
1619     }
1620 
1621     if (DiagID) {
1622       Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1623       Qs.removeRestrict();
1624     }
1625   }
1626 
1627   return Context.getQualifiedType(T, Qs);
1628 }
1629 
1630 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1631                                   unsigned CVRAU, const DeclSpec *DS) {
1632   if (T.isNull())
1633     return QualType();
1634 
1635   // Ignore any attempt to form a cv-qualified reference.
1636   if (T->isReferenceType())
1637     CVRAU &=
1638         ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1639 
1640   // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1641   // TQ_unaligned;
1642   unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1643 
1644   // C11 6.7.3/5:
1645   //   If the same qualifier appears more than once in the same
1646   //   specifier-qualifier-list, either directly or via one or more typedefs,
1647   //   the behavior is the same as if it appeared only once.
1648   //
1649   // It's not specified what happens when the _Atomic qualifier is applied to
1650   // a type specified with the _Atomic specifier, but we assume that this
1651   // should be treated as if the _Atomic qualifier appeared multiple times.
1652   if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1653     // C11 6.7.3/5:
1654     //   If other qualifiers appear along with the _Atomic qualifier in a
1655     //   specifier-qualifier-list, the resulting type is the so-qualified
1656     //   atomic type.
1657     //
1658     // Don't need to worry about array types here, since _Atomic can't be
1659     // applied to such types.
1660     SplitQualType Split = T.getSplitUnqualifiedType();
1661     T = BuildAtomicType(QualType(Split.Ty, 0),
1662                         DS ? DS->getAtomicSpecLoc() : Loc);
1663     if (T.isNull())
1664       return T;
1665     Split.Quals.addCVRQualifiers(CVR);
1666     return BuildQualifiedType(T, Loc, Split.Quals);
1667   }
1668 
1669   Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1670   Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1671   return BuildQualifiedType(T, Loc, Q, DS);
1672 }
1673 
1674 QualType Sema::BuildParenType(QualType T) {
1675   return Context.getParenType(T);
1676 }
1677 
1678 /// Given that we're building a pointer or reference to the given
1679 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1680                                            SourceLocation loc,
1681                                            bool isReference) {
1682   // Bail out if retention is unrequired or already specified.
1683   if (!type->isObjCLifetimeType() ||
1684       type.getObjCLifetime() != Qualifiers::OCL_None)
1685     return type;
1686 
1687   Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1688 
1689   // If the object type is const-qualified, we can safely use
1690   // __unsafe_unretained.  This is safe (because there are no read
1691   // barriers), and it'll be safe to coerce anything but __weak* to
1692   // the resulting type.
1693   if (type.isConstQualified()) {
1694     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1695 
1696   // Otherwise, check whether the static type does not require
1697   // retaining.  This currently only triggers for Class (possibly
1698   // protocol-qualifed, and arrays thereof).
1699   } else if (type->isObjCARCImplicitlyUnretainedType()) {
1700     implicitLifetime = Qualifiers::OCL_ExplicitNone;
1701 
1702   // If we are in an unevaluated context, like sizeof, skip adding a
1703   // qualification.
1704   } else if (S.isUnevaluatedContext()) {
1705     return type;
1706 
1707   // If that failed, give an error and recover using __strong.  __strong
1708   // is the option most likely to prevent spurious second-order diagnostics,
1709   // like when binding a reference to a field.
1710   } else {
1711     // These types can show up in private ivars in system headers, so
1712     // we need this to not be an error in those cases.  Instead we
1713     // want to delay.
1714     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1715       S.DelayedDiagnostics.add(
1716           sema::DelayedDiagnostic::makeForbiddenType(loc,
1717               diag::err_arc_indirect_no_ownership, type, isReference));
1718     } else {
1719       S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1720     }
1721     implicitLifetime = Qualifiers::OCL_Strong;
1722   }
1723   assert(implicitLifetime && "didn't infer any lifetime!");
1724 
1725   Qualifiers qs;
1726   qs.addObjCLifetime(implicitLifetime);
1727   return S.Context.getQualifiedType(type, qs);
1728 }
1729 
1730 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1731   std::string Quals = FnTy->getMethodQuals().getAsString();
1732 
1733   switch (FnTy->getRefQualifier()) {
1734   case RQ_None:
1735     break;
1736 
1737   case RQ_LValue:
1738     if (!Quals.empty())
1739       Quals += ' ';
1740     Quals += '&';
1741     break;
1742 
1743   case RQ_RValue:
1744     if (!Quals.empty())
1745       Quals += ' ';
1746     Quals += "&&";
1747     break;
1748   }
1749 
1750   return Quals;
1751 }
1752 
1753 namespace {
1754 /// Kinds of declarator that cannot contain a qualified function type.
1755 ///
1756 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1757 ///     a function type with a cv-qualifier or a ref-qualifier can only appear
1758 ///     at the topmost level of a type.
1759 ///
1760 /// Parens and member pointers are permitted. We don't diagnose array and
1761 /// function declarators, because they don't allow function types at all.
1762 ///
1763 /// The values of this enum are used in diagnostics.
1764 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1765 } // end anonymous namespace
1766 
1767 /// Check whether the type T is a qualified function type, and if it is,
1768 /// diagnose that it cannot be contained within the given kind of declarator.
1769 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1770                                    QualifiedFunctionKind QFK) {
1771   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1772   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1773   if (!FPT ||
1774       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1775     return false;
1776 
1777   S.Diag(Loc, diag::err_compound_qualified_function_type)
1778     << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1779     << getFunctionQualifiersAsString(FPT);
1780   return true;
1781 }
1782 
1783 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1784   const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1785   if (!FPT ||
1786       (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1787     return false;
1788 
1789   Diag(Loc, diag::err_qualified_function_typeid)
1790       << T << getFunctionQualifiersAsString(FPT);
1791   return true;
1792 }
1793 
1794 // Helper to deduce addr space of a pointee type in OpenCL mode.
1795 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1796   if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1797       !PointeeType->isSamplerT() &&
1798       !PointeeType.hasAddressSpace())
1799     PointeeType = S.getASTContext().getAddrSpaceQualType(
1800         PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1801   return PointeeType;
1802 }
1803 
1804 QualType Sema::BuildPointerType(QualType T,
1805                                 SourceLocation Loc, DeclarationName Entity) {
1806   if (T->isReferenceType()) {
1807     // C++ 8.3.2p4: There shall be no ... pointers to references ...
1808     Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1809       << getPrintableNameForEntity(Entity) << T;
1810     return QualType();
1811   }
1812 
1813   if (T->isFunctionType() && getLangOpts().OpenCL &&
1814       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1815                                             getLangOpts())) {
1816     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1817     return QualType();
1818   }
1819 
1820   if (getLangOpts().HLSL && Loc.isValid()) {
1821     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1822     return QualType();
1823   }
1824 
1825   if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1826     return QualType();
1827 
1828   assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1829 
1830   // In ARC, it is forbidden to build pointers to unqualified pointers.
1831   if (getLangOpts().ObjCAutoRefCount)
1832     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1833 
1834   if (getLangOpts().OpenCL)
1835     T = deduceOpenCLPointeeAddrSpace(*this, T);
1836 
1837   // In WebAssembly, pointers to reference types and pointers to tables are
1838   // illegal.
1839   if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1840     if (T.isWebAssemblyReferenceType()) {
1841       Diag(Loc, diag::err_wasm_reference_pr) << 0;
1842       return QualType();
1843     }
1844 
1845     // We need to desugar the type here in case T is a ParenType.
1846     if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1847       Diag(Loc, diag::err_wasm_table_pr) << 0;
1848       return QualType();
1849     }
1850   }
1851 
1852   // Build the pointer type.
1853   return Context.getPointerType(T);
1854 }
1855 
1856 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1857                                   SourceLocation Loc,
1858                                   DeclarationName Entity) {
1859   assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1860          "Unresolved overloaded function type");
1861 
1862   // C++0x [dcl.ref]p6:
1863   //   If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1864   //   decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1865   //   type T, an attempt to create the type "lvalue reference to cv TR" creates
1866   //   the type "lvalue reference to T", while an attempt to create the type
1867   //   "rvalue reference to cv TR" creates the type TR.
1868   bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1869 
1870   // C++ [dcl.ref]p4: There shall be no references to references.
1871   //
1872   // According to C++ DR 106, references to references are only
1873   // diagnosed when they are written directly (e.g., "int & &"),
1874   // but not when they happen via a typedef:
1875   //
1876   //   typedef int& intref;
1877   //   typedef intref& intref2;
1878   //
1879   // Parser::ParseDeclaratorInternal diagnoses the case where
1880   // references are written directly; here, we handle the
1881   // collapsing of references-to-references as described in C++0x.
1882   // DR 106 and 540 introduce reference-collapsing into C++98/03.
1883 
1884   // C++ [dcl.ref]p1:
1885   //   A declarator that specifies the type "reference to cv void"
1886   //   is ill-formed.
1887   if (T->isVoidType()) {
1888     Diag(Loc, diag::err_reference_to_void);
1889     return QualType();
1890   }
1891 
1892   if (getLangOpts().HLSL && Loc.isValid()) {
1893     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1894     return QualType();
1895   }
1896 
1897   if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1898     return QualType();
1899 
1900   if (T->isFunctionType() && getLangOpts().OpenCL &&
1901       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1902                                             getLangOpts())) {
1903     Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1904     return QualType();
1905   }
1906 
1907   // In ARC, it is forbidden to build references to unqualified pointers.
1908   if (getLangOpts().ObjCAutoRefCount)
1909     T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1910 
1911   if (getLangOpts().OpenCL)
1912     T = deduceOpenCLPointeeAddrSpace(*this, T);
1913 
1914   // In WebAssembly, references to reference types and tables are illegal.
1915   if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1916       T.isWebAssemblyReferenceType()) {
1917     Diag(Loc, diag::err_wasm_reference_pr) << 1;
1918     return QualType();
1919   }
1920   if (T->isWebAssemblyTableType()) {
1921     Diag(Loc, diag::err_wasm_table_pr) << 1;
1922     return QualType();
1923   }
1924 
1925   // Handle restrict on references.
1926   if (LValueRef)
1927     return Context.getLValueReferenceType(T, SpelledAsLValue);
1928   return Context.getRValueReferenceType(T);
1929 }
1930 
1931 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1932   return Context.getReadPipeType(T);
1933 }
1934 
1935 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1936   return Context.getWritePipeType(T);
1937 }
1938 
1939 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1940                                SourceLocation Loc) {
1941   if (BitWidth->isInstantiationDependent())
1942     return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1943 
1944   llvm::APSInt Bits(32);
1945   ExprResult ICE =
1946       VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1947 
1948   if (ICE.isInvalid())
1949     return QualType();
1950 
1951   size_t NumBits = Bits.getZExtValue();
1952   if (!IsUnsigned && NumBits < 2) {
1953     Diag(Loc, diag::err_bit_int_bad_size) << 0;
1954     return QualType();
1955   }
1956 
1957   if (IsUnsigned && NumBits < 1) {
1958     Diag(Loc, diag::err_bit_int_bad_size) << 1;
1959     return QualType();
1960   }
1961 
1962   const TargetInfo &TI = getASTContext().getTargetInfo();
1963   if (NumBits > TI.getMaxBitIntWidth()) {
1964     Diag(Loc, diag::err_bit_int_max_size)
1965         << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1966     return QualType();
1967   }
1968 
1969   return Context.getBitIntType(IsUnsigned, NumBits);
1970 }
1971 
1972 /// Check whether the specified array bound can be evaluated using the relevant
1973 /// language rules. If so, returns the possibly-converted expression and sets
1974 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1975 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1976 /// ExprError().
1977 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1978                                  llvm::APSInt &SizeVal, unsigned VLADiag,
1979                                  bool VLAIsError) {
1980   if (S.getLangOpts().CPlusPlus14 &&
1981       (VLAIsError ||
1982        !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1983     // C++14 [dcl.array]p1:
1984     //   The constant-expression shall be a converted constant expression of
1985     //   type std::size_t.
1986     //
1987     // Don't apply this rule if we might be forming a VLA: in that case, we
1988     // allow non-constant expressions and constant-folding. We only need to use
1989     // the converted constant expression rules (to properly convert the source)
1990     // when the source expression is of class type.
1991     return S.CheckConvertedConstantExpression(
1992         ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1993   }
1994 
1995   // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1996   // (like gnu99, but not c99) accept any evaluatable value as an extension.
1997   class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1998   public:
1999     unsigned VLADiag;
2000     bool VLAIsError;
2001     bool IsVLA = false;
2002 
2003     VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2004         : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2005 
2006     Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2007                                                    QualType T) override {
2008       return S.Diag(Loc, diag::err_array_size_non_int) << T;
2009     }
2010 
2011     Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2012                                                SourceLocation Loc) override {
2013       IsVLA = !VLAIsError;
2014       return S.Diag(Loc, VLADiag);
2015     }
2016 
2017     Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2018                                              SourceLocation Loc) override {
2019       return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2020     }
2021   } Diagnoser(VLADiag, VLAIsError);
2022 
2023   ExprResult R =
2024       S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2025   if (Diagnoser.IsVLA)
2026     return ExprResult();
2027   return R;
2028 }
2029 
2030 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2031   EltTy = Context.getBaseElementType(EltTy);
2032   if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2033       EltTy->isUndeducedType())
2034     return true;
2035 
2036   CharUnits Size = Context.getTypeSizeInChars(EltTy);
2037   CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2038 
2039   if (Size.isMultipleOf(Alignment))
2040     return true;
2041 
2042   Diag(Loc, diag::err_array_element_alignment)
2043       << EltTy << Size.getQuantity() << Alignment.getQuantity();
2044   return false;
2045 }
2046 
2047 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2048                               Expr *ArraySize, unsigned Quals,
2049                               SourceRange Brackets, DeclarationName Entity) {
2050 
2051   SourceLocation Loc = Brackets.getBegin();
2052   if (getLangOpts().CPlusPlus) {
2053     // C++ [dcl.array]p1:
2054     //   T is called the array element type; this type shall not be a reference
2055     //   type, the (possibly cv-qualified) type void, a function type or an
2056     //   abstract class type.
2057     //
2058     // C++ [dcl.array]p3:
2059     //   When several "array of" specifications are adjacent, [...] only the
2060     //   first of the constant expressions that specify the bounds of the arrays
2061     //   may be omitted.
2062     //
2063     // Note: function types are handled in the common path with C.
2064     if (T->isReferenceType()) {
2065       Diag(Loc, diag::err_illegal_decl_array_of_references)
2066       << getPrintableNameForEntity(Entity) << T;
2067       return QualType();
2068     }
2069 
2070     if (T->isVoidType() || T->isIncompleteArrayType()) {
2071       Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2072       return QualType();
2073     }
2074 
2075     if (RequireNonAbstractType(Brackets.getBegin(), T,
2076                                diag::err_array_of_abstract_type))
2077       return QualType();
2078 
2079     // Mentioning a member pointer type for an array type causes us to lock in
2080     // an inheritance model, even if it's inside an unused typedef.
2081     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2082       if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2083         if (!MPTy->getClass()->isDependentType())
2084           (void)isCompleteType(Loc, T);
2085 
2086   } else {
2087     // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2088     // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2089     if (!T.isWebAssemblyReferenceType() &&
2090         RequireCompleteSizedType(Loc, T,
2091                                  diag::err_array_incomplete_or_sizeless_type))
2092       return QualType();
2093   }
2094 
2095   // Multi-dimensional arrays of WebAssembly references are not allowed.
2096   if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2097     const auto *ATy = dyn_cast<ArrayType>(T);
2098     if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2099       Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2100       return QualType();
2101     }
2102   }
2103 
2104   if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2105     Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2106     return QualType();
2107   }
2108 
2109   if (T->isFunctionType()) {
2110     Diag(Loc, diag::err_illegal_decl_array_of_functions)
2111       << getPrintableNameForEntity(Entity) << T;
2112     return QualType();
2113   }
2114 
2115   if (const RecordType *EltTy = T->getAs<RecordType>()) {
2116     // If the element type is a struct or union that contains a variadic
2117     // array, accept it as a GNU extension: C99 6.7.2.1p2.
2118     if (EltTy->getDecl()->hasFlexibleArrayMember())
2119       Diag(Loc, diag::ext_flexible_array_in_array) << T;
2120   } else if (T->isObjCObjectType()) {
2121     Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2122     return QualType();
2123   }
2124 
2125   if (!checkArrayElementAlignment(T, Loc))
2126     return QualType();
2127 
2128   // Do placeholder conversions on the array size expression.
2129   if (ArraySize && ArraySize->hasPlaceholderType()) {
2130     ExprResult Result = CheckPlaceholderExpr(ArraySize);
2131     if (Result.isInvalid()) return QualType();
2132     ArraySize = Result.get();
2133   }
2134 
2135   // Do lvalue-to-rvalue conversions on the array size expression.
2136   if (ArraySize && !ArraySize->isPRValue()) {
2137     ExprResult Result = DefaultLvalueConversion(ArraySize);
2138     if (Result.isInvalid())
2139       return QualType();
2140 
2141     ArraySize = Result.get();
2142   }
2143 
2144   // C99 6.7.5.2p1: The size expression shall have integer type.
2145   // C++11 allows contextual conversions to such types.
2146   if (!getLangOpts().CPlusPlus11 &&
2147       ArraySize && !ArraySize->isTypeDependent() &&
2148       !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2149     Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2150         << ArraySize->getType() << ArraySize->getSourceRange();
2151     return QualType();
2152   }
2153 
2154   auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2155     if (!ArraySize)
2156       return false;
2157 
2158     // If the array size expression is a conditional expression whose branches
2159     // are both integer constant expressions, one negative and one positive,
2160     // then it's assumed to be like an old-style static assertion. e.g.,
2161     //   int old_style_assert[expr ? 1 : -1];
2162     // We will accept any integer constant expressions instead of assuming the
2163     // values 1 and -1 are always used.
2164     if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2165             ArraySize->IgnoreParenImpCasts())) {
2166       std::optional<llvm::APSInt> LHS =
2167           CondExpr->getLHS()->getIntegerConstantExpr(Context);
2168       std::optional<llvm::APSInt> RHS =
2169           CondExpr->getRHS()->getIntegerConstantExpr(Context);
2170       return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2171     }
2172     return false;
2173   };
2174 
2175   // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2176   unsigned VLADiag;
2177   bool VLAIsError;
2178   if (getLangOpts().OpenCL) {
2179     // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2180     VLADiag = diag::err_opencl_vla;
2181     VLAIsError = true;
2182   } else if (getLangOpts().C99) {
2183     VLADiag = diag::warn_vla_used;
2184     VLAIsError = false;
2185   } else if (isSFINAEContext()) {
2186     VLADiag = diag::err_vla_in_sfinae;
2187     VLAIsError = true;
2188   } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2189     VLADiag = diag::err_openmp_vla_in_task_untied;
2190     VLAIsError = true;
2191   } else if (getLangOpts().CPlusPlus) {
2192     if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2193       VLADiag = getLangOpts().GNUMode
2194                     ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2195                     : diag::ext_vla_cxx_static_assert;
2196     else
2197       VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2198                                       : diag::ext_vla_cxx;
2199     VLAIsError = false;
2200   } else {
2201     VLADiag = diag::ext_vla;
2202     VLAIsError = false;
2203   }
2204 
2205   llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2206   if (!ArraySize) {
2207     if (ASM == ArraySizeModifier::Star) {
2208       Diag(Loc, VLADiag);
2209       if (VLAIsError)
2210         return QualType();
2211 
2212       T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2213     } else {
2214       T = Context.getIncompleteArrayType(T, ASM, Quals);
2215     }
2216   } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2217     T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2218   } else {
2219     ExprResult R =
2220         checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2221     if (R.isInvalid())
2222       return QualType();
2223 
2224     if (!R.isUsable()) {
2225       // C99: an array with a non-ICE size is a VLA. We accept any expression
2226       // that we can fold to a non-zero positive value as a non-VLA as an
2227       // extension.
2228       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2229     } else if (!T->isDependentType() && !T->isIncompleteType() &&
2230                !T->isConstantSizeType()) {
2231       // C99: an array with an element type that has a non-constant-size is a
2232       // VLA.
2233       // FIXME: Add a note to explain why this isn't a VLA.
2234       Diag(Loc, VLADiag);
2235       if (VLAIsError)
2236         return QualType();
2237       T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2238     } else {
2239       // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2240       // have a value greater than zero.
2241       // In C++, this follows from narrowing conversions being disallowed.
2242       if (ConstVal.isSigned() && ConstVal.isNegative()) {
2243         if (Entity)
2244           Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2245               << getPrintableNameForEntity(Entity)
2246               << ArraySize->getSourceRange();
2247         else
2248           Diag(ArraySize->getBeginLoc(),
2249                diag::err_typecheck_negative_array_size)
2250               << ArraySize->getSourceRange();
2251         return QualType();
2252       }
2253       if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2254         // GCC accepts zero sized static arrays. We allow them when
2255         // we're not in a SFINAE context.
2256         Diag(ArraySize->getBeginLoc(),
2257              isSFINAEContext() ? diag::err_typecheck_zero_array_size
2258                                : diag::ext_typecheck_zero_array_size)
2259             << 0 << ArraySize->getSourceRange();
2260       }
2261 
2262       // Is the array too large?
2263       unsigned ActiveSizeBits =
2264           (!T->isDependentType() && !T->isVariablyModifiedType() &&
2265            !T->isIncompleteType() && !T->isUndeducedType())
2266               ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2267               : ConstVal.getActiveBits();
2268       if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2269         Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2270             << toString(ConstVal, 10) << ArraySize->getSourceRange();
2271         return QualType();
2272       }
2273 
2274       T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2275     }
2276   }
2277 
2278   if (T->isVariableArrayType()) {
2279     if (!Context.getTargetInfo().isVLASupported()) {
2280       // CUDA device code and some other targets don't support VLAs.
2281       bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2282       targetDiag(Loc,
2283                  IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2284           << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2285     } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2286       // VLAs are supported on this target, but we may need to do delayed
2287       // checking that the VLA is not being used within a coroutine.
2288       FSI->setHasVLA(Loc);
2289     }
2290   }
2291 
2292   // If this is not C99, diagnose array size modifiers on non-VLAs.
2293   if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2294       (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2295     Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2296                                       : diag::ext_c99_array_usage)
2297         << llvm::to_underlying(ASM);
2298   }
2299 
2300   // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2301   // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2302   // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2303   if (getLangOpts().OpenCL) {
2304     const QualType ArrType = Context.getBaseElementType(T);
2305     if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2306         ArrType->isSamplerT() || ArrType->isImageType()) {
2307       Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2308       return QualType();
2309     }
2310   }
2311 
2312   return T;
2313 }
2314 
2315 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2316                                SourceLocation AttrLoc) {
2317   // The base type must be integer (not Boolean or enumeration) or float, and
2318   // can't already be a vector.
2319   if ((!CurType->isDependentType() &&
2320        (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2321         (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2322        !CurType->isBitIntType()) ||
2323       CurType->isArrayType()) {
2324     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2325     return QualType();
2326   }
2327   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2328   if (const auto *BIT = CurType->getAs<BitIntType>()) {
2329     unsigned NumBits = BIT->getNumBits();
2330     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2331       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2332           << (NumBits < 8);
2333       return QualType();
2334     }
2335   }
2336 
2337   if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2338     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2339                                           VectorKind::Generic);
2340 
2341   std::optional<llvm::APSInt> VecSize =
2342       SizeExpr->getIntegerConstantExpr(Context);
2343   if (!VecSize) {
2344     Diag(AttrLoc, diag::err_attribute_argument_type)
2345         << "vector_size" << AANT_ArgumentIntegerConstant
2346         << SizeExpr->getSourceRange();
2347     return QualType();
2348   }
2349 
2350   if (CurType->isDependentType())
2351     return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2352                                           VectorKind::Generic);
2353 
2354   // vecSize is specified in bytes - convert to bits.
2355   if (!VecSize->isIntN(61)) {
2356     // Bit size will overflow uint64.
2357     Diag(AttrLoc, diag::err_attribute_size_too_large)
2358         << SizeExpr->getSourceRange() << "vector";
2359     return QualType();
2360   }
2361   uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2362   unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2363 
2364   if (VectorSizeBits == 0) {
2365     Diag(AttrLoc, diag::err_attribute_zero_size)
2366         << SizeExpr->getSourceRange() << "vector";
2367     return QualType();
2368   }
2369 
2370   if (!TypeSize || VectorSizeBits % TypeSize) {
2371     Diag(AttrLoc, diag::err_attribute_invalid_size)
2372         << SizeExpr->getSourceRange();
2373     return QualType();
2374   }
2375 
2376   if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2377     Diag(AttrLoc, diag::err_attribute_size_too_large)
2378         << SizeExpr->getSourceRange() << "vector";
2379     return QualType();
2380   }
2381 
2382   return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2383                                VectorKind::Generic);
2384 }
2385 
2386 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2387                                   SourceLocation AttrLoc) {
2388   // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2389   // in conjunction with complex types (pointers, arrays, functions, etc.).
2390   //
2391   // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2392   // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2393   // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2394   // of bool aren't allowed.
2395   //
2396   // We explicitly allow bool elements in ext_vector_type for C/C++.
2397   bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2398   if ((!T->isDependentType() && !T->isIntegerType() &&
2399        !T->isRealFloatingType()) ||
2400       (IsNoBoolVecLang && T->isBooleanType())) {
2401     Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2402     return QualType();
2403   }
2404 
2405   // Only support _BitInt elements with byte-sized power of 2 NumBits.
2406   if (T->isBitIntType()) {
2407     unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2408     if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2409       Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2410           << (NumBits < 8);
2411       return QualType();
2412     }
2413   }
2414 
2415   if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2416     std::optional<llvm::APSInt> vecSize =
2417         ArraySize->getIntegerConstantExpr(Context);
2418     if (!vecSize) {
2419       Diag(AttrLoc, diag::err_attribute_argument_type)
2420         << "ext_vector_type" << AANT_ArgumentIntegerConstant
2421         << ArraySize->getSourceRange();
2422       return QualType();
2423     }
2424 
2425     if (!vecSize->isIntN(32)) {
2426       Diag(AttrLoc, diag::err_attribute_size_too_large)
2427           << ArraySize->getSourceRange() << "vector";
2428       return QualType();
2429     }
2430     // Unlike gcc's vector_size attribute, the size is specified as the
2431     // number of elements, not the number of bytes.
2432     unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2433 
2434     if (vectorSize == 0) {
2435       Diag(AttrLoc, diag::err_attribute_zero_size)
2436           << ArraySize->getSourceRange() << "vector";
2437       return QualType();
2438     }
2439 
2440     return Context.getExtVectorType(T, vectorSize);
2441   }
2442 
2443   return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2444 }
2445 
2446 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2447                                SourceLocation AttrLoc) {
2448   assert(Context.getLangOpts().MatrixTypes &&
2449          "Should never build a matrix type when it is disabled");
2450 
2451   // Check element type, if it is not dependent.
2452   if (!ElementTy->isDependentType() &&
2453       !MatrixType::isValidElementType(ElementTy)) {
2454     Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2455     return QualType();
2456   }
2457 
2458   if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2459       NumRows->isValueDependent() || NumCols->isValueDependent())
2460     return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2461                                                AttrLoc);
2462 
2463   std::optional<llvm::APSInt> ValueRows =
2464       NumRows->getIntegerConstantExpr(Context);
2465   std::optional<llvm::APSInt> ValueColumns =
2466       NumCols->getIntegerConstantExpr(Context);
2467 
2468   auto const RowRange = NumRows->getSourceRange();
2469   auto const ColRange = NumCols->getSourceRange();
2470 
2471   // Both are row and column expressions are invalid.
2472   if (!ValueRows && !ValueColumns) {
2473     Diag(AttrLoc, diag::err_attribute_argument_type)
2474         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2475         << ColRange;
2476     return QualType();
2477   }
2478 
2479   // Only the row expression is invalid.
2480   if (!ValueRows) {
2481     Diag(AttrLoc, diag::err_attribute_argument_type)
2482         << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2483     return QualType();
2484   }
2485 
2486   // Only the column expression is invalid.
2487   if (!ValueColumns) {
2488     Diag(AttrLoc, diag::err_attribute_argument_type)
2489         << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2490     return QualType();
2491   }
2492 
2493   // Check the matrix dimensions.
2494   unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2495   unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2496   if (MatrixRows == 0 && MatrixColumns == 0) {
2497     Diag(AttrLoc, diag::err_attribute_zero_size)
2498         << "matrix" << RowRange << ColRange;
2499     return QualType();
2500   }
2501   if (MatrixRows == 0) {
2502     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2503     return QualType();
2504   }
2505   if (MatrixColumns == 0) {
2506     Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2507     return QualType();
2508   }
2509   if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2510     Diag(AttrLoc, diag::err_attribute_size_too_large)
2511         << RowRange << "matrix row";
2512     return QualType();
2513   }
2514   if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2515     Diag(AttrLoc, diag::err_attribute_size_too_large)
2516         << ColRange << "matrix column";
2517     return QualType();
2518   }
2519   return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2520 }
2521 
2522 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2523   if (T->isArrayType() || T->isFunctionType()) {
2524     Diag(Loc, diag::err_func_returning_array_function)
2525       << T->isFunctionType() << T;
2526     return true;
2527   }
2528 
2529   // Functions cannot return half FP.
2530   if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2531       !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2532     Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2533       FixItHint::CreateInsertion(Loc, "*");
2534     return true;
2535   }
2536 
2537   // Methods cannot return interface types. All ObjC objects are
2538   // passed by reference.
2539   if (T->isObjCObjectType()) {
2540     Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2541         << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2542     return true;
2543   }
2544 
2545   if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2546       T.hasNonTrivialToPrimitiveCopyCUnion())
2547     checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2548                           NTCUK_Destruct|NTCUK_Copy);
2549 
2550   // C++2a [dcl.fct]p12:
2551   //   A volatile-qualified return type is deprecated
2552   if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2553     Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2554 
2555   if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2556     return true;
2557   return false;
2558 }
2559 
2560 /// Check the extended parameter information.  Most of the necessary
2561 /// checking should occur when applying the parameter attribute; the
2562 /// only other checks required are positional restrictions.
2563 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2564                     const FunctionProtoType::ExtProtoInfo &EPI,
2565                     llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2566   assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2567 
2568   bool emittedError = false;
2569   auto actualCC = EPI.ExtInfo.getCC();
2570   enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2571   auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2572     bool isCompatible =
2573         (required == RequiredCC::OnlySwift)
2574             ? (actualCC == CC_Swift)
2575             : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2576     if (isCompatible || emittedError)
2577       return;
2578     S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2579         << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2580         << (required == RequiredCC::OnlySwift);
2581     emittedError = true;
2582   };
2583   for (size_t paramIndex = 0, numParams = paramTypes.size();
2584           paramIndex != numParams; ++paramIndex) {
2585     switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2586     // Nothing interesting to check for orindary-ABI parameters.
2587     case ParameterABI::Ordinary:
2588     case ParameterABI::HLSLOut:
2589     case ParameterABI::HLSLInOut:
2590       continue;
2591 
2592     // swift_indirect_result parameters must be a prefix of the function
2593     // arguments.
2594     case ParameterABI::SwiftIndirectResult:
2595       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2596       if (paramIndex != 0 &&
2597           EPI.ExtParameterInfos[paramIndex - 1].getABI()
2598             != ParameterABI::SwiftIndirectResult) {
2599         S.Diag(getParamLoc(paramIndex),
2600                diag::err_swift_indirect_result_not_first);
2601       }
2602       continue;
2603 
2604     case ParameterABI::SwiftContext:
2605       checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2606       continue;
2607 
2608     // SwiftAsyncContext is not limited to swiftasynccall functions.
2609     case ParameterABI::SwiftAsyncContext:
2610       continue;
2611 
2612     // swift_error parameters must be preceded by a swift_context parameter.
2613     case ParameterABI::SwiftErrorResult:
2614       checkCompatible(paramIndex, RequiredCC::OnlySwift);
2615       if (paramIndex == 0 ||
2616           EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2617               ParameterABI::SwiftContext) {
2618         S.Diag(getParamLoc(paramIndex),
2619                diag::err_swift_error_result_not_after_swift_context);
2620       }
2621       continue;
2622     }
2623     llvm_unreachable("bad ABI kind");
2624   }
2625 }
2626 
2627 QualType Sema::BuildFunctionType(QualType T,
2628                                  MutableArrayRef<QualType> ParamTypes,
2629                                  SourceLocation Loc, DeclarationName Entity,
2630                                  const FunctionProtoType::ExtProtoInfo &EPI) {
2631   bool Invalid = false;
2632 
2633   Invalid |= CheckFunctionReturnType(T, Loc);
2634 
2635   for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2636     // FIXME: Loc is too inprecise here, should use proper locations for args.
2637     QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2638     if (ParamType->isVoidType()) {
2639       Diag(Loc, diag::err_param_with_void_type);
2640       Invalid = true;
2641     } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2642                !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2643       // Disallow half FP arguments.
2644       Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2645         FixItHint::CreateInsertion(Loc, "*");
2646       Invalid = true;
2647     } else if (ParamType->isWebAssemblyTableType()) {
2648       Diag(Loc, diag::err_wasm_table_as_function_parameter);
2649       Invalid = true;
2650     }
2651 
2652     // C++2a [dcl.fct]p4:
2653     //   A parameter with volatile-qualified type is deprecated
2654     if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2655       Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2656 
2657     ParamTypes[Idx] = ParamType;
2658   }
2659 
2660   if (EPI.ExtParameterInfos) {
2661     checkExtParameterInfos(*this, ParamTypes, EPI,
2662                            [=](unsigned i) { return Loc; });
2663   }
2664 
2665   if (EPI.ExtInfo.getProducesResult()) {
2666     // This is just a warning, so we can't fail to build if we see it.
2667     ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2668   }
2669 
2670   if (Invalid)
2671     return QualType();
2672 
2673   return Context.getFunctionType(T, ParamTypes, EPI);
2674 }
2675 
2676 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2677                                       SourceLocation Loc,
2678                                       DeclarationName Entity) {
2679   // Verify that we're not building a pointer to pointer to function with
2680   // exception specification.
2681   if (CheckDistantExceptionSpec(T)) {
2682     Diag(Loc, diag::err_distant_exception_spec);
2683     return QualType();
2684   }
2685 
2686   // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2687   //   with reference type, or "cv void."
2688   if (T->isReferenceType()) {
2689     Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2690       << getPrintableNameForEntity(Entity) << T;
2691     return QualType();
2692   }
2693 
2694   if (T->isVoidType()) {
2695     Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2696       << getPrintableNameForEntity(Entity);
2697     return QualType();
2698   }
2699 
2700   if (!Class->isDependentType() && !Class->isRecordType()) {
2701     Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2702     return QualType();
2703   }
2704 
2705   if (T->isFunctionType() && getLangOpts().OpenCL &&
2706       !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2707                                             getLangOpts())) {
2708     Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2709     return QualType();
2710   }
2711 
2712   if (getLangOpts().HLSL && Loc.isValid()) {
2713     Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2714     return QualType();
2715   }
2716 
2717   // Adjust the default free function calling convention to the default method
2718   // calling convention.
2719   bool IsCtorOrDtor =
2720       (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2721       (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2722   if (T->isFunctionType())
2723     adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2724 
2725   return Context.getMemberPointerType(T, Class.getTypePtr());
2726 }
2727 
2728 QualType Sema::BuildBlockPointerType(QualType T,
2729                                      SourceLocation Loc,
2730                                      DeclarationName Entity) {
2731   if (!T->isFunctionType()) {
2732     Diag(Loc, diag::err_nonfunction_block_type);
2733     return QualType();
2734   }
2735 
2736   if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2737     return QualType();
2738 
2739   if (getLangOpts().OpenCL)
2740     T = deduceOpenCLPointeeAddrSpace(*this, T);
2741 
2742   return Context.getBlockPointerType(T);
2743 }
2744 
2745 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2746   QualType QT = Ty.get();
2747   if (QT.isNull()) {
2748     if (TInfo) *TInfo = nullptr;
2749     return QualType();
2750   }
2751 
2752   TypeSourceInfo *DI = nullptr;
2753   if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2754     QT = LIT->getType();
2755     DI = LIT->getTypeSourceInfo();
2756   }
2757 
2758   if (TInfo) *TInfo = DI;
2759   return QT;
2760 }
2761 
2762 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2763                                             Qualifiers::ObjCLifetime ownership,
2764                                             unsigned chunkIndex);
2765 
2766 /// Given that this is the declaration of a parameter under ARC,
2767 /// attempt to infer attributes and such for pointer-to-whatever
2768 /// types.
2769 static void inferARCWriteback(TypeProcessingState &state,
2770                               QualType &declSpecType) {
2771   Sema &S = state.getSema();
2772   Declarator &declarator = state.getDeclarator();
2773 
2774   // TODO: should we care about decl qualifiers?
2775 
2776   // Check whether the declarator has the expected form.  We walk
2777   // from the inside out in order to make the block logic work.
2778   unsigned outermostPointerIndex = 0;
2779   bool isBlockPointer = false;
2780   unsigned numPointers = 0;
2781   for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2782     unsigned chunkIndex = i;
2783     DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2784     switch (chunk.Kind) {
2785     case DeclaratorChunk::Paren:
2786       // Ignore parens.
2787       break;
2788 
2789     case DeclaratorChunk::Reference:
2790     case DeclaratorChunk::Pointer:
2791       // Count the number of pointers.  Treat references
2792       // interchangeably as pointers; if they're mis-ordered, normal
2793       // type building will discover that.
2794       outermostPointerIndex = chunkIndex;
2795       numPointers++;
2796       break;
2797 
2798     case DeclaratorChunk::BlockPointer:
2799       // If we have a pointer to block pointer, that's an acceptable
2800       // indirect reference; anything else is not an application of
2801       // the rules.
2802       if (numPointers != 1) return;
2803       numPointers++;
2804       outermostPointerIndex = chunkIndex;
2805       isBlockPointer = true;
2806 
2807       // We don't care about pointer structure in return values here.
2808       goto done;
2809 
2810     case DeclaratorChunk::Array: // suppress if written (id[])?
2811     case DeclaratorChunk::Function:
2812     case DeclaratorChunk::MemberPointer:
2813     case DeclaratorChunk::Pipe:
2814       return;
2815     }
2816   }
2817  done:
2818 
2819   // If we have *one* pointer, then we want to throw the qualifier on
2820   // the declaration-specifiers, which means that it needs to be a
2821   // retainable object type.
2822   if (numPointers == 1) {
2823     // If it's not a retainable object type, the rule doesn't apply.
2824     if (!declSpecType->isObjCRetainableType()) return;
2825 
2826     // If it already has lifetime, don't do anything.
2827     if (declSpecType.getObjCLifetime()) return;
2828 
2829     // Otherwise, modify the type in-place.
2830     Qualifiers qs;
2831 
2832     if (declSpecType->isObjCARCImplicitlyUnretainedType())
2833       qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2834     else
2835       qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2836     declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2837 
2838   // If we have *two* pointers, then we want to throw the qualifier on
2839   // the outermost pointer.
2840   } else if (numPointers == 2) {
2841     // If we don't have a block pointer, we need to check whether the
2842     // declaration-specifiers gave us something that will turn into a
2843     // retainable object pointer after we slap the first pointer on it.
2844     if (!isBlockPointer && !declSpecType->isObjCObjectType())
2845       return;
2846 
2847     // Look for an explicit lifetime attribute there.
2848     DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2849     if (chunk.Kind != DeclaratorChunk::Pointer &&
2850         chunk.Kind != DeclaratorChunk::BlockPointer)
2851       return;
2852     for (const ParsedAttr &AL : chunk.getAttrs())
2853       if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2854         return;
2855 
2856     transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2857                                           outermostPointerIndex);
2858 
2859   // Any other number of pointers/references does not trigger the rule.
2860   } else return;
2861 
2862   // TODO: mark whether we did this inference?
2863 }
2864 
2865 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2866                                      SourceLocation FallbackLoc,
2867                                      SourceLocation ConstQualLoc,
2868                                      SourceLocation VolatileQualLoc,
2869                                      SourceLocation RestrictQualLoc,
2870                                      SourceLocation AtomicQualLoc,
2871                                      SourceLocation UnalignedQualLoc) {
2872   if (!Quals)
2873     return;
2874 
2875   struct Qual {
2876     const char *Name;
2877     unsigned Mask;
2878     SourceLocation Loc;
2879   } const QualKinds[5] = {
2880     { "const", DeclSpec::TQ_const, ConstQualLoc },
2881     { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2882     { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2883     { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2884     { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2885   };
2886 
2887   SmallString<32> QualStr;
2888   unsigned NumQuals = 0;
2889   SourceLocation Loc;
2890   FixItHint FixIts[5];
2891 
2892   // Build a string naming the redundant qualifiers.
2893   for (auto &E : QualKinds) {
2894     if (Quals & E.Mask) {
2895       if (!QualStr.empty()) QualStr += ' ';
2896       QualStr += E.Name;
2897 
2898       // If we have a location for the qualifier, offer a fixit.
2899       SourceLocation QualLoc = E.Loc;
2900       if (QualLoc.isValid()) {
2901         FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2902         if (Loc.isInvalid() ||
2903             getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2904           Loc = QualLoc;
2905       }
2906 
2907       ++NumQuals;
2908     }
2909   }
2910 
2911   Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2912     << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2913 }
2914 
2915 // Diagnose pointless type qualifiers on the return type of a function.
2916 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2917                                                   Declarator &D,
2918                                                   unsigned FunctionChunkIndex) {
2919   const DeclaratorChunk::FunctionTypeInfo &FTI =
2920       D.getTypeObject(FunctionChunkIndex).Fun;
2921   if (FTI.hasTrailingReturnType()) {
2922     S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2923                                 RetTy.getLocalCVRQualifiers(),
2924                                 FTI.getTrailingReturnTypeLoc());
2925     return;
2926   }
2927 
2928   for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2929                 End = D.getNumTypeObjects();
2930        OuterChunkIndex != End; ++OuterChunkIndex) {
2931     DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2932     switch (OuterChunk.Kind) {
2933     case DeclaratorChunk::Paren:
2934       continue;
2935 
2936     case DeclaratorChunk::Pointer: {
2937       DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2938       S.diagnoseIgnoredQualifiers(
2939           diag::warn_qual_return_type,
2940           PTI.TypeQuals,
2941           SourceLocation(),
2942           PTI.ConstQualLoc,
2943           PTI.VolatileQualLoc,
2944           PTI.RestrictQualLoc,
2945           PTI.AtomicQualLoc,
2946           PTI.UnalignedQualLoc);
2947       return;
2948     }
2949 
2950     case DeclaratorChunk::Function:
2951     case DeclaratorChunk::BlockPointer:
2952     case DeclaratorChunk::Reference:
2953     case DeclaratorChunk::Array:
2954     case DeclaratorChunk::MemberPointer:
2955     case DeclaratorChunk::Pipe:
2956       // FIXME: We can't currently provide an accurate source location and a
2957       // fix-it hint for these.
2958       unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2959       S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2960                                   RetTy.getCVRQualifiers() | AtomicQual,
2961                                   D.getIdentifierLoc());
2962       return;
2963     }
2964 
2965     llvm_unreachable("unknown declarator chunk kind");
2966   }
2967 
2968   // If the qualifiers come from a conversion function type, don't diagnose
2969   // them -- they're not necessarily redundant, since such a conversion
2970   // operator can be explicitly called as "x.operator const int()".
2971   if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2972     return;
2973 
2974   // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2975   // which are present there.
2976   S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2977                               D.getDeclSpec().getTypeQualifiers(),
2978                               D.getIdentifierLoc(),
2979                               D.getDeclSpec().getConstSpecLoc(),
2980                               D.getDeclSpec().getVolatileSpecLoc(),
2981                               D.getDeclSpec().getRestrictSpecLoc(),
2982                               D.getDeclSpec().getAtomicSpecLoc(),
2983                               D.getDeclSpec().getUnalignedSpecLoc());
2984 }
2985 
2986 static std::pair<QualType, TypeSourceInfo *>
2987 InventTemplateParameter(TypeProcessingState &state, QualType T,
2988                         TypeSourceInfo *TrailingTSI, AutoType *Auto,
2989                         InventedTemplateParameterInfo &Info) {
2990   Sema &S = state.getSema();
2991   Declarator &D = state.getDeclarator();
2992 
2993   const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2994   const unsigned AutoParameterPosition = Info.TemplateParams.size();
2995   const bool IsParameterPack = D.hasEllipsis();
2996 
2997   // If auto is mentioned in a lambda parameter or abbreviated function
2998   // template context, convert it to a template parameter type.
2999 
3000   // Create the TemplateTypeParmDecl here to retrieve the corresponding
3001   // template parameter type. Template parameters are temporarily added
3002   // to the TU until the associated TemplateDecl is created.
3003   TemplateTypeParmDecl *InventedTemplateParam =
3004       TemplateTypeParmDecl::Create(
3005           S.Context, S.Context.getTranslationUnitDecl(),
3006           /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3007           /*NameLoc=*/D.getIdentifierLoc(),
3008           TemplateParameterDepth, AutoParameterPosition,
3009           S.InventAbbreviatedTemplateParameterTypeName(
3010               D.getIdentifier(), AutoParameterPosition), false,
3011           IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3012   InventedTemplateParam->setImplicit();
3013   Info.TemplateParams.push_back(InventedTemplateParam);
3014 
3015   // Attach type constraints to the new parameter.
3016   if (Auto->isConstrained()) {
3017     if (TrailingTSI) {
3018       // The 'auto' appears in a trailing return type we've already built;
3019       // extract its type constraints to attach to the template parameter.
3020       AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3021       TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3022       bool Invalid = false;
3023       for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3024         if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3025             S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3026                                               Sema::UPPC_TypeConstraint))
3027           Invalid = true;
3028         TAL.addArgument(AutoLoc.getArgLoc(Idx));
3029       }
3030 
3031       if (!Invalid) {
3032         S.AttachTypeConstraint(
3033             AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3034             AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3035             AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3036             InventedTemplateParam,
3037             S.Context.getTypeDeclType(InventedTemplateParam),
3038             D.getEllipsisLoc());
3039       }
3040     } else {
3041       // The 'auto' appears in the decl-specifiers; we've not finished forming
3042       // TypeSourceInfo for it yet.
3043       TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3044       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3045                                                 TemplateId->RAngleLoc);
3046       bool Invalid = false;
3047       if (TemplateId->LAngleLoc.isValid()) {
3048         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3049                                            TemplateId->NumArgs);
3050         S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3051 
3052         if (D.getEllipsisLoc().isInvalid()) {
3053           for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3054             if (S.DiagnoseUnexpandedParameterPack(Arg,
3055                                                   Sema::UPPC_TypeConstraint)) {
3056               Invalid = true;
3057               break;
3058             }
3059           }
3060         }
3061       }
3062       if (!Invalid) {
3063         UsingShadowDecl *USD =
3064             TemplateId->Template.get().getAsUsingShadowDecl();
3065         auto *CD =
3066             cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3067         S.AttachTypeConstraint(
3068             D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3069             DeclarationNameInfo(DeclarationName(TemplateId->Name),
3070                                 TemplateId->TemplateNameLoc),
3071             CD,
3072             /*FoundDecl=*/
3073             USD ? cast<NamedDecl>(USD) : CD,
3074             TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3075             InventedTemplateParam,
3076             S.Context.getTypeDeclType(InventedTemplateParam),
3077             D.getEllipsisLoc());
3078       }
3079     }
3080   }
3081 
3082   // Replace the 'auto' in the function parameter with this invented
3083   // template type parameter.
3084   // FIXME: Retain some type sugar to indicate that this was written
3085   //  as 'auto'?
3086   QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3087   QualType NewT = state.ReplaceAutoType(T, Replacement);
3088   TypeSourceInfo *NewTSI =
3089       TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3090                   : nullptr;
3091   return {NewT, NewTSI};
3092 }
3093 
3094 static TypeSourceInfo *
3095 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3096                                QualType T, TypeSourceInfo *ReturnTypeInfo);
3097 
3098 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3099                                              TypeSourceInfo *&ReturnTypeInfo) {
3100   Sema &SemaRef = state.getSema();
3101   Declarator &D = state.getDeclarator();
3102   QualType T;
3103   ReturnTypeInfo = nullptr;
3104 
3105   // The TagDecl owned by the DeclSpec.
3106   TagDecl *OwnedTagDecl = nullptr;
3107 
3108   switch (D.getName().getKind()) {
3109   case UnqualifiedIdKind::IK_ImplicitSelfParam:
3110   case UnqualifiedIdKind::IK_OperatorFunctionId:
3111   case UnqualifiedIdKind::IK_Identifier:
3112   case UnqualifiedIdKind::IK_LiteralOperatorId:
3113   case UnqualifiedIdKind::IK_TemplateId:
3114     T = ConvertDeclSpecToType(state);
3115 
3116     if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3117       OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3118       // Owned declaration is embedded in declarator.
3119       OwnedTagDecl->setEmbeddedInDeclarator(true);
3120     }
3121     break;
3122 
3123   case UnqualifiedIdKind::IK_ConstructorName:
3124   case UnqualifiedIdKind::IK_ConstructorTemplateId:
3125   case UnqualifiedIdKind::IK_DestructorName:
3126     // Constructors and destructors don't have return types. Use
3127     // "void" instead.
3128     T = SemaRef.Context.VoidTy;
3129     processTypeAttrs(state, T, TAL_DeclSpec,
3130                      D.getMutableDeclSpec().getAttributes());
3131     break;
3132 
3133   case UnqualifiedIdKind::IK_DeductionGuideName:
3134     // Deduction guides have a trailing return type and no type in their
3135     // decl-specifier sequence. Use a placeholder return type for now.
3136     T = SemaRef.Context.DependentTy;
3137     break;
3138 
3139   case UnqualifiedIdKind::IK_ConversionFunctionId:
3140     // The result type of a conversion function is the type that it
3141     // converts to.
3142     T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3143                                   &ReturnTypeInfo);
3144     break;
3145   }
3146 
3147   // Note: We don't need to distribute declaration attributes (i.e.
3148   // D.getDeclarationAttributes()) because those are always C++11 attributes,
3149   // and those don't get distributed.
3150   distributeTypeAttrsFromDeclarator(
3151       state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3152 
3153   // Find the deduced type in this type. Look in the trailing return type if we
3154   // have one, otherwise in the DeclSpec type.
3155   // FIXME: The standard wording doesn't currently describe this.
3156   DeducedType *Deduced = T->getContainedDeducedType();
3157   bool DeducedIsTrailingReturnType = false;
3158   if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3159     QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3160     Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3161     DeducedIsTrailingReturnType = true;
3162   }
3163 
3164   // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3165   if (Deduced) {
3166     AutoType *Auto = dyn_cast<AutoType>(Deduced);
3167     int Error = -1;
3168 
3169     // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3170     // class template argument deduction)?
3171     bool IsCXXAutoType =
3172         (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3173     bool IsDeducedReturnType = false;
3174 
3175     switch (D.getContext()) {
3176     case DeclaratorContext::LambdaExpr:
3177       // Declared return type of a lambda-declarator is implicit and is always
3178       // 'auto'.
3179       break;
3180     case DeclaratorContext::ObjCParameter:
3181     case DeclaratorContext::ObjCResult:
3182       Error = 0;
3183       break;
3184     case DeclaratorContext::RequiresExpr:
3185       Error = 22;
3186       break;
3187     case DeclaratorContext::Prototype:
3188     case DeclaratorContext::LambdaExprParameter: {
3189       InventedTemplateParameterInfo *Info = nullptr;
3190       if (D.getContext() == DeclaratorContext::Prototype) {
3191         // With concepts we allow 'auto' in function parameters.
3192         if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3193             Auto->getKeyword() != AutoTypeKeyword::Auto) {
3194           Error = 0;
3195           break;
3196         } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3197           Error = 21;
3198           break;
3199         }
3200 
3201         Info = &SemaRef.InventedParameterInfos.back();
3202       } else {
3203         // In C++14, generic lambdas allow 'auto' in their parameters.
3204         if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3205             Auto->getKeyword() == AutoTypeKeyword::Auto) {
3206           Error = 25; // auto not allowed in lambda parameter (before C++14)
3207           break;
3208         } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3209           Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3210                       // parameter
3211           break;
3212         }
3213         Info = SemaRef.getCurLambda();
3214         assert(Info && "No LambdaScopeInfo on the stack!");
3215       }
3216 
3217       // We'll deal with inventing template parameters for 'auto' in trailing
3218       // return types when we pick up the trailing return type when processing
3219       // the function chunk.
3220       if (!DeducedIsTrailingReturnType)
3221         T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3222       break;
3223     }
3224     case DeclaratorContext::Member: {
3225       if (D.isStaticMember() || D.isFunctionDeclarator())
3226         break;
3227       bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3228       if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3229         Error = 6; // Interface member.
3230       } else {
3231         switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3232         case TagTypeKind::Enum:
3233           llvm_unreachable("unhandled tag kind");
3234         case TagTypeKind::Struct:
3235           Error = Cxx ? 1 : 2; /* Struct member */
3236           break;
3237         case TagTypeKind::Union:
3238           Error = Cxx ? 3 : 4; /* Union member */
3239           break;
3240         case TagTypeKind::Class:
3241           Error = 5; /* Class member */
3242           break;
3243         case TagTypeKind::Interface:
3244           Error = 6; /* Interface member */
3245           break;
3246         }
3247       }
3248       if (D.getDeclSpec().isFriendSpecified())
3249         Error = 20; // Friend type
3250       break;
3251     }
3252     case DeclaratorContext::CXXCatch:
3253     case DeclaratorContext::ObjCCatch:
3254       Error = 7; // Exception declaration
3255       break;
3256     case DeclaratorContext::TemplateParam:
3257       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3258           !SemaRef.getLangOpts().CPlusPlus20)
3259         Error = 19; // Template parameter (until C++20)
3260       else if (!SemaRef.getLangOpts().CPlusPlus17)
3261         Error = 8; // Template parameter (until C++17)
3262       break;
3263     case DeclaratorContext::BlockLiteral:
3264       Error = 9; // Block literal
3265       break;
3266     case DeclaratorContext::TemplateArg:
3267       // Within a template argument list, a deduced template specialization
3268       // type will be reinterpreted as a template template argument.
3269       if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3270           !D.getNumTypeObjects() &&
3271           D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3272         break;
3273       [[fallthrough]];
3274     case DeclaratorContext::TemplateTypeArg:
3275       Error = 10; // Template type argument
3276       break;
3277     case DeclaratorContext::AliasDecl:
3278     case DeclaratorContext::AliasTemplate:
3279       Error = 12; // Type alias
3280       break;
3281     case DeclaratorContext::TrailingReturn:
3282     case DeclaratorContext::TrailingReturnVar:
3283       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3284         Error = 13; // Function return type
3285       IsDeducedReturnType = true;
3286       break;
3287     case DeclaratorContext::ConversionId:
3288       if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3289         Error = 14; // conversion-type-id
3290       IsDeducedReturnType = true;
3291       break;
3292     case DeclaratorContext::FunctionalCast:
3293       if (isa<DeducedTemplateSpecializationType>(Deduced))
3294         break;
3295       if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3296           !Auto->isDecltypeAuto())
3297         break; // auto(x)
3298       [[fallthrough]];
3299     case DeclaratorContext::TypeName:
3300     case DeclaratorContext::Association:
3301       Error = 15; // Generic
3302       break;
3303     case DeclaratorContext::File:
3304     case DeclaratorContext::Block:
3305     case DeclaratorContext::ForInit:
3306     case DeclaratorContext::SelectionInit:
3307     case DeclaratorContext::Condition:
3308       // FIXME: P0091R3 (erroneously) does not permit class template argument
3309       // deduction in conditions, for-init-statements, and other declarations
3310       // that are not simple-declarations.
3311       break;
3312     case DeclaratorContext::CXXNew:
3313       // FIXME: P0091R3 does not permit class template argument deduction here,
3314       // but we follow GCC and allow it anyway.
3315       if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3316         Error = 17; // 'new' type
3317       break;
3318     case DeclaratorContext::KNRTypeList:
3319       Error = 18; // K&R function parameter
3320       break;
3321     }
3322 
3323     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3324       Error = 11;
3325 
3326     // In Objective-C it is an error to use 'auto' on a function declarator
3327     // (and everywhere for '__auto_type').
3328     if (D.isFunctionDeclarator() &&
3329         (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3330       Error = 13;
3331 
3332     SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3333     if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3334       AutoRange = D.getName().getSourceRange();
3335 
3336     if (Error != -1) {
3337       unsigned Kind;
3338       if (Auto) {
3339         switch (Auto->getKeyword()) {
3340         case AutoTypeKeyword::Auto: Kind = 0; break;
3341         case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3342         case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3343         }
3344       } else {
3345         assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3346                "unknown auto type");
3347         Kind = 3;
3348       }
3349 
3350       auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3351       TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3352 
3353       SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3354         << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3355         << QualType(Deduced, 0) << AutoRange;
3356       if (auto *TD = TN.getAsTemplateDecl())
3357         SemaRef.NoteTemplateLocation(*TD);
3358 
3359       T = SemaRef.Context.IntTy;
3360       D.setInvalidType(true);
3361     } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3362       // If there was a trailing return type, we already got
3363       // warn_cxx98_compat_trailing_return_type in the parser.
3364       SemaRef.Diag(AutoRange.getBegin(),
3365                    D.getContext() == DeclaratorContext::LambdaExprParameter
3366                        ? diag::warn_cxx11_compat_generic_lambda
3367                    : IsDeducedReturnType
3368                        ? diag::warn_cxx11_compat_deduced_return_type
3369                        : diag::warn_cxx98_compat_auto_type_specifier)
3370           << AutoRange;
3371     }
3372   }
3373 
3374   if (SemaRef.getLangOpts().CPlusPlus &&
3375       OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3376     // Check the contexts where C++ forbids the declaration of a new class
3377     // or enumeration in a type-specifier-seq.
3378     unsigned DiagID = 0;
3379     switch (D.getContext()) {
3380     case DeclaratorContext::TrailingReturn:
3381     case DeclaratorContext::TrailingReturnVar:
3382       // Class and enumeration definitions are syntactically not allowed in
3383       // trailing return types.
3384       llvm_unreachable("parser should not have allowed this");
3385       break;
3386     case DeclaratorContext::File:
3387     case DeclaratorContext::Member:
3388     case DeclaratorContext::Block:
3389     case DeclaratorContext::ForInit:
3390     case DeclaratorContext::SelectionInit:
3391     case DeclaratorContext::BlockLiteral:
3392     case DeclaratorContext::LambdaExpr:
3393       // C++11 [dcl.type]p3:
3394       //   A type-specifier-seq shall not define a class or enumeration unless
3395       //   it appears in the type-id of an alias-declaration (7.1.3) that is not
3396       //   the declaration of a template-declaration.
3397     case DeclaratorContext::AliasDecl:
3398       break;
3399     case DeclaratorContext::AliasTemplate:
3400       DiagID = diag::err_type_defined_in_alias_template;
3401       break;
3402     case DeclaratorContext::TypeName:
3403     case DeclaratorContext::FunctionalCast:
3404     case DeclaratorContext::ConversionId:
3405     case DeclaratorContext::TemplateParam:
3406     case DeclaratorContext::CXXNew:
3407     case DeclaratorContext::CXXCatch:
3408     case DeclaratorContext::ObjCCatch:
3409     case DeclaratorContext::TemplateArg:
3410     case DeclaratorContext::TemplateTypeArg:
3411     case DeclaratorContext::Association:
3412       DiagID = diag::err_type_defined_in_type_specifier;
3413       break;
3414     case DeclaratorContext::Prototype:
3415     case DeclaratorContext::LambdaExprParameter:
3416     case DeclaratorContext::ObjCParameter:
3417     case DeclaratorContext::ObjCResult:
3418     case DeclaratorContext::KNRTypeList:
3419     case DeclaratorContext::RequiresExpr:
3420       // C++ [dcl.fct]p6:
3421       //   Types shall not be defined in return or parameter types.
3422       DiagID = diag::err_type_defined_in_param_type;
3423       break;
3424     case DeclaratorContext::Condition:
3425       // C++ 6.4p2:
3426       // The type-specifier-seq shall not contain typedef and shall not declare
3427       // a new class or enumeration.
3428       DiagID = diag::err_type_defined_in_condition;
3429       break;
3430     }
3431 
3432     if (DiagID != 0) {
3433       SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3434           << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3435       D.setInvalidType(true);
3436     }
3437   }
3438 
3439   assert(!T.isNull() && "This function should not return a null type");
3440   return T;
3441 }
3442 
3443 /// Produce an appropriate diagnostic for an ambiguity between a function
3444 /// declarator and a C++ direct-initializer.
3445 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3446                                        DeclaratorChunk &DeclType, QualType RT) {
3447   const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3448   assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3449 
3450   // If the return type is void there is no ambiguity.
3451   if (RT->isVoidType())
3452     return;
3453 
3454   // An initializer for a non-class type can have at most one argument.
3455   if (!RT->isRecordType() && FTI.NumParams > 1)
3456     return;
3457 
3458   // An initializer for a reference must have exactly one argument.
3459   if (RT->isReferenceType() && FTI.NumParams != 1)
3460     return;
3461 
3462   // Only warn if this declarator is declaring a function at block scope, and
3463   // doesn't have a storage class (such as 'extern') specified.
3464   if (!D.isFunctionDeclarator() ||
3465       D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3466       !S.CurContext->isFunctionOrMethod() ||
3467       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3468     return;
3469 
3470   // Inside a condition, a direct initializer is not permitted. We allow one to
3471   // be parsed in order to give better diagnostics in condition parsing.
3472   if (D.getContext() == DeclaratorContext::Condition)
3473     return;
3474 
3475   SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3476 
3477   S.Diag(DeclType.Loc,
3478          FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3479                        : diag::warn_empty_parens_are_function_decl)
3480       << ParenRange;
3481 
3482   // If the declaration looks like:
3483   //   T var1,
3484   //   f();
3485   // and name lookup finds a function named 'f', then the ',' was
3486   // probably intended to be a ';'.
3487   if (!D.isFirstDeclarator() && D.getIdentifier()) {
3488     FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3489     FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3490     if (Comma.getFileID() != Name.getFileID() ||
3491         Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3492       LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3493                           Sema::LookupOrdinaryName);
3494       if (S.LookupName(Result, S.getCurScope()))
3495         S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3496           << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3497           << D.getIdentifier();
3498       Result.suppressDiagnostics();
3499     }
3500   }
3501 
3502   if (FTI.NumParams > 0) {
3503     // For a declaration with parameters, eg. "T var(T());", suggest adding
3504     // parens around the first parameter to turn the declaration into a
3505     // variable declaration.
3506     SourceRange Range = FTI.Params[0].Param->getSourceRange();
3507     SourceLocation B = Range.getBegin();
3508     SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3509     // FIXME: Maybe we should suggest adding braces instead of parens
3510     // in C++11 for classes that don't have an initializer_list constructor.
3511     S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3512       << FixItHint::CreateInsertion(B, "(")
3513       << FixItHint::CreateInsertion(E, ")");
3514   } else {
3515     // For a declaration without parameters, eg. "T var();", suggest replacing
3516     // the parens with an initializer to turn the declaration into a variable
3517     // declaration.
3518     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3519 
3520     // Empty parens mean value-initialization, and no parens mean
3521     // default initialization. These are equivalent if the default
3522     // constructor is user-provided or if zero-initialization is a
3523     // no-op.
3524     if (RD && RD->hasDefinition() &&
3525         (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3526       S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3527         << FixItHint::CreateRemoval(ParenRange);
3528     else {
3529       std::string Init =
3530           S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3531       if (Init.empty() && S.LangOpts.CPlusPlus11)
3532         Init = "{}";
3533       if (!Init.empty())
3534         S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3535           << FixItHint::CreateReplacement(ParenRange, Init);
3536     }
3537   }
3538 }
3539 
3540 /// Produce an appropriate diagnostic for a declarator with top-level
3541 /// parentheses.
3542 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3543   DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3544   assert(Paren.Kind == DeclaratorChunk::Paren &&
3545          "do not have redundant top-level parentheses");
3546 
3547   // This is a syntactic check; we're not interested in cases that arise
3548   // during template instantiation.
3549   if (S.inTemplateInstantiation())
3550     return;
3551 
3552   // Check whether this could be intended to be a construction of a temporary
3553   // object in C++ via a function-style cast.
3554   bool CouldBeTemporaryObject =
3555       S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3556       !D.isInvalidType() && D.getIdentifier() &&
3557       D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3558       (T->isRecordType() || T->isDependentType()) &&
3559       D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3560 
3561   bool StartsWithDeclaratorId = true;
3562   for (auto &C : D.type_objects()) {
3563     switch (C.Kind) {
3564     case DeclaratorChunk::Paren:
3565       if (&C == &Paren)
3566         continue;
3567       [[fallthrough]];
3568     case DeclaratorChunk::Pointer:
3569       StartsWithDeclaratorId = false;
3570       continue;
3571 
3572     case DeclaratorChunk::Array:
3573       if (!C.Arr.NumElts)
3574         CouldBeTemporaryObject = false;
3575       continue;
3576 
3577     case DeclaratorChunk::Reference:
3578       // FIXME: Suppress the warning here if there is no initializer; we're
3579       // going to give an error anyway.
3580       // We assume that something like 'T (&x) = y;' is highly likely to not
3581       // be intended to be a temporary object.
3582       CouldBeTemporaryObject = false;
3583       StartsWithDeclaratorId = false;
3584       continue;
3585 
3586     case DeclaratorChunk::Function:
3587       // In a new-type-id, function chunks require parentheses.
3588       if (D.getContext() == DeclaratorContext::CXXNew)
3589         return;
3590       // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3591       // redundant-parens warning, but we don't know whether the function
3592       // chunk was syntactically valid as an expression here.
3593       CouldBeTemporaryObject = false;
3594       continue;
3595 
3596     case DeclaratorChunk::BlockPointer:
3597     case DeclaratorChunk::MemberPointer:
3598     case DeclaratorChunk::Pipe:
3599       // These cannot appear in expressions.
3600       CouldBeTemporaryObject = false;
3601       StartsWithDeclaratorId = false;
3602       continue;
3603     }
3604   }
3605 
3606   // FIXME: If there is an initializer, assume that this is not intended to be
3607   // a construction of a temporary object.
3608 
3609   // Check whether the name has already been declared; if not, this is not a
3610   // function-style cast.
3611   if (CouldBeTemporaryObject) {
3612     LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3613                         Sema::LookupOrdinaryName);
3614     if (!S.LookupName(Result, S.getCurScope()))
3615       CouldBeTemporaryObject = false;
3616     Result.suppressDiagnostics();
3617   }
3618 
3619   SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3620 
3621   if (!CouldBeTemporaryObject) {
3622     // If we have A (::B), the parentheses affect the meaning of the program.
3623     // Suppress the warning in that case. Don't bother looking at the DeclSpec
3624     // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3625     // formally unambiguous.
3626     if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3627       for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3628            NNS = NNS->getPrefix()) {
3629         if (NNS->getKind() == NestedNameSpecifier::Global)
3630           return;
3631       }
3632     }
3633 
3634     S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3635         << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3636         << FixItHint::CreateRemoval(Paren.EndLoc);
3637     return;
3638   }
3639 
3640   S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3641       << ParenRange << D.getIdentifier();
3642   auto *RD = T->getAsCXXRecordDecl();
3643   if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3644     S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3645         << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3646         << D.getIdentifier();
3647   // FIXME: A cast to void is probably a better suggestion in cases where it's
3648   // valid (when there is no initializer and we're not in a condition).
3649   S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3650       << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3651       << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3652   S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3653       << FixItHint::CreateRemoval(Paren.Loc)
3654       << FixItHint::CreateRemoval(Paren.EndLoc);
3655 }
3656 
3657 /// Helper for figuring out the default CC for a function declarator type.  If
3658 /// this is the outermost chunk, then we can determine the CC from the
3659 /// declarator context.  If not, then this could be either a member function
3660 /// type or normal function type.
3661 static CallingConv getCCForDeclaratorChunk(
3662     Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3663     const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3664   assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3665 
3666   // Check for an explicit CC attribute.
3667   for (const ParsedAttr &AL : AttrList) {
3668     switch (AL.getKind()) {
3669     CALLING_CONV_ATTRS_CASELIST : {
3670       // Ignore attributes that don't validate or can't apply to the
3671       // function type.  We'll diagnose the failure to apply them in
3672       // handleFunctionTypeAttr.
3673       CallingConv CC;
3674       if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3675                                   S.CUDA().IdentifyTarget(D.getAttributes())) &&
3676           (!FTI.isVariadic || supportsVariadicCall(CC))) {
3677         return CC;
3678       }
3679       break;
3680     }
3681 
3682     default:
3683       break;
3684     }
3685   }
3686 
3687   bool IsCXXInstanceMethod = false;
3688 
3689   if (S.getLangOpts().CPlusPlus) {
3690     // Look inwards through parentheses to see if this chunk will form a
3691     // member pointer type or if we're the declarator.  Any type attributes
3692     // between here and there will override the CC we choose here.
3693     unsigned I = ChunkIndex;
3694     bool FoundNonParen = false;
3695     while (I && !FoundNonParen) {
3696       --I;
3697       if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3698         FoundNonParen = true;
3699     }
3700 
3701     if (FoundNonParen) {
3702       // If we're not the declarator, we're a regular function type unless we're
3703       // in a member pointer.
3704       IsCXXInstanceMethod =
3705           D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3706     } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3707       // This can only be a call operator for a lambda, which is an instance
3708       // method, unless explicitly specified as 'static'.
3709       IsCXXInstanceMethod =
3710           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3711     } else {
3712       // We're the innermost decl chunk, so must be a function declarator.
3713       assert(D.isFunctionDeclarator());
3714 
3715       // If we're inside a record, we're declaring a method, but it could be
3716       // explicitly or implicitly static.
3717       IsCXXInstanceMethod =
3718           D.isFirstDeclarationOfMember() &&
3719           D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3720           !D.isStaticMember();
3721     }
3722   }
3723 
3724   CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3725                                                          IsCXXInstanceMethod);
3726 
3727   // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3728   // and AMDGPU targets, hence it cannot be treated as a calling
3729   // convention attribute. This is the simplest place to infer
3730   // calling convention for OpenCL kernels.
3731   if (S.getLangOpts().OpenCL) {
3732     for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3733       if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3734         CC = CC_OpenCLKernel;
3735         break;
3736       }
3737     }
3738   } else if (S.getLangOpts().CUDA) {
3739     // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make
3740     // sure the kernels will be marked with the right calling convention so that
3741     // they will be visible by the APIs that ingest SPIR-V. We do not do this
3742     // when targeting AMDGCNSPIRV, as it does not rely on OpenCL.
3743     llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3744     if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) {
3745       for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3746         if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3747           CC = CC_OpenCLKernel;
3748           break;
3749         }
3750       }
3751     }
3752   }
3753 
3754   return CC;
3755 }
3756 
3757 namespace {
3758   /// A simple notion of pointer kinds, which matches up with the various
3759   /// pointer declarators.
3760   enum class SimplePointerKind {
3761     Pointer,
3762     BlockPointer,
3763     MemberPointer,
3764     Array,
3765   };
3766 } // end anonymous namespace
3767 
3768 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3769   switch (nullability) {
3770   case NullabilityKind::NonNull:
3771     if (!Ident__Nonnull)
3772       Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3773     return Ident__Nonnull;
3774 
3775   case NullabilityKind::Nullable:
3776     if (!Ident__Nullable)
3777       Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3778     return Ident__Nullable;
3779 
3780   case NullabilityKind::NullableResult:
3781     if (!Ident__Nullable_result)
3782       Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3783     return Ident__Nullable_result;
3784 
3785   case NullabilityKind::Unspecified:
3786     if (!Ident__Null_unspecified)
3787       Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3788     return Ident__Null_unspecified;
3789   }
3790   llvm_unreachable("Unknown nullability kind.");
3791 }
3792 
3793 /// Check whether there is a nullability attribute of any kind in the given
3794 /// attribute list.
3795 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3796   for (const ParsedAttr &AL : attrs) {
3797     if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3798         AL.getKind() == ParsedAttr::AT_TypeNullable ||
3799         AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3800         AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3801       return true;
3802   }
3803 
3804   return false;
3805 }
3806 
3807 namespace {
3808   /// Describes the kind of a pointer a declarator describes.
3809   enum class PointerDeclaratorKind {
3810     // Not a pointer.
3811     NonPointer,
3812     // Single-level pointer.
3813     SingleLevelPointer,
3814     // Multi-level pointer (of any pointer kind).
3815     MultiLevelPointer,
3816     // CFFooRef*
3817     MaybePointerToCFRef,
3818     // CFErrorRef*
3819     CFErrorRefPointer,
3820     // NSError**
3821     NSErrorPointerPointer,
3822   };
3823 
3824   /// Describes a declarator chunk wrapping a pointer that marks inference as
3825   /// unexpected.
3826   // These values must be kept in sync with diagnostics.
3827   enum class PointerWrappingDeclaratorKind {
3828     /// Pointer is top-level.
3829     None = -1,
3830     /// Pointer is an array element.
3831     Array = 0,
3832     /// Pointer is the referent type of a C++ reference.
3833     Reference = 1
3834   };
3835 } // end anonymous namespace
3836 
3837 /// Classify the given declarator, whose type-specified is \c type, based on
3838 /// what kind of pointer it refers to.
3839 ///
3840 /// This is used to determine the default nullability.
3841 static PointerDeclaratorKind
3842 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3843                           PointerWrappingDeclaratorKind &wrappingKind) {
3844   unsigned numNormalPointers = 0;
3845 
3846   // For any dependent type, we consider it a non-pointer.
3847   if (type->isDependentType())
3848     return PointerDeclaratorKind::NonPointer;
3849 
3850   // Look through the declarator chunks to identify pointers.
3851   for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3852     DeclaratorChunk &chunk = declarator.getTypeObject(i);
3853     switch (chunk.Kind) {
3854     case DeclaratorChunk::Array:
3855       if (numNormalPointers == 0)
3856         wrappingKind = PointerWrappingDeclaratorKind::Array;
3857       break;
3858 
3859     case DeclaratorChunk::Function:
3860     case DeclaratorChunk::Pipe:
3861       break;
3862 
3863     case DeclaratorChunk::BlockPointer:
3864     case DeclaratorChunk::MemberPointer:
3865       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3866                                    : PointerDeclaratorKind::SingleLevelPointer;
3867 
3868     case DeclaratorChunk::Paren:
3869       break;
3870 
3871     case DeclaratorChunk::Reference:
3872       if (numNormalPointers == 0)
3873         wrappingKind = PointerWrappingDeclaratorKind::Reference;
3874       break;
3875 
3876     case DeclaratorChunk::Pointer:
3877       ++numNormalPointers;
3878       if (numNormalPointers > 2)
3879         return PointerDeclaratorKind::MultiLevelPointer;
3880       break;
3881     }
3882   }
3883 
3884   // Then, dig into the type specifier itself.
3885   unsigned numTypeSpecifierPointers = 0;
3886   do {
3887     // Decompose normal pointers.
3888     if (auto ptrType = type->getAs<PointerType>()) {
3889       ++numNormalPointers;
3890 
3891       if (numNormalPointers > 2)
3892         return PointerDeclaratorKind::MultiLevelPointer;
3893 
3894       type = ptrType->getPointeeType();
3895       ++numTypeSpecifierPointers;
3896       continue;
3897     }
3898 
3899     // Decompose block pointers.
3900     if (type->getAs<BlockPointerType>()) {
3901       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3902                                    : PointerDeclaratorKind::SingleLevelPointer;
3903     }
3904 
3905     // Decompose member pointers.
3906     if (type->getAs<MemberPointerType>()) {
3907       return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3908                                    : PointerDeclaratorKind::SingleLevelPointer;
3909     }
3910 
3911     // Look at Objective-C object pointers.
3912     if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3913       ++numNormalPointers;
3914       ++numTypeSpecifierPointers;
3915 
3916       // If this is NSError**, report that.
3917       if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3918         if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3919             numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3920           return PointerDeclaratorKind::NSErrorPointerPointer;
3921         }
3922       }
3923 
3924       break;
3925     }
3926 
3927     // Look at Objective-C class types.
3928     if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3929       if (objcClass->getInterface()->getIdentifier() ==
3930           S.ObjC().getNSErrorIdent()) {
3931         if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3932           return PointerDeclaratorKind::NSErrorPointerPointer;
3933       }
3934 
3935       break;
3936     }
3937 
3938     // If at this point we haven't seen a pointer, we won't see one.
3939     if (numNormalPointers == 0)
3940       return PointerDeclaratorKind::NonPointer;
3941 
3942     if (auto recordType = type->getAs<RecordType>()) {
3943       RecordDecl *recordDecl = recordType->getDecl();
3944 
3945       // If this is CFErrorRef*, report it as such.
3946       if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3947           S.ObjC().isCFError(recordDecl)) {
3948         return PointerDeclaratorKind::CFErrorRefPointer;
3949       }
3950       break;
3951     }
3952 
3953     break;
3954   } while (true);
3955 
3956   switch (numNormalPointers) {
3957   case 0:
3958     return PointerDeclaratorKind::NonPointer;
3959 
3960   case 1:
3961     return PointerDeclaratorKind::SingleLevelPointer;
3962 
3963   case 2:
3964     return PointerDeclaratorKind::MaybePointerToCFRef;
3965 
3966   default:
3967     return PointerDeclaratorKind::MultiLevelPointer;
3968   }
3969 }
3970 
3971 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3972                                                     SourceLocation loc) {
3973   // If we're anywhere in a function, method, or closure context, don't perform
3974   // completeness checks.
3975   for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3976     if (ctx->isFunctionOrMethod())
3977       return FileID();
3978 
3979     if (ctx->isFileContext())
3980       break;
3981   }
3982 
3983   // We only care about the expansion location.
3984   loc = S.SourceMgr.getExpansionLoc(loc);
3985   FileID file = S.SourceMgr.getFileID(loc);
3986   if (file.isInvalid())
3987     return FileID();
3988 
3989   // Retrieve file information.
3990   bool invalid = false;
3991   const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3992   if (invalid || !sloc.isFile())
3993     return FileID();
3994 
3995   // We don't want to perform completeness checks on the main file or in
3996   // system headers.
3997   const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3998   if (fileInfo.getIncludeLoc().isInvalid())
3999     return FileID();
4000   if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4001       S.Diags.getSuppressSystemWarnings()) {
4002     return FileID();
4003   }
4004 
4005   return file;
4006 }
4007 
4008 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4009 /// taking into account whitespace before and after.
4010 template <typename DiagBuilderT>
4011 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4012                              SourceLocation PointerLoc,
4013                              NullabilityKind Nullability) {
4014   assert(PointerLoc.isValid());
4015   if (PointerLoc.isMacroID())
4016     return;
4017 
4018   SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4019   if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4020     return;
4021 
4022   const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4023   if (!NextChar)
4024     return;
4025 
4026   SmallString<32> InsertionTextBuf{" "};
4027   InsertionTextBuf += getNullabilitySpelling(Nullability);
4028   InsertionTextBuf += " ";
4029   StringRef InsertionText = InsertionTextBuf.str();
4030 
4031   if (isWhitespace(*NextChar)) {
4032     InsertionText = InsertionText.drop_back();
4033   } else if (NextChar[-1] == '[') {
4034     if (NextChar[0] == ']')
4035       InsertionText = InsertionText.drop_back().drop_front();
4036     else
4037       InsertionText = InsertionText.drop_front();
4038   } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4039              !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4040     InsertionText = InsertionText.drop_back().drop_front();
4041   }
4042 
4043   Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4044 }
4045 
4046 static void emitNullabilityConsistencyWarning(Sema &S,
4047                                               SimplePointerKind PointerKind,
4048                                               SourceLocation PointerLoc,
4049                                               SourceLocation PointerEndLoc) {
4050   assert(PointerLoc.isValid());
4051 
4052   if (PointerKind == SimplePointerKind::Array) {
4053     S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4054   } else {
4055     S.Diag(PointerLoc, diag::warn_nullability_missing)
4056       << static_cast<unsigned>(PointerKind);
4057   }
4058 
4059   auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4060   if (FixItLoc.isMacroID())
4061     return;
4062 
4063   auto addFixIt = [&](NullabilityKind Nullability) {
4064     auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4065     Diag << static_cast<unsigned>(Nullability);
4066     Diag << static_cast<unsigned>(PointerKind);
4067     fixItNullability(S, Diag, FixItLoc, Nullability);
4068   };
4069   addFixIt(NullabilityKind::Nullable);
4070   addFixIt(NullabilityKind::NonNull);
4071 }
4072 
4073 /// Complains about missing nullability if the file containing \p pointerLoc
4074 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4075 /// pragma).
4076 ///
4077 /// If the file has \e not seen other uses of nullability, this particular
4078 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4079 static void
4080 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4081                             SourceLocation pointerLoc,
4082                             SourceLocation pointerEndLoc = SourceLocation()) {
4083   // Determine which file we're performing consistency checking for.
4084   FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4085   if (file.isInvalid())
4086     return;
4087 
4088   // If we haven't seen any type nullability in this file, we won't warn now
4089   // about anything.
4090   FileNullability &fileNullability = S.NullabilityMap[file];
4091   if (!fileNullability.SawTypeNullability) {
4092     // If this is the first pointer declarator in the file, and the appropriate
4093     // warning is on, record it in case we need to diagnose it retroactively.
4094     diag::kind diagKind;
4095     if (pointerKind == SimplePointerKind::Array)
4096       diagKind = diag::warn_nullability_missing_array;
4097     else
4098       diagKind = diag::warn_nullability_missing;
4099 
4100     if (fileNullability.PointerLoc.isInvalid() &&
4101         !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4102       fileNullability.PointerLoc = pointerLoc;
4103       fileNullability.PointerEndLoc = pointerEndLoc;
4104       fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4105     }
4106 
4107     return;
4108   }
4109 
4110   // Complain about missing nullability.
4111   emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4112 }
4113 
4114 /// Marks that a nullability feature has been used in the file containing
4115 /// \p loc.
4116 ///
4117 /// If this file already had pointer types in it that were missing nullability,
4118 /// the first such instance is retroactively diagnosed.
4119 ///
4120 /// \sa checkNullabilityConsistency
4121 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4122   FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4123   if (file.isInvalid())
4124     return;
4125 
4126   FileNullability &fileNullability = S.NullabilityMap[file];
4127   if (fileNullability.SawTypeNullability)
4128     return;
4129   fileNullability.SawTypeNullability = true;
4130 
4131   // If we haven't seen any type nullability before, now we have. Retroactively
4132   // diagnose the first unannotated pointer, if there was one.
4133   if (fileNullability.PointerLoc.isInvalid())
4134     return;
4135 
4136   auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4137   emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4138                                     fileNullability.PointerEndLoc);
4139 }
4140 
4141 /// Returns true if any of the declarator chunks before \p endIndex include a
4142 /// level of indirection: array, pointer, reference, or pointer-to-member.
4143 ///
4144 /// Because declarator chunks are stored in outer-to-inner order, testing
4145 /// every chunk before \p endIndex is testing all chunks that embed the current
4146 /// chunk as part of their type.
4147 ///
4148 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4149 /// end index, in which case all chunks are tested.
4150 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4151   unsigned i = endIndex;
4152   while (i != 0) {
4153     // Walk outwards along the declarator chunks.
4154     --i;
4155     const DeclaratorChunk &DC = D.getTypeObject(i);
4156     switch (DC.Kind) {
4157     case DeclaratorChunk::Paren:
4158       break;
4159     case DeclaratorChunk::Array:
4160     case DeclaratorChunk::Pointer:
4161     case DeclaratorChunk::Reference:
4162     case DeclaratorChunk::MemberPointer:
4163       return true;
4164     case DeclaratorChunk::Function:
4165     case DeclaratorChunk::BlockPointer:
4166     case DeclaratorChunk::Pipe:
4167       // These are invalid anyway, so just ignore.
4168       break;
4169     }
4170   }
4171   return false;
4172 }
4173 
4174 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4175   return (Chunk.Kind == DeclaratorChunk::Pointer ||
4176           Chunk.Kind == DeclaratorChunk::Array);
4177 }
4178 
4179 template<typename AttrT>
4180 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4181   AL.setUsedAsTypeAttr();
4182   return ::new (Ctx) AttrT(Ctx, AL);
4183 }
4184 
4185 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4186                                    NullabilityKind NK) {
4187   switch (NK) {
4188   case NullabilityKind::NonNull:
4189     return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4190 
4191   case NullabilityKind::Nullable:
4192     return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4193 
4194   case NullabilityKind::NullableResult:
4195     return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4196 
4197   case NullabilityKind::Unspecified:
4198     return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4199   }
4200   llvm_unreachable("unknown NullabilityKind");
4201 }
4202 
4203 // Diagnose whether this is a case with the multiple addr spaces.
4204 // Returns true if this is an invalid case.
4205 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4206 // by qualifiers for two or more different address spaces."
4207 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4208                                                 LangAS ASNew,
4209                                                 SourceLocation AttrLoc) {
4210   if (ASOld != LangAS::Default) {
4211     if (ASOld != ASNew) {
4212       S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4213       return true;
4214     }
4215     // Emit a warning if they are identical; it's likely unintended.
4216     S.Diag(AttrLoc,
4217            diag::warn_attribute_address_multiple_identical_qualifiers);
4218   }
4219   return false;
4220 }
4221 
4222 // Whether this is a type broadly expected to have nullability attached.
4223 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4224 // will be diagnosed with -Wnullability-completeness.
4225 static bool shouldHaveNullability(QualType T) {
4226   return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4227          // For now, do not infer/require nullability on C++ smart pointers.
4228          // It's unclear whether the pragma's behavior is useful for C++.
4229          // e.g. treating type-aliases and template-type-parameters differently
4230          // from types of declarations can be surprising.
4231          !isa<RecordType, TemplateSpecializationType>(
4232              T->getCanonicalTypeInternal());
4233 }
4234 
4235 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4236                                                 QualType declSpecType,
4237                                                 TypeSourceInfo *TInfo) {
4238   // The TypeSourceInfo that this function returns will not be a null type.
4239   // If there is an error, this function will fill in a dummy type as fallback.
4240   QualType T = declSpecType;
4241   Declarator &D = state.getDeclarator();
4242   Sema &S = state.getSema();
4243   ASTContext &Context = S.Context;
4244   const LangOptions &LangOpts = S.getLangOpts();
4245 
4246   // The name we're declaring, if any.
4247   DeclarationName Name;
4248   if (D.getIdentifier())
4249     Name = D.getIdentifier();
4250 
4251   // Does this declaration declare a typedef-name?
4252   bool IsTypedefName =
4253       D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4254       D.getContext() == DeclaratorContext::AliasDecl ||
4255       D.getContext() == DeclaratorContext::AliasTemplate;
4256 
4257   // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4258   bool IsQualifiedFunction = T->isFunctionProtoType() &&
4259       (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4260        T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4261 
4262   // If T is 'decltype(auto)', the only declarators we can have are parens
4263   // and at most one function declarator if this is a function declaration.
4264   // If T is a deduced class template specialization type, we can have no
4265   // declarator chunks at all.
4266   if (auto *DT = T->getAs<DeducedType>()) {
4267     const AutoType *AT = T->getAs<AutoType>();
4268     bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4269     if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4270       for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4271         unsigned Index = E - I - 1;
4272         DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4273         unsigned DiagId = IsClassTemplateDeduction
4274                               ? diag::err_deduced_class_template_compound_type
4275                               : diag::err_decltype_auto_compound_type;
4276         unsigned DiagKind = 0;
4277         switch (DeclChunk.Kind) {
4278         case DeclaratorChunk::Paren:
4279           // FIXME: Rejecting this is a little silly.
4280           if (IsClassTemplateDeduction) {
4281             DiagKind = 4;
4282             break;
4283           }
4284           continue;
4285         case DeclaratorChunk::Function: {
4286           if (IsClassTemplateDeduction) {
4287             DiagKind = 3;
4288             break;
4289           }
4290           unsigned FnIndex;
4291           if (D.isFunctionDeclarationContext() &&
4292               D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4293             continue;
4294           DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4295           break;
4296         }
4297         case DeclaratorChunk::Pointer:
4298         case DeclaratorChunk::BlockPointer:
4299         case DeclaratorChunk::MemberPointer:
4300           DiagKind = 0;
4301           break;
4302         case DeclaratorChunk::Reference:
4303           DiagKind = 1;
4304           break;
4305         case DeclaratorChunk::Array:
4306           DiagKind = 2;
4307           break;
4308         case DeclaratorChunk::Pipe:
4309           break;
4310         }
4311 
4312         S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4313         D.setInvalidType(true);
4314         break;
4315       }
4316     }
4317   }
4318 
4319   // Determine whether we should infer _Nonnull on pointer types.
4320   std::optional<NullabilityKind> inferNullability;
4321   bool inferNullabilityCS = false;
4322   bool inferNullabilityInnerOnly = false;
4323   bool inferNullabilityInnerOnlyComplete = false;
4324 
4325   // Are we in an assume-nonnull region?
4326   bool inAssumeNonNullRegion = false;
4327   SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4328   if (assumeNonNullLoc.isValid()) {
4329     inAssumeNonNullRegion = true;
4330     recordNullabilitySeen(S, assumeNonNullLoc);
4331   }
4332 
4333   // Whether to complain about missing nullability specifiers or not.
4334   enum {
4335     /// Never complain.
4336     CAMN_No,
4337     /// Complain on the inner pointers (but not the outermost
4338     /// pointer).
4339     CAMN_InnerPointers,
4340     /// Complain about any pointers that don't have nullability
4341     /// specified or inferred.
4342     CAMN_Yes
4343   } complainAboutMissingNullability = CAMN_No;
4344   unsigned NumPointersRemaining = 0;
4345   auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4346 
4347   if (IsTypedefName) {
4348     // For typedefs, we do not infer any nullability (the default),
4349     // and we only complain about missing nullability specifiers on
4350     // inner pointers.
4351     complainAboutMissingNullability = CAMN_InnerPointers;
4352 
4353     if (shouldHaveNullability(T) && !T->getNullability()) {
4354       // Note that we allow but don't require nullability on dependent types.
4355       ++NumPointersRemaining;
4356     }
4357 
4358     for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4359       DeclaratorChunk &chunk = D.getTypeObject(i);
4360       switch (chunk.Kind) {
4361       case DeclaratorChunk::Array:
4362       case DeclaratorChunk::Function:
4363       case DeclaratorChunk::Pipe:
4364         break;
4365 
4366       case DeclaratorChunk::BlockPointer:
4367       case DeclaratorChunk::MemberPointer:
4368         ++NumPointersRemaining;
4369         break;
4370 
4371       case DeclaratorChunk::Paren:
4372       case DeclaratorChunk::Reference:
4373         continue;
4374 
4375       case DeclaratorChunk::Pointer:
4376         ++NumPointersRemaining;
4377         continue;
4378       }
4379     }
4380   } else {
4381     bool isFunctionOrMethod = false;
4382     switch (auto context = state.getDeclarator().getContext()) {
4383     case DeclaratorContext::ObjCParameter:
4384     case DeclaratorContext::ObjCResult:
4385     case DeclaratorContext::Prototype:
4386     case DeclaratorContext::TrailingReturn:
4387     case DeclaratorContext::TrailingReturnVar:
4388       isFunctionOrMethod = true;
4389       [[fallthrough]];
4390 
4391     case DeclaratorContext::Member:
4392       if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4393         complainAboutMissingNullability = CAMN_No;
4394         break;
4395       }
4396 
4397       // Weak properties are inferred to be nullable.
4398       if (state.getDeclarator().isObjCWeakProperty()) {
4399         // Weak properties cannot be nonnull, and should not complain about
4400         // missing nullable attributes during completeness checks.
4401         complainAboutMissingNullability = CAMN_No;
4402         if (inAssumeNonNullRegion) {
4403           inferNullability = NullabilityKind::Nullable;
4404         }
4405         break;
4406       }
4407 
4408       [[fallthrough]];
4409 
4410     case DeclaratorContext::File:
4411     case DeclaratorContext::KNRTypeList: {
4412       complainAboutMissingNullability = CAMN_Yes;
4413 
4414       // Nullability inference depends on the type and declarator.
4415       auto wrappingKind = PointerWrappingDeclaratorKind::None;
4416       switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4417       case PointerDeclaratorKind::NonPointer:
4418       case PointerDeclaratorKind::MultiLevelPointer:
4419         // Cannot infer nullability.
4420         break;
4421 
4422       case PointerDeclaratorKind::SingleLevelPointer:
4423         // Infer _Nonnull if we are in an assumes-nonnull region.
4424         if (inAssumeNonNullRegion) {
4425           complainAboutInferringWithinChunk = wrappingKind;
4426           inferNullability = NullabilityKind::NonNull;
4427           inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4428                                 context == DeclaratorContext::ObjCResult);
4429         }
4430         break;
4431 
4432       case PointerDeclaratorKind::CFErrorRefPointer:
4433       case PointerDeclaratorKind::NSErrorPointerPointer:
4434         // Within a function or method signature, infer _Nullable at both
4435         // levels.
4436         if (isFunctionOrMethod && inAssumeNonNullRegion)
4437           inferNullability = NullabilityKind::Nullable;
4438         break;
4439 
4440       case PointerDeclaratorKind::MaybePointerToCFRef:
4441         if (isFunctionOrMethod) {
4442           // On pointer-to-pointer parameters marked cf_returns_retained or
4443           // cf_returns_not_retained, if the outer pointer is explicit then
4444           // infer the inner pointer as _Nullable.
4445           auto hasCFReturnsAttr =
4446               [](const ParsedAttributesView &AttrList) -> bool {
4447             return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4448                    AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4449           };
4450           if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4451             if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4452                 hasCFReturnsAttr(D.getAttributes()) ||
4453                 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4454                 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4455               inferNullability = NullabilityKind::Nullable;
4456               inferNullabilityInnerOnly = true;
4457             }
4458           }
4459         }
4460         break;
4461       }
4462       break;
4463     }
4464 
4465     case DeclaratorContext::ConversionId:
4466       complainAboutMissingNullability = CAMN_Yes;
4467       break;
4468 
4469     case DeclaratorContext::AliasDecl:
4470     case DeclaratorContext::AliasTemplate:
4471     case DeclaratorContext::Block:
4472     case DeclaratorContext::BlockLiteral:
4473     case DeclaratorContext::Condition:
4474     case DeclaratorContext::CXXCatch:
4475     case DeclaratorContext::CXXNew:
4476     case DeclaratorContext::ForInit:
4477     case DeclaratorContext::SelectionInit:
4478     case DeclaratorContext::LambdaExpr:
4479     case DeclaratorContext::LambdaExprParameter:
4480     case DeclaratorContext::ObjCCatch:
4481     case DeclaratorContext::TemplateParam:
4482     case DeclaratorContext::TemplateArg:
4483     case DeclaratorContext::TemplateTypeArg:
4484     case DeclaratorContext::TypeName:
4485     case DeclaratorContext::FunctionalCast:
4486     case DeclaratorContext::RequiresExpr:
4487     case DeclaratorContext::Association:
4488       // Don't infer in these contexts.
4489       break;
4490     }
4491   }
4492 
4493   // Local function that returns true if its argument looks like a va_list.
4494   auto isVaList = [&S](QualType T) -> bool {
4495     auto *typedefTy = T->getAs<TypedefType>();
4496     if (!typedefTy)
4497       return false;
4498     TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4499     do {
4500       if (typedefTy->getDecl() == vaListTypedef)
4501         return true;
4502       if (auto *name = typedefTy->getDecl()->getIdentifier())
4503         if (name->isStr("va_list"))
4504           return true;
4505       typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4506     } while (typedefTy);
4507     return false;
4508   };
4509 
4510   // Local function that checks the nullability for a given pointer declarator.
4511   // Returns true if _Nonnull was inferred.
4512   auto inferPointerNullability =
4513       [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4514           SourceLocation pointerEndLoc,
4515           ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4516     // We've seen a pointer.
4517     if (NumPointersRemaining > 0)
4518       --NumPointersRemaining;
4519 
4520     // If a nullability attribute is present, there's nothing to do.
4521     if (hasNullabilityAttr(attrs))
4522       return nullptr;
4523 
4524     // If we're supposed to infer nullability, do so now.
4525     if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4526       ParsedAttr::Form form =
4527           inferNullabilityCS
4528               ? ParsedAttr::Form::ContextSensitiveKeyword()
4529               : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4530                                           false /*IsRegularKeywordAttribute*/);
4531       ParsedAttr *nullabilityAttr = Pool.create(
4532           S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4533           nullptr, SourceLocation(), nullptr, 0, form);
4534 
4535       attrs.addAtEnd(nullabilityAttr);
4536 
4537       if (inferNullabilityCS) {
4538         state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4539           ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4540       }
4541 
4542       if (pointerLoc.isValid() &&
4543           complainAboutInferringWithinChunk !=
4544             PointerWrappingDeclaratorKind::None) {
4545         auto Diag =
4546             S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4547         Diag << static_cast<int>(complainAboutInferringWithinChunk);
4548         fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4549       }
4550 
4551       if (inferNullabilityInnerOnly)
4552         inferNullabilityInnerOnlyComplete = true;
4553       return nullabilityAttr;
4554     }
4555 
4556     // If we're supposed to complain about missing nullability, do so
4557     // now if it's truly missing.
4558     switch (complainAboutMissingNullability) {
4559     case CAMN_No:
4560       break;
4561 
4562     case CAMN_InnerPointers:
4563       if (NumPointersRemaining == 0)
4564         break;
4565       [[fallthrough]];
4566 
4567     case CAMN_Yes:
4568       checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4569     }
4570     return nullptr;
4571   };
4572 
4573   // If the type itself could have nullability but does not, infer pointer
4574   // nullability and perform consistency checking.
4575   if (S.CodeSynthesisContexts.empty()) {
4576     if (shouldHaveNullability(T) && !T->getNullability()) {
4577       if (isVaList(T)) {
4578         // Record that we've seen a pointer, but do nothing else.
4579         if (NumPointersRemaining > 0)
4580           --NumPointersRemaining;
4581       } else {
4582         SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4583         if (T->isBlockPointerType())
4584           pointerKind = SimplePointerKind::BlockPointer;
4585         else if (T->isMemberPointerType())
4586           pointerKind = SimplePointerKind::MemberPointer;
4587 
4588         if (auto *attr = inferPointerNullability(
4589                 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4590                 D.getDeclSpec().getEndLoc(),
4591                 D.getMutableDeclSpec().getAttributes(),
4592                 D.getMutableDeclSpec().getAttributePool())) {
4593           T = state.getAttributedType(
4594               createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4595         }
4596       }
4597     }
4598 
4599     if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4600         !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4601         !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4602       checkNullabilityConsistency(S, SimplePointerKind::Array,
4603                                   D.getDeclSpec().getTypeSpecTypeLoc());
4604     }
4605   }
4606 
4607   bool ExpectNoDerefChunk =
4608       state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4609 
4610   // Walk the DeclTypeInfo, building the recursive type as we go.
4611   // DeclTypeInfos are ordered from the identifier out, which is
4612   // opposite of what we want :).
4613 
4614   // Track if the produced type matches the structure of the declarator.
4615   // This is used later to decide if we can fill `TypeLoc` from
4616   // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4617   // an error by replacing the type with `int`.
4618   bool AreDeclaratorChunksValid = true;
4619   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4620     unsigned chunkIndex = e - i - 1;
4621     state.setCurrentChunkIndex(chunkIndex);
4622     DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4623     IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4624     switch (DeclType.Kind) {
4625     case DeclaratorChunk::Paren:
4626       if (i == 0)
4627         warnAboutRedundantParens(S, D, T);
4628       T = S.BuildParenType(T);
4629       break;
4630     case DeclaratorChunk::BlockPointer:
4631       // If blocks are disabled, emit an error.
4632       if (!LangOpts.Blocks)
4633         S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4634 
4635       // Handle pointer nullability.
4636       inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4637                               DeclType.EndLoc, DeclType.getAttrs(),
4638                               state.getDeclarator().getAttributePool());
4639 
4640       T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4641       if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4642         // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4643         // qualified with const.
4644         if (LangOpts.OpenCL)
4645           DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4646         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4647       }
4648       break;
4649     case DeclaratorChunk::Pointer:
4650       // Verify that we're not building a pointer to pointer to function with
4651       // exception specification.
4652       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4653         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4654         D.setInvalidType(true);
4655         // Build the type anyway.
4656       }
4657 
4658       // Handle pointer nullability
4659       inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4660                               DeclType.EndLoc, DeclType.getAttrs(),
4661                               state.getDeclarator().getAttributePool());
4662 
4663       if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4664         T = Context.getObjCObjectPointerType(T);
4665         if (DeclType.Ptr.TypeQuals)
4666           T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4667         break;
4668       }
4669 
4670       // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4671       // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4672       // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4673       if (LangOpts.OpenCL) {
4674         if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4675             T->isBlockPointerType()) {
4676           S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4677           D.setInvalidType(true);
4678         }
4679       }
4680 
4681       T = S.BuildPointerType(T, DeclType.Loc, Name);
4682       if (DeclType.Ptr.TypeQuals)
4683         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4684       break;
4685     case DeclaratorChunk::Reference: {
4686       // Verify that we're not building a reference to pointer to function with
4687       // exception specification.
4688       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4689         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4690         D.setInvalidType(true);
4691         // Build the type anyway.
4692       }
4693       T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4694 
4695       if (DeclType.Ref.HasRestrict)
4696         T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4697       break;
4698     }
4699     case DeclaratorChunk::Array: {
4700       // Verify that we're not building an array of pointers to function with
4701       // exception specification.
4702       if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4703         S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4704         D.setInvalidType(true);
4705         // Build the type anyway.
4706       }
4707       DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4708       Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4709       ArraySizeModifier ASM;
4710 
4711       // Microsoft property fields can have multiple sizeless array chunks
4712       // (i.e. int x[][][]). Skip all of these except one to avoid creating
4713       // bad incomplete array types.
4714       if (chunkIndex != 0 && !ArraySize &&
4715           D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4716         // This is a sizeless chunk. If the next is also, skip this one.
4717         DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4718         if (NextDeclType.Kind == DeclaratorChunk::Array &&
4719             !NextDeclType.Arr.NumElts)
4720           break;
4721       }
4722 
4723       if (ATI.isStar)
4724         ASM = ArraySizeModifier::Star;
4725       else if (ATI.hasStatic)
4726         ASM = ArraySizeModifier::Static;
4727       else
4728         ASM = ArraySizeModifier::Normal;
4729       if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4730         // FIXME: This check isn't quite right: it allows star in prototypes
4731         // for function definitions, and disallows some edge cases detailed
4732         // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4733         S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4734         ASM = ArraySizeModifier::Normal;
4735         D.setInvalidType(true);
4736       }
4737 
4738       // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4739       // shall appear only in a declaration of a function parameter with an
4740       // array type, ...
4741       if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4742         if (!(D.isPrototypeContext() ||
4743               D.getContext() == DeclaratorContext::KNRTypeList)) {
4744           S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4745               << (ASM == ArraySizeModifier::Static ? "'static'"
4746                                                    : "type qualifier");
4747           // Remove the 'static' and the type qualifiers.
4748           if (ASM == ArraySizeModifier::Static)
4749             ASM = ArraySizeModifier::Normal;
4750           ATI.TypeQuals = 0;
4751           D.setInvalidType(true);
4752         }
4753 
4754         // C99 6.7.5.2p1: ... and then only in the outermost array type
4755         // derivation.
4756         if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4757           S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4758               << (ASM == ArraySizeModifier::Static ? "'static'"
4759                                                    : "type qualifier");
4760           if (ASM == ArraySizeModifier::Static)
4761             ASM = ArraySizeModifier::Normal;
4762           ATI.TypeQuals = 0;
4763           D.setInvalidType(true);
4764         }
4765       }
4766 
4767       // Array parameters can be marked nullable as well, although it's not
4768       // necessary if they're marked 'static'.
4769       if (complainAboutMissingNullability == CAMN_Yes &&
4770           !hasNullabilityAttr(DeclType.getAttrs()) &&
4771           ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4772           !hasOuterPointerLikeChunk(D, chunkIndex)) {
4773         checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4774       }
4775 
4776       T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4777                            SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4778       break;
4779     }
4780     case DeclaratorChunk::Function: {
4781       // If the function declarator has a prototype (i.e. it is not () and
4782       // does not have a K&R-style identifier list), then the arguments are part
4783       // of the type, otherwise the argument list is ().
4784       DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4785       IsQualifiedFunction =
4786           FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4787 
4788       // Check for auto functions and trailing return type and adjust the
4789       // return type accordingly.
4790       if (!D.isInvalidType()) {
4791         auto IsClassType = [&](CXXScopeSpec &SS) {
4792           // If there already was an problem with the scope, don’t issue another
4793           // error about the explicit object parameter.
4794           return SS.isInvalid() ||
4795                  isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4796         };
4797 
4798         // C++23 [dcl.fct]p6:
4799         //
4800         // An explicit-object-parameter-declaration is a parameter-declaration
4801         // with a this specifier. An explicit-object-parameter-declaration shall
4802         // appear only as the first parameter-declaration of a
4803         // parameter-declaration-list of one of:
4804         //
4805         // - a declaration of a member function or member function template
4806         //   ([class.mem]), or
4807         //
4808         // - an explicit instantiation ([temp.explicit]) or explicit
4809         //   specialization ([temp.expl.spec]) of a templated member function,
4810         //   or
4811         //
4812         // - a lambda-declarator [expr.prim.lambda].
4813         DeclaratorContext C = D.getContext();
4814         ParmVarDecl *First =
4815             FTI.NumParams
4816                 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4817                 : nullptr;
4818 
4819         bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4820         if (First && First->isExplicitObjectParameter() &&
4821             C != DeclaratorContext::LambdaExpr &&
4822 
4823             // Either not a member or nested declarator in a member.
4824             //
4825             // Note that e.g. 'static' or 'friend' declarations are accepted
4826             // here; we diagnose them later when we build the member function
4827             // because it's easier that way.
4828             (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4829 
4830             // Allow out-of-line definitions of member functions.
4831             !IsClassType(D.getCXXScopeSpec())) {
4832           if (IsFunctionDecl)
4833             S.Diag(First->getBeginLoc(),
4834                    diag::err_explicit_object_parameter_nonmember)
4835                 << /*non-member*/ 2 << /*function*/ 0
4836                 << First->getSourceRange();
4837           else
4838             S.Diag(First->getBeginLoc(),
4839                    diag::err_explicit_object_parameter_invalid)
4840                 << First->getSourceRange();
4841 
4842           D.setInvalidType();
4843           AreDeclaratorChunksValid = false;
4844         }
4845 
4846         // trailing-return-type is only required if we're declaring a function,
4847         // and not, for instance, a pointer to a function.
4848         if (D.getDeclSpec().hasAutoTypeSpec() &&
4849             !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4850           if (!S.getLangOpts().CPlusPlus14) {
4851             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4852                    D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4853                        ? diag::err_auto_missing_trailing_return
4854                        : diag::err_deduced_return_type);
4855             T = Context.IntTy;
4856             D.setInvalidType(true);
4857             AreDeclaratorChunksValid = false;
4858           } else {
4859             S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4860                    diag::warn_cxx11_compat_deduced_return_type);
4861           }
4862         } else if (FTI.hasTrailingReturnType()) {
4863           // T must be exactly 'auto' at this point. See CWG issue 681.
4864           if (isa<ParenType>(T)) {
4865             S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4866                 << T << D.getSourceRange();
4867             D.setInvalidType(true);
4868             // FIXME: recover and fill decls in `TypeLoc`s.
4869             AreDeclaratorChunksValid = false;
4870           } else if (D.getName().getKind() ==
4871                      UnqualifiedIdKind::IK_DeductionGuideName) {
4872             if (T != Context.DependentTy) {
4873               S.Diag(D.getDeclSpec().getBeginLoc(),
4874                      diag::err_deduction_guide_with_complex_decl)
4875                   << D.getSourceRange();
4876               D.setInvalidType(true);
4877               // FIXME: recover and fill decls in `TypeLoc`s.
4878               AreDeclaratorChunksValid = false;
4879             }
4880           } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4881                      (T.hasQualifiers() || !isa<AutoType>(T) ||
4882                       cast<AutoType>(T)->getKeyword() !=
4883                           AutoTypeKeyword::Auto ||
4884                       cast<AutoType>(T)->isConstrained())) {
4885             // Attach a valid source location for diagnostics on functions with
4886             // trailing return types missing 'auto'. Attempt to get the location
4887             // from the declared type; if invalid, fall back to the trailing
4888             // return type's location.
4889             SourceLocation Loc = D.getDeclSpec().getTypeSpecTypeLoc();
4890             SourceRange SR = D.getDeclSpec().getSourceRange();
4891             if (Loc.isInvalid()) {
4892               Loc = FTI.getTrailingReturnTypeLoc();
4893               SR = D.getSourceRange();
4894             }
4895             S.Diag(Loc, diag::err_trailing_return_without_auto) << T << SR;
4896             D.setInvalidType(true);
4897             // FIXME: recover and fill decls in `TypeLoc`s.
4898             AreDeclaratorChunksValid = false;
4899           }
4900           T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4901           if (T.isNull()) {
4902             // An error occurred parsing the trailing return type.
4903             T = Context.IntTy;
4904             D.setInvalidType(true);
4905           } else if (AutoType *Auto = T->getContainedAutoType()) {
4906             // If the trailing return type contains an `auto`, we may need to
4907             // invent a template parameter for it, for cases like
4908             // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4909             InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4910             if (D.getContext() == DeclaratorContext::Prototype)
4911               InventedParamInfo = &S.InventedParameterInfos.back();
4912             else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4913               InventedParamInfo = S.getCurLambda();
4914             if (InventedParamInfo) {
4915               std::tie(T, TInfo) = InventTemplateParameter(
4916                   state, T, TInfo, Auto, *InventedParamInfo);
4917             }
4918           }
4919         } else {
4920           // This function type is not the type of the entity being declared,
4921           // so checking the 'auto' is not the responsibility of this chunk.
4922         }
4923       }
4924 
4925       // C99 6.7.5.3p1: The return type may not be a function or array type.
4926       // For conversion functions, we'll diagnose this particular error later.
4927       if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4928           (D.getName().getKind() !=
4929            UnqualifiedIdKind::IK_ConversionFunctionId)) {
4930         unsigned diagID = diag::err_func_returning_array_function;
4931         // Last processing chunk in block context means this function chunk
4932         // represents the block.
4933         if (chunkIndex == 0 &&
4934             D.getContext() == DeclaratorContext::BlockLiteral)
4935           diagID = diag::err_block_returning_array_function;
4936         S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4937         T = Context.IntTy;
4938         D.setInvalidType(true);
4939         AreDeclaratorChunksValid = false;
4940       }
4941 
4942       // Do not allow returning half FP value.
4943       // FIXME: This really should be in BuildFunctionType.
4944       if (T->isHalfType()) {
4945         if (S.getLangOpts().OpenCL) {
4946           if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4947                                                       S.getLangOpts())) {
4948             S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4949                 << T << 0 /*pointer hint*/;
4950             D.setInvalidType(true);
4951           }
4952         } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4953                    !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4954           S.Diag(D.getIdentifierLoc(),
4955             diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4956           D.setInvalidType(true);
4957         }
4958       }
4959 
4960       if (LangOpts.OpenCL) {
4961         // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4962         // function.
4963         if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4964             T->isPipeType()) {
4965           S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4966               << T << 1 /*hint off*/;
4967           D.setInvalidType(true);
4968         }
4969         // OpenCL doesn't support variadic functions and blocks
4970         // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4971         // We also allow here any toolchain reserved identifiers.
4972         if (FTI.isVariadic &&
4973             !S.getOpenCLOptions().isAvailableOption(
4974                 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4975             !(D.getIdentifier() &&
4976               ((D.getIdentifier()->getName() == "printf" &&
4977                 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4978                D.getIdentifier()->getName().starts_with("__")))) {
4979           S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4980           D.setInvalidType(true);
4981         }
4982       }
4983 
4984       // Methods cannot return interface types. All ObjC objects are
4985       // passed by reference.
4986       if (T->isObjCObjectType()) {
4987         SourceLocation DiagLoc, FixitLoc;
4988         if (TInfo) {
4989           DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4990           FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4991         } else {
4992           DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4993           FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4994         }
4995         S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4996           << 0 << T
4997           << FixItHint::CreateInsertion(FixitLoc, "*");
4998 
4999         T = Context.getObjCObjectPointerType(T);
5000         if (TInfo) {
5001           TypeLocBuilder TLB;
5002           TLB.pushFullCopy(TInfo->getTypeLoc());
5003           ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5004           TLoc.setStarLoc(FixitLoc);
5005           TInfo = TLB.getTypeSourceInfo(Context, T);
5006         } else {
5007           AreDeclaratorChunksValid = false;
5008         }
5009 
5010         D.setInvalidType(true);
5011       }
5012 
5013       // cv-qualifiers on return types are pointless except when the type is a
5014       // class type in C++.
5015       if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5016           !(S.getLangOpts().CPlusPlus &&
5017             (T->isDependentType() || T->isRecordType()))) {
5018         if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5019             D.getFunctionDefinitionKind() ==
5020                 FunctionDefinitionKind::Definition) {
5021           // [6.9.1/3] qualified void return is invalid on a C
5022           // function definition.  Apparently ok on declarations and
5023           // in C++ though (!)
5024           S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5025         } else
5026           diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5027 
5028         // C++2a [dcl.fct]p12:
5029         //   A volatile-qualified return type is deprecated
5030         if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5031           S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5032       }
5033 
5034       // Objective-C ARC ownership qualifiers are ignored on the function
5035       // return type (by type canonicalization). Complain if this attribute
5036       // was written here.
5037       if (T.getQualifiers().hasObjCLifetime()) {
5038         SourceLocation AttrLoc;
5039         if (chunkIndex + 1 < D.getNumTypeObjects()) {
5040           DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5041           for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5042             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5043               AttrLoc = AL.getLoc();
5044               break;
5045             }
5046           }
5047         }
5048         if (AttrLoc.isInvalid()) {
5049           for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5050             if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5051               AttrLoc = AL.getLoc();
5052               break;
5053             }
5054           }
5055         }
5056 
5057         if (AttrLoc.isValid()) {
5058           // The ownership attributes are almost always written via
5059           // the predefined
5060           // __strong/__weak/__autoreleasing/__unsafe_unretained.
5061           if (AttrLoc.isMacroID())
5062             AttrLoc =
5063                 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5064 
5065           S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5066             << T.getQualifiers().getObjCLifetime();
5067         }
5068       }
5069 
5070       if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5071         // C++ [dcl.fct]p6:
5072         //   Types shall not be defined in return or parameter types.
5073         TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5074         S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5075           << Context.getTypeDeclType(Tag);
5076       }
5077 
5078       // Exception specs are not allowed in typedefs. Complain, but add it
5079       // anyway.
5080       if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5081         S.Diag(FTI.getExceptionSpecLocBeg(),
5082                diag::err_exception_spec_in_typedef)
5083             << (D.getContext() == DeclaratorContext::AliasDecl ||
5084                 D.getContext() == DeclaratorContext::AliasTemplate);
5085 
5086       // If we see "T var();" or "T var(T());" at block scope, it is probably
5087       // an attempt to initialize a variable, not a function declaration.
5088       if (FTI.isAmbiguous)
5089         warnAboutAmbiguousFunction(S, D, DeclType, T);
5090 
5091       FunctionType::ExtInfo EI(
5092           getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5093 
5094       // OpenCL disallows functions without a prototype, but it doesn't enforce
5095       // strict prototypes as in C23 because it allows a function definition to
5096       // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5097       if (!FTI.NumParams && !FTI.isVariadic &&
5098           !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5099         // Simple void foo(), where the incoming T is the result type.
5100         T = Context.getFunctionNoProtoType(T, EI);
5101       } else {
5102         // We allow a zero-parameter variadic function in C if the
5103         // function is marked with the "overloadable" attribute. Scan
5104         // for this attribute now. We also allow it in C23 per WG14 N2975.
5105         if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5106           if (LangOpts.C23)
5107             S.Diag(FTI.getEllipsisLoc(),
5108                    diag::warn_c17_compat_ellipsis_only_parameter);
5109           else if (!D.getDeclarationAttributes().hasAttribute(
5110                        ParsedAttr::AT_Overloadable) &&
5111                    !D.getAttributes().hasAttribute(
5112                        ParsedAttr::AT_Overloadable) &&
5113                    !D.getDeclSpec().getAttributes().hasAttribute(
5114                        ParsedAttr::AT_Overloadable))
5115             S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5116         }
5117 
5118         if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5119           // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5120           // definition.
5121           S.Diag(FTI.Params[0].IdentLoc,
5122                  diag::err_ident_list_in_fn_declaration);
5123           D.setInvalidType(true);
5124           // Recover by creating a K&R-style function type, if possible.
5125           T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5126                   ? Context.getFunctionNoProtoType(T, EI)
5127                   : Context.IntTy;
5128           AreDeclaratorChunksValid = false;
5129           break;
5130         }
5131 
5132         FunctionProtoType::ExtProtoInfo EPI;
5133         EPI.ExtInfo = EI;
5134         EPI.Variadic = FTI.isVariadic;
5135         EPI.EllipsisLoc = FTI.getEllipsisLoc();
5136         EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5137         EPI.TypeQuals.addCVRUQualifiers(
5138             FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5139                                  : 0);
5140         EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5141                     : FTI.RefQualifierIsLValueRef? RQ_LValue
5142                     : RQ_RValue;
5143 
5144         // Otherwise, we have a function with a parameter list that is
5145         // potentially variadic.
5146         SmallVector<QualType, 16> ParamTys;
5147         ParamTys.reserve(FTI.NumParams);
5148 
5149         SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5150           ExtParameterInfos(FTI.NumParams);
5151         bool HasAnyInterestingExtParameterInfos = false;
5152 
5153         for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5154           ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5155           QualType ParamTy = Param->getType();
5156           assert(!ParamTy.isNull() && "Couldn't parse type?");
5157 
5158           // Look for 'void'.  void is allowed only as a single parameter to a
5159           // function with no other parameters (C99 6.7.5.3p10).  We record
5160           // int(void) as a FunctionProtoType with an empty parameter list.
5161           if (ParamTy->isVoidType()) {
5162             // If this is something like 'float(int, void)', reject it.  'void'
5163             // is an incomplete type (C99 6.2.5p19) and function decls cannot
5164             // have parameters of incomplete type.
5165             if (FTI.NumParams != 1 || FTI.isVariadic) {
5166               S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5167               ParamTy = Context.IntTy;
5168               Param->setType(ParamTy);
5169             } else if (FTI.Params[i].Ident) {
5170               // Reject, but continue to parse 'int(void abc)'.
5171               S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5172               ParamTy = Context.IntTy;
5173               Param->setType(ParamTy);
5174             } else {
5175               // Reject, but continue to parse 'float(const void)'.
5176               if (ParamTy.hasQualifiers())
5177                 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5178 
5179               // Reject, but continue to parse 'float(this void)' as
5180               // 'float(void)'.
5181               if (Param->isExplicitObjectParameter()) {
5182                 S.Diag(Param->getLocation(),
5183                        diag::err_void_explicit_object_param);
5184                 Param->setExplicitObjectParameterLoc(SourceLocation());
5185               }
5186 
5187               // Do not add 'void' to the list.
5188               break;
5189             }
5190           } else if (ParamTy->isHalfType()) {
5191             // Disallow half FP parameters.
5192             // FIXME: This really should be in BuildFunctionType.
5193             if (S.getLangOpts().OpenCL) {
5194               if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5195                                                           S.getLangOpts())) {
5196                 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5197                     << ParamTy << 0;
5198                 D.setInvalidType();
5199                 Param->setInvalidDecl();
5200               }
5201             } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5202                        !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5203               S.Diag(Param->getLocation(),
5204                 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5205               D.setInvalidType();
5206             }
5207           } else if (!FTI.hasPrototype) {
5208             if (Context.isPromotableIntegerType(ParamTy)) {
5209               ParamTy = Context.getPromotedIntegerType(ParamTy);
5210               Param->setKNRPromoted(true);
5211             } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5212               if (BTy->getKind() == BuiltinType::Float) {
5213                 ParamTy = Context.DoubleTy;
5214                 Param->setKNRPromoted(true);
5215               }
5216             }
5217           } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5218             // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5219             S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5220                 << ParamTy << 1 /*hint off*/;
5221             D.setInvalidType();
5222           }
5223 
5224           if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5225             ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5226             HasAnyInterestingExtParameterInfos = true;
5227           }
5228 
5229           if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5230             ExtParameterInfos[i] =
5231               ExtParameterInfos[i].withABI(attr->getABI());
5232             HasAnyInterestingExtParameterInfos = true;
5233           }
5234 
5235           if (Param->hasAttr<PassObjectSizeAttr>()) {
5236             ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5237             HasAnyInterestingExtParameterInfos = true;
5238           }
5239 
5240           if (Param->hasAttr<NoEscapeAttr>()) {
5241             ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5242             HasAnyInterestingExtParameterInfos = true;
5243           }
5244 
5245           ParamTys.push_back(ParamTy);
5246         }
5247 
5248         if (HasAnyInterestingExtParameterInfos) {
5249           EPI.ExtParameterInfos = ExtParameterInfos.data();
5250           checkExtParameterInfos(S, ParamTys, EPI,
5251               [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5252         }
5253 
5254         SmallVector<QualType, 4> Exceptions;
5255         SmallVector<ParsedType, 2> DynamicExceptions;
5256         SmallVector<SourceRange, 2> DynamicExceptionRanges;
5257         Expr *NoexceptExpr = nullptr;
5258 
5259         if (FTI.getExceptionSpecType() == EST_Dynamic) {
5260           // FIXME: It's rather inefficient to have to split into two vectors
5261           // here.
5262           unsigned N = FTI.getNumExceptions();
5263           DynamicExceptions.reserve(N);
5264           DynamicExceptionRanges.reserve(N);
5265           for (unsigned I = 0; I != N; ++I) {
5266             DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5267             DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5268           }
5269         } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5270           NoexceptExpr = FTI.NoexceptExpr;
5271         }
5272 
5273         S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5274                                       FTI.getExceptionSpecType(),
5275                                       DynamicExceptions,
5276                                       DynamicExceptionRanges,
5277                                       NoexceptExpr,
5278                                       Exceptions,
5279                                       EPI.ExceptionSpec);
5280 
5281         // FIXME: Set address space from attrs for C++ mode here.
5282         // OpenCLCPlusPlus: A class member function has an address space.
5283         auto IsClassMember = [&]() {
5284           return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5285                   state.getDeclarator()
5286                           .getCXXScopeSpec()
5287                           .getScopeRep()
5288                           ->getKind() == NestedNameSpecifier::TypeSpec) ||
5289                  state.getDeclarator().getContext() ==
5290                      DeclaratorContext::Member ||
5291                  state.getDeclarator().getContext() ==
5292                      DeclaratorContext::LambdaExpr;
5293         };
5294 
5295         if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5296           LangAS ASIdx = LangAS::Default;
5297           // Take address space attr if any and mark as invalid to avoid adding
5298           // them later while creating QualType.
5299           if (FTI.MethodQualifiers)
5300             for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5301               LangAS ASIdxNew = attr.asOpenCLLangAS();
5302               if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5303                                                       attr.getLoc()))
5304                 D.setInvalidType(true);
5305               else
5306                 ASIdx = ASIdxNew;
5307             }
5308           // If a class member function's address space is not set, set it to
5309           // __generic.
5310           LangAS AS =
5311               (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5312                                         : ASIdx);
5313           EPI.TypeQuals.addAddressSpace(AS);
5314         }
5315         T = Context.getFunctionType(T, ParamTys, EPI);
5316       }
5317       break;
5318     }
5319     case DeclaratorChunk::MemberPointer: {
5320       // The scope spec must refer to a class, or be dependent.
5321       CXXScopeSpec &SS = DeclType.Mem.Scope();
5322       QualType ClsType;
5323 
5324       // Handle pointer nullability.
5325       inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5326                               DeclType.EndLoc, DeclType.getAttrs(),
5327                               state.getDeclarator().getAttributePool());
5328 
5329       if (SS.isInvalid()) {
5330         // Avoid emitting extra errors if we already errored on the scope.
5331         D.setInvalidType(true);
5332       } else if (S.isDependentScopeSpecifier(SS) ||
5333                  isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5334         NestedNameSpecifier *NNS = SS.getScopeRep();
5335         NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5336         switch (NNS->getKind()) {
5337         case NestedNameSpecifier::Identifier:
5338           ClsType = Context.getDependentNameType(
5339               ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5340           break;
5341 
5342         case NestedNameSpecifier::Namespace:
5343         case NestedNameSpecifier::NamespaceAlias:
5344         case NestedNameSpecifier::Global:
5345         case NestedNameSpecifier::Super:
5346           llvm_unreachable("Nested-name-specifier must name a type");
5347 
5348         case NestedNameSpecifier::TypeSpec:
5349         case NestedNameSpecifier::TypeSpecWithTemplate:
5350           ClsType = QualType(NNS->getAsType(), 0);
5351           // Note: if the NNS has a prefix and ClsType is a nondependent
5352           // TemplateSpecializationType, then the NNS prefix is NOT included
5353           // in ClsType; hence we wrap ClsType into an ElaboratedType.
5354           // NOTE: in particular, no wrap occurs if ClsType already is an
5355           // Elaborated, DependentName, or DependentTemplateSpecialization.
5356           if (isa<TemplateSpecializationType>(NNS->getAsType()))
5357             ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5358                                                 NNSPrefix, ClsType);
5359           break;
5360         }
5361       } else {
5362         S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5363              diag::err_illegal_decl_mempointer_in_nonclass)
5364           << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5365           << DeclType.Mem.Scope().getRange();
5366         D.setInvalidType(true);
5367       }
5368 
5369       if (!ClsType.isNull())
5370         T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5371                                      D.getIdentifier());
5372       else
5373         AreDeclaratorChunksValid = false;
5374 
5375       if (T.isNull()) {
5376         T = Context.IntTy;
5377         D.setInvalidType(true);
5378         AreDeclaratorChunksValid = false;
5379       } else if (DeclType.Mem.TypeQuals) {
5380         T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5381       }
5382       break;
5383     }
5384 
5385     case DeclaratorChunk::Pipe: {
5386       T = S.BuildReadPipeType(T, DeclType.Loc);
5387       processTypeAttrs(state, T, TAL_DeclSpec,
5388                        D.getMutableDeclSpec().getAttributes());
5389       break;
5390     }
5391     }
5392 
5393     if (T.isNull()) {
5394       D.setInvalidType(true);
5395       T = Context.IntTy;
5396       AreDeclaratorChunksValid = false;
5397     }
5398 
5399     // See if there are any attributes on this declarator chunk.
5400     processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5401                      S.CUDA().IdentifyTarget(D.getAttributes()));
5402 
5403     if (DeclType.Kind != DeclaratorChunk::Paren) {
5404       if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5405         S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5406 
5407       ExpectNoDerefChunk = state.didParseNoDeref();
5408     }
5409   }
5410 
5411   if (ExpectNoDerefChunk)
5412     S.Diag(state.getDeclarator().getBeginLoc(),
5413            diag::warn_noderef_on_non_pointer_or_array);
5414 
5415   // GNU warning -Wstrict-prototypes
5416   //   Warn if a function declaration or definition is without a prototype.
5417   //   This warning is issued for all kinds of unprototyped function
5418   //   declarations (i.e. function type typedef, function pointer etc.)
5419   //   C99 6.7.5.3p14:
5420   //   The empty list in a function declarator that is not part of a definition
5421   //   of that function specifies that no information about the number or types
5422   //   of the parameters is supplied.
5423   // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5424   // function declarations whose behavior changes in C23.
5425   if (!LangOpts.requiresStrictPrototypes()) {
5426     bool IsBlock = false;
5427     for (const DeclaratorChunk &DeclType : D.type_objects()) {
5428       switch (DeclType.Kind) {
5429       case DeclaratorChunk::BlockPointer:
5430         IsBlock = true;
5431         break;
5432       case DeclaratorChunk::Function: {
5433         const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5434         // We suppress the warning when there's no LParen location, as this
5435         // indicates the declaration was an implicit declaration, which gets
5436         // warned about separately via -Wimplicit-function-declaration. We also
5437         // suppress the warning when we know the function has a prototype.
5438         if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5439             FTI.getLParenLoc().isValid())
5440           S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5441               << IsBlock
5442               << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5443         IsBlock = false;
5444         break;
5445       }
5446       default:
5447         break;
5448       }
5449     }
5450   }
5451 
5452   assert(!T.isNull() && "T must not be null after this point");
5453 
5454   if (LangOpts.CPlusPlus && T->isFunctionType()) {
5455     const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5456     assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5457 
5458     // C++ 8.3.5p4:
5459     //   A cv-qualifier-seq shall only be part of the function type
5460     //   for a nonstatic member function, the function type to which a pointer
5461     //   to member refers, or the top-level function type of a function typedef
5462     //   declaration.
5463     //
5464     // Core issue 547 also allows cv-qualifiers on function types that are
5465     // top-level template type arguments.
5466     enum {
5467       NonMember,
5468       Member,
5469       ExplicitObjectMember,
5470       DeductionGuide
5471     } Kind = NonMember;
5472     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5473       Kind = DeductionGuide;
5474     else if (!D.getCXXScopeSpec().isSet()) {
5475       if ((D.getContext() == DeclaratorContext::Member ||
5476            D.getContext() == DeclaratorContext::LambdaExpr) &&
5477           !D.getDeclSpec().isFriendSpecified())
5478         Kind = Member;
5479     } else {
5480       DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5481       if (!DC || DC->isRecord())
5482         Kind = Member;
5483     }
5484 
5485     if (Kind == Member) {
5486       unsigned I;
5487       if (D.isFunctionDeclarator(I)) {
5488         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5489         if (Chunk.Fun.NumParams) {
5490           auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5491           if (P && P->isExplicitObjectParameter())
5492             Kind = ExplicitObjectMember;
5493         }
5494       }
5495     }
5496 
5497     // C++11 [dcl.fct]p6 (w/DR1417):
5498     // An attempt to specify a function type with a cv-qualifier-seq or a
5499     // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5500     //  - the function type for a non-static member function,
5501     //  - the function type to which a pointer to member refers,
5502     //  - the top-level function type of a function typedef declaration or
5503     //    alias-declaration,
5504     //  - the type-id in the default argument of a type-parameter, or
5505     //  - the type-id of a template-argument for a type-parameter
5506     //
5507     // C++23 [dcl.fct]p6 (P0847R7)
5508     // ... A member-declarator with an explicit-object-parameter-declaration
5509     // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5510     // declared static or virtual ...
5511     //
5512     // FIXME: Checking this here is insufficient. We accept-invalid on:
5513     //
5514     //   template<typename T> struct S { void f(T); };
5515     //   S<int() const> s;
5516     //
5517     // ... for instance.
5518     if (IsQualifiedFunction &&
5519         // Check for non-static member function and not and
5520         // explicit-object-parameter-declaration
5521         (Kind != Member || D.isExplicitObjectMemberFunction() ||
5522          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5523          (D.getContext() == clang::DeclaratorContext::Member &&
5524           D.isStaticMember())) &&
5525         !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5526         D.getContext() != DeclaratorContext::TemplateTypeArg) {
5527       SourceLocation Loc = D.getBeginLoc();
5528       SourceRange RemovalRange;
5529       unsigned I;
5530       if (D.isFunctionDeclarator(I)) {
5531         SmallVector<SourceLocation, 4> RemovalLocs;
5532         const DeclaratorChunk &Chunk = D.getTypeObject(I);
5533         assert(Chunk.Kind == DeclaratorChunk::Function);
5534 
5535         if (Chunk.Fun.hasRefQualifier())
5536           RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5537 
5538         if (Chunk.Fun.hasMethodTypeQualifiers())
5539           Chunk.Fun.MethodQualifiers->forEachQualifier(
5540               [&](DeclSpec::TQ TypeQual, StringRef QualName,
5541                   SourceLocation SL) { RemovalLocs.push_back(SL); });
5542 
5543         if (!RemovalLocs.empty()) {
5544           llvm::sort(RemovalLocs,
5545                      BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5546           RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5547           Loc = RemovalLocs.front();
5548         }
5549       }
5550 
5551       S.Diag(Loc, diag::err_invalid_qualified_function_type)
5552         << Kind << D.isFunctionDeclarator() << T
5553         << getFunctionQualifiersAsString(FnTy)
5554         << FixItHint::CreateRemoval(RemovalRange);
5555 
5556       // Strip the cv-qualifiers and ref-qualifiers from the type.
5557       FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5558       EPI.TypeQuals.removeCVRQualifiers();
5559       EPI.RefQualifier = RQ_None;
5560 
5561       T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5562                                   EPI);
5563       // Rebuild any parens around the identifier in the function type.
5564       for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5565         if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5566           break;
5567         T = S.BuildParenType(T);
5568       }
5569     }
5570   }
5571 
5572   // Apply any undistributed attributes from the declaration or declarator.
5573   ParsedAttributesView NonSlidingAttrs;
5574   for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5575     if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5576       NonSlidingAttrs.addAtEnd(&AL);
5577     }
5578   }
5579   processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5580   processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5581 
5582   // Diagnose any ignored type attributes.
5583   state.diagnoseIgnoredTypeAttrs(T);
5584 
5585   // C++0x [dcl.constexpr]p9:
5586   //  A constexpr specifier used in an object declaration declares the object
5587   //  as const.
5588   if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5589       T->isObjectType())
5590     T.addConst();
5591 
5592   // C++2a [dcl.fct]p4:
5593   //   A parameter with volatile-qualified type is deprecated
5594   if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5595       (D.getContext() == DeclaratorContext::Prototype ||
5596        D.getContext() == DeclaratorContext::LambdaExprParameter))
5597     S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5598 
5599   // If there was an ellipsis in the declarator, the declaration declares a
5600   // parameter pack whose type may be a pack expansion type.
5601   if (D.hasEllipsis()) {
5602     // C++0x [dcl.fct]p13:
5603     //   A declarator-id or abstract-declarator containing an ellipsis shall
5604     //   only be used in a parameter-declaration. Such a parameter-declaration
5605     //   is a parameter pack (14.5.3). [...]
5606     switch (D.getContext()) {
5607     case DeclaratorContext::Prototype:
5608     case DeclaratorContext::LambdaExprParameter:
5609     case DeclaratorContext::RequiresExpr:
5610       // C++0x [dcl.fct]p13:
5611       //   [...] When it is part of a parameter-declaration-clause, the
5612       //   parameter pack is a function parameter pack (14.5.3). The type T
5613       //   of the declarator-id of the function parameter pack shall contain
5614       //   a template parameter pack; each template parameter pack in T is
5615       //   expanded by the function parameter pack.
5616       //
5617       // We represent function parameter packs as function parameters whose
5618       // type is a pack expansion.
5619       if (!T->containsUnexpandedParameterPack() &&
5620           (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5621         S.Diag(D.getEllipsisLoc(),
5622              diag::err_function_parameter_pack_without_parameter_packs)
5623           << T <<  D.getSourceRange();
5624         D.setEllipsisLoc(SourceLocation());
5625       } else {
5626         T = Context.getPackExpansionType(T, std::nullopt,
5627                                          /*ExpectPackInType=*/false);
5628       }
5629       break;
5630     case DeclaratorContext::TemplateParam:
5631       // C++0x [temp.param]p15:
5632       //   If a template-parameter is a [...] is a parameter-declaration that
5633       //   declares a parameter pack (8.3.5), then the template-parameter is a
5634       //   template parameter pack (14.5.3).
5635       //
5636       // Note: core issue 778 clarifies that, if there are any unexpanded
5637       // parameter packs in the type of the non-type template parameter, then
5638       // it expands those parameter packs.
5639       if (T->containsUnexpandedParameterPack())
5640         T = Context.getPackExpansionType(T, std::nullopt);
5641       else
5642         S.Diag(D.getEllipsisLoc(),
5643                LangOpts.CPlusPlus11
5644                  ? diag::warn_cxx98_compat_variadic_templates
5645                  : diag::ext_variadic_templates);
5646       break;
5647 
5648     case DeclaratorContext::File:
5649     case DeclaratorContext::KNRTypeList:
5650     case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5651     case DeclaratorContext::ObjCResult:    // FIXME: special diagnostic here?
5652     case DeclaratorContext::TypeName:
5653     case DeclaratorContext::FunctionalCast:
5654     case DeclaratorContext::CXXNew:
5655     case DeclaratorContext::AliasDecl:
5656     case DeclaratorContext::AliasTemplate:
5657     case DeclaratorContext::Member:
5658     case DeclaratorContext::Block:
5659     case DeclaratorContext::ForInit:
5660     case DeclaratorContext::SelectionInit:
5661     case DeclaratorContext::Condition:
5662     case DeclaratorContext::CXXCatch:
5663     case DeclaratorContext::ObjCCatch:
5664     case DeclaratorContext::BlockLiteral:
5665     case DeclaratorContext::LambdaExpr:
5666     case DeclaratorContext::ConversionId:
5667     case DeclaratorContext::TrailingReturn:
5668     case DeclaratorContext::TrailingReturnVar:
5669     case DeclaratorContext::TemplateArg:
5670     case DeclaratorContext::TemplateTypeArg:
5671     case DeclaratorContext::Association:
5672       // FIXME: We may want to allow parameter packs in block-literal contexts
5673       // in the future.
5674       S.Diag(D.getEllipsisLoc(),
5675              diag::err_ellipsis_in_declarator_not_parameter);
5676       D.setEllipsisLoc(SourceLocation());
5677       break;
5678     }
5679   }
5680 
5681   assert(!T.isNull() && "T must not be null at the end of this function");
5682   if (!AreDeclaratorChunksValid)
5683     return Context.getTrivialTypeSourceInfo(T);
5684   return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5685 }
5686 
5687 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5688   // Determine the type of the declarator. Not all forms of declarator
5689   // have a type.
5690 
5691   TypeProcessingState state(*this, D);
5692 
5693   TypeSourceInfo *ReturnTypeInfo = nullptr;
5694   QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5695   if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5696     inferARCWriteback(state, T);
5697 
5698   return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5699 }
5700 
5701 static void transferARCOwnershipToDeclSpec(Sema &S,
5702                                            QualType &declSpecTy,
5703                                            Qualifiers::ObjCLifetime ownership) {
5704   if (declSpecTy->isObjCRetainableType() &&
5705       declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5706     Qualifiers qs;
5707     qs.addObjCLifetime(ownership);
5708     declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5709   }
5710 }
5711 
5712 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5713                                             Qualifiers::ObjCLifetime ownership,
5714                                             unsigned chunkIndex) {
5715   Sema &S = state.getSema();
5716   Declarator &D = state.getDeclarator();
5717 
5718   // Look for an explicit lifetime attribute.
5719   DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5720   if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5721     return;
5722 
5723   const char *attrStr = nullptr;
5724   switch (ownership) {
5725   case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5726   case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5727   case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5728   case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5729   case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5730   }
5731 
5732   IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5733   Arg->Ident = &S.Context.Idents.get(attrStr);
5734   Arg->Loc = SourceLocation();
5735 
5736   ArgsUnion Args(Arg);
5737 
5738   // If there wasn't one, add one (with an invalid source location
5739   // so that we don't make an AttributedType for it).
5740   ParsedAttr *attr = D.getAttributePool().create(
5741       &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5742       /*scope*/ nullptr, SourceLocation(),
5743       /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5744   chunk.getAttrs().addAtEnd(attr);
5745   // TODO: mark whether we did this inference?
5746 }
5747 
5748 /// Used for transferring ownership in casts resulting in l-values.
5749 static void transferARCOwnership(TypeProcessingState &state,
5750                                  QualType &declSpecTy,
5751                                  Qualifiers::ObjCLifetime ownership) {
5752   Sema &S = state.getSema();
5753   Declarator &D = state.getDeclarator();
5754 
5755   int inner = -1;
5756   bool hasIndirection = false;
5757   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5758     DeclaratorChunk &chunk = D.getTypeObject(i);
5759     switch (chunk.Kind) {
5760     case DeclaratorChunk::Paren:
5761       // Ignore parens.
5762       break;
5763 
5764     case DeclaratorChunk::Array:
5765     case DeclaratorChunk::Reference:
5766     case DeclaratorChunk::Pointer:
5767       if (inner != -1)
5768         hasIndirection = true;
5769       inner = i;
5770       break;
5771 
5772     case DeclaratorChunk::BlockPointer:
5773       if (inner != -1)
5774         transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5775       return;
5776 
5777     case DeclaratorChunk::Function:
5778     case DeclaratorChunk::MemberPointer:
5779     case DeclaratorChunk::Pipe:
5780       return;
5781     }
5782   }
5783 
5784   if (inner == -1)
5785     return;
5786 
5787   DeclaratorChunk &chunk = D.getTypeObject(inner);
5788   if (chunk.Kind == DeclaratorChunk::Pointer) {
5789     if (declSpecTy->isObjCRetainableType())
5790       return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5791     if (declSpecTy->isObjCObjectType() && hasIndirection)
5792       return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5793   } else {
5794     assert(chunk.Kind == DeclaratorChunk::Array ||
5795            chunk.Kind == DeclaratorChunk::Reference);
5796     return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5797   }
5798 }
5799 
5800 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5801   TypeProcessingState state(*this, D);
5802 
5803   TypeSourceInfo *ReturnTypeInfo = nullptr;
5804   QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5805 
5806   if (getLangOpts().ObjC) {
5807     Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5808     if (ownership != Qualifiers::OCL_None)
5809       transferARCOwnership(state, declSpecTy, ownership);
5810   }
5811 
5812   return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5813 }
5814 
5815 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5816                                   TypeProcessingState &State) {
5817   TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5818 }
5819 
5820 static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL,
5821                                               TypeProcessingState &State) {
5822   HLSLAttributedResourceLocInfo LocInfo =
5823       State.getSema().HLSL().TakeLocForHLSLAttribute(TL.getTypePtr());
5824   TL.setSourceRange(LocInfo.Range);
5825   TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo);
5826 }
5827 
5828 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5829                               const ParsedAttributesView &Attrs) {
5830   for (const ParsedAttr &AL : Attrs) {
5831     if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5832       MTL.setAttrNameLoc(AL.getLoc());
5833       MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5834       MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5835       MTL.setAttrOperandParensRange(SourceRange());
5836       return;
5837     }
5838   }
5839 
5840   llvm_unreachable("no matrix_type attribute found at the expected location!");
5841 }
5842 
5843 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5844   SourceLocation Loc;
5845   switch (Chunk.Kind) {
5846   case DeclaratorChunk::Function:
5847   case DeclaratorChunk::Array:
5848   case DeclaratorChunk::Paren:
5849   case DeclaratorChunk::Pipe:
5850     llvm_unreachable("cannot be _Atomic qualified");
5851 
5852   case DeclaratorChunk::Pointer:
5853     Loc = Chunk.Ptr.AtomicQualLoc;
5854     break;
5855 
5856   case DeclaratorChunk::BlockPointer:
5857   case DeclaratorChunk::Reference:
5858   case DeclaratorChunk::MemberPointer:
5859     // FIXME: Provide a source location for the _Atomic keyword.
5860     break;
5861   }
5862 
5863   ATL.setKWLoc(Loc);
5864   ATL.setParensRange(SourceRange());
5865 }
5866 
5867 namespace {
5868   class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5869     Sema &SemaRef;
5870     ASTContext &Context;
5871     TypeProcessingState &State;
5872     const DeclSpec &DS;
5873 
5874   public:
5875     TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5876                       const DeclSpec &DS)
5877         : SemaRef(S), Context(Context), State(State), DS(DS) {}
5878 
5879     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5880       Visit(TL.getModifiedLoc());
5881       fillAttributedTypeLoc(TL, State);
5882     }
5883     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5884       Visit(TL.getWrappedLoc());
5885     }
5886     void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) {
5887       Visit(TL.getWrappedLoc());
5888       fillHLSLAttributedResourceTypeLoc(TL, State);
5889     }
5890     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5891       Visit(TL.getInnerLoc());
5892       TL.setExpansionLoc(
5893           State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5894     }
5895     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5896       Visit(TL.getUnqualifiedLoc());
5897     }
5898     // Allow to fill pointee's type locations, e.g.,
5899     //   int __attr * __attr * __attr *p;
5900     void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5901     void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5902       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5903     }
5904     void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5905       TL.setNameLoc(DS.getTypeSpecTypeLoc());
5906       // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5907       // addition field. What we have is good enough for display of location
5908       // of 'fixit' on interface name.
5909       TL.setNameEndLoc(DS.getEndLoc());
5910     }
5911     void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5912       TypeSourceInfo *RepTInfo = nullptr;
5913       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5914       TL.copy(RepTInfo->getTypeLoc());
5915     }
5916     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5917       TypeSourceInfo *RepTInfo = nullptr;
5918       Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5919       TL.copy(RepTInfo->getTypeLoc());
5920     }
5921     void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5922       TypeSourceInfo *TInfo = nullptr;
5923       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5924 
5925       // If we got no declarator info from previous Sema routines,
5926       // just fill with the typespec loc.
5927       if (!TInfo) {
5928         TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5929         return;
5930       }
5931 
5932       TypeLoc OldTL = TInfo->getTypeLoc();
5933       if (TInfo->getType()->getAs<ElaboratedType>()) {
5934         ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5935         TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5936             .castAs<TemplateSpecializationTypeLoc>();
5937         TL.copy(NamedTL);
5938       } else {
5939         TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5940         assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5941       }
5942 
5943     }
5944     void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5945       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5946              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5947       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5948       TL.setParensRange(DS.getTypeofParensRange());
5949     }
5950     void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5951       assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5952              DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5953       TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5954       TL.setParensRange(DS.getTypeofParensRange());
5955       assert(DS.getRepAsType());
5956       TypeSourceInfo *TInfo = nullptr;
5957       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5958       TL.setUnmodifiedTInfo(TInfo);
5959     }
5960     void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5961       assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5962       TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5963       TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5964     }
5965     void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5966       assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5967       TL.setEllipsisLoc(DS.getEllipsisLoc());
5968     }
5969     void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5970       assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5971       TL.setKWLoc(DS.getTypeSpecTypeLoc());
5972       TL.setParensRange(DS.getTypeofParensRange());
5973       assert(DS.getRepAsType());
5974       TypeSourceInfo *TInfo = nullptr;
5975       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5976       TL.setUnderlyingTInfo(TInfo);
5977     }
5978     void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5979       // By default, use the source location of the type specifier.
5980       TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5981       if (TL.needsExtraLocalData()) {
5982         // Set info for the written builtin specifiers.
5983         TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5984         // Try to have a meaningful source location.
5985         if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5986           TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5987         if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5988           TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5989       }
5990     }
5991     void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5992       if (DS.getTypeSpecType() == TST_typename) {
5993         TypeSourceInfo *TInfo = nullptr;
5994         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5995         if (TInfo)
5996           if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
5997             TL.copy(ETL);
5998             return;
5999           }
6000       }
6001       const ElaboratedType *T = TL.getTypePtr();
6002       TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
6003                                      ? DS.getTypeSpecTypeLoc()
6004                                      : SourceLocation());
6005       const CXXScopeSpec& SS = DS.getTypeSpecScope();
6006       TL.setQualifierLoc(SS.getWithLocInContext(Context));
6007       Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6008     }
6009     void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6010       assert(DS.getTypeSpecType() == TST_typename);
6011       TypeSourceInfo *TInfo = nullptr;
6012       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6013       assert(TInfo);
6014       TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6015     }
6016     void VisitDependentTemplateSpecializationTypeLoc(
6017                                  DependentTemplateSpecializationTypeLoc TL) {
6018       assert(DS.getTypeSpecType() == TST_typename);
6019       TypeSourceInfo *TInfo = nullptr;
6020       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6021       assert(TInfo);
6022       TL.copy(
6023           TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6024     }
6025     void VisitAutoTypeLoc(AutoTypeLoc TL) {
6026       assert(DS.getTypeSpecType() == TST_auto ||
6027              DS.getTypeSpecType() == TST_decltype_auto ||
6028              DS.getTypeSpecType() == TST_auto_type ||
6029              DS.getTypeSpecType() == TST_unspecified);
6030       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6031       if (DS.getTypeSpecType() == TST_decltype_auto)
6032         TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6033       if (!DS.isConstrainedAuto())
6034         return;
6035       TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6036       if (!TemplateId)
6037         return;
6038 
6039       NestedNameSpecifierLoc NNS =
6040           (DS.getTypeSpecScope().isNotEmpty()
6041                ? DS.getTypeSpecScope().getWithLocInContext(Context)
6042                : NestedNameSpecifierLoc());
6043       TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6044                                                 TemplateId->RAngleLoc);
6045       if (TemplateId->NumArgs > 0) {
6046         ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6047                                            TemplateId->NumArgs);
6048         SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6049       }
6050       DeclarationNameInfo DNI = DeclarationNameInfo(
6051           TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6052           TemplateId->TemplateNameLoc);
6053 
6054       NamedDecl *FoundDecl;
6055       if (auto TN = TemplateId->Template.get();
6056           UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
6057         FoundDecl = cast<NamedDecl>(USD);
6058       else
6059         FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
6060 
6061       auto *CR = ConceptReference::Create(
6062           Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
6063           /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
6064           ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
6065       TL.setConceptReference(CR);
6066     }
6067     void VisitTagTypeLoc(TagTypeLoc TL) {
6068       TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6069     }
6070     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6071       // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6072       // or an _Atomic qualifier.
6073       if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6074         TL.setKWLoc(DS.getTypeSpecTypeLoc());
6075         TL.setParensRange(DS.getTypeofParensRange());
6076 
6077         TypeSourceInfo *TInfo = nullptr;
6078         Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6079         assert(TInfo);
6080         TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6081       } else {
6082         TL.setKWLoc(DS.getAtomicSpecLoc());
6083         // No parens, to indicate this was spelled as an _Atomic qualifier.
6084         TL.setParensRange(SourceRange());
6085         Visit(TL.getValueLoc());
6086       }
6087     }
6088 
6089     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6090       TL.setKWLoc(DS.getTypeSpecTypeLoc());
6091 
6092       TypeSourceInfo *TInfo = nullptr;
6093       Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6094       TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6095     }
6096 
6097     void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6098       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6099     }
6100 
6101     void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6102       TL.setNameLoc(DS.getTypeSpecTypeLoc());
6103     }
6104 
6105     void VisitTypeLoc(TypeLoc TL) {
6106       // FIXME: add other typespec types and change this to an assert.
6107       TL.initialize(Context, DS.getTypeSpecTypeLoc());
6108     }
6109   };
6110 
6111   class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6112     ASTContext &Context;
6113     TypeProcessingState &State;
6114     const DeclaratorChunk &Chunk;
6115 
6116   public:
6117     DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6118                         const DeclaratorChunk &Chunk)
6119         : Context(Context), State(State), Chunk(Chunk) {}
6120 
6121     void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6122       llvm_unreachable("qualified type locs not expected here!");
6123     }
6124     void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6125       llvm_unreachable("decayed type locs not expected here!");
6126     }
6127     void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6128       llvm_unreachable("array parameter type locs not expected here!");
6129     }
6130 
6131     void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6132       fillAttributedTypeLoc(TL, State);
6133     }
6134     void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6135       // nothing
6136     }
6137     void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6138       // nothing
6139     }
6140     void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6141       // nothing
6142     }
6143     void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6144       assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6145       TL.setCaretLoc(Chunk.Loc);
6146     }
6147     void VisitPointerTypeLoc(PointerTypeLoc TL) {
6148       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6149       TL.setStarLoc(Chunk.Loc);
6150     }
6151     void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6152       assert(Chunk.Kind == DeclaratorChunk::Pointer);
6153       TL.setStarLoc(Chunk.Loc);
6154     }
6155     void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6156       assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6157       const CXXScopeSpec& SS = Chunk.Mem.Scope();
6158       NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6159 
6160       const Type* ClsTy = TL.getClass();
6161       QualType ClsQT = QualType(ClsTy, 0);
6162       TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6163       // Now copy source location info into the type loc component.
6164       TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6165       switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6166       case NestedNameSpecifier::Identifier:
6167         assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6168         {
6169           DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6170           DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6171           DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6172           DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6173         }
6174         break;
6175 
6176       case NestedNameSpecifier::TypeSpec:
6177       case NestedNameSpecifier::TypeSpecWithTemplate:
6178         if (isa<ElaboratedType>(ClsTy)) {
6179           ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6180           ETLoc.setElaboratedKeywordLoc(SourceLocation());
6181           ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6182           TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6183           NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6184         } else {
6185           ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6186         }
6187         break;
6188 
6189       case NestedNameSpecifier::Namespace:
6190       case NestedNameSpecifier::NamespaceAlias:
6191       case NestedNameSpecifier::Global:
6192       case NestedNameSpecifier::Super:
6193         llvm_unreachable("Nested-name-specifier must name a type");
6194       }
6195 
6196       // Finally fill in MemberPointerLocInfo fields.
6197       TL.setStarLoc(Chunk.Mem.StarLoc);
6198       TL.setClassTInfo(ClsTInfo);
6199     }
6200     void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6201       assert(Chunk.Kind == DeclaratorChunk::Reference);
6202       // 'Amp' is misleading: this might have been originally
6203       /// spelled with AmpAmp.
6204       TL.setAmpLoc(Chunk.Loc);
6205     }
6206     void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6207       assert(Chunk.Kind == DeclaratorChunk::Reference);
6208       assert(!Chunk.Ref.LValueRef);
6209       TL.setAmpAmpLoc(Chunk.Loc);
6210     }
6211     void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6212       assert(Chunk.Kind == DeclaratorChunk::Array);
6213       TL.setLBracketLoc(Chunk.Loc);
6214       TL.setRBracketLoc(Chunk.EndLoc);
6215       TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6216     }
6217     void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6218       assert(Chunk.Kind == DeclaratorChunk::Function);
6219       TL.setLocalRangeBegin(Chunk.Loc);
6220       TL.setLocalRangeEnd(Chunk.EndLoc);
6221 
6222       const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6223       TL.setLParenLoc(FTI.getLParenLoc());
6224       TL.setRParenLoc(FTI.getRParenLoc());
6225       for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6226         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6227         TL.setParam(tpi++, Param);
6228       }
6229       TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6230     }
6231     void VisitParenTypeLoc(ParenTypeLoc TL) {
6232       assert(Chunk.Kind == DeclaratorChunk::Paren);
6233       TL.setLParenLoc(Chunk.Loc);
6234       TL.setRParenLoc(Chunk.EndLoc);
6235     }
6236     void VisitPipeTypeLoc(PipeTypeLoc TL) {
6237       assert(Chunk.Kind == DeclaratorChunk::Pipe);
6238       TL.setKWLoc(Chunk.Loc);
6239     }
6240     void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6241       TL.setNameLoc(Chunk.Loc);
6242     }
6243     void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6244       TL.setExpansionLoc(Chunk.Loc);
6245     }
6246     void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6247     void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6248       TL.setNameLoc(Chunk.Loc);
6249     }
6250     void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6251       TL.setNameLoc(Chunk.Loc);
6252     }
6253     void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6254       fillAtomicQualLoc(TL, Chunk);
6255     }
6256     void
6257     VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6258       TL.setNameLoc(Chunk.Loc);
6259     }
6260     void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6261       fillMatrixTypeLoc(TL, Chunk.getAttrs());
6262     }
6263 
6264     void VisitTypeLoc(TypeLoc TL) {
6265       llvm_unreachable("unsupported TypeLoc kind in declarator!");
6266     }
6267   };
6268 } // end anonymous namespace
6269 
6270 static void
6271 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6272                                  const ParsedAttributesView &Attrs) {
6273   for (const ParsedAttr &AL : Attrs) {
6274     if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6275       DASTL.setAttrNameLoc(AL.getLoc());
6276       DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6277       DASTL.setAttrOperandParensRange(SourceRange());
6278       return;
6279     }
6280   }
6281 
6282   llvm_unreachable(
6283       "no address_space attribute found at the expected location!");
6284 }
6285 
6286 /// Create and instantiate a TypeSourceInfo with type source information.
6287 ///
6288 /// \param T QualType referring to the type as written in source code.
6289 ///
6290 /// \param ReturnTypeInfo For declarators whose return type does not show
6291 /// up in the normal place in the declaration specifiers (such as a C++
6292 /// conversion function), this pointer will refer to a type source information
6293 /// for that return type.
6294 static TypeSourceInfo *
6295 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6296                                QualType T, TypeSourceInfo *ReturnTypeInfo) {
6297   Sema &S = State.getSema();
6298   Declarator &D = State.getDeclarator();
6299 
6300   TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6301   UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6302 
6303   // Handle parameter packs whose type is a pack expansion.
6304   if (isa<PackExpansionType>(T)) {
6305     CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6306     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6307   }
6308 
6309   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6310     // Microsoft property fields can have multiple sizeless array chunks
6311     // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6312     if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6313         D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6314       continue;
6315 
6316     // An AtomicTypeLoc might be produced by an atomic qualifier in this
6317     // declarator chunk.
6318     if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6319       fillAtomicQualLoc(ATL, D.getTypeObject(i));
6320       CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6321     }
6322 
6323     bool HasDesugaredTypeLoc = true;
6324     while (HasDesugaredTypeLoc) {
6325       switch (CurrTL.getTypeLocClass()) {
6326       case TypeLoc::MacroQualified: {
6327         auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6328         TL.setExpansionLoc(
6329             State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6330         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6331         break;
6332       }
6333 
6334       case TypeLoc::Attributed: {
6335         auto TL = CurrTL.castAs<AttributedTypeLoc>();
6336         fillAttributedTypeLoc(TL, State);
6337         CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6338         break;
6339       }
6340 
6341       case TypeLoc::Adjusted:
6342       case TypeLoc::BTFTagAttributed: {
6343         CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6344         break;
6345       }
6346 
6347       case TypeLoc::DependentAddressSpace: {
6348         auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6349         fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6350         CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6351         break;
6352       }
6353 
6354       default:
6355         HasDesugaredTypeLoc = false;
6356         break;
6357       }
6358     }
6359 
6360     DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6361     CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6362   }
6363 
6364   // If we have different source information for the return type, use
6365   // that.  This really only applies to C++ conversion functions.
6366   if (ReturnTypeInfo) {
6367     TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6368     assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6369     memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6370   } else {
6371     TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6372   }
6373 
6374   return TInfo;
6375 }
6376 
6377 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6378 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6379   // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6380   // and Sema during declaration parsing. Try deallocating/caching them when
6381   // it's appropriate, instead of allocating them and keeping them around.
6382   LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6383                                                         alignof(LocInfoType));
6384   new (LocT) LocInfoType(T, TInfo);
6385   assert(LocT->getTypeClass() != T->getTypeClass() &&
6386          "LocInfoType's TypeClass conflicts with an existing Type class");
6387   return ParsedType::make(QualType(LocT, 0));
6388 }
6389 
6390 void LocInfoType::getAsStringInternal(std::string &Str,
6391                                       const PrintingPolicy &Policy) const {
6392   llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6393          " was used directly instead of getting the QualType through"
6394          " GetTypeFromParser");
6395 }
6396 
6397 TypeResult Sema::ActOnTypeName(Declarator &D) {
6398   // C99 6.7.6: Type names have no identifier.  This is already validated by
6399   // the parser.
6400   assert(D.getIdentifier() == nullptr &&
6401          "Type name should have no identifier!");
6402 
6403   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6404   QualType T = TInfo->getType();
6405   if (D.isInvalidType())
6406     return true;
6407 
6408   // Make sure there are no unused decl attributes on the declarator.
6409   // We don't want to do this for ObjC parameters because we're going
6410   // to apply them to the actual parameter declaration.
6411   // Likewise, we don't want to do this for alias declarations, because
6412   // we are actually going to build a declaration from this eventually.
6413   if (D.getContext() != DeclaratorContext::ObjCParameter &&
6414       D.getContext() != DeclaratorContext::AliasDecl &&
6415       D.getContext() != DeclaratorContext::AliasTemplate)
6416     checkUnusedDeclAttributes(D);
6417 
6418   if (getLangOpts().CPlusPlus) {
6419     // Check that there are no default arguments (C++ only).
6420     CheckExtraCXXDefaultArguments(D);
6421   }
6422 
6423   if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6424     const AutoType *AT = TL.getTypePtr();
6425     CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6426   }
6427   return CreateParsedType(T, TInfo);
6428 }
6429 
6430 //===----------------------------------------------------------------------===//
6431 // Type Attribute Processing
6432 //===----------------------------------------------------------------------===//
6433 
6434 /// Build an AddressSpace index from a constant expression and diagnose any
6435 /// errors related to invalid address_spaces. Returns true on successfully
6436 /// building an AddressSpace index.
6437 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6438                                    const Expr *AddrSpace,
6439                                    SourceLocation AttrLoc) {
6440   if (!AddrSpace->isValueDependent()) {
6441     std::optional<llvm::APSInt> OptAddrSpace =
6442         AddrSpace->getIntegerConstantExpr(S.Context);
6443     if (!OptAddrSpace) {
6444       S.Diag(AttrLoc, diag::err_attribute_argument_type)
6445           << "'address_space'" << AANT_ArgumentIntegerConstant
6446           << AddrSpace->getSourceRange();
6447       return false;
6448     }
6449     llvm::APSInt &addrSpace = *OptAddrSpace;
6450 
6451     // Bounds checking.
6452     if (addrSpace.isSigned()) {
6453       if (addrSpace.isNegative()) {
6454         S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6455             << AddrSpace->getSourceRange();
6456         return false;
6457       }
6458       addrSpace.setIsSigned(false);
6459     }
6460 
6461     llvm::APSInt max(addrSpace.getBitWidth());
6462     max =
6463         Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6464 
6465     if (addrSpace > max) {
6466       S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6467           << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6468       return false;
6469     }
6470 
6471     ASIdx =
6472         getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6473     return true;
6474   }
6475 
6476   // Default value for DependentAddressSpaceTypes
6477   ASIdx = LangAS::Default;
6478   return true;
6479 }
6480 
6481 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6482                                      SourceLocation AttrLoc) {
6483   if (!AddrSpace->isValueDependent()) {
6484     if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6485                                             AttrLoc))
6486       return QualType();
6487 
6488     return Context.getAddrSpaceQualType(T, ASIdx);
6489   }
6490 
6491   // A check with similar intentions as checking if a type already has an
6492   // address space except for on a dependent types, basically if the
6493   // current type is already a DependentAddressSpaceType then its already
6494   // lined up to have another address space on it and we can't have
6495   // multiple address spaces on the one pointer indirection
6496   if (T->getAs<DependentAddressSpaceType>()) {
6497     Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6498     return QualType();
6499   }
6500 
6501   return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6502 }
6503 
6504 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6505                                      SourceLocation AttrLoc) {
6506   LangAS ASIdx;
6507   if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6508     return QualType();
6509   return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6510 }
6511 
6512 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6513                                       TypeProcessingState &State) {
6514   Sema &S = State.getSema();
6515 
6516   // This attribute is only supported in C.
6517   // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp
6518   // such that it handles type attributes, and then call that from
6519   // processTypeAttrs() instead of one-off checks like this.
6520   if (!Attr.diagnoseLangOpts(S)) {
6521     Attr.setInvalid();
6522     return;
6523   }
6524 
6525   // Check the number of attribute arguments.
6526   if (Attr.getNumArgs() != 1) {
6527     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6528         << Attr << 1;
6529     Attr.setInvalid();
6530     return;
6531   }
6532 
6533   // Ensure the argument is a string.
6534   auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6535   if (!StrLiteral) {
6536     S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6537         << Attr << AANT_ArgumentString;
6538     Attr.setInvalid();
6539     return;
6540   }
6541 
6542   ASTContext &Ctx = S.Context;
6543   StringRef BTFTypeTag = StrLiteral->getString();
6544   Type = State.getBTFTagAttributedType(
6545       ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6546 }
6547 
6548 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6549 /// specified type.  The attribute contains 1 argument, the id of the address
6550 /// space for the type.
6551 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6552                                             const ParsedAttr &Attr,
6553                                             TypeProcessingState &State) {
6554   Sema &S = State.getSema();
6555 
6556   // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6557   // qualified by an address-space qualifier."
6558   if (Type->isFunctionType()) {
6559     S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6560     Attr.setInvalid();
6561     return;
6562   }
6563 
6564   LangAS ASIdx;
6565   if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6566 
6567     // Check the attribute arguments.
6568     if (Attr.getNumArgs() != 1) {
6569       S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6570                                                                         << 1;
6571       Attr.setInvalid();
6572       return;
6573     }
6574 
6575     Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6576     LangAS ASIdx;
6577     if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6578       Attr.setInvalid();
6579       return;
6580     }
6581 
6582     ASTContext &Ctx = S.Context;
6583     auto *ASAttr =
6584         ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6585 
6586     // If the expression is not value dependent (not templated), then we can
6587     // apply the address space qualifiers just to the equivalent type.
6588     // Otherwise, we make an AttributedType with the modified and equivalent
6589     // type the same, and wrap it in a DependentAddressSpaceType. When this
6590     // dependent type is resolved, the qualifier is added to the equivalent type
6591     // later.
6592     QualType T;
6593     if (!ASArgExpr->isValueDependent()) {
6594       QualType EquivType =
6595           S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6596       if (EquivType.isNull()) {
6597         Attr.setInvalid();
6598         return;
6599       }
6600       T = State.getAttributedType(ASAttr, Type, EquivType);
6601     } else {
6602       T = State.getAttributedType(ASAttr, Type, Type);
6603       T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6604     }
6605 
6606     if (!T.isNull())
6607       Type = T;
6608     else
6609       Attr.setInvalid();
6610   } else {
6611     // The keyword-based type attributes imply which address space to use.
6612     ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6613                                          : Attr.asOpenCLLangAS();
6614     if (S.getLangOpts().HLSL)
6615       ASIdx = Attr.asHLSLLangAS();
6616 
6617     if (ASIdx == LangAS::Default)
6618       llvm_unreachable("Invalid address space");
6619 
6620     if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6621                                             Attr.getLoc())) {
6622       Attr.setInvalid();
6623       return;
6624     }
6625 
6626     Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6627   }
6628 }
6629 
6630 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6631 /// attribute on the specified type.
6632 ///
6633 /// Returns 'true' if the attribute was handled.
6634 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6635                                         ParsedAttr &attr, QualType &type) {
6636   bool NonObjCPointer = false;
6637 
6638   if (!type->isDependentType() && !type->isUndeducedType()) {
6639     if (const PointerType *ptr = type->getAs<PointerType>()) {
6640       QualType pointee = ptr->getPointeeType();
6641       if (pointee->isObjCRetainableType() || pointee->isPointerType())
6642         return false;
6643       // It is important not to lose the source info that there was an attribute
6644       // applied to non-objc pointer. We will create an attributed type but
6645       // its type will be the same as the original type.
6646       NonObjCPointer = true;
6647     } else if (!type->isObjCRetainableType()) {
6648       return false;
6649     }
6650 
6651     // Don't accept an ownership attribute in the declspec if it would
6652     // just be the return type of a block pointer.
6653     if (state.isProcessingDeclSpec()) {
6654       Declarator &D = state.getDeclarator();
6655       if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6656                                   /*onlyBlockPointers=*/true))
6657         return false;
6658     }
6659   }
6660 
6661   Sema &S = state.getSema();
6662   SourceLocation AttrLoc = attr.getLoc();
6663   if (AttrLoc.isMacroID())
6664     AttrLoc =
6665         S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6666 
6667   if (!attr.isArgIdent(0)) {
6668     S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6669                                                        << AANT_ArgumentString;
6670     attr.setInvalid();
6671     return true;
6672   }
6673 
6674   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6675   Qualifiers::ObjCLifetime lifetime;
6676   if (II->isStr("none"))
6677     lifetime = Qualifiers::OCL_ExplicitNone;
6678   else if (II->isStr("strong"))
6679     lifetime = Qualifiers::OCL_Strong;
6680   else if (II->isStr("weak"))
6681     lifetime = Qualifiers::OCL_Weak;
6682   else if (II->isStr("autoreleasing"))
6683     lifetime = Qualifiers::OCL_Autoreleasing;
6684   else {
6685     S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6686     attr.setInvalid();
6687     return true;
6688   }
6689 
6690   // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6691   // outside of ARC mode.
6692   if (!S.getLangOpts().ObjCAutoRefCount &&
6693       lifetime != Qualifiers::OCL_Weak &&
6694       lifetime != Qualifiers::OCL_ExplicitNone) {
6695     return true;
6696   }
6697 
6698   SplitQualType underlyingType = type.split();
6699 
6700   // Check for redundant/conflicting ownership qualifiers.
6701   if (Qualifiers::ObjCLifetime previousLifetime
6702         = type.getQualifiers().getObjCLifetime()) {
6703     // If it's written directly, that's an error.
6704     if (S.Context.hasDirectOwnershipQualifier(type)) {
6705       S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6706         << type;
6707       return true;
6708     }
6709 
6710     // Otherwise, if the qualifiers actually conflict, pull sugar off
6711     // and remove the ObjCLifetime qualifiers.
6712     if (previousLifetime != lifetime) {
6713       // It's possible to have multiple local ObjCLifetime qualifiers. We
6714       // can't stop after we reach a type that is directly qualified.
6715       const Type *prevTy = nullptr;
6716       while (!prevTy || prevTy != underlyingType.Ty) {
6717         prevTy = underlyingType.Ty;
6718         underlyingType = underlyingType.getSingleStepDesugaredType();
6719       }
6720       underlyingType.Quals.removeObjCLifetime();
6721     }
6722   }
6723 
6724   underlyingType.Quals.addObjCLifetime(lifetime);
6725 
6726   if (NonObjCPointer) {
6727     StringRef name = attr.getAttrName()->getName();
6728     switch (lifetime) {
6729     case Qualifiers::OCL_None:
6730     case Qualifiers::OCL_ExplicitNone:
6731       break;
6732     case Qualifiers::OCL_Strong: name = "__strong"; break;
6733     case Qualifiers::OCL_Weak: name = "__weak"; break;
6734     case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6735     }
6736     S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6737       << TDS_ObjCObjOrBlock << type;
6738   }
6739 
6740   // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6741   // because having both 'T' and '__unsafe_unretained T' exist in the type
6742   // system causes unfortunate widespread consistency problems.  (For example,
6743   // they're not considered compatible types, and we mangle them identicially
6744   // as template arguments.)  These problems are all individually fixable,
6745   // but it's easier to just not add the qualifier and instead sniff it out
6746   // in specific places using isObjCInertUnsafeUnretainedType().
6747   //
6748   // Doing this does means we miss some trivial consistency checks that
6749   // would've triggered in ARC, but that's better than trying to solve all
6750   // the coexistence problems with __unsafe_unretained.
6751   if (!S.getLangOpts().ObjCAutoRefCount &&
6752       lifetime == Qualifiers::OCL_ExplicitNone) {
6753     type = state.getAttributedType(
6754         createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6755         type, type);
6756     return true;
6757   }
6758 
6759   QualType origType = type;
6760   if (!NonObjCPointer)
6761     type = S.Context.getQualifiedType(underlyingType);
6762 
6763   // If we have a valid source location for the attribute, use an
6764   // AttributedType instead.
6765   if (AttrLoc.isValid()) {
6766     type = state.getAttributedType(::new (S.Context)
6767                                        ObjCOwnershipAttr(S.Context, attr, II),
6768                                    origType, type);
6769   }
6770 
6771   auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6772                             unsigned diagnostic, QualType type) {
6773     if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6774       S.DelayedDiagnostics.add(
6775           sema::DelayedDiagnostic::makeForbiddenType(
6776               S.getSourceManager().getExpansionLoc(loc),
6777               diagnostic, type, /*ignored*/ 0));
6778     } else {
6779       S.Diag(loc, diagnostic);
6780     }
6781   };
6782 
6783   // Sometimes, __weak isn't allowed.
6784   if (lifetime == Qualifiers::OCL_Weak &&
6785       !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6786 
6787     // Use a specialized diagnostic if the runtime just doesn't support them.
6788     unsigned diagnostic =
6789       (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6790                                        : diag::err_arc_weak_no_runtime);
6791 
6792     // In any case, delay the diagnostic until we know what we're parsing.
6793     diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6794 
6795     attr.setInvalid();
6796     return true;
6797   }
6798 
6799   // Forbid __weak for class objects marked as
6800   // objc_arc_weak_reference_unavailable
6801   if (lifetime == Qualifiers::OCL_Weak) {
6802     if (const ObjCObjectPointerType *ObjT =
6803           type->getAs<ObjCObjectPointerType>()) {
6804       if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6805         if (Class->isArcWeakrefUnavailable()) {
6806           S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6807           S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6808                  diag::note_class_declared);
6809         }
6810       }
6811     }
6812   }
6813 
6814   return true;
6815 }
6816 
6817 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6818 /// attribute on the specified type.  Returns true to indicate that
6819 /// the attribute was handled, false to indicate that the type does
6820 /// not permit the attribute.
6821 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6822                                  QualType &type) {
6823   Sema &S = state.getSema();
6824 
6825   // Delay if this isn't some kind of pointer.
6826   if (!type->isPointerType() &&
6827       !type->isObjCObjectPointerType() &&
6828       !type->isBlockPointerType())
6829     return false;
6830 
6831   if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6832     S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6833     attr.setInvalid();
6834     return true;
6835   }
6836 
6837   // Check the attribute arguments.
6838   if (!attr.isArgIdent(0)) {
6839     S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6840         << attr << AANT_ArgumentString;
6841     attr.setInvalid();
6842     return true;
6843   }
6844   Qualifiers::GC GCAttr;
6845   if (attr.getNumArgs() > 1) {
6846     S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6847                                                                       << 1;
6848     attr.setInvalid();
6849     return true;
6850   }
6851 
6852   IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6853   if (II->isStr("weak"))
6854     GCAttr = Qualifiers::Weak;
6855   else if (II->isStr("strong"))
6856     GCAttr = Qualifiers::Strong;
6857   else {
6858     S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6859         << attr << II;
6860     attr.setInvalid();
6861     return true;
6862   }
6863 
6864   QualType origType = type;
6865   type = S.Context.getObjCGCQualType(origType, GCAttr);
6866 
6867   // Make an attributed type to preserve the source information.
6868   if (attr.getLoc().isValid())
6869     type = state.getAttributedType(
6870         ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6871 
6872   return true;
6873 }
6874 
6875 namespace {
6876   /// A helper class to unwrap a type down to a function for the
6877   /// purposes of applying attributes there.
6878   ///
6879   /// Use:
6880   ///   FunctionTypeUnwrapper unwrapped(SemaRef, T);
6881   ///   if (unwrapped.isFunctionType()) {
6882   ///     const FunctionType *fn = unwrapped.get();
6883   ///     // change fn somehow
6884   ///     T = unwrapped.wrap(fn);
6885   ///   }
6886   struct FunctionTypeUnwrapper {
6887     enum WrapKind {
6888       Desugar,
6889       Attributed,
6890       Parens,
6891       Array,
6892       Pointer,
6893       BlockPointer,
6894       Reference,
6895       MemberPointer,
6896       MacroQualified,
6897     };
6898 
6899     QualType Original;
6900     const FunctionType *Fn;
6901     SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6902 
6903     FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6904       while (true) {
6905         const Type *Ty = T.getTypePtr();
6906         if (isa<FunctionType>(Ty)) {
6907           Fn = cast<FunctionType>(Ty);
6908           return;
6909         } else if (isa<ParenType>(Ty)) {
6910           T = cast<ParenType>(Ty)->getInnerType();
6911           Stack.push_back(Parens);
6912         } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6913                    isa<IncompleteArrayType>(Ty)) {
6914           T = cast<ArrayType>(Ty)->getElementType();
6915           Stack.push_back(Array);
6916         } else if (isa<PointerType>(Ty)) {
6917           T = cast<PointerType>(Ty)->getPointeeType();
6918           Stack.push_back(Pointer);
6919         } else if (isa<BlockPointerType>(Ty)) {
6920           T = cast<BlockPointerType>(Ty)->getPointeeType();
6921           Stack.push_back(BlockPointer);
6922         } else if (isa<MemberPointerType>(Ty)) {
6923           T = cast<MemberPointerType>(Ty)->getPointeeType();
6924           Stack.push_back(MemberPointer);
6925         } else if (isa<ReferenceType>(Ty)) {
6926           T = cast<ReferenceType>(Ty)->getPointeeType();
6927           Stack.push_back(Reference);
6928         } else if (isa<AttributedType>(Ty)) {
6929           T = cast<AttributedType>(Ty)->getEquivalentType();
6930           Stack.push_back(Attributed);
6931         } else if (isa<MacroQualifiedType>(Ty)) {
6932           T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6933           Stack.push_back(MacroQualified);
6934         } else {
6935           const Type *DTy = Ty->getUnqualifiedDesugaredType();
6936           if (Ty == DTy) {
6937             Fn = nullptr;
6938             return;
6939           }
6940 
6941           T = QualType(DTy, 0);
6942           Stack.push_back(Desugar);
6943         }
6944       }
6945     }
6946 
6947     bool isFunctionType() const { return (Fn != nullptr); }
6948     const FunctionType *get() const { return Fn; }
6949 
6950     QualType wrap(Sema &S, const FunctionType *New) {
6951       // If T wasn't modified from the unwrapped type, do nothing.
6952       if (New == get()) return Original;
6953 
6954       Fn = New;
6955       return wrap(S.Context, Original, 0);
6956     }
6957 
6958   private:
6959     QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6960       if (I == Stack.size())
6961         return C.getQualifiedType(Fn, Old.getQualifiers());
6962 
6963       // Build up the inner type, applying the qualifiers from the old
6964       // type to the new type.
6965       SplitQualType SplitOld = Old.split();
6966 
6967       // As a special case, tail-recurse if there are no qualifiers.
6968       if (SplitOld.Quals.empty())
6969         return wrap(C, SplitOld.Ty, I);
6970       return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6971     }
6972 
6973     QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6974       if (I == Stack.size()) return QualType(Fn, 0);
6975 
6976       switch (static_cast<WrapKind>(Stack[I++])) {
6977       case Desugar:
6978         // This is the point at which we potentially lose source
6979         // information.
6980         return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6981 
6982       case Attributed:
6983         return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6984 
6985       case Parens: {
6986         QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6987         return C.getParenType(New);
6988       }
6989 
6990       case MacroQualified:
6991         return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6992 
6993       case Array: {
6994         if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6995           QualType New = wrap(C, CAT->getElementType(), I);
6996           return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6997                                         CAT->getSizeModifier(),
6998                                         CAT->getIndexTypeCVRQualifiers());
6999         }
7000 
7001         if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
7002           QualType New = wrap(C, VAT->getElementType(), I);
7003           return C.getVariableArrayType(
7004               New, VAT->getSizeExpr(), VAT->getSizeModifier(),
7005               VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7006         }
7007 
7008         const auto *IAT = cast<IncompleteArrayType>(Old);
7009         QualType New = wrap(C, IAT->getElementType(), I);
7010         return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7011                                         IAT->getIndexTypeCVRQualifiers());
7012       }
7013 
7014       case Pointer: {
7015         QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7016         return C.getPointerType(New);
7017       }
7018 
7019       case BlockPointer: {
7020         QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7021         return C.getBlockPointerType(New);
7022       }
7023 
7024       case MemberPointer: {
7025         const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7026         QualType New = wrap(C, OldMPT->getPointeeType(), I);
7027         return C.getMemberPointerType(New, OldMPT->getClass());
7028       }
7029 
7030       case Reference: {
7031         const ReferenceType *OldRef = cast<ReferenceType>(Old);
7032         QualType New = wrap(C, OldRef->getPointeeType(), I);
7033         if (isa<LValueReferenceType>(OldRef))
7034           return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7035         else
7036           return C.getRValueReferenceType(New);
7037       }
7038       }
7039 
7040       llvm_unreachable("unknown wrapping kind");
7041     }
7042   };
7043 } // end anonymous namespace
7044 
7045 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7046                                              ParsedAttr &PAttr, QualType &Type) {
7047   Sema &S = State.getSema();
7048 
7049   Attr *A;
7050   switch (PAttr.getKind()) {
7051   default: llvm_unreachable("Unknown attribute kind");
7052   case ParsedAttr::AT_Ptr32:
7053     A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7054     break;
7055   case ParsedAttr::AT_Ptr64:
7056     A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7057     break;
7058   case ParsedAttr::AT_SPtr:
7059     A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7060     break;
7061   case ParsedAttr::AT_UPtr:
7062     A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7063     break;
7064   }
7065 
7066   std::bitset<attr::LastAttr> Attrs;
7067   QualType Desugared = Type;
7068   for (;;) {
7069     if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7070       Desugared = TT->desugar();
7071       continue;
7072     } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7073       Desugared = ET->desugar();
7074       continue;
7075     }
7076     const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7077     if (!AT)
7078       break;
7079     Attrs[AT->getAttrKind()] = true;
7080     Desugared = AT->getModifiedType();
7081   }
7082 
7083   // You cannot specify duplicate type attributes, so if the attribute has
7084   // already been applied, flag it.
7085   attr::Kind NewAttrKind = A->getKind();
7086   if (Attrs[NewAttrKind]) {
7087     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7088     return true;
7089   }
7090   Attrs[NewAttrKind] = true;
7091 
7092   // You cannot have both __sptr and __uptr on the same type, nor can you
7093   // have __ptr32 and __ptr64.
7094   if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7095     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7096         << "'__ptr32'"
7097         << "'__ptr64'" << /*isRegularKeyword=*/0;
7098     return true;
7099   } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7100     S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7101         << "'__sptr'"
7102         << "'__uptr'" << /*isRegularKeyword=*/0;
7103     return true;
7104   }
7105 
7106   // Check the raw (i.e., desugared) Canonical type to see if it
7107   // is a pointer type.
7108   if (!isa<PointerType>(Desugared)) {
7109     // Pointer type qualifiers can only operate on pointer types, but not
7110     // pointer-to-member types.
7111     if (Type->isMemberPointerType())
7112       S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7113     else
7114       S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7115     return true;
7116   }
7117 
7118   // Add address space to type based on its attributes.
7119   LangAS ASIdx = LangAS::Default;
7120   uint64_t PtrWidth =
7121       S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7122   if (PtrWidth == 32) {
7123     if (Attrs[attr::Ptr64])
7124       ASIdx = LangAS::ptr64;
7125     else if (Attrs[attr::UPtr])
7126       ASIdx = LangAS::ptr32_uptr;
7127   } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7128     if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr])
7129       ASIdx = LangAS::ptr32_uptr;
7130     else
7131       ASIdx = LangAS::ptr32_sptr;
7132   }
7133 
7134   QualType Pointee = Type->getPointeeType();
7135   if (ASIdx != LangAS::Default)
7136     Pointee = S.Context.getAddrSpaceQualType(
7137         S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7138   Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7139   return false;
7140 }
7141 
7142 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7143                                          QualType &QT, ParsedAttr &PAttr) {
7144   assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7145 
7146   Sema &S = State.getSema();
7147   Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7148 
7149   std::bitset<attr::LastAttr> Attrs;
7150   attr::Kind NewAttrKind = A->getKind();
7151   const auto *AT = dyn_cast<AttributedType>(QT);
7152   while (AT) {
7153     Attrs[AT->getAttrKind()] = true;
7154     AT = dyn_cast<AttributedType>(AT->getModifiedType());
7155   }
7156 
7157   // You cannot specify duplicate type attributes, so if the attribute has
7158   // already been applied, flag it.
7159   if (Attrs[NewAttrKind]) {
7160     S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7161     return true;
7162   }
7163 
7164   // Add address space to type based on its attributes.
7165   LangAS ASIdx = LangAS::wasm_funcref;
7166   QualType Pointee = QT->getPointeeType();
7167   Pointee = S.Context.getAddrSpaceQualType(
7168       S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7169   QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7170   return false;
7171 }
7172 
7173 static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL,
7174                             QualType &QT, ParsedAttr &PAttr) {
7175   if (TAL == TAL_DeclName)
7176     return;
7177 
7178   Sema &S = State.getSema();
7179   auto &D = State.getDeclarator();
7180 
7181   // If the attribute appears in declaration specifiers
7182   // it should be handled as a declaration attribute,
7183   // unless it's associated with a type or a function
7184   // prototype (i.e. appears on a parameter or result type).
7185   if (State.isProcessingDeclSpec()) {
7186     if (!(D.isPrototypeContext() ||
7187           D.getContext() == DeclaratorContext::TypeName))
7188       return;
7189 
7190     if (auto *chunk = D.getInnermostNonParenChunk()) {
7191       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7192                              const_cast<DeclaratorChunk *>(chunk)->getAttrs());
7193       return;
7194     }
7195   }
7196 
7197   StringRef Str;
7198   if (!S.checkStringLiteralArgumentAttr(PAttr, 0, Str)) {
7199     PAttr.setInvalid();
7200     return;
7201   }
7202 
7203   // If the attribute as attached to a paren move it closer to
7204   // the declarator. This can happen in block declarations when
7205   // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`.
7206   //
7207   // Note that it's actually invalid to use GNU style attributes
7208   // in a block but such cases are currently handled gracefully
7209   // but the parser and behavior should be consistent between
7210   // cases when attribute appears before/after block's result
7211   // type and inside (^).
7212   if (TAL == TAL_DeclChunk) {
7213     auto chunkIdx = State.getCurrentChunkIndex();
7214     if (chunkIdx >= 1 &&
7215         D.getTypeObject(chunkIdx).Kind == DeclaratorChunk::Paren) {
7216       moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7217                              D.getTypeObject(chunkIdx - 1).getAttrs());
7218       return;
7219     }
7220   }
7221 
7222   auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str);
7223   QT = State.getAttributedType(A, QT, QT);
7224   PAttr.setUsedAsTypeAttr();
7225 }
7226 
7227 /// Rebuild an attributed type without the nullability attribute on it.
7228 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7229                                                         QualType Type) {
7230   auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7231   if (!Attributed)
7232     return Type;
7233 
7234   // Skip the nullability attribute; we're done.
7235   if (Attributed->getImmediateNullability())
7236     return Attributed->getModifiedType();
7237 
7238   // Build the modified type.
7239   QualType Modified = rebuildAttributedTypeWithoutNullability(
7240       Ctx, Attributed->getModifiedType());
7241   assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7242   return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7243                                Attributed->getEquivalentType(),
7244                                Attributed->getAttr());
7245 }
7246 
7247 /// Map a nullability attribute kind to a nullability kind.
7248 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7249   switch (kind) {
7250   case ParsedAttr::AT_TypeNonNull:
7251     return NullabilityKind::NonNull;
7252 
7253   case ParsedAttr::AT_TypeNullable:
7254     return NullabilityKind::Nullable;
7255 
7256   case ParsedAttr::AT_TypeNullableResult:
7257     return NullabilityKind::NullableResult;
7258 
7259   case ParsedAttr::AT_TypeNullUnspecified:
7260     return NullabilityKind::Unspecified;
7261 
7262   default:
7263     llvm_unreachable("not a nullability attribute kind");
7264   }
7265 }
7266 
7267 static bool CheckNullabilityTypeSpecifier(
7268     Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7269     NullabilityKind Nullability, SourceLocation NullabilityLoc,
7270     bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7271   bool Implicit = (State == nullptr);
7272   if (!Implicit)
7273     recordNullabilitySeen(S, NullabilityLoc);
7274 
7275   // Check for existing nullability attributes on the type.
7276   QualType Desugared = QT;
7277   while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7278     // Check whether there is already a null
7279     if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7280       // Duplicated nullability.
7281       if (Nullability == *ExistingNullability) {
7282         if (Implicit)
7283           break;
7284 
7285         S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7286             << DiagNullabilityKind(Nullability, IsContextSensitive)
7287             << FixItHint::CreateRemoval(NullabilityLoc);
7288 
7289         break;
7290       }
7291 
7292       if (!OverrideExisting) {
7293         // Conflicting nullability.
7294         S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7295             << DiagNullabilityKind(Nullability, IsContextSensitive)
7296             << DiagNullabilityKind(*ExistingNullability, false);
7297         return true;
7298       }
7299 
7300       // Rebuild the attributed type, dropping the existing nullability.
7301       QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7302     }
7303 
7304     Desugared = Attributed->getModifiedType();
7305   }
7306 
7307   // If there is already a different nullability specifier, complain.
7308   // This (unlike the code above) looks through typedefs that might
7309   // have nullability specifiers on them, which means we cannot
7310   // provide a useful Fix-It.
7311   if (auto ExistingNullability = Desugared->getNullability()) {
7312     if (Nullability != *ExistingNullability && !Implicit) {
7313       S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7314           << DiagNullabilityKind(Nullability, IsContextSensitive)
7315           << DiagNullabilityKind(*ExistingNullability, false);
7316 
7317       // Try to find the typedef with the existing nullability specifier.
7318       if (auto TT = Desugared->getAs<TypedefType>()) {
7319         TypedefNameDecl *typedefDecl = TT->getDecl();
7320         QualType underlyingType = typedefDecl->getUnderlyingType();
7321         if (auto typedefNullability =
7322                 AttributedType::stripOuterNullability(underlyingType)) {
7323           if (*typedefNullability == *ExistingNullability) {
7324             S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7325                 << DiagNullabilityKind(*ExistingNullability, false);
7326           }
7327         }
7328       }
7329 
7330       return true;
7331     }
7332   }
7333 
7334   // If this definitely isn't a pointer type, reject the specifier.
7335   if (!Desugared->canHaveNullability() &&
7336       !(AllowOnArrayType && Desugared->isArrayType())) {
7337     if (!Implicit)
7338       S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7339           << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7340 
7341     return true;
7342   }
7343 
7344   // For the context-sensitive keywords/Objective-C property
7345   // attributes, require that the type be a single-level pointer.
7346   if (IsContextSensitive) {
7347     // Make sure that the pointee isn't itself a pointer type.
7348     const Type *pointeeType = nullptr;
7349     if (Desugared->isArrayType())
7350       pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7351     else if (Desugared->isAnyPointerType())
7352       pointeeType = Desugared->getPointeeType().getTypePtr();
7353 
7354     if (pointeeType && (pointeeType->isAnyPointerType() ||
7355                         pointeeType->isObjCObjectPointerType() ||
7356                         pointeeType->isMemberPointerType())) {
7357       S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7358           << DiagNullabilityKind(Nullability, true) << QT;
7359       S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7360           << DiagNullabilityKind(Nullability, false) << QT
7361           << FixItHint::CreateReplacement(NullabilityLoc,
7362                                           getNullabilitySpelling(Nullability));
7363       return true;
7364     }
7365   }
7366 
7367   // Form the attributed type.
7368   if (State) {
7369     assert(PAttr);
7370     Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7371     QT = State->getAttributedType(A, QT, QT);
7372   } else {
7373     QT = S.Context.getAttributedType(Nullability, QT, QT);
7374   }
7375   return false;
7376 }
7377 
7378 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7379                                           QualType &Type, ParsedAttr &Attr,
7380                                           bool AllowOnArrayType) {
7381   NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7382   SourceLocation NullabilityLoc = Attr.getLoc();
7383   bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7384 
7385   return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7386                                        Nullability, NullabilityLoc,
7387                                        IsContextSensitive, AllowOnArrayType,
7388                                        /*overrideExisting*/ false);
7389 }
7390 
7391 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7392                                                  NullabilityKind Nullability,
7393                                                  SourceLocation DiagLoc,
7394                                                  bool AllowArrayTypes,
7395                                                  bool OverrideExisting) {
7396   return CheckNullabilityTypeSpecifier(
7397       *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7398       /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7399 }
7400 
7401 /// Check the application of the Objective-C '__kindof' qualifier to
7402 /// the given type.
7403 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7404                                 ParsedAttr &attr) {
7405   Sema &S = state.getSema();
7406 
7407   if (isa<ObjCTypeParamType>(type)) {
7408     // Build the attributed type to record where __kindof occurred.
7409     type = state.getAttributedType(
7410         createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7411     return false;
7412   }
7413 
7414   // Find out if it's an Objective-C object or object pointer type;
7415   const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7416   const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7417                                           : type->getAs<ObjCObjectType>();
7418 
7419   // If not, we can't apply __kindof.
7420   if (!objType) {
7421     // FIXME: Handle dependent types that aren't yet object types.
7422     S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7423       << type;
7424     return true;
7425   }
7426 
7427   // Rebuild the "equivalent" type, which pushes __kindof down into
7428   // the object type.
7429   // There is no need to apply kindof on an unqualified id type.
7430   QualType equivType = S.Context.getObjCObjectType(
7431       objType->getBaseType(), objType->getTypeArgsAsWritten(),
7432       objType->getProtocols(),
7433       /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7434 
7435   // If we started with an object pointer type, rebuild it.
7436   if (ptrType) {
7437     equivType = S.Context.getObjCObjectPointerType(equivType);
7438     if (auto nullability = type->getNullability()) {
7439       // We create a nullability attribute from the __kindof attribute.
7440       // Make sure that will make sense.
7441       assert(attr.getAttributeSpellingListIndex() == 0 &&
7442              "multiple spellings for __kindof?");
7443       Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7444       A->setImplicit(true);
7445       equivType = state.getAttributedType(A, equivType, equivType);
7446     }
7447   }
7448 
7449   // Build the attributed type to record where __kindof occurred.
7450   type = state.getAttributedType(
7451       createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7452   return false;
7453 }
7454 
7455 /// Distribute a nullability type attribute that cannot be applied to
7456 /// the type specifier to a pointer, block pointer, or member pointer
7457 /// declarator, complaining if necessary.
7458 ///
7459 /// \returns true if the nullability annotation was distributed, false
7460 /// otherwise.
7461 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7462                                           QualType type, ParsedAttr &attr) {
7463   Declarator &declarator = state.getDeclarator();
7464 
7465   /// Attempt to move the attribute to the specified chunk.
7466   auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7467     // If there is already a nullability attribute there, don't add
7468     // one.
7469     if (hasNullabilityAttr(chunk.getAttrs()))
7470       return false;
7471 
7472     // Complain about the nullability qualifier being in the wrong
7473     // place.
7474     enum {
7475       PK_Pointer,
7476       PK_BlockPointer,
7477       PK_MemberPointer,
7478       PK_FunctionPointer,
7479       PK_MemberFunctionPointer,
7480     } pointerKind
7481       = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7482                                                              : PK_Pointer)
7483         : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7484         : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7485 
7486     auto diag = state.getSema().Diag(attr.getLoc(),
7487                                      diag::warn_nullability_declspec)
7488       << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7489                              attr.isContextSensitiveKeywordAttribute())
7490       << type
7491       << static_cast<unsigned>(pointerKind);
7492 
7493     // FIXME: MemberPointer chunks don't carry the location of the *.
7494     if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7495       diag << FixItHint::CreateRemoval(attr.getLoc())
7496            << FixItHint::CreateInsertion(
7497                   state.getSema().getPreprocessor().getLocForEndOfToken(
7498                       chunk.Loc),
7499                   " " + attr.getAttrName()->getName().str() + " ");
7500     }
7501 
7502     moveAttrFromListToList(attr, state.getCurrentAttributes(),
7503                            chunk.getAttrs());
7504     return true;
7505   };
7506 
7507   // Move it to the outermost pointer, member pointer, or block
7508   // pointer declarator.
7509   for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7510     DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7511     switch (chunk.Kind) {
7512     case DeclaratorChunk::Pointer:
7513     case DeclaratorChunk::BlockPointer:
7514     case DeclaratorChunk::MemberPointer:
7515       return moveToChunk(chunk, false);
7516 
7517     case DeclaratorChunk::Paren:
7518     case DeclaratorChunk::Array:
7519       continue;
7520 
7521     case DeclaratorChunk::Function:
7522       // Try to move past the return type to a function/block/member
7523       // function pointer.
7524       if (DeclaratorChunk *dest = maybeMovePastReturnType(
7525                                     declarator, i,
7526                                     /*onlyBlockPointers=*/false)) {
7527         return moveToChunk(*dest, true);
7528       }
7529 
7530       return false;
7531 
7532     // Don't walk through these.
7533     case DeclaratorChunk::Reference:
7534     case DeclaratorChunk::Pipe:
7535       return false;
7536     }
7537   }
7538 
7539   return false;
7540 }
7541 
7542 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7543   assert(!Attr.isInvalid());
7544   switch (Attr.getKind()) {
7545   default:
7546     llvm_unreachable("not a calling convention attribute");
7547   case ParsedAttr::AT_CDecl:
7548     return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7549   case ParsedAttr::AT_FastCall:
7550     return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7551   case ParsedAttr::AT_StdCall:
7552     return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7553   case ParsedAttr::AT_ThisCall:
7554     return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7555   case ParsedAttr::AT_RegCall:
7556     return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7557   case ParsedAttr::AT_Pascal:
7558     return createSimpleAttr<PascalAttr>(Ctx, Attr);
7559   case ParsedAttr::AT_SwiftCall:
7560     return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7561   case ParsedAttr::AT_SwiftAsyncCall:
7562     return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7563   case ParsedAttr::AT_VectorCall:
7564     return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7565   case ParsedAttr::AT_AArch64VectorPcs:
7566     return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7567   case ParsedAttr::AT_AArch64SVEPcs:
7568     return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7569   case ParsedAttr::AT_ArmStreaming:
7570     return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7571   case ParsedAttr::AT_AMDGPUKernelCall:
7572     return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7573   case ParsedAttr::AT_Pcs: {
7574     // The attribute may have had a fixit applied where we treated an
7575     // identifier as a string literal.  The contents of the string are valid,
7576     // but the form may not be.
7577     StringRef Str;
7578     if (Attr.isArgExpr(0))
7579       Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7580     else
7581       Str = Attr.getArgAsIdent(0)->Ident->getName();
7582     PcsAttr::PCSType Type;
7583     if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7584       llvm_unreachable("already validated the attribute");
7585     return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7586   }
7587   case ParsedAttr::AT_IntelOclBicc:
7588     return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7589   case ParsedAttr::AT_MSABI:
7590     return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7591   case ParsedAttr::AT_SysVABI:
7592     return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7593   case ParsedAttr::AT_PreserveMost:
7594     return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7595   case ParsedAttr::AT_PreserveAll:
7596     return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7597   case ParsedAttr::AT_M68kRTD:
7598     return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7599   case ParsedAttr::AT_PreserveNone:
7600     return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7601   case ParsedAttr::AT_RISCVVectorCC:
7602     return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7603   }
7604   llvm_unreachable("unexpected attribute kind!");
7605 }
7606 
7607 std::optional<FunctionEffectMode>
7608 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7609   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7610     return FunctionEffectMode::Dependent;
7611 
7612   std::optional<llvm::APSInt> ConditionValue =
7613       CondExpr->getIntegerConstantExpr(Context);
7614   if (!ConditionValue) {
7615     // FIXME: err_attribute_argument_type doesn't quote the attribute
7616     // name but needs to; users are inconsistent.
7617     Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7618         << AttributeName << AANT_ArgumentIntegerConstant
7619         << CondExpr->getSourceRange();
7620     return std::nullopt;
7621   }
7622   return !ConditionValue->isZero() ? FunctionEffectMode::True
7623                                    : FunctionEffectMode::False;
7624 }
7625 
7626 static bool
7627 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7628                                        ParsedAttr &PAttr, QualType &QT,
7629                                        FunctionTypeUnwrapper &Unwrapped) {
7630   // Delay if this is not a function type.
7631   if (!Unwrapped.isFunctionType())
7632     return false;
7633 
7634   Sema &S = TPState.getSema();
7635 
7636   // Require FunctionProtoType.
7637   auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7638   if (FPT == nullptr) {
7639     S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7640         << PAttr.getAttrName()->getName();
7641     return true;
7642   }
7643 
7644   // Parse the new  attribute.
7645   // non/blocking or non/allocating? Or conditional (computed)?
7646   bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7647                        PAttr.getKind() == ParsedAttr::AT_Blocking;
7648 
7649   FunctionEffectMode NewMode = FunctionEffectMode::None;
7650   Expr *CondExpr = nullptr; // only valid if dependent
7651 
7652   if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7653       PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7654     if (!PAttr.checkAtMostNumArgs(S, 1)) {
7655       PAttr.setInvalid();
7656       return true;
7657     }
7658 
7659     // Parse the condition, if any.
7660     if (PAttr.getNumArgs() == 1) {
7661       CondExpr = PAttr.getArgAsExpr(0);
7662       std::optional<FunctionEffectMode> MaybeMode =
7663           S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7664       if (!MaybeMode) {
7665         PAttr.setInvalid();
7666         return true;
7667       }
7668       NewMode = *MaybeMode;
7669       if (NewMode != FunctionEffectMode::Dependent)
7670         CondExpr = nullptr;
7671     } else {
7672       NewMode = FunctionEffectMode::True;
7673     }
7674   } else {
7675     // This is the `blocking` or `allocating` attribute.
7676     if (S.CheckAttrNoArgs(PAttr)) {
7677       // The attribute has been marked invalid.
7678       return true;
7679     }
7680     NewMode = FunctionEffectMode::False;
7681   }
7682 
7683   const FunctionEffect::Kind FEKind =
7684       (NewMode == FunctionEffectMode::False)
7685           ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7686                            : FunctionEffect::Kind::Allocating)
7687           : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7688                            : FunctionEffect::Kind::NonAllocating);
7689   const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7690                                           EffectConditionExpr(CondExpr)};
7691 
7692   if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7693                                           PAttr.getLoc())) {
7694     PAttr.setInvalid();
7695     return true;
7696   }
7697 
7698   // Add the effect to the FunctionProtoType.
7699   FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7700   FunctionEffectSet FX(EPI.FunctionEffects);
7701   FunctionEffectSet::Conflicts Errs;
7702   [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7703   assert(Success && "effect conflicts should have been diagnosed above");
7704   EPI.FunctionEffects = FunctionEffectsRef(FX);
7705 
7706   QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7707                                                FPT->getParamTypes(), EPI);
7708   QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7709   return true;
7710 }
7711 
7712 static bool checkMutualExclusion(TypeProcessingState &state,
7713                                  const FunctionProtoType::ExtProtoInfo &EPI,
7714                                  ParsedAttr &Attr,
7715                                  AttributeCommonInfo::Kind OtherKind) {
7716   auto OtherAttr = std::find_if(
7717       state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7718       [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7719   if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7720     return false;
7721 
7722   Sema &S = state.getSema();
7723   S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7724       << *OtherAttr << Attr
7725       << (OtherAttr->isRegularKeywordAttribute() ||
7726           Attr.isRegularKeywordAttribute());
7727   S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7728   Attr.setInvalid();
7729   return true;
7730 }
7731 
7732 static bool handleArmStateAttribute(Sema &S,
7733                                     FunctionProtoType::ExtProtoInfo &EPI,
7734                                     ParsedAttr &Attr,
7735                                     FunctionType::ArmStateValue State) {
7736   if (!Attr.getNumArgs()) {
7737     S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7738     Attr.setInvalid();
7739     return true;
7740   }
7741 
7742   for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7743     StringRef StateName;
7744     SourceLocation LiteralLoc;
7745     if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7746       return true;
7747 
7748     unsigned Shift;
7749     FunctionType::ArmStateValue ExistingState;
7750     if (StateName == "za") {
7751       Shift = FunctionType::SME_ZAShift;
7752       ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7753     } else if (StateName == "zt0") {
7754       Shift = FunctionType::SME_ZT0Shift;
7755       ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7756     } else {
7757       S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7758       Attr.setInvalid();
7759       return true;
7760     }
7761 
7762     // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7763     // are all mutually exclusive for the same S, so check if there are
7764     // conflicting attributes.
7765     if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7766       S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7767           << StateName;
7768       Attr.setInvalid();
7769       return true;
7770     }
7771 
7772     EPI.setArmSMEAttribute(
7773         (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7774   }
7775   return false;
7776 }
7777 
7778 /// Process an individual function attribute.  Returns true to
7779 /// indicate that the attribute was handled, false if it wasn't.
7780 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7781                                    QualType &type, CUDAFunctionTarget CFT) {
7782   Sema &S = state.getSema();
7783 
7784   FunctionTypeUnwrapper unwrapped(S, type);
7785 
7786   if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7787     if (S.CheckAttrNoArgs(attr))
7788       return true;
7789 
7790     // Delay if this is not a function type.
7791     if (!unwrapped.isFunctionType())
7792       return false;
7793 
7794     // Otherwise we can process right away.
7795     FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7796     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7797     return true;
7798   }
7799 
7800   if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7801     // Delay if this is not a function type.
7802     if (!unwrapped.isFunctionType())
7803       return false;
7804 
7805     // Ignore if we don't have CMSE enabled.
7806     if (!S.getLangOpts().Cmse) {
7807       S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7808       attr.setInvalid();
7809       return true;
7810     }
7811 
7812     // Otherwise we can process right away.
7813     FunctionType::ExtInfo EI =
7814         unwrapped.get()->getExtInfo().withCmseNSCall(true);
7815     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7816     return true;
7817   }
7818 
7819   // ns_returns_retained is not always a type attribute, but if we got
7820   // here, we're treating it as one right now.
7821   if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7822     if (attr.getNumArgs()) return true;
7823 
7824     // Delay if this is not a function type.
7825     if (!unwrapped.isFunctionType())
7826       return false;
7827 
7828     // Check whether the return type is reasonable.
7829     if (S.ObjC().checkNSReturnsRetainedReturnType(
7830             attr.getLoc(), unwrapped.get()->getReturnType()))
7831       return true;
7832 
7833     // Only actually change the underlying type in ARC builds.
7834     QualType origType = type;
7835     if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7836       FunctionType::ExtInfo EI
7837         = unwrapped.get()->getExtInfo().withProducesResult(true);
7838       type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7839     }
7840     type = state.getAttributedType(
7841         createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7842         origType, type);
7843     return true;
7844   }
7845 
7846   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7847     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7848       return true;
7849 
7850     // Delay if this is not a function type.
7851     if (!unwrapped.isFunctionType())
7852       return false;
7853 
7854     FunctionType::ExtInfo EI =
7855         unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7856     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7857     return true;
7858   }
7859 
7860   if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7861     if (!S.getLangOpts().CFProtectionBranch) {
7862       S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7863       attr.setInvalid();
7864       return true;
7865     }
7866 
7867     if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7868       return true;
7869 
7870     // If this is not a function type, warning will be asserted by subject
7871     // check.
7872     if (!unwrapped.isFunctionType())
7873       return true;
7874 
7875     FunctionType::ExtInfo EI =
7876       unwrapped.get()->getExtInfo().withNoCfCheck(true);
7877     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7878     return true;
7879   }
7880 
7881   if (attr.getKind() == ParsedAttr::AT_Regparm) {
7882     unsigned value;
7883     if (S.CheckRegparmAttr(attr, value))
7884       return true;
7885 
7886     // Delay if this is not a function type.
7887     if (!unwrapped.isFunctionType())
7888       return false;
7889 
7890     // Diagnose regparm with fastcall.
7891     const FunctionType *fn = unwrapped.get();
7892     CallingConv CC = fn->getCallConv();
7893     if (CC == CC_X86FastCall) {
7894       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7895           << FunctionType::getNameForCallConv(CC) << "regparm"
7896           << attr.isRegularKeywordAttribute();
7897       attr.setInvalid();
7898       return true;
7899     }
7900 
7901     FunctionType::ExtInfo EI =
7902       unwrapped.get()->getExtInfo().withRegParm(value);
7903     type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7904     return true;
7905   }
7906 
7907   if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7908       attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7909       attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7910       attr.getKind() == ParsedAttr::AT_ArmIn ||
7911       attr.getKind() == ParsedAttr::AT_ArmOut ||
7912       attr.getKind() == ParsedAttr::AT_ArmInOut) {
7913     if (S.CheckAttrTarget(attr))
7914       return true;
7915 
7916     if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7917         attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7918       if (S.CheckAttrNoArgs(attr))
7919         return true;
7920 
7921     if (!unwrapped.isFunctionType())
7922       return false;
7923 
7924     const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7925     if (!FnTy) {
7926       // SME ACLE attributes are not supported on K&R-style unprototyped C
7927       // functions.
7928       S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7929         attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7930       attr.setInvalid();
7931       return false;
7932     }
7933 
7934     FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7935     switch (attr.getKind()) {
7936     case ParsedAttr::AT_ArmStreaming:
7937       if (checkMutualExclusion(state, EPI, attr,
7938                                ParsedAttr::AT_ArmStreamingCompatible))
7939         return true;
7940       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7941       break;
7942     case ParsedAttr::AT_ArmStreamingCompatible:
7943       if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7944         return true;
7945       EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7946       break;
7947     case ParsedAttr::AT_ArmPreserves:
7948       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7949         return true;
7950       break;
7951     case ParsedAttr::AT_ArmIn:
7952       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7953         return true;
7954       break;
7955     case ParsedAttr::AT_ArmOut:
7956       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7957         return true;
7958       break;
7959     case ParsedAttr::AT_ArmInOut:
7960       if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7961         return true;
7962       break;
7963     default:
7964       llvm_unreachable("Unsupported attribute");
7965     }
7966 
7967     QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7968                                                  FnTy->getParamTypes(), EPI);
7969     type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7970     return true;
7971   }
7972 
7973   if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7974     // Delay if this is not a function type.
7975     if (!unwrapped.isFunctionType())
7976       return false;
7977 
7978     if (S.CheckAttrNoArgs(attr)) {
7979       attr.setInvalid();
7980       return true;
7981     }
7982 
7983     // Otherwise we can process right away.
7984     auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7985 
7986     // MSVC ignores nothrow if it is in conflict with an explicit exception
7987     // specification.
7988     if (Proto->hasExceptionSpec()) {
7989       switch (Proto->getExceptionSpecType()) {
7990       case EST_None:
7991         llvm_unreachable("This doesn't have an exception spec!");
7992 
7993       case EST_DynamicNone:
7994       case EST_BasicNoexcept:
7995       case EST_NoexceptTrue:
7996       case EST_NoThrow:
7997         // Exception spec doesn't conflict with nothrow, so don't warn.
7998         [[fallthrough]];
7999       case EST_Unparsed:
8000       case EST_Uninstantiated:
8001       case EST_DependentNoexcept:
8002       case EST_Unevaluated:
8003         // We don't have enough information to properly determine if there is a
8004         // conflict, so suppress the warning.
8005         break;
8006       case EST_Dynamic:
8007       case EST_MSAny:
8008       case EST_NoexceptFalse:
8009         S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
8010         break;
8011       }
8012       return true;
8013     }
8014 
8015     type = unwrapped.wrap(
8016         S, S.Context
8017                .getFunctionTypeWithExceptionSpec(
8018                    QualType{Proto, 0},
8019                    FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
8020                ->getAs<FunctionType>());
8021     return true;
8022   }
8023 
8024   if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
8025       attr.getKind() == ParsedAttr::AT_NonAllocating ||
8026       attr.getKind() == ParsedAttr::AT_Blocking ||
8027       attr.getKind() == ParsedAttr::AT_Allocating) {
8028     return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
8029   }
8030 
8031   // Delay if the type didn't work out to a function.
8032   if (!unwrapped.isFunctionType()) return false;
8033 
8034   // Otherwise, a calling convention.
8035   CallingConv CC;
8036   if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
8037     return true;
8038 
8039   const FunctionType *fn = unwrapped.get();
8040   CallingConv CCOld = fn->getCallConv();
8041   Attr *CCAttr = getCCTypeAttr(S.Context, attr);
8042 
8043   if (CCOld != CC) {
8044     // Error out on when there's already an attribute on the type
8045     // and the CCs don't match.
8046     if (S.getCallingConvAttributedType(type)) {
8047       S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8048           << FunctionType::getNameForCallConv(CC)
8049           << FunctionType::getNameForCallConv(CCOld)
8050           << attr.isRegularKeywordAttribute();
8051       attr.setInvalid();
8052       return true;
8053     }
8054   }
8055 
8056   // Diagnose use of variadic functions with calling conventions that
8057   // don't support them (e.g. because they're callee-cleanup).
8058   // We delay warning about this on unprototyped function declarations
8059   // until after redeclaration checking, just in case we pick up a
8060   // prototype that way.  And apparently we also "delay" warning about
8061   // unprototyped function types in general, despite not necessarily having
8062   // much ability to diagnose it later.
8063   if (!supportsVariadicCall(CC)) {
8064     const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
8065     if (FnP && FnP->isVariadic()) {
8066       // stdcall and fastcall are ignored with a warning for GCC and MS
8067       // compatibility.
8068       if (CC == CC_X86StdCall || CC == CC_X86FastCall)
8069         return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
8070                << FunctionType::getNameForCallConv(CC)
8071                << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
8072 
8073       attr.setInvalid();
8074       return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8075              << FunctionType::getNameForCallConv(CC);
8076     }
8077   }
8078 
8079   // Also diagnose fastcall with regparm.
8080   if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8081     S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8082         << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8083         << attr.isRegularKeywordAttribute();
8084     attr.setInvalid();
8085     return true;
8086   }
8087 
8088   // Modify the CC from the wrapped function type, wrap it all back, and then
8089   // wrap the whole thing in an AttributedType as written.  The modified type
8090   // might have a different CC if we ignored the attribute.
8091   QualType Equivalent;
8092   if (CCOld == CC) {
8093     Equivalent = type;
8094   } else {
8095     auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
8096     Equivalent =
8097       unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
8098   }
8099   type = state.getAttributedType(CCAttr, type, Equivalent);
8100   return true;
8101 }
8102 
8103 bool Sema::hasExplicitCallingConv(QualType T) {
8104   const AttributedType *AT;
8105 
8106   // Stop if we'd be stripping off a typedef sugar node to reach the
8107   // AttributedType.
8108   while ((AT = T->getAs<AttributedType>()) &&
8109          AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8110     if (AT->isCallingConv())
8111       return true;
8112     T = AT->getModifiedType();
8113   }
8114   return false;
8115 }
8116 
8117 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8118                                   bool IsCtorOrDtor, SourceLocation Loc) {
8119   FunctionTypeUnwrapper Unwrapped(*this, T);
8120   const FunctionType *FT = Unwrapped.get();
8121   bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8122                      cast<FunctionProtoType>(FT)->isVariadic());
8123   CallingConv CurCC = FT->getCallConv();
8124   CallingConv ToCC =
8125       Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8126 
8127   if (CurCC == ToCC)
8128     return;
8129 
8130   // MS compiler ignores explicit calling convention attributes on structors. We
8131   // should do the same.
8132   if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8133     // Issue a warning on ignored calling convention -- except of __stdcall.
8134     // Again, this is what MS compiler does.
8135     if (CurCC != CC_X86StdCall)
8136       Diag(Loc, diag::warn_cconv_unsupported)
8137           << FunctionType::getNameForCallConv(CurCC)
8138           << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8139   // Default adjustment.
8140   } else {
8141     // Only adjust types with the default convention.  For example, on Windows
8142     // we should adjust a __cdecl type to __thiscall for instance methods, and a
8143     // __thiscall type to __cdecl for static methods.
8144     CallingConv DefaultCC =
8145         Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8146 
8147     if (CurCC != DefaultCC)
8148       return;
8149 
8150     if (hasExplicitCallingConv(T))
8151       return;
8152   }
8153 
8154   FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8155   QualType Wrapped = Unwrapped.wrap(*this, FT);
8156   T = Context.getAdjustedType(T, Wrapped);
8157 }
8158 
8159 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8160 /// and float scalars, although arrays, pointers, and function return values are
8161 /// allowed in conjunction with this construct. Aggregates with this attribute
8162 /// are invalid, even if they are of the same size as a corresponding scalar.
8163 /// The raw attribute should contain precisely 1 argument, the vector size for
8164 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8165 /// this routine will return a new vector type.
8166 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8167                                  Sema &S) {
8168   // Check the attribute arguments.
8169   if (Attr.getNumArgs() != 1) {
8170     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8171                                                                       << 1;
8172     Attr.setInvalid();
8173     return;
8174   }
8175 
8176   Expr *SizeExpr = Attr.getArgAsExpr(0);
8177   QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8178   if (!T.isNull())
8179     CurType = T;
8180   else
8181     Attr.setInvalid();
8182 }
8183 
8184 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8185 /// a type.
8186 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8187                                     Sema &S) {
8188   // check the attribute arguments.
8189   if (Attr.getNumArgs() != 1) {
8190     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8191                                                                       << 1;
8192     return;
8193   }
8194 
8195   Expr *SizeExpr = Attr.getArgAsExpr(0);
8196   QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8197   if (!T.isNull())
8198     CurType = T;
8199 }
8200 
8201 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8202   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8203   if (!BTy)
8204     return false;
8205 
8206   llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8207 
8208   // Signed poly is mathematically wrong, but has been baked into some ABIs by
8209   // now.
8210   bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8211                         Triple.getArch() == llvm::Triple::aarch64_32 ||
8212                         Triple.getArch() == llvm::Triple::aarch64_be;
8213   if (VecKind == VectorKind::NeonPoly) {
8214     if (IsPolyUnsigned) {
8215       // AArch64 polynomial vectors are unsigned.
8216       return BTy->getKind() == BuiltinType::UChar ||
8217              BTy->getKind() == BuiltinType::UShort ||
8218              BTy->getKind() == BuiltinType::ULong ||
8219              BTy->getKind() == BuiltinType::ULongLong;
8220     } else {
8221       // AArch32 polynomial vectors are signed.
8222       return BTy->getKind() == BuiltinType::SChar ||
8223              BTy->getKind() == BuiltinType::Short ||
8224              BTy->getKind() == BuiltinType::LongLong;
8225     }
8226   }
8227 
8228   // Non-polynomial vector types: the usual suspects are allowed, as well as
8229   // float64_t on AArch64.
8230   if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8231       BTy->getKind() == BuiltinType::Double)
8232     return true;
8233 
8234   return BTy->getKind() == BuiltinType::SChar ||
8235          BTy->getKind() == BuiltinType::UChar ||
8236          BTy->getKind() == BuiltinType::Short ||
8237          BTy->getKind() == BuiltinType::UShort ||
8238          BTy->getKind() == BuiltinType::Int ||
8239          BTy->getKind() == BuiltinType::UInt ||
8240          BTy->getKind() == BuiltinType::Long ||
8241          BTy->getKind() == BuiltinType::ULong ||
8242          BTy->getKind() == BuiltinType::LongLong ||
8243          BTy->getKind() == BuiltinType::ULongLong ||
8244          BTy->getKind() == BuiltinType::Float ||
8245          BTy->getKind() == BuiltinType::Half ||
8246          BTy->getKind() == BuiltinType::BFloat16;
8247 }
8248 
8249 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8250                                            llvm::APSInt &Result) {
8251   const auto *AttrExpr = Attr.getArgAsExpr(0);
8252   if (!AttrExpr->isTypeDependent()) {
8253     if (std::optional<llvm::APSInt> Res =
8254             AttrExpr->getIntegerConstantExpr(S.Context)) {
8255       Result = *Res;
8256       return true;
8257     }
8258   }
8259   S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8260       << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8261   Attr.setInvalid();
8262   return false;
8263 }
8264 
8265 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8266 /// "neon_polyvector_type" attributes are used to create vector types that
8267 /// are mangled according to ARM's ABI.  Otherwise, these types are identical
8268 /// to those created with the "vector_size" attribute.  Unlike "vector_size"
8269 /// the argument to these Neon attributes is the number of vector elements,
8270 /// not the vector size in bytes.  The vector width and element type must
8271 /// match one of the standard Neon vector types.
8272 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8273                                      Sema &S, VectorKind VecKind) {
8274   bool IsTargetCUDAAndHostARM = false;
8275   if (S.getLangOpts().CUDAIsDevice) {
8276     const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8277     IsTargetCUDAAndHostARM =
8278         AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8279   }
8280 
8281   // Target must have NEON (or MVE, whose vectors are similar enough
8282   // not to need a separate attribute)
8283   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8284       VecKind == VectorKind::Neon &&
8285       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8286     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8287         << Attr << "'mve'";
8288     Attr.setInvalid();
8289     return;
8290   }
8291   if (!S.Context.getTargetInfo().hasFeature("mve") &&
8292       VecKind == VectorKind::NeonPoly &&
8293       S.Context.getTargetInfo().getTriple().isArmMClass()) {
8294     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8295         << Attr << "'mve'";
8296     Attr.setInvalid();
8297     return;
8298   }
8299 
8300   // Check the attribute arguments.
8301   if (Attr.getNumArgs() != 1) {
8302     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8303         << Attr << 1;
8304     Attr.setInvalid();
8305     return;
8306   }
8307   // The number of elements must be an ICE.
8308   llvm::APSInt numEltsInt(32);
8309   if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8310     return;
8311 
8312   // Only certain element types are supported for Neon vectors.
8313   if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8314       !IsTargetCUDAAndHostARM) {
8315     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8316     Attr.setInvalid();
8317     return;
8318   }
8319 
8320   // The total size of the vector must be 64 or 128 bits.
8321   unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8322   unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8323   unsigned vecSize = typeSize * numElts;
8324   if (vecSize != 64 && vecSize != 128) {
8325     S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8326     Attr.setInvalid();
8327     return;
8328   }
8329 
8330   CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8331 }
8332 
8333 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8334 /// used to create fixed-length versions of sizeless SVE types defined by
8335 /// the ACLE, such as svint32_t and svbool_t.
8336 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8337                                            Sema &S) {
8338   // Target must have SVE.
8339   if (!S.Context.getTargetInfo().hasFeature("sve")) {
8340     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8341     Attr.setInvalid();
8342     return;
8343   }
8344 
8345   // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8346   // if <bits>+ syntax is used.
8347   if (!S.getLangOpts().VScaleMin ||
8348       S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8349     S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8350         << Attr;
8351     Attr.setInvalid();
8352     return;
8353   }
8354 
8355   // Check the attribute arguments.
8356   if (Attr.getNumArgs() != 1) {
8357     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8358         << Attr << 1;
8359     Attr.setInvalid();
8360     return;
8361   }
8362 
8363   // The vector size must be an integer constant expression.
8364   llvm::APSInt SveVectorSizeInBits(32);
8365   if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8366     return;
8367 
8368   unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8369 
8370   // The attribute vector size must match -msve-vector-bits.
8371   if (VecSize != S.getLangOpts().VScaleMin * 128) {
8372     S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8373         << VecSize << S.getLangOpts().VScaleMin * 128;
8374     Attr.setInvalid();
8375     return;
8376   }
8377 
8378   // Attribute can only be attached to a single SVE vector or predicate type.
8379   if (!CurType->isSveVLSBuiltinType()) {
8380     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8381         << Attr << CurType;
8382     Attr.setInvalid();
8383     return;
8384   }
8385 
8386   const auto *BT = CurType->castAs<BuiltinType>();
8387 
8388   QualType EltType = CurType->getSveEltType(S.Context);
8389   unsigned TypeSize = S.Context.getTypeSize(EltType);
8390   VectorKind VecKind = VectorKind::SveFixedLengthData;
8391   if (BT->getKind() == BuiltinType::SveBool) {
8392     // Predicates are represented as i8.
8393     VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8394     VecKind = VectorKind::SveFixedLengthPredicate;
8395   } else
8396     VecSize /= TypeSize;
8397   CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8398 }
8399 
8400 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8401                                                QualType &CurType,
8402                                                ParsedAttr &Attr) {
8403   const VectorType *VT = dyn_cast<VectorType>(CurType);
8404   if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8405     State.getSema().Diag(Attr.getLoc(),
8406                          diag::err_attribute_arm_mve_polymorphism);
8407     Attr.setInvalid();
8408     return;
8409   }
8410 
8411   CurType =
8412       State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8413                                   State.getSema().Context, Attr),
8414                               CurType, CurType);
8415 }
8416 
8417 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8418 /// used to create fixed-length versions of sizeless RVV types such as
8419 /// vint8m1_t_t.
8420 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8421                                              ParsedAttr &Attr, Sema &S) {
8422   // Target must have vector extension.
8423   if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8424     S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8425         << Attr << "'zve32x'";
8426     Attr.setInvalid();
8427     return;
8428   }
8429 
8430   auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8431   if (!VScale || !VScale->first || VScale->first != VScale->second) {
8432     S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8433         << Attr;
8434     Attr.setInvalid();
8435     return;
8436   }
8437 
8438   // Check the attribute arguments.
8439   if (Attr.getNumArgs() != 1) {
8440     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8441         << Attr << 1;
8442     Attr.setInvalid();
8443     return;
8444   }
8445 
8446   // The vector size must be an integer constant expression.
8447   llvm::APSInt RVVVectorSizeInBits(32);
8448   if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8449     return;
8450 
8451   // Attribute can only be attached to a single RVV vector type.
8452   if (!CurType->isRVVVLSBuiltinType()) {
8453     S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8454         << Attr << CurType;
8455     Attr.setInvalid();
8456     return;
8457   }
8458 
8459   unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8460 
8461   ASTContext::BuiltinVectorTypeInfo Info =
8462       S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8463   unsigned MinElts = Info.EC.getKnownMinValue();
8464 
8465   VectorKind VecKind = VectorKind::RVVFixedLengthData;
8466   unsigned ExpectedSize = VScale->first * MinElts;
8467   QualType EltType = CurType->getRVVEltType(S.Context);
8468   unsigned EltSize = S.Context.getTypeSize(EltType);
8469   unsigned NumElts;
8470   if (Info.ElementType == S.Context.BoolTy) {
8471     NumElts = VecSize / S.Context.getCharWidth();
8472     if (!NumElts) {
8473       NumElts = 1;
8474       switch (VecSize) {
8475       case 1:
8476         VecKind = VectorKind::RVVFixedLengthMask_1;
8477         break;
8478       case 2:
8479         VecKind = VectorKind::RVVFixedLengthMask_2;
8480         break;
8481       case 4:
8482         VecKind = VectorKind::RVVFixedLengthMask_4;
8483         break;
8484       }
8485     } else
8486       VecKind = VectorKind::RVVFixedLengthMask;
8487   } else {
8488     ExpectedSize *= EltSize;
8489     NumElts = VecSize / EltSize;
8490   }
8491 
8492   // The attribute vector size must match -mrvv-vector-bits.
8493   if (VecSize != ExpectedSize) {
8494     S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8495         << VecSize << ExpectedSize;
8496     Attr.setInvalid();
8497     return;
8498   }
8499 
8500   CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8501 }
8502 
8503 /// Handle OpenCL Access Qualifier Attribute.
8504 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8505                                    Sema &S) {
8506   // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8507   if (!(CurType->isImageType() || CurType->isPipeType())) {
8508     S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8509     Attr.setInvalid();
8510     return;
8511   }
8512 
8513   if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8514     QualType BaseTy = TypedefTy->desugar();
8515 
8516     std::string PrevAccessQual;
8517     if (BaseTy->isPipeType()) {
8518       if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8519         OpenCLAccessAttr *Attr =
8520             TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8521         PrevAccessQual = Attr->getSpelling();
8522       } else {
8523         PrevAccessQual = "read_only";
8524       }
8525     } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8526 
8527       switch (ImgType->getKind()) {
8528         #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8529       case BuiltinType::Id:                                          \
8530         PrevAccessQual = #Access;                                    \
8531         break;
8532         #include "clang/Basic/OpenCLImageTypes.def"
8533       default:
8534         llvm_unreachable("Unable to find corresponding image type.");
8535       }
8536     } else {
8537       llvm_unreachable("unexpected type");
8538     }
8539     StringRef AttrName = Attr.getAttrName()->getName();
8540     if (PrevAccessQual == AttrName.ltrim("_")) {
8541       // Duplicated qualifiers
8542       S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8543          << AttrName << Attr.getRange();
8544     } else {
8545       // Contradicting qualifiers
8546       S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8547     }
8548 
8549     S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8550            diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8551   } else if (CurType->isPipeType()) {
8552     if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8553       QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8554       CurType = S.Context.getWritePipeType(ElemType);
8555     }
8556   }
8557 }
8558 
8559 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8560 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8561                                  Sema &S) {
8562   if (!S.getLangOpts().MatrixTypes) {
8563     S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8564     return;
8565   }
8566 
8567   if (Attr.getNumArgs() != 2) {
8568     S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8569         << Attr << 2;
8570     return;
8571   }
8572 
8573   Expr *RowsExpr = Attr.getArgAsExpr(0);
8574   Expr *ColsExpr = Attr.getArgAsExpr(1);
8575   QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8576   if (!T.isNull())
8577     CurType = T;
8578 }
8579 
8580 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8581                                    QualType &CurType, const ParsedAttr &PA) {
8582   Sema &S = State.getSema();
8583 
8584   if (PA.getNumArgs() < 1) {
8585     S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8586     return;
8587   }
8588 
8589   // Make sure that there is a string literal as the annotation's first
8590   // argument.
8591   StringRef Str;
8592   if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8593     return;
8594 
8595   llvm::SmallVector<Expr *, 4> Args;
8596   Args.reserve(PA.getNumArgs() - 1);
8597   for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8598     assert(!PA.isArgIdent(Idx));
8599     Args.push_back(PA.getArgAsExpr(Idx));
8600   }
8601   if (!S.ConstantFoldAttrArgs(PA, Args))
8602     return;
8603   auto *AnnotateTypeAttr =
8604       AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8605   CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8606 }
8607 
8608 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8609                                     QualType &CurType,
8610                                     ParsedAttr &Attr) {
8611   if (State.getDeclarator().isDeclarationOfFunction()) {
8612     CurType = State.getAttributedType(
8613         createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8614         CurType, CurType);
8615   }
8616 }
8617 
8618 static void HandleLifetimeCaptureByAttr(TypeProcessingState &State,
8619                                         QualType &CurType, ParsedAttr &PA) {
8620   if (State.getDeclarator().isDeclarationOfFunction()) {
8621     auto *Attr = State.getSema().ParseLifetimeCaptureByAttr(PA, "this");
8622     if (Attr)
8623       CurType = State.getAttributedType(Attr, CurType, CurType);
8624   }
8625 }
8626 
8627 static void HandleHLSLParamModifierAttr(TypeProcessingState &State,
8628                                         QualType &CurType,
8629                                         const ParsedAttr &Attr, Sema &S) {
8630   // Don't apply this attribute to template dependent types. It is applied on
8631   // substitution during template instantiation. Also skip parsing this if we've
8632   // already modified the type based on an earlier attribute.
8633   if (CurType->isDependentType() || State.didParseHLSLParamMod())
8634     return;
8635   if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8636       Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) {
8637     CurType = S.HLSL().getInoutParameterType(CurType);
8638     State.setParsedHLSLParamMod(true);
8639   }
8640 }
8641 
8642 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8643                              TypeAttrLocation TAL,
8644                              const ParsedAttributesView &attrs,
8645                              CUDAFunctionTarget CFT) {
8646 
8647   state.setParsedNoDeref(false);
8648   if (attrs.empty())
8649     return;
8650 
8651   // Scan through and apply attributes to this type where it makes sense.  Some
8652   // attributes (such as __address_space__, __vector_size__, etc) apply to the
8653   // type, but others can be present in the type specifiers even though they
8654   // apply to the decl.  Here we apply type attributes and ignore the rest.
8655 
8656   // This loop modifies the list pretty frequently, but we still need to make
8657   // sure we visit every element once. Copy the attributes list, and iterate
8658   // over that.
8659   ParsedAttributesView AttrsCopy{attrs};
8660   for (ParsedAttr &attr : AttrsCopy) {
8661 
8662     // Skip attributes that were marked to be invalid.
8663     if (attr.isInvalid())
8664       continue;
8665 
8666     if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8667       // [[gnu::...]] attributes are treated as declaration attributes, so may
8668       // not appertain to a DeclaratorChunk. If we handle them as type
8669       // attributes, accept them in that position and diagnose the GCC
8670       // incompatibility.
8671       if (attr.isGNUScope()) {
8672         assert(attr.isStandardAttributeSyntax());
8673         bool IsTypeAttr = attr.isTypeAttr();
8674         if (TAL == TAL_DeclChunk) {
8675           state.getSema().Diag(attr.getLoc(),
8676                                IsTypeAttr
8677                                    ? diag::warn_gcc_ignores_type_attr
8678                                    : diag::warn_cxx11_gnu_attribute_on_type)
8679               << attr;
8680           if (!IsTypeAttr)
8681             continue;
8682         }
8683       } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8684                  !attr.isTypeAttr()) {
8685         // Otherwise, only consider type processing for a C++11 attribute if
8686         // - it has actually been applied to a type (decl-specifier-seq or
8687         //   declarator chunk), or
8688         // - it is a type attribute, irrespective of where it was applied (so
8689         //   that we can support the legacy behavior of some type attributes
8690         //   that can be applied to the declaration name).
8691         continue;
8692       }
8693     }
8694 
8695     // If this is an attribute we can handle, do so now,
8696     // otherwise, add it to the FnAttrs list for rechaining.
8697     switch (attr.getKind()) {
8698     default:
8699       // A [[]] attribute on a declarator chunk must appertain to a type.
8700       if ((attr.isStandardAttributeSyntax() ||
8701            attr.isRegularKeywordAttribute()) &&
8702           TAL == TAL_DeclChunk) {
8703         state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8704             << attr << attr.isRegularKeywordAttribute();
8705         attr.setUsedAsTypeAttr();
8706       }
8707       break;
8708 
8709     case ParsedAttr::UnknownAttribute:
8710       if (attr.isStandardAttributeSyntax()) {
8711         state.getSema().Diag(attr.getLoc(),
8712                              diag::warn_unknown_attribute_ignored)
8713             << attr << attr.getRange();
8714         // Mark the attribute as invalid so we don't emit the same diagnostic
8715         // multiple times.
8716         attr.setInvalid();
8717       }
8718       break;
8719 
8720     case ParsedAttr::IgnoredAttribute:
8721       break;
8722 
8723     case ParsedAttr::AT_BTFTypeTag:
8724       HandleBTFTypeTagAttribute(type, attr, state);
8725       attr.setUsedAsTypeAttr();
8726       break;
8727 
8728     case ParsedAttr::AT_MayAlias:
8729       // FIXME: This attribute needs to actually be handled, but if we ignore
8730       // it it breaks large amounts of Linux software.
8731       attr.setUsedAsTypeAttr();
8732       break;
8733     case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8734     case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8735     case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8736     case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8737     case ParsedAttr::AT_OpenCLLocalAddressSpace:
8738     case ParsedAttr::AT_OpenCLConstantAddressSpace:
8739     case ParsedAttr::AT_OpenCLGenericAddressSpace:
8740     case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8741     case ParsedAttr::AT_AddressSpace:
8742       HandleAddressSpaceTypeAttribute(type, attr, state);
8743       attr.setUsedAsTypeAttr();
8744       break;
8745     OBJC_POINTER_TYPE_ATTRS_CASELIST:
8746       if (!handleObjCPointerTypeAttr(state, attr, type))
8747         distributeObjCPointerTypeAttr(state, attr, type);
8748       attr.setUsedAsTypeAttr();
8749       break;
8750     case ParsedAttr::AT_VectorSize:
8751       HandleVectorSizeAttr(type, attr, state.getSema());
8752       attr.setUsedAsTypeAttr();
8753       break;
8754     case ParsedAttr::AT_ExtVectorType:
8755       HandleExtVectorTypeAttr(type, attr, state.getSema());
8756       attr.setUsedAsTypeAttr();
8757       break;
8758     case ParsedAttr::AT_NeonVectorType:
8759       HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8760       attr.setUsedAsTypeAttr();
8761       break;
8762     case ParsedAttr::AT_NeonPolyVectorType:
8763       HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8764                                VectorKind::NeonPoly);
8765       attr.setUsedAsTypeAttr();
8766       break;
8767     case ParsedAttr::AT_ArmSveVectorBits:
8768       HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8769       attr.setUsedAsTypeAttr();
8770       break;
8771     case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8772       HandleArmMveStrictPolymorphismAttr(state, type, attr);
8773       attr.setUsedAsTypeAttr();
8774       break;
8775     }
8776     case ParsedAttr::AT_RISCVRVVVectorBits:
8777       HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8778       attr.setUsedAsTypeAttr();
8779       break;
8780     case ParsedAttr::AT_OpenCLAccess:
8781       HandleOpenCLAccessAttr(type, attr, state.getSema());
8782       attr.setUsedAsTypeAttr();
8783       break;
8784     case ParsedAttr::AT_LifetimeBound:
8785       if (TAL == TAL_DeclChunk)
8786         HandleLifetimeBoundAttr(state, type, attr);
8787       break;
8788     case ParsedAttr::AT_LifetimeCaptureBy:
8789       if (TAL == TAL_DeclChunk)
8790         HandleLifetimeCaptureByAttr(state, type, attr);
8791       break;
8792 
8793     case ParsedAttr::AT_NoDeref: {
8794       // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8795       // See https://github.com/llvm/llvm-project/issues/55790 for details.
8796       // For the time being, we simply emit a warning that the attribute is
8797       // ignored.
8798       if (attr.isStandardAttributeSyntax()) {
8799         state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8800             << attr;
8801         break;
8802       }
8803       ASTContext &Ctx = state.getSema().Context;
8804       type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8805                                      type, type);
8806       attr.setUsedAsTypeAttr();
8807       state.setParsedNoDeref(true);
8808       break;
8809     }
8810 
8811     case ParsedAttr::AT_MatrixType:
8812       HandleMatrixTypeAttr(type, attr, state.getSema());
8813       attr.setUsedAsTypeAttr();
8814       break;
8815 
8816     case ParsedAttr::AT_WebAssemblyFuncref: {
8817       if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8818         attr.setUsedAsTypeAttr();
8819       break;
8820     }
8821 
8822     case ParsedAttr::AT_HLSLParamModifier: {
8823       HandleHLSLParamModifierAttr(state, type, attr, state.getSema());
8824       attr.setUsedAsTypeAttr();
8825       break;
8826     }
8827 
8828     case ParsedAttr::AT_SwiftAttr: {
8829       HandleSwiftAttr(state, TAL, type, attr);
8830       break;
8831     }
8832 
8833     MS_TYPE_ATTRS_CASELIST:
8834       if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8835         attr.setUsedAsTypeAttr();
8836       break;
8837 
8838 
8839     NULLABILITY_TYPE_ATTRS_CASELIST:
8840       // Either add nullability here or try to distribute it.  We
8841       // don't want to distribute the nullability specifier past any
8842       // dependent type, because that complicates the user model.
8843       if (type->canHaveNullability() || type->isDependentType() ||
8844           type->isArrayType() ||
8845           !distributeNullabilityTypeAttr(state, type, attr)) {
8846         unsigned endIndex;
8847         if (TAL == TAL_DeclChunk)
8848           endIndex = state.getCurrentChunkIndex();
8849         else
8850           endIndex = state.getDeclarator().getNumTypeObjects();
8851         bool allowOnArrayType =
8852             state.getDeclarator().isPrototypeContext() &&
8853             !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8854         if (CheckNullabilityTypeSpecifier(state, type, attr,
8855                                           allowOnArrayType)) {
8856           attr.setInvalid();
8857         }
8858 
8859         attr.setUsedAsTypeAttr();
8860       }
8861       break;
8862 
8863     case ParsedAttr::AT_ObjCKindOf:
8864       // '__kindof' must be part of the decl-specifiers.
8865       switch (TAL) {
8866       case TAL_DeclSpec:
8867         break;
8868 
8869       case TAL_DeclChunk:
8870       case TAL_DeclName:
8871         state.getSema().Diag(attr.getLoc(),
8872                              diag::err_objc_kindof_wrong_position)
8873             << FixItHint::CreateRemoval(attr.getLoc())
8874             << FixItHint::CreateInsertion(
8875                    state.getDeclarator().getDeclSpec().getBeginLoc(),
8876                    "__kindof ");
8877         break;
8878       }
8879 
8880       // Apply it regardless.
8881       if (checkObjCKindOfType(state, type, attr))
8882         attr.setInvalid();
8883       break;
8884 
8885     case ParsedAttr::AT_NoThrow:
8886     // Exception Specifications aren't generally supported in C mode throughout
8887     // clang, so revert to attribute-based handling for C.
8888       if (!state.getSema().getLangOpts().CPlusPlus)
8889         break;
8890       [[fallthrough]];
8891     FUNCTION_TYPE_ATTRS_CASELIST:
8892       attr.setUsedAsTypeAttr();
8893 
8894       // Attributes with standard syntax have strict rules for what they
8895       // appertain to and hence should not use the "distribution" logic below.
8896       if (attr.isStandardAttributeSyntax() ||
8897           attr.isRegularKeywordAttribute()) {
8898         if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8899           diagnoseBadTypeAttribute(state.getSema(), attr, type);
8900           attr.setInvalid();
8901         }
8902         break;
8903       }
8904 
8905       // Never process function type attributes as part of the
8906       // declaration-specifiers.
8907       if (TAL == TAL_DeclSpec)
8908         distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8909 
8910       // Otherwise, handle the possible delays.
8911       else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8912         distributeFunctionTypeAttr(state, attr, type);
8913       break;
8914     case ParsedAttr::AT_AcquireHandle: {
8915       if (!type->isFunctionType())
8916         return;
8917 
8918       if (attr.getNumArgs() != 1) {
8919         state.getSema().Diag(attr.getLoc(),
8920                              diag::err_attribute_wrong_number_arguments)
8921             << attr << 1;
8922         attr.setInvalid();
8923         return;
8924       }
8925 
8926       StringRef HandleType;
8927       if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8928         return;
8929       type = state.getAttributedType(
8930           AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8931           type, type);
8932       attr.setUsedAsTypeAttr();
8933       break;
8934     }
8935     case ParsedAttr::AT_AnnotateType: {
8936       HandleAnnotateTypeAttr(state, type, attr);
8937       attr.setUsedAsTypeAttr();
8938       break;
8939     }
8940     case ParsedAttr::AT_HLSLResourceClass:
8941     case ParsedAttr::AT_HLSLROV:
8942     case ParsedAttr::AT_HLSLRawBuffer:
8943     case ParsedAttr::AT_HLSLContainedType: {
8944       // Only collect HLSL resource type attributes that are in
8945       // decl-specifier-seq; do not collect attributes on declarations or those
8946       // that get to slide after declaration name.
8947       if (TAL == TAL_DeclSpec &&
8948           state.getSema().HLSL().handleResourceTypeAttr(type, attr))
8949         attr.setUsedAsTypeAttr();
8950       break;
8951     }
8952     }
8953 
8954     // Handle attributes that are defined in a macro. We do not want this to be
8955     // applied to ObjC builtin attributes.
8956     if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8957         !type.getQualifiers().hasObjCLifetime() &&
8958         !type.getQualifiers().hasObjCGCAttr() &&
8959         attr.getKind() != ParsedAttr::AT_ObjCGC &&
8960         attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8961       const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8962       type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8963       state.setExpansionLocForMacroQualifiedType(
8964           cast<MacroQualifiedType>(type.getTypePtr()),
8965           attr.getMacroExpansionLoc());
8966     }
8967   }
8968 }
8969 
8970 void Sema::completeExprArrayBound(Expr *E) {
8971   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8972     if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8973       if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8974         auto *Def = Var->getDefinition();
8975         if (!Def) {
8976           SourceLocation PointOfInstantiation = E->getExprLoc();
8977           runWithSufficientStackSpace(PointOfInstantiation, [&] {
8978             InstantiateVariableDefinition(PointOfInstantiation, Var);
8979           });
8980           Def = Var->getDefinition();
8981 
8982           // If we don't already have a point of instantiation, and we managed
8983           // to instantiate a definition, this is the point of instantiation.
8984           // Otherwise, we don't request an end-of-TU instantiation, so this is
8985           // not a point of instantiation.
8986           // FIXME: Is this really the right behavior?
8987           if (Var->getPointOfInstantiation().isInvalid() && Def) {
8988             assert(Var->getTemplateSpecializationKind() ==
8989                        TSK_ImplicitInstantiation &&
8990                    "explicit instantiation with no point of instantiation");
8991             Var->setTemplateSpecializationKind(
8992                 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8993           }
8994         }
8995 
8996         // Update the type to the definition's type both here and within the
8997         // expression.
8998         if (Def) {
8999           DRE->setDecl(Def);
9000           QualType T = Def->getType();
9001           DRE->setType(T);
9002           // FIXME: Update the type on all intervening expressions.
9003           E->setType(T);
9004         }
9005 
9006         // We still go on to try to complete the type independently, as it
9007         // may also require instantiations or diagnostics if it remains
9008         // incomplete.
9009       }
9010     }
9011   }
9012   if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
9013     QualType DestType = CastE->getTypeAsWritten();
9014     if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
9015       // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
9016       // this direct-initialization defines the type of the expression
9017       // as U[1]
9018       QualType ResultType = Context.getConstantArrayType(
9019           IAT->getElementType(),
9020           llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
9021           /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
9022           /*IndexTypeQuals=*/0);
9023       E->setType(ResultType);
9024     }
9025   }
9026 }
9027 
9028 QualType Sema::getCompletedType(Expr *E) {
9029   // Incomplete array types may be completed by the initializer attached to
9030   // their definitions. For static data members of class templates and for
9031   // variable templates, we need to instantiate the definition to get this
9032   // initializer and complete the type.
9033   if (E->getType()->isIncompleteArrayType())
9034     completeExprArrayBound(E);
9035 
9036   // FIXME: Are there other cases which require instantiating something other
9037   // than the type to complete the type of an expression?
9038 
9039   return E->getType();
9040 }
9041 
9042 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
9043                                    TypeDiagnoser &Diagnoser) {
9044   return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
9045                              Diagnoser);
9046 }
9047 
9048 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
9049   BoundTypeDiagnoser<> Diagnoser(DiagID);
9050   return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
9051 }
9052 
9053 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9054                                CompleteTypeKind Kind,
9055                                TypeDiagnoser &Diagnoser) {
9056   if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
9057     return true;
9058   if (const TagType *Tag = T->getAs<TagType>()) {
9059     if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
9060       Tag->getDecl()->setCompleteDefinitionRequired();
9061       Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
9062     }
9063   }
9064   return false;
9065 }
9066 
9067 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
9068   StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls;
9069   if (!Suggested)
9070     return false;
9071 
9072   // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9073   // and isolate from other C++ specific checks.
9074   StructuralEquivalenceContext Ctx(
9075       D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
9076       StructuralEquivalenceKind::Default,
9077       false /*StrictTypeSpelling*/, true /*Complain*/,
9078       true /*ErrorOnTagTypeMismatch*/);
9079   return Ctx.IsEquivalent(D, Suggested);
9080 }
9081 
9082 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
9083                                    AcceptableKind Kind, bool OnlyNeedComplete) {
9084   // Easy case: if we don't have modules, all declarations are visible.
9085   if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
9086     return true;
9087 
9088   // If this definition was instantiated from a template, map back to the
9089   // pattern from which it was instantiated.
9090   if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
9091     // We're in the middle of defining it; this definition should be treated
9092     // as visible.
9093     return true;
9094   } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9095     if (auto *Pattern = RD->getTemplateInstantiationPattern())
9096       RD = Pattern;
9097     D = RD->getDefinition();
9098   } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
9099     if (auto *Pattern = ED->getTemplateInstantiationPattern())
9100       ED = Pattern;
9101     if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9102       // If the enum has a fixed underlying type, it may have been forward
9103       // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9104       // the enum and assign it the underlying type of `int`. Since we're only
9105       // looking for a complete type (not a definition), any visible declaration
9106       // of it will do.
9107       *Suggested = nullptr;
9108       for (auto *Redecl : ED->redecls()) {
9109         if (isAcceptable(Redecl, Kind))
9110           return true;
9111         if (Redecl->isThisDeclarationADefinition() ||
9112             (Redecl->isCanonicalDecl() && !*Suggested))
9113           *Suggested = Redecl;
9114       }
9115 
9116       return false;
9117     }
9118     D = ED->getDefinition();
9119   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
9120     if (auto *Pattern = FD->getTemplateInstantiationPattern())
9121       FD = Pattern;
9122     D = FD->getDefinition();
9123   } else if (auto *VD = dyn_cast<VarDecl>(D)) {
9124     if (auto *Pattern = VD->getTemplateInstantiationPattern())
9125       VD = Pattern;
9126     D = VD->getDefinition();
9127   }
9128 
9129   assert(D && "missing definition for pattern of instantiated definition");
9130 
9131   *Suggested = D;
9132 
9133   auto DefinitionIsAcceptable = [&] {
9134     // The (primary) definition might be in a visible module.
9135     if (isAcceptable(D, Kind))
9136       return true;
9137 
9138     // A visible module might have a merged definition instead.
9139     if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
9140                              : hasVisibleMergedDefinition(D)) {
9141       if (CodeSynthesisContexts.empty() &&
9142           !getLangOpts().ModulesLocalVisibility) {
9143         // Cache the fact that this definition is implicitly visible because
9144         // there is a visible merged definition.
9145         D->setVisibleDespiteOwningModule();
9146       }
9147       return true;
9148     }
9149 
9150     return false;
9151   };
9152 
9153   if (DefinitionIsAcceptable())
9154     return true;
9155 
9156   // The external source may have additional definitions of this entity that are
9157   // visible, so complete the redeclaration chain now and ask again.
9158   if (auto *Source = Context.getExternalSource()) {
9159     Source->CompleteRedeclChain(D);
9160     return DefinitionIsAcceptable();
9161   }
9162 
9163   return false;
9164 }
9165 
9166 /// Determine whether there is any declaration of \p D that was ever a
9167 ///        definition (perhaps before module merging) and is currently visible.
9168 /// \param D The definition of the entity.
9169 /// \param Suggested Filled in with the declaration that should be made visible
9170 ///        in order to provide a definition of this entity.
9171 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9172 ///        not defined. This only matters for enums with a fixed underlying
9173 ///        type, since in all other cases, a type is complete if and only if it
9174 ///        is defined.
9175 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9176                                 bool OnlyNeedComplete) {
9177   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9178                                  OnlyNeedComplete);
9179 }
9180 
9181 /// Determine whether there is any declaration of \p D that was ever a
9182 ///        definition (perhaps before module merging) and is currently
9183 ///        reachable.
9184 /// \param D The definition of the entity.
9185 /// \param Suggested Filled in with the declaration that should be made
9186 /// reachable
9187 ///        in order to provide a definition of this entity.
9188 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9189 ///        not defined. This only matters for enums with a fixed underlying
9190 ///        type, since in all other cases, a type is complete if and only if it
9191 ///        is defined.
9192 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9193                                   bool OnlyNeedComplete) {
9194   return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9195                                  OnlyNeedComplete);
9196 }
9197 
9198 /// Locks in the inheritance model for the given class and all of its bases.
9199 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9200   RD = RD->getMostRecentNonInjectedDecl();
9201   if (!RD->hasAttr<MSInheritanceAttr>()) {
9202     MSInheritanceModel IM;
9203     bool BestCase = false;
9204     switch (S.MSPointerToMemberRepresentationMethod) {
9205     case LangOptions::PPTMK_BestCase:
9206       BestCase = true;
9207       IM = RD->calculateInheritanceModel();
9208       break;
9209     case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9210       IM = MSInheritanceModel::Single;
9211       break;
9212     case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9213       IM = MSInheritanceModel::Multiple;
9214       break;
9215     case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9216       IM = MSInheritanceModel::Unspecified;
9217       break;
9218     }
9219 
9220     SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9221                           ? S.ImplicitMSInheritanceAttrLoc
9222                           : RD->getSourceRange();
9223     RD->addAttr(MSInheritanceAttr::CreateImplicit(
9224         S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9225     S.Consumer.AssignInheritanceModel(RD);
9226   }
9227 }
9228 
9229 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9230                                    CompleteTypeKind Kind,
9231                                    TypeDiagnoser *Diagnoser) {
9232   // FIXME: Add this assertion to make sure we always get instantiation points.
9233   //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9234   // FIXME: Add this assertion to help us flush out problems with
9235   // checking for dependent types and type-dependent expressions.
9236   //
9237   //  assert(!T->isDependentType() &&
9238   //         "Can't ask whether a dependent type is complete");
9239 
9240   if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9241     if (!MPTy->getClass()->isDependentType()) {
9242       if (getLangOpts().CompleteMemberPointers &&
9243           !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9244           RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9245                               diag::err_memptr_incomplete))
9246         return true;
9247 
9248       // We lock in the inheritance model once somebody has asked us to ensure
9249       // that a pointer-to-member type is complete.
9250       if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9251         (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9252         assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9253       }
9254     }
9255   }
9256 
9257   NamedDecl *Def = nullptr;
9258   bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9259   bool Incomplete = (T->isIncompleteType(&Def) ||
9260                      (!AcceptSizeless && T->isSizelessBuiltinType()));
9261 
9262   // Check that any necessary explicit specializations are visible. For an
9263   // enum, we just need the declaration, so don't check this.
9264   if (Def && !isa<EnumDecl>(Def))
9265     checkSpecializationReachability(Loc, Def);
9266 
9267   // If we have a complete type, we're done.
9268   if (!Incomplete) {
9269     NamedDecl *Suggested = nullptr;
9270     if (Def &&
9271         !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9272       // If the user is going to see an error here, recover by making the
9273       // definition visible.
9274       bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9275       if (Diagnoser && Suggested)
9276         diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9277                               /*Recover*/ TreatAsComplete);
9278       return !TreatAsComplete;
9279     } else if (Def && !TemplateInstCallbacks.empty()) {
9280       CodeSynthesisContext TempInst;
9281       TempInst.Kind = CodeSynthesisContext::Memoization;
9282       TempInst.Template = Def;
9283       TempInst.Entity = Def;
9284       TempInst.PointOfInstantiation = Loc;
9285       atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9286       atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9287     }
9288 
9289     return false;
9290   }
9291 
9292   TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9293   ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9294 
9295   // Give the external source a chance to provide a definition of the type.
9296   // This is kept separate from completing the redeclaration chain so that
9297   // external sources such as LLDB can avoid synthesizing a type definition
9298   // unless it's actually needed.
9299   if (Tag || IFace) {
9300     // Avoid diagnosing invalid decls as incomplete.
9301     if (Def->isInvalidDecl())
9302       return true;
9303 
9304     // Give the external AST source a chance to complete the type.
9305     if (auto *Source = Context.getExternalSource()) {
9306       if (Tag && Tag->hasExternalLexicalStorage())
9307           Source->CompleteType(Tag);
9308       if (IFace && IFace->hasExternalLexicalStorage())
9309           Source->CompleteType(IFace);
9310       // If the external source completed the type, go through the motions
9311       // again to ensure we're allowed to use the completed type.
9312       if (!T->isIncompleteType())
9313         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9314     }
9315   }
9316 
9317   // If we have a class template specialization or a class member of a
9318   // class template specialization, or an array with known size of such,
9319   // try to instantiate it.
9320   if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9321     bool Instantiated = false;
9322     bool Diagnosed = false;
9323     if (RD->isDependentContext()) {
9324       // Don't try to instantiate a dependent class (eg, a member template of
9325       // an instantiated class template specialization).
9326       // FIXME: Can this ever happen?
9327     } else if (auto *ClassTemplateSpec =
9328             dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9329       if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9330         runWithSufficientStackSpace(Loc, [&] {
9331           Diagnosed = InstantiateClassTemplateSpecialization(
9332               Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9333               /*Complain=*/Diagnoser);
9334         });
9335         Instantiated = true;
9336       }
9337     } else {
9338       CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9339       if (!RD->isBeingDefined() && Pattern) {
9340         MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9341         assert(MSI && "Missing member specialization information?");
9342         // This record was instantiated from a class within a template.
9343         if (MSI->getTemplateSpecializationKind() !=
9344             TSK_ExplicitSpecialization) {
9345           runWithSufficientStackSpace(Loc, [&] {
9346             Diagnosed = InstantiateClass(Loc, RD, Pattern,
9347                                          getTemplateInstantiationArgs(RD),
9348                                          TSK_ImplicitInstantiation,
9349                                          /*Complain=*/Diagnoser);
9350           });
9351           Instantiated = true;
9352         }
9353       }
9354     }
9355 
9356     if (Instantiated) {
9357       // Instantiate* might have already complained that the template is not
9358       // defined, if we asked it to.
9359       if (Diagnoser && Diagnosed)
9360         return true;
9361       // If we instantiated a definition, check that it's usable, even if
9362       // instantiation produced an error, so that repeated calls to this
9363       // function give consistent answers.
9364       if (!T->isIncompleteType())
9365         return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9366     }
9367   }
9368 
9369   // FIXME: If we didn't instantiate a definition because of an explicit
9370   // specialization declaration, check that it's visible.
9371 
9372   if (!Diagnoser)
9373     return true;
9374 
9375   Diagnoser->diagnose(*this, Loc, T);
9376 
9377   // If the type was a forward declaration of a class/struct/union
9378   // type, produce a note.
9379   if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9380     Diag(Tag->getLocation(),
9381          Tag->isBeingDefined() ? diag::note_type_being_defined
9382                                : diag::note_forward_declaration)
9383       << Context.getTagDeclType(Tag);
9384 
9385   // If the Objective-C class was a forward declaration, produce a note.
9386   if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9387     Diag(IFace->getLocation(), diag::note_forward_class);
9388 
9389   // If we have external information that we can use to suggest a fix,
9390   // produce a note.
9391   if (ExternalSource)
9392     ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9393 
9394   return true;
9395 }
9396 
9397 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9398                                CompleteTypeKind Kind, unsigned DiagID) {
9399   BoundTypeDiagnoser<> Diagnoser(DiagID);
9400   return RequireCompleteType(Loc, T, Kind, Diagnoser);
9401 }
9402 
9403 /// Get diagnostic %select index for tag kind for
9404 /// literal type diagnostic message.
9405 /// WARNING: Indexes apply to particular diagnostics only!
9406 ///
9407 /// \returns diagnostic %select index.
9408 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9409   switch (Tag) {
9410   case TagTypeKind::Struct:
9411     return 0;
9412   case TagTypeKind::Interface:
9413     return 1;
9414   case TagTypeKind::Class:
9415     return 2;
9416   default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9417   }
9418 }
9419 
9420 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9421                               TypeDiagnoser &Diagnoser) {
9422   assert(!T->isDependentType() && "type should not be dependent");
9423 
9424   QualType ElemType = Context.getBaseElementType(T);
9425   if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9426       T->isLiteralType(Context))
9427     return false;
9428 
9429   Diagnoser.diagnose(*this, Loc, T);
9430 
9431   if (T->isVariableArrayType())
9432     return true;
9433 
9434   const RecordType *RT = ElemType->getAs<RecordType>();
9435   if (!RT)
9436     return true;
9437 
9438   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9439 
9440   // A partially-defined class type can't be a literal type, because a literal
9441   // class type must have a trivial destructor (which can't be checked until
9442   // the class definition is complete).
9443   if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9444     return true;
9445 
9446   // [expr.prim.lambda]p3:
9447   //   This class type is [not] a literal type.
9448   if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9449     Diag(RD->getLocation(), diag::note_non_literal_lambda);
9450     return true;
9451   }
9452 
9453   // If the class has virtual base classes, then it's not an aggregate, and
9454   // cannot have any constexpr constructors or a trivial default constructor,
9455   // so is non-literal. This is better to diagnose than the resulting absence
9456   // of constexpr constructors.
9457   if (RD->getNumVBases()) {
9458     Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9459       << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9460     for (const auto &I : RD->vbases())
9461       Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9462           << I.getSourceRange();
9463   } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9464              !RD->hasTrivialDefaultConstructor()) {
9465     Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9466   } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9467     for (const auto &I : RD->bases()) {
9468       if (!I.getType()->isLiteralType(Context)) {
9469         Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9470             << RD << I.getType() << I.getSourceRange();
9471         return true;
9472       }
9473     }
9474     for (const auto *I : RD->fields()) {
9475       if (!I->getType()->isLiteralType(Context) ||
9476           I->getType().isVolatileQualified()) {
9477         Diag(I->getLocation(), diag::note_non_literal_field)
9478           << RD << I << I->getType()
9479           << I->getType().isVolatileQualified();
9480         return true;
9481       }
9482     }
9483   } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9484                                        : !RD->hasTrivialDestructor()) {
9485     // All fields and bases are of literal types, so have trivial or constexpr
9486     // destructors. If this class's destructor is non-trivial / non-constexpr,
9487     // it must be user-declared.
9488     CXXDestructorDecl *Dtor = RD->getDestructor();
9489     assert(Dtor && "class has literal fields and bases but no dtor?");
9490     if (!Dtor)
9491       return true;
9492 
9493     if (getLangOpts().CPlusPlus20) {
9494       Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9495           << RD;
9496     } else {
9497       Diag(Dtor->getLocation(), Dtor->isUserProvided()
9498                                     ? diag::note_non_literal_user_provided_dtor
9499                                     : diag::note_non_literal_nontrivial_dtor)
9500           << RD;
9501       if (!Dtor->isUserProvided())
9502         SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9503                                TAH_IgnoreTrivialABI,
9504                                /*Diagnose*/ true);
9505     }
9506   }
9507 
9508   return true;
9509 }
9510 
9511 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9512   BoundTypeDiagnoser<> Diagnoser(DiagID);
9513   return RequireLiteralType(Loc, T, Diagnoser);
9514 }
9515 
9516 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9517                                  const CXXScopeSpec &SS, QualType T,
9518                                  TagDecl *OwnedTagDecl) {
9519   if (T.isNull())
9520     return T;
9521   return Context.getElaboratedType(
9522       Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9523 }
9524 
9525 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9526   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9527 
9528   if (!getLangOpts().CPlusPlus && E->refersToBitField())
9529     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9530         << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9531 
9532   if (!E->isTypeDependent()) {
9533     QualType T = E->getType();
9534     if (const TagType *TT = T->getAs<TagType>())
9535       DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9536   }
9537   return Context.getTypeOfExprType(E, Kind);
9538 }
9539 
9540 static void
9541 BuildTypeCoupledDecls(Expr *E,
9542                       llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9543   // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9544   auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9545   Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9546 }
9547 
9548 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9549                                                       Expr *CountExpr,
9550                                                       bool CountInBytes,
9551                                                       bool OrNull) {
9552   assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9553 
9554   llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9555   BuildTypeCoupledDecls(CountExpr, Decls);
9556   /// When the resulting expression is invalid, we still create the AST using
9557   /// the original count expression for the sake of AST dump.
9558   return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9559                                         OrNull, Decls);
9560 }
9561 
9562 /// getDecltypeForExpr - Given an expr, will return the decltype for
9563 /// that expression, according to the rules in C++11
9564 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9565 QualType Sema::getDecltypeForExpr(Expr *E) {
9566 
9567   Expr *IDExpr = E;
9568   if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9569     IDExpr = ImplCastExpr->getSubExpr();
9570 
9571   if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9572     if (E->isInstantiationDependent())
9573       IDExpr = PackExpr->getPackIdExpression();
9574     else
9575       IDExpr = PackExpr->getSelectedExpr();
9576   }
9577 
9578   if (E->isTypeDependent())
9579     return Context.DependentTy;
9580 
9581   // C++11 [dcl.type.simple]p4:
9582   //   The type denoted by decltype(e) is defined as follows:
9583 
9584   // C++20:
9585   //     - if E is an unparenthesized id-expression naming a non-type
9586   //       template-parameter (13.2), decltype(E) is the type of the
9587   //       template-parameter after performing any necessary type deduction
9588   // Note that this does not pick up the implicit 'const' for a template
9589   // parameter object. This rule makes no difference before C++20 so we apply
9590   // it unconditionally.
9591   if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9592     return SNTTPE->getParameterType(Context);
9593 
9594   //     - if e is an unparenthesized id-expression or an unparenthesized class
9595   //       member access (5.2.5), decltype(e) is the type of the entity named
9596   //       by e. If there is no such entity, or if e names a set of overloaded
9597   //       functions, the program is ill-formed;
9598   //
9599   // We apply the same rules for Objective-C ivar and property references.
9600   if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9601     const ValueDecl *VD = DRE->getDecl();
9602     QualType T = VD->getType();
9603     return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9604   }
9605   if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9606     if (const auto *VD = ME->getMemberDecl())
9607       if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9608         return VD->getType();
9609   } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9610     return IR->getDecl()->getType();
9611   } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9612     if (PR->isExplicitProperty())
9613       return PR->getExplicitProperty()->getType();
9614   } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9615     return PE->getType();
9616   }
9617 
9618   // C++11 [expr.lambda.prim]p18:
9619   //   Every occurrence of decltype((x)) where x is a possibly
9620   //   parenthesized id-expression that names an entity of automatic
9621   //   storage duration is treated as if x were transformed into an
9622   //   access to a corresponding data member of the closure type that
9623   //   would have been declared if x were an odr-use of the denoted
9624   //   entity.
9625   if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9626     if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9627       if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9628         QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9629         if (!T.isNull())
9630           return Context.getLValueReferenceType(T);
9631       }
9632     }
9633   }
9634 
9635   return Context.getReferenceQualifiedType(E);
9636 }
9637 
9638 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9639   assert(!E->hasPlaceholderType() && "unexpected placeholder");
9640 
9641   if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9642       !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9643     // The expression operand for decltype is in an unevaluated expression
9644     // context, so side effects could result in unintended consequences.
9645     // Exclude instantiation-dependent expressions, because 'decltype' is often
9646     // used to build SFINAE gadgets.
9647     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9648   }
9649   return Context.getDecltypeType(E, getDecltypeForExpr(E));
9650 }
9651 
9652 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9653                                      SourceLocation Loc,
9654                                      SourceLocation EllipsisLoc) {
9655   if (!IndexExpr)
9656     return QualType();
9657 
9658   // Diagnose unexpanded packs but continue to improve recovery.
9659   if (!Pattern->containsUnexpandedParameterPack())
9660     Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9661 
9662   QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9663 
9664   if (!Type.isNull())
9665     Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9666                                         : diag::ext_pack_indexing);
9667   return Type;
9668 }
9669 
9670 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9671                                      SourceLocation Loc,
9672                                      SourceLocation EllipsisLoc,
9673                                      bool FullySubstituted,
9674                                      ArrayRef<QualType> Expansions) {
9675 
9676   std::optional<int64_t> Index;
9677   if (FullySubstituted && !IndexExpr->isValueDependent() &&
9678       !IndexExpr->isTypeDependent()) {
9679     llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9680     ExprResult Res = CheckConvertedConstantExpression(
9681         IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9682     if (!Res.isUsable())
9683       return QualType();
9684     Index = Value.getExtValue();
9685     IndexExpr = Res.get();
9686   }
9687 
9688   if (FullySubstituted && Index) {
9689     if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9690       Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9691           << *Index << Pattern << Expansions.size();
9692       return QualType();
9693     }
9694   }
9695 
9696   return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9697                                      Expansions, Index.value_or(-1));
9698 }
9699 
9700 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9701                                       SourceLocation Loc) {
9702   assert(BaseType->isEnumeralType());
9703   EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9704   assert(ED && "EnumType has no EnumDecl");
9705 
9706   S.DiagnoseUseOfDecl(ED, Loc);
9707 
9708   QualType Underlying = ED->getIntegerType();
9709   assert(!Underlying.isNull());
9710 
9711   return Underlying;
9712 }
9713 
9714 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9715                                          SourceLocation Loc) {
9716   if (!BaseType->isEnumeralType()) {
9717     Diag(Loc, diag::err_only_enums_have_underlying_types);
9718     return QualType();
9719   }
9720 
9721   // The enum could be incomplete if we're parsing its definition or
9722   // recovering from an error.
9723   NamedDecl *FwdDecl = nullptr;
9724   if (BaseType->isIncompleteType(&FwdDecl)) {
9725     Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9726     Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9727     return QualType();
9728   }
9729 
9730   return GetEnumUnderlyingType(*this, BaseType, Loc);
9731 }
9732 
9733 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9734   QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9735                          ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9736                                             DeclarationName())
9737                          : BaseType;
9738 
9739   return Pointer.isNull() ? QualType() : Pointer;
9740 }
9741 
9742 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9743   // We don't want block pointers or ObjectiveC's id type.
9744   if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9745     return BaseType;
9746 
9747   return BaseType->getPointeeType();
9748 }
9749 
9750 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9751   QualType Underlying = BaseType.getNonReferenceType();
9752   if (Underlying->isArrayType())
9753     return Context.getDecayedType(Underlying);
9754 
9755   if (Underlying->isFunctionType())
9756     return BuiltinAddPointer(BaseType, Loc);
9757 
9758   SplitQualType Split = Underlying.getSplitUnqualifiedType();
9759   // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9760   // in the same group of qualifiers as 'const' and 'volatile', we're extending
9761   // '__decay(T)' so that it removes all qualifiers.
9762   Split.Quals.removeCVRQualifiers();
9763   return Context.getQualifiedType(Split);
9764 }
9765 
9766 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9767                                    SourceLocation Loc) {
9768   assert(LangOpts.CPlusPlus);
9769   QualType Reference =
9770       BaseType.isReferenceable()
9771           ? BuildReferenceType(BaseType,
9772                                UKind == UnaryTransformType::AddLvalueReference,
9773                                Loc, DeclarationName())
9774           : BaseType;
9775   return Reference.isNull() ? QualType() : Reference;
9776 }
9777 
9778 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9779                                    SourceLocation Loc) {
9780   if (UKind == UnaryTransformType::RemoveAllExtents)
9781     return Context.getBaseElementType(BaseType);
9782 
9783   if (const auto *AT = Context.getAsArrayType(BaseType))
9784     return AT->getElementType();
9785 
9786   return BaseType;
9787 }
9788 
9789 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9790                                       SourceLocation Loc) {
9791   assert(LangOpts.CPlusPlus);
9792   QualType T = BaseType.getNonReferenceType();
9793   if (UKind == UTTKind::RemoveCVRef &&
9794       (T.isConstQualified() || T.isVolatileQualified())) {
9795     Qualifiers Quals;
9796     QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9797     Quals.removeConst();
9798     Quals.removeVolatile();
9799     T = Context.getQualifiedType(Unqual, Quals);
9800   }
9801   return T;
9802 }
9803 
9804 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9805                                           SourceLocation Loc) {
9806   if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9807       BaseType->isFunctionType())
9808     return BaseType;
9809 
9810   Qualifiers Quals;
9811   QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9812 
9813   if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9814     Quals.removeConst();
9815   if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9816     Quals.removeVolatile();
9817   if (UKind == UTTKind::RemoveRestrict)
9818     Quals.removeRestrict();
9819 
9820   return Context.getQualifiedType(Unqual, Quals);
9821 }
9822 
9823 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9824                                          bool IsMakeSigned,
9825                                          SourceLocation Loc) {
9826   if (BaseType->isEnumeralType()) {
9827     QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9828     if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9829       unsigned int Bits = BitInt->getNumBits();
9830       if (Bits > 1)
9831         return S.Context.getBitIntType(!IsMakeSigned, Bits);
9832 
9833       S.Diag(Loc, diag::err_make_signed_integral_only)
9834           << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9835       return QualType();
9836     }
9837     if (Underlying->isBooleanType()) {
9838       S.Diag(Loc, diag::err_make_signed_integral_only)
9839           << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9840           << Underlying;
9841       return QualType();
9842     }
9843   }
9844 
9845   bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9846   std::array<CanQualType *, 6> AllSignedIntegers = {
9847       &S.Context.SignedCharTy, &S.Context.ShortTy,    &S.Context.IntTy,
9848       &S.Context.LongTy,       &S.Context.LongLongTy, &S.Context.Int128Ty};
9849   ArrayRef<CanQualType *> AvailableSignedIntegers(
9850       AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9851   std::array<CanQualType *, 6> AllUnsignedIntegers = {
9852       &S.Context.UnsignedCharTy,     &S.Context.UnsignedShortTy,
9853       &S.Context.UnsignedIntTy,      &S.Context.UnsignedLongTy,
9854       &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9855   ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9856                                                     AllUnsignedIntegers.size() -
9857                                                         Int128Unsupported);
9858   ArrayRef<CanQualType *> *Consider =
9859       IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9860 
9861   uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9862   auto *Result =
9863       llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9864         return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9865       });
9866 
9867   assert(Result != Consider->end());
9868   return QualType((*Result)->getTypePtr(), 0);
9869 }
9870 
9871 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9872                                        SourceLocation Loc) {
9873   bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9874   if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9875       BaseType->isBooleanType() ||
9876       (BaseType->isBitIntType() &&
9877        BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9878     Diag(Loc, diag::err_make_signed_integral_only)
9879         << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9880     return QualType();
9881   }
9882 
9883   bool IsNonIntIntegral =
9884       BaseType->isChar16Type() || BaseType->isChar32Type() ||
9885       BaseType->isWideCharType() || BaseType->isEnumeralType();
9886 
9887   QualType Underlying =
9888       IsNonIntIntegral
9889           ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9890       : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9891                      : Context.getCorrespondingUnsignedType(BaseType);
9892   if (Underlying.isNull())
9893     return Underlying;
9894   return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9895 }
9896 
9897 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9898                                        SourceLocation Loc) {
9899   if (BaseType->isDependentType())
9900     return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9901   QualType Result;
9902   switch (UKind) {
9903   case UnaryTransformType::EnumUnderlyingType: {
9904     Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9905     break;
9906   }
9907   case UnaryTransformType::AddPointer: {
9908     Result = BuiltinAddPointer(BaseType, Loc);
9909     break;
9910   }
9911   case UnaryTransformType::RemovePointer: {
9912     Result = BuiltinRemovePointer(BaseType, Loc);
9913     break;
9914   }
9915   case UnaryTransformType::Decay: {
9916     Result = BuiltinDecay(BaseType, Loc);
9917     break;
9918   }
9919   case UnaryTransformType::AddLvalueReference:
9920   case UnaryTransformType::AddRvalueReference: {
9921     Result = BuiltinAddReference(BaseType, UKind, Loc);
9922     break;
9923   }
9924   case UnaryTransformType::RemoveAllExtents:
9925   case UnaryTransformType::RemoveExtent: {
9926     Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9927     break;
9928   }
9929   case UnaryTransformType::RemoveCVRef:
9930   case UnaryTransformType::RemoveReference: {
9931     Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9932     break;
9933   }
9934   case UnaryTransformType::RemoveConst:
9935   case UnaryTransformType::RemoveCV:
9936   case UnaryTransformType::RemoveRestrict:
9937   case UnaryTransformType::RemoveVolatile: {
9938     Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9939     break;
9940   }
9941   case UnaryTransformType::MakeSigned:
9942   case UnaryTransformType::MakeUnsigned: {
9943     Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9944     break;
9945   }
9946   }
9947 
9948   return !Result.isNull()
9949              ? Context.getUnaryTransformType(BaseType, Result, UKind)
9950              : Result;
9951 }
9952 
9953 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9954   if (!isDependentOrGNUAutoType(T)) {
9955     // FIXME: It isn't entirely clear whether incomplete atomic types
9956     // are allowed or not; for simplicity, ban them for the moment.
9957     if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9958       return QualType();
9959 
9960     int DisallowedKind = -1;
9961     if (T->isArrayType())
9962       DisallowedKind = 1;
9963     else if (T->isFunctionType())
9964       DisallowedKind = 2;
9965     else if (T->isReferenceType())
9966       DisallowedKind = 3;
9967     else if (T->isAtomicType())
9968       DisallowedKind = 4;
9969     else if (T.hasQualifiers())
9970       DisallowedKind = 5;
9971     else if (T->isSizelessType())
9972       DisallowedKind = 6;
9973     else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9974       // Some other non-trivially-copyable type (probably a C++ class)
9975       DisallowedKind = 7;
9976     else if (T->isBitIntType())
9977       DisallowedKind = 8;
9978     else if (getLangOpts().C23 && T->isUndeducedAutoType())
9979       // _Atomic auto is prohibited in C23
9980       DisallowedKind = 9;
9981 
9982     if (DisallowedKind != -1) {
9983       Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9984       return QualType();
9985     }
9986 
9987     // FIXME: Do we need any handling for ARC here?
9988   }
9989 
9990   // Build the pointer type.
9991   return Context.getAtomicType(T);
9992 }
9993