1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 //===----------------------------------------------------------------------===// 7 // 8 // This file implements semantic analysis for C++ templates. 9 //===----------------------------------------------------------------------===// 10 11 #include "TreeTransform.h" 12 #include "clang/AST/ASTConsumer.h" 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclFriend.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/RecursiveASTVisitor.h" 20 #include "clang/AST/TemplateName.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/LangOptions.h" 25 #include "clang/Basic/PartialDiagnostic.h" 26 #include "clang/Basic/SourceLocation.h" 27 #include "clang/Basic/Stack.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/EnterExpressionEvaluationContext.h" 31 #include "clang/Sema/Initialization.h" 32 #include "clang/Sema/Lookup.h" 33 #include "clang/Sema/Overload.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/SemaCUDA.h" 37 #include "clang/Sema/SemaInternal.h" 38 #include "clang/Sema/Template.h" 39 #include "clang/Sema/TemplateDeduction.h" 40 #include "llvm/ADT/BitVector.h" 41 #include "llvm/ADT/SmallBitVector.h" 42 #include "llvm/ADT/SmallString.h" 43 #include "llvm/ADT/StringExtras.h" 44 45 #include <iterator> 46 #include <optional> 47 using namespace clang; 48 using namespace sema; 49 50 // Exported for use by Parser. 51 SourceRange 52 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 53 unsigned N) { 54 if (!N) return SourceRange(); 55 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 56 } 57 58 unsigned Sema::getTemplateDepth(Scope *S) const { 59 unsigned Depth = 0; 60 61 // Each template parameter scope represents one level of template parameter 62 // depth. 63 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; 64 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { 65 ++Depth; 66 } 67 68 // Note that there are template parameters with the given depth. 69 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; 70 71 // Look for parameters of an enclosing generic lambda. We don't create a 72 // template parameter scope for these. 73 for (FunctionScopeInfo *FSI : getFunctionScopes()) { 74 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { 75 if (!LSI->TemplateParams.empty()) { 76 ParamsAtDepth(LSI->AutoTemplateParameterDepth); 77 break; 78 } 79 if (LSI->GLTemplateParameterList) { 80 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); 81 break; 82 } 83 } 84 } 85 86 // Look for parameters of an enclosing terse function template. We don't 87 // create a template parameter scope for these either. 88 for (const InventedTemplateParameterInfo &Info : 89 getInventedParameterInfos()) { 90 if (!Info.TemplateParams.empty()) { 91 ParamsAtDepth(Info.AutoTemplateParameterDepth); 92 break; 93 } 94 } 95 96 return Depth; 97 } 98 99 /// \brief Determine whether the declaration found is acceptable as the name 100 /// of a template and, if so, return that template declaration. Otherwise, 101 /// returns null. 102 /// 103 /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent 104 /// is true. In all other cases it will return a TemplateDecl (or null). 105 NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, 106 bool AllowFunctionTemplates, 107 bool AllowDependent) { 108 D = D->getUnderlyingDecl(); 109 110 if (isa<TemplateDecl>(D)) { 111 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 112 return nullptr; 113 114 return D; 115 } 116 117 if (const auto *Record = dyn_cast<CXXRecordDecl>(D)) { 118 // C++ [temp.local]p1: 119 // Like normal (non-template) classes, class templates have an 120 // injected-class-name (Clause 9). The injected-class-name 121 // can be used with or without a template-argument-list. When 122 // it is used without a template-argument-list, it is 123 // equivalent to the injected-class-name followed by the 124 // template-parameters of the class template enclosed in 125 // <>. When it is used with a template-argument-list, it 126 // refers to the specified class template specialization, 127 // which could be the current specialization or another 128 // specialization. 129 if (Record->isInjectedClassName()) { 130 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 131 if (Record->getDescribedClassTemplate()) 132 return Record->getDescribedClassTemplate(); 133 134 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 135 return Spec->getSpecializedTemplate(); 136 } 137 138 return nullptr; 139 } 140 141 // 'using Dependent::foo;' can resolve to a template name. 142 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an 143 // injected-class-name). 144 if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) 145 return D; 146 147 return nullptr; 148 } 149 150 void Sema::FilterAcceptableTemplateNames(LookupResult &R, 151 bool AllowFunctionTemplates, 152 bool AllowDependent) { 153 LookupResult::Filter filter = R.makeFilter(); 154 while (filter.hasNext()) { 155 NamedDecl *Orig = filter.next(); 156 if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) 157 filter.erase(); 158 } 159 filter.done(); 160 } 161 162 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 163 bool AllowFunctionTemplates, 164 bool AllowDependent, 165 bool AllowNonTemplateFunctions) { 166 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 167 if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) 168 return true; 169 if (AllowNonTemplateFunctions && 170 isa<FunctionDecl>((*I)->getUnderlyingDecl())) 171 return true; 172 } 173 174 return false; 175 } 176 177 TemplateNameKind Sema::isTemplateName(Scope *S, 178 CXXScopeSpec &SS, 179 bool hasTemplateKeyword, 180 const UnqualifiedId &Name, 181 ParsedType ObjectTypePtr, 182 bool EnteringContext, 183 TemplateTy &TemplateResult, 184 bool &MemberOfUnknownSpecialization, 185 bool Disambiguation) { 186 assert(getLangOpts().CPlusPlus && "No template names in C!"); 187 188 DeclarationName TName; 189 MemberOfUnknownSpecialization = false; 190 191 switch (Name.getKind()) { 192 case UnqualifiedIdKind::IK_Identifier: 193 TName = DeclarationName(Name.Identifier); 194 break; 195 196 case UnqualifiedIdKind::IK_OperatorFunctionId: 197 TName = Context.DeclarationNames.getCXXOperatorName( 198 Name.OperatorFunctionId.Operator); 199 break; 200 201 case UnqualifiedIdKind::IK_LiteralOperatorId: 202 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 203 break; 204 205 default: 206 return TNK_Non_template; 207 } 208 209 QualType ObjectType = ObjectTypePtr.get(); 210 211 AssumedTemplateKind AssumedTemplate; 212 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); 213 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 214 /*RequiredTemplate=*/SourceLocation(), 215 &AssumedTemplate, 216 /*AllowTypoCorrection=*/!Disambiguation)) 217 return TNK_Non_template; 218 MemberOfUnknownSpecialization = R.wasNotFoundInCurrentInstantiation(); 219 220 if (AssumedTemplate != AssumedTemplateKind::None) { 221 TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); 222 // Let the parser know whether we found nothing or found functions; if we 223 // found nothing, we want to more carefully check whether this is actually 224 // a function template name versus some other kind of undeclared identifier. 225 return AssumedTemplate == AssumedTemplateKind::FoundNothing 226 ? TNK_Undeclared_template 227 : TNK_Function_template; 228 } 229 230 if (R.empty()) 231 return TNK_Non_template; 232 233 NamedDecl *D = nullptr; 234 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(*R.begin()); 235 if (R.isAmbiguous()) { 236 // If we got an ambiguity involving a non-function template, treat this 237 // as a template name, and pick an arbitrary template for error recovery. 238 bool AnyFunctionTemplates = false; 239 for (NamedDecl *FoundD : R) { 240 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { 241 if (isa<FunctionTemplateDecl>(FoundTemplate)) 242 AnyFunctionTemplates = true; 243 else { 244 D = FoundTemplate; 245 FoundUsingShadow = dyn_cast<UsingShadowDecl>(FoundD); 246 break; 247 } 248 } 249 } 250 251 // If we didn't find any templates at all, this isn't a template name. 252 // Leave the ambiguity for a later lookup to diagnose. 253 if (!D && !AnyFunctionTemplates) { 254 R.suppressDiagnostics(); 255 return TNK_Non_template; 256 } 257 258 // If the only templates were function templates, filter out the rest. 259 // We'll diagnose the ambiguity later. 260 if (!D) 261 FilterAcceptableTemplateNames(R); 262 } 263 264 // At this point, we have either picked a single template name declaration D 265 // or we have a non-empty set of results R containing either one template name 266 // declaration or a set of function templates. 267 268 TemplateName Template; 269 TemplateNameKind TemplateKind; 270 271 unsigned ResultCount = R.end() - R.begin(); 272 if (!D && ResultCount > 1) { 273 // We assume that we'll preserve the qualifier from a function 274 // template name in other ways. 275 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 276 TemplateKind = TNK_Function_template; 277 278 // We'll do this lookup again later. 279 R.suppressDiagnostics(); 280 } else { 281 if (!D) { 282 D = getAsTemplateNameDecl(*R.begin()); 283 assert(D && "unambiguous result is not a template name"); 284 } 285 286 if (isa<UnresolvedUsingValueDecl>(D)) { 287 // We don't yet know whether this is a template-name or not. 288 MemberOfUnknownSpecialization = true; 289 return TNK_Non_template; 290 } 291 292 TemplateDecl *TD = cast<TemplateDecl>(D); 293 Template = 294 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); 295 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); 296 if (!SS.isInvalid()) { 297 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 298 Template = Context.getQualifiedTemplateName(Qualifier, hasTemplateKeyword, 299 Template); 300 } 301 302 if (isa<FunctionTemplateDecl>(TD)) { 303 TemplateKind = TNK_Function_template; 304 305 // We'll do this lookup again later. 306 R.suppressDiagnostics(); 307 } else { 308 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 309 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || 310 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); 311 TemplateKind = 312 isa<VarTemplateDecl>(TD) ? TNK_Var_template : 313 isa<ConceptDecl>(TD) ? TNK_Concept_template : 314 TNK_Type_template; 315 } 316 } 317 318 TemplateResult = TemplateTy::make(Template); 319 return TemplateKind; 320 } 321 322 bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, 323 SourceLocation NameLoc, CXXScopeSpec &SS, 324 ParsedTemplateTy *Template /*=nullptr*/) { 325 // We could use redeclaration lookup here, but we don't need to: the 326 // syntactic form of a deduction guide is enough to identify it even 327 // if we can't look up the template name at all. 328 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); 329 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), 330 /*EnteringContext*/ false)) 331 return false; 332 333 if (R.empty()) return false; 334 if (R.isAmbiguous()) { 335 // FIXME: Diagnose an ambiguity if we find at least one template. 336 R.suppressDiagnostics(); 337 return false; 338 } 339 340 // We only treat template-names that name type templates as valid deduction 341 // guide names. 342 TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); 343 if (!TD || !getAsTypeTemplateDecl(TD)) 344 return false; 345 346 if (Template) { 347 TemplateName Name = Context.getQualifiedTemplateName( 348 SS.getScopeRep(), /*TemplateKeyword=*/false, TemplateName(TD)); 349 *Template = TemplateTy::make(Name); 350 } 351 return true; 352 } 353 354 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 355 SourceLocation IILoc, 356 Scope *S, 357 const CXXScopeSpec *SS, 358 TemplateTy &SuggestedTemplate, 359 TemplateNameKind &SuggestedKind) { 360 // We can't recover unless there's a dependent scope specifier preceding the 361 // template name. 362 // FIXME: Typo correction? 363 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 364 computeDeclContext(*SS)) 365 return false; 366 367 // The code is missing a 'template' keyword prior to the dependent template 368 // name. 369 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 370 Diag(IILoc, diag::err_template_kw_missing) 371 << Qualifier << II.getName() 372 << FixItHint::CreateInsertion(IILoc, "template "); 373 SuggestedTemplate 374 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 375 SuggestedKind = TNK_Dependent_template_name; 376 return true; 377 } 378 379 bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS, 380 QualType ObjectType, bool EnteringContext, 381 RequiredTemplateKind RequiredTemplate, 382 AssumedTemplateKind *ATK, 383 bool AllowTypoCorrection) { 384 if (ATK) 385 *ATK = AssumedTemplateKind::None; 386 387 if (SS.isInvalid()) 388 return true; 389 390 Found.setTemplateNameLookup(true); 391 392 // Determine where to perform name lookup 393 DeclContext *LookupCtx = nullptr; 394 bool IsDependent = false; 395 if (!ObjectType.isNull()) { 396 // This nested-name-specifier occurs in a member access expression, e.g., 397 // x->B::f, and we are looking into the type of the object. 398 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); 399 LookupCtx = computeDeclContext(ObjectType); 400 IsDependent = !LookupCtx && ObjectType->isDependentType(); 401 assert((IsDependent || !ObjectType->isIncompleteType() || 402 !ObjectType->getAs<TagType>() || 403 ObjectType->castAs<TagType>()->isBeingDefined()) && 404 "Caller should have completed object type"); 405 406 // Template names cannot appear inside an Objective-C class or object type 407 // or a vector type. 408 // 409 // FIXME: This is wrong. For example: 410 // 411 // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); 412 // Vec<int> vi; 413 // vi.Vec<int>::~Vec<int>(); 414 // 415 // ... should be accepted but we will not treat 'Vec' as a template name 416 // here. The right thing to do would be to check if the name is a valid 417 // vector component name, and look up a template name if not. And similarly 418 // for lookups into Objective-C class and object types, where the same 419 // problem can arise. 420 if (ObjectType->isObjCObjectOrInterfaceType() || 421 ObjectType->isVectorType()) { 422 Found.clear(); 423 return false; 424 } 425 } else if (SS.isNotEmpty()) { 426 // This nested-name-specifier occurs after another nested-name-specifier, 427 // so long into the context associated with the prior nested-name-specifier. 428 LookupCtx = computeDeclContext(SS, EnteringContext); 429 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); 430 431 // The declaration context must be complete. 432 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 433 return true; 434 } 435 436 bool ObjectTypeSearchedInScope = false; 437 bool AllowFunctionTemplatesInLookup = true; 438 if (LookupCtx) { 439 // Perform "qualified" name lookup into the declaration context we 440 // computed, which is either the type of the base of a member access 441 // expression or the declaration context associated with a prior 442 // nested-name-specifier. 443 LookupQualifiedName(Found, LookupCtx); 444 445 // FIXME: The C++ standard does not clearly specify what happens in the 446 // case where the object type is dependent, and implementations vary. In 447 // Clang, we treat a name after a . or -> as a template-name if lookup 448 // finds a non-dependent member or member of the current instantiation that 449 // is a type template, or finds no such members and lookup in the context 450 // of the postfix-expression finds a type template. In the latter case, the 451 // name is nonetheless dependent, and we may resolve it to a member of an 452 // unknown specialization when we come to instantiate the template. 453 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 454 } 455 456 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { 457 // C++ [basic.lookup.classref]p1: 458 // In a class member access expression (5.2.5), if the . or -> token is 459 // immediately followed by an identifier followed by a <, the 460 // identifier must be looked up to determine whether the < is the 461 // beginning of a template argument list (14.2) or a less-than operator. 462 // The identifier is first looked up in the class of the object 463 // expression. If the identifier is not found, it is then looked up in 464 // the context of the entire postfix-expression and shall name a class 465 // template. 466 if (S) 467 LookupName(Found, S); 468 469 if (!ObjectType.isNull()) { 470 // FIXME: We should filter out all non-type templates here, particularly 471 // variable templates and concepts. But the exclusion of alias templates 472 // and template template parameters is a wording defect. 473 AllowFunctionTemplatesInLookup = false; 474 ObjectTypeSearchedInScope = true; 475 } 476 477 IsDependent |= Found.wasNotFoundInCurrentInstantiation(); 478 } 479 480 if (Found.isAmbiguous()) 481 return false; 482 483 if (ATK && SS.isEmpty() && ObjectType.isNull() && 484 !RequiredTemplate.hasTemplateKeyword()) { 485 // C++2a [temp.names]p2: 486 // A name is also considered to refer to a template if it is an 487 // unqualified-id followed by a < and name lookup finds either one or more 488 // functions or finds nothing. 489 // 490 // To keep our behavior consistent, we apply the "finds nothing" part in 491 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we 492 // successfully form a call to an undeclared template-id. 493 bool AllFunctions = 494 getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) { 495 return isa<FunctionDecl>(ND->getUnderlyingDecl()); 496 }); 497 if (AllFunctions || (Found.empty() && !IsDependent)) { 498 // If lookup found any functions, or if this is a name that can only be 499 // used for a function, then strongly assume this is a function 500 // template-id. 501 *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) 502 ? AssumedTemplateKind::FoundNothing 503 : AssumedTemplateKind::FoundFunctions; 504 Found.clear(); 505 return false; 506 } 507 } 508 509 if (Found.empty() && !IsDependent && AllowTypoCorrection) { 510 // If we did not find any names, and this is not a disambiguation, attempt 511 // to correct any typos. 512 DeclarationName Name = Found.getLookupName(); 513 Found.clear(); 514 // Simple filter callback that, for keywords, only accepts the C++ *_cast 515 DefaultFilterCCC FilterCCC{}; 516 FilterCCC.WantTypeSpecifiers = false; 517 FilterCCC.WantExpressionKeywords = false; 518 FilterCCC.WantRemainingKeywords = false; 519 FilterCCC.WantCXXNamedCasts = true; 520 if (TypoCorrection Corrected = 521 CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, 522 &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { 523 if (auto *ND = Corrected.getFoundDecl()) 524 Found.addDecl(ND); 525 FilterAcceptableTemplateNames(Found); 526 if (Found.isAmbiguous()) { 527 Found.clear(); 528 } else if (!Found.empty()) { 529 Found.setLookupName(Corrected.getCorrection()); 530 if (LookupCtx) { 531 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 532 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 533 Name.getAsString() == CorrectedStr; 534 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) 535 << Name << LookupCtx << DroppedSpecifier 536 << SS.getRange()); 537 } else { 538 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); 539 } 540 } 541 } 542 } 543 544 NamedDecl *ExampleLookupResult = 545 Found.empty() ? nullptr : Found.getRepresentativeDecl(); 546 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 547 if (Found.empty()) { 548 if (IsDependent) { 549 Found.setNotFoundInCurrentInstantiation(); 550 return false; 551 } 552 553 // If a 'template' keyword was used, a lookup that finds only non-template 554 // names is an error. 555 if (ExampleLookupResult && RequiredTemplate) { 556 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) 557 << Found.getLookupName() << SS.getRange() 558 << RequiredTemplate.hasTemplateKeyword() 559 << RequiredTemplate.getTemplateKeywordLoc(); 560 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), 561 diag::note_template_kw_refers_to_non_template) 562 << Found.getLookupName(); 563 return true; 564 } 565 566 return false; 567 } 568 569 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 570 !getLangOpts().CPlusPlus11) { 571 // C++03 [basic.lookup.classref]p1: 572 // [...] If the lookup in the class of the object expression finds a 573 // template, the name is also looked up in the context of the entire 574 // postfix-expression and [...] 575 // 576 // Note: C++11 does not perform this second lookup. 577 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 578 LookupOrdinaryName); 579 FoundOuter.setTemplateNameLookup(true); 580 LookupName(FoundOuter, S); 581 // FIXME: We silently accept an ambiguous lookup here, in violation of 582 // [basic.lookup]/1. 583 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 584 585 NamedDecl *OuterTemplate; 586 if (FoundOuter.empty()) { 587 // - if the name is not found, the name found in the class of the 588 // object expression is used, otherwise 589 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || 590 !(OuterTemplate = 591 getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { 592 // - if the name is found in the context of the entire 593 // postfix-expression and does not name a class template, the name 594 // found in the class of the object expression is used, otherwise 595 FoundOuter.clear(); 596 } else if (!Found.isSuppressingAmbiguousDiagnostics()) { 597 // - if the name found is a class template, it must refer to the same 598 // entity as the one found in the class of the object expression, 599 // otherwise the program is ill-formed. 600 if (!Found.isSingleResult() || 601 getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != 602 OuterTemplate->getCanonicalDecl()) { 603 Diag(Found.getNameLoc(), 604 diag::ext_nested_name_member_ref_lookup_ambiguous) 605 << Found.getLookupName() 606 << ObjectType; 607 Diag(Found.getRepresentativeDecl()->getLocation(), 608 diag::note_ambig_member_ref_object_type) 609 << ObjectType; 610 Diag(FoundOuter.getFoundDecl()->getLocation(), 611 diag::note_ambig_member_ref_scope); 612 613 // Recover by taking the template that we found in the object 614 // expression's type. 615 } 616 } 617 } 618 619 return false; 620 } 621 622 void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, 623 SourceLocation Less, 624 SourceLocation Greater) { 625 if (TemplateName.isInvalid()) 626 return; 627 628 DeclarationNameInfo NameInfo; 629 CXXScopeSpec SS; 630 LookupNameKind LookupKind; 631 632 DeclContext *LookupCtx = nullptr; 633 NamedDecl *Found = nullptr; 634 bool MissingTemplateKeyword = false; 635 636 // Figure out what name we looked up. 637 if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { 638 NameInfo = DRE->getNameInfo(); 639 SS.Adopt(DRE->getQualifierLoc()); 640 LookupKind = LookupOrdinaryName; 641 Found = DRE->getFoundDecl(); 642 } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { 643 NameInfo = ME->getMemberNameInfo(); 644 SS.Adopt(ME->getQualifierLoc()); 645 LookupKind = LookupMemberName; 646 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); 647 Found = ME->getMemberDecl(); 648 } else if (auto *DSDRE = 649 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { 650 NameInfo = DSDRE->getNameInfo(); 651 SS.Adopt(DSDRE->getQualifierLoc()); 652 MissingTemplateKeyword = true; 653 } else if (auto *DSME = 654 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { 655 NameInfo = DSME->getMemberNameInfo(); 656 SS.Adopt(DSME->getQualifierLoc()); 657 MissingTemplateKeyword = true; 658 } else { 659 llvm_unreachable("unexpected kind of potential template name"); 660 } 661 662 // If this is a dependent-scope lookup, diagnose that the 'template' keyword 663 // was missing. 664 if (MissingTemplateKeyword) { 665 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) 666 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); 667 return; 668 } 669 670 // Try to correct the name by looking for templates and C++ named casts. 671 struct TemplateCandidateFilter : CorrectionCandidateCallback { 672 Sema &S; 673 TemplateCandidateFilter(Sema &S) : S(S) { 674 WantTypeSpecifiers = false; 675 WantExpressionKeywords = false; 676 WantRemainingKeywords = false; 677 WantCXXNamedCasts = true; 678 }; 679 bool ValidateCandidate(const TypoCorrection &Candidate) override { 680 if (auto *ND = Candidate.getCorrectionDecl()) 681 return S.getAsTemplateNameDecl(ND); 682 return Candidate.isKeyword(); 683 } 684 685 std::unique_ptr<CorrectionCandidateCallback> clone() override { 686 return std::make_unique<TemplateCandidateFilter>(*this); 687 } 688 }; 689 690 DeclarationName Name = NameInfo.getName(); 691 TemplateCandidateFilter CCC(*this); 692 if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, 693 CTK_ErrorRecovery, LookupCtx)) { 694 auto *ND = Corrected.getFoundDecl(); 695 if (ND) 696 ND = getAsTemplateNameDecl(ND); 697 if (ND || Corrected.isKeyword()) { 698 if (LookupCtx) { 699 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 700 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 701 Name.getAsString() == CorrectedStr; 702 diagnoseTypo(Corrected, 703 PDiag(diag::err_non_template_in_member_template_id_suggest) 704 << Name << LookupCtx << DroppedSpecifier 705 << SS.getRange(), false); 706 } else { 707 diagnoseTypo(Corrected, 708 PDiag(diag::err_non_template_in_template_id_suggest) 709 << Name, false); 710 } 711 if (Found) 712 Diag(Found->getLocation(), 713 diag::note_non_template_in_template_id_found); 714 return; 715 } 716 } 717 718 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) 719 << Name << SourceRange(Less, Greater); 720 if (Found) 721 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); 722 } 723 724 ExprResult 725 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 726 SourceLocation TemplateKWLoc, 727 const DeclarationNameInfo &NameInfo, 728 bool isAddressOfOperand, 729 const TemplateArgumentListInfo *TemplateArgs) { 730 if (SS.isEmpty()) { 731 // FIXME: This codepath is only used by dependent unqualified names 732 // (e.g. a dependent conversion-function-id, or operator= once we support 733 // it). It doesn't quite do the right thing, and it will silently fail if 734 // getCurrentThisType() returns null. 735 QualType ThisType = getCurrentThisType(); 736 if (ThisType.isNull()) 737 return ExprError(); 738 739 return CXXDependentScopeMemberExpr::Create( 740 Context, /*Base=*/nullptr, ThisType, 741 /*IsArrow=*/!Context.getLangOpts().HLSL, 742 /*OperatorLoc=*/SourceLocation(), 743 /*QualifierLoc=*/NestedNameSpecifierLoc(), TemplateKWLoc, 744 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); 745 } 746 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 747 } 748 749 ExprResult 750 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 751 SourceLocation TemplateKWLoc, 752 const DeclarationNameInfo &NameInfo, 753 const TemplateArgumentListInfo *TemplateArgs) { 754 // DependentScopeDeclRefExpr::Create requires a valid NestedNameSpecifierLoc 755 if (!SS.isValid()) 756 return CreateRecoveryExpr( 757 SS.getBeginLoc(), 758 TemplateArgs ? TemplateArgs->getRAngleLoc() : NameInfo.getEndLoc(), {}); 759 760 return DependentScopeDeclRefExpr::Create( 761 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 762 TemplateArgs); 763 } 764 765 bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, 766 NamedDecl *Instantiation, 767 bool InstantiatedFromMember, 768 const NamedDecl *Pattern, 769 const NamedDecl *PatternDef, 770 TemplateSpecializationKind TSK, 771 bool Complain /*= true*/) { 772 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || 773 isa<VarDecl>(Instantiation)); 774 775 bool IsEntityBeingDefined = false; 776 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) 777 IsEntityBeingDefined = TD->isBeingDefined(); 778 779 if (PatternDef && !IsEntityBeingDefined) { 780 NamedDecl *SuggestedDef = nullptr; 781 if (!hasReachableDefinition(const_cast<NamedDecl *>(PatternDef), 782 &SuggestedDef, 783 /*OnlyNeedComplete*/ false)) { 784 // If we're allowed to diagnose this and recover, do so. 785 bool Recover = Complain && !isSFINAEContext(); 786 if (Complain) 787 diagnoseMissingImport(PointOfInstantiation, SuggestedDef, 788 Sema::MissingImportKind::Definition, Recover); 789 return !Recover; 790 } 791 return false; 792 } 793 794 if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) 795 return true; 796 797 QualType InstantiationTy; 798 if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) 799 InstantiationTy = Context.getTypeDeclType(TD); 800 if (PatternDef) { 801 Diag(PointOfInstantiation, 802 diag::err_template_instantiate_within_definition) 803 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) 804 << InstantiationTy; 805 // Not much point in noting the template declaration here, since 806 // we're lexically inside it. 807 Instantiation->setInvalidDecl(); 808 } else if (InstantiatedFromMember) { 809 if (isa<FunctionDecl>(Instantiation)) { 810 Diag(PointOfInstantiation, 811 diag::err_explicit_instantiation_undefined_member) 812 << /*member function*/ 1 << Instantiation->getDeclName() 813 << Instantiation->getDeclContext(); 814 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 815 } else { 816 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); 817 Diag(PointOfInstantiation, 818 diag::err_implicit_instantiate_member_undefined) 819 << InstantiationTy; 820 Diag(Pattern->getLocation(), diag::note_member_declared_at); 821 } 822 } else { 823 if (isa<FunctionDecl>(Instantiation)) { 824 Diag(PointOfInstantiation, 825 diag::err_explicit_instantiation_undefined_func_template) 826 << Pattern; 827 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 828 } else if (isa<TagDecl>(Instantiation)) { 829 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) 830 << (TSK != TSK_ImplicitInstantiation) 831 << InstantiationTy; 832 NoteTemplateLocation(*Pattern); 833 } else { 834 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); 835 if (isa<VarTemplateSpecializationDecl>(Instantiation)) { 836 Diag(PointOfInstantiation, 837 diag::err_explicit_instantiation_undefined_var_template) 838 << Instantiation; 839 Instantiation->setInvalidDecl(); 840 } else 841 Diag(PointOfInstantiation, 842 diag::err_explicit_instantiation_undefined_member) 843 << /*static data member*/ 2 << Instantiation->getDeclName() 844 << Instantiation->getDeclContext(); 845 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); 846 } 847 } 848 849 // In general, Instantiation isn't marked invalid to get more than one 850 // error for multiple undefined instantiations. But the code that does 851 // explicit declaration -> explicit definition conversion can't handle 852 // invalid declarations, so mark as invalid in that case. 853 if (TSK == TSK_ExplicitInstantiationDeclaration) 854 Instantiation->setInvalidDecl(); 855 return true; 856 } 857 858 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl, 859 bool SupportedForCompatibility) { 860 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 861 862 // C++23 [temp.local]p6: 863 // The name of a template-parameter shall not be bound to any following. 864 // declaration whose locus is contained by the scope to which the 865 // template-parameter belongs. 866 // 867 // When MSVC compatibility is enabled, the diagnostic is always a warning 868 // by default. Otherwise, it an error unless SupportedForCompatibility is 869 // true, in which case it is a default-to-error warning. 870 unsigned DiagId = 871 getLangOpts().MSVCCompat 872 ? diag::ext_template_param_shadow 873 : (SupportedForCompatibility ? diag::ext_compat_template_param_shadow 874 : diag::err_template_param_shadow); 875 const auto *ND = cast<NamedDecl>(PrevDecl); 876 Diag(Loc, DiagId) << ND->getDeclName(); 877 NoteTemplateParameterLocation(*ND); 878 } 879 880 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 881 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 882 D = Temp->getTemplatedDecl(); 883 return Temp; 884 } 885 return nullptr; 886 } 887 888 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 889 SourceLocation EllipsisLoc) const { 890 assert(Kind == Template && 891 "Only template template arguments can be pack expansions here"); 892 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 893 "Template template argument pack expansion without packs"); 894 ParsedTemplateArgument Result(*this); 895 Result.EllipsisLoc = EllipsisLoc; 896 return Result; 897 } 898 899 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 900 const ParsedTemplateArgument &Arg) { 901 902 switch (Arg.getKind()) { 903 case ParsedTemplateArgument::Type: { 904 TypeSourceInfo *DI; 905 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 906 if (!DI) 907 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 908 return TemplateArgumentLoc(TemplateArgument(T), DI); 909 } 910 911 case ParsedTemplateArgument::NonType: { 912 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 913 return TemplateArgumentLoc(TemplateArgument(E), E); 914 } 915 916 case ParsedTemplateArgument::Template: { 917 TemplateName Template = Arg.getAsTemplate().get(); 918 TemplateArgument TArg; 919 if (Arg.getEllipsisLoc().isValid()) 920 TArg = TemplateArgument(Template, std::optional<unsigned int>()); 921 else 922 TArg = Template; 923 return TemplateArgumentLoc( 924 SemaRef.Context, TArg, 925 Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), 926 Arg.getLocation(), Arg.getEllipsisLoc()); 927 } 928 } 929 930 llvm_unreachable("Unhandled parsed template argument"); 931 } 932 933 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 934 TemplateArgumentListInfo &TemplateArgs) { 935 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 936 TemplateArgs.addArgument(translateTemplateArgument(*this, 937 TemplateArgsIn[I])); 938 } 939 940 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, 941 SourceLocation Loc, 942 const IdentifierInfo *Name) { 943 NamedDecl *PrevDecl = 944 SemaRef.LookupSingleName(S, Name, Loc, Sema::LookupOrdinaryName, 945 RedeclarationKind::ForVisibleRedeclaration); 946 if (PrevDecl && PrevDecl->isTemplateParameter()) 947 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); 948 } 949 950 ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { 951 TypeSourceInfo *TInfo; 952 QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); 953 if (T.isNull()) 954 return ParsedTemplateArgument(); 955 assert(TInfo && "template argument with no location"); 956 957 // If we might have formed a deduced template specialization type, convert 958 // it to a template template argument. 959 if (getLangOpts().CPlusPlus17) { 960 TypeLoc TL = TInfo->getTypeLoc(); 961 SourceLocation EllipsisLoc; 962 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { 963 EllipsisLoc = PET.getEllipsisLoc(); 964 TL = PET.getPatternLoc(); 965 } 966 967 CXXScopeSpec SS; 968 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { 969 SS.Adopt(ET.getQualifierLoc()); 970 TL = ET.getNamedTypeLoc(); 971 } 972 973 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { 974 TemplateName Name = DTST.getTypePtr()->getTemplateName(); 975 ParsedTemplateArgument Result(SS, TemplateTy::make(Name), 976 DTST.getTemplateNameLoc()); 977 if (EllipsisLoc.isValid()) 978 Result = Result.getTemplatePackExpansion(EllipsisLoc); 979 return Result; 980 } 981 } 982 983 // This is a normal type template argument. Note, if the type template 984 // argument is an injected-class-name for a template, it has a dual nature 985 // and can be used as either a type or a template. We handle that in 986 // convertTypeTemplateArgumentToTemplate. 987 return ParsedTemplateArgument(ParsedTemplateArgument::Type, 988 ParsedType.get().getAsOpaquePtr(), 989 TInfo->getTypeLoc().getBeginLoc()); 990 } 991 992 NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, 993 SourceLocation EllipsisLoc, 994 SourceLocation KeyLoc, 995 IdentifierInfo *ParamName, 996 SourceLocation ParamNameLoc, 997 unsigned Depth, unsigned Position, 998 SourceLocation EqualLoc, 999 ParsedType DefaultArg, 1000 bool HasTypeConstraint) { 1001 assert(S->isTemplateParamScope() && 1002 "Template type parameter not in template parameter scope!"); 1003 1004 bool IsParameterPack = EllipsisLoc.isValid(); 1005 TemplateTypeParmDecl *Param 1006 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 1007 KeyLoc, ParamNameLoc, Depth, Position, 1008 ParamName, Typename, IsParameterPack, 1009 HasTypeConstraint); 1010 Param->setAccess(AS_public); 1011 1012 if (Param->isParameterPack()) 1013 if (auto *LSI = getEnclosingLambda()) 1014 LSI->LocalPacks.push_back(Param); 1015 1016 if (ParamName) { 1017 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); 1018 1019 // Add the template parameter into the current scope. 1020 S->AddDecl(Param); 1021 IdResolver.AddDecl(Param); 1022 } 1023 1024 // C++0x [temp.param]p9: 1025 // A default template-argument may be specified for any kind of 1026 // template-parameter that is not a template parameter pack. 1027 if (DefaultArg && IsParameterPack) { 1028 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1029 DefaultArg = nullptr; 1030 } 1031 1032 // Handle the default argument, if provided. 1033 if (DefaultArg) { 1034 TypeSourceInfo *DefaultTInfo; 1035 GetTypeFromParser(DefaultArg, &DefaultTInfo); 1036 1037 assert(DefaultTInfo && "expected source information for type"); 1038 1039 // Check for unexpanded parameter packs. 1040 if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, 1041 UPPC_DefaultArgument)) 1042 return Param; 1043 1044 // Check the template argument itself. 1045 if (CheckTemplateArgument(DefaultTInfo)) { 1046 Param->setInvalidDecl(); 1047 return Param; 1048 } 1049 1050 Param->setDefaultArgument( 1051 Context, TemplateArgumentLoc(DefaultTInfo->getType(), DefaultTInfo)); 1052 } 1053 1054 return Param; 1055 } 1056 1057 /// Convert the parser's template argument list representation into our form. 1058 static TemplateArgumentListInfo 1059 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { 1060 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, 1061 TemplateId.RAngleLoc); 1062 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), 1063 TemplateId.NumArgs); 1064 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 1065 return TemplateArgs; 1066 } 1067 1068 bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) { 1069 1070 TemplateName TN = TypeConstr->Template.get(); 1071 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1072 1073 // C++2a [temp.param]p4: 1074 // [...] The concept designated by a type-constraint shall be a type 1075 // concept ([temp.concept]). 1076 if (!CD->isTypeConcept()) { 1077 Diag(TypeConstr->TemplateNameLoc, 1078 diag::err_type_constraint_non_type_concept); 1079 return true; 1080 } 1081 1082 if (CheckConceptUseInDefinition(CD, TypeConstr->TemplateNameLoc)) 1083 return true; 1084 1085 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); 1086 1087 if (!WereArgsSpecified && 1088 CD->getTemplateParameters()->getMinRequiredArguments() > 1) { 1089 Diag(TypeConstr->TemplateNameLoc, 1090 diag::err_type_constraint_missing_arguments) 1091 << CD; 1092 return true; 1093 } 1094 return false; 1095 } 1096 1097 bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, 1098 TemplateIdAnnotation *TypeConstr, 1099 TemplateTypeParmDecl *ConstrainedParameter, 1100 SourceLocation EllipsisLoc) { 1101 return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, 1102 false); 1103 } 1104 1105 bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, 1106 TemplateIdAnnotation *TypeConstr, 1107 TemplateTypeParmDecl *ConstrainedParameter, 1108 SourceLocation EllipsisLoc, 1109 bool AllowUnexpandedPack) { 1110 1111 if (CheckTypeConstraint(TypeConstr)) 1112 return true; 1113 1114 TemplateName TN = TypeConstr->Template.get(); 1115 ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); 1116 UsingShadowDecl *USD = TN.getAsUsingShadowDecl(); 1117 1118 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), 1119 TypeConstr->TemplateNameLoc); 1120 1121 TemplateArgumentListInfo TemplateArgs; 1122 if (TypeConstr->LAngleLoc.isValid()) { 1123 TemplateArgs = 1124 makeTemplateArgumentListInfo(*this, *TypeConstr); 1125 1126 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { 1127 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { 1128 if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) 1129 return true; 1130 } 1131 } 1132 } 1133 return AttachTypeConstraint( 1134 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), 1135 ConceptName, CD, /*FoundDecl=*/USD ? cast<NamedDecl>(USD) : CD, 1136 TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, 1137 ConstrainedParameter, Context.getTypeDeclType(ConstrainedParameter), 1138 EllipsisLoc); 1139 } 1140 1141 template <typename ArgumentLocAppender> 1142 static ExprResult formImmediatelyDeclaredConstraint( 1143 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, 1144 ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc, 1145 SourceLocation RAngleLoc, QualType ConstrainedType, 1146 SourceLocation ParamNameLoc, ArgumentLocAppender Appender, 1147 SourceLocation EllipsisLoc) { 1148 1149 TemplateArgumentListInfo ConstraintArgs; 1150 ConstraintArgs.addArgument( 1151 S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), 1152 /*NTTPType=*/QualType(), ParamNameLoc)); 1153 1154 ConstraintArgs.setRAngleLoc(RAngleLoc); 1155 ConstraintArgs.setLAngleLoc(LAngleLoc); 1156 Appender(ConstraintArgs); 1157 1158 // C++2a [temp.param]p4: 1159 // [...] This constraint-expression E is called the immediately-declared 1160 // constraint of T. [...] 1161 CXXScopeSpec SS; 1162 SS.Adopt(NS); 1163 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( 1164 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, 1165 /*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept, 1166 &ConstraintArgs); 1167 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) 1168 return ImmediatelyDeclaredConstraint; 1169 1170 // C++2a [temp.param]p4: 1171 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). 1172 // 1173 // We have the following case: 1174 // 1175 // template<typename T> concept C1 = true; 1176 // template<C1... T> struct s1; 1177 // 1178 // The constraint: (C1<T> && ...) 1179 // 1180 // Note that the type of C1<T> is known to be 'bool', so we don't need to do 1181 // any unqualified lookups for 'operator&&' here. 1182 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, 1183 /*LParenLoc=*/SourceLocation(), 1184 ImmediatelyDeclaredConstraint.get(), BO_LAnd, 1185 EllipsisLoc, /*RHS=*/nullptr, 1186 /*RParenLoc=*/SourceLocation(), 1187 /*NumExpansions=*/std::nullopt); 1188 } 1189 1190 bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, 1191 DeclarationNameInfo NameInfo, 1192 ConceptDecl *NamedConcept, NamedDecl *FoundDecl, 1193 const TemplateArgumentListInfo *TemplateArgs, 1194 TemplateTypeParmDecl *ConstrainedParameter, 1195 QualType ConstrainedType, 1196 SourceLocation EllipsisLoc) { 1197 // C++2a [temp.param]p4: 1198 // [...] If Q is of the form C<A1, ..., An>, then let E' be 1199 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] 1200 const ASTTemplateArgumentListInfo *ArgsAsWritten = 1201 TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, 1202 *TemplateArgs) : nullptr; 1203 1204 QualType ParamAsArgument = ConstrainedType; 1205 1206 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1207 *this, NS, NameInfo, NamedConcept, FoundDecl, 1208 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), 1209 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), 1210 ParamAsArgument, ConstrainedParameter->getLocation(), 1211 [&](TemplateArgumentListInfo &ConstraintArgs) { 1212 if (TemplateArgs) 1213 for (const auto &ArgLoc : TemplateArgs->arguments()) 1214 ConstraintArgs.addArgument(ArgLoc); 1215 }, 1216 EllipsisLoc); 1217 if (ImmediatelyDeclaredConstraint.isInvalid()) 1218 return true; 1219 1220 auto *CL = ConceptReference::Create(Context, /*NNS=*/NS, 1221 /*TemplateKWLoc=*/SourceLocation{}, 1222 /*ConceptNameInfo=*/NameInfo, 1223 /*FoundDecl=*/FoundDecl, 1224 /*NamedConcept=*/NamedConcept, 1225 /*ArgsWritten=*/ArgsAsWritten); 1226 ConstrainedParameter->setTypeConstraint(CL, 1227 ImmediatelyDeclaredConstraint.get()); 1228 return false; 1229 } 1230 1231 bool Sema::AttachTypeConstraint(AutoTypeLoc TL, 1232 NonTypeTemplateParmDecl *NewConstrainedParm, 1233 NonTypeTemplateParmDecl *OrigConstrainedParm, 1234 SourceLocation EllipsisLoc) { 1235 if (NewConstrainedParm->getType() != TL.getType() || 1236 TL.getAutoKeyword() != AutoTypeKeyword::Auto) { 1237 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1238 diag::err_unsupported_placeholder_constraint) 1239 << NewConstrainedParm->getTypeSourceInfo() 1240 ->getTypeLoc() 1241 .getSourceRange(); 1242 return true; 1243 } 1244 // FIXME: Concepts: This should be the type of the placeholder, but this is 1245 // unclear in the wording right now. 1246 DeclRefExpr *Ref = 1247 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(), 1248 VK_PRValue, OrigConstrainedParm->getLocation()); 1249 if (!Ref) 1250 return true; 1251 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( 1252 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), 1253 TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), TL.getLAngleLoc(), 1254 TL.getRAngleLoc(), BuildDecltypeType(Ref), 1255 OrigConstrainedParm->getLocation(), 1256 [&](TemplateArgumentListInfo &ConstraintArgs) { 1257 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) 1258 ConstraintArgs.addArgument(TL.getArgLoc(I)); 1259 }, 1260 EllipsisLoc); 1261 if (ImmediatelyDeclaredConstraint.isInvalid() || 1262 !ImmediatelyDeclaredConstraint.isUsable()) 1263 return true; 1264 1265 NewConstrainedParm->setPlaceholderTypeConstraint( 1266 ImmediatelyDeclaredConstraint.get()); 1267 return false; 1268 } 1269 1270 QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, 1271 SourceLocation Loc) { 1272 if (TSI->getType()->isUndeducedType()) { 1273 // C++17 [temp.dep.expr]p3: 1274 // An id-expression is type-dependent if it contains 1275 // - an identifier associated by name lookup with a non-type 1276 // template-parameter declared with a type that contains a 1277 // placeholder type (7.1.7.4), 1278 TSI = SubstAutoTypeSourceInfoDependent(TSI); 1279 } 1280 1281 return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); 1282 } 1283 1284 bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { 1285 if (T->isDependentType()) 1286 return false; 1287 1288 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) 1289 return true; 1290 1291 if (T->isStructuralType()) 1292 return false; 1293 1294 // Structural types are required to be object types or lvalue references. 1295 if (T->isRValueReferenceType()) { 1296 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; 1297 return true; 1298 } 1299 1300 // Don't mention structural types in our diagnostic prior to C++20. Also, 1301 // there's not much more we can say about non-scalar non-class types -- 1302 // because we can't see functions or arrays here, those can only be language 1303 // extensions. 1304 if (!getLangOpts().CPlusPlus20 || 1305 (!T->isScalarType() && !T->isRecordType())) { 1306 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; 1307 return true; 1308 } 1309 1310 // Structural types are required to be literal types. 1311 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) 1312 return true; 1313 1314 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; 1315 1316 // Drill down into the reason why the class is non-structural. 1317 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 1318 // All members are required to be public and non-mutable, and can't be of 1319 // rvalue reference type. Check these conditions first to prefer a "local" 1320 // reason over a more distant one. 1321 for (const FieldDecl *FD : RD->fields()) { 1322 if (FD->getAccess() != AS_public) { 1323 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; 1324 return true; 1325 } 1326 if (FD->isMutable()) { 1327 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; 1328 return true; 1329 } 1330 if (FD->getType()->isRValueReferenceType()) { 1331 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) 1332 << T; 1333 return true; 1334 } 1335 } 1336 1337 // All bases are required to be public. 1338 for (const auto &BaseSpec : RD->bases()) { 1339 if (BaseSpec.getAccessSpecifier() != AS_public) { 1340 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) 1341 << T << 1; 1342 return true; 1343 } 1344 } 1345 1346 // All subobjects are required to be of structural types. 1347 SourceLocation SubLoc; 1348 QualType SubType; 1349 int Kind = -1; 1350 1351 for (const FieldDecl *FD : RD->fields()) { 1352 QualType T = Context.getBaseElementType(FD->getType()); 1353 if (!T->isStructuralType()) { 1354 SubLoc = FD->getLocation(); 1355 SubType = T; 1356 Kind = 0; 1357 break; 1358 } 1359 } 1360 1361 if (Kind == -1) { 1362 for (const auto &BaseSpec : RD->bases()) { 1363 QualType T = BaseSpec.getType(); 1364 if (!T->isStructuralType()) { 1365 SubLoc = BaseSpec.getBaseTypeLoc(); 1366 SubType = T; 1367 Kind = 1; 1368 break; 1369 } 1370 } 1371 } 1372 1373 assert(Kind != -1 && "couldn't find reason why type is not structural"); 1374 Diag(SubLoc, diag::note_not_structural_subobject) 1375 << T << Kind << SubType; 1376 T = SubType; 1377 RD = T->getAsCXXRecordDecl(); 1378 } 1379 1380 return true; 1381 } 1382 1383 QualType Sema::CheckNonTypeTemplateParameterType(QualType T, 1384 SourceLocation Loc) { 1385 // We don't allow variably-modified types as the type of non-type template 1386 // parameters. 1387 if (T->isVariablyModifiedType()) { 1388 Diag(Loc, diag::err_variably_modified_nontype_template_param) 1389 << T; 1390 return QualType(); 1391 } 1392 1393 // C++ [temp.param]p4: 1394 // 1395 // A non-type template-parameter shall have one of the following 1396 // (optionally cv-qualified) types: 1397 // 1398 // -- integral or enumeration type, 1399 if (T->isIntegralOrEnumerationType() || 1400 // -- pointer to object or pointer to function, 1401 T->isPointerType() || 1402 // -- lvalue reference to object or lvalue reference to function, 1403 T->isLValueReferenceType() || 1404 // -- pointer to member, 1405 T->isMemberPointerType() || 1406 // -- std::nullptr_t, or 1407 T->isNullPtrType() || 1408 // -- a type that contains a placeholder type. 1409 T->isUndeducedType()) { 1410 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 1411 // are ignored when determining its type. 1412 return T.getUnqualifiedType(); 1413 } 1414 1415 // C++ [temp.param]p8: 1416 // 1417 // A non-type template-parameter of type "array of T" or 1418 // "function returning T" is adjusted to be of type "pointer to 1419 // T" or "pointer to function returning T", respectively. 1420 if (T->isArrayType() || T->isFunctionType()) 1421 return Context.getDecayedType(T); 1422 1423 // If T is a dependent type, we can't do the check now, so we 1424 // assume that it is well-formed. Note that stripping off the 1425 // qualifiers here is not really correct if T turns out to be 1426 // an array type, but we'll recompute the type everywhere it's 1427 // used during instantiation, so that should be OK. (Using the 1428 // qualified type is equally wrong.) 1429 if (T->isDependentType()) 1430 return T.getUnqualifiedType(); 1431 1432 // C++20 [temp.param]p6: 1433 // -- a structural type 1434 if (RequireStructuralType(T, Loc)) 1435 return QualType(); 1436 1437 if (!getLangOpts().CPlusPlus20) { 1438 // FIXME: Consider allowing structural types as an extension in C++17. (In 1439 // earlier language modes, the template argument evaluation rules are too 1440 // inflexible.) 1441 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; 1442 return QualType(); 1443 } 1444 1445 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; 1446 return T.getUnqualifiedType(); 1447 } 1448 1449 NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 1450 unsigned Depth, 1451 unsigned Position, 1452 SourceLocation EqualLoc, 1453 Expr *Default) { 1454 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 1455 1456 // Check that we have valid decl-specifiers specified. 1457 auto CheckValidDeclSpecifiers = [this, &D] { 1458 // C++ [temp.param] 1459 // p1 1460 // template-parameter: 1461 // ... 1462 // parameter-declaration 1463 // p2 1464 // ... A storage class shall not be specified in a template-parameter 1465 // declaration. 1466 // [dcl.typedef]p1: 1467 // The typedef specifier [...] shall not be used in the decl-specifier-seq 1468 // of a parameter-declaration 1469 const DeclSpec &DS = D.getDeclSpec(); 1470 auto EmitDiag = [this](SourceLocation Loc) { 1471 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) 1472 << FixItHint::CreateRemoval(Loc); 1473 }; 1474 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) 1475 EmitDiag(DS.getStorageClassSpecLoc()); 1476 1477 if (DS.getThreadStorageClassSpec() != TSCS_unspecified) 1478 EmitDiag(DS.getThreadStorageClassSpecLoc()); 1479 1480 // [dcl.inline]p1: 1481 // The inline specifier can be applied only to the declaration or 1482 // definition of a variable or function. 1483 1484 if (DS.isInlineSpecified()) 1485 EmitDiag(DS.getInlineSpecLoc()); 1486 1487 // [dcl.constexpr]p1: 1488 // The constexpr specifier shall be applied only to the definition of a 1489 // variable or variable template or the declaration of a function or 1490 // function template. 1491 1492 if (DS.hasConstexprSpecifier()) 1493 EmitDiag(DS.getConstexprSpecLoc()); 1494 1495 // [dcl.fct.spec]p1: 1496 // Function-specifiers can be used only in function declarations. 1497 1498 if (DS.isVirtualSpecified()) 1499 EmitDiag(DS.getVirtualSpecLoc()); 1500 1501 if (DS.hasExplicitSpecifier()) 1502 EmitDiag(DS.getExplicitSpecLoc()); 1503 1504 if (DS.isNoreturnSpecified()) 1505 EmitDiag(DS.getNoreturnSpecLoc()); 1506 }; 1507 1508 CheckValidDeclSpecifiers(); 1509 1510 if (const auto *T = TInfo->getType()->getContainedDeducedType()) 1511 if (isa<AutoType>(T)) 1512 Diag(D.getIdentifierLoc(), 1513 diag::warn_cxx14_compat_template_nontype_parm_auto_type) 1514 << QualType(TInfo->getType()->getContainedAutoType(), 0); 1515 1516 assert(S->isTemplateParamScope() && 1517 "Non-type template parameter not in template parameter scope!"); 1518 bool Invalid = false; 1519 1520 QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); 1521 if (T.isNull()) { 1522 T = Context.IntTy; // Recover with an 'int' type. 1523 Invalid = true; 1524 } 1525 1526 CheckFunctionOrTemplateParamDeclarator(S, D); 1527 1528 const IdentifierInfo *ParamName = D.getIdentifier(); 1529 bool IsParameterPack = D.hasEllipsis(); 1530 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( 1531 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), 1532 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, 1533 TInfo); 1534 Param->setAccess(AS_public); 1535 1536 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) 1537 if (TL.isConstrained()) 1538 if (AttachTypeConstraint(TL, Param, Param, D.getEllipsisLoc())) 1539 Invalid = true; 1540 1541 if (Invalid) 1542 Param->setInvalidDecl(); 1543 1544 if (Param->isParameterPack()) 1545 if (auto *LSI = getEnclosingLambda()) 1546 LSI->LocalPacks.push_back(Param); 1547 1548 if (ParamName) { 1549 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), 1550 ParamName); 1551 1552 // Add the template parameter into the current scope. 1553 S->AddDecl(Param); 1554 IdResolver.AddDecl(Param); 1555 } 1556 1557 // C++0x [temp.param]p9: 1558 // A default template-argument may be specified for any kind of 1559 // template-parameter that is not a template parameter pack. 1560 if (Default && IsParameterPack) { 1561 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1562 Default = nullptr; 1563 } 1564 1565 // Check the well-formedness of the default template argument, if provided. 1566 if (Default) { 1567 // Check for unexpanded parameter packs. 1568 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 1569 return Param; 1570 1571 Param->setDefaultArgument( 1572 Context, getTrivialTemplateArgumentLoc(TemplateArgument(Default), 1573 QualType(), SourceLocation())); 1574 } 1575 1576 return Param; 1577 } 1578 1579 NamedDecl *Sema::ActOnTemplateTemplateParameter( 1580 Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, 1581 bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name, 1582 SourceLocation NameLoc, unsigned Depth, unsigned Position, 1583 SourceLocation EqualLoc, ParsedTemplateArgument Default) { 1584 assert(S->isTemplateParamScope() && 1585 "Template template parameter not in template parameter scope!"); 1586 1587 // Construct the parameter object. 1588 bool IsParameterPack = EllipsisLoc.isValid(); 1589 TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create( 1590 Context, Context.getTranslationUnitDecl(), 1591 NameLoc.isInvalid() ? TmpLoc : NameLoc, Depth, Position, IsParameterPack, 1592 Name, Typename, Params); 1593 Param->setAccess(AS_public); 1594 1595 if (Param->isParameterPack()) 1596 if (auto *LSI = getEnclosingLambda()) 1597 LSI->LocalPacks.push_back(Param); 1598 1599 // If the template template parameter has a name, then link the identifier 1600 // into the scope and lookup mechanisms. 1601 if (Name) { 1602 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); 1603 1604 S->AddDecl(Param); 1605 IdResolver.AddDecl(Param); 1606 } 1607 1608 if (Params->size() == 0) { 1609 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 1610 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 1611 Param->setInvalidDecl(); 1612 } 1613 1614 // C++0x [temp.param]p9: 1615 // A default template-argument may be specified for any kind of 1616 // template-parameter that is not a template parameter pack. 1617 if (IsParameterPack && !Default.isInvalid()) { 1618 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 1619 Default = ParsedTemplateArgument(); 1620 } 1621 1622 if (!Default.isInvalid()) { 1623 // Check only that we have a template template argument. We don't want to 1624 // try to check well-formedness now, because our template template parameter 1625 // might have dependent types in its template parameters, which we wouldn't 1626 // be able to match now. 1627 // 1628 // If none of the template template parameter's template arguments mention 1629 // other template parameters, we could actually perform more checking here. 1630 // However, it isn't worth doing. 1631 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 1632 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 1633 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) 1634 << DefaultArg.getSourceRange(); 1635 return Param; 1636 } 1637 1638 // Check for unexpanded parameter packs. 1639 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 1640 DefaultArg.getArgument().getAsTemplate(), 1641 UPPC_DefaultArgument)) 1642 return Param; 1643 1644 Param->setDefaultArgument(Context, DefaultArg); 1645 } 1646 1647 return Param; 1648 } 1649 1650 namespace { 1651 class ConstraintRefersToContainingTemplateChecker 1652 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { 1653 bool Result = false; 1654 const FunctionDecl *Friend = nullptr; 1655 unsigned TemplateDepth = 0; 1656 1657 // Check a record-decl that we've seen to see if it is a lexical parent of the 1658 // Friend, likely because it was referred to without its template arguments. 1659 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { 1660 CheckingRD = CheckingRD->getMostRecentDecl(); 1661 if (!CheckingRD->isTemplated()) 1662 return; 1663 1664 for (const DeclContext *DC = Friend->getLexicalDeclContext(); 1665 DC && !DC->isFileContext(); DC = DC->getParent()) 1666 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) 1667 if (CheckingRD == RD->getMostRecentDecl()) 1668 Result = true; 1669 } 1670 1671 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { 1672 if (D->getDepth() < TemplateDepth) 1673 Result = true; 1674 1675 // Necessary because the type of the NTTP might be what refers to the parent 1676 // constriant. 1677 TransformType(D->getType()); 1678 } 1679 1680 public: 1681 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; 1682 1683 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, 1684 const FunctionDecl *Friend, 1685 unsigned TemplateDepth) 1686 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} 1687 bool getResult() const { return Result; } 1688 1689 // This should be the only template parm type that we have to deal with. 1690 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and 1691 // FunctionParmPackExpr are all partially substituted, which cannot happen 1692 // with concepts at this point in translation. 1693 using inherited::TransformTemplateTypeParmType; 1694 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, 1695 TemplateTypeParmTypeLoc TL, bool) { 1696 if (TL.getDecl()->getDepth() < TemplateDepth) 1697 Result = true; 1698 return inherited::TransformTemplateTypeParmType( 1699 TLB, TL, 1700 /*SuppressObjCLifetime=*/false); 1701 } 1702 1703 Decl *TransformDecl(SourceLocation Loc, Decl *D) { 1704 if (!D) 1705 return D; 1706 // FIXME : This is possibly an incomplete list, but it is unclear what other 1707 // Decl kinds could be used to refer to the template parameters. This is a 1708 // best guess so far based on examples currently available, but the 1709 // unreachable should catch future instances/cases. 1710 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) 1711 TransformType(TD->getUnderlyingType()); 1712 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(D)) 1713 CheckNonTypeTemplateParmDecl(NTTPD); 1714 else if (auto *VD = dyn_cast<ValueDecl>(D)) 1715 TransformType(VD->getType()); 1716 else if (auto *TD = dyn_cast<TemplateDecl>(D)) 1717 TransformTemplateParameterList(TD->getTemplateParameters()); 1718 else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1719 CheckIfContainingRecord(RD); 1720 else if (isa<NamedDecl>(D)) { 1721 // No direct types to visit here I believe. 1722 } else 1723 llvm_unreachable("Don't know how to handle this declaration type yet"); 1724 return D; 1725 } 1726 }; 1727 } // namespace 1728 1729 bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( 1730 const FunctionDecl *Friend, unsigned TemplateDepth, 1731 const Expr *Constraint) { 1732 assert(Friend->getFriendObjectKind() && "Only works on a friend"); 1733 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, 1734 TemplateDepth); 1735 Checker.TransformExpr(const_cast<Expr *>(Constraint)); 1736 return Checker.getResult(); 1737 } 1738 1739 TemplateParameterList * 1740 Sema::ActOnTemplateParameterList(unsigned Depth, 1741 SourceLocation ExportLoc, 1742 SourceLocation TemplateLoc, 1743 SourceLocation LAngleLoc, 1744 ArrayRef<NamedDecl *> Params, 1745 SourceLocation RAngleLoc, 1746 Expr *RequiresClause) { 1747 if (ExportLoc.isValid()) 1748 Diag(ExportLoc, diag::warn_template_export_unsupported); 1749 1750 for (NamedDecl *P : Params) 1751 warnOnReservedIdentifier(P); 1752 1753 return TemplateParameterList::Create( 1754 Context, TemplateLoc, LAngleLoc, 1755 llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); 1756 } 1757 1758 static void SetNestedNameSpecifier(Sema &S, TagDecl *T, 1759 const CXXScopeSpec &SS) { 1760 if (SS.isSet()) 1761 T->setQualifierInfo(SS.getWithLocInContext(S.Context)); 1762 } 1763 1764 // Returns the template parameter list with all default template argument 1765 // information. 1766 TemplateParameterList *Sema::GetTemplateParameterList(TemplateDecl *TD) { 1767 // Make sure we get the template parameter list from the most 1768 // recent declaration, since that is the only one that is guaranteed to 1769 // have all the default template argument information. 1770 Decl *D = TD->getMostRecentDecl(); 1771 // C++11 N3337 [temp.param]p12: 1772 // A default template argument shall not be specified in a friend class 1773 // template declaration. 1774 // 1775 // Skip past friend *declarations* because they are not supposed to contain 1776 // default template arguments. Moreover, these declarations may introduce 1777 // template parameters living in different template depths than the 1778 // corresponding template parameters in TD, causing unmatched constraint 1779 // substitution. 1780 // 1781 // FIXME: Diagnose such cases within a class template: 1782 // template <class T> 1783 // struct S { 1784 // template <class = void> friend struct C; 1785 // }; 1786 // template struct S<int>; 1787 while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None && 1788 D->getPreviousDecl()) 1789 D = D->getPreviousDecl(); 1790 return cast<TemplateDecl>(D)->getTemplateParameters(); 1791 } 1792 1793 DeclResult Sema::CheckClassTemplate( 1794 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 1795 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, 1796 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, 1797 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 1798 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, 1799 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { 1800 assert(TemplateParams && TemplateParams->size() > 0 && 1801 "No template parameters"); 1802 assert(TUK != TagUseKind::Reference && 1803 "Can only declare or define class templates"); 1804 bool Invalid = false; 1805 1806 // Check that we can declare a template here. 1807 if (CheckTemplateDeclScope(S, TemplateParams)) 1808 return true; 1809 1810 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 1811 assert(Kind != TagTypeKind::Enum && 1812 "can't build template of enumerated type"); 1813 1814 // There is no such thing as an unnamed class template. 1815 if (!Name) { 1816 Diag(KWLoc, diag::err_template_unnamed_class); 1817 return true; 1818 } 1819 1820 // Find any previous declaration with this name. For a friend with no 1821 // scope explicitly specified, we only look for tag declarations (per 1822 // C++11 [basic.lookup.elab]p2). 1823 DeclContext *SemanticContext; 1824 LookupResult Previous(*this, Name, NameLoc, 1825 (SS.isEmpty() && TUK == TagUseKind::Friend) 1826 ? LookupTagName 1827 : LookupOrdinaryName, 1828 forRedeclarationInCurContext()); 1829 if (SS.isNotEmpty() && !SS.isInvalid()) { 1830 SemanticContext = computeDeclContext(SS, true); 1831 if (!SemanticContext) { 1832 // FIXME: Horrible, horrible hack! We can't currently represent this 1833 // in the AST, and historically we have just ignored such friend 1834 // class templates, so don't complain here. 1835 Diag(NameLoc, TUK == TagUseKind::Friend 1836 ? diag::warn_template_qualified_friend_ignored 1837 : diag::err_template_qualified_declarator_no_match) 1838 << SS.getScopeRep() << SS.getRange(); 1839 return TUK != TagUseKind::Friend; 1840 } 1841 1842 if (RequireCompleteDeclContext(SS, SemanticContext)) 1843 return true; 1844 1845 // If we're adding a template to a dependent context, we may need to 1846 // rebuilding some of the types used within the template parameter list, 1847 // now that we know what the current instantiation is. 1848 if (SemanticContext->isDependentContext()) { 1849 ContextRAII SavedContext(*this, SemanticContext); 1850 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 1851 Invalid = true; 1852 } 1853 1854 if (TUK != TagUseKind::Friend && TUK != TagUseKind::Reference) 1855 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, 1856 /*TemplateId-*/ nullptr, 1857 /*IsMemberSpecialization*/ false); 1858 1859 LookupQualifiedName(Previous, SemanticContext); 1860 } else { 1861 SemanticContext = CurContext; 1862 1863 // C++14 [class.mem]p14: 1864 // If T is the name of a class, then each of the following shall have a 1865 // name different from T: 1866 // -- every member template of class T 1867 if (TUK != TagUseKind::Friend && 1868 DiagnoseClassNameShadow(SemanticContext, 1869 DeclarationNameInfo(Name, NameLoc))) 1870 return true; 1871 1872 LookupName(Previous, S); 1873 } 1874 1875 if (Previous.isAmbiguous()) 1876 return true; 1877 1878 // Let the template parameter scope enter the lookup chain of the current 1879 // class template. For example, given 1880 // 1881 // namespace ns { 1882 // template <class> bool Param = false; 1883 // template <class T> struct N; 1884 // } 1885 // 1886 // template <class Param> struct ns::N { void foo(Param); }; 1887 // 1888 // When we reference Param inside the function parameter list, our name lookup 1889 // chain for it should be like: 1890 // FunctionScope foo 1891 // -> RecordScope N 1892 // -> TemplateParamScope (where we will find Param) 1893 // -> NamespaceScope ns 1894 // 1895 // See also CppLookupName(). 1896 if (S->isTemplateParamScope()) 1897 EnterTemplatedContext(S, SemanticContext); 1898 1899 NamedDecl *PrevDecl = nullptr; 1900 if (Previous.begin() != Previous.end()) 1901 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1902 1903 if (PrevDecl && PrevDecl->isTemplateParameter()) { 1904 // Maybe we will complain about the shadowed template parameter. 1905 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1906 // Just pretend that we didn't see the previous declaration. 1907 PrevDecl = nullptr; 1908 } 1909 1910 // If there is a previous declaration with the same name, check 1911 // whether this is a valid redeclaration. 1912 ClassTemplateDecl *PrevClassTemplate = 1913 dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 1914 1915 // We may have found the injected-class-name of a class template, 1916 // class template partial specialization, or class template specialization. 1917 // In these cases, grab the template that is being defined or specialized. 1918 if (!PrevClassTemplate && isa_and_nonnull<CXXRecordDecl>(PrevDecl) && 1919 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 1920 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 1921 PrevClassTemplate 1922 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 1923 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 1924 PrevClassTemplate 1925 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 1926 ->getSpecializedTemplate(); 1927 } 1928 } 1929 1930 if (TUK == TagUseKind::Friend) { 1931 // C++ [namespace.memdef]p3: 1932 // [...] When looking for a prior declaration of a class or a function 1933 // declared as a friend, and when the name of the friend class or 1934 // function is neither a qualified name nor a template-id, scopes outside 1935 // the innermost enclosing namespace scope are not considered. 1936 if (!SS.isSet()) { 1937 DeclContext *OutermostContext = CurContext; 1938 while (!OutermostContext->isFileContext()) 1939 OutermostContext = OutermostContext->getLookupParent(); 1940 1941 if (PrevDecl && 1942 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 1943 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 1944 SemanticContext = PrevDecl->getDeclContext(); 1945 } else { 1946 // Declarations in outer scopes don't matter. However, the outermost 1947 // context we computed is the semantic context for our new 1948 // declaration. 1949 PrevDecl = PrevClassTemplate = nullptr; 1950 SemanticContext = OutermostContext; 1951 1952 // Check that the chosen semantic context doesn't already contain a 1953 // declaration of this name as a non-tag type. 1954 Previous.clear(LookupOrdinaryName); 1955 DeclContext *LookupContext = SemanticContext; 1956 while (LookupContext->isTransparentContext()) 1957 LookupContext = LookupContext->getLookupParent(); 1958 LookupQualifiedName(Previous, LookupContext); 1959 1960 if (Previous.isAmbiguous()) 1961 return true; 1962 1963 if (Previous.begin() != Previous.end()) 1964 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 1965 } 1966 } 1967 } else if (PrevDecl && !isDeclInScope(Previous.getRepresentativeDecl(), 1968 SemanticContext, S, SS.isValid())) 1969 PrevDecl = PrevClassTemplate = nullptr; 1970 1971 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( 1972 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { 1973 if (SS.isEmpty() && 1974 !(PrevClassTemplate && 1975 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( 1976 SemanticContext->getRedeclContext()))) { 1977 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 1978 Diag(Shadow->getTargetDecl()->getLocation(), 1979 diag::note_using_decl_target); 1980 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 1981 // Recover by ignoring the old declaration. 1982 PrevDecl = PrevClassTemplate = nullptr; 1983 } 1984 } 1985 1986 if (PrevClassTemplate) { 1987 // Ensure that the template parameter lists are compatible. Skip this check 1988 // for a friend in a dependent context: the template parameter list itself 1989 // could be dependent. 1990 if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && 1991 !TemplateParameterListsAreEqual( 1992 TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext 1993 : CurContext, 1994 CurContext, KWLoc), 1995 TemplateParams, PrevClassTemplate, 1996 PrevClassTemplate->getTemplateParameters(), /*Complain=*/true, 1997 TPL_TemplateMatch)) 1998 return true; 1999 2000 // C++ [temp.class]p4: 2001 // In a redeclaration, partial specialization, explicit 2002 // specialization or explicit instantiation of a class template, 2003 // the class-key shall agree in kind with the original class 2004 // template declaration (7.1.5.3). 2005 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 2006 if (!isAcceptableTagRedeclaration( 2007 PrevRecordDecl, Kind, TUK == TagUseKind::Definition, KWLoc, Name)) { 2008 Diag(KWLoc, diag::err_use_with_wrong_tag) 2009 << Name 2010 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 2011 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 2012 Kind = PrevRecordDecl->getTagKind(); 2013 } 2014 2015 // Check for redefinition of this class template. 2016 if (TUK == TagUseKind::Definition) { 2017 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 2018 // If we have a prior definition that is not visible, treat this as 2019 // simply making that previous definition visible. 2020 NamedDecl *Hidden = nullptr; 2021 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 2022 SkipBody->ShouldSkip = true; 2023 SkipBody->Previous = Def; 2024 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); 2025 assert(Tmpl && "original definition of a class template is not a " 2026 "class template?"); 2027 makeMergedDefinitionVisible(Hidden); 2028 makeMergedDefinitionVisible(Tmpl); 2029 } else { 2030 Diag(NameLoc, diag::err_redefinition) << Name; 2031 Diag(Def->getLocation(), diag::note_previous_definition); 2032 // FIXME: Would it make sense to try to "forget" the previous 2033 // definition, as part of error recovery? 2034 return true; 2035 } 2036 } 2037 } 2038 } else if (PrevDecl) { 2039 // C++ [temp]p5: 2040 // A class template shall not have the same name as any other 2041 // template, class, function, object, enumeration, enumerator, 2042 // namespace, or type in the same scope (3.3), except as specified 2043 // in (14.5.4). 2044 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 2045 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 2046 return true; 2047 } 2048 2049 // Check the template parameter list of this declaration, possibly 2050 // merging in the template parameter list from the previous class 2051 // template declaration. Skip this check for a friend in a dependent 2052 // context, because the template parameter list might be dependent. 2053 if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && 2054 CheckTemplateParameterList( 2055 TemplateParams, 2056 PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate) 2057 : nullptr, 2058 (SS.isSet() && SemanticContext && SemanticContext->isRecord() && 2059 SemanticContext->isDependentContext()) 2060 ? TPC_ClassTemplateMember 2061 : TUK == TagUseKind::Friend ? TPC_FriendClassTemplate 2062 : TPC_ClassTemplate, 2063 SkipBody)) 2064 Invalid = true; 2065 2066 if (SS.isSet()) { 2067 // If the name of the template was qualified, we must be defining the 2068 // template out-of-line. 2069 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 2070 Diag(NameLoc, TUK == TagUseKind::Friend 2071 ? diag::err_friend_decl_does_not_match 2072 : diag::err_member_decl_does_not_match) 2073 << Name << SemanticContext << /*IsDefinition*/ true << SS.getRange(); 2074 Invalid = true; 2075 } 2076 } 2077 2078 // If this is a templated friend in a dependent context we should not put it 2079 // on the redecl chain. In some cases, the templated friend can be the most 2080 // recent declaration tricking the template instantiator to make substitutions 2081 // there. 2082 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious 2083 bool ShouldAddRedecl = 2084 !(TUK == TagUseKind::Friend && CurContext->isDependentContext()); 2085 2086 CXXRecordDecl *NewClass = 2087 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 2088 PrevClassTemplate && ShouldAddRedecl ? 2089 PrevClassTemplate->getTemplatedDecl() : nullptr, 2090 /*DelayTypeCreation=*/true); 2091 SetNestedNameSpecifier(*this, NewClass, SS); 2092 if (NumOuterTemplateParamLists > 0) 2093 NewClass->setTemplateParameterListsInfo( 2094 Context, 2095 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); 2096 2097 // Add alignment attributes if necessary; these attributes are checked when 2098 // the ASTContext lays out the structure. 2099 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 2100 AddAlignmentAttributesForRecord(NewClass); 2101 AddMsStructLayoutForRecord(NewClass); 2102 } 2103 2104 ClassTemplateDecl *NewTemplate 2105 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 2106 DeclarationName(Name), TemplateParams, 2107 NewClass); 2108 2109 if (ShouldAddRedecl) 2110 NewTemplate->setPreviousDecl(PrevClassTemplate); 2111 2112 NewClass->setDescribedClassTemplate(NewTemplate); 2113 2114 if (ModulePrivateLoc.isValid()) 2115 NewTemplate->setModulePrivate(); 2116 2117 // Build the type for the class template declaration now. 2118 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 2119 T = Context.getInjectedClassNameType(NewClass, T); 2120 assert(T->isDependentType() && "Class template type is not dependent?"); 2121 (void)T; 2122 2123 // If we are providing an explicit specialization of a member that is a 2124 // class template, make a note of that. 2125 if (PrevClassTemplate && 2126 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 2127 PrevClassTemplate->setMemberSpecialization(); 2128 2129 // Set the access specifier. 2130 if (!Invalid && TUK != TagUseKind::Friend && 2131 NewTemplate->getDeclContext()->isRecord()) 2132 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 2133 2134 // Set the lexical context of these templates 2135 NewClass->setLexicalDeclContext(CurContext); 2136 NewTemplate->setLexicalDeclContext(CurContext); 2137 2138 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) 2139 NewClass->startDefinition(); 2140 2141 ProcessDeclAttributeList(S, NewClass, Attr); 2142 ProcessAPINotes(NewClass); 2143 2144 if (PrevClassTemplate) 2145 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 2146 2147 AddPushedVisibilityAttribute(NewClass); 2148 inferGslOwnerPointerAttribute(NewClass); 2149 inferNullableClassAttribute(NewClass); 2150 2151 if (TUK != TagUseKind::Friend) { 2152 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. 2153 Scope *Outer = S; 2154 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) 2155 Outer = Outer->getParent(); 2156 PushOnScopeChains(NewTemplate, Outer); 2157 } else { 2158 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 2159 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 2160 NewClass->setAccess(PrevClassTemplate->getAccess()); 2161 } 2162 2163 NewTemplate->setObjectOfFriendDecl(); 2164 2165 // Friend templates are visible in fairly strange ways. 2166 if (!CurContext->isDependentContext()) { 2167 DeclContext *DC = SemanticContext->getRedeclContext(); 2168 DC->makeDeclVisibleInContext(NewTemplate); 2169 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 2170 PushOnScopeChains(NewTemplate, EnclosingScope, 2171 /* AddToContext = */ false); 2172 } 2173 2174 FriendDecl *Friend = FriendDecl::Create( 2175 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); 2176 Friend->setAccess(AS_public); 2177 CurContext->addDecl(Friend); 2178 } 2179 2180 if (PrevClassTemplate) 2181 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); 2182 2183 if (Invalid) { 2184 NewTemplate->setInvalidDecl(); 2185 NewClass->setInvalidDecl(); 2186 } 2187 2188 ActOnDocumentableDecl(NewTemplate); 2189 2190 if (SkipBody && SkipBody->ShouldSkip) 2191 return SkipBody->Previous; 2192 2193 return NewTemplate; 2194 } 2195 2196 /// Diagnose the presence of a default template argument on a 2197 /// template parameter, which is ill-formed in certain contexts. 2198 /// 2199 /// \returns true if the default template argument should be dropped. 2200 static bool DiagnoseDefaultTemplateArgument(Sema &S, 2201 Sema::TemplateParamListContext TPC, 2202 SourceLocation ParamLoc, 2203 SourceRange DefArgRange) { 2204 switch (TPC) { 2205 case Sema::TPC_ClassTemplate: 2206 case Sema::TPC_VarTemplate: 2207 case Sema::TPC_TypeAliasTemplate: 2208 return false; 2209 2210 case Sema::TPC_FunctionTemplate: 2211 case Sema::TPC_FriendFunctionTemplateDefinition: 2212 // C++ [temp.param]p9: 2213 // A default template-argument shall not be specified in a 2214 // function template declaration or a function template 2215 // definition [...] 2216 // If a friend function template declaration specifies a default 2217 // template-argument, that declaration shall be a definition and shall be 2218 // the only declaration of the function template in the translation unit. 2219 // (C++98/03 doesn't have this wording; see DR226). 2220 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 2221 diag::warn_cxx98_compat_template_parameter_default_in_function_template 2222 : diag::ext_template_parameter_default_in_function_template) 2223 << DefArgRange; 2224 return false; 2225 2226 case Sema::TPC_ClassTemplateMember: 2227 // C++0x [temp.param]p9: 2228 // A default template-argument shall not be specified in the 2229 // template-parameter-lists of the definition of a member of a 2230 // class template that appears outside of the member's class. 2231 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 2232 << DefArgRange; 2233 return true; 2234 2235 case Sema::TPC_FriendClassTemplate: 2236 case Sema::TPC_FriendFunctionTemplate: 2237 // C++ [temp.param]p9: 2238 // A default template-argument shall not be specified in a 2239 // friend template declaration. 2240 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 2241 << DefArgRange; 2242 return true; 2243 2244 // FIXME: C++0x [temp.param]p9 allows default template-arguments 2245 // for friend function templates if there is only a single 2246 // declaration (and it is a definition). Strange! 2247 } 2248 2249 llvm_unreachable("Invalid TemplateParamListContext!"); 2250 } 2251 2252 /// Check for unexpanded parameter packs within the template parameters 2253 /// of a template template parameter, recursively. 2254 static bool DiagnoseUnexpandedParameterPacks(Sema &S, 2255 TemplateTemplateParmDecl *TTP) { 2256 // A template template parameter which is a parameter pack is also a pack 2257 // expansion. 2258 if (TTP->isParameterPack()) 2259 return false; 2260 2261 TemplateParameterList *Params = TTP->getTemplateParameters(); 2262 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 2263 NamedDecl *P = Params->getParam(I); 2264 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { 2265 if (!TTP->isParameterPack()) 2266 if (const TypeConstraint *TC = TTP->getTypeConstraint()) 2267 if (TC->hasExplicitTemplateArgs()) 2268 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) 2269 if (S.DiagnoseUnexpandedParameterPack(ArgLoc, 2270 Sema::UPPC_TypeConstraint)) 2271 return true; 2272 continue; 2273 } 2274 2275 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 2276 if (!NTTP->isParameterPack() && 2277 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 2278 NTTP->getTypeSourceInfo(), 2279 Sema::UPPC_NonTypeTemplateParameterType)) 2280 return true; 2281 2282 continue; 2283 } 2284 2285 if (TemplateTemplateParmDecl *InnerTTP 2286 = dyn_cast<TemplateTemplateParmDecl>(P)) 2287 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 2288 return true; 2289 } 2290 2291 return false; 2292 } 2293 2294 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 2295 TemplateParameterList *OldParams, 2296 TemplateParamListContext TPC, 2297 SkipBodyInfo *SkipBody) { 2298 bool Invalid = false; 2299 2300 // C++ [temp.param]p10: 2301 // The set of default template-arguments available for use with a 2302 // template declaration or definition is obtained by merging the 2303 // default arguments from the definition (if in scope) and all 2304 // declarations in scope in the same way default function 2305 // arguments are (8.3.6). 2306 bool SawDefaultArgument = false; 2307 SourceLocation PreviousDefaultArgLoc; 2308 2309 // Dummy initialization to avoid warnings. 2310 TemplateParameterList::iterator OldParam = NewParams->end(); 2311 if (OldParams) 2312 OldParam = OldParams->begin(); 2313 2314 bool RemoveDefaultArguments = false; 2315 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2316 NewParamEnd = NewParams->end(); 2317 NewParam != NewParamEnd; ++NewParam) { 2318 // Whether we've seen a duplicate default argument in the same translation 2319 // unit. 2320 bool RedundantDefaultArg = false; 2321 // Whether we've found inconsis inconsitent default arguments in different 2322 // translation unit. 2323 bool InconsistentDefaultArg = false; 2324 // The name of the module which contains the inconsistent default argument. 2325 std::string PrevModuleName; 2326 2327 SourceLocation OldDefaultLoc; 2328 SourceLocation NewDefaultLoc; 2329 2330 // Variable used to diagnose missing default arguments 2331 bool MissingDefaultArg = false; 2332 2333 // Variable used to diagnose non-final parameter packs 2334 bool SawParameterPack = false; 2335 2336 if (TemplateTypeParmDecl *NewTypeParm 2337 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 2338 // Check the presence of a default argument here. 2339 if (NewTypeParm->hasDefaultArgument() && 2340 DiagnoseDefaultTemplateArgument( 2341 *this, TPC, NewTypeParm->getLocation(), 2342 NewTypeParm->getDefaultArgument().getSourceRange())) 2343 NewTypeParm->removeDefaultArgument(); 2344 2345 // Merge default arguments for template type parameters. 2346 TemplateTypeParmDecl *OldTypeParm 2347 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; 2348 if (NewTypeParm->isParameterPack()) { 2349 assert(!NewTypeParm->hasDefaultArgument() && 2350 "Parameter packs can't have a default argument!"); 2351 SawParameterPack = true; 2352 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && 2353 NewTypeParm->hasDefaultArgument() && 2354 (!SkipBody || !SkipBody->ShouldSkip)) { 2355 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 2356 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 2357 SawDefaultArgument = true; 2358 2359 if (!OldTypeParm->getOwningModule()) 2360 RedundantDefaultArg = true; 2361 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm, 2362 NewTypeParm)) { 2363 InconsistentDefaultArg = true; 2364 PrevModuleName = 2365 OldTypeParm->getImportedOwningModule()->getFullModuleName(); 2366 } 2367 PreviousDefaultArgLoc = NewDefaultLoc; 2368 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 2369 // Merge the default argument from the old declaration to the 2370 // new declaration. 2371 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); 2372 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 2373 } else if (NewTypeParm->hasDefaultArgument()) { 2374 SawDefaultArgument = true; 2375 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 2376 } else if (SawDefaultArgument) 2377 MissingDefaultArg = true; 2378 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 2379 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 2380 // Check for unexpanded parameter packs. 2381 if (!NewNonTypeParm->isParameterPack() && 2382 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 2383 NewNonTypeParm->getTypeSourceInfo(), 2384 UPPC_NonTypeTemplateParameterType)) { 2385 Invalid = true; 2386 continue; 2387 } 2388 2389 // Check the presence of a default argument here. 2390 if (NewNonTypeParm->hasDefaultArgument() && 2391 DiagnoseDefaultTemplateArgument( 2392 *this, TPC, NewNonTypeParm->getLocation(), 2393 NewNonTypeParm->getDefaultArgument().getSourceRange())) { 2394 NewNonTypeParm->removeDefaultArgument(); 2395 } 2396 2397 // Merge default arguments for non-type template parameters 2398 NonTypeTemplateParmDecl *OldNonTypeParm 2399 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; 2400 if (NewNonTypeParm->isParameterPack()) { 2401 assert(!NewNonTypeParm->hasDefaultArgument() && 2402 "Parameter packs can't have a default argument!"); 2403 if (!NewNonTypeParm->isPackExpansion()) 2404 SawParameterPack = true; 2405 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && 2406 NewNonTypeParm->hasDefaultArgument() && 2407 (!SkipBody || !SkipBody->ShouldSkip)) { 2408 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2409 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2410 SawDefaultArgument = true; 2411 if (!OldNonTypeParm->getOwningModule()) 2412 RedundantDefaultArg = true; 2413 else if (!getASTContext().isSameDefaultTemplateArgument( 2414 OldNonTypeParm, NewNonTypeParm)) { 2415 InconsistentDefaultArg = true; 2416 PrevModuleName = 2417 OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); 2418 } 2419 PreviousDefaultArgLoc = NewDefaultLoc; 2420 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 2421 // Merge the default argument from the old declaration to the 2422 // new declaration. 2423 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); 2424 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 2425 } else if (NewNonTypeParm->hasDefaultArgument()) { 2426 SawDefaultArgument = true; 2427 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 2428 } else if (SawDefaultArgument) 2429 MissingDefaultArg = true; 2430 } else { 2431 TemplateTemplateParmDecl *NewTemplateParm 2432 = cast<TemplateTemplateParmDecl>(*NewParam); 2433 2434 // Check for unexpanded parameter packs, recursively. 2435 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 2436 Invalid = true; 2437 continue; 2438 } 2439 2440 // Check the presence of a default argument here. 2441 if (NewTemplateParm->hasDefaultArgument() && 2442 DiagnoseDefaultTemplateArgument(*this, TPC, 2443 NewTemplateParm->getLocation(), 2444 NewTemplateParm->getDefaultArgument().getSourceRange())) 2445 NewTemplateParm->removeDefaultArgument(); 2446 2447 // Merge default arguments for template template parameters 2448 TemplateTemplateParmDecl *OldTemplateParm 2449 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; 2450 if (NewTemplateParm->isParameterPack()) { 2451 assert(!NewTemplateParm->hasDefaultArgument() && 2452 "Parameter packs can't have a default argument!"); 2453 if (!NewTemplateParm->isPackExpansion()) 2454 SawParameterPack = true; 2455 } else if (OldTemplateParm && 2456 hasVisibleDefaultArgument(OldTemplateParm) && 2457 NewTemplateParm->hasDefaultArgument() && 2458 (!SkipBody || !SkipBody->ShouldSkip)) { 2459 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 2460 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 2461 SawDefaultArgument = true; 2462 if (!OldTemplateParm->getOwningModule()) 2463 RedundantDefaultArg = true; 2464 else if (!getASTContext().isSameDefaultTemplateArgument( 2465 OldTemplateParm, NewTemplateParm)) { 2466 InconsistentDefaultArg = true; 2467 PrevModuleName = 2468 OldTemplateParm->getImportedOwningModule()->getFullModuleName(); 2469 } 2470 PreviousDefaultArgLoc = NewDefaultLoc; 2471 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 2472 // Merge the default argument from the old declaration to the 2473 // new declaration. 2474 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); 2475 PreviousDefaultArgLoc 2476 = OldTemplateParm->getDefaultArgument().getLocation(); 2477 } else if (NewTemplateParm->hasDefaultArgument()) { 2478 SawDefaultArgument = true; 2479 PreviousDefaultArgLoc 2480 = NewTemplateParm->getDefaultArgument().getLocation(); 2481 } else if (SawDefaultArgument) 2482 MissingDefaultArg = true; 2483 } 2484 2485 // C++11 [temp.param]p11: 2486 // If a template parameter of a primary class template or alias template 2487 // is a template parameter pack, it shall be the last template parameter. 2488 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 2489 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || 2490 TPC == TPC_TypeAliasTemplate)) { 2491 Diag((*NewParam)->getLocation(), 2492 diag::err_template_param_pack_must_be_last_template_parameter); 2493 Invalid = true; 2494 } 2495 2496 // [basic.def.odr]/13: 2497 // There can be more than one definition of a 2498 // ... 2499 // default template argument 2500 // ... 2501 // in a program provided that each definition appears in a different 2502 // translation unit and the definitions satisfy the [same-meaning 2503 // criteria of the ODR]. 2504 // 2505 // Simply, the design of modules allows the definition of template default 2506 // argument to be repeated across translation unit. Note that the ODR is 2507 // checked elsewhere. But it is still not allowed to repeat template default 2508 // argument in the same translation unit. 2509 if (RedundantDefaultArg) { 2510 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 2511 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 2512 Invalid = true; 2513 } else if (InconsistentDefaultArg) { 2514 // We could only diagnose about the case that the OldParam is imported. 2515 // The case NewParam is imported should be handled in ASTReader. 2516 Diag(NewDefaultLoc, 2517 diag::err_template_param_default_arg_inconsistent_redefinition); 2518 Diag(OldDefaultLoc, 2519 diag::note_template_param_prev_default_arg_in_other_module) 2520 << PrevModuleName; 2521 Invalid = true; 2522 } else if (MissingDefaultArg && 2523 (TPC == TPC_ClassTemplate || TPC == TPC_FriendClassTemplate || 2524 TPC == TPC_VarTemplate || TPC == TPC_TypeAliasTemplate)) { 2525 // C++ 23[temp.param]p14: 2526 // If a template-parameter of a class template, variable template, or 2527 // alias template has a default template argument, each subsequent 2528 // template-parameter shall either have a default template argument 2529 // supplied or be a template parameter pack. 2530 Diag((*NewParam)->getLocation(), 2531 diag::err_template_param_default_arg_missing); 2532 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 2533 Invalid = true; 2534 RemoveDefaultArguments = true; 2535 } 2536 2537 // If we have an old template parameter list that we're merging 2538 // in, move on to the next parameter. 2539 if (OldParams) 2540 ++OldParam; 2541 } 2542 2543 // We were missing some default arguments at the end of the list, so remove 2544 // all of the default arguments. 2545 if (RemoveDefaultArguments) { 2546 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 2547 NewParamEnd = NewParams->end(); 2548 NewParam != NewParamEnd; ++NewParam) { 2549 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 2550 TTP->removeDefaultArgument(); 2551 else if (NonTypeTemplateParmDecl *NTTP 2552 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 2553 NTTP->removeDefaultArgument(); 2554 else 2555 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 2556 } 2557 } 2558 2559 return Invalid; 2560 } 2561 2562 namespace { 2563 2564 /// A class which looks for a use of a certain level of template 2565 /// parameter. 2566 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 2567 typedef RecursiveASTVisitor<DependencyChecker> super; 2568 2569 unsigned Depth; 2570 2571 // Whether we're looking for a use of a template parameter that makes the 2572 // overall construct type-dependent / a dependent type. This is strictly 2573 // best-effort for now; we may fail to match at all for a dependent type 2574 // in some cases if this is set. 2575 bool IgnoreNonTypeDependent; 2576 2577 bool Match; 2578 SourceLocation MatchLoc; 2579 2580 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) 2581 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), 2582 Match(false) {} 2583 2584 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) 2585 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { 2586 NamedDecl *ND = Params->getParam(0); 2587 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 2588 Depth = PD->getDepth(); 2589 } else if (NonTypeTemplateParmDecl *PD = 2590 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 2591 Depth = PD->getDepth(); 2592 } else { 2593 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 2594 } 2595 } 2596 2597 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { 2598 if (ParmDepth >= Depth) { 2599 Match = true; 2600 MatchLoc = Loc; 2601 return true; 2602 } 2603 return false; 2604 } 2605 2606 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { 2607 // Prune out non-type-dependent expressions if requested. This can 2608 // sometimes result in us failing to find a template parameter reference 2609 // (if a value-dependent expression creates a dependent type), but this 2610 // mode is best-effort only. 2611 if (auto *E = dyn_cast_or_null<Expr>(S)) 2612 if (IgnoreNonTypeDependent && !E->isTypeDependent()) 2613 return true; 2614 return super::TraverseStmt(S, Q); 2615 } 2616 2617 bool TraverseTypeLoc(TypeLoc TL) { 2618 if (IgnoreNonTypeDependent && !TL.isNull() && 2619 !TL.getType()->isDependentType()) 2620 return true; 2621 return super::TraverseTypeLoc(TL); 2622 } 2623 2624 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { 2625 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); 2626 } 2627 2628 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 2629 // For a best-effort search, keep looking until we find a location. 2630 return IgnoreNonTypeDependent || !Matches(T->getDepth()); 2631 } 2632 2633 bool TraverseTemplateName(TemplateName N) { 2634 if (TemplateTemplateParmDecl *PD = 2635 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 2636 if (Matches(PD->getDepth())) 2637 return false; 2638 return super::TraverseTemplateName(N); 2639 } 2640 2641 bool VisitDeclRefExpr(DeclRefExpr *E) { 2642 if (NonTypeTemplateParmDecl *PD = 2643 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) 2644 if (Matches(PD->getDepth(), E->getExprLoc())) 2645 return false; 2646 return super::VisitDeclRefExpr(E); 2647 } 2648 2649 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { 2650 return TraverseType(T->getReplacementType()); 2651 } 2652 2653 bool 2654 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { 2655 return TraverseTemplateArgument(T->getArgumentPack()); 2656 } 2657 2658 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 2659 return TraverseType(T->getInjectedSpecializationType()); 2660 } 2661 }; 2662 } // end anonymous namespace 2663 2664 /// Determines whether a given type depends on the given parameter 2665 /// list. 2666 static bool 2667 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 2668 if (!Params->size()) 2669 return false; 2670 2671 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); 2672 Checker.TraverseType(T); 2673 return Checker.Match; 2674 } 2675 2676 // Find the source range corresponding to the named type in the given 2677 // nested-name-specifier, if any. 2678 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 2679 QualType T, 2680 const CXXScopeSpec &SS) { 2681 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 2682 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 2683 if (const Type *CurType = NNS->getAsType()) { 2684 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 2685 return NNSLoc.getTypeLoc().getSourceRange(); 2686 } else 2687 break; 2688 2689 NNSLoc = NNSLoc.getPrefix(); 2690 } 2691 2692 return SourceRange(); 2693 } 2694 2695 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( 2696 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, 2697 TemplateIdAnnotation *TemplateId, 2698 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, 2699 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { 2700 IsMemberSpecialization = false; 2701 Invalid = false; 2702 2703 // The sequence of nested types to which we will match up the template 2704 // parameter lists. We first build this list by starting with the type named 2705 // by the nested-name-specifier and walking out until we run out of types. 2706 SmallVector<QualType, 4> NestedTypes; 2707 QualType T; 2708 if (SS.getScopeRep()) { 2709 if (CXXRecordDecl *Record 2710 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 2711 T = Context.getTypeDeclType(Record); 2712 else 2713 T = QualType(SS.getScopeRep()->getAsType(), 0); 2714 } 2715 2716 // If we found an explicit specialization that prevents us from needing 2717 // 'template<>' headers, this will be set to the location of that 2718 // explicit specialization. 2719 SourceLocation ExplicitSpecLoc; 2720 2721 while (!T.isNull()) { 2722 NestedTypes.push_back(T); 2723 2724 // Retrieve the parent of a record type. 2725 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2726 // If this type is an explicit specialization, we're done. 2727 if (ClassTemplateSpecializationDecl *Spec 2728 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2729 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 2730 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 2731 ExplicitSpecLoc = Spec->getLocation(); 2732 break; 2733 } 2734 } else if (Record->getTemplateSpecializationKind() 2735 == TSK_ExplicitSpecialization) { 2736 ExplicitSpecLoc = Record->getLocation(); 2737 break; 2738 } 2739 2740 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 2741 T = Context.getTypeDeclType(Parent); 2742 else 2743 T = QualType(); 2744 continue; 2745 } 2746 2747 if (const TemplateSpecializationType *TST 2748 = T->getAs<TemplateSpecializationType>()) { 2749 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2750 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 2751 T = Context.getTypeDeclType(Parent); 2752 else 2753 T = QualType(); 2754 continue; 2755 } 2756 } 2757 2758 // Look one step prior in a dependent template specialization type. 2759 if (const DependentTemplateSpecializationType *DependentTST 2760 = T->getAs<DependentTemplateSpecializationType>()) { 2761 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 2762 T = QualType(NNS->getAsType(), 0); 2763 else 2764 T = QualType(); 2765 continue; 2766 } 2767 2768 // Look one step prior in a dependent name type. 2769 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 2770 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 2771 T = QualType(NNS->getAsType(), 0); 2772 else 2773 T = QualType(); 2774 continue; 2775 } 2776 2777 // Retrieve the parent of an enumeration type. 2778 if (const EnumType *EnumT = T->getAs<EnumType>()) { 2779 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 2780 // check here. 2781 EnumDecl *Enum = EnumT->getDecl(); 2782 2783 // Get to the parent type. 2784 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 2785 T = Context.getTypeDeclType(Parent); 2786 else 2787 T = QualType(); 2788 continue; 2789 } 2790 2791 T = QualType(); 2792 } 2793 // Reverse the nested types list, since we want to traverse from the outermost 2794 // to the innermost while checking template-parameter-lists. 2795 std::reverse(NestedTypes.begin(), NestedTypes.end()); 2796 2797 // C++0x [temp.expl.spec]p17: 2798 // A member or a member template may be nested within many 2799 // enclosing class templates. In an explicit specialization for 2800 // such a member, the member declaration shall be preceded by a 2801 // template<> for each enclosing class template that is 2802 // explicitly specialized. 2803 bool SawNonEmptyTemplateParameterList = false; 2804 2805 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { 2806 if (SawNonEmptyTemplateParameterList) { 2807 if (!SuppressDiagnostic) 2808 Diag(DeclLoc, diag::err_specialize_member_of_template) 2809 << !Recovery << Range; 2810 Invalid = true; 2811 IsMemberSpecialization = false; 2812 return true; 2813 } 2814 2815 return false; 2816 }; 2817 2818 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { 2819 // Check that we can have an explicit specialization here. 2820 if (CheckExplicitSpecialization(Range, true)) 2821 return true; 2822 2823 // We don't have a template header, but we should. 2824 SourceLocation ExpectedTemplateLoc; 2825 if (!ParamLists.empty()) 2826 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 2827 else 2828 ExpectedTemplateLoc = DeclStartLoc; 2829 2830 if (!SuppressDiagnostic) 2831 Diag(DeclLoc, diag::err_template_spec_needs_header) 2832 << Range 2833 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 2834 return false; 2835 }; 2836 2837 unsigned ParamIdx = 0; 2838 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 2839 ++TypeIdx) { 2840 T = NestedTypes[TypeIdx]; 2841 2842 // Whether we expect a 'template<>' header. 2843 bool NeedEmptyTemplateHeader = false; 2844 2845 // Whether we expect a template header with parameters. 2846 bool NeedNonemptyTemplateHeader = false; 2847 2848 // For a dependent type, the set of template parameters that we 2849 // expect to see. 2850 TemplateParameterList *ExpectedTemplateParams = nullptr; 2851 2852 // C++0x [temp.expl.spec]p15: 2853 // A member or a member template may be nested within many enclosing 2854 // class templates. In an explicit specialization for such a member, the 2855 // member declaration shall be preceded by a template<> for each 2856 // enclosing class template that is explicitly specialized. 2857 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 2858 if (ClassTemplatePartialSpecializationDecl *Partial 2859 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 2860 ExpectedTemplateParams = Partial->getTemplateParameters(); 2861 NeedNonemptyTemplateHeader = true; 2862 } else if (Record->isDependentType()) { 2863 if (Record->getDescribedClassTemplate()) { 2864 ExpectedTemplateParams = Record->getDescribedClassTemplate() 2865 ->getTemplateParameters(); 2866 NeedNonemptyTemplateHeader = true; 2867 } 2868 } else if (ClassTemplateSpecializationDecl *Spec 2869 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 2870 // C++0x [temp.expl.spec]p4: 2871 // Members of an explicitly specialized class template are defined 2872 // in the same manner as members of normal classes, and not using 2873 // the template<> syntax. 2874 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 2875 NeedEmptyTemplateHeader = true; 2876 else 2877 continue; 2878 } else if (Record->getTemplateSpecializationKind()) { 2879 if (Record->getTemplateSpecializationKind() 2880 != TSK_ExplicitSpecialization && 2881 TypeIdx == NumTypes - 1) 2882 IsMemberSpecialization = true; 2883 2884 continue; 2885 } 2886 } else if (const TemplateSpecializationType *TST 2887 = T->getAs<TemplateSpecializationType>()) { 2888 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 2889 ExpectedTemplateParams = Template->getTemplateParameters(); 2890 NeedNonemptyTemplateHeader = true; 2891 } 2892 } else if (T->getAs<DependentTemplateSpecializationType>()) { 2893 // FIXME: We actually could/should check the template arguments here 2894 // against the corresponding template parameter list. 2895 NeedNonemptyTemplateHeader = false; 2896 } 2897 2898 // C++ [temp.expl.spec]p16: 2899 // In an explicit specialization declaration for a member of a class 2900 // template or a member template that appears in namespace scope, the 2901 // member template and some of its enclosing class templates may remain 2902 // unspecialized, except that the declaration shall not explicitly 2903 // specialize a class member template if its enclosing class templates 2904 // are not explicitly specialized as well. 2905 if (ParamIdx < ParamLists.size()) { 2906 if (ParamLists[ParamIdx]->size() == 0) { 2907 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 2908 false)) 2909 return nullptr; 2910 } else 2911 SawNonEmptyTemplateParameterList = true; 2912 } 2913 2914 if (NeedEmptyTemplateHeader) { 2915 // If we're on the last of the types, and we need a 'template<>' header 2916 // here, then it's a member specialization. 2917 if (TypeIdx == NumTypes - 1) 2918 IsMemberSpecialization = true; 2919 2920 if (ParamIdx < ParamLists.size()) { 2921 if (ParamLists[ParamIdx]->size() > 0) { 2922 // The header has template parameters when it shouldn't. Complain. 2923 if (!SuppressDiagnostic) 2924 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 2925 diag::err_template_param_list_matches_nontemplate) 2926 << T 2927 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 2928 ParamLists[ParamIdx]->getRAngleLoc()) 2929 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 2930 Invalid = true; 2931 return nullptr; 2932 } 2933 2934 // Consume this template header. 2935 ++ParamIdx; 2936 continue; 2937 } 2938 2939 if (!IsFriend) 2940 if (DiagnoseMissingExplicitSpecialization( 2941 getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) 2942 return nullptr; 2943 2944 continue; 2945 } 2946 2947 if (NeedNonemptyTemplateHeader) { 2948 // In friend declarations we can have template-ids which don't 2949 // depend on the corresponding template parameter lists. But 2950 // assume that empty parameter lists are supposed to match this 2951 // template-id. 2952 if (IsFriend && T->isDependentType()) { 2953 if (ParamIdx < ParamLists.size() && 2954 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 2955 ExpectedTemplateParams = nullptr; 2956 else 2957 continue; 2958 } 2959 2960 if (ParamIdx < ParamLists.size()) { 2961 // Check the template parameter list, if we can. 2962 if (ExpectedTemplateParams && 2963 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 2964 ExpectedTemplateParams, 2965 !SuppressDiagnostic, TPL_TemplateMatch)) 2966 Invalid = true; 2967 2968 if (!Invalid && 2969 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, 2970 TPC_ClassTemplateMember)) 2971 Invalid = true; 2972 2973 ++ParamIdx; 2974 continue; 2975 } 2976 2977 if (!SuppressDiagnostic) 2978 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 2979 << T 2980 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 2981 Invalid = true; 2982 continue; 2983 } 2984 } 2985 2986 // If there were at least as many template-ids as there were template 2987 // parameter lists, then there are no template parameter lists remaining for 2988 // the declaration itself. 2989 if (ParamIdx >= ParamLists.size()) { 2990 if (TemplateId && !IsFriend) { 2991 // We don't have a template header for the declaration itself, but we 2992 // should. 2993 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, 2994 TemplateId->RAngleLoc)); 2995 2996 // Fabricate an empty template parameter list for the invented header. 2997 return TemplateParameterList::Create(Context, SourceLocation(), 2998 SourceLocation(), std::nullopt, 2999 SourceLocation(), nullptr); 3000 } 3001 3002 return nullptr; 3003 } 3004 3005 // If there were too many template parameter lists, complain about that now. 3006 if (ParamIdx < ParamLists.size() - 1) { 3007 bool HasAnyExplicitSpecHeader = false; 3008 bool AllExplicitSpecHeaders = true; 3009 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { 3010 if (ParamLists[I]->size() == 0) 3011 HasAnyExplicitSpecHeader = true; 3012 else 3013 AllExplicitSpecHeaders = false; 3014 } 3015 3016 if (!SuppressDiagnostic) 3017 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 3018 AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers 3019 : diag::err_template_spec_extra_headers) 3020 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 3021 ParamLists[ParamLists.size() - 2]->getRAngleLoc()); 3022 3023 // If there was a specialization somewhere, such that 'template<>' is 3024 // not required, and there were any 'template<>' headers, note where the 3025 // specialization occurred. 3026 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && 3027 !SuppressDiagnostic) 3028 Diag(ExplicitSpecLoc, 3029 diag::note_explicit_template_spec_does_not_need_header) 3030 << NestedTypes.back(); 3031 3032 // We have a template parameter list with no corresponding scope, which 3033 // means that the resulting template declaration can't be instantiated 3034 // properly (we'll end up with dependent nodes when we shouldn't). 3035 if (!AllExplicitSpecHeaders) 3036 Invalid = true; 3037 } 3038 3039 // C++ [temp.expl.spec]p16: 3040 // In an explicit specialization declaration for a member of a class 3041 // template or a member template that ap- pears in namespace scope, the 3042 // member template and some of its enclosing class templates may remain 3043 // unspecialized, except that the declaration shall not explicitly 3044 // specialize a class member template if its en- closing class templates 3045 // are not explicitly specialized as well. 3046 if (ParamLists.back()->size() == 0 && 3047 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), 3048 false)) 3049 return nullptr; 3050 3051 // Return the last template parameter list, which corresponds to the 3052 // entity being declared. 3053 return ParamLists.back(); 3054 } 3055 3056 void Sema::NoteAllFoundTemplates(TemplateName Name) { 3057 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 3058 Diag(Template->getLocation(), diag::note_template_declared_here) 3059 << (isa<FunctionTemplateDecl>(Template) 3060 ? 0 3061 : isa<ClassTemplateDecl>(Template) 3062 ? 1 3063 : isa<VarTemplateDecl>(Template) 3064 ? 2 3065 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) 3066 << Template->getDeclName(); 3067 return; 3068 } 3069 3070 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 3071 for (OverloadedTemplateStorage::iterator I = OST->begin(), 3072 IEnd = OST->end(); 3073 I != IEnd; ++I) 3074 Diag((*I)->getLocation(), diag::note_template_declared_here) 3075 << 0 << (*I)->getDeclName(); 3076 3077 return; 3078 } 3079 } 3080 3081 static QualType builtinCommonTypeImpl(Sema &S, TemplateName BaseTemplate, 3082 SourceLocation TemplateLoc, 3083 ArrayRef<TemplateArgument> Ts) { 3084 auto lookUpCommonType = [&](TemplateArgument T1, 3085 TemplateArgument T2) -> QualType { 3086 // Don't bother looking for other specializations if both types are 3087 // builtins - users aren't allowed to specialize for them 3088 if (T1.getAsType()->isBuiltinType() && T2.getAsType()->isBuiltinType()) 3089 return builtinCommonTypeImpl(S, BaseTemplate, TemplateLoc, {T1, T2}); 3090 3091 TemplateArgumentListInfo Args; 3092 Args.addArgument(TemplateArgumentLoc( 3093 T1, S.Context.getTrivialTypeSourceInfo(T1.getAsType()))); 3094 Args.addArgument(TemplateArgumentLoc( 3095 T2, S.Context.getTrivialTypeSourceInfo(T2.getAsType()))); 3096 3097 EnterExpressionEvaluationContext UnevaluatedContext( 3098 S, Sema::ExpressionEvaluationContext::Unevaluated); 3099 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 3100 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 3101 3102 QualType BaseTemplateInst = 3103 S.CheckTemplateIdType(BaseTemplate, TemplateLoc, Args); 3104 3105 if (SFINAE.hasErrorOccurred()) 3106 return QualType(); 3107 3108 return BaseTemplateInst; 3109 }; 3110 3111 // Note A: For the common_type trait applied to a template parameter pack T of 3112 // types, the member type shall be either defined or not present as follows: 3113 switch (Ts.size()) { 3114 3115 // If sizeof...(T) is zero, there shall be no member type. 3116 case 0: 3117 return QualType(); 3118 3119 // If sizeof...(T) is one, let T0 denote the sole type constituting the 3120 // pack T. The member typedef-name type shall denote the same type, if any, as 3121 // common_type_t<T0, T0>; otherwise there shall be no member type. 3122 case 1: 3123 return lookUpCommonType(Ts[0], Ts[0]); 3124 3125 // If sizeof...(T) is two, let the first and second types constituting T be 3126 // denoted by T1 and T2, respectively, and let D1 and D2 denote the same types 3127 // as decay_t<T1> and decay_t<T2>, respectively. 3128 case 2: { 3129 QualType T1 = Ts[0].getAsType(); 3130 QualType T2 = Ts[1].getAsType(); 3131 QualType D1 = S.BuiltinDecay(T1, {}); 3132 QualType D2 = S.BuiltinDecay(T2, {}); 3133 3134 // If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote 3135 // the same type, if any, as common_type_t<D1, D2>. 3136 if (!S.Context.hasSameType(T1, D1) || !S.Context.hasSameType(T2, D2)) 3137 return lookUpCommonType(D1, D2); 3138 3139 // Otherwise, if decay_t<decltype(false ? declval<D1>() : declval<D2>())> 3140 // denotes a valid type, let C denote that type. 3141 { 3142 auto CheckConditionalOperands = [&](bool ConstRefQual) -> QualType { 3143 EnterExpressionEvaluationContext UnevaluatedContext( 3144 S, Sema::ExpressionEvaluationContext::Unevaluated); 3145 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 3146 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 3147 3148 // false 3149 OpaqueValueExpr CondExpr(SourceLocation(), S.Context.BoolTy, 3150 VK_PRValue); 3151 ExprResult Cond = &CondExpr; 3152 3153 auto EVK = ConstRefQual ? VK_LValue : VK_PRValue; 3154 if (ConstRefQual) { 3155 D1.addConst(); 3156 D2.addConst(); 3157 } 3158 3159 // declval<D1>() 3160 OpaqueValueExpr LHSExpr(TemplateLoc, D1, EVK); 3161 ExprResult LHS = &LHSExpr; 3162 3163 // declval<D2>() 3164 OpaqueValueExpr RHSExpr(TemplateLoc, D2, EVK); 3165 ExprResult RHS = &RHSExpr; 3166 3167 ExprValueKind VK = VK_PRValue; 3168 ExprObjectKind OK = OK_Ordinary; 3169 3170 // decltype(false ? declval<D1>() : declval<D2>()) 3171 QualType Result = 3172 S.CheckConditionalOperands(Cond, LHS, RHS, VK, OK, TemplateLoc); 3173 3174 if (Result.isNull() || SFINAE.hasErrorOccurred()) 3175 return QualType(); 3176 3177 // decay_t<decltype(false ? declval<D1>() : declval<D2>())> 3178 return S.BuiltinDecay(Result, TemplateLoc); 3179 }; 3180 3181 if (auto Res = CheckConditionalOperands(false); !Res.isNull()) 3182 return Res; 3183 3184 // Let: 3185 // CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>, 3186 // COND-RES(X, Y) be 3187 // decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()()). 3188 3189 // C++20 only 3190 // Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type, let C denote 3191 // the type decay_t<COND-RES(CREF(D1), CREF(D2))>. 3192 if (!S.Context.getLangOpts().CPlusPlus20) 3193 return QualType(); 3194 return CheckConditionalOperands(true); 3195 } 3196 } 3197 3198 // If sizeof...(T) is greater than two, let T1, T2, and R, respectively, 3199 // denote the first, second, and (pack of) remaining types constituting T. Let 3200 // C denote the same type, if any, as common_type_t<T1, T2>. If there is such 3201 // a type C, the member typedef-name type shall denote the same type, if any, 3202 // as common_type_t<C, R...>. Otherwise, there shall be no member type. 3203 default: { 3204 QualType Result = Ts.front().getAsType(); 3205 for (auto T : llvm::drop_begin(Ts)) { 3206 Result = lookUpCommonType(Result, T.getAsType()); 3207 if (Result.isNull()) 3208 return QualType(); 3209 } 3210 return Result; 3211 } 3212 } 3213 } 3214 3215 static QualType 3216 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, 3217 ArrayRef<TemplateArgument> Converted, 3218 SourceLocation TemplateLoc, 3219 TemplateArgumentListInfo &TemplateArgs) { 3220 ASTContext &Context = SemaRef.getASTContext(); 3221 3222 switch (BTD->getBuiltinTemplateKind()) { 3223 case BTK__make_integer_seq: { 3224 // Specializations of __make_integer_seq<S, T, N> are treated like 3225 // S<T, 0, ..., N-1>. 3226 3227 QualType OrigType = Converted[1].getAsType(); 3228 // C++14 [inteseq.intseq]p1: 3229 // T shall be an integer type. 3230 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Context)) { 3231 SemaRef.Diag(TemplateArgs[1].getLocation(), 3232 diag::err_integer_sequence_integral_element_type); 3233 return QualType(); 3234 } 3235 3236 TemplateArgument NumArgsArg = Converted[2]; 3237 if (NumArgsArg.isDependent()) 3238 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3239 Converted); 3240 3241 TemplateArgumentListInfo SyntheticTemplateArgs; 3242 // The type argument, wrapped in substitution sugar, gets reused as the 3243 // first template argument in the synthetic template argument list. 3244 SyntheticTemplateArgs.addArgument( 3245 TemplateArgumentLoc(TemplateArgument(OrigType), 3246 SemaRef.Context.getTrivialTypeSourceInfo( 3247 OrigType, TemplateArgs[1].getLocation()))); 3248 3249 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { 3250 // Expand N into 0 ... N-1. 3251 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); 3252 I < NumArgs; ++I) { 3253 TemplateArgument TA(Context, I, OrigType); 3254 SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( 3255 TA, OrigType, TemplateArgs[2].getLocation())); 3256 } 3257 } else { 3258 // C++14 [inteseq.make]p1: 3259 // If N is negative the program is ill-formed. 3260 SemaRef.Diag(TemplateArgs[2].getLocation(), 3261 diag::err_integer_sequence_negative_length); 3262 return QualType(); 3263 } 3264 3265 // The first template argument will be reused as the template decl that 3266 // our synthetic template arguments will be applied to. 3267 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), 3268 TemplateLoc, SyntheticTemplateArgs); 3269 } 3270 3271 case BTK__type_pack_element: { 3272 // Specializations of 3273 // __type_pack_element<Index, T_1, ..., T_N> 3274 // are treated like T_Index. 3275 assert(Converted.size() == 2 && 3276 "__type_pack_element should be given an index and a parameter pack"); 3277 3278 TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; 3279 if (IndexArg.isDependent() || Ts.isDependent()) 3280 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3281 Converted); 3282 3283 llvm::APSInt Index = IndexArg.getAsIntegral(); 3284 assert(Index >= 0 && "the index used with __type_pack_element should be of " 3285 "type std::size_t, and hence be non-negative"); 3286 // If the Index is out of bounds, the program is ill-formed. 3287 if (Index >= Ts.pack_size()) { 3288 SemaRef.Diag(TemplateArgs[0].getLocation(), 3289 diag::err_type_pack_element_out_of_bounds); 3290 return QualType(); 3291 } 3292 3293 // We simply return the type at index `Index`. 3294 int64_t N = Index.getExtValue(); 3295 return Ts.getPackAsArray()[N].getAsType(); 3296 } 3297 3298 case BTK__builtin_common_type: { 3299 assert(Converted.size() == 4); 3300 if (llvm::any_of(Converted, [](auto &C) { return C.isDependent(); })) 3301 return Context.getCanonicalTemplateSpecializationType(TemplateName(BTD), 3302 Converted); 3303 3304 TemplateName BaseTemplate = Converted[0].getAsTemplate(); 3305 TemplateName HasTypeMember = Converted[1].getAsTemplate(); 3306 QualType HasNoTypeMember = Converted[2].getAsType(); 3307 ArrayRef<TemplateArgument> Ts = Converted[3].getPackAsArray(); 3308 if (auto CT = builtinCommonTypeImpl(SemaRef, BaseTemplate, TemplateLoc, Ts); 3309 !CT.isNull()) { 3310 TemplateArgumentListInfo TAs; 3311 TAs.addArgument(TemplateArgumentLoc( 3312 TemplateArgument(CT), SemaRef.Context.getTrivialTypeSourceInfo( 3313 CT, TemplateArgs[1].getLocation()))); 3314 3315 return SemaRef.CheckTemplateIdType(HasTypeMember, TemplateLoc, TAs); 3316 } 3317 return HasNoTypeMember; 3318 } 3319 } 3320 llvm_unreachable("unexpected BuiltinTemplateDecl!"); 3321 } 3322 3323 /// Determine whether this alias template is "enable_if_t". 3324 /// libc++ >=14 uses "__enable_if_t" in C++11 mode. 3325 static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { 3326 return AliasTemplate->getName() == "enable_if_t" || 3327 AliasTemplate->getName() == "__enable_if_t"; 3328 } 3329 3330 /// Collect all of the separable terms in the given condition, which 3331 /// might be a conjunction. 3332 /// 3333 /// FIXME: The right answer is to convert the logical expression into 3334 /// disjunctive normal form, so we can find the first failed term 3335 /// within each possible clause. 3336 static void collectConjunctionTerms(Expr *Clause, 3337 SmallVectorImpl<Expr *> &Terms) { 3338 if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { 3339 if (BinOp->getOpcode() == BO_LAnd) { 3340 collectConjunctionTerms(BinOp->getLHS(), Terms); 3341 collectConjunctionTerms(BinOp->getRHS(), Terms); 3342 return; 3343 } 3344 } 3345 3346 Terms.push_back(Clause); 3347 } 3348 3349 // The ranges-v3 library uses an odd pattern of a top-level "||" with 3350 // a left-hand side that is value-dependent but never true. Identify 3351 // the idiom and ignore that term. 3352 static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { 3353 // Top-level '||'. 3354 auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); 3355 if (!BinOp) return Cond; 3356 3357 if (BinOp->getOpcode() != BO_LOr) return Cond; 3358 3359 // With an inner '==' that has a literal on the right-hand side. 3360 Expr *LHS = BinOp->getLHS(); 3361 auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); 3362 if (!InnerBinOp) return Cond; 3363 3364 if (InnerBinOp->getOpcode() != BO_EQ || 3365 !isa<IntegerLiteral>(InnerBinOp->getRHS())) 3366 return Cond; 3367 3368 // If the inner binary operation came from a macro expansion named 3369 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side 3370 // of the '||', which is the real, user-provided condition. 3371 SourceLocation Loc = InnerBinOp->getExprLoc(); 3372 if (!Loc.isMacroID()) return Cond; 3373 3374 StringRef MacroName = PP.getImmediateMacroName(Loc); 3375 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") 3376 return BinOp->getRHS(); 3377 3378 return Cond; 3379 } 3380 3381 namespace { 3382 3383 // A PrinterHelper that prints more helpful diagnostics for some sub-expressions 3384 // within failing boolean expression, such as substituting template parameters 3385 // for actual types. 3386 class FailedBooleanConditionPrinterHelper : public PrinterHelper { 3387 public: 3388 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) 3389 : Policy(P) {} 3390 3391 bool handledStmt(Stmt *E, raw_ostream &OS) override { 3392 const auto *DR = dyn_cast<DeclRefExpr>(E); 3393 if (DR && DR->getQualifier()) { 3394 // If this is a qualified name, expand the template arguments in nested 3395 // qualifiers. 3396 DR->getQualifier()->print(OS, Policy, true); 3397 // Then print the decl itself. 3398 const ValueDecl *VD = DR->getDecl(); 3399 OS << VD->getName(); 3400 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 3401 // This is a template variable, print the expanded template arguments. 3402 printTemplateArgumentList( 3403 OS, IV->getTemplateArgs().asArray(), Policy, 3404 IV->getSpecializedTemplate()->getTemplateParameters()); 3405 } 3406 return true; 3407 } 3408 return false; 3409 } 3410 3411 private: 3412 const PrintingPolicy Policy; 3413 }; 3414 3415 } // end anonymous namespace 3416 3417 std::pair<Expr *, std::string> 3418 Sema::findFailedBooleanCondition(Expr *Cond) { 3419 Cond = lookThroughRangesV3Condition(PP, Cond); 3420 3421 // Separate out all of the terms in a conjunction. 3422 SmallVector<Expr *, 4> Terms; 3423 collectConjunctionTerms(Cond, Terms); 3424 3425 // Determine which term failed. 3426 Expr *FailedCond = nullptr; 3427 for (Expr *Term : Terms) { 3428 Expr *TermAsWritten = Term->IgnoreParenImpCasts(); 3429 3430 // Literals are uninteresting. 3431 if (isa<CXXBoolLiteralExpr>(TermAsWritten) || 3432 isa<IntegerLiteral>(TermAsWritten)) 3433 continue; 3434 3435 // The initialization of the parameter from the argument is 3436 // a constant-evaluated context. 3437 EnterExpressionEvaluationContext ConstantEvaluated( 3438 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 3439 3440 bool Succeeded; 3441 if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && 3442 !Succeeded) { 3443 FailedCond = TermAsWritten; 3444 break; 3445 } 3446 } 3447 if (!FailedCond) 3448 FailedCond = Cond->IgnoreParenImpCasts(); 3449 3450 std::string Description; 3451 { 3452 llvm::raw_string_ostream Out(Description); 3453 PrintingPolicy Policy = getPrintingPolicy(); 3454 Policy.PrintCanonicalTypes = true; 3455 FailedBooleanConditionPrinterHelper Helper(Policy); 3456 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); 3457 } 3458 return { FailedCond, Description }; 3459 } 3460 3461 QualType Sema::CheckTemplateIdType(TemplateName Name, 3462 SourceLocation TemplateLoc, 3463 TemplateArgumentListInfo &TemplateArgs) { 3464 DependentTemplateName *DTN = 3465 Name.getUnderlying().getAsDependentTemplateName(); 3466 if (DTN && DTN->isIdentifier()) 3467 // When building a template-id where the template-name is dependent, 3468 // assume the template is a type template. Either our assumption is 3469 // correct, or the code is ill-formed and will be diagnosed when the 3470 // dependent name is substituted. 3471 return Context.getDependentTemplateSpecializationType( 3472 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(), 3473 TemplateArgs.arguments()); 3474 3475 if (Name.getAsAssumedTemplateName() && 3476 resolveAssumedTemplateNameAsType(/*Scope=*/nullptr, Name, TemplateLoc)) 3477 return QualType(); 3478 3479 auto [Template, DefaultArgs] = Name.getTemplateDeclAndDefaultArgs(); 3480 3481 if (!Template || isa<FunctionTemplateDecl>(Template) || 3482 isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { 3483 // We might have a substituted template template parameter pack. If so, 3484 // build a template specialization type for it. 3485 if (Name.getAsSubstTemplateTemplateParmPack()) 3486 return Context.getTemplateSpecializationType(Name, 3487 TemplateArgs.arguments()); 3488 3489 Diag(TemplateLoc, diag::err_template_id_not_a_type) 3490 << Name; 3491 NoteAllFoundTemplates(Name); 3492 return QualType(); 3493 } 3494 3495 // Check that the template argument list is well-formed for this 3496 // template. 3497 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 3498 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 3499 DefaultArgs, false, SugaredConverted, 3500 CanonicalConverted, 3501 /*UpdateArgsWithConversions=*/true)) 3502 return QualType(); 3503 3504 QualType CanonType; 3505 3506 if (TypeAliasTemplateDecl *AliasTemplate = 3507 dyn_cast<TypeAliasTemplateDecl>(Template)) { 3508 3509 // Find the canonical type for this type alias template specialization. 3510 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 3511 if (Pattern->isInvalidDecl()) 3512 return QualType(); 3513 3514 // Only substitute for the innermost template argument list. NOTE: Some 3515 // external resugarers rely on leaving a Subst* node here. Make the 3516 // substitution non-final in that case. Note that these external resugarers 3517 // will still miss some information in this representation, because we don't 3518 // provide enough context in the Subst* nodes in order to tell different 3519 // template type alias specializations apart. 3520 MultiLevelTemplateArgumentList TemplateArgLists; 3521 TemplateArgLists.addOuterTemplateArguments( 3522 Template, SugaredConverted, 3523 /*Final=*/!getLangOpts().RetainSubstTemplateTypeParmTypeAstNodes); 3524 TemplateArgLists.addOuterRetainedLevels( 3525 AliasTemplate->getTemplateParameters()->getDepth()); 3526 3527 LocalInstantiationScope Scope(*this); 3528 InstantiatingTemplate Inst( 3529 *this, /*PointOfInstantiation=*/TemplateLoc, 3530 /*Entity=*/AliasTemplate, 3531 /*TemplateArgs=*/TemplateArgLists.getInnermost()); 3532 3533 // Diagnose uses of this alias. 3534 (void)DiagnoseUseOfDecl(AliasTemplate, TemplateLoc); 3535 3536 if (Inst.isInvalid()) 3537 return QualType(); 3538 3539 std::optional<ContextRAII> SavedContext; 3540 if (!AliasTemplate->getDeclContext()->isFileContext()) 3541 SavedContext.emplace(*this, AliasTemplate->getDeclContext()); 3542 3543 CanonType = 3544 SubstType(Pattern->getUnderlyingType(), TemplateArgLists, 3545 AliasTemplate->getLocation(), AliasTemplate->getDeclName()); 3546 if (CanonType.isNull()) { 3547 // If this was enable_if and we failed to find the nested type 3548 // within enable_if in a SFINAE context, dig out the specific 3549 // enable_if condition that failed and present that instead. 3550 if (isEnableIfAliasTemplate(AliasTemplate)) { 3551 if (auto DeductionInfo = isSFINAEContext()) { 3552 if (*DeductionInfo && 3553 (*DeductionInfo)->hasSFINAEDiagnostic() && 3554 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == 3555 diag::err_typename_nested_not_found_enable_if && 3556 TemplateArgs[0].getArgument().getKind() 3557 == TemplateArgument::Expression) { 3558 Expr *FailedCond; 3559 std::string FailedDescription; 3560 std::tie(FailedCond, FailedDescription) = 3561 findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); 3562 3563 // Remove the old SFINAE diagnostic. 3564 PartialDiagnosticAt OldDiag = 3565 {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; 3566 (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); 3567 3568 // Add a new SFINAE diagnostic specifying which condition 3569 // failed. 3570 (*DeductionInfo)->addSFINAEDiagnostic( 3571 OldDiag.first, 3572 PDiag(diag::err_typename_nested_not_found_requirement) 3573 << FailedDescription 3574 << FailedCond->getSourceRange()); 3575 } 3576 } 3577 } 3578 3579 return QualType(); 3580 } 3581 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { 3582 CanonType = checkBuiltinTemplateIdType(*this, BTD, SugaredConverted, 3583 TemplateLoc, TemplateArgs); 3584 } else if (Name.isDependent() || 3585 TemplateSpecializationType::anyDependentTemplateArguments( 3586 TemplateArgs, CanonicalConverted)) { 3587 // This class template specialization is a dependent 3588 // type. Therefore, its canonical type is another class template 3589 // specialization type that contains all of the converted 3590 // arguments in canonical form. This ensures that, e.g., A<T> and 3591 // A<T, T> have identical types when A is declared as: 3592 // 3593 // template<typename T, typename U = T> struct A; 3594 CanonType = Context.getCanonicalTemplateSpecializationType( 3595 Name, CanonicalConverted); 3596 3597 // This might work out to be a current instantiation, in which 3598 // case the canonical type needs to be the InjectedClassNameType. 3599 // 3600 // TODO: in theory this could be a simple hashtable lookup; most 3601 // changes to CurContext don't change the set of current 3602 // instantiations. 3603 if (isa<ClassTemplateDecl>(Template)) { 3604 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 3605 // If we get out to a namespace, we're done. 3606 if (Ctx->isFileContext()) break; 3607 3608 // If this isn't a record, keep looking. 3609 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 3610 if (!Record) continue; 3611 3612 // Look for one of the two cases with InjectedClassNameTypes 3613 // and check whether it's the same template. 3614 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 3615 !Record->getDescribedClassTemplate()) 3616 continue; 3617 3618 // Fetch the injected class name type and check whether its 3619 // injected type is equal to the type we just built. 3620 QualType ICNT = Context.getTypeDeclType(Record); 3621 QualType Injected = cast<InjectedClassNameType>(ICNT) 3622 ->getInjectedSpecializationType(); 3623 3624 if (CanonType != Injected->getCanonicalTypeInternal()) 3625 continue; 3626 3627 // If so, the canonical type of this TST is the injected 3628 // class name type of the record we just found. 3629 assert(ICNT.isCanonical()); 3630 CanonType = ICNT; 3631 break; 3632 } 3633 } 3634 } else if (ClassTemplateDecl *ClassTemplate = 3635 dyn_cast<ClassTemplateDecl>(Template)) { 3636 // Find the class template specialization declaration that 3637 // corresponds to these arguments. 3638 void *InsertPos = nullptr; 3639 ClassTemplateSpecializationDecl *Decl = 3640 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 3641 if (!Decl) { 3642 // This is the first time we have referenced this class template 3643 // specialization. Create the canonical declaration and add it to 3644 // the set of specializations. 3645 Decl = ClassTemplateSpecializationDecl::Create( 3646 Context, ClassTemplate->getTemplatedDecl()->getTagKind(), 3647 ClassTemplate->getDeclContext(), 3648 ClassTemplate->getTemplatedDecl()->getBeginLoc(), 3649 ClassTemplate->getLocation(), ClassTemplate, CanonicalConverted, 3650 nullptr); 3651 ClassTemplate->AddSpecialization(Decl, InsertPos); 3652 if (ClassTemplate->isOutOfLine()) 3653 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 3654 } 3655 3656 if (Decl->getSpecializationKind() == TSK_Undeclared && 3657 ClassTemplate->getTemplatedDecl()->hasAttrs()) { 3658 InstantiatingTemplate Inst(*this, TemplateLoc, Decl); 3659 if (!Inst.isInvalid()) { 3660 MultiLevelTemplateArgumentList TemplateArgLists(Template, 3661 CanonicalConverted, 3662 /*Final=*/false); 3663 InstantiateAttrsForDecl(TemplateArgLists, 3664 ClassTemplate->getTemplatedDecl(), Decl); 3665 } 3666 } 3667 3668 // Diagnose uses of this specialization. 3669 (void)DiagnoseUseOfDecl(Decl, TemplateLoc); 3670 3671 CanonType = Context.getTypeDeclType(Decl); 3672 assert(isa<RecordType>(CanonType) && 3673 "type of non-dependent specialization is not a RecordType"); 3674 } else { 3675 llvm_unreachable("Unhandled template kind"); 3676 } 3677 3678 // Build the fully-sugared type for this class template 3679 // specialization, which refers back to the class template 3680 // specialization we created or found. 3681 return Context.getTemplateSpecializationType(Name, TemplateArgs.arguments(), 3682 CanonType); 3683 } 3684 3685 void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, 3686 TemplateNameKind &TNK, 3687 SourceLocation NameLoc, 3688 IdentifierInfo *&II) { 3689 assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); 3690 3691 TemplateName Name = ParsedName.get(); 3692 auto *ATN = Name.getAsAssumedTemplateName(); 3693 assert(ATN && "not an assumed template name"); 3694 II = ATN->getDeclName().getAsIdentifierInfo(); 3695 3696 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { 3697 // Resolved to a type template name. 3698 ParsedName = TemplateTy::make(Name); 3699 TNK = TNK_Type_template; 3700 } 3701 } 3702 3703 bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, 3704 SourceLocation NameLoc, 3705 bool Diagnose) { 3706 // We assumed this undeclared identifier to be an (ADL-only) function 3707 // template name, but it was used in a context where a type was required. 3708 // Try to typo-correct it now. 3709 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); 3710 assert(ATN && "not an assumed template name"); 3711 3712 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); 3713 struct CandidateCallback : CorrectionCandidateCallback { 3714 bool ValidateCandidate(const TypoCorrection &TC) override { 3715 return TC.getCorrectionDecl() && 3716 getAsTypeTemplateDecl(TC.getCorrectionDecl()); 3717 } 3718 std::unique_ptr<CorrectionCandidateCallback> clone() override { 3719 return std::make_unique<CandidateCallback>(*this); 3720 } 3721 } FilterCCC; 3722 3723 TypoCorrection Corrected = 3724 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, 3725 FilterCCC, CTK_ErrorRecovery); 3726 if (Corrected && Corrected.getFoundDecl()) { 3727 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) 3728 << ATN->getDeclName()); 3729 Name = Context.getQualifiedTemplateName( 3730 /*NNS=*/nullptr, /*TemplateKeyword=*/false, 3731 TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>())); 3732 return false; 3733 } 3734 3735 if (Diagnose) 3736 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); 3737 return true; 3738 } 3739 3740 TypeResult Sema::ActOnTemplateIdType( 3741 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 3742 TemplateTy TemplateD, const IdentifierInfo *TemplateII, 3743 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 3744 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, 3745 bool IsCtorOrDtorName, bool IsClassName, 3746 ImplicitTypenameContext AllowImplicitTypename) { 3747 if (SS.isInvalid()) 3748 return true; 3749 3750 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { 3751 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); 3752 3753 // C++ [temp.res]p3: 3754 // A qualified-id that refers to a type and in which the 3755 // nested-name-specifier depends on a template-parameter (14.6.2) 3756 // shall be prefixed by the keyword typename to indicate that the 3757 // qualified-id denotes a type, forming an 3758 // elaborated-type-specifier (7.1.5.3). 3759 if (!LookupCtx && isDependentScopeSpecifier(SS)) { 3760 // C++2a relaxes some of those restrictions in [temp.res]p5. 3761 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { 3762 if (getLangOpts().CPlusPlus20) 3763 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename); 3764 else 3765 Diag(SS.getBeginLoc(), diag::ext_implicit_typename) 3766 << SS.getScopeRep() << TemplateII->getName() 3767 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename "); 3768 } else 3769 Diag(SS.getBeginLoc(), diag::err_typename_missing_template) 3770 << SS.getScopeRep() << TemplateII->getName(); 3771 3772 // FIXME: This is not quite correct recovery as we don't transform SS 3773 // into the corresponding dependent form (and we don't diagnose missing 3774 // 'template' keywords within SS as a result). 3775 return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, 3776 TemplateD, TemplateII, TemplateIILoc, LAngleLoc, 3777 TemplateArgsIn, RAngleLoc); 3778 } 3779 3780 // Per C++ [class.qual]p2, if the template-id was an injected-class-name, 3781 // it's not actually allowed to be used as a type in most cases. Because 3782 // we annotate it before we know whether it's valid, we have to check for 3783 // this case here. 3784 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 3785 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 3786 Diag(TemplateIILoc, 3787 TemplateKWLoc.isInvalid() 3788 ? diag::err_out_of_line_qualified_id_type_names_constructor 3789 : diag::ext_out_of_line_qualified_id_type_names_constructor) 3790 << TemplateII << 0 /*injected-class-name used as template name*/ 3791 << 1 /*if any keyword was present, it was 'template'*/; 3792 } 3793 } 3794 3795 TemplateName Template = TemplateD.get(); 3796 if (Template.getAsAssumedTemplateName() && 3797 resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) 3798 return true; 3799 3800 // Translate the parser's template argument list in our AST format. 3801 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3802 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3803 3804 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3805 assert(SS.getScopeRep() == DTN->getQualifier()); 3806 QualType T = Context.getDependentTemplateSpecializationType( 3807 ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(), 3808 TemplateArgs.arguments()); 3809 // Build type-source information. 3810 TypeLocBuilder TLB; 3811 DependentTemplateSpecializationTypeLoc SpecTL 3812 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3813 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 3814 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3815 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3816 SpecTL.setTemplateNameLoc(TemplateIILoc); 3817 SpecTL.setLAngleLoc(LAngleLoc); 3818 SpecTL.setRAngleLoc(RAngleLoc); 3819 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3820 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3821 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3822 } 3823 3824 QualType SpecTy = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 3825 if (SpecTy.isNull()) 3826 return true; 3827 3828 // Build type-source information. 3829 TypeLocBuilder TLB; 3830 TemplateSpecializationTypeLoc SpecTL = 3831 TLB.push<TemplateSpecializationTypeLoc>(SpecTy); 3832 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3833 SpecTL.setTemplateNameLoc(TemplateIILoc); 3834 SpecTL.setLAngleLoc(LAngleLoc); 3835 SpecTL.setRAngleLoc(RAngleLoc); 3836 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3837 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3838 3839 // Create an elaborated-type-specifier containing the nested-name-specifier. 3840 QualType ElTy = 3841 getElaboratedType(ElaboratedTypeKeyword::None, 3842 !IsCtorOrDtorName ? SS : CXXScopeSpec(), SpecTy); 3843 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(ElTy); 3844 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 3845 if (!ElabTL.isEmpty()) 3846 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3847 return CreateParsedType(ElTy, TLB.getTypeSourceInfo(Context, ElTy)); 3848 } 3849 3850 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 3851 TypeSpecifierType TagSpec, 3852 SourceLocation TagLoc, 3853 CXXScopeSpec &SS, 3854 SourceLocation TemplateKWLoc, 3855 TemplateTy TemplateD, 3856 SourceLocation TemplateLoc, 3857 SourceLocation LAngleLoc, 3858 ASTTemplateArgsPtr TemplateArgsIn, 3859 SourceLocation RAngleLoc) { 3860 if (SS.isInvalid()) 3861 return TypeResult(true); 3862 3863 TemplateName Template = TemplateD.get(); 3864 3865 // Translate the parser's template argument list in our AST format. 3866 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 3867 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 3868 3869 // Determine the tag kind 3870 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 3871 ElaboratedTypeKeyword Keyword 3872 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 3873 3874 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 3875 assert(SS.getScopeRep() == DTN->getQualifier()); 3876 QualType T = Context.getDependentTemplateSpecializationType( 3877 Keyword, DTN->getQualifier(), DTN->getIdentifier(), 3878 TemplateArgs.arguments()); 3879 3880 // Build type-source information. 3881 TypeLocBuilder TLB; 3882 DependentTemplateSpecializationTypeLoc SpecTL 3883 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 3884 SpecTL.setElaboratedKeywordLoc(TagLoc); 3885 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3886 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3887 SpecTL.setTemplateNameLoc(TemplateLoc); 3888 SpecTL.setLAngleLoc(LAngleLoc); 3889 SpecTL.setRAngleLoc(RAngleLoc); 3890 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 3891 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 3892 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 3893 } 3894 3895 if (TypeAliasTemplateDecl *TAT = 3896 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 3897 // C++0x [dcl.type.elab]p2: 3898 // If the identifier resolves to a typedef-name or the simple-template-id 3899 // resolves to an alias template specialization, the 3900 // elaborated-type-specifier is ill-formed. 3901 Diag(TemplateLoc, diag::err_tag_reference_non_tag) 3902 << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind); 3903 Diag(TAT->getLocation(), diag::note_declared_at); 3904 } 3905 3906 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 3907 if (Result.isNull()) 3908 return TypeResult(true); 3909 3910 // Check the tag kind 3911 if (const RecordType *RT = Result->getAs<RecordType>()) { 3912 RecordDecl *D = RT->getDecl(); 3913 3914 IdentifierInfo *Id = D->getIdentifier(); 3915 assert(Id && "templated class must have an identifier"); 3916 3917 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TagUseKind::Definition, 3918 TagLoc, Id)) { 3919 Diag(TagLoc, diag::err_use_with_wrong_tag) 3920 << Result 3921 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 3922 Diag(D->getLocation(), diag::note_previous_use); 3923 } 3924 } 3925 3926 // Provide source-location information for the template specialization. 3927 TypeLocBuilder TLB; 3928 TemplateSpecializationTypeLoc SpecTL 3929 = TLB.push<TemplateSpecializationTypeLoc>(Result); 3930 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 3931 SpecTL.setTemplateNameLoc(TemplateLoc); 3932 SpecTL.setLAngleLoc(LAngleLoc); 3933 SpecTL.setRAngleLoc(RAngleLoc); 3934 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 3935 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 3936 3937 // Construct an elaborated type containing the nested-name-specifier (if any) 3938 // and tag keyword. 3939 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 3940 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 3941 ElabTL.setElaboratedKeywordLoc(TagLoc); 3942 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 3943 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 3944 } 3945 3946 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, 3947 NamedDecl *PrevDecl, 3948 SourceLocation Loc, 3949 bool IsPartialSpecialization); 3950 3951 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); 3952 3953 static bool isTemplateArgumentTemplateParameter( 3954 const TemplateArgument &Arg, unsigned Depth, unsigned Index) { 3955 switch (Arg.getKind()) { 3956 case TemplateArgument::Null: 3957 case TemplateArgument::NullPtr: 3958 case TemplateArgument::Integral: 3959 case TemplateArgument::Declaration: 3960 case TemplateArgument::StructuralValue: 3961 case TemplateArgument::Pack: 3962 case TemplateArgument::TemplateExpansion: 3963 return false; 3964 3965 case TemplateArgument::Type: { 3966 QualType Type = Arg.getAsType(); 3967 const TemplateTypeParmType *TPT = 3968 Arg.getAsType()->getAs<TemplateTypeParmType>(); 3969 return TPT && !Type.hasQualifiers() && 3970 TPT->getDepth() == Depth && TPT->getIndex() == Index; 3971 } 3972 3973 case TemplateArgument::Expression: { 3974 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); 3975 if (!DRE || !DRE->getDecl()) 3976 return false; 3977 const NonTypeTemplateParmDecl *NTTP = 3978 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 3979 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; 3980 } 3981 3982 case TemplateArgument::Template: 3983 const TemplateTemplateParmDecl *TTP = 3984 dyn_cast_or_null<TemplateTemplateParmDecl>( 3985 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); 3986 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; 3987 } 3988 llvm_unreachable("unexpected kind of template argument"); 3989 } 3990 3991 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, 3992 ArrayRef<TemplateArgument> Args) { 3993 if (Params->size() != Args.size()) 3994 return false; 3995 3996 unsigned Depth = Params->getDepth(); 3997 3998 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 3999 TemplateArgument Arg = Args[I]; 4000 4001 // If the parameter is a pack expansion, the argument must be a pack 4002 // whose only element is a pack expansion. 4003 if (Params->getParam(I)->isParameterPack()) { 4004 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || 4005 !Arg.pack_begin()->isPackExpansion()) 4006 return false; 4007 Arg = Arg.pack_begin()->getPackExpansionPattern(); 4008 } 4009 4010 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) 4011 return false; 4012 } 4013 4014 return true; 4015 } 4016 4017 template<typename PartialSpecDecl> 4018 static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { 4019 if (Partial->getDeclContext()->isDependentContext()) 4020 return; 4021 4022 // FIXME: Get the TDK from deduction in order to provide better diagnostics 4023 // for non-substitution-failure issues? 4024 TemplateDeductionInfo Info(Partial->getLocation()); 4025 if (S.isMoreSpecializedThanPrimary(Partial, Info)) 4026 return; 4027 4028 auto *Template = Partial->getSpecializedTemplate(); 4029 S.Diag(Partial->getLocation(), 4030 diag::ext_partial_spec_not_more_specialized_than_primary) 4031 << isa<VarTemplateDecl>(Template); 4032 4033 if (Info.hasSFINAEDiagnostic()) { 4034 PartialDiagnosticAt Diag = {SourceLocation(), 4035 PartialDiagnostic::NullDiagnostic()}; 4036 Info.takeSFINAEDiagnostic(Diag); 4037 SmallString<128> SFINAEArgString; 4038 Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); 4039 S.Diag(Diag.first, 4040 diag::note_partial_spec_not_more_specialized_than_primary) 4041 << SFINAEArgString; 4042 } 4043 4044 S.NoteTemplateLocation(*Template); 4045 SmallVector<const Expr *, 3> PartialAC, TemplateAC; 4046 Template->getAssociatedConstraints(TemplateAC); 4047 Partial->getAssociatedConstraints(PartialAC); 4048 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, 4049 TemplateAC); 4050 } 4051 4052 static void 4053 noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, 4054 const llvm::SmallBitVector &DeducibleParams) { 4055 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 4056 if (!DeducibleParams[I]) { 4057 NamedDecl *Param = TemplateParams->getParam(I); 4058 if (Param->getDeclName()) 4059 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4060 << Param->getDeclName(); 4061 else 4062 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) 4063 << "(anonymous)"; 4064 } 4065 } 4066 } 4067 4068 4069 template<typename PartialSpecDecl> 4070 static void checkTemplatePartialSpecialization(Sema &S, 4071 PartialSpecDecl *Partial) { 4072 // C++1z [temp.class.spec]p8: (DR1495) 4073 // - The specialization shall be more specialized than the primary 4074 // template (14.5.5.2). 4075 checkMoreSpecializedThanPrimary(S, Partial); 4076 4077 // C++ [temp.class.spec]p8: (DR1315) 4078 // - Each template-parameter shall appear at least once in the 4079 // template-id outside a non-deduced context. 4080 // C++1z [temp.class.spec.match]p3 (P0127R2) 4081 // If the template arguments of a partial specialization cannot be 4082 // deduced because of the structure of its template-parameter-list 4083 // and the template-id, the program is ill-formed. 4084 auto *TemplateParams = Partial->getTemplateParameters(); 4085 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4086 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 4087 TemplateParams->getDepth(), DeducibleParams); 4088 4089 if (!DeducibleParams.all()) { 4090 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4091 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) 4092 << isa<VarTemplatePartialSpecializationDecl>(Partial) 4093 << (NumNonDeducible > 1) 4094 << SourceRange(Partial->getLocation(), 4095 Partial->getTemplateArgsAsWritten()->RAngleLoc); 4096 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); 4097 } 4098 } 4099 4100 void Sema::CheckTemplatePartialSpecialization( 4101 ClassTemplatePartialSpecializationDecl *Partial) { 4102 checkTemplatePartialSpecialization(*this, Partial); 4103 } 4104 4105 void Sema::CheckTemplatePartialSpecialization( 4106 VarTemplatePartialSpecializationDecl *Partial) { 4107 checkTemplatePartialSpecialization(*this, Partial); 4108 } 4109 4110 void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { 4111 // C++1z [temp.param]p11: 4112 // A template parameter of a deduction guide template that does not have a 4113 // default-argument shall be deducible from the parameter-type-list of the 4114 // deduction guide template. 4115 auto *TemplateParams = TD->getTemplateParameters(); 4116 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 4117 MarkDeducedTemplateParameters(TD, DeducibleParams); 4118 for (unsigned I = 0; I != TemplateParams->size(); ++I) { 4119 // A parameter pack is deducible (to an empty pack). 4120 auto *Param = TemplateParams->getParam(I); 4121 if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) 4122 DeducibleParams[I] = true; 4123 } 4124 4125 if (!DeducibleParams.all()) { 4126 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); 4127 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) 4128 << (NumNonDeducible > 1); 4129 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); 4130 } 4131 } 4132 4133 DeclResult Sema::ActOnVarTemplateSpecialization( 4134 Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous, 4135 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, 4136 StorageClass SC, bool IsPartialSpecialization) { 4137 // D must be variable template id. 4138 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && 4139 "Variable template specialization is declared with a template id."); 4140 4141 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 4142 TemplateArgumentListInfo TemplateArgs = 4143 makeTemplateArgumentListInfo(*this, *TemplateId); 4144 SourceLocation TemplateNameLoc = D.getIdentifierLoc(); 4145 SourceLocation LAngleLoc = TemplateId->LAngleLoc; 4146 SourceLocation RAngleLoc = TemplateId->RAngleLoc; 4147 4148 TemplateName Name = TemplateId->Template.get(); 4149 4150 // The template-id must name a variable template. 4151 VarTemplateDecl *VarTemplate = 4152 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); 4153 if (!VarTemplate) { 4154 NamedDecl *FnTemplate; 4155 if (auto *OTS = Name.getAsOverloadedTemplate()) 4156 FnTemplate = *OTS->begin(); 4157 else 4158 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4159 if (FnTemplate) 4160 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) 4161 << FnTemplate->getDeclName(); 4162 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) 4163 << IsPartialSpecialization; 4164 } 4165 4166 // Check for unexpanded parameter packs in any of the template arguments. 4167 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 4168 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 4169 IsPartialSpecialization 4170 ? UPPC_PartialSpecialization 4171 : UPPC_ExplicitSpecialization)) 4172 return true; 4173 4174 // Check that the template argument list is well-formed for this 4175 // template. 4176 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4177 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, 4178 /*DefaultArgs=*/{}, false, SugaredConverted, 4179 CanonicalConverted, 4180 /*UpdateArgsWithConversions=*/true)) 4181 return true; 4182 4183 // Find the variable template (partial) specialization declaration that 4184 // corresponds to these arguments. 4185 if (IsPartialSpecialization) { 4186 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, 4187 TemplateArgs.size(), 4188 CanonicalConverted)) 4189 return true; 4190 4191 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we 4192 // also do them during instantiation. 4193 if (!Name.isDependent() && 4194 !TemplateSpecializationType::anyDependentTemplateArguments( 4195 TemplateArgs, CanonicalConverted)) { 4196 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 4197 << VarTemplate->getDeclName(); 4198 IsPartialSpecialization = false; 4199 } 4200 4201 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), 4202 CanonicalConverted) && 4203 (!Context.getLangOpts().CPlusPlus20 || 4204 !TemplateParams->hasAssociatedConstraints())) { 4205 // C++ [temp.class.spec]p9b3: 4206 // 4207 // -- The argument list of the specialization shall not be identical 4208 // to the implicit argument list of the primary template. 4209 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 4210 << /*variable template*/ 1 4211 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) 4212 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 4213 // FIXME: Recover from this by treating the declaration as a redeclaration 4214 // of the primary template. 4215 return true; 4216 } 4217 } 4218 4219 void *InsertPos = nullptr; 4220 VarTemplateSpecializationDecl *PrevDecl = nullptr; 4221 4222 if (IsPartialSpecialization) 4223 PrevDecl = VarTemplate->findPartialSpecialization( 4224 CanonicalConverted, TemplateParams, InsertPos); 4225 else 4226 PrevDecl = VarTemplate->findSpecialization(CanonicalConverted, InsertPos); 4227 4228 VarTemplateSpecializationDecl *Specialization = nullptr; 4229 4230 // Check whether we can declare a variable template specialization in 4231 // the current scope. 4232 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, 4233 TemplateNameLoc, 4234 IsPartialSpecialization)) 4235 return true; 4236 4237 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { 4238 // Since the only prior variable template specialization with these 4239 // arguments was referenced but not declared, reuse that 4240 // declaration node as our own, updating its source location and 4241 // the list of outer template parameters to reflect our new declaration. 4242 Specialization = PrevDecl; 4243 Specialization->setLocation(TemplateNameLoc); 4244 PrevDecl = nullptr; 4245 } else if (IsPartialSpecialization) { 4246 // Create a new class template partial specialization declaration node. 4247 VarTemplatePartialSpecializationDecl *PrevPartial = 4248 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); 4249 VarTemplatePartialSpecializationDecl *Partial = 4250 VarTemplatePartialSpecializationDecl::Create( 4251 Context, VarTemplate->getDeclContext(), TemplateKWLoc, 4252 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, 4253 CanonicalConverted); 4254 Partial->setTemplateArgsAsWritten(TemplateArgs); 4255 4256 if (!PrevPartial) 4257 VarTemplate->AddPartialSpecialization(Partial, InsertPos); 4258 Specialization = Partial; 4259 4260 // If we are providing an explicit specialization of a member variable 4261 // template specialization, make a note of that. 4262 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 4263 PrevPartial->setMemberSpecialization(); 4264 4265 CheckTemplatePartialSpecialization(Partial); 4266 } else { 4267 // Create a new class template specialization declaration node for 4268 // this explicit specialization or friend declaration. 4269 Specialization = VarTemplateSpecializationDecl::Create( 4270 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, 4271 VarTemplate, DI->getType(), DI, SC, CanonicalConverted); 4272 Specialization->setTemplateArgsAsWritten(TemplateArgs); 4273 4274 if (!PrevDecl) 4275 VarTemplate->AddSpecialization(Specialization, InsertPos); 4276 } 4277 4278 // C++ [temp.expl.spec]p6: 4279 // If a template, a member template or the member of a class template is 4280 // explicitly specialized then that specialization shall be declared 4281 // before the first use of that specialization that would cause an implicit 4282 // instantiation to take place, in every translation unit in which such a 4283 // use occurs; no diagnostic is required. 4284 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 4285 bool Okay = false; 4286 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 4287 // Is there any previous explicit specialization declaration? 4288 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 4289 Okay = true; 4290 break; 4291 } 4292 } 4293 4294 if (!Okay) { 4295 SourceRange Range(TemplateNameLoc, RAngleLoc); 4296 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 4297 << Name << Range; 4298 4299 Diag(PrevDecl->getPointOfInstantiation(), 4300 diag::note_instantiation_required_here) 4301 << (PrevDecl->getTemplateSpecializationKind() != 4302 TSK_ImplicitInstantiation); 4303 return true; 4304 } 4305 } 4306 4307 Specialization->setLexicalDeclContext(CurContext); 4308 4309 // Add the specialization into its lexical context, so that it can 4310 // be seen when iterating through the list of declarations in that 4311 // context. However, specializations are not found by name lookup. 4312 CurContext->addDecl(Specialization); 4313 4314 // Note that this is an explicit specialization. 4315 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 4316 4317 Previous.clear(); 4318 if (PrevDecl) 4319 Previous.addDecl(PrevDecl); 4320 else if (Specialization->isStaticDataMember() && 4321 Specialization->isOutOfLine()) 4322 Specialization->setAccess(VarTemplate->getAccess()); 4323 4324 return Specialization; 4325 } 4326 4327 namespace { 4328 /// A partial specialization whose template arguments have matched 4329 /// a given template-id. 4330 struct PartialSpecMatchResult { 4331 VarTemplatePartialSpecializationDecl *Partial; 4332 TemplateArgumentList *Args; 4333 }; 4334 } // end anonymous namespace 4335 4336 DeclResult 4337 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, 4338 SourceLocation TemplateNameLoc, 4339 const TemplateArgumentListInfo &TemplateArgs) { 4340 assert(Template && "A variable template id without template?"); 4341 4342 // Check that the template argument list is well-formed for this template. 4343 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4344 if (CheckTemplateArgumentList( 4345 Template, TemplateNameLoc, 4346 const_cast<TemplateArgumentListInfo &>(TemplateArgs), 4347 /*DefaultArgs=*/{}, false, SugaredConverted, CanonicalConverted, 4348 /*UpdateArgsWithConversions=*/true)) 4349 return true; 4350 4351 // Produce a placeholder value if the specialization is dependent. 4352 if (Template->getDeclContext()->isDependentContext() || 4353 TemplateSpecializationType::anyDependentTemplateArguments( 4354 TemplateArgs, CanonicalConverted)) 4355 return DeclResult(); 4356 4357 // Find the variable template specialization declaration that 4358 // corresponds to these arguments. 4359 void *InsertPos = nullptr; 4360 if (VarTemplateSpecializationDecl *Spec = 4361 Template->findSpecialization(CanonicalConverted, InsertPos)) { 4362 checkSpecializationReachability(TemplateNameLoc, Spec); 4363 // If we already have a variable template specialization, return it. 4364 return Spec; 4365 } 4366 4367 // This is the first time we have referenced this variable template 4368 // specialization. Create the canonical declaration and add it to 4369 // the set of specializations, based on the closest partial specialization 4370 // that it represents. That is, 4371 VarDecl *InstantiationPattern = Template->getTemplatedDecl(); 4372 const TemplateArgumentList *PartialSpecArgs = nullptr; 4373 bool AmbiguousPartialSpec = false; 4374 typedef PartialSpecMatchResult MatchResult; 4375 SmallVector<MatchResult, 4> Matched; 4376 SourceLocation PointOfInstantiation = TemplateNameLoc; 4377 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, 4378 /*ForTakingAddress=*/false); 4379 4380 // 1. Attempt to find the closest partial specialization that this 4381 // specializes, if any. 4382 // TODO: Unify with InstantiateClassTemplateSpecialization()? 4383 // Perhaps better after unification of DeduceTemplateArguments() and 4384 // getMoreSpecializedPartialSpecialization(). 4385 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; 4386 Template->getPartialSpecializations(PartialSpecs); 4387 4388 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { 4389 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; 4390 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 4391 4392 if (TemplateDeductionResult Result = 4393 DeduceTemplateArguments(Partial, SugaredConverted, Info); 4394 Result != TemplateDeductionResult::Success) { 4395 // Store the failed-deduction information for use in diagnostics, later. 4396 // TODO: Actually use the failed-deduction info? 4397 FailedCandidates.addCandidate().set( 4398 DeclAccessPair::make(Template, AS_public), Partial, 4399 MakeDeductionFailureInfo(Context, Result, Info)); 4400 (void)Result; 4401 } else { 4402 Matched.push_back(PartialSpecMatchResult()); 4403 Matched.back().Partial = Partial; 4404 Matched.back().Args = Info.takeSugared(); 4405 } 4406 } 4407 4408 if (Matched.size() >= 1) { 4409 SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); 4410 if (Matched.size() == 1) { 4411 // -- If exactly one matching specialization is found, the 4412 // instantiation is generated from that specialization. 4413 // We don't need to do anything for this. 4414 } else { 4415 // -- If more than one matching specialization is found, the 4416 // partial order rules (14.5.4.2) are used to determine 4417 // whether one of the specializations is more specialized 4418 // than the others. If none of the specializations is more 4419 // specialized than all of the other matching 4420 // specializations, then the use of the variable template is 4421 // ambiguous and the program is ill-formed. 4422 for (SmallVector<MatchResult, 4>::iterator P = Best + 1, 4423 PEnd = Matched.end(); 4424 P != PEnd; ++P) { 4425 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, 4426 PointOfInstantiation) == 4427 P->Partial) 4428 Best = P; 4429 } 4430 4431 // Determine if the best partial specialization is more specialized than 4432 // the others. 4433 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), 4434 PEnd = Matched.end(); 4435 P != PEnd; ++P) { 4436 if (P != Best && getMoreSpecializedPartialSpecialization( 4437 P->Partial, Best->Partial, 4438 PointOfInstantiation) != Best->Partial) { 4439 AmbiguousPartialSpec = true; 4440 break; 4441 } 4442 } 4443 } 4444 4445 // Instantiate using the best variable template partial specialization. 4446 InstantiationPattern = Best->Partial; 4447 PartialSpecArgs = Best->Args; 4448 } else { 4449 // -- If no match is found, the instantiation is generated 4450 // from the primary template. 4451 // InstantiationPattern = Template->getTemplatedDecl(); 4452 } 4453 4454 // 2. Create the canonical declaration. 4455 // Note that we do not instantiate a definition until we see an odr-use 4456 // in DoMarkVarDeclReferenced(). 4457 // FIXME: LateAttrs et al.? 4458 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( 4459 Template, InstantiationPattern, PartialSpecArgs, TemplateArgs, 4460 CanonicalConverted, TemplateNameLoc /*, LateAttrs, StartingScope*/); 4461 if (!Decl) 4462 return true; 4463 4464 if (AmbiguousPartialSpec) { 4465 // Partial ordering did not produce a clear winner. Complain. 4466 Decl->setInvalidDecl(); 4467 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) 4468 << Decl; 4469 4470 // Print the matching partial specializations. 4471 for (MatchResult P : Matched) 4472 Diag(P.Partial->getLocation(), diag::note_partial_spec_match) 4473 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), 4474 *P.Args); 4475 return true; 4476 } 4477 4478 if (VarTemplatePartialSpecializationDecl *D = 4479 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) 4480 Decl->setInstantiationOf(D, PartialSpecArgs); 4481 4482 checkSpecializationReachability(TemplateNameLoc, Decl); 4483 4484 assert(Decl && "No variable template specialization?"); 4485 return Decl; 4486 } 4487 4488 ExprResult Sema::CheckVarTemplateId( 4489 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, 4490 VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc, 4491 const TemplateArgumentListInfo *TemplateArgs) { 4492 4493 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), 4494 *TemplateArgs); 4495 if (Decl.isInvalid()) 4496 return ExprError(); 4497 4498 if (!Decl.get()) 4499 return ExprResult(); 4500 4501 VarDecl *Var = cast<VarDecl>(Decl.get()); 4502 if (!Var->getTemplateSpecializationKind()) 4503 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, 4504 NameInfo.getLoc()); 4505 4506 // Build an ordinary singleton decl ref. 4507 return BuildDeclarationNameExpr(SS, NameInfo, Var, FoundD, TemplateArgs); 4508 } 4509 4510 void Sema::diagnoseMissingTemplateArguments(TemplateName Name, 4511 SourceLocation Loc) { 4512 Diag(Loc, diag::err_template_missing_args) 4513 << (int)getTemplateNameKindForDiagnostics(Name) << Name; 4514 if (TemplateDecl *TD = Name.getAsTemplateDecl()) { 4515 NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange()); 4516 } 4517 } 4518 4519 void Sema::diagnoseMissingTemplateArguments(const CXXScopeSpec &SS, 4520 bool TemplateKeyword, 4521 TemplateDecl *TD, 4522 SourceLocation Loc) { 4523 TemplateName Name = Context.getQualifiedTemplateName( 4524 SS.getScopeRep(), TemplateKeyword, TemplateName(TD)); 4525 diagnoseMissingTemplateArguments(Name, Loc); 4526 } 4527 4528 ExprResult 4529 Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, 4530 SourceLocation TemplateKWLoc, 4531 const DeclarationNameInfo &ConceptNameInfo, 4532 NamedDecl *FoundDecl, 4533 ConceptDecl *NamedConcept, 4534 const TemplateArgumentListInfo *TemplateArgs) { 4535 assert(NamedConcept && "A concept template id without a template?"); 4536 4537 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 4538 if (CheckTemplateArgumentList( 4539 NamedConcept, ConceptNameInfo.getLoc(), 4540 const_cast<TemplateArgumentListInfo &>(*TemplateArgs), 4541 /*DefaultArgs=*/{}, 4542 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted, 4543 /*UpdateArgsWithConversions=*/false)) 4544 return ExprError(); 4545 4546 DiagnoseUseOfDecl(NamedConcept, ConceptNameInfo.getLoc()); 4547 4548 auto *CSD = ImplicitConceptSpecializationDecl::Create( 4549 Context, NamedConcept->getDeclContext(), NamedConcept->getLocation(), 4550 CanonicalConverted); 4551 ConstraintSatisfaction Satisfaction; 4552 bool AreArgsDependent = 4553 TemplateSpecializationType::anyDependentTemplateArguments( 4554 *TemplateArgs, CanonicalConverted); 4555 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted, 4556 /*Final=*/false); 4557 LocalInstantiationScope Scope(*this); 4558 4559 EnterExpressionEvaluationContext EECtx{ 4560 *this, ExpressionEvaluationContext::Unevaluated, CSD}; 4561 4562 if (!AreArgsDependent && 4563 CheckConstraintSatisfaction( 4564 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL, 4565 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), 4566 TemplateArgs->getRAngleLoc()), 4567 Satisfaction)) 4568 return ExprError(); 4569 auto *CL = ConceptReference::Create( 4570 Context, 4571 SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, 4572 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, 4573 ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs)); 4574 return ConceptSpecializationExpr::Create( 4575 Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction); 4576 } 4577 4578 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 4579 SourceLocation TemplateKWLoc, 4580 LookupResult &R, 4581 bool RequiresADL, 4582 const TemplateArgumentListInfo *TemplateArgs) { 4583 // FIXME: Can we do any checking at this point? I guess we could check the 4584 // template arguments that we have against the template name, if the template 4585 // name refers to a single template. That's not a terribly common case, 4586 // though. 4587 // foo<int> could identify a single function unambiguously 4588 // This approach does NOT work, since f<int>(1); 4589 // gets resolved prior to resorting to overload resolution 4590 // i.e., template<class T> void f(double); 4591 // vs template<class T, class U> void f(U); 4592 4593 // These should be filtered out by our callers. 4594 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 4595 4596 // Non-function templates require a template argument list. 4597 if (auto *TD = R.getAsSingle<TemplateDecl>()) { 4598 if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { 4599 diagnoseMissingTemplateArguments( 4600 SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), TD, R.getNameLoc()); 4601 return ExprError(); 4602 } 4603 } 4604 bool KnownDependent = false; 4605 // In C++1y, check variable template ids. 4606 if (R.getAsSingle<VarTemplateDecl>()) { 4607 ExprResult Res = CheckVarTemplateId( 4608 SS, R.getLookupNameInfo(), R.getAsSingle<VarTemplateDecl>(), 4609 R.getRepresentativeDecl(), TemplateKWLoc, TemplateArgs); 4610 if (Res.isInvalid() || Res.isUsable()) 4611 return Res; 4612 // Result is dependent. Carry on to build an UnresolvedLookupExpr. 4613 KnownDependent = true; 4614 } 4615 4616 if (R.getAsSingle<ConceptDecl>()) { 4617 return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), 4618 R.getRepresentativeDecl(), 4619 R.getAsSingle<ConceptDecl>(), TemplateArgs); 4620 } 4621 4622 // We don't want lookup warnings at this point. 4623 R.suppressDiagnostics(); 4624 4625 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create( 4626 Context, R.getNamingClass(), SS.getWithLocInContext(Context), 4627 TemplateKWLoc, R.getLookupNameInfo(), RequiresADL, TemplateArgs, 4628 R.begin(), R.end(), KnownDependent, 4629 /*KnownInstantiationDependent=*/false); 4630 4631 // Model the templates with UnresolvedTemplateTy. The expression should then 4632 // either be transformed in an instantiation or be diagnosed in 4633 // CheckPlaceholderExpr. 4634 if (ULE->getType() == Context.OverloadTy && R.isSingleResult() && 4635 !R.getFoundDecl()->getAsFunction()) 4636 ULE->setType(Context.UnresolvedTemplateTy); 4637 4638 return ULE; 4639 } 4640 4641 ExprResult Sema::BuildQualifiedTemplateIdExpr( 4642 CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 4643 const DeclarationNameInfo &NameInfo, 4644 const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) { 4645 assert(TemplateArgs || TemplateKWLoc.isValid()); 4646 4647 LookupResult R(*this, NameInfo, LookupOrdinaryName); 4648 if (LookupTemplateName(R, /*S=*/nullptr, SS, /*ObjectType=*/QualType(), 4649 /*EnteringContext=*/false, TemplateKWLoc)) 4650 return ExprError(); 4651 4652 if (R.isAmbiguous()) 4653 return ExprError(); 4654 4655 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid()) 4656 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 4657 4658 if (R.empty()) { 4659 DeclContext *DC = computeDeclContext(SS); 4660 Diag(NameInfo.getLoc(), diag::err_no_member) 4661 << NameInfo.getName() << DC << SS.getRange(); 4662 return ExprError(); 4663 } 4664 4665 // If necessary, build an implicit class member access. 4666 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand)) 4667 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, 4668 /*S=*/nullptr); 4669 4670 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL=*/false, TemplateArgs); 4671 } 4672 4673 TemplateNameKind Sema::ActOnTemplateName(Scope *S, 4674 CXXScopeSpec &SS, 4675 SourceLocation TemplateKWLoc, 4676 const UnqualifiedId &Name, 4677 ParsedType ObjectType, 4678 bool EnteringContext, 4679 TemplateTy &Result, 4680 bool AllowInjectedClassName) { 4681 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 4682 Diag(TemplateKWLoc, 4683 getLangOpts().CPlusPlus11 ? 4684 diag::warn_cxx98_compat_template_outside_of_template : 4685 diag::ext_template_outside_of_template) 4686 << FixItHint::CreateRemoval(TemplateKWLoc); 4687 4688 if (SS.isInvalid()) 4689 return TNK_Non_template; 4690 4691 // Figure out where isTemplateName is going to look. 4692 DeclContext *LookupCtx = nullptr; 4693 if (SS.isNotEmpty()) 4694 LookupCtx = computeDeclContext(SS, EnteringContext); 4695 else if (ObjectType) 4696 LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); 4697 4698 // C++0x [temp.names]p5: 4699 // If a name prefixed by the keyword template is not the name of 4700 // a template, the program is ill-formed. [Note: the keyword 4701 // template may not be applied to non-template members of class 4702 // templates. -end note ] [ Note: as is the case with the 4703 // typename prefix, the template prefix is allowed in cases 4704 // where it is not strictly necessary; i.e., when the 4705 // nested-name-specifier or the expression on the left of the -> 4706 // or . is not dependent on a template-parameter, or the use 4707 // does not appear in the scope of a template. -end note] 4708 // 4709 // Note: C++03 was more strict here, because it banned the use of 4710 // the "template" keyword prior to a template-name that was not a 4711 // dependent name. C++ DR468 relaxed this requirement (the 4712 // "template" keyword is now permitted). We follow the C++0x 4713 // rules, even in C++03 mode with a warning, retroactively applying the DR. 4714 bool MemberOfUnknownSpecialization; 4715 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 4716 ObjectType, EnteringContext, Result, 4717 MemberOfUnknownSpecialization); 4718 if (TNK != TNK_Non_template) { 4719 // We resolved this to a (non-dependent) template name. Return it. 4720 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 4721 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && 4722 Name.getKind() == UnqualifiedIdKind::IK_Identifier && 4723 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { 4724 // C++14 [class.qual]p2: 4725 // In a lookup in which function names are not ignored and the 4726 // nested-name-specifier nominates a class C, if the name specified 4727 // [...] is the injected-class-name of C, [...] the name is instead 4728 // considered to name the constructor 4729 // 4730 // We don't get here if naming the constructor would be valid, so we 4731 // just reject immediately and recover by treating the 4732 // injected-class-name as naming the template. 4733 Diag(Name.getBeginLoc(), 4734 diag::ext_out_of_line_qualified_id_type_names_constructor) 4735 << Name.Identifier 4736 << 0 /*injected-class-name used as template name*/ 4737 << TemplateKWLoc.isValid(); 4738 } 4739 return TNK; 4740 } 4741 4742 if (!MemberOfUnknownSpecialization) { 4743 // Didn't find a template name, and the lookup wasn't dependent. 4744 // Do the lookup again to determine if this is a "nothing found" case or 4745 // a "not a template" case. FIXME: Refactor isTemplateName so we don't 4746 // need to do this. 4747 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); 4748 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), 4749 LookupOrdinaryName); 4750 // Tell LookupTemplateName that we require a template so that it diagnoses 4751 // cases where it finds a non-template. 4752 RequiredTemplateKind RTK = TemplateKWLoc.isValid() 4753 ? RequiredTemplateKind(TemplateKWLoc) 4754 : TemplateNameIsRequired; 4755 if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, RTK, 4756 /*ATK=*/nullptr, /*AllowTypoCorrection=*/false) && 4757 !R.isAmbiguous()) { 4758 if (LookupCtx) 4759 Diag(Name.getBeginLoc(), diag::err_no_member) 4760 << DNI.getName() << LookupCtx << SS.getRange(); 4761 else 4762 Diag(Name.getBeginLoc(), diag::err_undeclared_use) 4763 << DNI.getName() << SS.getRange(); 4764 } 4765 return TNK_Non_template; 4766 } 4767 4768 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 4769 4770 switch (Name.getKind()) { 4771 case UnqualifiedIdKind::IK_Identifier: 4772 Result = TemplateTy::make( 4773 Context.getDependentTemplateName(Qualifier, Name.Identifier)); 4774 return TNK_Dependent_template_name; 4775 4776 case UnqualifiedIdKind::IK_OperatorFunctionId: 4777 Result = TemplateTy::make(Context.getDependentTemplateName( 4778 Qualifier, Name.OperatorFunctionId.Operator)); 4779 return TNK_Function_template; 4780 4781 case UnqualifiedIdKind::IK_LiteralOperatorId: 4782 // This is a kind of template name, but can never occur in a dependent 4783 // scope (literal operators can only be declared at namespace scope). 4784 break; 4785 4786 default: 4787 break; 4788 } 4789 4790 // This name cannot possibly name a dependent template. Diagnose this now 4791 // rather than building a dependent template name that can never be valid. 4792 Diag(Name.getBeginLoc(), 4793 diag::err_template_kw_refers_to_dependent_non_template) 4794 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() 4795 << TemplateKWLoc.isValid() << TemplateKWLoc; 4796 return TNK_Non_template; 4797 } 4798 4799 bool Sema::CheckTemplateTypeArgument( 4800 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, 4801 SmallVectorImpl<TemplateArgument> &SugaredConverted, 4802 SmallVectorImpl<TemplateArgument> &CanonicalConverted) { 4803 const TemplateArgument &Arg = AL.getArgument(); 4804 QualType ArgType; 4805 TypeSourceInfo *TSI = nullptr; 4806 4807 // Check template type parameter. 4808 switch(Arg.getKind()) { 4809 case TemplateArgument::Type: 4810 // C++ [temp.arg.type]p1: 4811 // A template-argument for a template-parameter which is a 4812 // type shall be a type-id. 4813 ArgType = Arg.getAsType(); 4814 TSI = AL.getTypeSourceInfo(); 4815 break; 4816 case TemplateArgument::Template: 4817 case TemplateArgument::TemplateExpansion: { 4818 // We have a template type parameter but the template argument 4819 // is a template without any arguments. 4820 SourceRange SR = AL.getSourceRange(); 4821 TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); 4822 diagnoseMissingTemplateArguments(Name, SR.getEnd()); 4823 return true; 4824 } 4825 case TemplateArgument::Expression: { 4826 // We have a template type parameter but the template argument is an 4827 // expression; see if maybe it is missing the "typename" keyword. 4828 CXXScopeSpec SS; 4829 DeclarationNameInfo NameInfo; 4830 4831 if (DependentScopeDeclRefExpr *ArgExpr = 4832 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 4833 SS.Adopt(ArgExpr->getQualifierLoc()); 4834 NameInfo = ArgExpr->getNameInfo(); 4835 } else if (CXXDependentScopeMemberExpr *ArgExpr = 4836 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 4837 if (ArgExpr->isImplicitAccess()) { 4838 SS.Adopt(ArgExpr->getQualifierLoc()); 4839 NameInfo = ArgExpr->getMemberNameInfo(); 4840 } 4841 } 4842 4843 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { 4844 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 4845 LookupParsedName(Result, CurScope, &SS, /*ObjectType=*/QualType()); 4846 4847 if (Result.getAsSingle<TypeDecl>() || 4848 Result.wasNotFoundInCurrentInstantiation()) { 4849 assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); 4850 // Suggest that the user add 'typename' before the NNS. 4851 SourceLocation Loc = AL.getSourceRange().getBegin(); 4852 Diag(Loc, getLangOpts().MSVCCompat 4853 ? diag::ext_ms_template_type_arg_missing_typename 4854 : diag::err_template_arg_must_be_type_suggest) 4855 << FixItHint::CreateInsertion(Loc, "typename "); 4856 NoteTemplateParameterLocation(*Param); 4857 4858 // Recover by synthesizing a type using the location information that we 4859 // already have. 4860 ArgType = Context.getDependentNameType(ElaboratedTypeKeyword::Typename, 4861 SS.getScopeRep(), II); 4862 TypeLocBuilder TLB; 4863 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); 4864 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); 4865 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 4866 TL.setNameLoc(NameInfo.getLoc()); 4867 TSI = TLB.getTypeSourceInfo(Context, ArgType); 4868 4869 // Overwrite our input TemplateArgumentLoc so that we can recover 4870 // properly. 4871 AL = TemplateArgumentLoc(TemplateArgument(ArgType), 4872 TemplateArgumentLocInfo(TSI)); 4873 4874 break; 4875 } 4876 } 4877 // fallthrough 4878 [[fallthrough]]; 4879 } 4880 default: { 4881 // We allow instantiateing a template with template argument packs when 4882 // building deduction guides. 4883 if (Arg.getKind() == TemplateArgument::Pack && 4884 CodeSynthesisContexts.back().Kind == 4885 Sema::CodeSynthesisContext::BuildingDeductionGuides) { 4886 SugaredConverted.push_back(Arg); 4887 CanonicalConverted.push_back(Arg); 4888 return false; 4889 } 4890 // We have a template type parameter but the template argument 4891 // is not a type. 4892 SourceRange SR = AL.getSourceRange(); 4893 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 4894 NoteTemplateParameterLocation(*Param); 4895 4896 return true; 4897 } 4898 } 4899 4900 if (CheckTemplateArgument(TSI)) 4901 return true; 4902 4903 // Objective-C ARC: 4904 // If an explicitly-specified template argument type is a lifetime type 4905 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 4906 if (getLangOpts().ObjCAutoRefCount && 4907 ArgType->isObjCLifetimeType() && 4908 !ArgType.getObjCLifetime()) { 4909 Qualifiers Qs; 4910 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 4911 ArgType = Context.getQualifiedType(ArgType, Qs); 4912 } 4913 4914 SugaredConverted.push_back(TemplateArgument(ArgType)); 4915 CanonicalConverted.push_back( 4916 TemplateArgument(Context.getCanonicalType(ArgType))); 4917 return false; 4918 } 4919 4920 /// Substitute template arguments into the default template argument for 4921 /// the given template type parameter. 4922 /// 4923 /// \param SemaRef the semantic analysis object for which we are performing 4924 /// the substitution. 4925 /// 4926 /// \param Template the template that we are synthesizing template arguments 4927 /// for. 4928 /// 4929 /// \param TemplateLoc the location of the template name that started the 4930 /// template-id we are checking. 4931 /// 4932 /// \param RAngleLoc the location of the right angle bracket ('>') that 4933 /// terminates the template-id. 4934 /// 4935 /// \param Param the template template parameter whose default we are 4936 /// substituting into. 4937 /// 4938 /// \param Converted the list of template arguments provided for template 4939 /// parameters that precede \p Param in the template parameter list. 4940 /// 4941 /// \param Output the resulting substituted template argument. 4942 /// 4943 /// \returns true if an error occurred. 4944 static bool SubstDefaultTemplateArgument( 4945 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 4946 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, 4947 ArrayRef<TemplateArgument> SugaredConverted, 4948 ArrayRef<TemplateArgument> CanonicalConverted, 4949 TemplateArgumentLoc &Output) { 4950 Output = Param->getDefaultArgument(); 4951 4952 // If the argument type is dependent, instantiate it now based 4953 // on the previously-computed template arguments. 4954 if (Output.getArgument().isInstantiationDependent()) { 4955 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 4956 SugaredConverted, 4957 SourceRange(TemplateLoc, RAngleLoc)); 4958 if (Inst.isInvalid()) 4959 return true; 4960 4961 // Only substitute for the innermost template argument list. 4962 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 4963 /*Final=*/true); 4964 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 4965 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 4966 4967 bool ForLambdaCallOperator = false; 4968 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) 4969 ForLambdaCallOperator = Rec->isLambda(); 4970 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), 4971 !ForLambdaCallOperator); 4972 4973 if (SemaRef.SubstTemplateArgument(Output, TemplateArgLists, Output, 4974 Param->getDefaultArgumentLoc(), 4975 Param->getDeclName())) 4976 return true; 4977 } 4978 4979 return false; 4980 } 4981 4982 /// Substitute template arguments into the default template argument for 4983 /// the given non-type template parameter. 4984 /// 4985 /// \param SemaRef the semantic analysis object for which we are performing 4986 /// the substitution. 4987 /// 4988 /// \param Template the template that we are synthesizing template arguments 4989 /// for. 4990 /// 4991 /// \param TemplateLoc the location of the template name that started the 4992 /// template-id we are checking. 4993 /// 4994 /// \param RAngleLoc the location of the right angle bracket ('>') that 4995 /// terminates the template-id. 4996 /// 4997 /// \param Param the non-type template parameter whose default we are 4998 /// substituting into. 4999 /// 5000 /// \param Converted the list of template arguments provided for template 5001 /// parameters that precede \p Param in the template parameter list. 5002 /// 5003 /// \returns the substituted template argument, or NULL if an error occurred. 5004 static bool SubstDefaultTemplateArgument( 5005 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5006 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, 5007 ArrayRef<TemplateArgument> SugaredConverted, 5008 ArrayRef<TemplateArgument> CanonicalConverted, 5009 TemplateArgumentLoc &Output) { 5010 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, 5011 SugaredConverted, 5012 SourceRange(TemplateLoc, RAngleLoc)); 5013 if (Inst.isInvalid()) 5014 return true; 5015 5016 // Only substitute for the innermost template argument list. 5017 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5018 /*Final=*/true); 5019 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5020 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5021 5022 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5023 EnterExpressionEvaluationContext ConstantEvaluated( 5024 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); 5025 return SemaRef.SubstTemplateArgument(Param->getDefaultArgument(), 5026 TemplateArgLists, Output); 5027 } 5028 5029 /// Substitute template arguments into the default template argument for 5030 /// the given template template parameter. 5031 /// 5032 /// \param SemaRef the semantic analysis object for which we are performing 5033 /// the substitution. 5034 /// 5035 /// \param Template the template that we are synthesizing template arguments 5036 /// for. 5037 /// 5038 /// \param TemplateLoc the location of the template name that started the 5039 /// template-id we are checking. 5040 /// 5041 /// \param RAngleLoc the location of the right angle bracket ('>') that 5042 /// terminates the template-id. 5043 /// 5044 /// \param Param the template template parameter whose default we are 5045 /// substituting into. 5046 /// 5047 /// \param Converted the list of template arguments provided for template 5048 /// parameters that precede \p Param in the template parameter list. 5049 /// 5050 /// \param QualifierLoc Will be set to the nested-name-specifier (with 5051 /// source-location information) that precedes the template name. 5052 /// 5053 /// \returns the substituted template argument, or NULL if an error occurred. 5054 static TemplateName SubstDefaultTemplateArgument( 5055 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, 5056 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, 5057 ArrayRef<TemplateArgument> SugaredConverted, 5058 ArrayRef<TemplateArgument> CanonicalConverted, 5059 NestedNameSpecifierLoc &QualifierLoc) { 5060 Sema::InstantiatingTemplate Inst( 5061 SemaRef, TemplateLoc, TemplateParameter(Param), Template, 5062 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); 5063 if (Inst.isInvalid()) 5064 return TemplateName(); 5065 5066 // Only substitute for the innermost template argument list. 5067 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, 5068 /*Final=*/true); 5069 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) 5070 TemplateArgLists.addOuterTemplateArguments(std::nullopt); 5071 5072 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 5073 // Substitute into the nested-name-specifier first, 5074 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 5075 if (QualifierLoc) { 5076 QualifierLoc = 5077 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); 5078 if (!QualifierLoc) 5079 return TemplateName(); 5080 } 5081 5082 return SemaRef.SubstTemplateName( 5083 QualifierLoc, 5084 Param->getDefaultArgument().getArgument().getAsTemplate(), 5085 Param->getDefaultArgument().getTemplateNameLoc(), 5086 TemplateArgLists); 5087 } 5088 5089 TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( 5090 TemplateDecl *Template, SourceLocation TemplateLoc, 5091 SourceLocation RAngleLoc, Decl *Param, 5092 ArrayRef<TemplateArgument> SugaredConverted, 5093 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { 5094 HasDefaultArg = false; 5095 5096 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 5097 if (!hasReachableDefaultArgument(TypeParm)) 5098 return TemplateArgumentLoc(); 5099 5100 HasDefaultArg = true; 5101 TemplateArgumentLoc Output; 5102 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc, 5103 TypeParm, SugaredConverted, 5104 CanonicalConverted, Output)) 5105 return TemplateArgumentLoc(); 5106 return Output; 5107 } 5108 5109 if (NonTypeTemplateParmDecl *NonTypeParm 5110 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5111 if (!hasReachableDefaultArgument(NonTypeParm)) 5112 return TemplateArgumentLoc(); 5113 5114 HasDefaultArg = true; 5115 TemplateArgumentLoc Output; 5116 if (SubstDefaultTemplateArgument(*this, Template, TemplateLoc, RAngleLoc, 5117 NonTypeParm, SugaredConverted, 5118 CanonicalConverted, Output)) 5119 return TemplateArgumentLoc(); 5120 return Output; 5121 } 5122 5123 TemplateTemplateParmDecl *TempTempParm 5124 = cast<TemplateTemplateParmDecl>(Param); 5125 if (!hasReachableDefaultArgument(TempTempParm)) 5126 return TemplateArgumentLoc(); 5127 5128 HasDefaultArg = true; 5129 NestedNameSpecifierLoc QualifierLoc; 5130 TemplateName TName = SubstDefaultTemplateArgument( 5131 *this, Template, TemplateLoc, RAngleLoc, TempTempParm, SugaredConverted, 5132 CanonicalConverted, QualifierLoc); 5133 if (TName.isNull()) 5134 return TemplateArgumentLoc(); 5135 5136 return TemplateArgumentLoc( 5137 Context, TemplateArgument(TName), 5138 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 5139 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 5140 } 5141 5142 /// Convert a template-argument that we parsed as a type into a template, if 5143 /// possible. C++ permits injected-class-names to perform dual service as 5144 /// template template arguments and as template type arguments. 5145 static TemplateArgumentLoc 5146 convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { 5147 // Extract and step over any surrounding nested-name-specifier. 5148 NestedNameSpecifierLoc QualLoc; 5149 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { 5150 if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None) 5151 return TemplateArgumentLoc(); 5152 5153 QualLoc = ETLoc.getQualifierLoc(); 5154 TLoc = ETLoc.getNamedTypeLoc(); 5155 } 5156 // If this type was written as an injected-class-name, it can be used as a 5157 // template template argument. 5158 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) 5159 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), 5160 QualLoc, InjLoc.getNameLoc()); 5161 5162 // If this type was written as an injected-class-name, it may have been 5163 // converted to a RecordType during instantiation. If the RecordType is 5164 // *not* wrapped in a TemplateSpecializationType and denotes a class 5165 // template specialization, it must have come from an injected-class-name. 5166 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) 5167 if (auto *CTSD = 5168 dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) 5169 return TemplateArgumentLoc(Context, 5170 TemplateName(CTSD->getSpecializedTemplate()), 5171 QualLoc, RecLoc.getNameLoc()); 5172 5173 return TemplateArgumentLoc(); 5174 } 5175 5176 bool Sema::CheckTemplateArgument( 5177 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, 5178 SourceLocation TemplateLoc, SourceLocation RAngleLoc, 5179 unsigned ArgumentPackIndex, 5180 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5181 SmallVectorImpl<TemplateArgument> &CanonicalConverted, 5182 CheckTemplateArgumentKind CTAK, bool PartialOrdering, 5183 bool *MatchedPackOnParmToNonPackOnArg) { 5184 // Check template type parameters. 5185 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 5186 return CheckTemplateTypeArgument(TTP, Arg, SugaredConverted, 5187 CanonicalConverted); 5188 5189 // Check non-type template parameters. 5190 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5191 // Do substitution on the type of the non-type template parameter 5192 // with the template arguments we've seen thus far. But if the 5193 // template has a dependent context then we cannot substitute yet. 5194 QualType NTTPType = NTTP->getType(); 5195 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 5196 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 5197 5198 if (NTTPType->isInstantiationDependentType() && 5199 !isa<TemplateTemplateParmDecl>(Template) && 5200 !Template->getDeclContext()->isDependentContext()) { 5201 // Do substitution on the type of the non-type template parameter. 5202 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, 5203 SugaredConverted, 5204 SourceRange(TemplateLoc, RAngleLoc)); 5205 if (Inst.isInvalid()) 5206 return true; 5207 5208 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted, 5209 /*Final=*/true); 5210 // If the parameter is a pack expansion, expand this slice of the pack. 5211 if (auto *PET = NTTPType->getAs<PackExpansionType>()) { 5212 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, 5213 ArgumentPackIndex); 5214 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(), 5215 NTTP->getDeclName()); 5216 } else { 5217 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(), 5218 NTTP->getDeclName()); 5219 } 5220 5221 // If that worked, check the non-type template parameter type 5222 // for validity. 5223 if (!NTTPType.isNull()) 5224 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 5225 NTTP->getLocation()); 5226 if (NTTPType.isNull()) 5227 return true; 5228 } 5229 5230 switch (Arg.getArgument().getKind()) { 5231 case TemplateArgument::Null: 5232 llvm_unreachable("Should never see a NULL template argument here"); 5233 5234 case TemplateArgument::Expression: { 5235 Expr *E = Arg.getArgument().getAsExpr(); 5236 TemplateArgument SugaredResult, CanonicalResult; 5237 unsigned CurSFINAEErrors = NumSFINAEErrors; 5238 ExprResult Res = CheckTemplateArgument(NTTP, NTTPType, E, SugaredResult, 5239 CanonicalResult, CTAK); 5240 if (Res.isInvalid()) 5241 return true; 5242 // If the current template argument causes an error, give up now. 5243 if (CurSFINAEErrors < NumSFINAEErrors) 5244 return true; 5245 5246 // If the resulting expression is new, then use it in place of the 5247 // old expression in the template argument. 5248 if (Res.get() != E) { 5249 TemplateArgument TA(Res.get()); 5250 Arg = TemplateArgumentLoc(TA, Res.get()); 5251 } 5252 5253 SugaredConverted.push_back(SugaredResult); 5254 CanonicalConverted.push_back(CanonicalResult); 5255 break; 5256 } 5257 5258 case TemplateArgument::Declaration: 5259 case TemplateArgument::Integral: 5260 case TemplateArgument::StructuralValue: 5261 case TemplateArgument::NullPtr: 5262 // We've already checked this template argument, so just copy 5263 // it to the list of converted arguments. 5264 SugaredConverted.push_back(Arg.getArgument()); 5265 CanonicalConverted.push_back( 5266 Context.getCanonicalTemplateArgument(Arg.getArgument())); 5267 break; 5268 5269 case TemplateArgument::Template: 5270 case TemplateArgument::TemplateExpansion: 5271 // We were given a template template argument. It may not be ill-formed; 5272 // see below. 5273 if (DependentTemplateName *DTN 5274 = Arg.getArgument().getAsTemplateOrTemplatePattern() 5275 .getAsDependentTemplateName()) { 5276 // We have a template argument such as \c T::template X, which we 5277 // parsed as a template template argument. However, since we now 5278 // know that we need a non-type template argument, convert this 5279 // template name into an expression. 5280 5281 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 5282 Arg.getTemplateNameLoc()); 5283 5284 CXXScopeSpec SS; 5285 SS.Adopt(Arg.getTemplateQualifierLoc()); 5286 // FIXME: the template-template arg was a DependentTemplateName, 5287 // so it was provided with a template keyword. However, its source 5288 // location is not stored in the template argument structure. 5289 SourceLocation TemplateKWLoc; 5290 ExprResult E = DependentScopeDeclRefExpr::Create( 5291 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, 5292 nullptr); 5293 5294 // If we parsed the template argument as a pack expansion, create a 5295 // pack expansion expression. 5296 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 5297 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); 5298 if (E.isInvalid()) 5299 return true; 5300 } 5301 5302 TemplateArgument SugaredResult, CanonicalResult; 5303 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), SugaredResult, 5304 CanonicalResult, CTAK_Specified); 5305 if (E.isInvalid()) 5306 return true; 5307 5308 SugaredConverted.push_back(SugaredResult); 5309 CanonicalConverted.push_back(CanonicalResult); 5310 break; 5311 } 5312 5313 // We have a template argument that actually does refer to a class 5314 // template, alias template, or template template parameter, and 5315 // therefore cannot be a non-type template argument. 5316 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 5317 << Arg.getSourceRange(); 5318 NoteTemplateParameterLocation(*Param); 5319 5320 return true; 5321 5322 case TemplateArgument::Type: { 5323 // We have a non-type template parameter but the template 5324 // argument is a type. 5325 5326 // C++ [temp.arg]p2: 5327 // In a template-argument, an ambiguity between a type-id and 5328 // an expression is resolved to a type-id, regardless of the 5329 // form of the corresponding template-parameter. 5330 // 5331 // We warn specifically about this case, since it can be rather 5332 // confusing for users. 5333 QualType T = Arg.getArgument().getAsType(); 5334 SourceRange SR = Arg.getSourceRange(); 5335 if (T->isFunctionType()) 5336 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 5337 else 5338 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 5339 NoteTemplateParameterLocation(*Param); 5340 return true; 5341 } 5342 5343 case TemplateArgument::Pack: 5344 llvm_unreachable("Caller must expand template argument packs"); 5345 } 5346 5347 return false; 5348 } 5349 5350 5351 // Check template template parameters. 5352 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 5353 5354 TemplateParameterList *Params = TempParm->getTemplateParameters(); 5355 if (TempParm->isExpandedParameterPack()) 5356 Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); 5357 5358 // Substitute into the template parameter list of the template 5359 // template parameter, since previously-supplied template arguments 5360 // may appear within the template template parameter. 5361 // 5362 // FIXME: Skip this if the parameters aren't instantiation-dependent. 5363 { 5364 // Set up a template instantiation context. 5365 LocalInstantiationScope Scope(*this); 5366 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, 5367 SugaredConverted, 5368 SourceRange(TemplateLoc, RAngleLoc)); 5369 if (Inst.isInvalid()) 5370 return true; 5371 5372 Params = 5373 SubstTemplateParams(Params, CurContext, 5374 MultiLevelTemplateArgumentList( 5375 Template, SugaredConverted, /*Final=*/true), 5376 /*EvaluateConstraints=*/false); 5377 if (!Params) 5378 return true; 5379 } 5380 5381 // C++1z [temp.local]p1: (DR1004) 5382 // When [the injected-class-name] is used [...] as a template-argument for 5383 // a template template-parameter [...] it refers to the class template 5384 // itself. 5385 if (Arg.getArgument().getKind() == TemplateArgument::Type) { 5386 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( 5387 Context, Arg.getTypeSourceInfo()->getTypeLoc()); 5388 if (!ConvertedArg.getArgument().isNull()) 5389 Arg = ConvertedArg; 5390 } 5391 5392 switch (Arg.getArgument().getKind()) { 5393 case TemplateArgument::Null: 5394 llvm_unreachable("Should never see a NULL template argument here"); 5395 5396 case TemplateArgument::Template: 5397 case TemplateArgument::TemplateExpansion: 5398 if (CheckTemplateTemplateArgument(TempParm, Params, Arg, PartialOrdering, 5399 MatchedPackOnParmToNonPackOnArg)) 5400 return true; 5401 5402 SugaredConverted.push_back(Arg.getArgument()); 5403 CanonicalConverted.push_back( 5404 Context.getCanonicalTemplateArgument(Arg.getArgument())); 5405 break; 5406 5407 case TemplateArgument::Expression: 5408 case TemplateArgument::Type: 5409 // We have a template template parameter but the template 5410 // argument does not refer to a template. 5411 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 5412 << getLangOpts().CPlusPlus11; 5413 return true; 5414 5415 case TemplateArgument::Declaration: 5416 case TemplateArgument::Integral: 5417 case TemplateArgument::StructuralValue: 5418 case TemplateArgument::NullPtr: 5419 llvm_unreachable("non-type argument with template template parameter"); 5420 5421 case TemplateArgument::Pack: 5422 llvm_unreachable("Caller must expand template argument packs"); 5423 } 5424 5425 return false; 5426 } 5427 5428 /// Diagnose a missing template argument. 5429 template<typename TemplateParmDecl> 5430 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, 5431 TemplateDecl *TD, 5432 const TemplateParmDecl *D, 5433 TemplateArgumentListInfo &Args) { 5434 // Dig out the most recent declaration of the template parameter; there may be 5435 // declarations of the template that are more recent than TD. 5436 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) 5437 ->getTemplateParameters() 5438 ->getParam(D->getIndex())); 5439 5440 // If there's a default argument that's not reachable, diagnose that we're 5441 // missing a module import. 5442 llvm::SmallVector<Module*, 8> Modules; 5443 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, &Modules)) { 5444 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), 5445 D->getDefaultArgumentLoc(), Modules, 5446 Sema::MissingImportKind::DefaultArgument, 5447 /*Recover*/true); 5448 return true; 5449 } 5450 5451 // FIXME: If there's a more recent default argument that *is* visible, 5452 // diagnose that it was declared too late. 5453 5454 TemplateParameterList *Params = TD->getTemplateParameters(); 5455 5456 S.Diag(Loc, diag::err_template_arg_list_different_arity) 5457 << /*not enough args*/0 5458 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) 5459 << TD; 5460 S.NoteTemplateLocation(*TD, Params->getSourceRange()); 5461 return true; 5462 } 5463 5464 /// Check that the given template argument list is well-formed 5465 /// for specializing the given template. 5466 bool Sema::CheckTemplateArgumentList( 5467 TemplateDecl *Template, SourceLocation TemplateLoc, 5468 TemplateArgumentListInfo &TemplateArgs, const DefaultArguments &DefaultArgs, 5469 bool PartialTemplateArgs, 5470 SmallVectorImpl<TemplateArgument> &SugaredConverted, 5471 SmallVectorImpl<TemplateArgument> &CanonicalConverted, 5472 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied, 5473 bool PartialOrderingTTP, bool *MatchedPackOnParmToNonPackOnArg) { 5474 5475 if (ConstraintsNotSatisfied) 5476 *ConstraintsNotSatisfied = false; 5477 5478 // Make a copy of the template arguments for processing. Only make the 5479 // changes at the end when successful in matching the arguments to the 5480 // template. 5481 TemplateArgumentListInfo NewArgs = TemplateArgs; 5482 5483 TemplateParameterList *Params = GetTemplateParameterList(Template); 5484 5485 SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); 5486 5487 // C++ [temp.arg]p1: 5488 // [...] The type and form of each template-argument specified in 5489 // a template-id shall match the type and form specified for the 5490 // corresponding parameter declared by the template in its 5491 // template-parameter-list. 5492 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 5493 SmallVector<TemplateArgument, 2> SugaredArgumentPack; 5494 SmallVector<TemplateArgument, 2> CanonicalArgumentPack; 5495 unsigned ArgIdx = 0, NumArgs = NewArgs.size(); 5496 LocalInstantiationScope InstScope(*this, true); 5497 for (TemplateParameterList::iterator ParamBegin = Params->begin(), 5498 ParamEnd = Params->end(), 5499 Param = ParamBegin; 5500 Param != ParamEnd; 5501 /* increment in loop */) { 5502 if (size_t ParamIdx = Param - ParamBegin; 5503 DefaultArgs && ParamIdx >= DefaultArgs.StartPos) { 5504 // All written arguments should have been consumed by this point. 5505 assert(ArgIdx == NumArgs && "bad default argument deduction"); 5506 if (ParamIdx == DefaultArgs.StartPos) { 5507 assert(Param + DefaultArgs.Args.size() <= ParamEnd); 5508 // Default arguments from a DeducedTemplateName are already converted. 5509 for (const TemplateArgument &DefArg : DefaultArgs.Args) { 5510 SugaredConverted.push_back(DefArg); 5511 CanonicalConverted.push_back( 5512 Context.getCanonicalTemplateArgument(DefArg)); 5513 ++Param; 5514 } 5515 continue; 5516 } 5517 } 5518 5519 // If we have an expanded parameter pack, make sure we don't have too 5520 // many arguments. 5521 if (std::optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 5522 if (*Expansions == SugaredArgumentPack.size()) { 5523 // We're done with this parameter pack. Pack up its arguments and add 5524 // them to the list. 5525 SugaredConverted.push_back( 5526 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5527 SugaredArgumentPack.clear(); 5528 5529 CanonicalConverted.push_back( 5530 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5531 CanonicalArgumentPack.clear(); 5532 5533 // This argument is assigned to the next parameter. 5534 ++Param; 5535 continue; 5536 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 5537 // Not enough arguments for this parameter pack. 5538 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5539 << /*not enough args*/0 5540 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5541 << Template; 5542 NoteTemplateLocation(*Template, Params->getSourceRange()); 5543 return true; 5544 } 5545 } 5546 5547 if (ArgIdx < NumArgs) { 5548 // Check the template argument we were given. 5549 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc, 5550 RAngleLoc, SugaredArgumentPack.size(), 5551 SugaredConverted, CanonicalConverted, 5552 CTAK_Specified, /*PartialOrdering=*/false, 5553 MatchedPackOnParmToNonPackOnArg)) 5554 return true; 5555 5556 CanonicalConverted.back().setIsDefaulted( 5557 clang::isSubstitutedDefaultArgument( 5558 Context, NewArgs[ArgIdx].getArgument(), *Param, 5559 CanonicalConverted, Params->getDepth())); 5560 5561 bool PackExpansionIntoNonPack = 5562 NewArgs[ArgIdx].getArgument().isPackExpansion() && 5563 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); 5564 // CWG1430: Don't diagnose this pack expansion when partial 5565 // ordering template template parameters. Some uses of the template could 5566 // be valid, and invalid uses will be diagnosed later during 5567 // instantiation. 5568 if (PackExpansionIntoNonPack && !PartialOrderingTTP && 5569 (isa<TypeAliasTemplateDecl>(Template) || 5570 isa<ConceptDecl>(Template))) { 5571 // CWG1430: we have a pack expansion as an argument to an 5572 // alias template, and it's not part of a parameter pack. This 5573 // can't be canonicalized, so reject it now. 5574 // As for concepts - we cannot normalize constraints where this 5575 // situation exists. 5576 Diag(NewArgs[ArgIdx].getLocation(), 5577 diag::err_template_expansion_into_fixed_list) 5578 << (isa<ConceptDecl>(Template) ? 1 : 0) 5579 << NewArgs[ArgIdx].getSourceRange(); 5580 NoteTemplateParameterLocation(**Param); 5581 return true; 5582 } 5583 5584 // We're now done with this argument. 5585 ++ArgIdx; 5586 5587 if ((*Param)->isTemplateParameterPack()) { 5588 // The template parameter was a template parameter pack, so take the 5589 // deduced argument and place it on the argument pack. Note that we 5590 // stay on the same template parameter so that we can deduce more 5591 // arguments. 5592 SugaredArgumentPack.push_back(SugaredConverted.pop_back_val()); 5593 CanonicalArgumentPack.push_back(CanonicalConverted.pop_back_val()); 5594 } else { 5595 // Move to the next template parameter. 5596 ++Param; 5597 } 5598 5599 // If we just saw a pack expansion into a non-pack, then directly convert 5600 // the remaining arguments, because we don't know what parameters they'll 5601 // match up with. 5602 if (PackExpansionIntoNonPack) { 5603 if (!SugaredArgumentPack.empty()) { 5604 // If we were part way through filling in an expanded parameter pack, 5605 // fall back to just producing individual arguments. 5606 SugaredConverted.insert(SugaredConverted.end(), 5607 SugaredArgumentPack.begin(), 5608 SugaredArgumentPack.end()); 5609 SugaredArgumentPack.clear(); 5610 5611 CanonicalConverted.insert(CanonicalConverted.end(), 5612 CanonicalArgumentPack.begin(), 5613 CanonicalArgumentPack.end()); 5614 CanonicalArgumentPack.clear(); 5615 } 5616 5617 while (ArgIdx < NumArgs) { 5618 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); 5619 SugaredConverted.push_back(Arg); 5620 CanonicalConverted.push_back( 5621 Context.getCanonicalTemplateArgument(Arg)); 5622 ++ArgIdx; 5623 } 5624 5625 return false; 5626 } 5627 5628 continue; 5629 } 5630 5631 // If we're checking a partial template argument list, we're done. 5632 if (PartialTemplateArgs) { 5633 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { 5634 SugaredConverted.push_back( 5635 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5636 CanonicalConverted.push_back( 5637 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5638 } 5639 return false; 5640 } 5641 5642 // If we have a template parameter pack with no more corresponding 5643 // arguments, just break out now and we'll fill in the argument pack below. 5644 if ((*Param)->isTemplateParameterPack()) { 5645 assert(!getExpandedPackSize(*Param) && 5646 "Should have dealt with this already"); 5647 5648 // A non-expanded parameter pack before the end of the parameter list 5649 // only occurs for an ill-formed template parameter list, unless we've 5650 // got a partial argument list for a function template, so just bail out. 5651 if (Param + 1 != ParamEnd) { 5652 assert( 5653 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && 5654 "Concept templates must have parameter packs at the end."); 5655 return true; 5656 } 5657 5658 SugaredConverted.push_back( 5659 TemplateArgument::CreatePackCopy(Context, SugaredArgumentPack)); 5660 SugaredArgumentPack.clear(); 5661 5662 CanonicalConverted.push_back( 5663 TemplateArgument::CreatePackCopy(Context, CanonicalArgumentPack)); 5664 CanonicalArgumentPack.clear(); 5665 5666 ++Param; 5667 continue; 5668 } 5669 5670 // Check whether we have a default argument. 5671 bool HasDefaultArg; 5672 5673 // Retrieve the default template argument from the template 5674 // parameter. For each kind of template parameter, we substitute the 5675 // template arguments provided thus far and any "outer" template arguments 5676 // (when the template parameter was part of a nested template) into 5677 // the default argument. 5678 TemplateArgumentLoc Arg = SubstDefaultTemplateArgumentIfAvailable( 5679 Template, TemplateLoc, RAngleLoc, *Param, SugaredConverted, 5680 CanonicalConverted, HasDefaultArg); 5681 5682 if (Arg.getArgument().isNull()) { 5683 if (!HasDefaultArg) { 5684 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) 5685 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, 5686 NewArgs); 5687 if (NonTypeTemplateParmDecl *NTTP = 5688 dyn_cast<NonTypeTemplateParmDecl>(*Param)) 5689 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, 5690 NewArgs); 5691 return diagnoseMissingArgument(*this, TemplateLoc, Template, 5692 cast<TemplateTemplateParmDecl>(*Param), 5693 NewArgs); 5694 } 5695 return true; 5696 } 5697 5698 // Introduce an instantiation record that describes where we are using 5699 // the default template argument. We're not actually instantiating a 5700 // template here, we just create this object to put a note into the 5701 // context stack. 5702 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, 5703 SugaredConverted, 5704 SourceRange(TemplateLoc, RAngleLoc)); 5705 if (Inst.isInvalid()) 5706 return true; 5707 5708 // Check the default template argument. 5709 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0, 5710 SugaredConverted, CanonicalConverted, 5711 CTAK_Specified, /*PartialOrdering=*/false, 5712 /*MatchedPackOnParmToNonPackOnArg=*/nullptr)) 5713 return true; 5714 5715 SugaredConverted.back().setIsDefaulted(true); 5716 CanonicalConverted.back().setIsDefaulted(true); 5717 5718 // Core issue 150 (assumed resolution): if this is a template template 5719 // parameter, keep track of the default template arguments from the 5720 // template definition. 5721 if (isTemplateTemplateParameter) 5722 NewArgs.addArgument(Arg); 5723 5724 // Move to the next template parameter and argument. 5725 ++Param; 5726 ++ArgIdx; 5727 } 5728 5729 // If we're performing a partial argument substitution, allow any trailing 5730 // pack expansions; they might be empty. This can happen even if 5731 // PartialTemplateArgs is false (the list of arguments is complete but 5732 // still dependent). 5733 if (PartialOrderingTTP || 5734 (CurrentInstantiationScope && 5735 CurrentInstantiationScope->getPartiallySubstitutedPack())) { 5736 while (ArgIdx < NumArgs && 5737 NewArgs[ArgIdx].getArgument().isPackExpansion()) { 5738 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); 5739 SugaredConverted.push_back(Arg); 5740 CanonicalConverted.push_back(Context.getCanonicalTemplateArgument(Arg)); 5741 } 5742 } 5743 5744 // If we have any leftover arguments, then there were too many arguments. 5745 // Complain and fail. 5746 if (ArgIdx < NumArgs) { 5747 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 5748 << /*too many args*/1 5749 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) 5750 << Template 5751 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); 5752 NoteTemplateLocation(*Template, Params->getSourceRange()); 5753 return true; 5754 } 5755 5756 // No problems found with the new argument list, propagate changes back 5757 // to caller. 5758 if (UpdateArgsWithConversions) 5759 TemplateArgs = std::move(NewArgs); 5760 5761 if (!PartialTemplateArgs) { 5762 // Setup the context/ThisScope for the case where we are needing to 5763 // re-instantiate constraints outside of normal instantiation. 5764 DeclContext *NewContext = Template->getDeclContext(); 5765 5766 // If this template is in a template, make sure we extract the templated 5767 // decl. 5768 if (auto *TD = dyn_cast<TemplateDecl>(NewContext)) 5769 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); 5770 auto *RD = dyn_cast<CXXRecordDecl>(NewContext); 5771 5772 Qualifiers ThisQuals; 5773 if (const auto *Method = 5774 dyn_cast_or_null<CXXMethodDecl>(Template->getTemplatedDecl())) 5775 ThisQuals = Method->getMethodQualifiers(); 5776 5777 ContextRAII Context(*this, NewContext); 5778 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr); 5779 5780 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( 5781 Template, NewContext, /*Final=*/false, CanonicalConverted, 5782 /*RelativeToPrimary=*/true, 5783 /*Pattern=*/nullptr, 5784 /*ForConceptInstantiation=*/true); 5785 if (EnsureTemplateArgumentListConstraints( 5786 Template, MLTAL, 5787 SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { 5788 if (ConstraintsNotSatisfied) 5789 *ConstraintsNotSatisfied = true; 5790 return true; 5791 } 5792 } 5793 5794 return false; 5795 } 5796 5797 namespace { 5798 class UnnamedLocalNoLinkageFinder 5799 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 5800 { 5801 Sema &S; 5802 SourceRange SR; 5803 5804 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 5805 5806 public: 5807 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 5808 5809 bool Visit(QualType T) { 5810 return T.isNull() ? false : inherited::Visit(T.getTypePtr()); 5811 } 5812 5813 #define TYPE(Class, Parent) \ 5814 bool Visit##Class##Type(const Class##Type *); 5815 #define ABSTRACT_TYPE(Class, Parent) \ 5816 bool Visit##Class##Type(const Class##Type *) { return false; } 5817 #define NON_CANONICAL_TYPE(Class, Parent) \ 5818 bool Visit##Class##Type(const Class##Type *) { return false; } 5819 #include "clang/AST/TypeNodes.inc" 5820 5821 bool VisitTagDecl(const TagDecl *Tag); 5822 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 5823 }; 5824 } // end anonymous namespace 5825 5826 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 5827 return false; 5828 } 5829 5830 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 5831 return Visit(T->getElementType()); 5832 } 5833 5834 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 5835 return Visit(T->getPointeeType()); 5836 } 5837 5838 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 5839 const BlockPointerType* T) { 5840 return Visit(T->getPointeeType()); 5841 } 5842 5843 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 5844 const LValueReferenceType* T) { 5845 return Visit(T->getPointeeType()); 5846 } 5847 5848 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 5849 const RValueReferenceType* T) { 5850 return Visit(T->getPointeeType()); 5851 } 5852 5853 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 5854 const MemberPointerType* T) { 5855 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 5856 } 5857 5858 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 5859 const ConstantArrayType* T) { 5860 return Visit(T->getElementType()); 5861 } 5862 5863 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 5864 const IncompleteArrayType* T) { 5865 return Visit(T->getElementType()); 5866 } 5867 5868 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 5869 const VariableArrayType* T) { 5870 return Visit(T->getElementType()); 5871 } 5872 5873 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 5874 const DependentSizedArrayType* T) { 5875 return Visit(T->getElementType()); 5876 } 5877 5878 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 5879 const DependentSizedExtVectorType* T) { 5880 return Visit(T->getElementType()); 5881 } 5882 5883 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( 5884 const DependentSizedMatrixType *T) { 5885 return Visit(T->getElementType()); 5886 } 5887 5888 bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( 5889 const DependentAddressSpaceType *T) { 5890 return Visit(T->getPointeeType()); 5891 } 5892 5893 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 5894 return Visit(T->getElementType()); 5895 } 5896 5897 bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( 5898 const DependentVectorType *T) { 5899 return Visit(T->getElementType()); 5900 } 5901 5902 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 5903 return Visit(T->getElementType()); 5904 } 5905 5906 bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( 5907 const ConstantMatrixType *T) { 5908 return Visit(T->getElementType()); 5909 } 5910 5911 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 5912 const FunctionProtoType* T) { 5913 for (const auto &A : T->param_types()) { 5914 if (Visit(A)) 5915 return true; 5916 } 5917 5918 return Visit(T->getReturnType()); 5919 } 5920 5921 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 5922 const FunctionNoProtoType* T) { 5923 return Visit(T->getReturnType()); 5924 } 5925 5926 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 5927 const UnresolvedUsingType*) { 5928 return false; 5929 } 5930 5931 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 5932 return false; 5933 } 5934 5935 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 5936 return Visit(T->getUnmodifiedType()); 5937 } 5938 5939 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 5940 return false; 5941 } 5942 5943 bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType( 5944 const PackIndexingType *) { 5945 return false; 5946 } 5947 5948 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 5949 const UnaryTransformType*) { 5950 return false; 5951 } 5952 5953 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 5954 return Visit(T->getDeducedType()); 5955 } 5956 5957 bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( 5958 const DeducedTemplateSpecializationType *T) { 5959 return Visit(T->getDeducedType()); 5960 } 5961 5962 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 5963 return VisitTagDecl(T->getDecl()); 5964 } 5965 5966 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 5967 return VisitTagDecl(T->getDecl()); 5968 } 5969 5970 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 5971 const TemplateTypeParmType*) { 5972 return false; 5973 } 5974 5975 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 5976 const SubstTemplateTypeParmPackType *) { 5977 return false; 5978 } 5979 5980 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 5981 const TemplateSpecializationType*) { 5982 return false; 5983 } 5984 5985 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 5986 const InjectedClassNameType* T) { 5987 return VisitTagDecl(T->getDecl()); 5988 } 5989 5990 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 5991 const DependentNameType* T) { 5992 return VisitNestedNameSpecifier(T->getQualifier()); 5993 } 5994 5995 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 5996 const DependentTemplateSpecializationType* T) { 5997 if (auto *Q = T->getQualifier()) 5998 return VisitNestedNameSpecifier(Q); 5999 return false; 6000 } 6001 6002 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 6003 const PackExpansionType* T) { 6004 return Visit(T->getPattern()); 6005 } 6006 6007 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 6008 return false; 6009 } 6010 6011 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 6012 const ObjCInterfaceType *) { 6013 return false; 6014 } 6015 6016 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 6017 const ObjCObjectPointerType *) { 6018 return false; 6019 } 6020 6021 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 6022 return Visit(T->getValueType()); 6023 } 6024 6025 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { 6026 return false; 6027 } 6028 6029 bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { 6030 return false; 6031 } 6032 6033 bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType( 6034 const ArrayParameterType *T) { 6035 return VisitConstantArrayType(T); 6036 } 6037 6038 bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( 6039 const DependentBitIntType *T) { 6040 return false; 6041 } 6042 6043 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 6044 if (Tag->getDeclContext()->isFunctionOrMethod()) { 6045 S.Diag(SR.getBegin(), 6046 S.getLangOpts().CPlusPlus11 ? 6047 diag::warn_cxx98_compat_template_arg_local_type : 6048 diag::ext_template_arg_local_type) 6049 << S.Context.getTypeDeclType(Tag) << SR; 6050 return true; 6051 } 6052 6053 if (!Tag->hasNameForLinkage()) { 6054 S.Diag(SR.getBegin(), 6055 S.getLangOpts().CPlusPlus11 ? 6056 diag::warn_cxx98_compat_template_arg_unnamed_type : 6057 diag::ext_template_arg_unnamed_type) << SR; 6058 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 6059 return true; 6060 } 6061 6062 return false; 6063 } 6064 6065 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 6066 NestedNameSpecifier *NNS) { 6067 assert(NNS); 6068 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 6069 return true; 6070 6071 switch (NNS->getKind()) { 6072 case NestedNameSpecifier::Identifier: 6073 case NestedNameSpecifier::Namespace: 6074 case NestedNameSpecifier::NamespaceAlias: 6075 case NestedNameSpecifier::Global: 6076 case NestedNameSpecifier::Super: 6077 return false; 6078 6079 case NestedNameSpecifier::TypeSpec: 6080 case NestedNameSpecifier::TypeSpecWithTemplate: 6081 return Visit(QualType(NNS->getAsType(), 0)); 6082 } 6083 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 6084 } 6085 6086 bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { 6087 assert(ArgInfo && "invalid TypeSourceInfo"); 6088 QualType Arg = ArgInfo->getType(); 6089 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 6090 QualType CanonArg = Context.getCanonicalType(Arg); 6091 6092 if (CanonArg->isVariablyModifiedType()) { 6093 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 6094 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 6095 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 6096 } 6097 6098 // C++03 [temp.arg.type]p2: 6099 // A local type, a type with no linkage, an unnamed type or a type 6100 // compounded from any of these types shall not be used as a 6101 // template-argument for a template type-parameter. 6102 // 6103 // C++11 allows these, and even in C++03 we allow them as an extension with 6104 // a warning. 6105 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { 6106 UnnamedLocalNoLinkageFinder Finder(*this, SR); 6107 (void)Finder.Visit(CanonArg); 6108 } 6109 6110 return false; 6111 } 6112 6113 enum NullPointerValueKind { 6114 NPV_NotNullPointer, 6115 NPV_NullPointer, 6116 NPV_Error 6117 }; 6118 6119 /// Determine whether the given template argument is a null pointer 6120 /// value of the appropriate type. 6121 static NullPointerValueKind 6122 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 6123 QualType ParamType, Expr *Arg, 6124 Decl *Entity = nullptr) { 6125 if (Arg->isValueDependent() || Arg->isTypeDependent()) 6126 return NPV_NotNullPointer; 6127 6128 // dllimport'd entities aren't constant but are available inside of template 6129 // arguments. 6130 if (Entity && Entity->hasAttr<DLLImportAttr>()) 6131 return NPV_NotNullPointer; 6132 6133 if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) 6134 llvm_unreachable( 6135 "Incomplete parameter type in isNullPointerValueTemplateArgument!"); 6136 6137 if (!S.getLangOpts().CPlusPlus11) 6138 return NPV_NotNullPointer; 6139 6140 // Determine whether we have a constant expression. 6141 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 6142 if (ArgRV.isInvalid()) 6143 return NPV_Error; 6144 Arg = ArgRV.get(); 6145 6146 Expr::EvalResult EvalResult; 6147 SmallVector<PartialDiagnosticAt, 8> Notes; 6148 EvalResult.Diag = &Notes; 6149 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 6150 EvalResult.HasSideEffects) { 6151 SourceLocation DiagLoc = Arg->getExprLoc(); 6152 6153 // If our only note is the usual "invalid subexpression" note, just point 6154 // the caret at its location rather than producing an essentially 6155 // redundant note. 6156 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 6157 diag::note_invalid_subexpr_in_const_expr) { 6158 DiagLoc = Notes[0].first; 6159 Notes.clear(); 6160 } 6161 6162 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 6163 << Arg->getType() << Arg->getSourceRange(); 6164 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 6165 S.Diag(Notes[I].first, Notes[I].second); 6166 6167 S.NoteTemplateParameterLocation(*Param); 6168 return NPV_Error; 6169 } 6170 6171 // C++11 [temp.arg.nontype]p1: 6172 // - an address constant expression of type std::nullptr_t 6173 if (Arg->getType()->isNullPtrType()) 6174 return NPV_NullPointer; 6175 6176 // - a constant expression that evaluates to a null pointer value (4.10); or 6177 // - a constant expression that evaluates to a null member pointer value 6178 // (4.11); or 6179 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || 6180 (EvalResult.Val.isMemberPointer() && 6181 !EvalResult.Val.getMemberPointerDecl())) { 6182 // If our expression has an appropriate type, we've succeeded. 6183 bool ObjCLifetimeConversion; 6184 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 6185 S.IsQualificationConversion(Arg->getType(), ParamType, false, 6186 ObjCLifetimeConversion)) 6187 return NPV_NullPointer; 6188 6189 // The types didn't match, but we know we got a null pointer; complain, 6190 // then recover as if the types were correct. 6191 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 6192 << Arg->getType() << ParamType << Arg->getSourceRange(); 6193 S.NoteTemplateParameterLocation(*Param); 6194 return NPV_NullPointer; 6195 } 6196 6197 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { 6198 // We found a pointer that isn't null, but doesn't refer to an object. 6199 // We could just return NPV_NotNullPointer, but we can print a better 6200 // message with the information we have here. 6201 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid) 6202 << EvalResult.Val.getAsString(S.Context, ParamType); 6203 S.NoteTemplateParameterLocation(*Param); 6204 return NPV_Error; 6205 } 6206 6207 // If we don't have a null pointer value, but we do have a NULL pointer 6208 // constant, suggest a cast to the appropriate type. 6209 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 6210 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 6211 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 6212 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) 6213 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), 6214 ")"); 6215 S.NoteTemplateParameterLocation(*Param); 6216 return NPV_NullPointer; 6217 } 6218 6219 // FIXME: If we ever want to support general, address-constant expressions 6220 // as non-type template arguments, we should return the ExprResult here to 6221 // be interpreted by the caller. 6222 return NPV_NotNullPointer; 6223 } 6224 6225 /// Checks whether the given template argument is compatible with its 6226 /// template parameter. 6227 static bool CheckTemplateArgumentIsCompatibleWithParameter( 6228 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6229 Expr *Arg, QualType ArgType) { 6230 bool ObjCLifetimeConversion; 6231 if (ParamType->isPointerType() && 6232 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && 6233 S.IsQualificationConversion(ArgType, ParamType, false, 6234 ObjCLifetimeConversion)) { 6235 // For pointer-to-object types, qualification conversions are 6236 // permitted. 6237 } else { 6238 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 6239 if (!ParamRef->getPointeeType()->isFunctionType()) { 6240 // C++ [temp.arg.nontype]p5b3: 6241 // For a non-type template-parameter of type reference to 6242 // object, no conversions apply. The type referred to by the 6243 // reference may be more cv-qualified than the (otherwise 6244 // identical) type of the template- argument. The 6245 // template-parameter is bound directly to the 6246 // template-argument, which shall be an lvalue. 6247 6248 // FIXME: Other qualifiers? 6249 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 6250 unsigned ArgQuals = ArgType.getCVRQualifiers(); 6251 6252 if ((ParamQuals | ArgQuals) != ParamQuals) { 6253 S.Diag(Arg->getBeginLoc(), 6254 diag::err_template_arg_ref_bind_ignores_quals) 6255 << ParamType << Arg->getType() << Arg->getSourceRange(); 6256 S.NoteTemplateParameterLocation(*Param); 6257 return true; 6258 } 6259 } 6260 } 6261 6262 // At this point, the template argument refers to an object or 6263 // function with external linkage. We now need to check whether the 6264 // argument and parameter types are compatible. 6265 if (!S.Context.hasSameUnqualifiedType(ArgType, 6266 ParamType.getNonReferenceType())) { 6267 // We can't perform this conversion or binding. 6268 if (ParamType->isReferenceType()) 6269 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) 6270 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 6271 else 6272 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 6273 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 6274 S.NoteTemplateParameterLocation(*Param); 6275 return true; 6276 } 6277 } 6278 6279 return false; 6280 } 6281 6282 /// Checks whether the given template argument is the address 6283 /// of an object or function according to C++ [temp.arg.nontype]p1. 6284 static bool CheckTemplateArgumentAddressOfObjectOrFunction( 6285 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, 6286 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { 6287 bool Invalid = false; 6288 Expr *Arg = ArgIn; 6289 QualType ArgType = Arg->getType(); 6290 6291 bool AddressTaken = false; 6292 SourceLocation AddrOpLoc; 6293 if (S.getLangOpts().MicrosoftExt) { 6294 // Microsoft Visual C++ strips all casts, allows an arbitrary number of 6295 // dereference and address-of operators. 6296 Arg = Arg->IgnoreParenCasts(); 6297 6298 bool ExtWarnMSTemplateArg = false; 6299 UnaryOperatorKind FirstOpKind; 6300 SourceLocation FirstOpLoc; 6301 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6302 UnaryOperatorKind UnOpKind = UnOp->getOpcode(); 6303 if (UnOpKind == UO_Deref) 6304 ExtWarnMSTemplateArg = true; 6305 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { 6306 Arg = UnOp->getSubExpr()->IgnoreParenCasts(); 6307 if (!AddrOpLoc.isValid()) { 6308 FirstOpKind = UnOpKind; 6309 FirstOpLoc = UnOp->getOperatorLoc(); 6310 } 6311 } else 6312 break; 6313 } 6314 if (FirstOpLoc.isValid()) { 6315 if (ExtWarnMSTemplateArg) 6316 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) 6317 << ArgIn->getSourceRange(); 6318 6319 if (FirstOpKind == UO_AddrOf) 6320 AddressTaken = true; 6321 else if (Arg->getType()->isPointerType()) { 6322 // We cannot let pointers get dereferenced here, that is obviously not a 6323 // constant expression. 6324 assert(FirstOpKind == UO_Deref); 6325 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6326 << Arg->getSourceRange(); 6327 } 6328 } 6329 } else { 6330 // See through any implicit casts we added to fix the type. 6331 Arg = Arg->IgnoreImpCasts(); 6332 6333 // C++ [temp.arg.nontype]p1: 6334 // 6335 // A template-argument for a non-type, non-template 6336 // template-parameter shall be one of: [...] 6337 // 6338 // -- the address of an object or function with external 6339 // linkage, including function templates and function 6340 // template-ids but excluding non-static class members, 6341 // expressed as & id-expression where the & is optional if 6342 // the name refers to a function or array, or if the 6343 // corresponding template-parameter is a reference; or 6344 6345 // In C++98/03 mode, give an extension warning on any extra parentheses. 6346 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6347 bool ExtraParens = false; 6348 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6349 if (!Invalid && !ExtraParens) { 6350 S.Diag(Arg->getBeginLoc(), 6351 S.getLangOpts().CPlusPlus11 6352 ? diag::warn_cxx98_compat_template_arg_extra_parens 6353 : diag::ext_template_arg_extra_parens) 6354 << Arg->getSourceRange(); 6355 ExtraParens = true; 6356 } 6357 6358 Arg = Parens->getSubExpr(); 6359 } 6360 6361 while (SubstNonTypeTemplateParmExpr *subst = 6362 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6363 Arg = subst->getReplacement()->IgnoreImpCasts(); 6364 6365 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6366 if (UnOp->getOpcode() == UO_AddrOf) { 6367 Arg = UnOp->getSubExpr(); 6368 AddressTaken = true; 6369 AddrOpLoc = UnOp->getOperatorLoc(); 6370 } 6371 } 6372 6373 while (SubstNonTypeTemplateParmExpr *subst = 6374 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6375 Arg = subst->getReplacement()->IgnoreImpCasts(); 6376 } 6377 6378 ValueDecl *Entity = nullptr; 6379 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) 6380 Entity = DRE->getDecl(); 6381 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) 6382 Entity = CUE->getGuidDecl(); 6383 6384 // If our parameter has pointer type, check for a null template value. 6385 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 6386 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, 6387 Entity)) { 6388 case NPV_NullPointer: 6389 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6390 SugaredConverted = TemplateArgument(ParamType, 6391 /*isNullPtr=*/true); 6392 CanonicalConverted = 6393 TemplateArgument(S.Context.getCanonicalType(ParamType), 6394 /*isNullPtr=*/true); 6395 return false; 6396 6397 case NPV_Error: 6398 return true; 6399 6400 case NPV_NotNullPointer: 6401 break; 6402 } 6403 } 6404 6405 // Stop checking the precise nature of the argument if it is value dependent, 6406 // it should be checked when instantiated. 6407 if (Arg->isValueDependent()) { 6408 SugaredConverted = TemplateArgument(ArgIn); 6409 CanonicalConverted = 6410 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6411 return false; 6412 } 6413 6414 if (!Entity) { 6415 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6416 << Arg->getSourceRange(); 6417 S.NoteTemplateParameterLocation(*Param); 6418 return true; 6419 } 6420 6421 // Cannot refer to non-static data members 6422 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { 6423 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) 6424 << Entity << Arg->getSourceRange(); 6425 S.NoteTemplateParameterLocation(*Param); 6426 return true; 6427 } 6428 6429 // Cannot refer to non-static member functions 6430 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 6431 if (!Method->isStatic()) { 6432 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) 6433 << Method << Arg->getSourceRange(); 6434 S.NoteTemplateParameterLocation(*Param); 6435 return true; 6436 } 6437 } 6438 6439 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 6440 VarDecl *Var = dyn_cast<VarDecl>(Entity); 6441 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); 6442 6443 // A non-type template argument must refer to an object or function. 6444 if (!Func && !Var && !Guid) { 6445 // We found something, but we don't know specifically what it is. 6446 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) 6447 << Arg->getSourceRange(); 6448 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); 6449 return true; 6450 } 6451 6452 // Address / reference template args must have external linkage in C++98. 6453 if (Entity->getFormalLinkage() == Linkage::Internal) { 6454 S.Diag(Arg->getBeginLoc(), 6455 S.getLangOpts().CPlusPlus11 6456 ? diag::warn_cxx98_compat_template_arg_object_internal 6457 : diag::ext_template_arg_object_internal) 6458 << !Func << Entity << Arg->getSourceRange(); 6459 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6460 << !Func; 6461 } else if (!Entity->hasLinkage()) { 6462 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) 6463 << !Func << Entity << Arg->getSourceRange(); 6464 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 6465 << !Func; 6466 return true; 6467 } 6468 6469 if (Var) { 6470 // A value of reference type is not an object. 6471 if (Var->getType()->isReferenceType()) { 6472 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) 6473 << Var->getType() << Arg->getSourceRange(); 6474 S.NoteTemplateParameterLocation(*Param); 6475 return true; 6476 } 6477 6478 // A template argument must have static storage duration. 6479 if (Var->getTLSKind()) { 6480 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) 6481 << Arg->getSourceRange(); 6482 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 6483 return true; 6484 } 6485 } 6486 6487 if (AddressTaken && ParamType->isReferenceType()) { 6488 // If we originally had an address-of operator, but the 6489 // parameter has reference type, complain and (if things look 6490 // like they will work) drop the address-of operator. 6491 if (!S.Context.hasSameUnqualifiedType(Entity->getType(), 6492 ParamType.getNonReferenceType())) { 6493 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6494 << ParamType; 6495 S.NoteTemplateParameterLocation(*Param); 6496 return true; 6497 } 6498 6499 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 6500 << ParamType 6501 << FixItHint::CreateRemoval(AddrOpLoc); 6502 S.NoteTemplateParameterLocation(*Param); 6503 6504 ArgType = Entity->getType(); 6505 } 6506 6507 // If the template parameter has pointer type, either we must have taken the 6508 // address or the argument must decay to a pointer. 6509 if (!AddressTaken && ParamType->isPointerType()) { 6510 if (Func) { 6511 // Function-to-pointer decay. 6512 ArgType = S.Context.getPointerType(Func->getType()); 6513 } else if (Entity->getType()->isArrayType()) { 6514 // Array-to-pointer decay. 6515 ArgType = S.Context.getArrayDecayedType(Entity->getType()); 6516 } else { 6517 // If the template parameter has pointer type but the address of 6518 // this object was not taken, complain and (possibly) recover by 6519 // taking the address of the entity. 6520 ArgType = S.Context.getPointerType(Entity->getType()); 6521 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 6522 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6523 << ParamType; 6524 S.NoteTemplateParameterLocation(*Param); 6525 return true; 6526 } 6527 6528 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) 6529 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); 6530 6531 S.NoteTemplateParameterLocation(*Param); 6532 } 6533 } 6534 6535 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, 6536 Arg, ArgType)) 6537 return true; 6538 6539 // Create the template argument. 6540 SugaredConverted = TemplateArgument(Entity, ParamType); 6541 CanonicalConverted = 6542 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 6543 S.Context.getCanonicalType(ParamType)); 6544 S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); 6545 return false; 6546 } 6547 6548 /// Checks whether the given template argument is a pointer to 6549 /// member constant according to C++ [temp.arg.nontype]p1. 6550 static bool 6551 CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, 6552 QualType ParamType, Expr *&ResultArg, 6553 TemplateArgument &SugaredConverted, 6554 TemplateArgument &CanonicalConverted) { 6555 bool Invalid = false; 6556 6557 Expr *Arg = ResultArg; 6558 bool ObjCLifetimeConversion; 6559 6560 // C++ [temp.arg.nontype]p1: 6561 // 6562 // A template-argument for a non-type, non-template 6563 // template-parameter shall be one of: [...] 6564 // 6565 // -- a pointer to member expressed as described in 5.3.1. 6566 DeclRefExpr *DRE = nullptr; 6567 6568 // In C++98/03 mode, give an extension warning on any extra parentheses. 6569 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 6570 bool ExtraParens = false; 6571 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 6572 if (!Invalid && !ExtraParens) { 6573 S.Diag(Arg->getBeginLoc(), 6574 S.getLangOpts().CPlusPlus11 6575 ? diag::warn_cxx98_compat_template_arg_extra_parens 6576 : diag::ext_template_arg_extra_parens) 6577 << Arg->getSourceRange(); 6578 ExtraParens = true; 6579 } 6580 6581 Arg = Parens->getSubExpr(); 6582 } 6583 6584 while (SubstNonTypeTemplateParmExpr *subst = 6585 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 6586 Arg = subst->getReplacement()->IgnoreImpCasts(); 6587 6588 // A pointer-to-member constant written &Class::member. 6589 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 6590 if (UnOp->getOpcode() == UO_AddrOf) { 6591 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 6592 if (DRE && !DRE->getQualifier()) 6593 DRE = nullptr; 6594 } 6595 } 6596 // A constant of pointer-to-member type. 6597 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 6598 ValueDecl *VD = DRE->getDecl(); 6599 if (VD->getType()->isMemberPointerType()) { 6600 if (isa<NonTypeTemplateParmDecl>(VD)) { 6601 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6602 SugaredConverted = TemplateArgument(Arg); 6603 CanonicalConverted = 6604 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6605 } else { 6606 SugaredConverted = TemplateArgument(VD, ParamType); 6607 CanonicalConverted = 6608 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), 6609 S.Context.getCanonicalType(ParamType)); 6610 } 6611 return Invalid; 6612 } 6613 } 6614 6615 DRE = nullptr; 6616 } 6617 6618 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; 6619 6620 // Check for a null pointer value. 6621 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, 6622 Entity)) { 6623 case NPV_Error: 6624 return true; 6625 case NPV_NullPointer: 6626 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 6627 SugaredConverted = TemplateArgument(ParamType, 6628 /*isNullPtr*/ true); 6629 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(ParamType), 6630 /*isNullPtr*/ true); 6631 return false; 6632 case NPV_NotNullPointer: 6633 break; 6634 } 6635 6636 if (S.IsQualificationConversion(ResultArg->getType(), 6637 ParamType.getNonReferenceType(), false, 6638 ObjCLifetimeConversion)) { 6639 ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, 6640 ResultArg->getValueKind()) 6641 .get(); 6642 } else if (!S.Context.hasSameUnqualifiedType( 6643 ResultArg->getType(), ParamType.getNonReferenceType())) { 6644 // We can't perform this conversion. 6645 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) 6646 << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); 6647 S.NoteTemplateParameterLocation(*Param); 6648 return true; 6649 } 6650 6651 if (!DRE) 6652 return S.Diag(Arg->getBeginLoc(), 6653 diag::err_template_arg_not_pointer_to_member_form) 6654 << Arg->getSourceRange(); 6655 6656 if (isa<FieldDecl>(DRE->getDecl()) || 6657 isa<IndirectFieldDecl>(DRE->getDecl()) || 6658 isa<CXXMethodDecl>(DRE->getDecl())) { 6659 assert((isa<FieldDecl>(DRE->getDecl()) || 6660 isa<IndirectFieldDecl>(DRE->getDecl()) || 6661 cast<CXXMethodDecl>(DRE->getDecl()) 6662 ->isImplicitObjectMemberFunction()) && 6663 "Only non-static member pointers can make it here"); 6664 6665 // Okay: this is the address of a non-static member, and therefore 6666 // a member pointer constant. 6667 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 6668 SugaredConverted = TemplateArgument(Arg); 6669 CanonicalConverted = 6670 S.Context.getCanonicalTemplateArgument(SugaredConverted); 6671 } else { 6672 ValueDecl *D = DRE->getDecl(); 6673 SugaredConverted = TemplateArgument(D, ParamType); 6674 CanonicalConverted = 6675 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()), 6676 S.Context.getCanonicalType(ParamType)); 6677 } 6678 return Invalid; 6679 } 6680 6681 // We found something else, but we don't know specifically what it is. 6682 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) 6683 << Arg->getSourceRange(); 6684 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 6685 return true; 6686 } 6687 6688 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 6689 QualType ParamType, Expr *Arg, 6690 TemplateArgument &SugaredConverted, 6691 TemplateArgument &CanonicalConverted, 6692 CheckTemplateArgumentKind CTAK) { 6693 SourceLocation StartLoc = Arg->getBeginLoc(); 6694 6695 // If the parameter type somehow involves auto, deduce the type now. 6696 DeducedType *DeducedT = ParamType->getContainedDeducedType(); 6697 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { 6698 // During template argument deduction, we allow 'decltype(auto)' to 6699 // match an arbitrary dependent argument. 6700 // FIXME: The language rules don't say what happens in this case. 6701 // FIXME: We get an opaque dependent type out of decltype(auto) if the 6702 // expression is merely instantiation-dependent; is this enough? 6703 if (Arg->isTypeDependent()) { 6704 auto *AT = dyn_cast<AutoType>(DeducedT); 6705 if (AT && AT->isDecltypeAuto()) { 6706 SugaredConverted = TemplateArgument(Arg); 6707 CanonicalConverted = TemplateArgument( 6708 Context.getCanonicalTemplateArgument(SugaredConverted)); 6709 return Arg; 6710 } 6711 } 6712 6713 // When checking a deduced template argument, deduce from its type even if 6714 // the type is dependent, in order to check the types of non-type template 6715 // arguments line up properly in partial ordering. 6716 Expr *DeductionArg = Arg; 6717 if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) 6718 DeductionArg = PE->getPattern(); 6719 TypeSourceInfo *TSI = 6720 Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); 6721 if (isa<DeducedTemplateSpecializationType>(DeducedT)) { 6722 InitializedEntity Entity = 6723 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6724 InitializationKind Kind = InitializationKind::CreateForInit( 6725 DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); 6726 Expr *Inits[1] = {DeductionArg}; 6727 ParamType = 6728 DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); 6729 if (ParamType.isNull()) 6730 return ExprError(); 6731 } else { 6732 TemplateDeductionInfo Info(DeductionArg->getExprLoc(), 6733 Param->getDepth() + 1); 6734 ParamType = QualType(); 6735 TemplateDeductionResult Result = 6736 DeduceAutoType(TSI->getTypeLoc(), DeductionArg, ParamType, Info, 6737 /*DependentDeduction=*/true, 6738 // We do not check constraints right now because the 6739 // immediately-declared constraint of the auto type is 6740 // also an associated constraint, and will be checked 6741 // along with the other associated constraints after 6742 // checking the template argument list. 6743 /*IgnoreConstraints=*/true); 6744 if (Result == TemplateDeductionResult::AlreadyDiagnosed) { 6745 if (ParamType.isNull()) 6746 return ExprError(); 6747 } else if (Result != TemplateDeductionResult::Success) { 6748 Diag(Arg->getExprLoc(), 6749 diag::err_non_type_template_parm_type_deduction_failure) 6750 << Param->getDeclName() << Param->getType() << Arg->getType() 6751 << Arg->getSourceRange(); 6752 NoteTemplateParameterLocation(*Param); 6753 return ExprError(); 6754 } 6755 } 6756 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's 6757 // an error. The error message normally references the parameter 6758 // declaration, but here we'll pass the argument location because that's 6759 // where the parameter type is deduced. 6760 ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); 6761 if (ParamType.isNull()) { 6762 NoteTemplateParameterLocation(*Param); 6763 return ExprError(); 6764 } 6765 } 6766 6767 // We should have already dropped all cv-qualifiers by now. 6768 assert(!ParamType.hasQualifiers() && 6769 "non-type template parameter type cannot be qualified"); 6770 6771 // FIXME: When Param is a reference, should we check that Arg is an lvalue? 6772 if (CTAK == CTAK_Deduced && 6773 (ParamType->isReferenceType() 6774 ? !Context.hasSameType(ParamType.getNonReferenceType(), 6775 Arg->getType()) 6776 : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { 6777 // FIXME: If either type is dependent, we skip the check. This isn't 6778 // correct, since during deduction we're supposed to have replaced each 6779 // template parameter with some unique (non-dependent) placeholder. 6780 // FIXME: If the argument type contains 'auto', we carry on and fail the 6781 // type check in order to force specific types to be more specialized than 6782 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to 6783 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. 6784 if ((ParamType->isDependentType() || Arg->isTypeDependent()) && 6785 !Arg->getType()->getContainedDeducedType()) { 6786 SugaredConverted = TemplateArgument(Arg); 6787 CanonicalConverted = TemplateArgument( 6788 Context.getCanonicalTemplateArgument(SugaredConverted)); 6789 return Arg; 6790 } 6791 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, 6792 // we should actually be checking the type of the template argument in P, 6793 // not the type of the template argument deduced from A, against the 6794 // template parameter type. 6795 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 6796 << Arg->getType() 6797 << ParamType.getUnqualifiedType(); 6798 NoteTemplateParameterLocation(*Param); 6799 return ExprError(); 6800 } 6801 6802 // If either the parameter has a dependent type or the argument is 6803 // type-dependent, there's nothing we can check now. 6804 if (ParamType->isDependentType() || Arg->isTypeDependent()) { 6805 // Force the argument to the type of the parameter to maintain invariants. 6806 auto *PE = dyn_cast<PackExpansionExpr>(Arg); 6807 if (PE) 6808 Arg = PE->getPattern(); 6809 ExprResult E = ImpCastExprToType( 6810 Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, 6811 ParamType->isLValueReferenceType() ? VK_LValue 6812 : ParamType->isRValueReferenceType() ? VK_XValue 6813 : VK_PRValue); 6814 if (E.isInvalid()) 6815 return ExprError(); 6816 if (PE) { 6817 // Recreate a pack expansion if we unwrapped one. 6818 E = new (Context) 6819 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), 6820 PE->getNumExpansions()); 6821 } 6822 SugaredConverted = TemplateArgument(E.get()); 6823 CanonicalConverted = TemplateArgument( 6824 Context.getCanonicalTemplateArgument(SugaredConverted)); 6825 return E; 6826 } 6827 6828 QualType CanonParamType = Context.getCanonicalType(ParamType); 6829 // Avoid making a copy when initializing a template parameter of class type 6830 // from a template parameter object of the same type. This is going beyond 6831 // the standard, but is required for soundness: in 6832 // template<A a> struct X { X *p; X<a> *q; }; 6833 // ... we need p and q to have the same type. 6834 // 6835 // Similarly, don't inject a call to a copy constructor when initializing 6836 // from a template parameter of the same type. 6837 Expr *InnerArg = Arg->IgnoreParenImpCasts(); 6838 if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && 6839 Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { 6840 NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); 6841 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 6842 6843 SugaredConverted = TemplateArgument(TPO, ParamType); 6844 CanonicalConverted = 6845 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType); 6846 return Arg; 6847 } 6848 if (isa<NonTypeTemplateParmDecl>(ND)) { 6849 SugaredConverted = TemplateArgument(Arg); 6850 CanonicalConverted = 6851 Context.getCanonicalTemplateArgument(SugaredConverted); 6852 return Arg; 6853 } 6854 } 6855 6856 // The initialization of the parameter from the argument is 6857 // a constant-evaluated context. 6858 EnterExpressionEvaluationContext ConstantEvaluated( 6859 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6860 6861 bool IsConvertedConstantExpression = true; 6862 if (isa<InitListExpr>(Arg) || ParamType->isRecordType()) { 6863 InitializationKind Kind = InitializationKind::CreateForInit( 6864 Arg->getBeginLoc(), /*DirectInit=*/false, Arg); 6865 Expr *Inits[1] = {Arg}; 6866 InitializedEntity Entity = 6867 InitializedEntity::InitializeTemplateParameter(ParamType, Param); 6868 InitializationSequence InitSeq(*this, Entity, Kind, Inits); 6869 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Inits); 6870 if (Result.isInvalid() || !Result.get()) 6871 return ExprError(); 6872 Result = ActOnConstantExpression(Result.get()); 6873 if (Result.isInvalid() || !Result.get()) 6874 return ExprError(); 6875 Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(), 6876 /*DiscardedValue=*/false, 6877 /*IsConstexpr=*/true, /*IsTemplateArgument=*/true) 6878 .get(); 6879 IsConvertedConstantExpression = false; 6880 } 6881 6882 if (getLangOpts().CPlusPlus17) { 6883 // C++17 [temp.arg.nontype]p1: 6884 // A template-argument for a non-type template parameter shall be 6885 // a converted constant expression of the type of the template-parameter. 6886 APValue Value; 6887 ExprResult ArgResult; 6888 if (IsConvertedConstantExpression) { 6889 ArgResult = BuildConvertedConstantExpression(Arg, ParamType, 6890 CCEK_TemplateArg, Param); 6891 if (ArgResult.isInvalid()) 6892 return ExprError(); 6893 } else { 6894 ArgResult = Arg; 6895 } 6896 6897 // For a value-dependent argument, CheckConvertedConstantExpression is 6898 // permitted (and expected) to be unable to determine a value. 6899 if (ArgResult.get()->isValueDependent()) { 6900 SugaredConverted = TemplateArgument(ArgResult.get()); 6901 CanonicalConverted = 6902 Context.getCanonicalTemplateArgument(SugaredConverted); 6903 return ArgResult; 6904 } 6905 6906 APValue PreNarrowingValue; 6907 ArgResult = EvaluateConvertedConstantExpression( 6908 ArgResult.get(), ParamType, Value, CCEK_TemplateArg, /*RequireInt=*/ 6909 false, PreNarrowingValue); 6910 if (ArgResult.isInvalid()) 6911 return ExprError(); 6912 6913 if (Value.isLValue()) { 6914 APValue::LValueBase Base = Value.getLValueBase(); 6915 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); 6916 // For a non-type template-parameter of pointer or reference type, 6917 // the value of the constant expression shall not refer to 6918 assert(ParamType->isPointerOrReferenceType() || 6919 ParamType->isNullPtrType()); 6920 // -- a temporary object 6921 // -- a string literal 6922 // -- the result of a typeid expression, or 6923 // -- a predefined __func__ variable 6924 if (Base && 6925 (!VD || 6926 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(VD))) { 6927 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) 6928 << Arg->getSourceRange(); 6929 return ExprError(); 6930 } 6931 6932 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD && 6933 VD->getType()->isArrayType() && 6934 Value.getLValuePath()[0].getAsArrayIndex() == 0 && 6935 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { 6936 SugaredConverted = TemplateArgument(VD, ParamType); 6937 CanonicalConverted = TemplateArgument( 6938 cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType); 6939 return ArgResult.get(); 6940 } 6941 6942 // -- a subobject [until C++20] 6943 if (!getLangOpts().CPlusPlus20) { 6944 if (!Value.hasLValuePath() || Value.getLValuePath().size() || 6945 Value.isLValueOnePastTheEnd()) { 6946 Diag(StartLoc, diag::err_non_type_template_arg_subobject) 6947 << Value.getAsString(Context, ParamType); 6948 return ExprError(); 6949 } 6950 assert((VD || !ParamType->isReferenceType()) && 6951 "null reference should not be a constant expression"); 6952 assert((!VD || !ParamType->isNullPtrType()) && 6953 "non-null value of type nullptr_t?"); 6954 } 6955 } 6956 6957 if (Value.isAddrLabelDiff()) 6958 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); 6959 6960 SugaredConverted = TemplateArgument(Context, ParamType, Value); 6961 CanonicalConverted = TemplateArgument(Context, CanonParamType, Value); 6962 return ArgResult.get(); 6963 } 6964 6965 // C++ [temp.arg.nontype]p5: 6966 // The following conversions are performed on each expression used 6967 // as a non-type template-argument. If a non-type 6968 // template-argument cannot be converted to the type of the 6969 // corresponding template-parameter then the program is 6970 // ill-formed. 6971 if (ParamType->isIntegralOrEnumerationType()) { 6972 // C++11: 6973 // -- for a non-type template-parameter of integral or 6974 // enumeration type, conversions permitted in a converted 6975 // constant expression are applied. 6976 // 6977 // C++98: 6978 // -- for a non-type template-parameter of integral or 6979 // enumeration type, integral promotions (4.5) and integral 6980 // conversions (4.7) are applied. 6981 6982 if (getLangOpts().CPlusPlus11) { 6983 // C++ [temp.arg.nontype]p1: 6984 // A template-argument for a non-type, non-template template-parameter 6985 // shall be one of: 6986 // 6987 // -- for a non-type template-parameter of integral or enumeration 6988 // type, a converted constant expression of the type of the 6989 // template-parameter; or 6990 llvm::APSInt Value; 6991 ExprResult ArgResult = 6992 CheckConvertedConstantExpression(Arg, ParamType, Value, 6993 CCEK_TemplateArg); 6994 if (ArgResult.isInvalid()) 6995 return ExprError(); 6996 6997 // We can't check arbitrary value-dependent arguments. 6998 if (ArgResult.get()->isValueDependent()) { 6999 SugaredConverted = TemplateArgument(ArgResult.get()); 7000 CanonicalConverted = 7001 Context.getCanonicalTemplateArgument(SugaredConverted); 7002 return ArgResult; 7003 } 7004 7005 // Widen the argument value to sizeof(parameter type). This is almost 7006 // always a no-op, except when the parameter type is bool. In 7007 // that case, this may extend the argument from 1 bit to 8 bits. 7008 QualType IntegerType = ParamType; 7009 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 7010 IntegerType = Enum->getDecl()->getIntegerType(); 7011 Value = Value.extOrTrunc(IntegerType->isBitIntType() 7012 ? Context.getIntWidth(IntegerType) 7013 : Context.getTypeSize(IntegerType)); 7014 7015 SugaredConverted = TemplateArgument(Context, Value, ParamType); 7016 CanonicalConverted = 7017 TemplateArgument(Context, Value, Context.getCanonicalType(ParamType)); 7018 return ArgResult; 7019 } 7020 7021 ExprResult ArgResult = DefaultLvalueConversion(Arg); 7022 if (ArgResult.isInvalid()) 7023 return ExprError(); 7024 Arg = ArgResult.get(); 7025 7026 QualType ArgType = Arg->getType(); 7027 7028 // C++ [temp.arg.nontype]p1: 7029 // A template-argument for a non-type, non-template 7030 // template-parameter shall be one of: 7031 // 7032 // -- an integral constant-expression of integral or enumeration 7033 // type; or 7034 // -- the name of a non-type template-parameter; or 7035 llvm::APSInt Value; 7036 if (!ArgType->isIntegralOrEnumerationType()) { 7037 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) 7038 << ArgType << Arg->getSourceRange(); 7039 NoteTemplateParameterLocation(*Param); 7040 return ExprError(); 7041 } else if (!Arg->isValueDependent()) { 7042 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 7043 QualType T; 7044 7045 public: 7046 TmplArgICEDiagnoser(QualType T) : T(T) { } 7047 7048 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, 7049 SourceLocation Loc) override { 7050 return S.Diag(Loc, diag::err_template_arg_not_ice) << T; 7051 } 7052 } Diagnoser(ArgType); 7053 7054 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); 7055 if (!Arg) 7056 return ExprError(); 7057 } 7058 7059 // From here on out, all we care about is the unqualified form 7060 // of the argument type. 7061 ArgType = ArgType.getUnqualifiedType(); 7062 7063 // Try to convert the argument to the parameter's type. 7064 if (Context.hasSameType(ParamType, ArgType)) { 7065 // Okay: no conversion necessary 7066 } else if (ParamType->isBooleanType()) { 7067 // This is an integral-to-boolean conversion. 7068 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); 7069 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 7070 !ParamType->isEnumeralType()) { 7071 // This is an integral promotion or conversion. 7072 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); 7073 } else { 7074 // We can't perform this conversion. 7075 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) 7076 << Arg->getType() << ParamType << Arg->getSourceRange(); 7077 NoteTemplateParameterLocation(*Param); 7078 return ExprError(); 7079 } 7080 7081 // Add the value of this argument to the list of converted 7082 // arguments. We use the bitwidth and signedness of the template 7083 // parameter. 7084 if (Arg->isValueDependent()) { 7085 // The argument is value-dependent. Create a new 7086 // TemplateArgument with the converted expression. 7087 SugaredConverted = TemplateArgument(Arg); 7088 CanonicalConverted = 7089 Context.getCanonicalTemplateArgument(SugaredConverted); 7090 return Arg; 7091 } 7092 7093 QualType IntegerType = ParamType; 7094 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { 7095 IntegerType = Enum->getDecl()->getIntegerType(); 7096 } 7097 7098 if (ParamType->isBooleanType()) { 7099 // Value must be zero or one. 7100 Value = Value != 0; 7101 unsigned AllowedBits = Context.getTypeSize(IntegerType); 7102 if (Value.getBitWidth() != AllowedBits) 7103 Value = Value.extOrTrunc(AllowedBits); 7104 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7105 } else { 7106 llvm::APSInt OldValue = Value; 7107 7108 // Coerce the template argument's value to the value it will have 7109 // based on the template parameter's type. 7110 unsigned AllowedBits = IntegerType->isBitIntType() 7111 ? Context.getIntWidth(IntegerType) 7112 : Context.getTypeSize(IntegerType); 7113 if (Value.getBitWidth() != AllowedBits) 7114 Value = Value.extOrTrunc(AllowedBits); 7115 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 7116 7117 // Complain if an unsigned parameter received a negative value. 7118 if (IntegerType->isUnsignedIntegerOrEnumerationType() && 7119 (OldValue.isSigned() && OldValue.isNegative())) { 7120 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) 7121 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7122 << Arg->getSourceRange(); 7123 NoteTemplateParameterLocation(*Param); 7124 } 7125 7126 // Complain if we overflowed the template parameter's type. 7127 unsigned RequiredBits; 7128 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 7129 RequiredBits = OldValue.getActiveBits(); 7130 else if (OldValue.isUnsigned()) 7131 RequiredBits = OldValue.getActiveBits() + 1; 7132 else 7133 RequiredBits = OldValue.getSignificantBits(); 7134 if (RequiredBits > AllowedBits) { 7135 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) 7136 << toString(OldValue, 10) << toString(Value, 10) << Param->getType() 7137 << Arg->getSourceRange(); 7138 NoteTemplateParameterLocation(*Param); 7139 } 7140 } 7141 7142 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; 7143 SugaredConverted = TemplateArgument(Context, Value, T); 7144 CanonicalConverted = 7145 TemplateArgument(Context, Value, Context.getCanonicalType(T)); 7146 return Arg; 7147 } 7148 7149 QualType ArgType = Arg->getType(); 7150 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 7151 7152 // Handle pointer-to-function, reference-to-function, and 7153 // pointer-to-member-function all in (roughly) the same way. 7154 if (// -- For a non-type template-parameter of type pointer to 7155 // function, only the function-to-pointer conversion (4.3) is 7156 // applied. If the template-argument represents a set of 7157 // overloaded functions (or a pointer to such), the matching 7158 // function is selected from the set (13.4). 7159 (ParamType->isPointerType() && 7160 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || 7161 // -- For a non-type template-parameter of type reference to 7162 // function, no conversions apply. If the template-argument 7163 // represents a set of overloaded functions, the matching 7164 // function is selected from the set (13.4). 7165 (ParamType->isReferenceType() && 7166 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 7167 // -- For a non-type template-parameter of type pointer to 7168 // member function, no conversions apply. If the 7169 // template-argument represents a set of overloaded member 7170 // functions, the matching member function is selected from 7171 // the set (13.4). 7172 (ParamType->isMemberPointerType() && 7173 ParamType->castAs<MemberPointerType>()->getPointeeType() 7174 ->isFunctionType())) { 7175 7176 if (Arg->getType() == Context.OverloadTy) { 7177 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 7178 true, 7179 FoundResult)) { 7180 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7181 return ExprError(); 7182 7183 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7184 if (Res.isInvalid()) 7185 return ExprError(); 7186 Arg = Res.get(); 7187 ArgType = Arg->getType(); 7188 } else 7189 return ExprError(); 7190 } 7191 7192 if (!ParamType->isMemberPointerType()) { 7193 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7194 *this, Param, ParamType, Arg, SugaredConverted, 7195 CanonicalConverted)) 7196 return ExprError(); 7197 return Arg; 7198 } 7199 7200 if (CheckTemplateArgumentPointerToMember( 7201 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7202 return ExprError(); 7203 return Arg; 7204 } 7205 7206 if (ParamType->isPointerType()) { 7207 // -- for a non-type template-parameter of type pointer to 7208 // object, qualification conversions (4.4) and the 7209 // array-to-pointer conversion (4.2) are applied. 7210 // C++0x also allows a value of std::nullptr_t. 7211 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 7212 "Only object pointers allowed here"); 7213 7214 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7215 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7216 return ExprError(); 7217 return Arg; 7218 } 7219 7220 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 7221 // -- For a non-type template-parameter of type reference to 7222 // object, no conversions apply. The type referred to by the 7223 // reference may be more cv-qualified than the (otherwise 7224 // identical) type of the template-argument. The 7225 // template-parameter is bound directly to the 7226 // template-argument, which must be an lvalue. 7227 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 7228 "Only object references allowed here"); 7229 7230 if (Arg->getType() == Context.OverloadTy) { 7231 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 7232 ParamRefType->getPointeeType(), 7233 true, 7234 FoundResult)) { 7235 if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) 7236 return ExprError(); 7237 ExprResult Res = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 7238 if (Res.isInvalid()) 7239 return ExprError(); 7240 Arg = Res.get(); 7241 ArgType = Arg->getType(); 7242 } else 7243 return ExprError(); 7244 } 7245 7246 if (CheckTemplateArgumentAddressOfObjectOrFunction( 7247 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7248 return ExprError(); 7249 return Arg; 7250 } 7251 7252 // Deal with parameters of type std::nullptr_t. 7253 if (ParamType->isNullPtrType()) { 7254 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 7255 SugaredConverted = TemplateArgument(Arg); 7256 CanonicalConverted = 7257 Context.getCanonicalTemplateArgument(SugaredConverted); 7258 return Arg; 7259 } 7260 7261 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 7262 case NPV_NotNullPointer: 7263 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 7264 << Arg->getType() << ParamType; 7265 NoteTemplateParameterLocation(*Param); 7266 return ExprError(); 7267 7268 case NPV_Error: 7269 return ExprError(); 7270 7271 case NPV_NullPointer: 7272 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 7273 SugaredConverted = TemplateArgument(ParamType, 7274 /*isNullPtr=*/true); 7275 CanonicalConverted = TemplateArgument(Context.getCanonicalType(ParamType), 7276 /*isNullPtr=*/true); 7277 return Arg; 7278 } 7279 } 7280 7281 // -- For a non-type template-parameter of type pointer to data 7282 // member, qualification conversions (4.4) are applied. 7283 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 7284 7285 if (CheckTemplateArgumentPointerToMember( 7286 *this, Param, ParamType, Arg, SugaredConverted, CanonicalConverted)) 7287 return ExprError(); 7288 return Arg; 7289 } 7290 7291 static void DiagnoseTemplateParameterListArityMismatch( 7292 Sema &S, TemplateParameterList *New, TemplateParameterList *Old, 7293 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); 7294 7295 bool Sema::CheckTemplateTemplateArgument( 7296 TemplateTemplateParmDecl *Param, TemplateParameterList *Params, 7297 TemplateArgumentLoc &Arg, bool PartialOrdering, 7298 bool *MatchedPackOnParmToNonPackOnArg) { 7299 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 7300 auto [Template, DefaultArgs] = Name.getTemplateDeclAndDefaultArgs(); 7301 if (!Template) { 7302 // Any dependent template name is fine. 7303 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 7304 return false; 7305 } 7306 7307 if (Template->isInvalidDecl()) 7308 return true; 7309 7310 // C++0x [temp.arg.template]p1: 7311 // A template-argument for a template template-parameter shall be 7312 // the name of a class template or an alias template, expressed as an 7313 // id-expression. When the template-argument names a class template, only 7314 // primary class templates are considered when matching the 7315 // template template argument with the corresponding parameter; 7316 // partial specializations are not considered even if their 7317 // parameter lists match that of the template template parameter. 7318 // 7319 // Note that we also allow template template parameters here, which 7320 // will happen when we are dealing with, e.g., class template 7321 // partial specializations. 7322 if (!isa<ClassTemplateDecl>(Template) && 7323 !isa<TemplateTemplateParmDecl>(Template) && 7324 !isa<TypeAliasTemplateDecl>(Template) && 7325 !isa<BuiltinTemplateDecl>(Template)) { 7326 assert(isa<FunctionTemplateDecl>(Template) && 7327 "Only function templates are possible here"); 7328 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); 7329 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 7330 << Template; 7331 } 7332 7333 if (!getLangOpts().RelaxedTemplateTemplateArgs) 7334 return !TemplateParameterListsAreEqual( 7335 Template->getTemplateParameters(), Params, /*Complain=*/true, 7336 TPL_TemplateTemplateArgumentMatch, Arg.getLocation()); 7337 7338 // C++1z [temp.arg.template]p3: (DR 150) 7339 // A template-argument matches a template template-parameter P when P 7340 // is at least as specialized as the template-argument A. 7341 if (!isTemplateTemplateParameterAtLeastAsSpecializedAs( 7342 Params, Param, Template, DefaultArgs, Arg.getLocation(), 7343 PartialOrdering, MatchedPackOnParmToNonPackOnArg)) 7344 return true; 7345 // P2113 7346 // C++20[temp.func.order]p2 7347 // [...] If both deductions succeed, the partial ordering selects the 7348 // more constrained template (if one exists) as determined below. 7349 SmallVector<const Expr *, 3> ParamsAC, TemplateAC; 7350 Params->getAssociatedConstraints(ParamsAC); 7351 // C++20[temp.arg.template]p3 7352 // [...] In this comparison, if P is unconstrained, the constraints on A 7353 // are not considered. 7354 if (ParamsAC.empty()) 7355 return false; 7356 7357 Template->getAssociatedConstraints(TemplateAC); 7358 7359 bool IsParamAtLeastAsConstrained; 7360 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, 7361 IsParamAtLeastAsConstrained)) 7362 return true; 7363 if (!IsParamAtLeastAsConstrained) { 7364 Diag(Arg.getLocation(), 7365 diag::err_template_template_parameter_not_at_least_as_constrained) 7366 << Template << Param << Arg.getSourceRange(); 7367 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; 7368 Diag(Template->getLocation(), diag::note_entity_declared_at) << Template; 7369 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, 7370 TemplateAC); 7371 return true; 7372 } 7373 return false; 7374 } 7375 7376 static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl, 7377 unsigned HereDiagID, 7378 unsigned ExternalDiagID) { 7379 if (Decl.getLocation().isValid()) 7380 return S.Diag(Decl.getLocation(), HereDiagID); 7381 7382 SmallString<128> Str; 7383 llvm::raw_svector_ostream Out(Str); 7384 PrintingPolicy PP = S.getPrintingPolicy(); 7385 PP.TerseOutput = 1; 7386 Decl.print(Out, PP); 7387 return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str(); 7388 } 7389 7390 void Sema::NoteTemplateLocation(const NamedDecl &Decl, 7391 std::optional<SourceRange> ParamRange) { 7392 SemaDiagnosticBuilder DB = 7393 noteLocation(*this, Decl, diag::note_template_decl_here, 7394 diag::note_template_decl_external); 7395 if (ParamRange && ParamRange->isValid()) { 7396 assert(Decl.getLocation().isValid() && 7397 "Parameter range has location when Decl does not"); 7398 DB << *ParamRange; 7399 } 7400 } 7401 7402 void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) { 7403 noteLocation(*this, Decl, diag::note_template_param_here, 7404 diag::note_template_param_external); 7405 } 7406 7407 ExprResult Sema::BuildExpressionFromDeclTemplateArgument( 7408 const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc, 7409 NamedDecl *TemplateParam) { 7410 // C++ [temp.param]p8: 7411 // 7412 // A non-type template-parameter of type "array of T" or 7413 // "function returning T" is adjusted to be of type "pointer to 7414 // T" or "pointer to function returning T", respectively. 7415 if (ParamType->isArrayType()) 7416 ParamType = Context.getArrayDecayedType(ParamType); 7417 else if (ParamType->isFunctionType()) 7418 ParamType = Context.getPointerType(ParamType); 7419 7420 // For a NULL non-type template argument, return nullptr casted to the 7421 // parameter's type. 7422 if (Arg.getKind() == TemplateArgument::NullPtr) { 7423 return ImpCastExprToType( 7424 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 7425 ParamType, 7426 ParamType->getAs<MemberPointerType>() 7427 ? CK_NullToMemberPointer 7428 : CK_NullToPointer); 7429 } 7430 assert(Arg.getKind() == TemplateArgument::Declaration && 7431 "Only declaration template arguments permitted here"); 7432 7433 ValueDecl *VD = Arg.getAsDecl(); 7434 7435 CXXScopeSpec SS; 7436 if (ParamType->isMemberPointerType()) { 7437 // If this is a pointer to member, we need to use a qualified name to 7438 // form a suitable pointer-to-member constant. 7439 assert(VD->getDeclContext()->isRecord() && 7440 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || 7441 isa<IndirectFieldDecl>(VD))); 7442 QualType ClassType 7443 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 7444 NestedNameSpecifier *Qualifier 7445 = NestedNameSpecifier::Create(Context, nullptr, false, 7446 ClassType.getTypePtr()); 7447 SS.MakeTrivial(Context, Qualifier, Loc); 7448 } 7449 7450 ExprResult RefExpr = BuildDeclarationNameExpr( 7451 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); 7452 if (RefExpr.isInvalid()) 7453 return ExprError(); 7454 7455 // For a pointer, the argument declaration is the pointee. Take its address. 7456 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); 7457 if (ParamType->isPointerType() && !ElemT.isNull() && 7458 Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { 7459 // Decay an array argument if we want a pointer to its first element. 7460 RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); 7461 if (RefExpr.isInvalid()) 7462 return ExprError(); 7463 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { 7464 // For any other pointer, take the address (or form a pointer-to-member). 7465 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 7466 if (RefExpr.isInvalid()) 7467 return ExprError(); 7468 } else if (ParamType->isRecordType()) { 7469 assert(isa<TemplateParamObjectDecl>(VD) && 7470 "arg for class template param not a template parameter object"); 7471 // No conversions apply in this case. 7472 return RefExpr; 7473 } else { 7474 assert(ParamType->isReferenceType() && 7475 "unexpected type for decl template argument"); 7476 if (NonTypeTemplateParmDecl *NTTP = 7477 dyn_cast_if_present<NonTypeTemplateParmDecl>(TemplateParam)) { 7478 QualType TemplateParamType = NTTP->getType(); 7479 const AutoType *AT = TemplateParamType->getAs<AutoType>(); 7480 if (AT && AT->isDecltypeAuto()) { 7481 RefExpr = new (getASTContext()) SubstNonTypeTemplateParmExpr( 7482 ParamType->getPointeeType(), RefExpr.get()->getValueKind(), 7483 RefExpr.get()->getExprLoc(), RefExpr.get(), VD, NTTP->getIndex(), 7484 /*PackIndex=*/std::nullopt, 7485 /*RefParam=*/true); 7486 } 7487 } 7488 } 7489 7490 // At this point we should have the right value category. 7491 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && 7492 "value kind mismatch for non-type template argument"); 7493 7494 // The type of the template parameter can differ from the type of the 7495 // argument in various ways; convert it now if necessary. 7496 QualType DestExprType = ParamType.getNonLValueExprType(Context); 7497 if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { 7498 CastKind CK; 7499 QualType Ignored; 7500 if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || 7501 IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { 7502 CK = CK_NoOp; 7503 } else if (ParamType->isVoidPointerType() && 7504 RefExpr.get()->getType()->isPointerType()) { 7505 CK = CK_BitCast; 7506 } else { 7507 // FIXME: Pointers to members can need conversion derived-to-base or 7508 // base-to-derived conversions. We currently don't retain enough 7509 // information to convert properly (we need to track a cast path or 7510 // subobject number in the template argument). 7511 llvm_unreachable( 7512 "unexpected conversion required for non-type template argument"); 7513 } 7514 RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, 7515 RefExpr.get()->getValueKind()); 7516 } 7517 7518 return RefExpr; 7519 } 7520 7521 /// Construct a new expression that refers to the given 7522 /// integral template argument with the given source-location 7523 /// information. 7524 /// 7525 /// This routine takes care of the mapping from an integral template 7526 /// argument (which may have any integral type) to the appropriate 7527 /// literal value. 7528 static Expr *BuildExpressionFromIntegralTemplateArgumentValue( 7529 Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) { 7530 assert(OrigT->isIntegralOrEnumerationType()); 7531 7532 // If this is an enum type that we're instantiating, we need to use an integer 7533 // type the same size as the enumerator. We don't want to build an 7534 // IntegerLiteral with enum type. The integer type of an enum type can be of 7535 // any integral type with C++11 enum classes, make sure we create the right 7536 // type of literal for it. 7537 QualType T = OrigT; 7538 if (const EnumType *ET = OrigT->getAs<EnumType>()) 7539 T = ET->getDecl()->getIntegerType(); 7540 7541 Expr *E; 7542 if (T->isAnyCharacterType()) { 7543 CharacterLiteralKind Kind; 7544 if (T->isWideCharType()) 7545 Kind = CharacterLiteralKind::Wide; 7546 else if (T->isChar8Type() && S.getLangOpts().Char8) 7547 Kind = CharacterLiteralKind::UTF8; 7548 else if (T->isChar16Type()) 7549 Kind = CharacterLiteralKind::UTF16; 7550 else if (T->isChar32Type()) 7551 Kind = CharacterLiteralKind::UTF32; 7552 else 7553 Kind = CharacterLiteralKind::Ascii; 7554 7555 E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc); 7556 } else if (T->isBooleanType()) { 7557 E = CXXBoolLiteralExpr::Create(S.Context, Int.getBoolValue(), T, Loc); 7558 } else { 7559 E = IntegerLiteral::Create(S.Context, Int, T, Loc); 7560 } 7561 7562 if (OrigT->isEnumeralType()) { 7563 // FIXME: This is a hack. We need a better way to handle substituted 7564 // non-type template parameters. 7565 E = CStyleCastExpr::Create(S.Context, OrigT, VK_PRValue, CK_IntegralCast, E, 7566 nullptr, S.CurFPFeatureOverrides(), 7567 S.Context.getTrivialTypeSourceInfo(OrigT, Loc), 7568 Loc, Loc); 7569 } 7570 7571 return E; 7572 } 7573 7574 static Expr *BuildExpressionFromNonTypeTemplateArgumentValue( 7575 Sema &S, QualType T, const APValue &Val, SourceLocation Loc) { 7576 auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * { 7577 auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc); 7578 ILE->setType(T); 7579 return ILE; 7580 }; 7581 7582 switch (Val.getKind()) { 7583 case APValue::AddrLabelDiff: 7584 // This cannot occur in a template argument at all. 7585 case APValue::Array: 7586 case APValue::Struct: 7587 case APValue::Union: 7588 // These can only occur within a template parameter object, which is 7589 // represented as a TemplateArgument::Declaration. 7590 llvm_unreachable("unexpected template argument value"); 7591 7592 case APValue::Int: 7593 return BuildExpressionFromIntegralTemplateArgumentValue(S, T, Val.getInt(), 7594 Loc); 7595 7596 case APValue::Float: 7597 return FloatingLiteral::Create(S.Context, Val.getFloat(), /*IsExact=*/true, 7598 T, Loc); 7599 7600 case APValue::FixedPoint: 7601 return FixedPointLiteral::CreateFromRawInt( 7602 S.Context, Val.getFixedPoint().getValue(), T, Loc, 7603 Val.getFixedPoint().getScale()); 7604 7605 case APValue::ComplexInt: { 7606 QualType ElemT = T->castAs<ComplexType>()->getElementType(); 7607 return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue( 7608 S, ElemT, Val.getComplexIntReal(), Loc), 7609 BuildExpressionFromIntegralTemplateArgumentValue( 7610 S, ElemT, Val.getComplexIntImag(), Loc)}); 7611 } 7612 7613 case APValue::ComplexFloat: { 7614 QualType ElemT = T->castAs<ComplexType>()->getElementType(); 7615 return MakeInitList( 7616 {FloatingLiteral::Create(S.Context, Val.getComplexFloatReal(), true, 7617 ElemT, Loc), 7618 FloatingLiteral::Create(S.Context, Val.getComplexFloatImag(), true, 7619 ElemT, Loc)}); 7620 } 7621 7622 case APValue::Vector: { 7623 QualType ElemT = T->castAs<VectorType>()->getElementType(); 7624 llvm::SmallVector<Expr *, 8> Elts; 7625 for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I) 7626 Elts.push_back(BuildExpressionFromNonTypeTemplateArgumentValue( 7627 S, ElemT, Val.getVectorElt(I), Loc)); 7628 return MakeInitList(Elts); 7629 } 7630 7631 case APValue::None: 7632 case APValue::Indeterminate: 7633 llvm_unreachable("Unexpected APValue kind."); 7634 case APValue::LValue: 7635 case APValue::MemberPointer: 7636 // There isn't necessarily a valid equivalent source-level syntax for 7637 // these; in particular, a naive lowering might violate access control. 7638 // So for now we lower to a ConstantExpr holding the value, wrapped around 7639 // an OpaqueValueExpr. 7640 // FIXME: We should have a better representation for this. 7641 ExprValueKind VK = VK_PRValue; 7642 if (T->isReferenceType()) { 7643 T = T->getPointeeType(); 7644 VK = VK_LValue; 7645 } 7646 auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK); 7647 return ConstantExpr::Create(S.Context, OVE, Val); 7648 } 7649 llvm_unreachable("Unhandled APValue::ValueKind enum"); 7650 } 7651 7652 ExprResult 7653 Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, 7654 SourceLocation Loc) { 7655 switch (Arg.getKind()) { 7656 case TemplateArgument::Null: 7657 case TemplateArgument::Type: 7658 case TemplateArgument::Template: 7659 case TemplateArgument::TemplateExpansion: 7660 case TemplateArgument::Pack: 7661 llvm_unreachable("not a non-type template argument"); 7662 7663 case TemplateArgument::Expression: 7664 return Arg.getAsExpr(); 7665 7666 case TemplateArgument::NullPtr: 7667 case TemplateArgument::Declaration: 7668 return BuildExpressionFromDeclTemplateArgument( 7669 Arg, Arg.getNonTypeTemplateArgumentType(), Loc); 7670 7671 case TemplateArgument::Integral: 7672 return BuildExpressionFromIntegralTemplateArgumentValue( 7673 *this, Arg.getIntegralType(), Arg.getAsIntegral(), Loc); 7674 7675 case TemplateArgument::StructuralValue: 7676 return BuildExpressionFromNonTypeTemplateArgumentValue( 7677 *this, Arg.getStructuralValueType(), Arg.getAsStructuralValue(), Loc); 7678 } 7679 llvm_unreachable("Unhandled TemplateArgument::ArgKind enum"); 7680 } 7681 7682 /// Match two template parameters within template parameter lists. 7683 static bool MatchTemplateParameterKind( 7684 Sema &S, NamedDecl *New, 7685 const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old, 7686 const NamedDecl *OldInstFrom, bool Complain, 7687 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { 7688 // Check the actual kind (type, non-type, template). 7689 if (Old->getKind() != New->getKind()) { 7690 if (Complain) { 7691 unsigned NextDiag = diag::err_template_param_different_kind; 7692 if (TemplateArgLoc.isValid()) { 7693 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7694 NextDiag = diag::note_template_param_different_kind; 7695 } 7696 S.Diag(New->getLocation(), NextDiag) 7697 << (Kind != Sema::TPL_TemplateMatch); 7698 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 7699 << (Kind != Sema::TPL_TemplateMatch); 7700 } 7701 7702 return false; 7703 } 7704 7705 // Check that both are parameter packs or neither are parameter packs. 7706 // However, if we are matching a template template argument to a 7707 // template template parameter, the template template parameter can have 7708 // a parameter pack where the template template argument does not. 7709 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 7710 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 7711 Old->isTemplateParameterPack())) { 7712 if (Complain) { 7713 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 7714 if (TemplateArgLoc.isValid()) { 7715 S.Diag(TemplateArgLoc, 7716 diag::err_template_arg_template_params_mismatch); 7717 NextDiag = diag::note_template_parameter_pack_non_pack; 7718 } 7719 7720 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 7721 : isa<NonTypeTemplateParmDecl>(New)? 1 7722 : 2; 7723 S.Diag(New->getLocation(), NextDiag) 7724 << ParamKind << New->isParameterPack(); 7725 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 7726 << ParamKind << Old->isParameterPack(); 7727 } 7728 7729 return false; 7730 } 7731 7732 // For non-type template parameters, check the type of the parameter. 7733 if (NonTypeTemplateParmDecl *OldNTTP 7734 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 7735 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 7736 7737 // If we are matching a template template argument to a template 7738 // template parameter and one of the non-type template parameter types 7739 // is dependent, then we must wait until template instantiation time 7740 // to actually compare the arguments. 7741 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || 7742 (!OldNTTP->getType()->isDependentType() && 7743 !NewNTTP->getType()->isDependentType())) { 7744 // C++20 [temp.over.link]p6: 7745 // Two [non-type] template-parameters are equivalent [if] they have 7746 // equivalent types ignoring the use of type-constraints for 7747 // placeholder types 7748 QualType OldType = S.Context.getUnconstrainedType(OldNTTP->getType()); 7749 QualType NewType = S.Context.getUnconstrainedType(NewNTTP->getType()); 7750 if (!S.Context.hasSameType(OldType, NewType)) { 7751 if (Complain) { 7752 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 7753 if (TemplateArgLoc.isValid()) { 7754 S.Diag(TemplateArgLoc, 7755 diag::err_template_arg_template_params_mismatch); 7756 NextDiag = diag::note_template_nontype_parm_different_type; 7757 } 7758 S.Diag(NewNTTP->getLocation(), NextDiag) 7759 << NewNTTP->getType() 7760 << (Kind != Sema::TPL_TemplateMatch); 7761 S.Diag(OldNTTP->getLocation(), 7762 diag::note_template_nontype_parm_prev_declaration) 7763 << OldNTTP->getType(); 7764 } 7765 7766 return false; 7767 } 7768 } 7769 } 7770 // For template template parameters, check the template parameter types. 7771 // The template parameter lists of template template 7772 // parameters must agree. 7773 else if (TemplateTemplateParmDecl *OldTTP = 7774 dyn_cast<TemplateTemplateParmDecl>(Old)) { 7775 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 7776 if (!S.TemplateParameterListsAreEqual( 7777 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom, 7778 OldTTP->getTemplateParameters(), Complain, 7779 (Kind == Sema::TPL_TemplateMatch 7780 ? Sema::TPL_TemplateTemplateParmMatch 7781 : Kind), 7782 TemplateArgLoc)) 7783 return false; 7784 } 7785 7786 if (Kind != Sema::TPL_TemplateParamsEquivalent && 7787 Kind != Sema::TPL_TemplateTemplateArgumentMatch && 7788 !isa<TemplateTemplateParmDecl>(Old)) { 7789 const Expr *NewC = nullptr, *OldC = nullptr; 7790 7791 if (isa<TemplateTypeParmDecl>(New)) { 7792 if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) 7793 NewC = TC->getImmediatelyDeclaredConstraint(); 7794 if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) 7795 OldC = TC->getImmediatelyDeclaredConstraint(); 7796 } else if (isa<NonTypeTemplateParmDecl>(New)) { 7797 if (const Expr *E = cast<NonTypeTemplateParmDecl>(New) 7798 ->getPlaceholderTypeConstraint()) 7799 NewC = E; 7800 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Old) 7801 ->getPlaceholderTypeConstraint()) 7802 OldC = E; 7803 } else 7804 llvm_unreachable("unexpected template parameter type"); 7805 7806 auto Diagnose = [&] { 7807 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), 7808 diag::err_template_different_type_constraint); 7809 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), 7810 diag::note_template_prev_declaration) << /*declaration*/0; 7811 }; 7812 7813 if (!NewC != !OldC) { 7814 if (Complain) 7815 Diagnose(); 7816 return false; 7817 } 7818 7819 if (NewC) { 7820 if (!S.AreConstraintExpressionsEqual(OldInstFrom, OldC, NewInstFrom, 7821 NewC)) { 7822 if (Complain) 7823 Diagnose(); 7824 return false; 7825 } 7826 } 7827 } 7828 7829 return true; 7830 } 7831 7832 /// Diagnose a known arity mismatch when comparing template argument 7833 /// lists. 7834 static 7835 void DiagnoseTemplateParameterListArityMismatch(Sema &S, 7836 TemplateParameterList *New, 7837 TemplateParameterList *Old, 7838 Sema::TemplateParameterListEqualKind Kind, 7839 SourceLocation TemplateArgLoc) { 7840 unsigned NextDiag = diag::err_template_param_list_different_arity; 7841 if (TemplateArgLoc.isValid()) { 7842 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 7843 NextDiag = diag::note_template_param_list_different_arity; 7844 } 7845 S.Diag(New->getTemplateLoc(), NextDiag) 7846 << (New->size() > Old->size()) 7847 << (Kind != Sema::TPL_TemplateMatch) 7848 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 7849 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 7850 << (Kind != Sema::TPL_TemplateMatch) 7851 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 7852 } 7853 7854 bool Sema::TemplateParameterListsAreEqual( 7855 const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, 7856 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, 7857 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { 7858 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 7859 if (Complain) 7860 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7861 TemplateArgLoc); 7862 7863 return false; 7864 } 7865 7866 // C++0x [temp.arg.template]p3: 7867 // A template-argument matches a template template-parameter (call it P) 7868 // when each of the template parameters in the template-parameter-list of 7869 // the template-argument's corresponding class template or alias template 7870 // (call it A) matches the corresponding template parameter in the 7871 // template-parameter-list of P. [...] 7872 TemplateParameterList::iterator NewParm = New->begin(); 7873 TemplateParameterList::iterator NewParmEnd = New->end(); 7874 for (TemplateParameterList::iterator OldParm = Old->begin(), 7875 OldParmEnd = Old->end(); 7876 OldParm != OldParmEnd; ++OldParm) { 7877 if (Kind != TPL_TemplateTemplateArgumentMatch || 7878 !(*OldParm)->isTemplateParameterPack()) { 7879 if (NewParm == NewParmEnd) { 7880 if (Complain) 7881 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7882 TemplateArgLoc); 7883 7884 return false; 7885 } 7886 7887 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 7888 OldInstFrom, Complain, Kind, 7889 TemplateArgLoc)) 7890 return false; 7891 7892 ++NewParm; 7893 continue; 7894 } 7895 7896 // C++0x [temp.arg.template]p3: 7897 // [...] When P's template- parameter-list contains a template parameter 7898 // pack (14.5.3), the template parameter pack will match zero or more 7899 // template parameters or template parameter packs in the 7900 // template-parameter-list of A with the same type and form as the 7901 // template parameter pack in P (ignoring whether those template 7902 // parameters are template parameter packs). 7903 for (; NewParm != NewParmEnd; ++NewParm) { 7904 if (!MatchTemplateParameterKind(*this, *NewParm, NewInstFrom, *OldParm, 7905 OldInstFrom, Complain, Kind, 7906 TemplateArgLoc)) 7907 return false; 7908 } 7909 } 7910 7911 // Make sure we exhausted all of the arguments. 7912 if (NewParm != NewParmEnd) { 7913 if (Complain) 7914 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 7915 TemplateArgLoc); 7916 7917 return false; 7918 } 7919 7920 if (Kind != TPL_TemplateTemplateArgumentMatch && 7921 Kind != TPL_TemplateParamsEquivalent) { 7922 const Expr *NewRC = New->getRequiresClause(); 7923 const Expr *OldRC = Old->getRequiresClause(); 7924 7925 auto Diagnose = [&] { 7926 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), 7927 diag::err_template_different_requires_clause); 7928 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), 7929 diag::note_template_prev_declaration) << /*declaration*/0; 7930 }; 7931 7932 if (!NewRC != !OldRC) { 7933 if (Complain) 7934 Diagnose(); 7935 return false; 7936 } 7937 7938 if (NewRC) { 7939 if (!AreConstraintExpressionsEqual(OldInstFrom, OldRC, NewInstFrom, 7940 NewRC)) { 7941 if (Complain) 7942 Diagnose(); 7943 return false; 7944 } 7945 } 7946 } 7947 7948 return true; 7949 } 7950 7951 bool 7952 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 7953 if (!S) 7954 return false; 7955 7956 // Find the nearest enclosing declaration scope. 7957 S = S->getDeclParent(); 7958 7959 // C++ [temp.pre]p6: [P2096] 7960 // A template, explicit specialization, or partial specialization shall not 7961 // have C linkage. 7962 DeclContext *Ctx = S->getEntity(); 7963 if (Ctx && Ctx->isExternCContext()) { 7964 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 7965 << TemplateParams->getSourceRange(); 7966 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) 7967 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); 7968 return true; 7969 } 7970 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; 7971 7972 // C++ [temp]p2: 7973 // A template-declaration can appear only as a namespace scope or 7974 // class scope declaration. 7975 // C++ [temp.expl.spec]p3: 7976 // An explicit specialization may be declared in any scope in which the 7977 // corresponding primary template may be defined. 7978 // C++ [temp.class.spec]p6: [P2096] 7979 // A partial specialization may be declared in any scope in which the 7980 // corresponding primary template may be defined. 7981 if (Ctx) { 7982 if (Ctx->isFileContext()) 7983 return false; 7984 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { 7985 // C++ [temp.mem]p2: 7986 // A local class shall not have member templates. 7987 if (RD->isLocalClass()) 7988 return Diag(TemplateParams->getTemplateLoc(), 7989 diag::err_template_inside_local_class) 7990 << TemplateParams->getSourceRange(); 7991 else 7992 return false; 7993 } 7994 } 7995 7996 return Diag(TemplateParams->getTemplateLoc(), 7997 diag::err_template_outside_namespace_or_class_scope) 7998 << TemplateParams->getSourceRange(); 7999 } 8000 8001 /// Determine what kind of template specialization the given declaration 8002 /// is. 8003 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 8004 if (!D) 8005 return TSK_Undeclared; 8006 8007 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 8008 return Record->getTemplateSpecializationKind(); 8009 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 8010 return Function->getTemplateSpecializationKind(); 8011 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 8012 return Var->getTemplateSpecializationKind(); 8013 8014 return TSK_Undeclared; 8015 } 8016 8017 /// Check whether a specialization is well-formed in the current 8018 /// context. 8019 /// 8020 /// This routine determines whether a template specialization can be declared 8021 /// in the current context (C++ [temp.expl.spec]p2). 8022 /// 8023 /// \param S the semantic analysis object for which this check is being 8024 /// performed. 8025 /// 8026 /// \param Specialized the entity being specialized or instantiated, which 8027 /// may be a kind of template (class template, function template, etc.) or 8028 /// a member of a class template (member function, static data member, 8029 /// member class). 8030 /// 8031 /// \param PrevDecl the previous declaration of this entity, if any. 8032 /// 8033 /// \param Loc the location of the explicit specialization or instantiation of 8034 /// this entity. 8035 /// 8036 /// \param IsPartialSpecialization whether this is a partial specialization of 8037 /// a class template. 8038 /// 8039 /// \returns true if there was an error that we cannot recover from, false 8040 /// otherwise. 8041 static bool CheckTemplateSpecializationScope(Sema &S, 8042 NamedDecl *Specialized, 8043 NamedDecl *PrevDecl, 8044 SourceLocation Loc, 8045 bool IsPartialSpecialization) { 8046 // Keep these "kind" numbers in sync with the %select statements in the 8047 // various diagnostics emitted by this routine. 8048 int EntityKind = 0; 8049 if (isa<ClassTemplateDecl>(Specialized)) 8050 EntityKind = IsPartialSpecialization? 1 : 0; 8051 else if (isa<VarTemplateDecl>(Specialized)) 8052 EntityKind = IsPartialSpecialization ? 3 : 2; 8053 else if (isa<FunctionTemplateDecl>(Specialized)) 8054 EntityKind = 4; 8055 else if (isa<CXXMethodDecl>(Specialized)) 8056 EntityKind = 5; 8057 else if (isa<VarDecl>(Specialized)) 8058 EntityKind = 6; 8059 else if (isa<RecordDecl>(Specialized)) 8060 EntityKind = 7; 8061 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 8062 EntityKind = 8; 8063 else { 8064 S.Diag(Loc, diag::err_template_spec_unknown_kind) 8065 << S.getLangOpts().CPlusPlus11; 8066 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8067 return true; 8068 } 8069 8070 // C++ [temp.expl.spec]p2: 8071 // An explicit specialization may be declared in any scope in which 8072 // the corresponding primary template may be defined. 8073 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8074 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 8075 << Specialized; 8076 return true; 8077 } 8078 8079 // C++ [temp.class.spec]p6: 8080 // A class template partial specialization may be declared in any 8081 // scope in which the primary template may be defined. 8082 DeclContext *SpecializedContext = 8083 Specialized->getDeclContext()->getRedeclContext(); 8084 DeclContext *DC = S.CurContext->getRedeclContext(); 8085 8086 // Make sure that this redeclaration (or definition) occurs in the same 8087 // scope or an enclosing namespace. 8088 if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) 8089 : DC->Equals(SpecializedContext))) { 8090 if (isa<TranslationUnitDecl>(SpecializedContext)) 8091 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 8092 << EntityKind << Specialized; 8093 else { 8094 auto *ND = cast<NamedDecl>(SpecializedContext); 8095 int Diag = diag::err_template_spec_redecl_out_of_scope; 8096 if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) 8097 Diag = diag::ext_ms_template_spec_redecl_out_of_scope; 8098 S.Diag(Loc, Diag) << EntityKind << Specialized 8099 << ND << isa<CXXRecordDecl>(ND); 8100 } 8101 8102 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 8103 8104 // Don't allow specializing in the wrong class during error recovery. 8105 // Otherwise, things can go horribly wrong. 8106 if (DC->isRecord()) 8107 return true; 8108 } 8109 8110 return false; 8111 } 8112 8113 static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { 8114 if (!E->isTypeDependent()) 8115 return SourceLocation(); 8116 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8117 Checker.TraverseStmt(E); 8118 if (Checker.MatchLoc.isInvalid()) 8119 return E->getSourceRange(); 8120 return Checker.MatchLoc; 8121 } 8122 8123 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { 8124 if (!TL.getType()->isDependentType()) 8125 return SourceLocation(); 8126 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); 8127 Checker.TraverseTypeLoc(TL); 8128 if (Checker.MatchLoc.isInvalid()) 8129 return TL.getSourceRange(); 8130 return Checker.MatchLoc; 8131 } 8132 8133 /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs 8134 /// that checks non-type template partial specialization arguments. 8135 static bool CheckNonTypeTemplatePartialSpecializationArgs( 8136 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, 8137 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { 8138 for (unsigned I = 0; I != NumArgs; ++I) { 8139 if (Args[I].getKind() == TemplateArgument::Pack) { 8140 if (CheckNonTypeTemplatePartialSpecializationArgs( 8141 S, TemplateNameLoc, Param, Args[I].pack_begin(), 8142 Args[I].pack_size(), IsDefaultArgument)) 8143 return true; 8144 8145 continue; 8146 } 8147 8148 if (Args[I].getKind() != TemplateArgument::Expression) 8149 continue; 8150 8151 Expr *ArgExpr = Args[I].getAsExpr(); 8152 8153 // We can have a pack expansion of any of the bullets below. 8154 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 8155 ArgExpr = Expansion->getPattern(); 8156 8157 // Strip off any implicit casts we added as part of type checking. 8158 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 8159 ArgExpr = ICE->getSubExpr(); 8160 8161 // C++ [temp.class.spec]p8: 8162 // A non-type argument is non-specialized if it is the name of a 8163 // non-type parameter. All other non-type arguments are 8164 // specialized. 8165 // 8166 // Below, we check the two conditions that only apply to 8167 // specialized non-type arguments, so skip any non-specialized 8168 // arguments. 8169 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 8170 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 8171 continue; 8172 8173 // C++ [temp.class.spec]p9: 8174 // Within the argument list of a class template partial 8175 // specialization, the following restrictions apply: 8176 // -- A partially specialized non-type argument expression 8177 // shall not involve a template parameter of the partial 8178 // specialization except when the argument expression is a 8179 // simple identifier. 8180 // -- The type of a template parameter corresponding to a 8181 // specialized non-type argument shall not be dependent on a 8182 // parameter of the specialization. 8183 // DR1315 removes the first bullet, leaving an incoherent set of rules. 8184 // We implement a compromise between the original rules and DR1315: 8185 // -- A specialized non-type template argument shall not be 8186 // type-dependent and the corresponding template parameter 8187 // shall have a non-dependent type. 8188 SourceRange ParamUseRange = 8189 findTemplateParameterInType(Param->getDepth(), ArgExpr); 8190 if (ParamUseRange.isValid()) { 8191 if (IsDefaultArgument) { 8192 S.Diag(TemplateNameLoc, 8193 diag::err_dependent_non_type_arg_in_partial_spec); 8194 S.Diag(ParamUseRange.getBegin(), 8195 diag::note_dependent_non_type_default_arg_in_partial_spec) 8196 << ParamUseRange; 8197 } else { 8198 S.Diag(ParamUseRange.getBegin(), 8199 diag::err_dependent_non_type_arg_in_partial_spec) 8200 << ParamUseRange; 8201 } 8202 return true; 8203 } 8204 8205 ParamUseRange = findTemplateParameter( 8206 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); 8207 if (ParamUseRange.isValid()) { 8208 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), 8209 diag::err_dependent_typed_non_type_arg_in_partial_spec) 8210 << Param->getType(); 8211 S.NoteTemplateParameterLocation(*Param); 8212 return true; 8213 } 8214 } 8215 8216 return false; 8217 } 8218 8219 bool Sema::CheckTemplatePartialSpecializationArgs( 8220 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, 8221 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { 8222 // We have to be conservative when checking a template in a dependent 8223 // context. 8224 if (PrimaryTemplate->getDeclContext()->isDependentContext()) 8225 return false; 8226 8227 TemplateParameterList *TemplateParams = 8228 PrimaryTemplate->getTemplateParameters(); 8229 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8230 NonTypeTemplateParmDecl *Param 8231 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 8232 if (!Param) 8233 continue; 8234 8235 if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, 8236 Param, &TemplateArgs[I], 8237 1, I >= NumExplicit)) 8238 return true; 8239 } 8240 8241 return false; 8242 } 8243 8244 DeclResult Sema::ActOnClassTemplateSpecialization( 8245 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, 8246 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, 8247 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, 8248 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { 8249 assert(TUK != TagUseKind::Reference && "References are not specializations"); 8250 8251 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; 8252 SourceLocation LAngleLoc = TemplateId.LAngleLoc; 8253 SourceLocation RAngleLoc = TemplateId.RAngleLoc; 8254 8255 // Find the class template we're specializing 8256 TemplateName Name = TemplateId.Template.get(); 8257 ClassTemplateDecl *ClassTemplate 8258 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 8259 8260 if (!ClassTemplate) { 8261 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 8262 << (Name.getAsTemplateDecl() && 8263 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 8264 return true; 8265 } 8266 8267 if (S->isTemplateParamScope()) 8268 EnterTemplatedContext(S, ClassTemplate->getTemplatedDecl()); 8269 8270 DeclContext *DC = ClassTemplate->getDeclContext(); 8271 8272 bool isMemberSpecialization = false; 8273 bool isPartialSpecialization = false; 8274 8275 if (SS.isSet()) { 8276 if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend && 8277 diagnoseQualifiedDeclaration(SS, DC, ClassTemplate->getDeclName(), 8278 TemplateNameLoc, &TemplateId, 8279 /*IsMemberSpecialization=*/false)) 8280 return true; 8281 } 8282 8283 // Check the validity of the template headers that introduce this 8284 // template. 8285 // FIXME: We probably shouldn't complain about these headers for 8286 // friend declarations. 8287 bool Invalid = false; 8288 TemplateParameterList *TemplateParams = 8289 MatchTemplateParametersToScopeSpecifier( 8290 KWLoc, TemplateNameLoc, SS, &TemplateId, TemplateParameterLists, 8291 TUK == TagUseKind::Friend, isMemberSpecialization, Invalid); 8292 if (Invalid) 8293 return true; 8294 8295 // Check that we can declare a template specialization here. 8296 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) 8297 return true; 8298 8299 if (TemplateParams && DC->isDependentContext()) { 8300 ContextRAII SavedContext(*this, DC); 8301 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 8302 return true; 8303 } 8304 8305 if (TemplateParams && TemplateParams->size() > 0) { 8306 isPartialSpecialization = true; 8307 8308 if (TUK == TagUseKind::Friend) { 8309 Diag(KWLoc, diag::err_partial_specialization_friend) 8310 << SourceRange(LAngleLoc, RAngleLoc); 8311 return true; 8312 } 8313 8314 // C++ [temp.class.spec]p10: 8315 // The template parameter list of a specialization shall not 8316 // contain default template argument values. 8317 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 8318 Decl *Param = TemplateParams->getParam(I); 8319 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 8320 if (TTP->hasDefaultArgument()) { 8321 Diag(TTP->getDefaultArgumentLoc(), 8322 diag::err_default_arg_in_partial_spec); 8323 TTP->removeDefaultArgument(); 8324 } 8325 } else if (NonTypeTemplateParmDecl *NTTP 8326 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 8327 if (NTTP->hasDefaultArgument()) { 8328 Diag(NTTP->getDefaultArgumentLoc(), 8329 diag::err_default_arg_in_partial_spec) 8330 << NTTP->getDefaultArgument().getSourceRange(); 8331 NTTP->removeDefaultArgument(); 8332 } 8333 } else { 8334 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 8335 if (TTP->hasDefaultArgument()) { 8336 Diag(TTP->getDefaultArgument().getLocation(), 8337 diag::err_default_arg_in_partial_spec) 8338 << TTP->getDefaultArgument().getSourceRange(); 8339 TTP->removeDefaultArgument(); 8340 } 8341 } 8342 } 8343 } else if (TemplateParams) { 8344 if (TUK == TagUseKind::Friend) 8345 Diag(KWLoc, diag::err_template_spec_friend) 8346 << FixItHint::CreateRemoval( 8347 SourceRange(TemplateParams->getTemplateLoc(), 8348 TemplateParams->getRAngleLoc())) 8349 << SourceRange(LAngleLoc, RAngleLoc); 8350 } else { 8351 assert(TUK == TagUseKind::Friend && 8352 "should have a 'template<>' for this decl"); 8353 } 8354 8355 // Check that the specialization uses the same tag kind as the 8356 // original template. 8357 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 8358 assert(Kind != TagTypeKind::Enum && 8359 "Invalid enum tag in class template spec!"); 8360 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), Kind, 8361 TUK == TagUseKind::Definition, KWLoc, 8362 ClassTemplate->getIdentifier())) { 8363 Diag(KWLoc, diag::err_use_with_wrong_tag) 8364 << ClassTemplate 8365 << FixItHint::CreateReplacement(KWLoc, 8366 ClassTemplate->getTemplatedDecl()->getKindName()); 8367 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 8368 diag::note_previous_use); 8369 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 8370 } 8371 8372 // Translate the parser's template argument list in our AST format. 8373 TemplateArgumentListInfo TemplateArgs = 8374 makeTemplateArgumentListInfo(*this, TemplateId); 8375 8376 // Check for unexpanded parameter packs in any of the template arguments. 8377 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 8378 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 8379 isPartialSpecialization 8380 ? UPPC_PartialSpecialization 8381 : UPPC_ExplicitSpecialization)) 8382 return true; 8383 8384 // Check that the template argument list is well-formed for this 8385 // template. 8386 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 8387 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, 8388 /*DefaultArgs=*/{}, 8389 /*PartialTemplateArgs=*/false, SugaredConverted, 8390 CanonicalConverted, 8391 /*UpdateArgsWithConversions=*/true)) 8392 return true; 8393 8394 // Find the class template (partial) specialization declaration that 8395 // corresponds to these arguments. 8396 if (isPartialSpecialization) { 8397 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, 8398 TemplateArgs.size(), 8399 CanonicalConverted)) 8400 return true; 8401 8402 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we 8403 // also do it during instantiation. 8404 if (!Name.isDependent() && 8405 !TemplateSpecializationType::anyDependentTemplateArguments( 8406 TemplateArgs, CanonicalConverted)) { 8407 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 8408 << ClassTemplate->getDeclName(); 8409 isPartialSpecialization = false; 8410 Invalid = true; 8411 } 8412 } 8413 8414 void *InsertPos = nullptr; 8415 ClassTemplateSpecializationDecl *PrevDecl = nullptr; 8416 8417 if (isPartialSpecialization) 8418 PrevDecl = ClassTemplate->findPartialSpecialization( 8419 CanonicalConverted, TemplateParams, InsertPos); 8420 else 8421 PrevDecl = ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 8422 8423 ClassTemplateSpecializationDecl *Specialization = nullptr; 8424 8425 // Check whether we can declare a class template specialization in 8426 // the current scope. 8427 if (TUK != TagUseKind::Friend && 8428 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 8429 TemplateNameLoc, 8430 isPartialSpecialization)) 8431 return true; 8432 8433 // The canonical type 8434 QualType CanonType; 8435 if (isPartialSpecialization) { 8436 // Build the canonical type that describes the converted template 8437 // arguments of the class template partial specialization. 8438 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8439 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8440 CanonicalConverted); 8441 8442 if (Context.hasSameType(CanonType, 8443 ClassTemplate->getInjectedClassNameSpecialization()) && 8444 (!Context.getLangOpts().CPlusPlus20 || 8445 !TemplateParams->hasAssociatedConstraints())) { 8446 // C++ [temp.class.spec]p9b3: 8447 // 8448 // -- The argument list of the specialization shall not be identical 8449 // to the implicit argument list of the primary template. 8450 // 8451 // This rule has since been removed, because it's redundant given DR1495, 8452 // but we keep it because it produces better diagnostics and recovery. 8453 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 8454 << /*class template*/ 0 << (TUK == TagUseKind::Definition) 8455 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 8456 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 8457 ClassTemplate->getIdentifier(), 8458 TemplateNameLoc, 8459 Attr, 8460 TemplateParams, 8461 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 8462 /*FriendLoc*/SourceLocation(), 8463 TemplateParameterLists.size() - 1, 8464 TemplateParameterLists.data()); 8465 } 8466 8467 // Create a new class template partial specialization declaration node. 8468 ClassTemplatePartialSpecializationDecl *PrevPartial 8469 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 8470 ClassTemplatePartialSpecializationDecl *Partial = 8471 ClassTemplatePartialSpecializationDecl::Create( 8472 Context, Kind, DC, KWLoc, TemplateNameLoc, TemplateParams, 8473 ClassTemplate, CanonicalConverted, CanonType, PrevPartial); 8474 Partial->setTemplateArgsAsWritten(TemplateArgs); 8475 SetNestedNameSpecifier(*this, Partial, SS); 8476 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 8477 Partial->setTemplateParameterListsInfo( 8478 Context, TemplateParameterLists.drop_back(1)); 8479 } 8480 8481 if (!PrevPartial) 8482 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 8483 Specialization = Partial; 8484 8485 // If we are providing an explicit specialization of a member class 8486 // template specialization, make a note of that. 8487 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 8488 PrevPartial->setMemberSpecialization(); 8489 8490 CheckTemplatePartialSpecialization(Partial); 8491 } else { 8492 // Create a new class template specialization declaration node for 8493 // this explicit specialization or friend declaration. 8494 Specialization = ClassTemplateSpecializationDecl::Create( 8495 Context, Kind, DC, KWLoc, TemplateNameLoc, ClassTemplate, 8496 CanonicalConverted, PrevDecl); 8497 Specialization->setTemplateArgsAsWritten(TemplateArgs); 8498 SetNestedNameSpecifier(*this, Specialization, SS); 8499 if (TemplateParameterLists.size() > 0) { 8500 Specialization->setTemplateParameterListsInfo(Context, 8501 TemplateParameterLists); 8502 } 8503 8504 if (!PrevDecl) 8505 ClassTemplate->AddSpecialization(Specialization, InsertPos); 8506 8507 if (CurContext->isDependentContext()) { 8508 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 8509 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 8510 CanonicalConverted); 8511 } else { 8512 CanonType = Context.getTypeDeclType(Specialization); 8513 } 8514 } 8515 8516 // C++ [temp.expl.spec]p6: 8517 // If a template, a member template or the member of a class template is 8518 // explicitly specialized then that specialization shall be declared 8519 // before the first use of that specialization that would cause an implicit 8520 // instantiation to take place, in every translation unit in which such a 8521 // use occurs; no diagnostic is required. 8522 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 8523 bool Okay = false; 8524 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8525 // Is there any previous explicit specialization declaration? 8526 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8527 Okay = true; 8528 break; 8529 } 8530 } 8531 8532 if (!Okay) { 8533 SourceRange Range(TemplateNameLoc, RAngleLoc); 8534 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 8535 << Context.getTypeDeclType(Specialization) << Range; 8536 8537 Diag(PrevDecl->getPointOfInstantiation(), 8538 diag::note_instantiation_required_here) 8539 << (PrevDecl->getTemplateSpecializationKind() 8540 != TSK_ImplicitInstantiation); 8541 return true; 8542 } 8543 } 8544 8545 // If this is not a friend, note that this is an explicit specialization. 8546 if (TUK != TagUseKind::Friend) 8547 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 8548 8549 // Check that this isn't a redefinition of this specialization. 8550 if (TUK == TagUseKind::Definition) { 8551 RecordDecl *Def = Specialization->getDefinition(); 8552 NamedDecl *Hidden = nullptr; 8553 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 8554 SkipBody->ShouldSkip = true; 8555 SkipBody->Previous = Def; 8556 makeMergedDefinitionVisible(Hidden); 8557 } else if (Def) { 8558 SourceRange Range(TemplateNameLoc, RAngleLoc); 8559 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; 8560 Diag(Def->getLocation(), diag::note_previous_definition); 8561 Specialization->setInvalidDecl(); 8562 return true; 8563 } 8564 } 8565 8566 ProcessDeclAttributeList(S, Specialization, Attr); 8567 ProcessAPINotes(Specialization); 8568 8569 // Add alignment attributes if necessary; these attributes are checked when 8570 // the ASTContext lays out the structure. 8571 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 8572 AddAlignmentAttributesForRecord(Specialization); 8573 AddMsStructLayoutForRecord(Specialization); 8574 } 8575 8576 if (ModulePrivateLoc.isValid()) 8577 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 8578 << (isPartialSpecialization? 1 : 0) 8579 << FixItHint::CreateRemoval(ModulePrivateLoc); 8580 8581 // C++ [temp.expl.spec]p9: 8582 // A template explicit specialization is in the scope of the 8583 // namespace in which the template was defined. 8584 // 8585 // We actually implement this paragraph where we set the semantic 8586 // context (in the creation of the ClassTemplateSpecializationDecl), 8587 // but we also maintain the lexical context where the actual 8588 // definition occurs. 8589 Specialization->setLexicalDeclContext(CurContext); 8590 8591 // We may be starting the definition of this specialization. 8592 if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) 8593 Specialization->startDefinition(); 8594 8595 if (TUK == TagUseKind::Friend) { 8596 // Build the fully-sugared type for this class template 8597 // specialization as the user wrote in the specialization 8598 // itself. This means that we'll pretty-print the type retrieved 8599 // from the specialization's declaration the way that the user 8600 // actually wrote the specialization, rather than formatting the 8601 // name based on the "canonical" representation used to store the 8602 // template arguments in the specialization. 8603 TypeSourceInfo *WrittenTy = Context.getTemplateSpecializationTypeInfo( 8604 Name, TemplateNameLoc, TemplateArgs, CanonType); 8605 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 8606 TemplateNameLoc, 8607 WrittenTy, 8608 /*FIXME:*/KWLoc); 8609 Friend->setAccess(AS_public); 8610 CurContext->addDecl(Friend); 8611 } else { 8612 // Add the specialization into its lexical context, so that it can 8613 // be seen when iterating through the list of declarations in that 8614 // context. However, specializations are not found by name lookup. 8615 CurContext->addDecl(Specialization); 8616 } 8617 8618 if (SkipBody && SkipBody->ShouldSkip) 8619 return SkipBody->Previous; 8620 8621 Specialization->setInvalidDecl(Invalid); 8622 inferGslOwnerPointerAttribute(Specialization); 8623 return Specialization; 8624 } 8625 8626 Decl *Sema::ActOnTemplateDeclarator(Scope *S, 8627 MultiTemplateParamsArg TemplateParameterLists, 8628 Declarator &D) { 8629 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 8630 ActOnDocumentableDecl(NewDecl); 8631 return NewDecl; 8632 } 8633 8634 ConceptDecl *Sema::ActOnStartConceptDefinition( 8635 Scope *S, MultiTemplateParamsArg TemplateParameterLists, 8636 const IdentifierInfo *Name, SourceLocation NameLoc) { 8637 DeclContext *DC = CurContext; 8638 8639 if (!DC->getRedeclContext()->isFileContext()) { 8640 Diag(NameLoc, 8641 diag::err_concept_decls_may_only_appear_in_global_namespace_scope); 8642 return nullptr; 8643 } 8644 8645 if (TemplateParameterLists.size() > 1) { 8646 Diag(NameLoc, diag::err_concept_extra_headers); 8647 return nullptr; 8648 } 8649 8650 TemplateParameterList *Params = TemplateParameterLists.front(); 8651 8652 if (Params->size() == 0) { 8653 Diag(NameLoc, diag::err_concept_no_parameters); 8654 return nullptr; 8655 } 8656 8657 // Ensure that the parameter pack, if present, is the last parameter in the 8658 // template. 8659 for (TemplateParameterList::const_iterator ParamIt = Params->begin(), 8660 ParamEnd = Params->end(); 8661 ParamIt != ParamEnd; ++ParamIt) { 8662 Decl const *Param = *ParamIt; 8663 if (Param->isParameterPack()) { 8664 if (++ParamIt == ParamEnd) 8665 break; 8666 Diag(Param->getLocation(), 8667 diag::err_template_param_pack_must_be_last_template_parameter); 8668 return nullptr; 8669 } 8670 } 8671 8672 ConceptDecl *NewDecl = 8673 ConceptDecl::Create(Context, DC, NameLoc, Name, Params); 8674 8675 if (NewDecl->hasAssociatedConstraints()) { 8676 // C++2a [temp.concept]p4: 8677 // A concept shall not have associated constraints. 8678 Diag(NameLoc, diag::err_concept_no_associated_constraints); 8679 NewDecl->setInvalidDecl(); 8680 } 8681 8682 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NewDecl->getBeginLoc()); 8683 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8684 forRedeclarationInCurContext()); 8685 LookupName(Previous, S); 8686 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, 8687 /*AllowInlineNamespace*/ false); 8688 8689 // We cannot properly handle redeclarations until we parse the constraint 8690 // expression, so only inject the name if we are sure we are not redeclaring a 8691 // symbol 8692 if (Previous.empty()) 8693 PushOnScopeChains(NewDecl, S, true); 8694 8695 return NewDecl; 8696 } 8697 8698 static bool RemoveLookupResult(LookupResult &R, NamedDecl *C) { 8699 bool Found = false; 8700 LookupResult::Filter F = R.makeFilter(); 8701 while (F.hasNext()) { 8702 NamedDecl *D = F.next(); 8703 if (D == C) { 8704 F.erase(); 8705 Found = true; 8706 break; 8707 } 8708 } 8709 F.done(); 8710 return Found; 8711 } 8712 8713 ConceptDecl * 8714 Sema::ActOnFinishConceptDefinition(Scope *S, ConceptDecl *C, 8715 Expr *ConstraintExpr, 8716 const ParsedAttributesView &Attrs) { 8717 assert(!C->hasDefinition() && "Concept already defined"); 8718 if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) 8719 return nullptr; 8720 C->setDefinition(ConstraintExpr); 8721 ProcessDeclAttributeList(S, C, Attrs); 8722 8723 // Check for conflicting previous declaration. 8724 DeclarationNameInfo NameInfo(C->getDeclName(), C->getBeginLoc()); 8725 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 8726 forRedeclarationInCurContext()); 8727 LookupName(Previous, S); 8728 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, 8729 /*AllowInlineNamespace*/ false); 8730 bool WasAlreadyAdded = RemoveLookupResult(Previous, C); 8731 bool AddToScope = true; 8732 CheckConceptRedefinition(C, Previous, AddToScope); 8733 8734 ActOnDocumentableDecl(C); 8735 if (!WasAlreadyAdded && AddToScope) 8736 PushOnScopeChains(C, S); 8737 8738 return C; 8739 } 8740 8741 void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, 8742 LookupResult &Previous, bool &AddToScope) { 8743 AddToScope = true; 8744 8745 if (Previous.empty()) 8746 return; 8747 8748 auto *OldConcept = dyn_cast<ConceptDecl>(Previous.getRepresentativeDecl()->getUnderlyingDecl()); 8749 if (!OldConcept) { 8750 auto *Old = Previous.getRepresentativeDecl(); 8751 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind) 8752 << NewDecl->getDeclName(); 8753 notePreviousDefinition(Old, NewDecl->getLocation()); 8754 AddToScope = false; 8755 return; 8756 } 8757 // Check if we can merge with a concept declaration. 8758 bool IsSame = Context.isSameEntity(NewDecl, OldConcept); 8759 if (!IsSame) { 8760 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept) 8761 << NewDecl->getDeclName(); 8762 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 8763 AddToScope = false; 8764 return; 8765 } 8766 if (hasReachableDefinition(OldConcept) && 8767 IsRedefinitionInModule(NewDecl, OldConcept)) { 8768 Diag(NewDecl->getLocation(), diag::err_redefinition) 8769 << NewDecl->getDeclName(); 8770 notePreviousDefinition(OldConcept, NewDecl->getLocation()); 8771 AddToScope = false; 8772 return; 8773 } 8774 if (!Previous.isSingleResult()) { 8775 // FIXME: we should produce an error in case of ambig and failed lookups. 8776 // Other decls (e.g. namespaces) also have this shortcoming. 8777 return; 8778 } 8779 // We unwrap canonical decl late to check for module visibility. 8780 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl()); 8781 } 8782 8783 bool Sema::CheckConceptUseInDefinition(ConceptDecl *Concept, 8784 SourceLocation Loc) { 8785 if (!Concept->isInvalidDecl() && !Concept->hasDefinition()) { 8786 Diag(Loc, diag::err_recursive_concept) << Concept; 8787 Diag(Concept->getLocation(), diag::note_declared_at); 8788 return true; 8789 } 8790 return false; 8791 } 8792 8793 /// \brief Strips various properties off an implicit instantiation 8794 /// that has just been explicitly specialized. 8795 static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { 8796 if (MinGW || (isa<FunctionDecl>(D) && 8797 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) 8798 D->dropAttrs<DLLImportAttr, DLLExportAttr>(); 8799 8800 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 8801 FD->setInlineSpecified(false); 8802 } 8803 8804 /// Compute the diagnostic location for an explicit instantiation 8805 // declaration or definition. 8806 static SourceLocation DiagLocForExplicitInstantiation( 8807 NamedDecl* D, SourceLocation PointOfInstantiation) { 8808 // Explicit instantiations following a specialization have no effect and 8809 // hence no PointOfInstantiation. In that case, walk decl backwards 8810 // until a valid name loc is found. 8811 SourceLocation PrevDiagLoc = PointOfInstantiation; 8812 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 8813 Prev = Prev->getPreviousDecl()) { 8814 PrevDiagLoc = Prev->getLocation(); 8815 } 8816 assert(PrevDiagLoc.isValid() && 8817 "Explicit instantiation without point of instantiation?"); 8818 return PrevDiagLoc; 8819 } 8820 8821 bool 8822 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 8823 TemplateSpecializationKind NewTSK, 8824 NamedDecl *PrevDecl, 8825 TemplateSpecializationKind PrevTSK, 8826 SourceLocation PrevPointOfInstantiation, 8827 bool &HasNoEffect) { 8828 HasNoEffect = false; 8829 8830 switch (NewTSK) { 8831 case TSK_Undeclared: 8832 case TSK_ImplicitInstantiation: 8833 assert( 8834 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && 8835 "previous declaration must be implicit!"); 8836 return false; 8837 8838 case TSK_ExplicitSpecialization: 8839 switch (PrevTSK) { 8840 case TSK_Undeclared: 8841 case TSK_ExplicitSpecialization: 8842 // Okay, we're just specializing something that is either already 8843 // explicitly specialized or has merely been mentioned without any 8844 // instantiation. 8845 return false; 8846 8847 case TSK_ImplicitInstantiation: 8848 if (PrevPointOfInstantiation.isInvalid()) { 8849 // The declaration itself has not actually been instantiated, so it is 8850 // still okay to specialize it. 8851 StripImplicitInstantiation( 8852 PrevDecl, 8853 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()); 8854 return false; 8855 } 8856 // Fall through 8857 [[fallthrough]]; 8858 8859 case TSK_ExplicitInstantiationDeclaration: 8860 case TSK_ExplicitInstantiationDefinition: 8861 assert((PrevTSK == TSK_ImplicitInstantiation || 8862 PrevPointOfInstantiation.isValid()) && 8863 "Explicit instantiation without point of instantiation?"); 8864 8865 // C++ [temp.expl.spec]p6: 8866 // If a template, a member template or the member of a class template 8867 // is explicitly specialized then that specialization shall be declared 8868 // before the first use of that specialization that would cause an 8869 // implicit instantiation to take place, in every translation unit in 8870 // which such a use occurs; no diagnostic is required. 8871 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8872 // Is there any previous explicit specialization declaration? 8873 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 8874 return false; 8875 } 8876 8877 Diag(NewLoc, diag::err_specialization_after_instantiation) 8878 << PrevDecl; 8879 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 8880 << (PrevTSK != TSK_ImplicitInstantiation); 8881 8882 return true; 8883 } 8884 llvm_unreachable("The switch over PrevTSK must be exhaustive."); 8885 8886 case TSK_ExplicitInstantiationDeclaration: 8887 switch (PrevTSK) { 8888 case TSK_ExplicitInstantiationDeclaration: 8889 // This explicit instantiation declaration is redundant (that's okay). 8890 HasNoEffect = true; 8891 return false; 8892 8893 case TSK_Undeclared: 8894 case TSK_ImplicitInstantiation: 8895 // We're explicitly instantiating something that may have already been 8896 // implicitly instantiated; that's fine. 8897 return false; 8898 8899 case TSK_ExplicitSpecialization: 8900 // C++0x [temp.explicit]p4: 8901 // For a given set of template parameters, if an explicit instantiation 8902 // of a template appears after a declaration of an explicit 8903 // specialization for that template, the explicit instantiation has no 8904 // effect. 8905 HasNoEffect = true; 8906 return false; 8907 8908 case TSK_ExplicitInstantiationDefinition: 8909 // C++0x [temp.explicit]p10: 8910 // If an entity is the subject of both an explicit instantiation 8911 // declaration and an explicit instantiation definition in the same 8912 // translation unit, the definition shall follow the declaration. 8913 Diag(NewLoc, 8914 diag::err_explicit_instantiation_declaration_after_definition); 8915 8916 // Explicit instantiations following a specialization have no effect and 8917 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 8918 // until a valid name loc is found. 8919 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8920 diag::note_explicit_instantiation_definition_here); 8921 HasNoEffect = true; 8922 return false; 8923 } 8924 llvm_unreachable("Unexpected TemplateSpecializationKind!"); 8925 8926 case TSK_ExplicitInstantiationDefinition: 8927 switch (PrevTSK) { 8928 case TSK_Undeclared: 8929 case TSK_ImplicitInstantiation: 8930 // We're explicitly instantiating something that may have already been 8931 // implicitly instantiated; that's fine. 8932 return false; 8933 8934 case TSK_ExplicitSpecialization: 8935 // C++ DR 259, C++0x [temp.explicit]p4: 8936 // For a given set of template parameters, if an explicit 8937 // instantiation of a template appears after a declaration of 8938 // an explicit specialization for that template, the explicit 8939 // instantiation has no effect. 8940 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) 8941 << PrevDecl; 8942 Diag(PrevDecl->getLocation(), 8943 diag::note_previous_template_specialization); 8944 HasNoEffect = true; 8945 return false; 8946 8947 case TSK_ExplicitInstantiationDeclaration: 8948 // We're explicitly instantiating a definition for something for which we 8949 // were previously asked to suppress instantiations. That's fine. 8950 8951 // C++0x [temp.explicit]p4: 8952 // For a given set of template parameters, if an explicit instantiation 8953 // of a template appears after a declaration of an explicit 8954 // specialization for that template, the explicit instantiation has no 8955 // effect. 8956 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 8957 // Is there any previous explicit specialization declaration? 8958 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 8959 HasNoEffect = true; 8960 break; 8961 } 8962 } 8963 8964 return false; 8965 8966 case TSK_ExplicitInstantiationDefinition: 8967 // C++0x [temp.spec]p5: 8968 // For a given template and a given set of template-arguments, 8969 // - an explicit instantiation definition shall appear at most once 8970 // in a program, 8971 8972 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. 8973 Diag(NewLoc, (getLangOpts().MSVCCompat) 8974 ? diag::ext_explicit_instantiation_duplicate 8975 : diag::err_explicit_instantiation_duplicate) 8976 << PrevDecl; 8977 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 8978 diag::note_previous_explicit_instantiation); 8979 HasNoEffect = true; 8980 return false; 8981 } 8982 } 8983 8984 llvm_unreachable("Missing specialization/instantiation case?"); 8985 } 8986 8987 bool Sema::CheckDependentFunctionTemplateSpecialization( 8988 FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs, 8989 LookupResult &Previous) { 8990 // Remove anything from Previous that isn't a function template in 8991 // the correct context. 8992 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 8993 LookupResult::Filter F = Previous.makeFilter(); 8994 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; 8995 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; 8996 while (F.hasNext()) { 8997 NamedDecl *D = F.next()->getUnderlyingDecl(); 8998 if (!isa<FunctionTemplateDecl>(D)) { 8999 F.erase(); 9000 DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); 9001 continue; 9002 } 9003 9004 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9005 D->getDeclContext()->getRedeclContext())) { 9006 F.erase(); 9007 DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); 9008 continue; 9009 } 9010 } 9011 F.done(); 9012 9013 bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None; 9014 if (Previous.empty()) { 9015 Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match) 9016 << IsFriend; 9017 for (auto &P : DiscardedCandidates) 9018 Diag(P.second->getLocation(), 9019 diag::note_dependent_function_template_spec_discard_reason) 9020 << P.first << IsFriend; 9021 return true; 9022 } 9023 9024 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 9025 ExplicitTemplateArgs); 9026 return false; 9027 } 9028 9029 bool Sema::CheckFunctionTemplateSpecialization( 9030 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, 9031 LookupResult &Previous, bool QualifiedFriend) { 9032 // The set of function template specializations that could match this 9033 // explicit function template specialization. 9034 UnresolvedSet<8> Candidates; 9035 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), 9036 /*ForTakingAddress=*/false); 9037 9038 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> 9039 ConvertedTemplateArgs; 9040 9041 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 9042 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 9043 I != E; ++I) { 9044 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 9045 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 9046 // Only consider templates found within the same semantic lookup scope as 9047 // FD. 9048 if (!FDLookupContext->InEnclosingNamespaceSetOf( 9049 Ovl->getDeclContext()->getRedeclContext())) 9050 continue; 9051 9052 QualType FT = FD->getType(); 9053 // C++11 [dcl.constexpr]p8: 9054 // A constexpr specifier for a non-static member function that is not 9055 // a constructor declares that member function to be const. 9056 // 9057 // When matching a constexpr member function template specialization 9058 // against the primary template, we don't yet know whether the 9059 // specialization has an implicit 'const' (because we don't know whether 9060 // it will be a static member function until we know which template it 9061 // specializes). This rule was removed in C++14. 9062 if (auto *NewMD = dyn_cast<CXXMethodDecl>(FD); 9063 !getLangOpts().CPlusPlus14 && NewMD && NewMD->isConstexpr() && 9064 !isa<CXXConstructorDecl, CXXDestructorDecl>(NewMD)) { 9065 auto *OldMD = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 9066 if (OldMD && OldMD->isConst()) { 9067 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 9068 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 9069 EPI.TypeQuals.addConst(); 9070 FT = Context.getFunctionType(FPT->getReturnType(), 9071 FPT->getParamTypes(), EPI); 9072 } 9073 } 9074 9075 TemplateArgumentListInfo Args; 9076 if (ExplicitTemplateArgs) 9077 Args = *ExplicitTemplateArgs; 9078 9079 // C++ [temp.expl.spec]p11: 9080 // A trailing template-argument can be left unspecified in the 9081 // template-id naming an explicit function template specialization 9082 // provided it can be deduced from the function argument type. 9083 // Perform template argument deduction to determine whether we may be 9084 // specializing this template. 9085 // FIXME: It is somewhat wasteful to build 9086 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 9087 FunctionDecl *Specialization = nullptr; 9088 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 9089 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), 9090 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info); 9091 TDK != TemplateDeductionResult::Success) { 9092 // Template argument deduction failed; record why it failed, so 9093 // that we can provide nifty diagnostics. 9094 FailedCandidates.addCandidate().set( 9095 I.getPair(), FunTmpl->getTemplatedDecl(), 9096 MakeDeductionFailureInfo(Context, TDK, Info)); 9097 (void)TDK; 9098 continue; 9099 } 9100 9101 // Target attributes are part of the cuda function signature, so 9102 // the deduced template's cuda target must match that of the 9103 // specialization. Given that C++ template deduction does not 9104 // take target attributes into account, we reject candidates 9105 // here that have a different target. 9106 if (LangOpts.CUDA && 9107 CUDA().IdentifyTarget(Specialization, 9108 /* IgnoreImplicitHDAttr = */ true) != 9109 CUDA().IdentifyTarget(FD, /* IgnoreImplicitHDAttr = */ true)) { 9110 FailedCandidates.addCandidate().set( 9111 I.getPair(), FunTmpl->getTemplatedDecl(), 9112 MakeDeductionFailureInfo( 9113 Context, TemplateDeductionResult::CUDATargetMismatch, Info)); 9114 continue; 9115 } 9116 9117 // Record this candidate. 9118 if (ExplicitTemplateArgs) 9119 ConvertedTemplateArgs[Specialization] = std::move(Args); 9120 Candidates.addDecl(Specialization, I.getAccess()); 9121 } 9122 } 9123 9124 // For a qualified friend declaration (with no explicit marker to indicate 9125 // that a template specialization was intended), note all (template and 9126 // non-template) candidates. 9127 if (QualifiedFriend && Candidates.empty()) { 9128 Diag(FD->getLocation(), diag::err_qualified_friend_no_match) 9129 << FD->getDeclName() << FDLookupContext; 9130 // FIXME: We should form a single candidate list and diagnose all 9131 // candidates at once, to get proper sorting and limiting. 9132 for (auto *OldND : Previous) { 9133 if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) 9134 NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); 9135 } 9136 FailedCandidates.NoteCandidates(*this, FD->getLocation()); 9137 return true; 9138 } 9139 9140 // Find the most specialized function template. 9141 UnresolvedSetIterator Result = getMostSpecialized( 9142 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), 9143 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), 9144 PDiag(diag::err_function_template_spec_ambiguous) 9145 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), 9146 PDiag(diag::note_function_template_spec_matched)); 9147 9148 if (Result == Candidates.end()) 9149 return true; 9150 9151 // Ignore access information; it doesn't figure into redeclaration checking. 9152 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 9153 9154 // C++23 [except.spec]p13: 9155 // An exception specification is considered to be needed when: 9156 // - [...] 9157 // - the exception specification is compared to that of another declaration 9158 // (e.g., an explicit specialization or an overriding virtual function); 9159 // - [...] 9160 // 9161 // The exception specification of a defaulted function is evaluated as 9162 // described above only when needed; similarly, the noexcept-specifier of a 9163 // specialization of a function template or member function of a class 9164 // template is instantiated only when needed. 9165 // 9166 // The standard doesn't specify what the "comparison with another declaration" 9167 // entails, nor the exact circumstances in which it occurs. Moreover, it does 9168 // not state which properties of an explicit specialization must match the 9169 // primary template. 9170 // 9171 // We assume that an explicit specialization must correspond with (per 9172 // [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8) 9173 // the declaration produced by substitution into the function template. 9174 // 9175 // Since the determination whether two function declarations correspond does 9176 // not consider exception specification, we only need to instantiate it once 9177 // we determine the primary template when comparing types per 9178 // [basic.link]p11.1. 9179 auto *SpecializationFPT = 9180 Specialization->getType()->castAs<FunctionProtoType>(); 9181 // If the function has a dependent exception specification, resolve it after 9182 // we have selected the primary template so we can check whether it matches. 9183 if (getLangOpts().CPlusPlus17 && 9184 isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && 9185 !ResolveExceptionSpec(FD->getLocation(), SpecializationFPT)) 9186 return true; 9187 9188 FunctionTemplateSpecializationInfo *SpecInfo 9189 = Specialization->getTemplateSpecializationInfo(); 9190 assert(SpecInfo && "Function template specialization info missing?"); 9191 9192 // Note: do not overwrite location info if previous template 9193 // specialization kind was explicit. 9194 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 9195 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 9196 Specialization->setLocation(FD->getLocation()); 9197 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); 9198 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 9199 // function can differ from the template declaration with respect to 9200 // the constexpr specifier. 9201 // FIXME: We need an update record for this AST mutation. 9202 // FIXME: What if there are multiple such prior declarations (for instance, 9203 // from different modules)? 9204 Specialization->setConstexprKind(FD->getConstexprKind()); 9205 } 9206 9207 // FIXME: Check if the prior specialization has a point of instantiation. 9208 // If so, we have run afoul of . 9209 9210 // If this is a friend declaration, then we're not really declaring 9211 // an explicit specialization. 9212 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 9213 9214 // Check the scope of this explicit specialization. 9215 if (!isFriend && 9216 CheckTemplateSpecializationScope(*this, 9217 Specialization->getPrimaryTemplate(), 9218 Specialization, FD->getLocation(), 9219 false)) 9220 return true; 9221 9222 // C++ [temp.expl.spec]p6: 9223 // If a template, a member template or the member of a class template is 9224 // explicitly specialized then that specialization shall be declared 9225 // before the first use of that specialization that would cause an implicit 9226 // instantiation to take place, in every translation unit in which such a 9227 // use occurs; no diagnostic is required. 9228 bool HasNoEffect = false; 9229 if (!isFriend && 9230 CheckSpecializationInstantiationRedecl(FD->getLocation(), 9231 TSK_ExplicitSpecialization, 9232 Specialization, 9233 SpecInfo->getTemplateSpecializationKind(), 9234 SpecInfo->getPointOfInstantiation(), 9235 HasNoEffect)) 9236 return true; 9237 9238 // Mark the prior declaration as an explicit specialization, so that later 9239 // clients know that this is an explicit specialization. 9240 if (!isFriend) { 9241 // Since explicit specializations do not inherit '=delete' from their 9242 // primary function template - check if the 'specialization' that was 9243 // implicitly generated (during template argument deduction for partial 9244 // ordering) from the most specialized of all the function templates that 9245 // 'FD' could have been specializing, has a 'deleted' definition. If so, 9246 // first check that it was implicitly generated during template argument 9247 // deduction by making sure it wasn't referenced, and then reset the deleted 9248 // flag to not-deleted, so that we can inherit that information from 'FD'. 9249 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && 9250 !Specialization->getCanonicalDecl()->isReferenced()) { 9251 // FIXME: This assert will not hold in the presence of modules. 9252 assert( 9253 Specialization->getCanonicalDecl() == Specialization && 9254 "This must be the only existing declaration of this specialization"); 9255 // FIXME: We need an update record for this AST mutation. 9256 Specialization->setDeletedAsWritten(false); 9257 } 9258 // FIXME: We need an update record for this AST mutation. 9259 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9260 MarkUnusedFileScopedDecl(Specialization); 9261 } 9262 9263 // Turn the given function declaration into a function template 9264 // specialization, with the template arguments from the previous 9265 // specialization. 9266 // Take copies of (semantic and syntactic) template argument lists. 9267 TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy( 9268 Context, Specialization->getTemplateSpecializationArgs()->asArray()); 9269 FD->setFunctionTemplateSpecialization( 9270 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, 9271 SpecInfo->getTemplateSpecializationKind(), 9272 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); 9273 9274 // A function template specialization inherits the target attributes 9275 // of its template. (We require the attributes explicitly in the 9276 // code to match, but a template may have implicit attributes by 9277 // virtue e.g. of being constexpr, and it passes these implicit 9278 // attributes on to its specializations.) 9279 if (LangOpts.CUDA) 9280 CUDA().inheritTargetAttrs(FD, *Specialization->getPrimaryTemplate()); 9281 9282 // The "previous declaration" for this function template specialization is 9283 // the prior function template specialization. 9284 Previous.clear(); 9285 Previous.addDecl(Specialization); 9286 return false; 9287 } 9288 9289 bool 9290 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 9291 assert(!Member->isTemplateDecl() && !Member->getDescribedTemplate() && 9292 "Only for non-template members"); 9293 9294 // Try to find the member we are instantiating. 9295 NamedDecl *FoundInstantiation = nullptr; 9296 NamedDecl *Instantiation = nullptr; 9297 NamedDecl *InstantiatedFrom = nullptr; 9298 MemberSpecializationInfo *MSInfo = nullptr; 9299 9300 if (Previous.empty()) { 9301 // Nowhere to look anyway. 9302 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 9303 UnresolvedSet<8> Candidates; 9304 for (NamedDecl *Candidate : Previous) { 9305 auto *Method = dyn_cast<CXXMethodDecl>(Candidate->getUnderlyingDecl()); 9306 // Ignore any candidates that aren't member functions. 9307 if (!Method) 9308 continue; 9309 9310 QualType Adjusted = Function->getType(); 9311 if (!hasExplicitCallingConv(Adjusted)) 9312 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); 9313 // Ignore any candidates with the wrong type. 9314 // This doesn't handle deduced return types, but both function 9315 // declarations should be undeduced at this point. 9316 // FIXME: The exception specification should probably be ignored when 9317 // comparing the types. 9318 if (!Context.hasSameType(Adjusted, Method->getType())) 9319 continue; 9320 9321 // Ignore any candidates with unsatisfied constraints. 9322 if (ConstraintSatisfaction Satisfaction; 9323 Method->getTrailingRequiresClause() && 9324 (CheckFunctionConstraints(Method, Satisfaction, 9325 /*UsageLoc=*/Member->getLocation(), 9326 /*ForOverloadResolution=*/true) || 9327 !Satisfaction.IsSatisfied)) 9328 continue; 9329 9330 Candidates.addDecl(Candidate); 9331 } 9332 9333 // If we have no viable candidates left after filtering, we are done. 9334 if (Candidates.empty()) 9335 return false; 9336 9337 // Find the function that is more constrained than every other function it 9338 // has been compared to. 9339 UnresolvedSetIterator Best = Candidates.begin(); 9340 CXXMethodDecl *BestMethod = nullptr; 9341 for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end(); 9342 I != E; ++I) { 9343 auto *Method = cast<CXXMethodDecl>(I->getUnderlyingDecl()); 9344 if (I == Best || 9345 getMoreConstrainedFunction(Method, BestMethod) == Method) { 9346 Best = I; 9347 BestMethod = Method; 9348 } 9349 } 9350 9351 FoundInstantiation = *Best; 9352 Instantiation = BestMethod; 9353 InstantiatedFrom = BestMethod->getInstantiatedFromMemberFunction(); 9354 MSInfo = BestMethod->getMemberSpecializationInfo(); 9355 9356 // Make sure the best candidate is more constrained than all of the others. 9357 bool Ambiguous = false; 9358 for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end(); 9359 I != E; ++I) { 9360 auto *Method = cast<CXXMethodDecl>(I->getUnderlyingDecl()); 9361 if (I != Best && 9362 getMoreConstrainedFunction(Method, BestMethod) != BestMethod) { 9363 Ambiguous = true; 9364 break; 9365 } 9366 } 9367 9368 if (Ambiguous) { 9369 Diag(Member->getLocation(), diag::err_function_member_spec_ambiguous) 9370 << Member << (InstantiatedFrom ? InstantiatedFrom : Instantiation); 9371 for (NamedDecl *Candidate : Candidates) { 9372 Candidate = Candidate->getUnderlyingDecl(); 9373 Diag(Candidate->getLocation(), diag::note_function_member_spec_matched) 9374 << Candidate; 9375 } 9376 return true; 9377 } 9378 } else if (isa<VarDecl>(Member)) { 9379 VarDecl *PrevVar; 9380 if (Previous.isSingleResult() && 9381 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 9382 if (PrevVar->isStaticDataMember()) { 9383 FoundInstantiation = Previous.getRepresentativeDecl(); 9384 Instantiation = PrevVar; 9385 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 9386 MSInfo = PrevVar->getMemberSpecializationInfo(); 9387 } 9388 } else if (isa<RecordDecl>(Member)) { 9389 CXXRecordDecl *PrevRecord; 9390 if (Previous.isSingleResult() && 9391 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 9392 FoundInstantiation = Previous.getRepresentativeDecl(); 9393 Instantiation = PrevRecord; 9394 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 9395 MSInfo = PrevRecord->getMemberSpecializationInfo(); 9396 } 9397 } else if (isa<EnumDecl>(Member)) { 9398 EnumDecl *PrevEnum; 9399 if (Previous.isSingleResult() && 9400 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 9401 FoundInstantiation = Previous.getRepresentativeDecl(); 9402 Instantiation = PrevEnum; 9403 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 9404 MSInfo = PrevEnum->getMemberSpecializationInfo(); 9405 } 9406 } 9407 9408 if (!Instantiation) { 9409 // There is no previous declaration that matches. Since member 9410 // specializations are always out-of-line, the caller will complain about 9411 // this mismatch later. 9412 return false; 9413 } 9414 9415 // A member specialization in a friend declaration isn't really declaring 9416 // an explicit specialization, just identifying a specific (possibly implicit) 9417 // specialization. Don't change the template specialization kind. 9418 // 9419 // FIXME: Is this really valid? Other compilers reject. 9420 if (Member->getFriendObjectKind() != Decl::FOK_None) { 9421 // Preserve instantiation information. 9422 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 9423 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 9424 cast<CXXMethodDecl>(InstantiatedFrom), 9425 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 9426 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 9427 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 9428 cast<CXXRecordDecl>(InstantiatedFrom), 9429 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 9430 } 9431 9432 Previous.clear(); 9433 Previous.addDecl(FoundInstantiation); 9434 return false; 9435 } 9436 9437 // Make sure that this is a specialization of a member. 9438 if (!InstantiatedFrom) { 9439 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 9440 << Member; 9441 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 9442 return true; 9443 } 9444 9445 // C++ [temp.expl.spec]p6: 9446 // If a template, a member template or the member of a class template is 9447 // explicitly specialized then that specialization shall be declared 9448 // before the first use of that specialization that would cause an implicit 9449 // instantiation to take place, in every translation unit in which such a 9450 // use occurs; no diagnostic is required. 9451 assert(MSInfo && "Member specialization info missing?"); 9452 9453 bool HasNoEffect = false; 9454 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 9455 TSK_ExplicitSpecialization, 9456 Instantiation, 9457 MSInfo->getTemplateSpecializationKind(), 9458 MSInfo->getPointOfInstantiation(), 9459 HasNoEffect)) 9460 return true; 9461 9462 // Check the scope of this explicit specialization. 9463 if (CheckTemplateSpecializationScope(*this, 9464 InstantiatedFrom, 9465 Instantiation, Member->getLocation(), 9466 false)) 9467 return true; 9468 9469 // Note that this member specialization is an "instantiation of" the 9470 // corresponding member of the original template. 9471 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { 9472 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 9473 if (InstantiationFunction->getTemplateSpecializationKind() == 9474 TSK_ImplicitInstantiation) { 9475 // Explicit specializations of member functions of class templates do not 9476 // inherit '=delete' from the member function they are specializing. 9477 if (InstantiationFunction->isDeleted()) { 9478 // FIXME: This assert will not hold in the presence of modules. 9479 assert(InstantiationFunction->getCanonicalDecl() == 9480 InstantiationFunction); 9481 // FIXME: We need an update record for this AST mutation. 9482 InstantiationFunction->setDeletedAsWritten(false); 9483 } 9484 } 9485 9486 MemberFunction->setInstantiationOfMemberFunction( 9487 cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9488 } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { 9489 MemberVar->setInstantiationOfStaticDataMember( 9490 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9491 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { 9492 MemberClass->setInstantiationOfMemberClass( 9493 cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9494 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { 9495 MemberEnum->setInstantiationOfMemberEnum( 9496 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 9497 } else { 9498 llvm_unreachable("unknown member specialization kind"); 9499 } 9500 9501 // Save the caller the trouble of having to figure out which declaration 9502 // this specialization matches. 9503 Previous.clear(); 9504 Previous.addDecl(FoundInstantiation); 9505 return false; 9506 } 9507 9508 /// Complete the explicit specialization of a member of a class template by 9509 /// updating the instantiated member to be marked as an explicit specialization. 9510 /// 9511 /// \param OrigD The member declaration instantiated from the template. 9512 /// \param Loc The location of the explicit specialization of the member. 9513 template<typename DeclT> 9514 static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, 9515 SourceLocation Loc) { 9516 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) 9517 return; 9518 9519 // FIXME: Inform AST mutation listeners of this AST mutation. 9520 // FIXME: If there are multiple in-class declarations of the member (from 9521 // multiple modules, or a declaration and later definition of a member type), 9522 // should we update all of them? 9523 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 9524 OrigD->setLocation(Loc); 9525 } 9526 9527 void Sema::CompleteMemberSpecialization(NamedDecl *Member, 9528 LookupResult &Previous) { 9529 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); 9530 if (Instantiation == Member) 9531 return; 9532 9533 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) 9534 completeMemberSpecializationImpl(*this, Function, Member->getLocation()); 9535 else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) 9536 completeMemberSpecializationImpl(*this, Var, Member->getLocation()); 9537 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) 9538 completeMemberSpecializationImpl(*this, Record, Member->getLocation()); 9539 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) 9540 completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); 9541 else 9542 llvm_unreachable("unknown member specialization kind"); 9543 } 9544 9545 /// Check the scope of an explicit instantiation. 9546 /// 9547 /// \returns true if a serious error occurs, false otherwise. 9548 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 9549 SourceLocation InstLoc, 9550 bool WasQualifiedName) { 9551 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 9552 DeclContext *CurContext = S.CurContext->getRedeclContext(); 9553 9554 if (CurContext->isRecord()) { 9555 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 9556 << D; 9557 return true; 9558 } 9559 9560 // C++11 [temp.explicit]p3: 9561 // An explicit instantiation shall appear in an enclosing namespace of its 9562 // template. If the name declared in the explicit instantiation is an 9563 // unqualified name, the explicit instantiation shall appear in the 9564 // namespace where its template is declared or, if that namespace is inline 9565 // (7.3.1), any namespace from its enclosing namespace set. 9566 // 9567 // This is DR275, which we do not retroactively apply to C++98/03. 9568 if (WasQualifiedName) { 9569 if (CurContext->Encloses(OrigContext)) 9570 return false; 9571 } else { 9572 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 9573 return false; 9574 } 9575 9576 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 9577 if (WasQualifiedName) 9578 S.Diag(InstLoc, 9579 S.getLangOpts().CPlusPlus11? 9580 diag::err_explicit_instantiation_out_of_scope : 9581 diag::warn_explicit_instantiation_out_of_scope_0x) 9582 << D << NS; 9583 else 9584 S.Diag(InstLoc, 9585 S.getLangOpts().CPlusPlus11? 9586 diag::err_explicit_instantiation_unqualified_wrong_namespace : 9587 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 9588 << D << NS; 9589 } else 9590 S.Diag(InstLoc, 9591 S.getLangOpts().CPlusPlus11? 9592 diag::err_explicit_instantiation_must_be_global : 9593 diag::warn_explicit_instantiation_must_be_global_0x) 9594 << D; 9595 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 9596 return false; 9597 } 9598 9599 /// Common checks for whether an explicit instantiation of \p D is valid. 9600 static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, 9601 SourceLocation InstLoc, 9602 bool WasQualifiedName, 9603 TemplateSpecializationKind TSK) { 9604 // C++ [temp.explicit]p13: 9605 // An explicit instantiation declaration shall not name a specialization of 9606 // a template with internal linkage. 9607 if (TSK == TSK_ExplicitInstantiationDeclaration && 9608 D->getFormalLinkage() == Linkage::Internal) { 9609 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; 9610 return true; 9611 } 9612 9613 // C++11 [temp.explicit]p3: [DR 275] 9614 // An explicit instantiation shall appear in an enclosing namespace of its 9615 // template. 9616 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) 9617 return true; 9618 9619 return false; 9620 } 9621 9622 /// Determine whether the given scope specifier has a template-id in it. 9623 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 9624 if (!SS.isSet()) 9625 return false; 9626 9627 // C++11 [temp.explicit]p3: 9628 // If the explicit instantiation is for a member function, a member class 9629 // or a static data member of a class template specialization, the name of 9630 // the class template specialization in the qualified-id for the member 9631 // name shall be a simple-template-id. 9632 // 9633 // C++98 has the same restriction, just worded differently. 9634 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; 9635 NNS = NNS->getPrefix()) 9636 if (const Type *T = NNS->getAsType()) 9637 if (isa<TemplateSpecializationType>(T)) 9638 return true; 9639 9640 return false; 9641 } 9642 9643 /// Make a dllexport or dllimport attr on a class template specialization take 9644 /// effect. 9645 static void dllExportImportClassTemplateSpecialization( 9646 Sema &S, ClassTemplateSpecializationDecl *Def) { 9647 auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); 9648 assert(A && "dllExportImportClassTemplateSpecialization called " 9649 "on Def without dllexport or dllimport"); 9650 9651 // We reject explicit instantiations in class scope, so there should 9652 // never be any delayed exported classes to worry about. 9653 assert(S.DelayedDllExportClasses.empty() && 9654 "delayed exports present at explicit instantiation"); 9655 S.checkClassLevelDLLAttribute(Def); 9656 9657 // Propagate attribute to base class templates. 9658 for (auto &B : Def->bases()) { 9659 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( 9660 B.getType()->getAsCXXRecordDecl())) 9661 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); 9662 } 9663 9664 S.referenceDLLExportedClassMethods(); 9665 } 9666 9667 DeclResult Sema::ActOnExplicitInstantiation( 9668 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, 9669 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, 9670 TemplateTy TemplateD, SourceLocation TemplateNameLoc, 9671 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, 9672 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { 9673 // Find the class template we're specializing 9674 TemplateName Name = TemplateD.get(); 9675 TemplateDecl *TD = Name.getAsTemplateDecl(); 9676 // Check that the specialization uses the same tag kind as the 9677 // original template. 9678 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 9679 assert(Kind != TagTypeKind::Enum && 9680 "Invalid enum tag in class template explicit instantiation!"); 9681 9682 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); 9683 9684 if (!ClassTemplate) { 9685 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); 9686 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) 9687 << TD << NTK << llvm::to_underlying(Kind); 9688 Diag(TD->getLocation(), diag::note_previous_use); 9689 return true; 9690 } 9691 9692 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 9693 Kind, /*isDefinition*/false, KWLoc, 9694 ClassTemplate->getIdentifier())) { 9695 Diag(KWLoc, diag::err_use_with_wrong_tag) 9696 << ClassTemplate 9697 << FixItHint::CreateReplacement(KWLoc, 9698 ClassTemplate->getTemplatedDecl()->getKindName()); 9699 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 9700 diag::note_previous_use); 9701 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 9702 } 9703 9704 // C++0x [temp.explicit]p2: 9705 // There are two forms of explicit instantiation: an explicit instantiation 9706 // definition and an explicit instantiation declaration. An explicit 9707 // instantiation declaration begins with the extern keyword. [...] 9708 TemplateSpecializationKind TSK = ExternLoc.isInvalid() 9709 ? TSK_ExplicitInstantiationDefinition 9710 : TSK_ExplicitInstantiationDeclaration; 9711 9712 if (TSK == TSK_ExplicitInstantiationDeclaration && 9713 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9714 // Check for dllexport class template instantiation declarations, 9715 // except for MinGW mode. 9716 for (const ParsedAttr &AL : Attr) { 9717 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9718 Diag(ExternLoc, 9719 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9720 Diag(AL.getLoc(), diag::note_attribute); 9721 break; 9722 } 9723 } 9724 9725 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { 9726 Diag(ExternLoc, 9727 diag::warn_attribute_dllexport_explicit_instantiation_decl); 9728 Diag(A->getLocation(), diag::note_attribute); 9729 } 9730 } 9731 9732 // In MSVC mode, dllimported explicit instantiation definitions are treated as 9733 // instantiation declarations for most purposes. 9734 bool DLLImportExplicitInstantiationDef = false; 9735 if (TSK == TSK_ExplicitInstantiationDefinition && 9736 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9737 // Check for dllimport class template instantiation definitions. 9738 bool DLLImport = 9739 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); 9740 for (const ParsedAttr &AL : Attr) { 9741 if (AL.getKind() == ParsedAttr::AT_DLLImport) 9742 DLLImport = true; 9743 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9744 // dllexport trumps dllimport here. 9745 DLLImport = false; 9746 break; 9747 } 9748 } 9749 if (DLLImport) { 9750 TSK = TSK_ExplicitInstantiationDeclaration; 9751 DLLImportExplicitInstantiationDef = true; 9752 } 9753 } 9754 9755 // Translate the parser's template argument list in our AST format. 9756 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 9757 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 9758 9759 // Check that the template argument list is well-formed for this 9760 // template. 9761 bool PrimaryHasMatchedPackOnParmToNonPackOnArg = false; 9762 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; 9763 if (CheckTemplateArgumentList( 9764 ClassTemplate, TemplateNameLoc, TemplateArgs, 9765 /*DefaultArgs=*/{}, false, SugaredConverted, CanonicalConverted, 9766 /*UpdateArgsWithConversions=*/true, 9767 /*ConstraintsNotSatisfied=*/nullptr, /*PartialOrderingTTP=*/false, 9768 &PrimaryHasMatchedPackOnParmToNonPackOnArg)) 9769 return true; 9770 9771 // Find the class template specialization declaration that 9772 // corresponds to these arguments. 9773 void *InsertPos = nullptr; 9774 ClassTemplateSpecializationDecl *PrevDecl = 9775 ClassTemplate->findSpecialization(CanonicalConverted, InsertPos); 9776 9777 TemplateSpecializationKind PrevDecl_TSK 9778 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 9779 9780 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && 9781 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { 9782 // Check for dllexport class template instantiation definitions in MinGW 9783 // mode, if a previous declaration of the instantiation was seen. 9784 for (const ParsedAttr &AL : Attr) { 9785 if (AL.getKind() == ParsedAttr::AT_DLLExport) { 9786 Diag(AL.getLoc(), 9787 diag::warn_attribute_dllexport_explicit_instantiation_def); 9788 break; 9789 } 9790 } 9791 } 9792 9793 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, 9794 SS.isSet(), TSK)) 9795 return true; 9796 9797 ClassTemplateSpecializationDecl *Specialization = nullptr; 9798 9799 bool HasNoEffect = false; 9800 if (PrevDecl) { 9801 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 9802 PrevDecl, PrevDecl_TSK, 9803 PrevDecl->getPointOfInstantiation(), 9804 HasNoEffect)) 9805 return PrevDecl; 9806 9807 // Even though HasNoEffect == true means that this explicit instantiation 9808 // has no effect on semantics, we go on to put its syntax in the AST. 9809 9810 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 9811 PrevDecl_TSK == TSK_Undeclared) { 9812 // Since the only prior class template specialization with these 9813 // arguments was referenced but not declared, reuse that 9814 // declaration node as our own, updating the source location 9815 // for the template name to reflect our new declaration. 9816 // (Other source locations will be updated later.) 9817 Specialization = PrevDecl; 9818 Specialization->setLocation(TemplateNameLoc); 9819 PrevDecl = nullptr; 9820 } 9821 9822 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9823 DLLImportExplicitInstantiationDef) { 9824 // The new specialization might add a dllimport attribute. 9825 HasNoEffect = false; 9826 } 9827 } 9828 9829 if (!Specialization) { 9830 // Create a new class template specialization declaration node for 9831 // this explicit specialization. 9832 Specialization = ClassTemplateSpecializationDecl::Create( 9833 Context, Kind, ClassTemplate->getDeclContext(), KWLoc, TemplateNameLoc, 9834 ClassTemplate, CanonicalConverted, PrevDecl); 9835 SetNestedNameSpecifier(*this, Specialization, SS); 9836 9837 // A MSInheritanceAttr attached to the previous declaration must be 9838 // propagated to the new node prior to instantiation. 9839 if (PrevDecl) { 9840 if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) { 9841 auto *Clone = A->clone(getASTContext()); 9842 Clone->setInherited(true); 9843 Specialization->addAttr(Clone); 9844 Consumer.AssignInheritanceModel(Specialization); 9845 } 9846 } 9847 9848 if (!HasNoEffect && !PrevDecl) { 9849 // Insert the new specialization. 9850 ClassTemplate->AddSpecialization(Specialization, InsertPos); 9851 } 9852 } 9853 9854 Specialization->setTemplateArgsAsWritten(TemplateArgs); 9855 9856 // Set source locations for keywords. 9857 Specialization->setExternKeywordLoc(ExternLoc); 9858 Specialization->setTemplateKeywordLoc(TemplateLoc); 9859 Specialization->setBraceRange(SourceRange()); 9860 9861 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); 9862 ProcessDeclAttributeList(S, Specialization, Attr); 9863 ProcessAPINotes(Specialization); 9864 9865 // Add the explicit instantiation into its lexical context. However, 9866 // since explicit instantiations are never found by name lookup, we 9867 // just put it into the declaration context directly. 9868 Specialization->setLexicalDeclContext(CurContext); 9869 CurContext->addDecl(Specialization); 9870 9871 // Syntax is now OK, so return if it has no other effect on semantics. 9872 if (HasNoEffect) { 9873 // Set the template specialization kind. 9874 Specialization->setTemplateSpecializationKind(TSK); 9875 return Specialization; 9876 } 9877 9878 // C++ [temp.explicit]p3: 9879 // A definition of a class template or class member template 9880 // shall be in scope at the point of the explicit instantiation of 9881 // the class template or class member template. 9882 // 9883 // This check comes when we actually try to perform the 9884 // instantiation. 9885 ClassTemplateSpecializationDecl *Def 9886 = cast_or_null<ClassTemplateSpecializationDecl>( 9887 Specialization->getDefinition()); 9888 if (!Def) 9889 InstantiateClassTemplateSpecialization( 9890 TemplateNameLoc, Specialization, TSK, 9891 /*Complain=*/true, PrimaryHasMatchedPackOnParmToNonPackOnArg); 9892 else if (TSK == TSK_ExplicitInstantiationDefinition) { 9893 MarkVTableUsed(TemplateNameLoc, Specialization, true); 9894 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 9895 } 9896 9897 // Instantiate the members of this class template specialization. 9898 Def = cast_or_null<ClassTemplateSpecializationDecl>( 9899 Specialization->getDefinition()); 9900 if (Def) { 9901 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 9902 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 9903 // TSK_ExplicitInstantiationDefinition 9904 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 9905 (TSK == TSK_ExplicitInstantiationDefinition || 9906 DLLImportExplicitInstantiationDef)) { 9907 // FIXME: Need to notify the ASTMutationListener that we did this. 9908 Def->setTemplateSpecializationKind(TSK); 9909 9910 if (!getDLLAttr(Def) && getDLLAttr(Specialization) && 9911 Context.getTargetInfo().shouldDLLImportComdatSymbols()) { 9912 // An explicit instantiation definition can add a dll attribute to a 9913 // template with a previous instantiation declaration. MinGW doesn't 9914 // allow this. 9915 auto *A = cast<InheritableAttr>( 9916 getDLLAttr(Specialization)->clone(getASTContext())); 9917 A->setInherited(true); 9918 Def->addAttr(A); 9919 dllExportImportClassTemplateSpecialization(*this, Def); 9920 } 9921 } 9922 9923 // Fix a TSK_ImplicitInstantiation followed by a 9924 // TSK_ExplicitInstantiationDefinition 9925 bool NewlyDLLExported = 9926 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); 9927 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && 9928 Context.getTargetInfo().shouldDLLImportComdatSymbols()) { 9929 // An explicit instantiation definition can add a dll attribute to a 9930 // template with a previous implicit instantiation. MinGW doesn't allow 9931 // this. We limit clang to only adding dllexport, to avoid potentially 9932 // strange codegen behavior. For example, if we extend this conditional 9933 // to dllimport, and we have a source file calling a method on an 9934 // implicitly instantiated template class instance and then declaring a 9935 // dllimport explicit instantiation definition for the same template 9936 // class, the codegen for the method call will not respect the dllimport, 9937 // while it will with cl. The Def will already have the DLL attribute, 9938 // since the Def and Specialization will be the same in the case of 9939 // Old_TSK == TSK_ImplicitInstantiation, and we already added the 9940 // attribute to the Specialization; we just need to make it take effect. 9941 assert(Def == Specialization && 9942 "Def and Specialization should match for implicit instantiation"); 9943 dllExportImportClassTemplateSpecialization(*this, Def); 9944 } 9945 9946 // In MinGW mode, export the template instantiation if the declaration 9947 // was marked dllexport. 9948 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && 9949 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && 9950 PrevDecl->hasAttr<DLLExportAttr>()) { 9951 dllExportImportClassTemplateSpecialization(*this, Def); 9952 } 9953 9954 // Set the template specialization kind. Make sure it is set before 9955 // instantiating the members which will trigger ASTConsumer callbacks. 9956 Specialization->setTemplateSpecializationKind(TSK); 9957 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 9958 } else { 9959 9960 // Set the template specialization kind. 9961 Specialization->setTemplateSpecializationKind(TSK); 9962 } 9963 9964 return Specialization; 9965 } 9966 9967 DeclResult 9968 Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, 9969 SourceLocation TemplateLoc, unsigned TagSpec, 9970 SourceLocation KWLoc, CXXScopeSpec &SS, 9971 IdentifierInfo *Name, SourceLocation NameLoc, 9972 const ParsedAttributesView &Attr) { 9973 9974 bool Owned = false; 9975 bool IsDependent = false; 9976 Decl *TagD = 9977 ActOnTag(S, TagSpec, TagUseKind::Reference, KWLoc, SS, Name, NameLoc, 9978 Attr, AS_none, /*ModulePrivateLoc=*/SourceLocation(), 9979 MultiTemplateParamsArg(), Owned, IsDependent, SourceLocation(), 9980 false, TypeResult(), /*IsTypeSpecifier*/ false, 9981 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside) 9982 .get(); 9983 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 9984 9985 if (!TagD) 9986 return true; 9987 9988 TagDecl *Tag = cast<TagDecl>(TagD); 9989 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 9990 9991 if (Tag->isInvalidDecl()) 9992 return true; 9993 9994 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 9995 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 9996 if (!Pattern) { 9997 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 9998 << Context.getTypeDeclType(Record); 9999 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 10000 return true; 10001 } 10002 10003 // C++0x [temp.explicit]p2: 10004 // If the explicit instantiation is for a class or member class, the 10005 // elaborated-type-specifier in the declaration shall include a 10006 // simple-template-id. 10007 // 10008 // C++98 has the same restriction, just worded differently. 10009 if (!ScopeSpecifierHasTemplateId(SS)) 10010 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 10011 << Record << SS.getRange(); 10012 10013 // C++0x [temp.explicit]p2: 10014 // There are two forms of explicit instantiation: an explicit instantiation 10015 // definition and an explicit instantiation declaration. An explicit 10016 // instantiation declaration begins with the extern keyword. [...] 10017 TemplateSpecializationKind TSK 10018 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10019 : TSK_ExplicitInstantiationDeclaration; 10020 10021 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); 10022 10023 // Verify that it is okay to explicitly instantiate here. 10024 CXXRecordDecl *PrevDecl 10025 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 10026 if (!PrevDecl && Record->getDefinition()) 10027 PrevDecl = Record; 10028 if (PrevDecl) { 10029 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 10030 bool HasNoEffect = false; 10031 assert(MSInfo && "No member specialization information?"); 10032 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 10033 PrevDecl, 10034 MSInfo->getTemplateSpecializationKind(), 10035 MSInfo->getPointOfInstantiation(), 10036 HasNoEffect)) 10037 return true; 10038 if (HasNoEffect) 10039 return TagD; 10040 } 10041 10042 CXXRecordDecl *RecordDef 10043 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10044 if (!RecordDef) { 10045 // C++ [temp.explicit]p3: 10046 // A definition of a member class of a class template shall be in scope 10047 // at the point of an explicit instantiation of the member class. 10048 CXXRecordDecl *Def 10049 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 10050 if (!Def) { 10051 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 10052 << 0 << Record->getDeclName() << Record->getDeclContext(); 10053 Diag(Pattern->getLocation(), diag::note_forward_declaration) 10054 << Pattern; 10055 return true; 10056 } else { 10057 if (InstantiateClass(NameLoc, Record, Def, 10058 getTemplateInstantiationArgs(Record), 10059 TSK)) 10060 return true; 10061 10062 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 10063 if (!RecordDef) 10064 return true; 10065 } 10066 } 10067 10068 // Instantiate all of the members of the class. 10069 InstantiateClassMembers(NameLoc, RecordDef, 10070 getTemplateInstantiationArgs(Record), TSK); 10071 10072 if (TSK == TSK_ExplicitInstantiationDefinition) 10073 MarkVTableUsed(NameLoc, RecordDef, true); 10074 10075 // FIXME: We don't have any representation for explicit instantiations of 10076 // member classes. Such a representation is not needed for compilation, but it 10077 // should be available for clients that want to see all of the declarations in 10078 // the source code. 10079 return TagD; 10080 } 10081 10082 DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 10083 SourceLocation ExternLoc, 10084 SourceLocation TemplateLoc, 10085 Declarator &D) { 10086 // Explicit instantiations always require a name. 10087 // TODO: check if/when DNInfo should replace Name. 10088 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 10089 DeclarationName Name = NameInfo.getName(); 10090 if (!Name) { 10091 if (!D.isInvalidType()) 10092 Diag(D.getDeclSpec().getBeginLoc(), 10093 diag::err_explicit_instantiation_requires_name) 10094 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 10095 10096 return true; 10097 } 10098 10099 // Get the innermost enclosing declaration scope. 10100 S = S->getDeclParent(); 10101 10102 // Determine the type of the declaration. 10103 TypeSourceInfo *T = GetTypeForDeclarator(D); 10104 QualType R = T->getType(); 10105 if (R.isNull()) 10106 return true; 10107 10108 // C++ [dcl.stc]p1: 10109 // A storage-class-specifier shall not be specified in [...] an explicit 10110 // instantiation (14.7.2) directive. 10111 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 10112 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 10113 << Name; 10114 return true; 10115 } else if (D.getDeclSpec().getStorageClassSpec() 10116 != DeclSpec::SCS_unspecified) { 10117 // Complain about then remove the storage class specifier. 10118 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 10119 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 10120 10121 D.getMutableDeclSpec().ClearStorageClassSpecs(); 10122 } 10123 10124 // C++0x [temp.explicit]p1: 10125 // [...] An explicit instantiation of a function template shall not use the 10126 // inline or constexpr specifiers. 10127 // Presumably, this also applies to member functions of class templates as 10128 // well. 10129 if (D.getDeclSpec().isInlineSpecified()) 10130 Diag(D.getDeclSpec().getInlineSpecLoc(), 10131 getLangOpts().CPlusPlus11 ? 10132 diag::err_explicit_instantiation_inline : 10133 diag::warn_explicit_instantiation_inline_0x) 10134 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 10135 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) 10136 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 10137 // not already specified. 10138 Diag(D.getDeclSpec().getConstexprSpecLoc(), 10139 diag::err_explicit_instantiation_constexpr); 10140 10141 // A deduction guide is not on the list of entities that can be explicitly 10142 // instantiated. 10143 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 10144 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) 10145 << /*explicit instantiation*/ 0; 10146 return true; 10147 } 10148 10149 // C++0x [temp.explicit]p2: 10150 // There are two forms of explicit instantiation: an explicit instantiation 10151 // definition and an explicit instantiation declaration. An explicit 10152 // instantiation declaration begins with the extern keyword. [...] 10153 TemplateSpecializationKind TSK 10154 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 10155 : TSK_ExplicitInstantiationDeclaration; 10156 10157 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 10158 LookupParsedName(Previous, S, &D.getCXXScopeSpec(), 10159 /*ObjectType=*/QualType()); 10160 10161 if (!R->isFunctionType()) { 10162 // C++ [temp.explicit]p1: 10163 // A [...] static data member of a class template can be explicitly 10164 // instantiated from the member definition associated with its class 10165 // template. 10166 // C++1y [temp.explicit]p1: 10167 // A [...] variable [...] template specialization can be explicitly 10168 // instantiated from its template. 10169 if (Previous.isAmbiguous()) 10170 return true; 10171 10172 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 10173 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); 10174 10175 if (!PrevTemplate) { 10176 if (!Prev || !Prev->isStaticDataMember()) { 10177 // We expect to see a static data member here. 10178 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 10179 << Name; 10180 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10181 P != PEnd; ++P) 10182 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 10183 return true; 10184 } 10185 10186 if (!Prev->getInstantiatedFromStaticDataMember()) { 10187 // FIXME: Check for explicit specialization? 10188 Diag(D.getIdentifierLoc(), 10189 diag::err_explicit_instantiation_data_member_not_instantiated) 10190 << Prev; 10191 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 10192 // FIXME: Can we provide a note showing where this was declared? 10193 return true; 10194 } 10195 } else { 10196 // Explicitly instantiate a variable template. 10197 10198 // C++1y [dcl.spec.auto]p6: 10199 // ... A program that uses auto or decltype(auto) in a context not 10200 // explicitly allowed in this section is ill-formed. 10201 // 10202 // This includes auto-typed variable template instantiations. 10203 if (R->isUndeducedType()) { 10204 Diag(T->getTypeLoc().getBeginLoc(), 10205 diag::err_auto_not_allowed_var_inst); 10206 return true; 10207 } 10208 10209 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 10210 // C++1y [temp.explicit]p3: 10211 // If the explicit instantiation is for a variable, the unqualified-id 10212 // in the declaration shall be a template-id. 10213 Diag(D.getIdentifierLoc(), 10214 diag::err_explicit_instantiation_without_template_id) 10215 << PrevTemplate; 10216 Diag(PrevTemplate->getLocation(), 10217 diag::note_explicit_instantiation_here); 10218 return true; 10219 } 10220 10221 // Translate the parser's template argument list into our AST format. 10222 TemplateArgumentListInfo TemplateArgs = 10223 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10224 10225 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, 10226 D.getIdentifierLoc(), TemplateArgs); 10227 if (Res.isInvalid()) 10228 return true; 10229 10230 if (!Res.isUsable()) { 10231 // We somehow specified dependent template arguments in an explicit 10232 // instantiation. This should probably only happen during error 10233 // recovery. 10234 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); 10235 return true; 10236 } 10237 10238 // Ignore access control bits, we don't need them for redeclaration 10239 // checking. 10240 Prev = cast<VarDecl>(Res.get()); 10241 } 10242 10243 // C++0x [temp.explicit]p2: 10244 // If the explicit instantiation is for a member function, a member class 10245 // or a static data member of a class template specialization, the name of 10246 // the class template specialization in the qualified-id for the member 10247 // name shall be a simple-template-id. 10248 // 10249 // C++98 has the same restriction, just worded differently. 10250 // 10251 // This does not apply to variable template specializations, where the 10252 // template-id is in the unqualified-id instead. 10253 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) 10254 Diag(D.getIdentifierLoc(), 10255 diag::ext_explicit_instantiation_without_qualified_id) 10256 << Prev << D.getCXXScopeSpec().getRange(); 10257 10258 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); 10259 10260 // Verify that it is okay to explicitly instantiate here. 10261 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); 10262 SourceLocation POI = Prev->getPointOfInstantiation(); 10263 bool HasNoEffect = false; 10264 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 10265 PrevTSK, POI, HasNoEffect)) 10266 return true; 10267 10268 if (!HasNoEffect) { 10269 // Instantiate static data member or variable template. 10270 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10271 if (auto *VTSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Prev)) { 10272 VTSD->setExternKeywordLoc(ExternLoc); 10273 VTSD->setTemplateKeywordLoc(TemplateLoc); 10274 } 10275 10276 // Merge attributes. 10277 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); 10278 if (PrevTemplate) 10279 ProcessAPINotes(Prev); 10280 10281 if (TSK == TSK_ExplicitInstantiationDefinition) 10282 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); 10283 } 10284 10285 // Check the new variable specialization against the parsed input. 10286 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { 10287 Diag(T->getTypeLoc().getBeginLoc(), 10288 diag::err_invalid_var_template_spec_type) 10289 << 0 << PrevTemplate << R << Prev->getType(); 10290 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) 10291 << 2 << PrevTemplate->getDeclName(); 10292 return true; 10293 } 10294 10295 // FIXME: Create an ExplicitInstantiation node? 10296 return (Decl*) nullptr; 10297 } 10298 10299 // If the declarator is a template-id, translate the parser's template 10300 // argument list into our AST format. 10301 bool HasExplicitTemplateArgs = false; 10302 TemplateArgumentListInfo TemplateArgs; 10303 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 10304 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); 10305 HasExplicitTemplateArgs = true; 10306 } 10307 10308 // C++ [temp.explicit]p1: 10309 // A [...] function [...] can be explicitly instantiated from its template. 10310 // A member function [...] of a class template can be explicitly 10311 // instantiated from the member definition associated with its class 10312 // template. 10313 UnresolvedSet<8> TemplateMatches; 10314 OverloadCandidateSet NonTemplateMatches(D.getBeginLoc(), 10315 OverloadCandidateSet::CSK_Normal); 10316 TemplateSpecCandidateSet FailedTemplateCandidates(D.getIdentifierLoc()); 10317 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 10318 P != PEnd; ++P) { 10319 NamedDecl *Prev = *P; 10320 if (!HasExplicitTemplateArgs) { 10321 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 10322 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), 10323 /*AdjustExceptionSpec*/true); 10324 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { 10325 if (Method->getPrimaryTemplate()) { 10326 TemplateMatches.addDecl(Method, P.getAccess()); 10327 } else { 10328 OverloadCandidate &C = NonTemplateMatches.addCandidate(); 10329 C.FoundDecl = P.getPair(); 10330 C.Function = Method; 10331 C.Viable = true; 10332 ConstraintSatisfaction S; 10333 if (Method->getTrailingRequiresClause() && 10334 (CheckFunctionConstraints(Method, S, D.getIdentifierLoc(), 10335 /*ForOverloadResolution=*/true) || 10336 !S.IsSatisfied)) { 10337 C.Viable = false; 10338 C.FailureKind = ovl_fail_constraints_not_satisfied; 10339 } 10340 } 10341 } 10342 } 10343 } 10344 10345 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 10346 if (!FunTmpl) 10347 continue; 10348 10349 TemplateDeductionInfo Info(FailedTemplateCandidates.getLocation()); 10350 FunctionDecl *Specialization = nullptr; 10351 if (TemplateDeductionResult TDK = DeduceTemplateArguments( 10352 FunTmpl, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), R, 10353 Specialization, Info); 10354 TDK != TemplateDeductionResult::Success) { 10355 // Keep track of almost-matches. 10356 FailedTemplateCandidates.addCandidate().set( 10357 P.getPair(), FunTmpl->getTemplatedDecl(), 10358 MakeDeductionFailureInfo(Context, TDK, Info)); 10359 (void)TDK; 10360 continue; 10361 } 10362 10363 // Target attributes are part of the cuda function signature, so 10364 // the cuda target of the instantiated function must match that of its 10365 // template. Given that C++ template deduction does not take 10366 // target attributes into account, we reject candidates here that 10367 // have a different target. 10368 if (LangOpts.CUDA && 10369 CUDA().IdentifyTarget(Specialization, 10370 /* IgnoreImplicitHDAttr = */ true) != 10371 CUDA().IdentifyTarget(D.getDeclSpec().getAttributes())) { 10372 FailedTemplateCandidates.addCandidate().set( 10373 P.getPair(), FunTmpl->getTemplatedDecl(), 10374 MakeDeductionFailureInfo( 10375 Context, TemplateDeductionResult::CUDATargetMismatch, Info)); 10376 continue; 10377 } 10378 10379 TemplateMatches.addDecl(Specialization, P.getAccess()); 10380 } 10381 10382 FunctionDecl *Specialization = nullptr; 10383 if (!NonTemplateMatches.empty()) { 10384 unsigned Msg = 0; 10385 OverloadCandidateDisplayKind DisplayKind; 10386 OverloadCandidateSet::iterator Best; 10387 switch (NonTemplateMatches.BestViableFunction(*this, D.getIdentifierLoc(), 10388 Best)) { 10389 case OR_Success: 10390 case OR_Deleted: 10391 Specialization = cast<FunctionDecl>(Best->Function); 10392 break; 10393 case OR_Ambiguous: 10394 Msg = diag::err_explicit_instantiation_ambiguous; 10395 DisplayKind = OCD_AmbiguousCandidates; 10396 break; 10397 case OR_No_Viable_Function: 10398 Msg = diag::err_explicit_instantiation_no_candidate; 10399 DisplayKind = OCD_AllCandidates; 10400 break; 10401 } 10402 if (Msg) { 10403 PartialDiagnostic Diag = PDiag(Msg) << Name; 10404 NonTemplateMatches.NoteCandidates( 10405 PartialDiagnosticAt(D.getIdentifierLoc(), Diag), *this, DisplayKind, 10406 {}); 10407 return true; 10408 } 10409 } 10410 10411 if (!Specialization) { 10412 // Find the most specialized function template specialization. 10413 UnresolvedSetIterator Result = getMostSpecialized( 10414 TemplateMatches.begin(), TemplateMatches.end(), 10415 FailedTemplateCandidates, D.getIdentifierLoc(), 10416 PDiag(diag::err_explicit_instantiation_not_known) << Name, 10417 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 10418 PDiag(diag::note_explicit_instantiation_candidate)); 10419 10420 if (Result == TemplateMatches.end()) 10421 return true; 10422 10423 // Ignore access control bits, we don't need them for redeclaration checking. 10424 Specialization = cast<FunctionDecl>(*Result); 10425 } 10426 10427 // C++11 [except.spec]p4 10428 // In an explicit instantiation an exception-specification may be specified, 10429 // but is not required. 10430 // If an exception-specification is specified in an explicit instantiation 10431 // directive, it shall be compatible with the exception-specifications of 10432 // other declarations of that function. 10433 if (auto *FPT = R->getAs<FunctionProtoType>()) 10434 if (FPT->hasExceptionSpec()) { 10435 unsigned DiagID = 10436 diag::err_mismatched_exception_spec_explicit_instantiation; 10437 if (getLangOpts().MicrosoftExt) 10438 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; 10439 bool Result = CheckEquivalentExceptionSpec( 10440 PDiag(DiagID) << Specialization->getType(), 10441 PDiag(diag::note_explicit_instantiation_here), 10442 Specialization->getType()->getAs<FunctionProtoType>(), 10443 Specialization->getLocation(), FPT, D.getBeginLoc()); 10444 // In Microsoft mode, mismatching exception specifications just cause a 10445 // warning. 10446 if (!getLangOpts().MicrosoftExt && Result) 10447 return true; 10448 } 10449 10450 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 10451 Diag(D.getIdentifierLoc(), 10452 diag::err_explicit_instantiation_member_function_not_instantiated) 10453 << Specialization 10454 << (Specialization->getTemplateSpecializationKind() == 10455 TSK_ExplicitSpecialization); 10456 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 10457 return true; 10458 } 10459 10460 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 10461 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 10462 PrevDecl = Specialization; 10463 10464 if (PrevDecl) { 10465 bool HasNoEffect = false; 10466 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 10467 PrevDecl, 10468 PrevDecl->getTemplateSpecializationKind(), 10469 PrevDecl->getPointOfInstantiation(), 10470 HasNoEffect)) 10471 return true; 10472 10473 // FIXME: We may still want to build some representation of this 10474 // explicit specialization. 10475 if (HasNoEffect) 10476 return (Decl*) nullptr; 10477 } 10478 10479 // HACK: libc++ has a bug where it attempts to explicitly instantiate the 10480 // functions 10481 // valarray<size_t>::valarray(size_t) and 10482 // valarray<size_t>::~valarray() 10483 // that it declared to have internal linkage with the internal_linkage 10484 // attribute. Ignore the explicit instantiation declaration in this case. 10485 if (Specialization->hasAttr<InternalLinkageAttr>() && 10486 TSK == TSK_ExplicitInstantiationDeclaration) { 10487 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) 10488 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && 10489 RD->isInStdNamespace()) 10490 return (Decl*) nullptr; 10491 } 10492 10493 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); 10494 ProcessAPINotes(Specialization); 10495 10496 // In MSVC mode, dllimported explicit instantiation definitions are treated as 10497 // instantiation declarations. 10498 if (TSK == TSK_ExplicitInstantiationDefinition && 10499 Specialization->hasAttr<DLLImportAttr>() && 10500 Context.getTargetInfo().getCXXABI().isMicrosoft()) 10501 TSK = TSK_ExplicitInstantiationDeclaration; 10502 10503 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 10504 10505 if (Specialization->isDefined()) { 10506 // Let the ASTConsumer know that this function has been explicitly 10507 // instantiated now, and its linkage might have changed. 10508 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); 10509 } else if (TSK == TSK_ExplicitInstantiationDefinition) 10510 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 10511 10512 // C++0x [temp.explicit]p2: 10513 // If the explicit instantiation is for a member function, a member class 10514 // or a static data member of a class template specialization, the name of 10515 // the class template specialization in the qualified-id for the member 10516 // name shall be a simple-template-id. 10517 // 10518 // C++98 has the same restriction, just worded differently. 10519 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 10520 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && 10521 D.getCXXScopeSpec().isSet() && 10522 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 10523 Diag(D.getIdentifierLoc(), 10524 diag::ext_explicit_instantiation_without_qualified_id) 10525 << Specialization << D.getCXXScopeSpec().getRange(); 10526 10527 CheckExplicitInstantiation( 10528 *this, 10529 FunTmpl ? (NamedDecl *)FunTmpl 10530 : Specialization->getInstantiatedFromMemberFunction(), 10531 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); 10532 10533 // FIXME: Create some kind of ExplicitInstantiationDecl here. 10534 return (Decl*) nullptr; 10535 } 10536 10537 TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 10538 const CXXScopeSpec &SS, 10539 const IdentifierInfo *Name, 10540 SourceLocation TagLoc, 10541 SourceLocation NameLoc) { 10542 // This has to hold, because SS is expected to be defined. 10543 assert(Name && "Expected a name in a dependent tag"); 10544 10545 NestedNameSpecifier *NNS = SS.getScopeRep(); 10546 if (!NNS) 10547 return true; 10548 10549 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 10550 10551 if (TUK == TagUseKind::Declaration || TUK == TagUseKind::Definition) { 10552 Diag(NameLoc, diag::err_dependent_tag_decl) 10553 << (TUK == TagUseKind::Definition) << llvm::to_underlying(Kind) 10554 << SS.getRange(); 10555 return true; 10556 } 10557 10558 // Create the resulting type. 10559 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 10560 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 10561 10562 // Create type-source location information for this type. 10563 TypeLocBuilder TLB; 10564 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 10565 TL.setElaboratedKeywordLoc(TagLoc); 10566 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10567 TL.setNameLoc(NameLoc); 10568 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 10569 } 10570 10571 TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10572 const CXXScopeSpec &SS, 10573 const IdentifierInfo &II, 10574 SourceLocation IdLoc, 10575 ImplicitTypenameContext IsImplicitTypename) { 10576 if (SS.isInvalid()) 10577 return true; 10578 10579 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10580 Diag(TypenameLoc, 10581 getLangOpts().CPlusPlus11 ? 10582 diag::warn_cxx98_compat_typename_outside_of_template : 10583 diag::ext_typename_outside_of_template) 10584 << FixItHint::CreateRemoval(TypenameLoc); 10585 10586 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 10587 TypeSourceInfo *TSI = nullptr; 10588 QualType T = 10589 CheckTypenameType((TypenameLoc.isValid() || 10590 IsImplicitTypename == ImplicitTypenameContext::Yes) 10591 ? ElaboratedTypeKeyword::Typename 10592 : ElaboratedTypeKeyword::None, 10593 TypenameLoc, QualifierLoc, II, IdLoc, &TSI, 10594 /*DeducedTSTContext=*/true); 10595 if (T.isNull()) 10596 return true; 10597 return CreateParsedType(T, TSI); 10598 } 10599 10600 TypeResult 10601 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 10602 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 10603 TemplateTy TemplateIn, const IdentifierInfo *TemplateII, 10604 SourceLocation TemplateIILoc, SourceLocation LAngleLoc, 10605 ASTTemplateArgsPtr TemplateArgsIn, 10606 SourceLocation RAngleLoc) { 10607 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 10608 Diag(TypenameLoc, 10609 getLangOpts().CPlusPlus11 ? 10610 diag::warn_cxx98_compat_typename_outside_of_template : 10611 diag::ext_typename_outside_of_template) 10612 << FixItHint::CreateRemoval(TypenameLoc); 10613 10614 // Strangely, non-type results are not ignored by this lookup, so the 10615 // program is ill-formed if it finds an injected-class-name. 10616 if (TypenameLoc.isValid()) { 10617 auto *LookupRD = 10618 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); 10619 if (LookupRD && LookupRD->getIdentifier() == TemplateII) { 10620 Diag(TemplateIILoc, 10621 diag::ext_out_of_line_qualified_id_type_names_constructor) 10622 << TemplateII << 0 /*injected-class-name used as template name*/ 10623 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); 10624 } 10625 } 10626 10627 // Translate the parser's template argument list in our AST format. 10628 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 10629 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 10630 10631 TemplateName Template = TemplateIn.get(); 10632 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 10633 // Construct a dependent template specialization type. 10634 assert(DTN && "dependent template has non-dependent name?"); 10635 assert(DTN->getQualifier() == SS.getScopeRep()); 10636 10637 if (!DTN->isIdentifier()) { 10638 Diag(TemplateIILoc, diag::err_template_id_not_a_type) << Template; 10639 NoteAllFoundTemplates(Template); 10640 return true; 10641 } 10642 10643 QualType T = Context.getDependentTemplateSpecializationType( 10644 ElaboratedTypeKeyword::Typename, DTN->getQualifier(), 10645 DTN->getIdentifier(), TemplateArgs.arguments()); 10646 10647 // Create source-location information for this type. 10648 TypeLocBuilder Builder; 10649 DependentTemplateSpecializationTypeLoc SpecTL 10650 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 10651 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 10652 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 10653 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10654 SpecTL.setTemplateNameLoc(TemplateIILoc); 10655 SpecTL.setLAngleLoc(LAngleLoc); 10656 SpecTL.setRAngleLoc(RAngleLoc); 10657 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10658 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10659 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 10660 } 10661 10662 QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); 10663 if (T.isNull()) 10664 return true; 10665 10666 // Provide source-location information for the template specialization type. 10667 TypeLocBuilder Builder; 10668 TemplateSpecializationTypeLoc SpecTL 10669 = Builder.push<TemplateSpecializationTypeLoc>(T); 10670 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 10671 SpecTL.setTemplateNameLoc(TemplateIILoc); 10672 SpecTL.setLAngleLoc(LAngleLoc); 10673 SpecTL.setRAngleLoc(RAngleLoc); 10674 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 10675 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 10676 10677 T = Context.getElaboratedType(ElaboratedTypeKeyword::Typename, 10678 SS.getScopeRep(), T); 10679 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 10680 TL.setElaboratedKeywordLoc(TypenameLoc); 10681 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 10682 10683 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 10684 return CreateParsedType(T, TSI); 10685 } 10686 10687 /// Determine whether this failed name lookup should be treated as being 10688 /// disabled by a usage of std::enable_if. 10689 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 10690 SourceRange &CondRange, Expr *&Cond) { 10691 // We must be looking for a ::type... 10692 if (!II.isStr("type")) 10693 return false; 10694 10695 // ... within an explicitly-written template specialization... 10696 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 10697 return false; 10698 TypeLoc EnableIfTy = NNS.getTypeLoc(); 10699 TemplateSpecializationTypeLoc EnableIfTSTLoc = 10700 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 10701 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 10702 return false; 10703 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); 10704 10705 // ... which names a complete class template declaration... 10706 const TemplateDecl *EnableIfDecl = 10707 EnableIfTST->getTemplateName().getAsTemplateDecl(); 10708 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 10709 return false; 10710 10711 // ... called "enable_if". 10712 const IdentifierInfo *EnableIfII = 10713 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 10714 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 10715 return false; 10716 10717 // Assume the first template argument is the condition. 10718 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 10719 10720 // Dig out the condition. 10721 Cond = nullptr; 10722 if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() 10723 != TemplateArgument::Expression) 10724 return true; 10725 10726 Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); 10727 10728 // Ignore Boolean literals; they add no value. 10729 if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) 10730 Cond = nullptr; 10731 10732 return true; 10733 } 10734 10735 QualType 10736 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10737 SourceLocation KeywordLoc, 10738 NestedNameSpecifierLoc QualifierLoc, 10739 const IdentifierInfo &II, 10740 SourceLocation IILoc, 10741 TypeSourceInfo **TSI, 10742 bool DeducedTSTContext) { 10743 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, 10744 DeducedTSTContext); 10745 if (T.isNull()) 10746 return QualType(); 10747 10748 *TSI = Context.CreateTypeSourceInfo(T); 10749 if (isa<DependentNameType>(T)) { 10750 DependentNameTypeLoc TL = 10751 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); 10752 TL.setElaboratedKeywordLoc(KeywordLoc); 10753 TL.setQualifierLoc(QualifierLoc); 10754 TL.setNameLoc(IILoc); 10755 } else { 10756 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); 10757 TL.setElaboratedKeywordLoc(KeywordLoc); 10758 TL.setQualifierLoc(QualifierLoc); 10759 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); 10760 } 10761 return T; 10762 } 10763 10764 /// Build the type that describes a C++ typename specifier, 10765 /// e.g., "typename T::type". 10766 QualType 10767 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 10768 SourceLocation KeywordLoc, 10769 NestedNameSpecifierLoc QualifierLoc, 10770 const IdentifierInfo &II, 10771 SourceLocation IILoc, bool DeducedTSTContext) { 10772 CXXScopeSpec SS; 10773 SS.Adopt(QualifierLoc); 10774 10775 DeclContext *Ctx = nullptr; 10776 if (QualifierLoc) { 10777 Ctx = computeDeclContext(SS); 10778 if (!Ctx) { 10779 // If the nested-name-specifier is dependent and couldn't be 10780 // resolved to a type, build a typename type. 10781 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 10782 return Context.getDependentNameType(Keyword, 10783 QualifierLoc.getNestedNameSpecifier(), 10784 &II); 10785 } 10786 10787 // If the nested-name-specifier refers to the current instantiation, 10788 // the "typename" keyword itself is superfluous. In C++03, the 10789 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 10790 // allows such extraneous "typename" keywords, and we retroactively 10791 // apply this DR to C++03 code with only a warning. In any case we continue. 10792 10793 if (RequireCompleteDeclContext(SS, Ctx)) 10794 return QualType(); 10795 } 10796 10797 DeclarationName Name(&II); 10798 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 10799 if (Ctx) 10800 LookupQualifiedName(Result, Ctx, SS); 10801 else 10802 LookupName(Result, CurScope); 10803 unsigned DiagID = 0; 10804 Decl *Referenced = nullptr; 10805 switch (Result.getResultKind()) { 10806 case LookupResult::NotFound: { 10807 // If we're looking up 'type' within a template named 'enable_if', produce 10808 // a more specific diagnostic. 10809 SourceRange CondRange; 10810 Expr *Cond = nullptr; 10811 if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { 10812 // If we have a condition, narrow it down to the specific failed 10813 // condition. 10814 if (Cond) { 10815 Expr *FailedCond; 10816 std::string FailedDescription; 10817 std::tie(FailedCond, FailedDescription) = 10818 findFailedBooleanCondition(Cond); 10819 10820 Diag(FailedCond->getExprLoc(), 10821 diag::err_typename_nested_not_found_requirement) 10822 << FailedDescription 10823 << FailedCond->getSourceRange(); 10824 return QualType(); 10825 } 10826 10827 Diag(CondRange.getBegin(), 10828 diag::err_typename_nested_not_found_enable_if) 10829 << Ctx << CondRange; 10830 return QualType(); 10831 } 10832 10833 DiagID = Ctx ? diag::err_typename_nested_not_found 10834 : diag::err_unknown_typename; 10835 break; 10836 } 10837 10838 case LookupResult::FoundUnresolvedValue: { 10839 // We found a using declaration that is a value. Most likely, the using 10840 // declaration itself is meant to have the 'typename' keyword. 10841 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10842 IILoc); 10843 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 10844 << Name << Ctx << FullRange; 10845 if (UnresolvedUsingValueDecl *Using 10846 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 10847 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 10848 Diag(Loc, diag::note_using_value_decl_missing_typename) 10849 << FixItHint::CreateInsertion(Loc, "typename "); 10850 } 10851 } 10852 // Fall through to create a dependent typename type, from which we can recover 10853 // better. 10854 [[fallthrough]]; 10855 10856 case LookupResult::NotFoundInCurrentInstantiation: 10857 // Okay, it's a member of an unknown instantiation. 10858 return Context.getDependentNameType(Keyword, 10859 QualifierLoc.getNestedNameSpecifier(), 10860 &II); 10861 10862 case LookupResult::Found: 10863 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 10864 // C++ [class.qual]p2: 10865 // In a lookup in which function names are not ignored and the 10866 // nested-name-specifier nominates a class C, if the name specified 10867 // after the nested-name-specifier, when looked up in C, is the 10868 // injected-class-name of C [...] then the name is instead considered 10869 // to name the constructor of class C. 10870 // 10871 // Unlike in an elaborated-type-specifier, function names are not ignored 10872 // in typename-specifier lookup. However, they are ignored in all the 10873 // contexts where we form a typename type with no keyword (that is, in 10874 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). 10875 // 10876 // FIXME: That's not strictly true: mem-initializer-id lookup does not 10877 // ignore functions, but that appears to be an oversight. 10878 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); 10879 auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); 10880 if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD && 10881 FoundRD->isInjectedClassName() && 10882 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 10883 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) 10884 << &II << 1 << 0 /*'typename' keyword used*/; 10885 10886 // We found a type. Build an ElaboratedType, since the 10887 // typename-specifier was just sugar. 10888 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 10889 return Context.getElaboratedType(Keyword, 10890 QualifierLoc.getNestedNameSpecifier(), 10891 Context.getTypeDeclType(Type)); 10892 } 10893 10894 // C++ [dcl.type.simple]p2: 10895 // A type-specifier of the form 10896 // typename[opt] nested-name-specifier[opt] template-name 10897 // is a placeholder for a deduced class type [...]. 10898 if (getLangOpts().CPlusPlus17) { 10899 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { 10900 if (!DeducedTSTContext) { 10901 QualType T(QualifierLoc 10902 ? QualifierLoc.getNestedNameSpecifier()->getAsType() 10903 : nullptr, 0); 10904 if (!T.isNull()) 10905 Diag(IILoc, diag::err_dependent_deduced_tst) 10906 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; 10907 else 10908 Diag(IILoc, diag::err_deduced_tst) 10909 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); 10910 NoteTemplateLocation(*TD); 10911 return QualType(); 10912 } 10913 return Context.getElaboratedType( 10914 Keyword, QualifierLoc.getNestedNameSpecifier(), 10915 Context.getDeducedTemplateSpecializationType(TemplateName(TD), 10916 QualType(), false)); 10917 } 10918 } 10919 10920 DiagID = Ctx ? diag::err_typename_nested_not_type 10921 : diag::err_typename_not_type; 10922 Referenced = Result.getFoundDecl(); 10923 break; 10924 10925 case LookupResult::FoundOverloaded: 10926 DiagID = Ctx ? diag::err_typename_nested_not_type 10927 : diag::err_typename_not_type; 10928 Referenced = *Result.begin(); 10929 break; 10930 10931 case LookupResult::Ambiguous: 10932 return QualType(); 10933 } 10934 10935 // If we get here, it's because name lookup did not find a 10936 // type. Emit an appropriate diagnostic and return an error. 10937 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 10938 IILoc); 10939 if (Ctx) 10940 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 10941 else 10942 Diag(IILoc, DiagID) << FullRange << Name; 10943 if (Referenced) 10944 Diag(Referenced->getLocation(), 10945 Ctx ? diag::note_typename_member_refers_here 10946 : diag::note_typename_refers_here) 10947 << Name; 10948 return QualType(); 10949 } 10950 10951 namespace { 10952 // See Sema::RebuildTypeInCurrentInstantiation 10953 class CurrentInstantiationRebuilder 10954 : public TreeTransform<CurrentInstantiationRebuilder> { 10955 SourceLocation Loc; 10956 DeclarationName Entity; 10957 10958 public: 10959 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 10960 10961 CurrentInstantiationRebuilder(Sema &SemaRef, 10962 SourceLocation Loc, 10963 DeclarationName Entity) 10964 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 10965 Loc(Loc), Entity(Entity) { } 10966 10967 /// Determine whether the given type \p T has already been 10968 /// transformed. 10969 /// 10970 /// For the purposes of type reconstruction, a type has already been 10971 /// transformed if it is NULL or if it is not dependent. 10972 bool AlreadyTransformed(QualType T) { 10973 return T.isNull() || !T->isInstantiationDependentType(); 10974 } 10975 10976 /// Returns the location of the entity whose type is being 10977 /// rebuilt. 10978 SourceLocation getBaseLocation() { return Loc; } 10979 10980 /// Returns the name of the entity whose type is being rebuilt. 10981 DeclarationName getBaseEntity() { return Entity; } 10982 10983 /// Sets the "base" location and entity when that 10984 /// information is known based on another transformation. 10985 void setBase(SourceLocation Loc, DeclarationName Entity) { 10986 this->Loc = Loc; 10987 this->Entity = Entity; 10988 } 10989 10990 ExprResult TransformLambdaExpr(LambdaExpr *E) { 10991 // Lambdas never need to be transformed. 10992 return E; 10993 } 10994 }; 10995 } // end anonymous namespace 10996 10997 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 10998 SourceLocation Loc, 10999 DeclarationName Name) { 11000 if (!T || !T->getType()->isInstantiationDependentType()) 11001 return T; 11002 11003 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 11004 return Rebuilder.TransformType(T); 11005 } 11006 11007 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 11008 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 11009 DeclarationName()); 11010 return Rebuilder.TransformExpr(E); 11011 } 11012 11013 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 11014 if (SS.isInvalid()) 11015 return true; 11016 11017 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 11018 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 11019 DeclarationName()); 11020 NestedNameSpecifierLoc Rebuilt 11021 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 11022 if (!Rebuilt) 11023 return true; 11024 11025 SS.Adopt(Rebuilt); 11026 return false; 11027 } 11028 11029 bool Sema::RebuildTemplateParamsInCurrentInstantiation( 11030 TemplateParameterList *Params) { 11031 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11032 Decl *Param = Params->getParam(I); 11033 11034 // There is nothing to rebuild in a type parameter. 11035 if (isa<TemplateTypeParmDecl>(Param)) 11036 continue; 11037 11038 // Rebuild the template parameter list of a template template parameter. 11039 if (TemplateTemplateParmDecl *TTP 11040 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 11041 if (RebuildTemplateParamsInCurrentInstantiation( 11042 TTP->getTemplateParameters())) 11043 return true; 11044 11045 continue; 11046 } 11047 11048 // Rebuild the type of a non-type template parameter. 11049 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 11050 TypeSourceInfo *NewTSI 11051 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 11052 NTTP->getLocation(), 11053 NTTP->getDeclName()); 11054 if (!NewTSI) 11055 return true; 11056 11057 if (NewTSI->getType()->isUndeducedType()) { 11058 // C++17 [temp.dep.expr]p3: 11059 // An id-expression is type-dependent if it contains 11060 // - an identifier associated by name lookup with a non-type 11061 // template-parameter declared with a type that contains a 11062 // placeholder type (7.1.7.4), 11063 NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI); 11064 } 11065 11066 if (NewTSI != NTTP->getTypeSourceInfo()) { 11067 NTTP->setTypeSourceInfo(NewTSI); 11068 NTTP->setType(NewTSI->getType()); 11069 } 11070 } 11071 11072 return false; 11073 } 11074 11075 std::string 11076 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11077 const TemplateArgumentList &Args) { 11078 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 11079 } 11080 11081 std::string 11082 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 11083 const TemplateArgument *Args, 11084 unsigned NumArgs) { 11085 SmallString<128> Str; 11086 llvm::raw_svector_ostream Out(Str); 11087 11088 if (!Params || Params->size() == 0 || NumArgs == 0) 11089 return std::string(); 11090 11091 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 11092 if (I >= NumArgs) 11093 break; 11094 11095 if (I == 0) 11096 Out << "[with "; 11097 else 11098 Out << ", "; 11099 11100 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 11101 Out << Id->getName(); 11102 } else { 11103 Out << '$' << I; 11104 } 11105 11106 Out << " = "; 11107 Args[I].print(getPrintingPolicy(), Out, 11108 TemplateParameterList::shouldIncludeTypeForArgument( 11109 getPrintingPolicy(), Params, I)); 11110 } 11111 11112 Out << ']'; 11113 return std::string(Out.str()); 11114 } 11115 11116 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, 11117 CachedTokens &Toks) { 11118 if (!FD) 11119 return; 11120 11121 auto LPT = std::make_unique<LateParsedTemplate>(); 11122 11123 // Take tokens to avoid allocations 11124 LPT->Toks.swap(Toks); 11125 LPT->D = FnD; 11126 LPT->FPO = getCurFPFeatures(); 11127 LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); 11128 11129 FD->setLateTemplateParsed(true); 11130 } 11131 11132 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { 11133 if (!FD) 11134 return; 11135 FD->setLateTemplateParsed(false); 11136 } 11137 11138 bool Sema::IsInsideALocalClassWithinATemplateFunction() { 11139 DeclContext *DC = CurContext; 11140 11141 while (DC) { 11142 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 11143 const FunctionDecl *FD = RD->isLocalClass(); 11144 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 11145 } else if (DC->isTranslationUnit() || DC->isNamespace()) 11146 return false; 11147 11148 DC = DC->getParent(); 11149 } 11150 return false; 11151 } 11152 11153 namespace { 11154 /// Walk the path from which a declaration was instantiated, and check 11155 /// that every explicit specialization along that path is visible. This enforces 11156 /// C++ [temp.expl.spec]/6: 11157 /// 11158 /// If a template, a member template or a member of a class template is 11159 /// explicitly specialized then that specialization shall be declared before 11160 /// the first use of that specialization that would cause an implicit 11161 /// instantiation to take place, in every translation unit in which such a 11162 /// use occurs; no diagnostic is required. 11163 /// 11164 /// and also C++ [temp.class.spec]/1: 11165 /// 11166 /// A partial specialization shall be declared before the first use of a 11167 /// class template specialization that would make use of the partial 11168 /// specialization as the result of an implicit or explicit instantiation 11169 /// in every translation unit in which such a use occurs; no diagnostic is 11170 /// required. 11171 class ExplicitSpecializationVisibilityChecker { 11172 Sema &S; 11173 SourceLocation Loc; 11174 llvm::SmallVector<Module *, 8> Modules; 11175 Sema::AcceptableKind Kind; 11176 11177 public: 11178 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, 11179 Sema::AcceptableKind Kind) 11180 : S(S), Loc(Loc), Kind(Kind) {} 11181 11182 void check(NamedDecl *ND) { 11183 if (auto *FD = dyn_cast<FunctionDecl>(ND)) 11184 return checkImpl(FD); 11185 if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) 11186 return checkImpl(RD); 11187 if (auto *VD = dyn_cast<VarDecl>(ND)) 11188 return checkImpl(VD); 11189 if (auto *ED = dyn_cast<EnumDecl>(ND)) 11190 return checkImpl(ED); 11191 } 11192 11193 private: 11194 void diagnose(NamedDecl *D, bool IsPartialSpec) { 11195 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization 11196 : Sema::MissingImportKind::ExplicitSpecialization; 11197 const bool Recover = true; 11198 11199 // If we got a custom set of modules (because only a subset of the 11200 // declarations are interesting), use them, otherwise let 11201 // diagnoseMissingImport intelligently pick some. 11202 if (Modules.empty()) 11203 S.diagnoseMissingImport(Loc, D, Kind, Recover); 11204 else 11205 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); 11206 } 11207 11208 bool CheckMemberSpecialization(const NamedDecl *D) { 11209 return Kind == Sema::AcceptableKind::Visible 11210 ? S.hasVisibleMemberSpecialization(D) 11211 : S.hasReachableMemberSpecialization(D); 11212 } 11213 11214 bool CheckExplicitSpecialization(const NamedDecl *D) { 11215 return Kind == Sema::AcceptableKind::Visible 11216 ? S.hasVisibleExplicitSpecialization(D) 11217 : S.hasReachableExplicitSpecialization(D); 11218 } 11219 11220 bool CheckDeclaration(const NamedDecl *D) { 11221 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) 11222 : S.hasReachableDeclaration(D); 11223 } 11224 11225 // Check a specific declaration. There are three problematic cases: 11226 // 11227 // 1) The declaration is an explicit specialization of a template 11228 // specialization. 11229 // 2) The declaration is an explicit specialization of a member of an 11230 // templated class. 11231 // 3) The declaration is an instantiation of a template, and that template 11232 // is an explicit specialization of a member of a templated class. 11233 // 11234 // We don't need to go any deeper than that, as the instantiation of the 11235 // surrounding class / etc is not triggered by whatever triggered this 11236 // instantiation, and thus should be checked elsewhere. 11237 template<typename SpecDecl> 11238 void checkImpl(SpecDecl *Spec) { 11239 bool IsHiddenExplicitSpecialization = false; 11240 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { 11241 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() 11242 ? !CheckMemberSpecialization(Spec) 11243 : !CheckExplicitSpecialization(Spec); 11244 } else { 11245 checkInstantiated(Spec); 11246 } 11247 11248 if (IsHiddenExplicitSpecialization) 11249 diagnose(Spec->getMostRecentDecl(), false); 11250 } 11251 11252 void checkInstantiated(FunctionDecl *FD) { 11253 if (auto *TD = FD->getPrimaryTemplate()) 11254 checkTemplate(TD); 11255 } 11256 11257 void checkInstantiated(CXXRecordDecl *RD) { 11258 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); 11259 if (!SD) 11260 return; 11261 11262 auto From = SD->getSpecializedTemplateOrPartial(); 11263 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) 11264 checkTemplate(TD); 11265 else if (auto *TD = 11266 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { 11267 if (!CheckDeclaration(TD)) 11268 diagnose(TD, true); 11269 checkTemplate(TD); 11270 } 11271 } 11272 11273 void checkInstantiated(VarDecl *RD) { 11274 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); 11275 if (!SD) 11276 return; 11277 11278 auto From = SD->getSpecializedTemplateOrPartial(); 11279 if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) 11280 checkTemplate(TD); 11281 else if (auto *TD = 11282 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 11283 if (!CheckDeclaration(TD)) 11284 diagnose(TD, true); 11285 checkTemplate(TD); 11286 } 11287 } 11288 11289 void checkInstantiated(EnumDecl *FD) {} 11290 11291 template<typename TemplDecl> 11292 void checkTemplate(TemplDecl *TD) { 11293 if (TD->isMemberSpecialization()) { 11294 if (!CheckMemberSpecialization(TD)) 11295 diagnose(TD->getMostRecentDecl(), false); 11296 } 11297 } 11298 }; 11299 } // end anonymous namespace 11300 11301 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { 11302 if (!getLangOpts().Modules) 11303 return; 11304 11305 ExplicitSpecializationVisibilityChecker(*this, Loc, 11306 Sema::AcceptableKind::Visible) 11307 .check(Spec); 11308 } 11309 11310 void Sema::checkSpecializationReachability(SourceLocation Loc, 11311 NamedDecl *Spec) { 11312 if (!getLangOpts().CPlusPlusModules) 11313 return checkSpecializationVisibility(Loc, Spec); 11314 11315 ExplicitSpecializationVisibilityChecker(*this, Loc, 11316 Sema::AcceptableKind::Reachable) 11317 .check(Spec); 11318 } 11319 11320 SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const { 11321 if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty()) 11322 return N->getLocation(); 11323 if (const auto *FD = dyn_cast<FunctionDecl>(N)) { 11324 if (!FD->isFunctionTemplateSpecialization()) 11325 return FD->getLocation(); 11326 } else if (!isa<ClassTemplateSpecializationDecl, 11327 VarTemplateSpecializationDecl>(N)) { 11328 return N->getLocation(); 11329 } 11330 for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) { 11331 if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid()) 11332 continue; 11333 return CSC.PointOfInstantiation; 11334 } 11335 return N->getLocation(); 11336 } 11337