xref: /llvm-project/clang/lib/Sema/SemaLookup.cpp (revision a640a2e0205fc23a27913d3e7c69c7cc60e4f7b9)
1 //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements name lookup for C, C++, Objective-C, and
10 //  Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/SemaRISCV.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "clang/Sema/TypoCorrection.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/STLForwardCompat.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/TinyPtrVector.h"
44 #include "llvm/ADT/edit_distance.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include <algorithm>
48 #include <iterator>
49 #include <list>
50 #include <optional>
51 #include <set>
52 #include <utility>
53 #include <vector>
54 
55 #include "OpenCLBuiltins.inc"
56 
57 using namespace clang;
58 using namespace sema;
59 
60 namespace {
61   class UnqualUsingEntry {
62     const DeclContext *Nominated;
63     const DeclContext *CommonAncestor;
64 
65   public:
66     UnqualUsingEntry(const DeclContext *Nominated,
67                      const DeclContext *CommonAncestor)
68       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
69     }
70 
71     const DeclContext *getCommonAncestor() const {
72       return CommonAncestor;
73     }
74 
75     const DeclContext *getNominatedNamespace() const {
76       return Nominated;
77     }
78 
79     // Sort by the pointer value of the common ancestor.
80     struct Comparator {
81       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
82         return L.getCommonAncestor() < R.getCommonAncestor();
83       }
84 
85       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
86         return E.getCommonAncestor() < DC;
87       }
88 
89       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
90         return DC < E.getCommonAncestor();
91       }
92     };
93   };
94 
95   /// A collection of using directives, as used by C++ unqualified
96   /// lookup.
97   class UnqualUsingDirectiveSet {
98     Sema &SemaRef;
99 
100     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
101 
102     ListTy list;
103     llvm::SmallPtrSet<DeclContext*, 8> visited;
104 
105   public:
106     UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
107 
108     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
109       // C++ [namespace.udir]p1:
110       //   During unqualified name lookup, the names appear as if they
111       //   were declared in the nearest enclosing namespace which contains
112       //   both the using-directive and the nominated namespace.
113       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
114       assert(InnermostFileDC && InnermostFileDC->isFileContext());
115 
116       for (; S; S = S->getParent()) {
117         // C++ [namespace.udir]p1:
118         //   A using-directive shall not appear in class scope, but may
119         //   appear in namespace scope or in block scope.
120         DeclContext *Ctx = S->getEntity();
121         if (Ctx && Ctx->isFileContext()) {
122           visit(Ctx, Ctx);
123         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
124           for (auto *I : S->using_directives())
125             if (SemaRef.isVisible(I))
126               visit(I, InnermostFileDC);
127         }
128       }
129     }
130 
131     // Visits a context and collect all of its using directives
132     // recursively.  Treats all using directives as if they were
133     // declared in the context.
134     //
135     // A given context is only every visited once, so it is important
136     // that contexts be visited from the inside out in order to get
137     // the effective DCs right.
138     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
139       if (!visited.insert(DC).second)
140         return;
141 
142       addUsingDirectives(DC, EffectiveDC);
143     }
144 
145     // Visits a using directive and collects all of its using
146     // directives recursively.  Treats all using directives as if they
147     // were declared in the effective DC.
148     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
149       DeclContext *NS = UD->getNominatedNamespace();
150       if (!visited.insert(NS).second)
151         return;
152 
153       addUsingDirective(UD, EffectiveDC);
154       addUsingDirectives(NS, EffectiveDC);
155     }
156 
157     // Adds all the using directives in a context (and those nominated
158     // by its using directives, transitively) as if they appeared in
159     // the given effective context.
160     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
161       SmallVector<DeclContext*, 4> queue;
162       while (true) {
163         for (auto *UD : DC->using_directives()) {
164           DeclContext *NS = UD->getNominatedNamespace();
165           if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
166             addUsingDirective(UD, EffectiveDC);
167             queue.push_back(NS);
168           }
169         }
170 
171         if (queue.empty())
172           return;
173 
174         DC = queue.pop_back_val();
175       }
176     }
177 
178     // Add a using directive as if it had been declared in the given
179     // context.  This helps implement C++ [namespace.udir]p3:
180     //   The using-directive is transitive: if a scope contains a
181     //   using-directive that nominates a second namespace that itself
182     //   contains using-directives, the effect is as if the
183     //   using-directives from the second namespace also appeared in
184     //   the first.
185     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
186       // Find the common ancestor between the effective context and
187       // the nominated namespace.
188       DeclContext *Common = UD->getNominatedNamespace();
189       while (!Common->Encloses(EffectiveDC))
190         Common = Common->getParent();
191       Common = Common->getPrimaryContext();
192 
193       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
194     }
195 
196     void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
197 
198     typedef ListTy::const_iterator const_iterator;
199 
200     const_iterator begin() const { return list.begin(); }
201     const_iterator end() const { return list.end(); }
202 
203     llvm::iterator_range<const_iterator>
204     getNamespacesFor(const DeclContext *DC) const {
205       return llvm::make_range(std::equal_range(begin(), end(),
206                                                DC->getPrimaryContext(),
207                                                UnqualUsingEntry::Comparator()));
208     }
209   };
210 } // end anonymous namespace
211 
212 // Retrieve the set of identifier namespaces that correspond to a
213 // specific kind of name lookup.
214 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
215                                bool CPlusPlus,
216                                bool Redeclaration) {
217   unsigned IDNS = 0;
218   switch (NameKind) {
219   case Sema::LookupObjCImplicitSelfParam:
220   case Sema::LookupOrdinaryName:
221   case Sema::LookupRedeclarationWithLinkage:
222   case Sema::LookupLocalFriendName:
223   case Sema::LookupDestructorName:
224     IDNS = Decl::IDNS_Ordinary;
225     if (CPlusPlus) {
226       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
227       if (Redeclaration)
228         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
229     }
230     if (Redeclaration)
231       IDNS |= Decl::IDNS_LocalExtern;
232     break;
233 
234   case Sema::LookupOperatorName:
235     // Operator lookup is its own crazy thing;  it is not the same
236     // as (e.g.) looking up an operator name for redeclaration.
237     assert(!Redeclaration && "cannot do redeclaration operator lookup");
238     IDNS = Decl::IDNS_NonMemberOperator;
239     break;
240 
241   case Sema::LookupTagName:
242     if (CPlusPlus) {
243       IDNS = Decl::IDNS_Type;
244 
245       // When looking for a redeclaration of a tag name, we add:
246       // 1) TagFriend to find undeclared friend decls
247       // 2) Namespace because they can't "overload" with tag decls.
248       // 3) Tag because it includes class templates, which can't
249       //    "overload" with tag decls.
250       if (Redeclaration)
251         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
252     } else {
253       IDNS = Decl::IDNS_Tag;
254     }
255     break;
256 
257   case Sema::LookupLabel:
258     IDNS = Decl::IDNS_Label;
259     break;
260 
261   case Sema::LookupMemberName:
262     IDNS = Decl::IDNS_Member;
263     if (CPlusPlus)
264       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
265     break;
266 
267   case Sema::LookupNestedNameSpecifierName:
268     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
269     break;
270 
271   case Sema::LookupNamespaceName:
272     IDNS = Decl::IDNS_Namespace;
273     break;
274 
275   case Sema::LookupUsingDeclName:
276     assert(Redeclaration && "should only be used for redecl lookup");
277     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
278            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
279            Decl::IDNS_LocalExtern;
280     break;
281 
282   case Sema::LookupObjCProtocolName:
283     IDNS = Decl::IDNS_ObjCProtocol;
284     break;
285 
286   case Sema::LookupOMPReductionName:
287     IDNS = Decl::IDNS_OMPReduction;
288     break;
289 
290   case Sema::LookupOMPMapperName:
291     IDNS = Decl::IDNS_OMPMapper;
292     break;
293 
294   case Sema::LookupAnyName:
295     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
296       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
297       | Decl::IDNS_Type;
298     break;
299   }
300   return IDNS;
301 }
302 
303 void LookupResult::configure() {
304   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
305                  isForRedeclaration());
306 
307   // If we're looking for one of the allocation or deallocation
308   // operators, make sure that the implicitly-declared new and delete
309   // operators can be found.
310   switch (NameInfo.getName().getCXXOverloadedOperator()) {
311   case OO_New:
312   case OO_Delete:
313   case OO_Array_New:
314   case OO_Array_Delete:
315     getSema().DeclareGlobalNewDelete();
316     break;
317 
318   default:
319     break;
320   }
321 
322   // Compiler builtins are always visible, regardless of where they end
323   // up being declared.
324   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
325     if (unsigned BuiltinID = Id->getBuiltinID()) {
326       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
327         AllowHidden = true;
328     }
329   }
330 }
331 
332 bool LookupResult::checkDebugAssumptions() const {
333   // This function is never called by NDEBUG builds.
334   assert(ResultKind != NotFound || Decls.size() == 0);
335   assert(ResultKind != Found || Decls.size() == 1);
336   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
337          (Decls.size() == 1 &&
338           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
339   assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
340   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
341          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
342                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
343   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
344                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
345                                  Ambiguity == AmbiguousBaseSubobjects)));
346   return true;
347 }
348 
349 // Necessary because CXXBasePaths is not complete in Sema.h
350 void LookupResult::deletePaths(CXXBasePaths *Paths) {
351   delete Paths;
352 }
353 
354 /// Get a representative context for a declaration such that two declarations
355 /// will have the same context if they were found within the same scope.
356 static const DeclContext *getContextForScopeMatching(const Decl *D) {
357   // For function-local declarations, use that function as the context. This
358   // doesn't account for scopes within the function; the caller must deal with
359   // those.
360   if (const DeclContext *DC = D->getLexicalDeclContext();
361       DC->isFunctionOrMethod())
362     return DC;
363 
364   // Otherwise, look at the semantic context of the declaration. The
365   // declaration must have been found there.
366   return D->getDeclContext()->getRedeclContext();
367 }
368 
369 /// Determine whether \p D is a better lookup result than \p Existing,
370 /// given that they declare the same entity.
371 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
372                                     const NamedDecl *D,
373                                     const NamedDecl *Existing) {
374   // When looking up redeclarations of a using declaration, prefer a using
375   // shadow declaration over any other declaration of the same entity.
376   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
377       !isa<UsingShadowDecl>(Existing))
378     return true;
379 
380   const auto *DUnderlying = D->getUnderlyingDecl();
381   const auto *EUnderlying = Existing->getUnderlyingDecl();
382 
383   // If they have different underlying declarations, prefer a typedef over the
384   // original type (this happens when two type declarations denote the same
385   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
386   // might carry additional semantic information, such as an alignment override.
387   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
388   // declaration over a typedef. Also prefer a tag over a typedef for
389   // destructor name lookup because in some contexts we only accept a
390   // class-name in a destructor declaration.
391   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
392     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
393     bool HaveTag = isa<TagDecl>(EUnderlying);
394     bool WantTag =
395         Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
396     return HaveTag != WantTag;
397   }
398 
399   // Pick the function with more default arguments.
400   // FIXME: In the presence of ambiguous default arguments, we should keep both,
401   //        so we can diagnose the ambiguity if the default argument is needed.
402   //        See C++ [over.match.best]p3.
403   if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
404     const auto *EFD = cast<FunctionDecl>(EUnderlying);
405     unsigned DMin = DFD->getMinRequiredArguments();
406     unsigned EMin = EFD->getMinRequiredArguments();
407     // If D has more default arguments, it is preferred.
408     if (DMin != EMin)
409       return DMin < EMin;
410     // FIXME: When we track visibility for default function arguments, check
411     // that we pick the declaration with more visible default arguments.
412   }
413 
414   // Pick the template with more default template arguments.
415   if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
416     const auto *ETD = cast<TemplateDecl>(EUnderlying);
417     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
418     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
419     // If D has more default arguments, it is preferred. Note that default
420     // arguments (and their visibility) is monotonically increasing across the
421     // redeclaration chain, so this is a quick proxy for "is more recent".
422     if (DMin != EMin)
423       return DMin < EMin;
424     // If D has more *visible* default arguments, it is preferred. Note, an
425     // earlier default argument being visible does not imply that a later
426     // default argument is visible, so we can't just check the first one.
427     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
428         I != N; ++I) {
429       if (!S.hasVisibleDefaultArgument(
430               ETD->getTemplateParameters()->getParam(I)) &&
431           S.hasVisibleDefaultArgument(
432               DTD->getTemplateParameters()->getParam(I)))
433         return true;
434     }
435   }
436 
437   // VarDecl can have incomplete array types, prefer the one with more complete
438   // array type.
439   if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
440     const auto *EVD = cast<VarDecl>(EUnderlying);
441     if (EVD->getType()->isIncompleteType() &&
442         !DVD->getType()->isIncompleteType()) {
443       // Prefer the decl with a more complete type if visible.
444       return S.isVisible(DVD);
445     }
446     return false; // Avoid picking up a newer decl, just because it was newer.
447   }
448 
449   // For most kinds of declaration, it doesn't really matter which one we pick.
450   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
451     // If the existing declaration is hidden, prefer the new one. Otherwise,
452     // keep what we've got.
453     return !S.isVisible(Existing);
454   }
455 
456   // Pick the newer declaration; it might have a more precise type.
457   for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
458        Prev = Prev->getPreviousDecl())
459     if (Prev == EUnderlying)
460       return true;
461   return false;
462 }
463 
464 /// Determine whether \p D can hide a tag declaration.
465 static bool canHideTag(const NamedDecl *D) {
466   // C++ [basic.scope.declarative]p4:
467   //   Given a set of declarations in a single declarative region [...]
468   //   exactly one declaration shall declare a class name or enumeration name
469   //   that is not a typedef name and the other declarations shall all refer to
470   //   the same variable, non-static data member, or enumerator, or all refer
471   //   to functions and function templates; in this case the class name or
472   //   enumeration name is hidden.
473   // C++ [basic.scope.hiding]p2:
474   //   A class name or enumeration name can be hidden by the name of a
475   //   variable, data member, function, or enumerator declared in the same
476   //   scope.
477   // An UnresolvedUsingValueDecl always instantiates to one of these.
478   D = D->getUnderlyingDecl();
479   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
480          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
481          isa<UnresolvedUsingValueDecl>(D);
482 }
483 
484 /// Resolves the result kind of this lookup.
485 void LookupResult::resolveKind() {
486   unsigned N = Decls.size();
487 
488   // Fast case: no possible ambiguity.
489   if (N == 0) {
490     assert(ResultKind == NotFound ||
491            ResultKind == NotFoundInCurrentInstantiation);
492     return;
493   }
494 
495   // If there's a single decl, we need to examine it to decide what
496   // kind of lookup this is.
497   if (N == 1) {
498     const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
499     if (isa<FunctionTemplateDecl>(D))
500       ResultKind = FoundOverloaded;
501     else if (isa<UnresolvedUsingValueDecl>(D))
502       ResultKind = FoundUnresolvedValue;
503     return;
504   }
505 
506   // Don't do any extra resolution if we've already resolved as ambiguous.
507   if (ResultKind == Ambiguous) return;
508 
509   llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
510   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
511 
512   bool Ambiguous = false;
513   bool ReferenceToPlaceHolderVariable = false;
514   bool HasTag = false, HasFunction = false;
515   bool HasFunctionTemplate = false, HasUnresolved = false;
516   const NamedDecl *HasNonFunction = nullptr;
517 
518   llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
519   llvm::BitVector RemovedDecls(N);
520 
521   for (unsigned I = 0; I < N; I++) {
522     const NamedDecl *D = Decls[I]->getUnderlyingDecl();
523     D = cast<NamedDecl>(D->getCanonicalDecl());
524 
525     // Ignore an invalid declaration unless it's the only one left.
526     // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
527     if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
528         N - RemovedDecls.count() > 1) {
529       RemovedDecls.set(I);
530       continue;
531     }
532 
533     // C++ [basic.scope.hiding]p2:
534     //   A class name or enumeration name can be hidden by the name of
535     //   an object, function, or enumerator declared in the same
536     //   scope. If a class or enumeration name and an object, function,
537     //   or enumerator are declared in the same scope (in any order)
538     //   with the same name, the class or enumeration name is hidden
539     //   wherever the object, function, or enumerator name is visible.
540     if (HideTags && isa<TagDecl>(D)) {
541       bool Hidden = false;
542       for (auto *OtherDecl : Decls) {
543         if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() &&
544             getContextForScopeMatching(OtherDecl)->Equals(
545                 getContextForScopeMatching(Decls[I]))) {
546           RemovedDecls.set(I);
547           Hidden = true;
548           break;
549         }
550       }
551       if (Hidden)
552         continue;
553     }
554 
555     std::optional<unsigned> ExistingI;
556 
557     // Redeclarations of types via typedef can occur both within a scope
558     // and, through using declarations and directives, across scopes. There is
559     // no ambiguity if they all refer to the same type, so unique based on the
560     // canonical type.
561     if (const auto *TD = dyn_cast<TypeDecl>(D)) {
562       QualType T = getSema().Context.getTypeDeclType(TD);
563       auto UniqueResult = UniqueTypes.insert(
564           std::make_pair(getSema().Context.getCanonicalType(T), I));
565       if (!UniqueResult.second) {
566         // The type is not unique.
567         ExistingI = UniqueResult.first->second;
568       }
569     }
570 
571     // For non-type declarations, check for a prior lookup result naming this
572     // canonical declaration.
573     if (!D->isPlaceholderVar(getSema().getLangOpts()) && !ExistingI) {
574       auto UniqueResult = Unique.insert(std::make_pair(D, I));
575       if (!UniqueResult.second) {
576         // We've seen this entity before.
577         ExistingI = UniqueResult.first->second;
578       }
579     }
580 
581     if (ExistingI) {
582       // This is not a unique lookup result. Pick one of the results and
583       // discard the other.
584       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
585                                   Decls[*ExistingI]))
586         Decls[*ExistingI] = Decls[I];
587       RemovedDecls.set(I);
588       continue;
589     }
590 
591     // Otherwise, do some decl type analysis and then continue.
592 
593     if (isa<UnresolvedUsingValueDecl>(D)) {
594       HasUnresolved = true;
595     } else if (isa<TagDecl>(D)) {
596       if (HasTag)
597         Ambiguous = true;
598       HasTag = true;
599     } else if (isa<FunctionTemplateDecl>(D)) {
600       HasFunction = true;
601       HasFunctionTemplate = true;
602     } else if (isa<FunctionDecl>(D)) {
603       HasFunction = true;
604     } else {
605       if (HasNonFunction) {
606         // If we're about to create an ambiguity between two declarations that
607         // are equivalent, but one is an internal linkage declaration from one
608         // module and the other is an internal linkage declaration from another
609         // module, just skip it.
610         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
611                                                              D)) {
612           EquivalentNonFunctions.push_back(D);
613           RemovedDecls.set(I);
614           continue;
615         }
616         if (D->isPlaceholderVar(getSema().getLangOpts()) &&
617             getContextForScopeMatching(D) ==
618                 getContextForScopeMatching(Decls[I])) {
619           ReferenceToPlaceHolderVariable = true;
620         }
621         Ambiguous = true;
622       }
623       HasNonFunction = D;
624     }
625   }
626 
627   // FIXME: This diagnostic should really be delayed until we're done with
628   // the lookup result, in case the ambiguity is resolved by the caller.
629   if (!EquivalentNonFunctions.empty() && !Ambiguous)
630     getSema().diagnoseEquivalentInternalLinkageDeclarations(
631         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
632 
633   // Remove decls by replacing them with decls from the end (which
634   // means that we need to iterate from the end) and then truncating
635   // to the new size.
636   for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
637     Decls[I] = Decls[--N];
638   Decls.truncate(N);
639 
640   if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
641       (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
642     Ambiguous = true;
643 
644   if (Ambiguous && ReferenceToPlaceHolderVariable)
645     setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable);
646   else if (Ambiguous)
647     setAmbiguous(LookupResult::AmbiguousReference);
648   else if (HasUnresolved)
649     ResultKind = LookupResult::FoundUnresolvedValue;
650   else if (N > 1 || HasFunctionTemplate)
651     ResultKind = LookupResult::FoundOverloaded;
652   else
653     ResultKind = LookupResult::Found;
654 }
655 
656 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
657   CXXBasePaths::const_paths_iterator I, E;
658   for (I = P.begin(), E = P.end(); I != E; ++I)
659     for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
660          ++DI)
661       addDecl(*DI);
662 }
663 
664 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
665   Paths = new CXXBasePaths;
666   Paths->swap(P);
667   addDeclsFromBasePaths(*Paths);
668   resolveKind();
669   setAmbiguous(AmbiguousBaseSubobjects);
670 }
671 
672 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
673   Paths = new CXXBasePaths;
674   Paths->swap(P);
675   addDeclsFromBasePaths(*Paths);
676   resolveKind();
677   setAmbiguous(AmbiguousBaseSubobjectTypes);
678 }
679 
680 void LookupResult::print(raw_ostream &Out) {
681   Out << Decls.size() << " result(s)";
682   if (isAmbiguous()) Out << ", ambiguous";
683   if (Paths) Out << ", base paths present";
684 
685   for (iterator I = begin(), E = end(); I != E; ++I) {
686     Out << "\n";
687     (*I)->print(Out, 2);
688   }
689 }
690 
691 LLVM_DUMP_METHOD void LookupResult::dump() {
692   llvm::errs() << "lookup results for " << getLookupName().getAsString()
693                << ":\n";
694   for (NamedDecl *D : *this)
695     D->dump();
696 }
697 
698 /// Diagnose a missing builtin type.
699 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
700                                            llvm::StringRef Name) {
701   S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
702       << TypeClass << Name;
703   return S.Context.VoidTy;
704 }
705 
706 /// Lookup an OpenCL enum type.
707 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
708   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
709                       Sema::LookupTagName);
710   S.LookupName(Result, S.TUScope);
711   if (Result.empty())
712     return diagOpenCLBuiltinTypeError(S, "enum", Name);
713   EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
714   if (!Decl)
715     return diagOpenCLBuiltinTypeError(S, "enum", Name);
716   return S.Context.getEnumType(Decl);
717 }
718 
719 /// Lookup an OpenCL typedef type.
720 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
721   LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
722                       Sema::LookupOrdinaryName);
723   S.LookupName(Result, S.TUScope);
724   if (Result.empty())
725     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
726   TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
727   if (!Decl)
728     return diagOpenCLBuiltinTypeError(S, "typedef", Name);
729   return S.Context.getTypedefType(Decl);
730 }
731 
732 /// Get the QualType instances of the return type and arguments for an OpenCL
733 /// builtin function signature.
734 /// \param S (in) The Sema instance.
735 /// \param OpenCLBuiltin (in) The signature currently handled.
736 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
737 ///        type used as return type or as argument.
738 ///        Only meaningful for generic types, otherwise equals 1.
739 /// \param RetTypes (out) List of the possible return types.
740 /// \param ArgTypes (out) List of the possible argument types.  For each
741 ///        argument, ArgTypes contains QualTypes for the Cartesian product
742 ///        of (vector sizes) x (types) .
743 static void GetQualTypesForOpenCLBuiltin(
744     Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
745     SmallVector<QualType, 1> &RetTypes,
746     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
747   // Get the QualType instances of the return types.
748   unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
749   OCL2Qual(S, TypeTable[Sig], RetTypes);
750   GenTypeMaxCnt = RetTypes.size();
751 
752   // Get the QualType instances of the arguments.
753   // First type is the return type, skip it.
754   for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
755     SmallVector<QualType, 1> Ty;
756     OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
757              Ty);
758     GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
759     ArgTypes.push_back(std::move(Ty));
760   }
761 }
762 
763 /// Create a list of the candidate function overloads for an OpenCL builtin
764 /// function.
765 /// \param Context (in) The ASTContext instance.
766 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
767 ///        type used as return type or as argument.
768 ///        Only meaningful for generic types, otherwise equals 1.
769 /// \param FunctionList (out) List of FunctionTypes.
770 /// \param RetTypes (in) List of the possible return types.
771 /// \param ArgTypes (in) List of the possible types for the arguments.
772 static void GetOpenCLBuiltinFctOverloads(
773     ASTContext &Context, unsigned GenTypeMaxCnt,
774     std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
775     SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
776   FunctionProtoType::ExtProtoInfo PI(
777       Context.getDefaultCallingConvention(false, false, true));
778   PI.Variadic = false;
779 
780   // Do not attempt to create any FunctionTypes if there are no return types,
781   // which happens when a type belongs to a disabled extension.
782   if (RetTypes.size() == 0)
783     return;
784 
785   // Create FunctionTypes for each (gen)type.
786   for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
787     SmallVector<QualType, 5> ArgList;
788 
789     for (unsigned A = 0; A < ArgTypes.size(); A++) {
790       // Bail out if there is an argument that has no available types.
791       if (ArgTypes[A].size() == 0)
792         return;
793 
794       // Builtins such as "max" have an "sgentype" argument that represents
795       // the corresponding scalar type of a gentype.  The number of gentypes
796       // must be a multiple of the number of sgentypes.
797       assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
798              "argument type count not compatible with gentype type count");
799       unsigned Idx = IGenType % ArgTypes[A].size();
800       ArgList.push_back(ArgTypes[A][Idx]);
801     }
802 
803     FunctionList.push_back(Context.getFunctionType(
804         RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
805   }
806 }
807 
808 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
809 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
810 /// builtin function.  Add all candidate signatures to the LookUpResult.
811 ///
812 /// \param S (in) The Sema instance.
813 /// \param LR (inout) The LookupResult instance.
814 /// \param II (in) The identifier being resolved.
815 /// \param FctIndex (in) Starting index in the BuiltinTable.
816 /// \param Len (in) The signature list has Len elements.
817 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
818                                                   IdentifierInfo *II,
819                                                   const unsigned FctIndex,
820                                                   const unsigned Len) {
821   // The builtin function declaration uses generic types (gentype).
822   bool HasGenType = false;
823 
824   // Maximum number of types contained in a generic type used as return type or
825   // as argument.  Only meaningful for generic types, otherwise equals 1.
826   unsigned GenTypeMaxCnt;
827 
828   ASTContext &Context = S.Context;
829 
830   for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
831     const OpenCLBuiltinStruct &OpenCLBuiltin =
832         BuiltinTable[FctIndex + SignatureIndex];
833 
834     // Ignore this builtin function if it is not available in the currently
835     // selected language version.
836     if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
837                                         OpenCLBuiltin.Versions))
838       continue;
839 
840     // Ignore this builtin function if it carries an extension macro that is
841     // not defined. This indicates that the extension is not supported by the
842     // target, so the builtin function should not be available.
843     StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
844     if (!Extensions.empty()) {
845       SmallVector<StringRef, 2> ExtVec;
846       Extensions.split(ExtVec, " ");
847       bool AllExtensionsDefined = true;
848       for (StringRef Ext : ExtVec) {
849         if (!S.getPreprocessor().isMacroDefined(Ext)) {
850           AllExtensionsDefined = false;
851           break;
852         }
853       }
854       if (!AllExtensionsDefined)
855         continue;
856     }
857 
858     SmallVector<QualType, 1> RetTypes;
859     SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
860 
861     // Obtain QualType lists for the function signature.
862     GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
863                                  ArgTypes);
864     if (GenTypeMaxCnt > 1) {
865       HasGenType = true;
866     }
867 
868     // Create function overload for each type combination.
869     std::vector<QualType> FunctionList;
870     GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
871                                  ArgTypes);
872 
873     SourceLocation Loc = LR.getNameLoc();
874     DeclContext *Parent = Context.getTranslationUnitDecl();
875     FunctionDecl *NewOpenCLBuiltin;
876 
877     for (const auto &FTy : FunctionList) {
878       NewOpenCLBuiltin = FunctionDecl::Create(
879           Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
880           S.getCurFPFeatures().isFPConstrained(), false,
881           FTy->isFunctionProtoType());
882       NewOpenCLBuiltin->setImplicit();
883 
884       // Create Decl objects for each parameter, adding them to the
885       // FunctionDecl.
886       const auto *FP = cast<FunctionProtoType>(FTy);
887       SmallVector<ParmVarDecl *, 4> ParmList;
888       for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
889         ParmVarDecl *Parm = ParmVarDecl::Create(
890             Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
891             nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
892         Parm->setScopeInfo(0, IParm);
893         ParmList.push_back(Parm);
894       }
895       NewOpenCLBuiltin->setParams(ParmList);
896 
897       // Add function attributes.
898       if (OpenCLBuiltin.IsPure)
899         NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
900       if (OpenCLBuiltin.IsConst)
901         NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
902       if (OpenCLBuiltin.IsConv)
903         NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
904 
905       if (!S.getLangOpts().OpenCLCPlusPlus)
906         NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
907 
908       LR.addDecl(NewOpenCLBuiltin);
909     }
910   }
911 
912   // If we added overloads, need to resolve the lookup result.
913   if (Len > 1 || HasGenType)
914     LR.resolveKind();
915 }
916 
917 /// Lookup a builtin function, when name lookup would otherwise
918 /// fail.
919 bool Sema::LookupBuiltin(LookupResult &R) {
920   Sema::LookupNameKind NameKind = R.getLookupKind();
921 
922   // If we didn't find a use of this identifier, and if the identifier
923   // corresponds to a compiler builtin, create the decl object for the builtin
924   // now, injecting it into translation unit scope, and return it.
925   if (NameKind == Sema::LookupOrdinaryName ||
926       NameKind == Sema::LookupRedeclarationWithLinkage) {
927     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
928     if (II) {
929       if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
930         if (II == getASTContext().getMakeIntegerSeqName()) {
931           R.addDecl(getASTContext().getMakeIntegerSeqDecl());
932           return true;
933         } else if (II == getASTContext().getTypePackElementName()) {
934           R.addDecl(getASTContext().getTypePackElementDecl());
935           return true;
936         }
937       }
938 
939       // Check if this is an OpenCL Builtin, and if so, insert its overloads.
940       if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
941         auto Index = isOpenCLBuiltin(II->getName());
942         if (Index.first) {
943           InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
944                                                 Index.second);
945           return true;
946         }
947       }
948 
949       if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) {
950         if (!RISCV().IntrinsicManager)
951           RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this);
952 
953         RISCV().IntrinsicManager->InitIntrinsicList();
954 
955         if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
956           return true;
957       }
958 
959       // If this is a builtin on this (or all) targets, create the decl.
960       if (unsigned BuiltinID = II->getBuiltinID()) {
961         // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
962         // library functions like 'malloc'. Instead, we'll just error.
963         if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
964             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
965           return false;
966 
967         if (NamedDecl *D =
968                 LazilyCreateBuiltin(II, BuiltinID, TUScope,
969                                     R.isForRedeclaration(), R.getNameLoc())) {
970           R.addDecl(D);
971           return true;
972         }
973       }
974     }
975   }
976 
977   return false;
978 }
979 
980 /// Looks up the declaration of "struct objc_super" and
981 /// saves it for later use in building builtin declaration of
982 /// objc_msgSendSuper and objc_msgSendSuper_stret.
983 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
984   ASTContext &Context = Sema.Context;
985   LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
986                       Sema::LookupTagName);
987   Sema.LookupName(Result, S);
988   if (Result.getResultKind() == LookupResult::Found)
989     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
990       Context.setObjCSuperType(Context.getTagDeclType(TD));
991 }
992 
993 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
994   if (ID == Builtin::BIobjc_msgSendSuper)
995     LookupPredefedObjCSuperType(*this, S);
996 }
997 
998 /// Determine whether we can declare a special member function within
999 /// the class at this point.
1000 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
1001   // We need to have a definition for the class.
1002   if (!Class->getDefinition() || Class->isDependentContext())
1003     return false;
1004 
1005   // We can't be in the middle of defining the class.
1006   return !Class->isBeingDefined();
1007 }
1008 
1009 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
1010   if (!CanDeclareSpecialMemberFunction(Class))
1011     return;
1012 
1013   // If the default constructor has not yet been declared, do so now.
1014   if (Class->needsImplicitDefaultConstructor())
1015     DeclareImplicitDefaultConstructor(Class);
1016 
1017   // If the copy constructor has not yet been declared, do so now.
1018   if (Class->needsImplicitCopyConstructor())
1019     DeclareImplicitCopyConstructor(Class);
1020 
1021   // If the copy assignment operator has not yet been declared, do so now.
1022   if (Class->needsImplicitCopyAssignment())
1023     DeclareImplicitCopyAssignment(Class);
1024 
1025   if (getLangOpts().CPlusPlus11) {
1026     // If the move constructor has not yet been declared, do so now.
1027     if (Class->needsImplicitMoveConstructor())
1028       DeclareImplicitMoveConstructor(Class);
1029 
1030     // If the move assignment operator has not yet been declared, do so now.
1031     if (Class->needsImplicitMoveAssignment())
1032       DeclareImplicitMoveAssignment(Class);
1033   }
1034 
1035   // If the destructor has not yet been declared, do so now.
1036   if (Class->needsImplicitDestructor())
1037     DeclareImplicitDestructor(Class);
1038 }
1039 
1040 /// Determine whether this is the name of an implicitly-declared
1041 /// special member function.
1042 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1043   switch (Name.getNameKind()) {
1044   case DeclarationName::CXXConstructorName:
1045   case DeclarationName::CXXDestructorName:
1046     return true;
1047 
1048   case DeclarationName::CXXOperatorName:
1049     return Name.getCXXOverloadedOperator() == OO_Equal;
1050 
1051   default:
1052     break;
1053   }
1054 
1055   return false;
1056 }
1057 
1058 /// If there are any implicit member functions with the given name
1059 /// that need to be declared in the given declaration context, do so.
1060 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1061                                                    DeclarationName Name,
1062                                                    SourceLocation Loc,
1063                                                    const DeclContext *DC) {
1064   if (!DC)
1065     return;
1066 
1067   switch (Name.getNameKind()) {
1068   case DeclarationName::CXXConstructorName:
1069     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1070       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1071         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1072         if (Record->needsImplicitDefaultConstructor())
1073           S.DeclareImplicitDefaultConstructor(Class);
1074         if (Record->needsImplicitCopyConstructor())
1075           S.DeclareImplicitCopyConstructor(Class);
1076         if (S.getLangOpts().CPlusPlus11 &&
1077             Record->needsImplicitMoveConstructor())
1078           S.DeclareImplicitMoveConstructor(Class);
1079       }
1080     break;
1081 
1082   case DeclarationName::CXXDestructorName:
1083     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1084       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1085           CanDeclareSpecialMemberFunction(Record))
1086         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1087     break;
1088 
1089   case DeclarationName::CXXOperatorName:
1090     if (Name.getCXXOverloadedOperator() != OO_Equal)
1091       break;
1092 
1093     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1094       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1095         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1096         if (Record->needsImplicitCopyAssignment())
1097           S.DeclareImplicitCopyAssignment(Class);
1098         if (S.getLangOpts().CPlusPlus11 &&
1099             Record->needsImplicitMoveAssignment())
1100           S.DeclareImplicitMoveAssignment(Class);
1101       }
1102     }
1103     break;
1104 
1105   case DeclarationName::CXXDeductionGuideName:
1106     S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1107     break;
1108 
1109   default:
1110     break;
1111   }
1112 }
1113 
1114 // Adds all qualifying matches for a name within a decl context to the
1115 // given lookup result.  Returns true if any matches were found.
1116 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1117   bool Found = false;
1118 
1119   // Lazily declare C++ special member functions.
1120   if (S.getLangOpts().CPlusPlus)
1121     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1122                                            DC);
1123 
1124   // Perform lookup into this declaration context.
1125   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1126   for (NamedDecl *D : DR) {
1127     if ((D = R.getAcceptableDecl(D))) {
1128       R.addDecl(D);
1129       Found = true;
1130     }
1131   }
1132 
1133   if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1134     return true;
1135 
1136   if (R.getLookupName().getNameKind()
1137         != DeclarationName::CXXConversionFunctionName ||
1138       R.getLookupName().getCXXNameType()->isDependentType() ||
1139       !isa<CXXRecordDecl>(DC))
1140     return Found;
1141 
1142   // C++ [temp.mem]p6:
1143   //   A specialization of a conversion function template is not found by
1144   //   name lookup. Instead, any conversion function templates visible in the
1145   //   context of the use are considered. [...]
1146   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1147   if (!Record->isCompleteDefinition())
1148     return Found;
1149 
1150   // For conversion operators, 'operator auto' should only match
1151   // 'operator auto'.  Since 'auto' is not a type, it shouldn't be considered
1152   // as a candidate for template substitution.
1153   auto *ContainedDeducedType =
1154       R.getLookupName().getCXXNameType()->getContainedDeducedType();
1155   if (R.getLookupName().getNameKind() ==
1156           DeclarationName::CXXConversionFunctionName &&
1157       ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1158     return Found;
1159 
1160   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1161          UEnd = Record->conversion_end(); U != UEnd; ++U) {
1162     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1163     if (!ConvTemplate)
1164       continue;
1165 
1166     // When we're performing lookup for the purposes of redeclaration, just
1167     // add the conversion function template. When we deduce template
1168     // arguments for specializations, we'll end up unifying the return
1169     // type of the new declaration with the type of the function template.
1170     if (R.isForRedeclaration()) {
1171       R.addDecl(ConvTemplate);
1172       Found = true;
1173       continue;
1174     }
1175 
1176     // C++ [temp.mem]p6:
1177     //   [...] For each such operator, if argument deduction succeeds
1178     //   (14.9.2.3), the resulting specialization is used as if found by
1179     //   name lookup.
1180     //
1181     // When referencing a conversion function for any purpose other than
1182     // a redeclaration (such that we'll be building an expression with the
1183     // result), perform template argument deduction and place the
1184     // specialization into the result set. We do this to avoid forcing all
1185     // callers to perform special deduction for conversion functions.
1186     TemplateDeductionInfo Info(R.getNameLoc());
1187     FunctionDecl *Specialization = nullptr;
1188 
1189     const FunctionProtoType *ConvProto
1190       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1191     assert(ConvProto && "Nonsensical conversion function template type");
1192 
1193     // Compute the type of the function that we would expect the conversion
1194     // function to have, if it were to match the name given.
1195     // FIXME: Calling convention!
1196     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1197     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1198     EPI.ExceptionSpec = EST_None;
1199     QualType ExpectedType = R.getSema().Context.getFunctionType(
1200         R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1201 
1202     // Perform template argument deduction against the type that we would
1203     // expect the function to have.
1204     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1205                                             Specialization, Info) ==
1206         TemplateDeductionResult::Success) {
1207       R.addDecl(Specialization);
1208       Found = true;
1209     }
1210   }
1211 
1212   return Found;
1213 }
1214 
1215 // Performs C++ unqualified lookup into the given file context.
1216 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1217                                const DeclContext *NS,
1218                                UnqualUsingDirectiveSet &UDirs) {
1219 
1220   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1221 
1222   // Perform direct name lookup into the LookupCtx.
1223   bool Found = LookupDirect(S, R, NS);
1224 
1225   // Perform direct name lookup into the namespaces nominated by the
1226   // using directives whose common ancestor is this namespace.
1227   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1228     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1229       Found = true;
1230 
1231   R.resolveKind();
1232 
1233   return Found;
1234 }
1235 
1236 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1237   if (DeclContext *Ctx = S->getEntity())
1238     return Ctx->isFileContext();
1239   return false;
1240 }
1241 
1242 /// Find the outer declaration context from this scope. This indicates the
1243 /// context that we should search up to (exclusive) before considering the
1244 /// parent of the specified scope.
1245 static DeclContext *findOuterContext(Scope *S) {
1246   for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1247     if (DeclContext *DC = OuterS->getLookupEntity())
1248       return DC;
1249   return nullptr;
1250 }
1251 
1252 namespace {
1253 /// An RAII object to specify that we want to find block scope extern
1254 /// declarations.
1255 struct FindLocalExternScope {
1256   FindLocalExternScope(LookupResult &R)
1257       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1258                                  Decl::IDNS_LocalExtern) {
1259     R.setFindLocalExtern(R.getIdentifierNamespace() &
1260                          (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1261   }
1262   void restore() {
1263     R.setFindLocalExtern(OldFindLocalExtern);
1264   }
1265   ~FindLocalExternScope() {
1266     restore();
1267   }
1268   LookupResult &R;
1269   bool OldFindLocalExtern;
1270 };
1271 } // end anonymous namespace
1272 
1273 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1274   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1275 
1276   DeclarationName Name = R.getLookupName();
1277   Sema::LookupNameKind NameKind = R.getLookupKind();
1278 
1279   // If this is the name of an implicitly-declared special member function,
1280   // go through the scope stack to implicitly declare
1281   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1282     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1283       if (DeclContext *DC = PreS->getEntity())
1284         DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1285   }
1286 
1287   // C++23 [temp.dep.general]p2:
1288   //   The component name of an unqualified-id is dependent if
1289   //   - it is a conversion-function-id whose conversion-type-id
1290   //     is dependent, or
1291   //   - it is operator= and the current class is a templated entity, or
1292   //   - the unqualified-id is the postfix-expression in a dependent call.
1293   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1294       Name.getCXXNameType()->isDependentType()) {
1295     R.setNotFoundInCurrentInstantiation();
1296     return false;
1297   }
1298 
1299   // Implicitly declare member functions with the name we're looking for, if in
1300   // fact we are in a scope where it matters.
1301 
1302   Scope *Initial = S;
1303   IdentifierResolver::iterator
1304     I = IdResolver.begin(Name),
1305     IEnd = IdResolver.end();
1306 
1307   // First we lookup local scope.
1308   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1309   // ...During unqualified name lookup (3.4.1), the names appear as if
1310   // they were declared in the nearest enclosing namespace which contains
1311   // both the using-directive and the nominated namespace.
1312   // [Note: in this context, "contains" means "contains directly or
1313   // indirectly".
1314   //
1315   // For example:
1316   // namespace A { int i; }
1317   // void foo() {
1318   //   int i;
1319   //   {
1320   //     using namespace A;
1321   //     ++i; // finds local 'i', A::i appears at global scope
1322   //   }
1323   // }
1324   //
1325   UnqualUsingDirectiveSet UDirs(*this);
1326   bool VisitedUsingDirectives = false;
1327   bool LeftStartingScope = false;
1328 
1329   // When performing a scope lookup, we want to find local extern decls.
1330   FindLocalExternScope FindLocals(R);
1331 
1332   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1333     bool SearchNamespaceScope = true;
1334     // Check whether the IdResolver has anything in this scope.
1335     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1336       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1337         if (NameKind == LookupRedeclarationWithLinkage &&
1338             !(*I)->isTemplateParameter()) {
1339           // If it's a template parameter, we still find it, so we can diagnose
1340           // the invalid redeclaration.
1341 
1342           // Determine whether this (or a previous) declaration is
1343           // out-of-scope.
1344           if (!LeftStartingScope && !Initial->isDeclScope(*I))
1345             LeftStartingScope = true;
1346 
1347           // If we found something outside of our starting scope that
1348           // does not have linkage, skip it.
1349           if (LeftStartingScope && !((*I)->hasLinkage())) {
1350             R.setShadowed();
1351             continue;
1352           }
1353         } else {
1354           // We found something in this scope, we should not look at the
1355           // namespace scope
1356           SearchNamespaceScope = false;
1357         }
1358         R.addDecl(ND);
1359       }
1360     }
1361     if (!SearchNamespaceScope) {
1362       R.resolveKind();
1363       if (S->isClassScope())
1364         if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1365           R.setNamingClass(Record);
1366       return true;
1367     }
1368 
1369     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1370       // C++11 [class.friend]p11:
1371       //   If a friend declaration appears in a local class and the name
1372       //   specified is an unqualified name, a prior declaration is
1373       //   looked up without considering scopes that are outside the
1374       //   innermost enclosing non-class scope.
1375       return false;
1376     }
1377 
1378     if (DeclContext *Ctx = S->getLookupEntity()) {
1379       DeclContext *OuterCtx = findOuterContext(S);
1380       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1381         // We do not directly look into transparent contexts, since
1382         // those entities will be found in the nearest enclosing
1383         // non-transparent context.
1384         if (Ctx->isTransparentContext())
1385           continue;
1386 
1387         // We do not look directly into function or method contexts,
1388         // since all of the local variables and parameters of the
1389         // function/method are present within the Scope.
1390         if (Ctx->isFunctionOrMethod()) {
1391           // If we have an Objective-C instance method, look for ivars
1392           // in the corresponding interface.
1393           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1394             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1395               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1396                 ObjCInterfaceDecl *ClassDeclared;
1397                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1398                                                  Name.getAsIdentifierInfo(),
1399                                                              ClassDeclared)) {
1400                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1401                     R.addDecl(ND);
1402                     R.resolveKind();
1403                     return true;
1404                   }
1405                 }
1406               }
1407           }
1408 
1409           continue;
1410         }
1411 
1412         // If this is a file context, we need to perform unqualified name
1413         // lookup considering using directives.
1414         if (Ctx->isFileContext()) {
1415           // If we haven't handled using directives yet, do so now.
1416           if (!VisitedUsingDirectives) {
1417             // Add using directives from this context up to the top level.
1418             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1419               if (UCtx->isTransparentContext())
1420                 continue;
1421 
1422               UDirs.visit(UCtx, UCtx);
1423             }
1424 
1425             // Find the innermost file scope, so we can add using directives
1426             // from local scopes.
1427             Scope *InnermostFileScope = S;
1428             while (InnermostFileScope &&
1429                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1430               InnermostFileScope = InnermostFileScope->getParent();
1431             UDirs.visitScopeChain(Initial, InnermostFileScope);
1432 
1433             UDirs.done();
1434 
1435             VisitedUsingDirectives = true;
1436           }
1437 
1438           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1439             R.resolveKind();
1440             return true;
1441           }
1442 
1443           continue;
1444         }
1445 
1446         // Perform qualified name lookup into this context.
1447         // FIXME: In some cases, we know that every name that could be found by
1448         // this qualified name lookup will also be on the identifier chain. For
1449         // example, inside a class without any base classes, we never need to
1450         // perform qualified lookup because all of the members are on top of the
1451         // identifier chain.
1452         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1453           return true;
1454       }
1455     }
1456   }
1457 
1458   // Stop if we ran out of scopes.
1459   // FIXME:  This really, really shouldn't be happening.
1460   if (!S) return false;
1461 
1462   // If we are looking for members, no need to look into global/namespace scope.
1463   if (NameKind == LookupMemberName)
1464     return false;
1465 
1466   // Collect UsingDirectiveDecls in all scopes, and recursively all
1467   // nominated namespaces by those using-directives.
1468   //
1469   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1470   // don't build it for each lookup!
1471   if (!VisitedUsingDirectives) {
1472     UDirs.visitScopeChain(Initial, S);
1473     UDirs.done();
1474   }
1475 
1476   // If we're not performing redeclaration lookup, do not look for local
1477   // extern declarations outside of a function scope.
1478   if (!R.isForRedeclaration())
1479     FindLocals.restore();
1480 
1481   // Lookup namespace scope, and global scope.
1482   // Unqualified name lookup in C++ requires looking into scopes
1483   // that aren't strictly lexical, and therefore we walk through the
1484   // context as well as walking through the scopes.
1485   for (; S; S = S->getParent()) {
1486     // Check whether the IdResolver has anything in this scope.
1487     bool Found = false;
1488     for (; I != IEnd && S->isDeclScope(*I); ++I) {
1489       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1490         // We found something.  Look for anything else in our scope
1491         // with this same name and in an acceptable identifier
1492         // namespace, so that we can construct an overload set if we
1493         // need to.
1494         Found = true;
1495         R.addDecl(ND);
1496       }
1497     }
1498 
1499     if (Found && S->isTemplateParamScope()) {
1500       R.resolveKind();
1501       return true;
1502     }
1503 
1504     DeclContext *Ctx = S->getLookupEntity();
1505     if (Ctx) {
1506       DeclContext *OuterCtx = findOuterContext(S);
1507       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1508         // We do not directly look into transparent contexts, since
1509         // those entities will be found in the nearest enclosing
1510         // non-transparent context.
1511         if (Ctx->isTransparentContext())
1512           continue;
1513 
1514         // If we have a context, and it's not a context stashed in the
1515         // template parameter scope for an out-of-line definition, also
1516         // look into that context.
1517         if (!(Found && S->isTemplateParamScope())) {
1518           assert(Ctx->isFileContext() &&
1519               "We should have been looking only at file context here already.");
1520 
1521           // Look into context considering using-directives.
1522           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1523             Found = true;
1524         }
1525 
1526         if (Found) {
1527           R.resolveKind();
1528           return true;
1529         }
1530 
1531         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1532           return false;
1533       }
1534     }
1535 
1536     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1537       return false;
1538   }
1539 
1540   return !R.empty();
1541 }
1542 
1543 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1544   if (auto *M = getCurrentModule())
1545     Context.mergeDefinitionIntoModule(ND, M);
1546   else
1547     // We're not building a module; just make the definition visible.
1548     ND->setVisibleDespiteOwningModule();
1549 
1550   // If ND is a template declaration, make the template parameters
1551   // visible too. They're not (necessarily) within a mergeable DeclContext.
1552   if (auto *TD = dyn_cast<TemplateDecl>(ND))
1553     for (auto *Param : *TD->getTemplateParameters())
1554       makeMergedDefinitionVisible(Param);
1555 }
1556 
1557 /// Find the module in which the given declaration was defined.
1558 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1559   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1560     // If this function was instantiated from a template, the defining module is
1561     // the module containing the pattern.
1562     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1563       Entity = Pattern;
1564   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1565     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1566       Entity = Pattern;
1567   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1568     if (auto *Pattern = ED->getTemplateInstantiationPattern())
1569       Entity = Pattern;
1570   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1571     if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1572       Entity = Pattern;
1573   }
1574 
1575   // Walk up to the containing context. That might also have been instantiated
1576   // from a template.
1577   DeclContext *Context = Entity->getLexicalDeclContext();
1578   if (Context->isFileContext())
1579     return S.getOwningModule(Entity);
1580   return getDefiningModule(S, cast<Decl>(Context));
1581 }
1582 
1583 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1584   unsigned N = CodeSynthesisContexts.size();
1585   for (unsigned I = CodeSynthesisContextLookupModules.size();
1586        I != N; ++I) {
1587     Module *M = CodeSynthesisContexts[I].Entity ?
1588                 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1589                 nullptr;
1590     if (M && !LookupModulesCache.insert(M).second)
1591       M = nullptr;
1592     CodeSynthesisContextLookupModules.push_back(M);
1593   }
1594   return LookupModulesCache;
1595 }
1596 
1597 /// Determine if we could use all the declarations in the module.
1598 bool Sema::isUsableModule(const Module *M) {
1599   assert(M && "We shouldn't check nullness for module here");
1600   // Return quickly if we cached the result.
1601   if (UsableModuleUnitsCache.count(M))
1602     return true;
1603 
1604   // If M is the global module fragment of the current translation unit. So it
1605   // should be usable.
1606   // [module.global.frag]p1:
1607   //   The global module fragment can be used to provide declarations that are
1608   //   attached to the global module and usable within the module unit.
1609   if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment ||
1610       // If M is the module we're parsing, it should be usable. This covers the
1611       // private module fragment. The private module fragment is usable only if
1612       // it is within the current module unit. And it must be the current
1613       // parsing module unit if it is within the current module unit according
1614       // to the grammar of the private module fragment. NOTE: This is covered by
1615       // the following condition. The intention of the check is to avoid string
1616       // comparison as much as possible.
1617       M == getCurrentModule() ||
1618       // The module unit which is in the same module with the current module
1619       // unit is usable.
1620       //
1621       // FIXME: Here we judge if they are in the same module by comparing the
1622       // string. Is there any better solution?
1623       M->getPrimaryModuleInterfaceName() ==
1624           llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1625     UsableModuleUnitsCache.insert(M);
1626     return true;
1627   }
1628 
1629   return false;
1630 }
1631 
1632 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1633   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1634     if (isModuleVisible(Merged))
1635       return true;
1636   return false;
1637 }
1638 
1639 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1640   for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1641     if (isUsableModule(Merged))
1642       return true;
1643   return false;
1644 }
1645 
1646 template <typename ParmDecl>
1647 static bool
1648 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1649                              llvm::SmallVectorImpl<Module *> *Modules,
1650                              Sema::AcceptableKind Kind) {
1651   if (!D->hasDefaultArgument())
1652     return false;
1653 
1654   llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1655   while (D && Visited.insert(D).second) {
1656     auto &DefaultArg = D->getDefaultArgStorage();
1657     if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1658       return true;
1659 
1660     if (!DefaultArg.isInherited() && Modules) {
1661       auto *NonConstD = const_cast<ParmDecl*>(D);
1662       Modules->push_back(S.getOwningModule(NonConstD));
1663     }
1664 
1665     // If there was a previous default argument, maybe its parameter is
1666     // acceptable.
1667     D = DefaultArg.getInheritedFrom();
1668   }
1669   return false;
1670 }
1671 
1672 bool Sema::hasAcceptableDefaultArgument(
1673     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1674     Sema::AcceptableKind Kind) {
1675   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1676     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1677 
1678   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1679     return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1680 
1681   return ::hasAcceptableDefaultArgument(
1682       *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1683 }
1684 
1685 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1686                                      llvm::SmallVectorImpl<Module *> *Modules) {
1687   return hasAcceptableDefaultArgument(D, Modules,
1688                                       Sema::AcceptableKind::Visible);
1689 }
1690 
1691 bool Sema::hasReachableDefaultArgument(
1692     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1693   return hasAcceptableDefaultArgument(D, Modules,
1694                                       Sema::AcceptableKind::Reachable);
1695 }
1696 
1697 template <typename Filter>
1698 static bool
1699 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1700                              llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1701                              Sema::AcceptableKind Kind) {
1702   bool HasFilteredRedecls = false;
1703 
1704   for (auto *Redecl : D->redecls()) {
1705     auto *R = cast<NamedDecl>(Redecl);
1706     if (!F(R))
1707       continue;
1708 
1709     if (S.isAcceptable(R, Kind))
1710       return true;
1711 
1712     HasFilteredRedecls = true;
1713 
1714     if (Modules)
1715       Modules->push_back(R->getOwningModule());
1716   }
1717 
1718   // Only return false if there is at least one redecl that is not filtered out.
1719   if (HasFilteredRedecls)
1720     return false;
1721 
1722   return true;
1723 }
1724 
1725 static bool
1726 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1727                                     llvm::SmallVectorImpl<Module *> *Modules,
1728                                     Sema::AcceptableKind Kind) {
1729   return hasAcceptableDeclarationImpl(
1730       S, D, Modules,
1731       [](const NamedDecl *D) {
1732         if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1733           return RD->getTemplateSpecializationKind() ==
1734                  TSK_ExplicitSpecialization;
1735         if (auto *FD = dyn_cast<FunctionDecl>(D))
1736           return FD->getTemplateSpecializationKind() ==
1737                  TSK_ExplicitSpecialization;
1738         if (auto *VD = dyn_cast<VarDecl>(D))
1739           return VD->getTemplateSpecializationKind() ==
1740                  TSK_ExplicitSpecialization;
1741         llvm_unreachable("unknown explicit specialization kind");
1742       },
1743       Kind);
1744 }
1745 
1746 bool Sema::hasVisibleExplicitSpecialization(
1747     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1748   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1749                                                Sema::AcceptableKind::Visible);
1750 }
1751 
1752 bool Sema::hasReachableExplicitSpecialization(
1753     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1754   return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1755                                                Sema::AcceptableKind::Reachable);
1756 }
1757 
1758 static bool
1759 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1760                                   llvm::SmallVectorImpl<Module *> *Modules,
1761                                   Sema::AcceptableKind Kind) {
1762   assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1763          "not a member specialization");
1764   return hasAcceptableDeclarationImpl(
1765       S, D, Modules,
1766       [](const NamedDecl *D) {
1767         // If the specialization is declared at namespace scope, then it's a
1768         // member specialization declaration. If it's lexically inside the class
1769         // definition then it was instantiated.
1770         //
1771         // FIXME: This is a hack. There should be a better way to determine
1772         // this.
1773         // FIXME: What about MS-style explicit specializations declared within a
1774         //        class definition?
1775         return D->getLexicalDeclContext()->isFileContext();
1776       },
1777       Kind);
1778 }
1779 
1780 bool Sema::hasVisibleMemberSpecialization(
1781     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1782   return hasAcceptableMemberSpecialization(*this, D, Modules,
1783                                            Sema::AcceptableKind::Visible);
1784 }
1785 
1786 bool Sema::hasReachableMemberSpecialization(
1787     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1788   return hasAcceptableMemberSpecialization(*this, D, Modules,
1789                                            Sema::AcceptableKind::Reachable);
1790 }
1791 
1792 /// Determine whether a declaration is acceptable to name lookup.
1793 ///
1794 /// This routine determines whether the declaration D is acceptable in the
1795 /// current lookup context, taking into account the current template
1796 /// instantiation stack. During template instantiation, a declaration is
1797 /// acceptable if it is acceptable from a module containing any entity on the
1798 /// template instantiation path (by instantiating a template, you allow it to
1799 /// see the declarations that your module can see, including those later on in
1800 /// your module).
1801 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1802                                     Sema::AcceptableKind Kind) {
1803   assert(!D->isUnconditionallyVisible() &&
1804          "should not call this: not in slow case");
1805 
1806   Module *DeclModule = SemaRef.getOwningModule(D);
1807   assert(DeclModule && "hidden decl has no owning module");
1808 
1809   // If the owning module is visible, the decl is acceptable.
1810   if (SemaRef.isModuleVisible(DeclModule,
1811                               D->isInvisibleOutsideTheOwningModule()))
1812     return true;
1813 
1814   // Determine whether a decl context is a file context for the purpose of
1815   // visibility/reachability. This looks through some (export and linkage spec)
1816   // transparent contexts, but not others (enums).
1817   auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1818     return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1819            isa<ExportDecl>(DC);
1820   };
1821 
1822   // If this declaration is not at namespace scope
1823   // then it is acceptable if its lexical parent has a acceptable definition.
1824   DeclContext *DC = D->getLexicalDeclContext();
1825   if (DC && !IsEffectivelyFileContext(DC)) {
1826     // For a parameter, check whether our current template declaration's
1827     // lexical context is acceptable, not whether there's some other acceptable
1828     // definition of it, because parameters aren't "within" the definition.
1829     //
1830     // In C++ we need to check for a acceptable definition due to ODR merging,
1831     // and in C we must not because each declaration of a function gets its own
1832     // set of declarations for tags in prototype scope.
1833     bool AcceptableWithinParent;
1834     if (D->isTemplateParameter()) {
1835       bool SearchDefinitions = true;
1836       if (const auto *DCD = dyn_cast<Decl>(DC)) {
1837         if (const auto *TD = DCD->getDescribedTemplate()) {
1838           TemplateParameterList *TPL = TD->getTemplateParameters();
1839           auto Index = getDepthAndIndex(D).second;
1840           SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1841         }
1842       }
1843       if (SearchDefinitions)
1844         AcceptableWithinParent =
1845             SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1846       else
1847         AcceptableWithinParent =
1848             isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1849     } else if (isa<ParmVarDecl>(D) ||
1850                (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1851       AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1852     else if (D->isModulePrivate()) {
1853       // A module-private declaration is only acceptable if an enclosing lexical
1854       // parent was merged with another definition in the current module.
1855       AcceptableWithinParent = false;
1856       do {
1857         if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1858           AcceptableWithinParent = true;
1859           break;
1860         }
1861         DC = DC->getLexicalParent();
1862       } while (!IsEffectivelyFileContext(DC));
1863     } else {
1864       AcceptableWithinParent =
1865           SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1866     }
1867 
1868     if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1869         Kind == Sema::AcceptableKind::Visible &&
1870         // FIXME: Do something better in this case.
1871         !SemaRef.getLangOpts().ModulesLocalVisibility) {
1872       // Cache the fact that this declaration is implicitly visible because
1873       // its parent has a visible definition.
1874       D->setVisibleDespiteOwningModule();
1875     }
1876     return AcceptableWithinParent;
1877   }
1878 
1879   if (Kind == Sema::AcceptableKind::Visible)
1880     return false;
1881 
1882   assert(Kind == Sema::AcceptableKind::Reachable &&
1883          "Additional Sema::AcceptableKind?");
1884   return isReachableSlow(SemaRef, D);
1885 }
1886 
1887 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1888   // The module might be ordinarily visible. For a module-private query, that
1889   // means it is part of the current module.
1890   if (ModulePrivate && isUsableModule(M))
1891     return true;
1892 
1893   // For a query which is not module-private, that means it is in our visible
1894   // module set.
1895   if (!ModulePrivate && VisibleModules.isVisible(M))
1896     return true;
1897 
1898   // Otherwise, it might be visible by virtue of the query being within a
1899   // template instantiation or similar that is permitted to look inside M.
1900 
1901   // Find the extra places where we need to look.
1902   const auto &LookupModules = getLookupModules();
1903   if (LookupModules.empty())
1904     return false;
1905 
1906   // If our lookup set contains the module, it's visible.
1907   if (LookupModules.count(M))
1908     return true;
1909 
1910   // The global module fragments are visible to its corresponding module unit.
1911   // So the global module fragment should be visible if the its corresponding
1912   // module unit is visible.
1913   if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1914     return true;
1915 
1916   // For a module-private query, that's everywhere we get to look.
1917   if (ModulePrivate)
1918     return false;
1919 
1920   // Check whether M is transitively exported to an import of the lookup set.
1921   return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1922     return LookupM->isModuleVisible(M);
1923   });
1924 }
1925 
1926 // FIXME: Return false directly if we don't have an interface dependency on the
1927 // translation unit containing D.
1928 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1929   assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1930 
1931   Module *DeclModule = SemaRef.getOwningModule(D);
1932   assert(DeclModule && "hidden decl has no owning module");
1933 
1934   // Entities in header like modules are reachable only if they're visible.
1935   if (DeclModule->isHeaderLikeModule())
1936     return false;
1937 
1938   if (!D->isInAnotherModuleUnit())
1939     return true;
1940 
1941   // [module.reach]/p3:
1942   // A declaration D is reachable from a point P if:
1943   // ...
1944   // - D is not discarded ([module.global.frag]), appears in a translation unit
1945   //   that is reachable from P, and does not appear within a private module
1946   //   fragment.
1947   //
1948   // A declaration that's discarded in the GMF should be module-private.
1949   if (D->isModulePrivate())
1950     return false;
1951 
1952   // [module.reach]/p1
1953   //   A translation unit U is necessarily reachable from a point P if U is a
1954   //   module interface unit on which the translation unit containing P has an
1955   //   interface dependency, or the translation unit containing P imports U, in
1956   //   either case prior to P ([module.import]).
1957   //
1958   // [module.import]/p10
1959   //   A translation unit has an interface dependency on a translation unit U if
1960   //   it contains a declaration (possibly a module-declaration) that imports U
1961   //   or if it has an interface dependency on a translation unit that has an
1962   //   interface dependency on U.
1963   //
1964   // So we could conclude the module unit U is necessarily reachable if:
1965   // (1) The module unit U is module interface unit.
1966   // (2) The current unit has an interface dependency on the module unit U.
1967   //
1968   // Here we only check for the first condition. Since we couldn't see
1969   // DeclModule if it isn't (transitively) imported.
1970   if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1971     return true;
1972 
1973   // [module.reach]/p2
1974   //   Additional translation units on
1975   //   which the point within the program has an interface dependency may be
1976   //   considered reachable, but it is unspecified which are and under what
1977   //   circumstances.
1978   //
1979   // The decision here is to treat all additional tranditional units as
1980   // unreachable.
1981   return false;
1982 }
1983 
1984 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1985   return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1986 }
1987 
1988 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1989   // FIXME: If there are both visible and hidden declarations, we need to take
1990   // into account whether redeclaration is possible. Example:
1991   //
1992   // Non-imported module:
1993   //   int f(T);        // #1
1994   // Some TU:
1995   //   static int f(U); // #2, not a redeclaration of #1
1996   //   int f(T);        // #3, finds both, should link with #1 if T != U, but
1997   //                    // with #2 if T == U; neither should be ambiguous.
1998   for (auto *D : R) {
1999     if (isVisible(D))
2000       return true;
2001     assert(D->isExternallyDeclarable() &&
2002            "should not have hidden, non-externally-declarable result here");
2003   }
2004 
2005   // This function is called once "New" is essentially complete, but before a
2006   // previous declaration is attached. We can't query the linkage of "New" in
2007   // general, because attaching the previous declaration can change the
2008   // linkage of New to match the previous declaration.
2009   //
2010   // However, because we've just determined that there is no *visible* prior
2011   // declaration, we can compute the linkage here. There are two possibilities:
2012   //
2013   //  * This is not a redeclaration; it's safe to compute the linkage now.
2014   //
2015   //  * This is a redeclaration of a prior declaration that is externally
2016   //    redeclarable. In that case, the linkage of the declaration is not
2017   //    changed by attaching the prior declaration, because both are externally
2018   //    declarable (and thus ExternalLinkage or VisibleNoLinkage).
2019   //
2020   // FIXME: This is subtle and fragile.
2021   return New->isExternallyDeclarable();
2022 }
2023 
2024 /// Retrieve the visible declaration corresponding to D, if any.
2025 ///
2026 /// This routine determines whether the declaration D is visible in the current
2027 /// module, with the current imports. If not, it checks whether any
2028 /// redeclaration of D is visible, and if so, returns that declaration.
2029 ///
2030 /// \returns D, or a visible previous declaration of D, whichever is more recent
2031 /// and visible. If no declaration of D is visible, returns null.
2032 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2033                                      unsigned IDNS) {
2034   assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2035 
2036   for (auto *RD : D->redecls()) {
2037     // Don't bother with extra checks if we already know this one isn't visible.
2038     if (RD == D)
2039       continue;
2040 
2041     auto ND = cast<NamedDecl>(RD);
2042     // FIXME: This is wrong in the case where the previous declaration is not
2043     // visible in the same scope as D. This needs to be done much more
2044     // carefully.
2045     if (ND->isInIdentifierNamespace(IDNS) &&
2046         LookupResult::isAvailableForLookup(SemaRef, ND))
2047       return ND;
2048   }
2049 
2050   return nullptr;
2051 }
2052 
2053 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2054                                      llvm::SmallVectorImpl<Module *> *Modules) {
2055   assert(!isVisible(D) && "not in slow case");
2056   return hasAcceptableDeclarationImpl(
2057       *this, D, Modules, [](const NamedDecl *) { return true; },
2058       Sema::AcceptableKind::Visible);
2059 }
2060 
2061 bool Sema::hasReachableDeclarationSlow(
2062     const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2063   assert(!isReachable(D) && "not in slow case");
2064   return hasAcceptableDeclarationImpl(
2065       *this, D, Modules, [](const NamedDecl *) { return true; },
2066       Sema::AcceptableKind::Reachable);
2067 }
2068 
2069 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2070   if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2071     // Namespaces are a bit of a special case: we expect there to be a lot of
2072     // redeclarations of some namespaces, all declarations of a namespace are
2073     // essentially interchangeable, all declarations are found by name lookup
2074     // if any is, and namespaces are never looked up during template
2075     // instantiation. So we benefit from caching the check in this case, and
2076     // it is correct to do so.
2077     auto *Key = ND->getCanonicalDecl();
2078     if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2079       return Acceptable;
2080     auto *Acceptable = isVisible(getSema(), Key)
2081                            ? Key
2082                            : findAcceptableDecl(getSema(), Key, IDNS);
2083     if (Acceptable)
2084       getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2085     return Acceptable;
2086   }
2087 
2088   return findAcceptableDecl(getSema(), D, IDNS);
2089 }
2090 
2091 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2092   // If this declaration is already visible, return it directly.
2093   if (D->isUnconditionallyVisible())
2094     return true;
2095 
2096   // During template instantiation, we can refer to hidden declarations, if
2097   // they were visible in any module along the path of instantiation.
2098   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2099 }
2100 
2101 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2102   if (D->isUnconditionallyVisible())
2103     return true;
2104 
2105   return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2106 }
2107 
2108 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2109   // We should check the visibility at the callsite already.
2110   if (isVisible(SemaRef, ND))
2111     return true;
2112 
2113   // Deduction guide lives in namespace scope generally, but it is just a
2114   // hint to the compilers. What we actually lookup for is the generated member
2115   // of the corresponding template. So it is sufficient to check the
2116   // reachability of the template decl.
2117   if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2118     return SemaRef.hasReachableDefinition(DeductionGuide);
2119 
2120   // FIXME: The lookup for allocation function is a standalone process.
2121   // (We can find the logics in Sema::FindAllocationFunctions)
2122   //
2123   // Such structure makes it a problem when we instantiate a template
2124   // declaration using placement allocation function if the placement
2125   // allocation function is invisible.
2126   // (See https://github.com/llvm/llvm-project/issues/59601)
2127   //
2128   // Here we workaround it by making the placement allocation functions
2129   // always acceptable. The downside is that we can't diagnose the direct
2130   // use of the invisible placement allocation functions. (Although such uses
2131   // should be rare).
2132   if (auto *FD = dyn_cast<FunctionDecl>(ND);
2133       FD && FD->isReservedGlobalPlacementOperator())
2134     return true;
2135 
2136   auto *DC = ND->getDeclContext();
2137   // If ND is not visible and it is at namespace scope, it shouldn't be found
2138   // by name lookup.
2139   if (DC->isFileContext())
2140     return false;
2141 
2142   // [module.interface]p7
2143   // Class and enumeration member names can be found by name lookup in any
2144   // context in which a definition of the type is reachable.
2145   //
2146   // FIXME: The current implementation didn't consider about scope. For example,
2147   // ```
2148   // // m.cppm
2149   // export module m;
2150   // enum E1 { e1 };
2151   // // Use.cpp
2152   // import m;
2153   // void test() {
2154   //   auto a = E1::e1; // Error as expected.
2155   //   auto b = e1; // Should be error. namespace-scope name e1 is not visible
2156   // }
2157   // ```
2158   // For the above example, the current implementation would emit error for `a`
2159   // correctly. However, the implementation wouldn't diagnose about `b` now.
2160   // Since we only check the reachability for the parent only.
2161   // See clang/test/CXX/module/module.interface/p7.cpp for example.
2162   if (auto *TD = dyn_cast<TagDecl>(DC))
2163     return SemaRef.hasReachableDefinition(TD);
2164 
2165   return false;
2166 }
2167 
2168 /// Perform unqualified name lookup starting from a given
2169 /// scope.
2170 ///
2171 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2172 /// used to find names within the current scope. For example, 'x' in
2173 /// @code
2174 /// int x;
2175 /// int f() {
2176 ///   return x; // unqualified name look finds 'x' in the global scope
2177 /// }
2178 /// @endcode
2179 ///
2180 /// Different lookup criteria can find different names. For example, a
2181 /// particular scope can have both a struct and a function of the same
2182 /// name, and each can be found by certain lookup criteria. For more
2183 /// information about lookup criteria, see the documentation for the
2184 /// class LookupCriteria.
2185 ///
2186 /// @param S        The scope from which unqualified name lookup will
2187 /// begin. If the lookup criteria permits, name lookup may also search
2188 /// in the parent scopes.
2189 ///
2190 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2191 /// look up and the lookup kind), and is updated with the results of lookup
2192 /// including zero or more declarations and possibly additional information
2193 /// used to diagnose ambiguities.
2194 ///
2195 /// @returns \c true if lookup succeeded and false otherwise.
2196 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2197                       bool ForceNoCPlusPlus) {
2198   DeclarationName Name = R.getLookupName();
2199   if (!Name) return false;
2200 
2201   LookupNameKind NameKind = R.getLookupKind();
2202 
2203   if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2204     // Unqualified name lookup in C/Objective-C is purely lexical, so
2205     // search in the declarations attached to the name.
2206     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2207       // Find the nearest non-transparent declaration scope.
2208       while (!(S->getFlags() & Scope::DeclScope) ||
2209              (S->getEntity() && S->getEntity()->isTransparentContext()))
2210         S = S->getParent();
2211     }
2212 
2213     // When performing a scope lookup, we want to find local extern decls.
2214     FindLocalExternScope FindLocals(R);
2215 
2216     // Scan up the scope chain looking for a decl that matches this
2217     // identifier that is in the appropriate namespace.  This search
2218     // should not take long, as shadowing of names is uncommon, and
2219     // deep shadowing is extremely uncommon.
2220     bool LeftStartingScope = false;
2221 
2222     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2223                                    IEnd = IdResolver.end();
2224          I != IEnd; ++I)
2225       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2226         if (NameKind == LookupRedeclarationWithLinkage) {
2227           // Determine whether this (or a previous) declaration is
2228           // out-of-scope.
2229           if (!LeftStartingScope && !S->isDeclScope(*I))
2230             LeftStartingScope = true;
2231 
2232           // If we found something outside of our starting scope that
2233           // does not have linkage, skip it.
2234           if (LeftStartingScope && !((*I)->hasLinkage())) {
2235             R.setShadowed();
2236             continue;
2237           }
2238         }
2239         else if (NameKind == LookupObjCImplicitSelfParam &&
2240                  !isa<ImplicitParamDecl>(*I))
2241           continue;
2242 
2243         R.addDecl(D);
2244 
2245         // Check whether there are any other declarations with the same name
2246         // and in the same scope.
2247         if (I != IEnd) {
2248           // Find the scope in which this declaration was declared (if it
2249           // actually exists in a Scope).
2250           while (S && !S->isDeclScope(D))
2251             S = S->getParent();
2252 
2253           // If the scope containing the declaration is the translation unit,
2254           // then we'll need to perform our checks based on the matching
2255           // DeclContexts rather than matching scopes.
2256           if (S && isNamespaceOrTranslationUnitScope(S))
2257             S = nullptr;
2258 
2259           // Compute the DeclContext, if we need it.
2260           DeclContext *DC = nullptr;
2261           if (!S)
2262             DC = (*I)->getDeclContext()->getRedeclContext();
2263 
2264           IdentifierResolver::iterator LastI = I;
2265           for (++LastI; LastI != IEnd; ++LastI) {
2266             if (S) {
2267               // Match based on scope.
2268               if (!S->isDeclScope(*LastI))
2269                 break;
2270             } else {
2271               // Match based on DeclContext.
2272               DeclContext *LastDC
2273                 = (*LastI)->getDeclContext()->getRedeclContext();
2274               if (!LastDC->Equals(DC))
2275                 break;
2276             }
2277 
2278             // If the declaration is in the right namespace and visible, add it.
2279             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2280               R.addDecl(LastD);
2281           }
2282 
2283           R.resolveKind();
2284         }
2285 
2286         return true;
2287       }
2288   } else {
2289     // Perform C++ unqualified name lookup.
2290     if (CppLookupName(R, S))
2291       return true;
2292   }
2293 
2294   // If we didn't find a use of this identifier, and if the identifier
2295   // corresponds to a compiler builtin, create the decl object for the builtin
2296   // now, injecting it into translation unit scope, and return it.
2297   if (AllowBuiltinCreation && LookupBuiltin(R))
2298     return true;
2299 
2300   // If we didn't find a use of this identifier, the ExternalSource
2301   // may be able to handle the situation.
2302   // Note: some lookup failures are expected!
2303   // See e.g. R.isForRedeclaration().
2304   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2305 }
2306 
2307 /// Perform qualified name lookup in the namespaces nominated by
2308 /// using directives by the given context.
2309 ///
2310 /// C++98 [namespace.qual]p2:
2311 ///   Given X::m (where X is a user-declared namespace), or given \::m
2312 ///   (where X is the global namespace), let S be the set of all
2313 ///   declarations of m in X and in the transitive closure of all
2314 ///   namespaces nominated by using-directives in X and its used
2315 ///   namespaces, except that using-directives are ignored in any
2316 ///   namespace, including X, directly containing one or more
2317 ///   declarations of m. No namespace is searched more than once in
2318 ///   the lookup of a name. If S is the empty set, the program is
2319 ///   ill-formed. Otherwise, if S has exactly one member, or if the
2320 ///   context of the reference is a using-declaration
2321 ///   (namespace.udecl), S is the required set of declarations of
2322 ///   m. Otherwise if the use of m is not one that allows a unique
2323 ///   declaration to be chosen from S, the program is ill-formed.
2324 ///
2325 /// C++98 [namespace.qual]p5:
2326 ///   During the lookup of a qualified namespace member name, if the
2327 ///   lookup finds more than one declaration of the member, and if one
2328 ///   declaration introduces a class name or enumeration name and the
2329 ///   other declarations either introduce the same object, the same
2330 ///   enumerator or a set of functions, the non-type name hides the
2331 ///   class or enumeration name if and only if the declarations are
2332 ///   from the same namespace; otherwise (the declarations are from
2333 ///   different namespaces), the program is ill-formed.
2334 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2335                                                  DeclContext *StartDC) {
2336   assert(StartDC->isFileContext() && "start context is not a file context");
2337 
2338   // We have not yet looked into these namespaces, much less added
2339   // their "using-children" to the queue.
2340   SmallVector<NamespaceDecl*, 8> Queue;
2341 
2342   // We have at least added all these contexts to the queue.
2343   llvm::SmallPtrSet<DeclContext*, 8> Visited;
2344   Visited.insert(StartDC);
2345 
2346   // We have already looked into the initial namespace; seed the queue
2347   // with its using-children.
2348   for (auto *I : StartDC->using_directives()) {
2349     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2350     if (S.isVisible(I) && Visited.insert(ND).second)
2351       Queue.push_back(ND);
2352   }
2353 
2354   // The easiest way to implement the restriction in [namespace.qual]p5
2355   // is to check whether any of the individual results found a tag
2356   // and, if so, to declare an ambiguity if the final result is not
2357   // a tag.
2358   bool FoundTag = false;
2359   bool FoundNonTag = false;
2360 
2361   LookupResult LocalR(LookupResult::Temporary, R);
2362 
2363   bool Found = false;
2364   while (!Queue.empty()) {
2365     NamespaceDecl *ND = Queue.pop_back_val();
2366 
2367     // We go through some convolutions here to avoid copying results
2368     // between LookupResults.
2369     bool UseLocal = !R.empty();
2370     LookupResult &DirectR = UseLocal ? LocalR : R;
2371     bool FoundDirect = LookupDirect(S, DirectR, ND);
2372 
2373     if (FoundDirect) {
2374       // First do any local hiding.
2375       DirectR.resolveKind();
2376 
2377       // If the local result is a tag, remember that.
2378       if (DirectR.isSingleTagDecl())
2379         FoundTag = true;
2380       else
2381         FoundNonTag = true;
2382 
2383       // Append the local results to the total results if necessary.
2384       if (UseLocal) {
2385         R.addAllDecls(LocalR);
2386         LocalR.clear();
2387       }
2388     }
2389 
2390     // If we find names in this namespace, ignore its using directives.
2391     if (FoundDirect) {
2392       Found = true;
2393       continue;
2394     }
2395 
2396     for (auto *I : ND->using_directives()) {
2397       NamespaceDecl *Nom = I->getNominatedNamespace();
2398       if (S.isVisible(I) && Visited.insert(Nom).second)
2399         Queue.push_back(Nom);
2400     }
2401   }
2402 
2403   if (Found) {
2404     if (FoundTag && FoundNonTag)
2405       R.setAmbiguousQualifiedTagHiding();
2406     else
2407       R.resolveKind();
2408   }
2409 
2410   return Found;
2411 }
2412 
2413 /// Perform qualified name lookup into a given context.
2414 ///
2415 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2416 /// names when the context of those names is explicit specified, e.g.,
2417 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2418 ///
2419 /// Different lookup criteria can find different names. For example, a
2420 /// particular scope can have both a struct and a function of the same
2421 /// name, and each can be found by certain lookup criteria. For more
2422 /// information about lookup criteria, see the documentation for the
2423 /// class LookupCriteria.
2424 ///
2425 /// \param R captures both the lookup criteria and any lookup results found.
2426 ///
2427 /// \param LookupCtx The context in which qualified name lookup will
2428 /// search. If the lookup criteria permits, name lookup may also search
2429 /// in the parent contexts or (for C++ classes) base classes.
2430 ///
2431 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2432 /// occurs as part of unqualified name lookup.
2433 ///
2434 /// \returns true if lookup succeeded, false if it failed.
2435 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2436                                bool InUnqualifiedLookup) {
2437   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2438 
2439   if (!R.getLookupName())
2440     return false;
2441 
2442   // Make sure that the declaration context is complete.
2443   assert((!isa<TagDecl>(LookupCtx) ||
2444           LookupCtx->isDependentContext() ||
2445           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2446           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2447          "Declaration context must already be complete!");
2448 
2449   struct QualifiedLookupInScope {
2450     bool oldVal;
2451     DeclContext *Context;
2452     // Set flag in DeclContext informing debugger that we're looking for qualified name
2453     QualifiedLookupInScope(DeclContext *ctx)
2454         : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2455       ctx->setUseQualifiedLookup();
2456     }
2457     ~QualifiedLookupInScope() {
2458       Context->setUseQualifiedLookup(oldVal);
2459     }
2460   } QL(LookupCtx);
2461 
2462   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2463   // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent
2464   // if it's a dependent conversion-function-id or operator= where the current
2465   // class is a templated entity. This should be handled in LookupName.
2466   if (!InUnqualifiedLookup && !R.isForRedeclaration()) {
2467     // C++23 [temp.dep.type]p5:
2468     //   A qualified name is dependent if
2469     //   - it is a conversion-function-id whose conversion-type-id
2470     //     is dependent, or
2471     //   - [...]
2472     //   - its lookup context is the current instantiation and it
2473     //     is operator=, or
2474     //   - [...]
2475     if (DeclarationName Name = R.getLookupName();
2476         Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2477         Name.getCXXNameType()->isDependentType()) {
2478       R.setNotFoundInCurrentInstantiation();
2479       return false;
2480     }
2481   }
2482 
2483   if (LookupDirect(*this, R, LookupCtx)) {
2484     R.resolveKind();
2485     if (LookupRec)
2486       R.setNamingClass(LookupRec);
2487     return true;
2488   }
2489 
2490   // Don't descend into implied contexts for redeclarations.
2491   // C++98 [namespace.qual]p6:
2492   //   In a declaration for a namespace member in which the
2493   //   declarator-id is a qualified-id, given that the qualified-id
2494   //   for the namespace member has the form
2495   //     nested-name-specifier unqualified-id
2496   //   the unqualified-id shall name a member of the namespace
2497   //   designated by the nested-name-specifier.
2498   // See also [class.mfct]p5 and [class.static.data]p2.
2499   if (R.isForRedeclaration())
2500     return false;
2501 
2502   // If this is a namespace, look it up in the implied namespaces.
2503   if (LookupCtx->isFileContext())
2504     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2505 
2506   // If this isn't a C++ class, we aren't allowed to look into base
2507   // classes, we're done.
2508   if (!LookupRec || !LookupRec->getDefinition())
2509     return false;
2510 
2511   // We're done for lookups that can never succeed for C++ classes.
2512   if (R.getLookupKind() == LookupOperatorName ||
2513       R.getLookupKind() == LookupNamespaceName ||
2514       R.getLookupKind() == LookupObjCProtocolName ||
2515       R.getLookupKind() == LookupLabel)
2516     return false;
2517 
2518   // If we're performing qualified name lookup into a dependent class,
2519   // then we are actually looking into a current instantiation. If we have any
2520   // dependent base classes, then we either have to delay lookup until
2521   // template instantiation time (at which point all bases will be available)
2522   // or we have to fail.
2523   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2524       LookupRec->hasAnyDependentBases()) {
2525     R.setNotFoundInCurrentInstantiation();
2526     return false;
2527   }
2528 
2529   // Perform lookup into our base classes.
2530 
2531   DeclarationName Name = R.getLookupName();
2532   unsigned IDNS = R.getIdentifierNamespace();
2533 
2534   // Look for this member in our base classes.
2535   auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2536                                    CXXBasePath &Path) -> bool {
2537     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2538     // Drop leading non-matching lookup results from the declaration list so
2539     // we don't need to consider them again below.
2540     for (Path.Decls = BaseRecord->lookup(Name).begin();
2541          Path.Decls != Path.Decls.end(); ++Path.Decls) {
2542       if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2543         return true;
2544     }
2545     return false;
2546   };
2547 
2548   CXXBasePaths Paths;
2549   Paths.setOrigin(LookupRec);
2550   if (!LookupRec->lookupInBases(BaseCallback, Paths))
2551     return false;
2552 
2553   R.setNamingClass(LookupRec);
2554 
2555   // C++ [class.member.lookup]p2:
2556   //   [...] If the resulting set of declarations are not all from
2557   //   sub-objects of the same type, or the set has a nonstatic member
2558   //   and includes members from distinct sub-objects, there is an
2559   //   ambiguity and the program is ill-formed. Otherwise that set is
2560   //   the result of the lookup.
2561   QualType SubobjectType;
2562   int SubobjectNumber = 0;
2563   AccessSpecifier SubobjectAccess = AS_none;
2564 
2565   // Check whether the given lookup result contains only static members.
2566   auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2567     for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2568       if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2569         return false;
2570     return true;
2571   };
2572 
2573   bool TemplateNameLookup = R.isTemplateNameLookup();
2574 
2575   // Determine whether two sets of members contain the same members, as
2576   // required by C++ [class.member.lookup]p6.
2577   auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2578                                  DeclContext::lookup_iterator B) {
2579     using Iterator = DeclContextLookupResult::iterator;
2580     using Result = const void *;
2581 
2582     auto Next = [&](Iterator &It, Iterator End) -> Result {
2583       while (It != End) {
2584         NamedDecl *ND = *It++;
2585         if (!ND->isInIdentifierNamespace(IDNS))
2586           continue;
2587 
2588         // C++ [temp.local]p3:
2589         //   A lookup that finds an injected-class-name (10.2) can result in
2590         //   an ambiguity in certain cases (for example, if it is found in
2591         //   more than one base class). If all of the injected-class-names
2592         //   that are found refer to specializations of the same class
2593         //   template, and if the name is used as a template-name, the
2594         //   reference refers to the class template itself and not a
2595         //   specialization thereof, and is not ambiguous.
2596         if (TemplateNameLookup)
2597           if (auto *TD = getAsTemplateNameDecl(ND))
2598             ND = TD;
2599 
2600         // C++ [class.member.lookup]p3:
2601         //   type declarations (including injected-class-names) are replaced by
2602         //   the types they designate
2603         if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2604           QualType T = Context.getTypeDeclType(TD);
2605           return T.getCanonicalType().getAsOpaquePtr();
2606         }
2607 
2608         return ND->getUnderlyingDecl()->getCanonicalDecl();
2609       }
2610       return nullptr;
2611     };
2612 
2613     // We'll often find the declarations are in the same order. Handle this
2614     // case (and the special case of only one declaration) efficiently.
2615     Iterator AIt = A, BIt = B, AEnd, BEnd;
2616     while (true) {
2617       Result AResult = Next(AIt, AEnd);
2618       Result BResult = Next(BIt, BEnd);
2619       if (!AResult && !BResult)
2620         return true;
2621       if (!AResult || !BResult)
2622         return false;
2623       if (AResult != BResult) {
2624         // Found a mismatch; carefully check both lists, accounting for the
2625         // possibility of declarations appearing more than once.
2626         llvm::SmallDenseMap<Result, bool, 32> AResults;
2627         for (; AResult; AResult = Next(AIt, AEnd))
2628           AResults.insert({AResult, /*FoundInB*/false});
2629         unsigned Found = 0;
2630         for (; BResult; BResult = Next(BIt, BEnd)) {
2631           auto It = AResults.find(BResult);
2632           if (It == AResults.end())
2633             return false;
2634           if (!It->second) {
2635             It->second = true;
2636             ++Found;
2637           }
2638         }
2639         return AResults.size() == Found;
2640       }
2641     }
2642   };
2643 
2644   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2645        Path != PathEnd; ++Path) {
2646     const CXXBasePathElement &PathElement = Path->back();
2647 
2648     // Pick the best (i.e. most permissive i.e. numerically lowest) access
2649     // across all paths.
2650     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2651 
2652     // Determine whether we're looking at a distinct sub-object or not.
2653     if (SubobjectType.isNull()) {
2654       // This is the first subobject we've looked at. Record its type.
2655       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2656       SubobjectNumber = PathElement.SubobjectNumber;
2657       continue;
2658     }
2659 
2660     if (SubobjectType !=
2661         Context.getCanonicalType(PathElement.Base->getType())) {
2662       // We found members of the given name in two subobjects of
2663       // different types. If the declaration sets aren't the same, this
2664       // lookup is ambiguous.
2665       //
2666       // FIXME: The language rule says that this applies irrespective of
2667       // whether the sets contain only static members.
2668       if (HasOnlyStaticMembers(Path->Decls) &&
2669           HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2670         continue;
2671 
2672       R.setAmbiguousBaseSubobjectTypes(Paths);
2673       return true;
2674     }
2675 
2676     // FIXME: This language rule no longer exists. Checking for ambiguous base
2677     // subobjects should be done as part of formation of a class member access
2678     // expression (when converting the object parameter to the member's type).
2679     if (SubobjectNumber != PathElement.SubobjectNumber) {
2680       // We have a different subobject of the same type.
2681 
2682       // C++ [class.member.lookup]p5:
2683       //   A static member, a nested type or an enumerator defined in
2684       //   a base class T can unambiguously be found even if an object
2685       //   has more than one base class subobject of type T.
2686       if (HasOnlyStaticMembers(Path->Decls))
2687         continue;
2688 
2689       // We have found a nonstatic member name in multiple, distinct
2690       // subobjects. Name lookup is ambiguous.
2691       R.setAmbiguousBaseSubobjects(Paths);
2692       return true;
2693     }
2694   }
2695 
2696   // Lookup in a base class succeeded; return these results.
2697 
2698   for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2699        I != E; ++I) {
2700     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2701                                                     (*I)->getAccess());
2702     if (NamedDecl *ND = R.getAcceptableDecl(*I))
2703       R.addDecl(ND, AS);
2704   }
2705   R.resolveKind();
2706   return true;
2707 }
2708 
2709 /// Performs qualified name lookup or special type of lookup for
2710 /// "__super::" scope specifier.
2711 ///
2712 /// This routine is a convenience overload meant to be called from contexts
2713 /// that need to perform a qualified name lookup with an optional C++ scope
2714 /// specifier that might require special kind of lookup.
2715 ///
2716 /// \param R captures both the lookup criteria and any lookup results found.
2717 ///
2718 /// \param LookupCtx The context in which qualified name lookup will
2719 /// search.
2720 ///
2721 /// \param SS An optional C++ scope-specifier.
2722 ///
2723 /// \returns true if lookup succeeded, false if it failed.
2724 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2725                                CXXScopeSpec &SS) {
2726   auto *NNS = SS.getScopeRep();
2727   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2728     return LookupInSuper(R, NNS->getAsRecordDecl());
2729   else
2730 
2731     return LookupQualifiedName(R, LookupCtx);
2732 }
2733 
2734 /// Performs name lookup for a name that was parsed in the
2735 /// source code, and may contain a C++ scope specifier.
2736 ///
2737 /// This routine is a convenience routine meant to be called from
2738 /// contexts that receive a name and an optional C++ scope specifier
2739 /// (e.g., "N::M::x"). It will then perform either qualified or
2740 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2741 /// respectively) on the given name and return those results. It will
2742 /// perform a special type of lookup for "__super::" scope specifier.
2743 ///
2744 /// @param S        The scope from which unqualified name lookup will
2745 /// begin.
2746 ///
2747 /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2748 ///
2749 /// @param EnteringContext Indicates whether we are going to enter the
2750 /// context of the scope-specifier SS (if present).
2751 ///
2752 /// @returns True if any decls were found (but possibly ambiguous)
2753 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2754                             QualType ObjectType, bool AllowBuiltinCreation,
2755                             bool EnteringContext) {
2756   // When the scope specifier is invalid, don't even look for anything.
2757   if (SS && SS->isInvalid())
2758     return false;
2759 
2760   // Determine where to perform name lookup
2761   DeclContext *DC = nullptr;
2762   bool IsDependent = false;
2763   if (!ObjectType.isNull()) {
2764     // This nested-name-specifier occurs in a member access expression, e.g.,
2765     // x->B::f, and we are looking into the type of the object.
2766     assert((!SS || SS->isEmpty()) &&
2767            "ObjectType and scope specifier cannot coexist");
2768     DC = computeDeclContext(ObjectType);
2769     IsDependent = !DC && ObjectType->isDependentType();
2770     assert(((!DC && ObjectType->isDependentType()) ||
2771             !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() ||
2772             ObjectType->castAs<TagType>()->isBeingDefined()) &&
2773            "Caller should have completed object type");
2774   } else if (SS && SS->isNotEmpty()) {
2775     // This nested-name-specifier occurs after another nested-name-specifier,
2776     // so long into the context associated with the prior nested-name-specifier.
2777     if ((DC = computeDeclContext(*SS, EnteringContext))) {
2778       // The declaration context must be complete.
2779       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2780         return false;
2781       R.setContextRange(SS->getRange());
2782       // FIXME: '__super' lookup semantics could be implemented by a
2783       // LookupResult::isSuperLookup flag which skips the initial search of
2784       // the lookup context in LookupQualified.
2785       if (NestedNameSpecifier *NNS = SS->getScopeRep();
2786           NNS->getKind() == NestedNameSpecifier::Super)
2787         return LookupInSuper(R, NNS->getAsRecordDecl());
2788     }
2789     IsDependent = !DC && isDependentScopeSpecifier(*SS);
2790   } else {
2791     // Perform unqualified name lookup starting in the given scope.
2792     return LookupName(R, S, AllowBuiltinCreation);
2793   }
2794 
2795   // If we were able to compute a declaration context, perform qualified name
2796   // lookup in that context.
2797   if (DC)
2798     return LookupQualifiedName(R, DC);
2799   else if (IsDependent)
2800     // We could not resolve the scope specified to a specific declaration
2801     // context, which means that SS refers to an unknown specialization.
2802     // Name lookup can't find anything in this case.
2803     R.setNotFoundInCurrentInstantiation();
2804   return false;
2805 }
2806 
2807 /// Perform qualified name lookup into all base classes of the given
2808 /// class.
2809 ///
2810 /// \param R captures both the lookup criteria and any lookup results found.
2811 ///
2812 /// \param Class The context in which qualified name lookup will
2813 /// search. Name lookup will search in all base classes merging the results.
2814 ///
2815 /// @returns True if any decls were found (but possibly ambiguous)
2816 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2817   // The access-control rules we use here are essentially the rules for
2818   // doing a lookup in Class that just magically skipped the direct
2819   // members of Class itself.  That is, the naming class is Class, and the
2820   // access includes the access of the base.
2821   for (const auto &BaseSpec : Class->bases()) {
2822     CXXRecordDecl *RD = cast<CXXRecordDecl>(
2823         BaseSpec.getType()->castAs<RecordType>()->getDecl());
2824     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2825     Result.setBaseObjectType(Context.getRecordType(Class));
2826     LookupQualifiedName(Result, RD);
2827 
2828     // Copy the lookup results into the target, merging the base's access into
2829     // the path access.
2830     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2831       R.addDecl(I.getDecl(),
2832                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2833                                            I.getAccess()));
2834     }
2835 
2836     Result.suppressDiagnostics();
2837   }
2838 
2839   R.resolveKind();
2840   R.setNamingClass(Class);
2841 
2842   return !R.empty();
2843 }
2844 
2845 /// Produce a diagnostic describing the ambiguity that resulted
2846 /// from name lookup.
2847 ///
2848 /// \param Result The result of the ambiguous lookup to be diagnosed.
2849 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2850   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2851 
2852   DeclarationName Name = Result.getLookupName();
2853   SourceLocation NameLoc = Result.getNameLoc();
2854   SourceRange LookupRange = Result.getContextRange();
2855 
2856   switch (Result.getAmbiguityKind()) {
2857   case LookupResult::AmbiguousBaseSubobjects: {
2858     CXXBasePaths *Paths = Result.getBasePaths();
2859     QualType SubobjectType = Paths->front().back().Base->getType();
2860     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2861       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2862       << LookupRange;
2863 
2864     DeclContext::lookup_iterator Found = Paths->front().Decls;
2865     while (isa<CXXMethodDecl>(*Found) &&
2866            cast<CXXMethodDecl>(*Found)->isStatic())
2867       ++Found;
2868 
2869     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2870     break;
2871   }
2872 
2873   case LookupResult::AmbiguousBaseSubobjectTypes: {
2874     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2875       << Name << LookupRange;
2876 
2877     CXXBasePaths *Paths = Result.getBasePaths();
2878     std::set<const NamedDecl *> DeclsPrinted;
2879     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2880                                       PathEnd = Paths->end();
2881          Path != PathEnd; ++Path) {
2882       const NamedDecl *D = *Path->Decls;
2883       if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2884         continue;
2885       if (DeclsPrinted.insert(D).second) {
2886         if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2887           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2888               << TD->getUnderlyingType();
2889         else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2890           Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2891               << Context.getTypeDeclType(TD);
2892         else
2893           Diag(D->getLocation(), diag::note_ambiguous_member_found);
2894       }
2895     }
2896     break;
2897   }
2898 
2899   case LookupResult::AmbiguousTagHiding: {
2900     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2901 
2902     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2903 
2904     for (auto *D : Result)
2905       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2906         TagDecls.insert(TD);
2907         Diag(TD->getLocation(), diag::note_hidden_tag);
2908       }
2909 
2910     for (auto *D : Result)
2911       if (!isa<TagDecl>(D))
2912         Diag(D->getLocation(), diag::note_hiding_object);
2913 
2914     // For recovery purposes, go ahead and implement the hiding.
2915     LookupResult::Filter F = Result.makeFilter();
2916     while (F.hasNext()) {
2917       if (TagDecls.count(F.next()))
2918         F.erase();
2919     }
2920     F.done();
2921     break;
2922   }
2923 
2924   case LookupResult::AmbiguousReferenceToPlaceholderVariable: {
2925     Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange;
2926     DeclContext *DC = nullptr;
2927     for (auto *D : Result) {
2928       Diag(D->getLocation(), diag::note_reference_placeholder) << D;
2929       if (DC != nullptr && DC != D->getDeclContext())
2930         break;
2931       DC = D->getDeclContext();
2932     }
2933     break;
2934   }
2935 
2936   case LookupResult::AmbiguousReference: {
2937     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2938 
2939     for (auto *D : Result)
2940       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2941     break;
2942   }
2943   }
2944 }
2945 
2946 namespace {
2947   struct AssociatedLookup {
2948     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2949                      Sema::AssociatedNamespaceSet &Namespaces,
2950                      Sema::AssociatedClassSet &Classes)
2951       : S(S), Namespaces(Namespaces), Classes(Classes),
2952         InstantiationLoc(InstantiationLoc) {
2953     }
2954 
2955     bool addClassTransitive(CXXRecordDecl *RD) {
2956       Classes.insert(RD);
2957       return ClassesTransitive.insert(RD);
2958     }
2959 
2960     Sema &S;
2961     Sema::AssociatedNamespaceSet &Namespaces;
2962     Sema::AssociatedClassSet &Classes;
2963     SourceLocation InstantiationLoc;
2964 
2965   private:
2966     Sema::AssociatedClassSet ClassesTransitive;
2967   };
2968 } // end anonymous namespace
2969 
2970 static void
2971 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2972 
2973 // Given the declaration context \param Ctx of a class, class template or
2974 // enumeration, add the associated namespaces to \param Namespaces as described
2975 // in [basic.lookup.argdep]p2.
2976 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2977                                       DeclContext *Ctx) {
2978   // The exact wording has been changed in C++14 as a result of
2979   // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2980   // to all language versions since it is possible to return a local type
2981   // from a lambda in C++11.
2982   //
2983   // C++14 [basic.lookup.argdep]p2:
2984   //   If T is a class type [...]. Its associated namespaces are the innermost
2985   //   enclosing namespaces of its associated classes. [...]
2986   //
2987   //   If T is an enumeration type, its associated namespace is the innermost
2988   //   enclosing namespace of its declaration. [...]
2989 
2990   // We additionally skip inline namespaces. The innermost non-inline namespace
2991   // contains all names of all its nested inline namespaces anyway, so we can
2992   // replace the entire inline namespace tree with its root.
2993   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2994     Ctx = Ctx->getParent();
2995 
2996   Namespaces.insert(Ctx->getPrimaryContext());
2997 }
2998 
2999 // Add the associated classes and namespaces for argument-dependent
3000 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
3001 static void
3002 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
3003                                   const TemplateArgument &Arg) {
3004   // C++ [basic.lookup.argdep]p2, last bullet:
3005   //   -- [...] ;
3006   switch (Arg.getKind()) {
3007     case TemplateArgument::Null:
3008       break;
3009 
3010     case TemplateArgument::Type:
3011       // [...] the namespaces and classes associated with the types of the
3012       // template arguments provided for template type parameters (excluding
3013       // template template parameters)
3014       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
3015       break;
3016 
3017     case TemplateArgument::Template:
3018     case TemplateArgument::TemplateExpansion: {
3019       // [...] the namespaces in which any template template arguments are
3020       // defined; and the classes in which any member templates used as
3021       // template template arguments are defined.
3022       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
3023       if (ClassTemplateDecl *ClassTemplate
3024                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
3025         DeclContext *Ctx = ClassTemplate->getDeclContext();
3026         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3027           Result.Classes.insert(EnclosingClass);
3028         // Add the associated namespace for this class.
3029         CollectEnclosingNamespace(Result.Namespaces, Ctx);
3030       }
3031       break;
3032     }
3033 
3034     case TemplateArgument::Declaration:
3035     case TemplateArgument::Integral:
3036     case TemplateArgument::Expression:
3037     case TemplateArgument::NullPtr:
3038     case TemplateArgument::StructuralValue:
3039       // [Note: non-type template arguments do not contribute to the set of
3040       //  associated namespaces. ]
3041       break;
3042 
3043     case TemplateArgument::Pack:
3044       for (const auto &P : Arg.pack_elements())
3045         addAssociatedClassesAndNamespaces(Result, P);
3046       break;
3047   }
3048 }
3049 
3050 // Add the associated classes and namespaces for argument-dependent lookup
3051 // with an argument of class type (C++ [basic.lookup.argdep]p2).
3052 static void
3053 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
3054                                   CXXRecordDecl *Class) {
3055 
3056   // Just silently ignore anything whose name is __va_list_tag.
3057   if (Class->getDeclName() == Result.S.VAListTagName)
3058     return;
3059 
3060   // C++ [basic.lookup.argdep]p2:
3061   //   [...]
3062   //     -- If T is a class type (including unions), its associated
3063   //        classes are: the class itself; the class of which it is a
3064   //        member, if any; and its direct and indirect base classes.
3065   //        Its associated namespaces are the innermost enclosing
3066   //        namespaces of its associated classes.
3067 
3068   // Add the class of which it is a member, if any.
3069   DeclContext *Ctx = Class->getDeclContext();
3070   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3071     Result.Classes.insert(EnclosingClass);
3072 
3073   // Add the associated namespace for this class.
3074   CollectEnclosingNamespace(Result.Namespaces, Ctx);
3075 
3076   // -- If T is a template-id, its associated namespaces and classes are
3077   //    the namespace in which the template is defined; for member
3078   //    templates, the member template's class; the namespaces and classes
3079   //    associated with the types of the template arguments provided for
3080   //    template type parameters (excluding template template parameters); the
3081   //    namespaces in which any template template arguments are defined; and
3082   //    the classes in which any member templates used as template template
3083   //    arguments are defined. [Note: non-type template arguments do not
3084   //    contribute to the set of associated namespaces. ]
3085   if (ClassTemplateSpecializationDecl *Spec
3086         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3087     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3088     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3089       Result.Classes.insert(EnclosingClass);
3090     // Add the associated namespace for this class.
3091     CollectEnclosingNamespace(Result.Namespaces, Ctx);
3092 
3093     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3094     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3095       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3096   }
3097 
3098   // Add the class itself. If we've already transitively visited this class,
3099   // we don't need to visit base classes.
3100   if (!Result.addClassTransitive(Class))
3101     return;
3102 
3103   // Only recurse into base classes for complete types.
3104   if (!Result.S.isCompleteType(Result.InstantiationLoc,
3105                                Result.S.Context.getRecordType(Class)))
3106     return;
3107 
3108   // Add direct and indirect base classes along with their associated
3109   // namespaces.
3110   SmallVector<CXXRecordDecl *, 32> Bases;
3111   Bases.push_back(Class);
3112   while (!Bases.empty()) {
3113     // Pop this class off the stack.
3114     Class = Bases.pop_back_val();
3115 
3116     // Visit the base classes.
3117     for (const auto &Base : Class->bases()) {
3118       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3119       // In dependent contexts, we do ADL twice, and the first time around,
3120       // the base type might be a dependent TemplateSpecializationType, or a
3121       // TemplateTypeParmType. If that happens, simply ignore it.
3122       // FIXME: If we want to support export, we probably need to add the
3123       // namespace of the template in a TemplateSpecializationType, or even
3124       // the classes and namespaces of known non-dependent arguments.
3125       if (!BaseType)
3126         continue;
3127       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3128       if (Result.addClassTransitive(BaseDecl)) {
3129         // Find the associated namespace for this base class.
3130         DeclContext *BaseCtx = BaseDecl->getDeclContext();
3131         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3132 
3133         // Make sure we visit the bases of this base class.
3134         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3135           Bases.push_back(BaseDecl);
3136       }
3137     }
3138   }
3139 }
3140 
3141 // Add the associated classes and namespaces for
3142 // argument-dependent lookup with an argument of type T
3143 // (C++ [basic.lookup.koenig]p2).
3144 static void
3145 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3146   // C++ [basic.lookup.koenig]p2:
3147   //
3148   //   For each argument type T in the function call, there is a set
3149   //   of zero or more associated namespaces and a set of zero or more
3150   //   associated classes to be considered. The sets of namespaces and
3151   //   classes is determined entirely by the types of the function
3152   //   arguments (and the namespace of any template template
3153   //   argument). Typedef names and using-declarations used to specify
3154   //   the types do not contribute to this set. The sets of namespaces
3155   //   and classes are determined in the following way:
3156 
3157   SmallVector<const Type *, 16> Queue;
3158   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3159 
3160   while (true) {
3161     switch (T->getTypeClass()) {
3162 
3163 #define TYPE(Class, Base)
3164 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3165 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3166 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3167 #define ABSTRACT_TYPE(Class, Base)
3168 #include "clang/AST/TypeNodes.inc"
3169       // T is canonical.  We can also ignore dependent types because
3170       // we don't need to do ADL at the definition point, but if we
3171       // wanted to implement template export (or if we find some other
3172       // use for associated classes and namespaces...) this would be
3173       // wrong.
3174       break;
3175 
3176     //    -- If T is a pointer to U or an array of U, its associated
3177     //       namespaces and classes are those associated with U.
3178     case Type::Pointer:
3179       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3180       continue;
3181     case Type::ConstantArray:
3182     case Type::IncompleteArray:
3183     case Type::VariableArray:
3184       T = cast<ArrayType>(T)->getElementType().getTypePtr();
3185       continue;
3186 
3187     //     -- If T is a fundamental type, its associated sets of
3188     //        namespaces and classes are both empty.
3189     case Type::Builtin:
3190       break;
3191 
3192     //     -- If T is a class type (including unions), its associated
3193     //        classes are: the class itself; the class of which it is
3194     //        a member, if any; and its direct and indirect base classes.
3195     //        Its associated namespaces are the innermost enclosing
3196     //        namespaces of its associated classes.
3197     case Type::Record: {
3198       CXXRecordDecl *Class =
3199           cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3200       addAssociatedClassesAndNamespaces(Result, Class);
3201       break;
3202     }
3203 
3204     //     -- If T is an enumeration type, its associated namespace
3205     //        is the innermost enclosing namespace of its declaration.
3206     //        If it is a class member, its associated class is the
3207     //        member’s class; else it has no associated class.
3208     case Type::Enum: {
3209       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3210 
3211       DeclContext *Ctx = Enum->getDeclContext();
3212       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3213         Result.Classes.insert(EnclosingClass);
3214 
3215       // Add the associated namespace for this enumeration.
3216       CollectEnclosingNamespace(Result.Namespaces, Ctx);
3217 
3218       break;
3219     }
3220 
3221     //     -- If T is a function type, its associated namespaces and
3222     //        classes are those associated with the function parameter
3223     //        types and those associated with the return type.
3224     case Type::FunctionProto: {
3225       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3226       for (const auto &Arg : Proto->param_types())
3227         Queue.push_back(Arg.getTypePtr());
3228       // fallthrough
3229       [[fallthrough]];
3230     }
3231     case Type::FunctionNoProto: {
3232       const FunctionType *FnType = cast<FunctionType>(T);
3233       T = FnType->getReturnType().getTypePtr();
3234       continue;
3235     }
3236 
3237     //     -- If T is a pointer to a member function of a class X, its
3238     //        associated namespaces and classes are those associated
3239     //        with the function parameter types and return type,
3240     //        together with those associated with X.
3241     //
3242     //     -- If T is a pointer to a data member of class X, its
3243     //        associated namespaces and classes are those associated
3244     //        with the member type together with those associated with
3245     //        X.
3246     case Type::MemberPointer: {
3247       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3248 
3249       // Queue up the class type into which this points.
3250       Queue.push_back(MemberPtr->getClass());
3251 
3252       // And directly continue with the pointee type.
3253       T = MemberPtr->getPointeeType().getTypePtr();
3254       continue;
3255     }
3256 
3257     // As an extension, treat this like a normal pointer.
3258     case Type::BlockPointer:
3259       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3260       continue;
3261 
3262     // References aren't covered by the standard, but that's such an
3263     // obvious defect that we cover them anyway.
3264     case Type::LValueReference:
3265     case Type::RValueReference:
3266       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3267       continue;
3268 
3269     // These are fundamental types.
3270     case Type::Vector:
3271     case Type::ExtVector:
3272     case Type::ConstantMatrix:
3273     case Type::Complex:
3274     case Type::BitInt:
3275       break;
3276 
3277     // Non-deduced auto types only get here for error cases.
3278     case Type::Auto:
3279     case Type::DeducedTemplateSpecialization:
3280       break;
3281 
3282     // If T is an Objective-C object or interface type, or a pointer to an
3283     // object or interface type, the associated namespace is the global
3284     // namespace.
3285     case Type::ObjCObject:
3286     case Type::ObjCInterface:
3287     case Type::ObjCObjectPointer:
3288       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3289       break;
3290 
3291     // Atomic types are just wrappers; use the associations of the
3292     // contained type.
3293     case Type::Atomic:
3294       T = cast<AtomicType>(T)->getValueType().getTypePtr();
3295       continue;
3296     case Type::Pipe:
3297       T = cast<PipeType>(T)->getElementType().getTypePtr();
3298       continue;
3299 
3300     // Array parameter types are treated as fundamental types.
3301     case Type::ArrayParameter:
3302       break;
3303     }
3304 
3305     if (Queue.empty())
3306       break;
3307     T = Queue.pop_back_val();
3308   }
3309 }
3310 
3311 /// Find the associated classes and namespaces for
3312 /// argument-dependent lookup for a call with the given set of
3313 /// arguments.
3314 ///
3315 /// This routine computes the sets of associated classes and associated
3316 /// namespaces searched by argument-dependent lookup
3317 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3318 void Sema::FindAssociatedClassesAndNamespaces(
3319     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3320     AssociatedNamespaceSet &AssociatedNamespaces,
3321     AssociatedClassSet &AssociatedClasses) {
3322   AssociatedNamespaces.clear();
3323   AssociatedClasses.clear();
3324 
3325   AssociatedLookup Result(*this, InstantiationLoc,
3326                           AssociatedNamespaces, AssociatedClasses);
3327 
3328   // C++ [basic.lookup.koenig]p2:
3329   //   For each argument type T in the function call, there is a set
3330   //   of zero or more associated namespaces and a set of zero or more
3331   //   associated classes to be considered. The sets of namespaces and
3332   //   classes is determined entirely by the types of the function
3333   //   arguments (and the namespace of any template template
3334   //   argument).
3335   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3336     Expr *Arg = Args[ArgIdx];
3337 
3338     if (Arg->getType() != Context.OverloadTy) {
3339       addAssociatedClassesAndNamespaces(Result, Arg->getType());
3340       continue;
3341     }
3342 
3343     // [...] In addition, if the argument is the name or address of a
3344     // set of overloaded functions and/or function templates, its
3345     // associated classes and namespaces are the union of those
3346     // associated with each of the members of the set: the namespace
3347     // in which the function or function template is defined and the
3348     // classes and namespaces associated with its (non-dependent)
3349     // parameter types and return type.
3350     OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3351 
3352     for (const NamedDecl *D : OE->decls()) {
3353       // Look through any using declarations to find the underlying function.
3354       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3355 
3356       // Add the classes and namespaces associated with the parameter
3357       // types and return type of this function.
3358       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3359     }
3360   }
3361 }
3362 
3363 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3364                                   SourceLocation Loc,
3365                                   LookupNameKind NameKind,
3366                                   RedeclarationKind Redecl) {
3367   LookupResult R(*this, Name, Loc, NameKind, Redecl);
3368   LookupName(R, S);
3369   return R.getAsSingle<NamedDecl>();
3370 }
3371 
3372 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3373                                         UnresolvedSetImpl &Functions) {
3374   // C++ [over.match.oper]p3:
3375   //     -- The set of non-member candidates is the result of the
3376   //        unqualified lookup of operator@ in the context of the
3377   //        expression according to the usual rules for name lookup in
3378   //        unqualified function calls (3.4.2) except that all member
3379   //        functions are ignored.
3380   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3381   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3382   LookupName(Operators, S);
3383 
3384   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3385   Functions.append(Operators.begin(), Operators.end());
3386 }
3387 
3388 Sema::SpecialMemberOverloadResult
3389 Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM,
3390                           bool ConstArg, bool VolatileArg, bool RValueThis,
3391                           bool ConstThis, bool VolatileThis) {
3392   assert(CanDeclareSpecialMemberFunction(RD) &&
3393          "doing special member lookup into record that isn't fully complete");
3394   RD = RD->getDefinition();
3395   if (RValueThis || ConstThis || VolatileThis)
3396     assert((SM == CXXSpecialMemberKind::CopyAssignment ||
3397             SM == CXXSpecialMemberKind::MoveAssignment) &&
3398            "constructors and destructors always have unqualified lvalue this");
3399   if (ConstArg || VolatileArg)
3400     assert((SM != CXXSpecialMemberKind::DefaultConstructor &&
3401             SM != CXXSpecialMemberKind::Destructor) &&
3402            "parameter-less special members can't have qualified arguments");
3403 
3404   // FIXME: Get the caller to pass in a location for the lookup.
3405   SourceLocation LookupLoc = RD->getLocation();
3406 
3407   llvm::FoldingSetNodeID ID;
3408   ID.AddPointer(RD);
3409   ID.AddInteger(llvm::to_underlying(SM));
3410   ID.AddInteger(ConstArg);
3411   ID.AddInteger(VolatileArg);
3412   ID.AddInteger(RValueThis);
3413   ID.AddInteger(ConstThis);
3414   ID.AddInteger(VolatileThis);
3415 
3416   void *InsertPoint;
3417   SpecialMemberOverloadResultEntry *Result =
3418     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3419 
3420   // This was already cached
3421   if (Result)
3422     return *Result;
3423 
3424   Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3425   Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3426   SpecialMemberCache.InsertNode(Result, InsertPoint);
3427 
3428   if (SM == CXXSpecialMemberKind::Destructor) {
3429     if (RD->needsImplicitDestructor()) {
3430       runWithSufficientStackSpace(RD->getLocation(), [&] {
3431         DeclareImplicitDestructor(RD);
3432       });
3433     }
3434     CXXDestructorDecl *DD = RD->getDestructor();
3435     Result->setMethod(DD);
3436     Result->setKind(DD && !DD->isDeleted()
3437                         ? SpecialMemberOverloadResult::Success
3438                         : SpecialMemberOverloadResult::NoMemberOrDeleted);
3439     return *Result;
3440   }
3441 
3442   // Prepare for overload resolution. Here we construct a synthetic argument
3443   // if necessary and make sure that implicit functions are declared.
3444   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3445   DeclarationName Name;
3446   Expr *Arg = nullptr;
3447   unsigned NumArgs;
3448 
3449   QualType ArgType = CanTy;
3450   ExprValueKind VK = VK_LValue;
3451 
3452   if (SM == CXXSpecialMemberKind::DefaultConstructor) {
3453     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3454     NumArgs = 0;
3455     if (RD->needsImplicitDefaultConstructor()) {
3456       runWithSufficientStackSpace(RD->getLocation(), [&] {
3457         DeclareImplicitDefaultConstructor(RD);
3458       });
3459     }
3460   } else {
3461     if (SM == CXXSpecialMemberKind::CopyConstructor ||
3462         SM == CXXSpecialMemberKind::MoveConstructor) {
3463       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3464       if (RD->needsImplicitCopyConstructor()) {
3465         runWithSufficientStackSpace(RD->getLocation(), [&] {
3466           DeclareImplicitCopyConstructor(RD);
3467         });
3468       }
3469       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3470         runWithSufficientStackSpace(RD->getLocation(), [&] {
3471           DeclareImplicitMoveConstructor(RD);
3472         });
3473       }
3474     } else {
3475       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3476       if (RD->needsImplicitCopyAssignment()) {
3477         runWithSufficientStackSpace(RD->getLocation(), [&] {
3478           DeclareImplicitCopyAssignment(RD);
3479         });
3480       }
3481       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3482         runWithSufficientStackSpace(RD->getLocation(), [&] {
3483           DeclareImplicitMoveAssignment(RD);
3484         });
3485       }
3486     }
3487 
3488     if (ConstArg)
3489       ArgType.addConst();
3490     if (VolatileArg)
3491       ArgType.addVolatile();
3492 
3493     // This isn't /really/ specified by the standard, but it's implied
3494     // we should be working from a PRValue in the case of move to ensure
3495     // that we prefer to bind to rvalue references, and an LValue in the
3496     // case of copy to ensure we don't bind to rvalue references.
3497     // Possibly an XValue is actually correct in the case of move, but
3498     // there is no semantic difference for class types in this restricted
3499     // case.
3500     if (SM == CXXSpecialMemberKind::CopyConstructor ||
3501         SM == CXXSpecialMemberKind::CopyAssignment)
3502       VK = VK_LValue;
3503     else
3504       VK = VK_PRValue;
3505   }
3506 
3507   OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3508 
3509   if (SM != CXXSpecialMemberKind::DefaultConstructor) {
3510     NumArgs = 1;
3511     Arg = &FakeArg;
3512   }
3513 
3514   // Create the object argument
3515   QualType ThisTy = CanTy;
3516   if (ConstThis)
3517     ThisTy.addConst();
3518   if (VolatileThis)
3519     ThisTy.addVolatile();
3520   Expr::Classification Classification =
3521       OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3522           .Classify(Context);
3523 
3524   // Now we perform lookup on the name we computed earlier and do overload
3525   // resolution. Lookup is only performed directly into the class since there
3526   // will always be a (possibly implicit) declaration to shadow any others.
3527   OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3528   DeclContext::lookup_result R = RD->lookup(Name);
3529 
3530   if (R.empty()) {
3531     // We might have no default constructor because we have a lambda's closure
3532     // type, rather than because there's some other declared constructor.
3533     // Every class has a copy/move constructor, copy/move assignment, and
3534     // destructor.
3535     assert(SM == CXXSpecialMemberKind::DefaultConstructor &&
3536            "lookup for a constructor or assignment operator was empty");
3537     Result->setMethod(nullptr);
3538     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3539     return *Result;
3540   }
3541 
3542   // Copy the candidates as our processing of them may load new declarations
3543   // from an external source and invalidate lookup_result.
3544   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3545 
3546   for (NamedDecl *CandDecl : Candidates) {
3547     if (CandDecl->isInvalidDecl())
3548       continue;
3549 
3550     DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3551     auto CtorInfo = getConstructorInfo(Cand);
3552     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3553       if (SM == CXXSpecialMemberKind::CopyAssignment ||
3554           SM == CXXSpecialMemberKind::MoveAssignment)
3555         AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3556                            llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3557       else if (CtorInfo)
3558         AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3559                              llvm::ArrayRef(&Arg, NumArgs), OCS,
3560                              /*SuppressUserConversions*/ true);
3561       else
3562         AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3563                              /*SuppressUserConversions*/ true);
3564     } else if (FunctionTemplateDecl *Tmpl =
3565                  dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3566       if (SM == CXXSpecialMemberKind::CopyAssignment ||
3567           SM == CXXSpecialMemberKind::MoveAssignment)
3568         AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3569                                    Classification,
3570                                    llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3571       else if (CtorInfo)
3572         AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3573                                      CtorInfo.FoundDecl, nullptr,
3574                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3575       else
3576         AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3577                                      llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3578     } else {
3579       assert(isa<UsingDecl>(Cand.getDecl()) &&
3580              "illegal Kind of operator = Decl");
3581     }
3582   }
3583 
3584   OverloadCandidateSet::iterator Best;
3585   switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3586     case OR_Success:
3587       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3588       Result->setKind(SpecialMemberOverloadResult::Success);
3589       break;
3590 
3591     case OR_Deleted:
3592       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3593       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3594       break;
3595 
3596     case OR_Ambiguous:
3597       Result->setMethod(nullptr);
3598       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3599       break;
3600 
3601     case OR_No_Viable_Function:
3602       Result->setMethod(nullptr);
3603       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3604       break;
3605   }
3606 
3607   return *Result;
3608 }
3609 
3610 /// Look up the default constructor for the given class.
3611 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3612   SpecialMemberOverloadResult Result =
3613       LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor,
3614                           false, false, false, false, false);
3615 
3616   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3617 }
3618 
3619 /// Look up the copying constructor for the given class.
3620 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3621                                                    unsigned Quals) {
3622   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3623          "non-const, non-volatile qualifiers for copy ctor arg");
3624   SpecialMemberOverloadResult Result = LookupSpecialMember(
3625       Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const,
3626       Quals & Qualifiers::Volatile, false, false, false);
3627 
3628   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3629 }
3630 
3631 /// Look up the moving constructor for the given class.
3632 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3633                                                   unsigned Quals) {
3634   SpecialMemberOverloadResult Result = LookupSpecialMember(
3635       Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const,
3636       Quals & Qualifiers::Volatile, false, false, false);
3637 
3638   return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3639 }
3640 
3641 /// Look up the constructors for the given class.
3642 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3643   // If the implicit constructors have not yet been declared, do so now.
3644   if (CanDeclareSpecialMemberFunction(Class)) {
3645     runWithSufficientStackSpace(Class->getLocation(), [&] {
3646       if (Class->needsImplicitDefaultConstructor())
3647         DeclareImplicitDefaultConstructor(Class);
3648       if (Class->needsImplicitCopyConstructor())
3649         DeclareImplicitCopyConstructor(Class);
3650       if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3651         DeclareImplicitMoveConstructor(Class);
3652     });
3653   }
3654 
3655   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3656   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3657   return Class->lookup(Name);
3658 }
3659 
3660 /// Look up the copying assignment operator for the given class.
3661 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3662                                              unsigned Quals, bool RValueThis,
3663                                              unsigned ThisQuals) {
3664   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3665          "non-const, non-volatile qualifiers for copy assignment arg");
3666   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3667          "non-const, non-volatile qualifiers for copy assignment this");
3668   SpecialMemberOverloadResult Result = LookupSpecialMember(
3669       Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const,
3670       Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3671       ThisQuals & Qualifiers::Volatile);
3672 
3673   return Result.getMethod();
3674 }
3675 
3676 /// Look up the moving assignment operator for the given class.
3677 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3678                                             unsigned Quals,
3679                                             bool RValueThis,
3680                                             unsigned ThisQuals) {
3681   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3682          "non-const, non-volatile qualifiers for copy assignment this");
3683   SpecialMemberOverloadResult Result = LookupSpecialMember(
3684       Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const,
3685       Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3686       ThisQuals & Qualifiers::Volatile);
3687 
3688   return Result.getMethod();
3689 }
3690 
3691 /// Look for the destructor of the given class.
3692 ///
3693 /// During semantic analysis, this routine should be used in lieu of
3694 /// CXXRecordDecl::getDestructor().
3695 ///
3696 /// \returns The destructor for this class.
3697 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3698   return cast_or_null<CXXDestructorDecl>(
3699       LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false,
3700                           false, false, false)
3701           .getMethod());
3702 }
3703 
3704 /// LookupLiteralOperator - Determine which literal operator should be used for
3705 /// a user-defined literal, per C++11 [lex.ext].
3706 ///
3707 /// Normal overload resolution is not used to select which literal operator to
3708 /// call for a user-defined literal. Look up the provided literal operator name,
3709 /// and filter the results to the appropriate set for the given argument types.
3710 Sema::LiteralOperatorLookupResult
3711 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3712                             ArrayRef<QualType> ArgTys, bool AllowRaw,
3713                             bool AllowTemplate, bool AllowStringTemplatePack,
3714                             bool DiagnoseMissing, StringLiteral *StringLit) {
3715   LookupName(R, S);
3716   assert(R.getResultKind() != LookupResult::Ambiguous &&
3717          "literal operator lookup can't be ambiguous");
3718 
3719   // Filter the lookup results appropriately.
3720   LookupResult::Filter F = R.makeFilter();
3721 
3722   bool AllowCooked = true;
3723   bool FoundRaw = false;
3724   bool FoundTemplate = false;
3725   bool FoundStringTemplatePack = false;
3726   bool FoundCooked = false;
3727 
3728   while (F.hasNext()) {
3729     Decl *D = F.next();
3730     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3731       D = USD->getTargetDecl();
3732 
3733     // If the declaration we found is invalid, skip it.
3734     if (D->isInvalidDecl()) {
3735       F.erase();
3736       continue;
3737     }
3738 
3739     bool IsRaw = false;
3740     bool IsTemplate = false;
3741     bool IsStringTemplatePack = false;
3742     bool IsCooked = false;
3743 
3744     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3745       if (FD->getNumParams() == 1 &&
3746           FD->getParamDecl(0)->getType()->getAs<PointerType>())
3747         IsRaw = true;
3748       else if (FD->getNumParams() == ArgTys.size()) {
3749         IsCooked = true;
3750         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3751           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3752           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3753             IsCooked = false;
3754             break;
3755           }
3756         }
3757       }
3758     }
3759     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3760       TemplateParameterList *Params = FD->getTemplateParameters();
3761       if (Params->size() == 1) {
3762         IsTemplate = true;
3763         if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3764           // Implied but not stated: user-defined integer and floating literals
3765           // only ever use numeric literal operator templates, not templates
3766           // taking a parameter of class type.
3767           F.erase();
3768           continue;
3769         }
3770 
3771         // A string literal template is only considered if the string literal
3772         // is a well-formed template argument for the template parameter.
3773         if (StringLit) {
3774           SFINAETrap Trap(*this);
3775           SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3776           TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3777           if (CheckTemplateArgument(
3778                   Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3779                   0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3780               Trap.hasErrorOccurred())
3781             IsTemplate = false;
3782         }
3783       } else {
3784         IsStringTemplatePack = true;
3785       }
3786     }
3787 
3788     if (AllowTemplate && StringLit && IsTemplate) {
3789       FoundTemplate = true;
3790       AllowRaw = false;
3791       AllowCooked = false;
3792       AllowStringTemplatePack = false;
3793       if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3794         F.restart();
3795         FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3796       }
3797     } else if (AllowCooked && IsCooked) {
3798       FoundCooked = true;
3799       AllowRaw = false;
3800       AllowTemplate = StringLit;
3801       AllowStringTemplatePack = false;
3802       if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3803         // Go through again and remove the raw and template decls we've
3804         // already found.
3805         F.restart();
3806         FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3807       }
3808     } else if (AllowRaw && IsRaw) {
3809       FoundRaw = true;
3810     } else if (AllowTemplate && IsTemplate) {
3811       FoundTemplate = true;
3812     } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3813       FoundStringTemplatePack = true;
3814     } else {
3815       F.erase();
3816     }
3817   }
3818 
3819   F.done();
3820 
3821   // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3822   // form for string literal operator templates.
3823   if (StringLit && FoundTemplate)
3824     return LOLR_Template;
3825 
3826   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3827   // parameter type, that is used in preference to a raw literal operator
3828   // or literal operator template.
3829   if (FoundCooked)
3830     return LOLR_Cooked;
3831 
3832   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3833   // operator template, but not both.
3834   if (FoundRaw && FoundTemplate) {
3835     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3836     for (const NamedDecl *D : R)
3837       NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3838     return LOLR_Error;
3839   }
3840 
3841   if (FoundRaw)
3842     return LOLR_Raw;
3843 
3844   if (FoundTemplate)
3845     return LOLR_Template;
3846 
3847   if (FoundStringTemplatePack)
3848     return LOLR_StringTemplatePack;
3849 
3850   // Didn't find anything we could use.
3851   if (DiagnoseMissing) {
3852     Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3853         << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3854         << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3855         << (AllowTemplate || AllowStringTemplatePack);
3856     return LOLR_Error;
3857   }
3858 
3859   return LOLR_ErrorNoDiagnostic;
3860 }
3861 
3862 void ADLResult::insert(NamedDecl *New) {
3863   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3864 
3865   // If we haven't yet seen a decl for this key, or the last decl
3866   // was exactly this one, we're done.
3867   if (Old == nullptr || Old == New) {
3868     Old = New;
3869     return;
3870   }
3871 
3872   // Otherwise, decide which is a more recent redeclaration.
3873   FunctionDecl *OldFD = Old->getAsFunction();
3874   FunctionDecl *NewFD = New->getAsFunction();
3875 
3876   FunctionDecl *Cursor = NewFD;
3877   while (true) {
3878     Cursor = Cursor->getPreviousDecl();
3879 
3880     // If we got to the end without finding OldFD, OldFD is the newer
3881     // declaration;  leave things as they are.
3882     if (!Cursor) return;
3883 
3884     // If we do find OldFD, then NewFD is newer.
3885     if (Cursor == OldFD) break;
3886 
3887     // Otherwise, keep looking.
3888   }
3889 
3890   Old = New;
3891 }
3892 
3893 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3894                                    ArrayRef<Expr *> Args, ADLResult &Result) {
3895   // Find all of the associated namespaces and classes based on the
3896   // arguments we have.
3897   AssociatedNamespaceSet AssociatedNamespaces;
3898   AssociatedClassSet AssociatedClasses;
3899   FindAssociatedClassesAndNamespaces(Loc, Args,
3900                                      AssociatedNamespaces,
3901                                      AssociatedClasses);
3902 
3903   // C++ [basic.lookup.argdep]p3:
3904   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3905   //   and let Y be the lookup set produced by argument dependent
3906   //   lookup (defined as follows). If X contains [...] then Y is
3907   //   empty. Otherwise Y is the set of declarations found in the
3908   //   namespaces associated with the argument types as described
3909   //   below. The set of declarations found by the lookup of the name
3910   //   is the union of X and Y.
3911   //
3912   // Here, we compute Y and add its members to the overloaded
3913   // candidate set.
3914   for (auto *NS : AssociatedNamespaces) {
3915     //   When considering an associated namespace, the lookup is the
3916     //   same as the lookup performed when the associated namespace is
3917     //   used as a qualifier (3.4.3.2) except that:
3918     //
3919     //     -- Any using-directives in the associated namespace are
3920     //        ignored.
3921     //
3922     //     -- Any namespace-scope friend functions declared in
3923     //        associated classes are visible within their respective
3924     //        namespaces even if they are not visible during an ordinary
3925     //        lookup (11.4).
3926     //
3927     // C++20 [basic.lookup.argdep] p4.3
3928     //     -- are exported, are attached to a named module M, do not appear
3929     //        in the translation unit containing the point of the lookup, and
3930     //        have the same innermost enclosing non-inline namespace scope as
3931     //        a declaration of an associated entity attached to M.
3932     DeclContext::lookup_result R = NS->lookup(Name);
3933     for (auto *D : R) {
3934       auto *Underlying = D;
3935       if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3936         Underlying = USD->getTargetDecl();
3937 
3938       if (!isa<FunctionDecl>(Underlying) &&
3939           !isa<FunctionTemplateDecl>(Underlying))
3940         continue;
3941 
3942       // The declaration is visible to argument-dependent lookup if either
3943       // it's ordinarily visible or declared as a friend in an associated
3944       // class.
3945       bool Visible = false;
3946       for (D = D->getMostRecentDecl(); D;
3947            D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3948         if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3949           if (isVisible(D)) {
3950             Visible = true;
3951             break;
3952           }
3953 
3954           if (!getLangOpts().CPlusPlusModules)
3955             continue;
3956 
3957           if (D->isInExportDeclContext()) {
3958             Module *FM = D->getOwningModule();
3959             // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3960             // exports are only valid in module purview and outside of any
3961             // PMF (although a PMF should not even be present in a module
3962             // with an import).
3963             assert(FM && FM->isNamedModule() && !FM->isPrivateModule() &&
3964                    "bad export context");
3965             // .. are attached to a named module M, do not appear in the
3966             // translation unit containing the point of the lookup..
3967             if (D->isInAnotherModuleUnit() &&
3968                 llvm::any_of(AssociatedClasses, [&](auto *E) {
3969                   // ... and have the same innermost enclosing non-inline
3970                   // namespace scope as a declaration of an associated entity
3971                   // attached to M
3972                   if (E->getOwningModule() != FM)
3973                     return false;
3974                   // TODO: maybe this could be cached when generating the
3975                   // associated namespaces / entities.
3976                   DeclContext *Ctx = E->getDeclContext();
3977                   while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3978                     Ctx = Ctx->getParent();
3979                   return Ctx == NS;
3980                 })) {
3981               Visible = true;
3982               break;
3983             }
3984           }
3985         } else if (D->getFriendObjectKind()) {
3986           auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3987           // [basic.lookup.argdep]p4:
3988           //   Argument-dependent lookup finds all declarations of functions and
3989           //   function templates that
3990           //  - ...
3991           //  - are declared as a friend ([class.friend]) of any class with a
3992           //  reachable definition in the set of associated entities,
3993           //
3994           // FIXME: If there's a merged definition of D that is reachable, then
3995           // the friend declaration should be considered.
3996           if (AssociatedClasses.count(RD) && isReachable(D)) {
3997             Visible = true;
3998             break;
3999           }
4000         }
4001       }
4002 
4003       // FIXME: Preserve D as the FoundDecl.
4004       if (Visible)
4005         Result.insert(Underlying);
4006     }
4007   }
4008 }
4009 
4010 //----------------------------------------------------------------------------
4011 // Search for all visible declarations.
4012 //----------------------------------------------------------------------------
4013 VisibleDeclConsumer::~VisibleDeclConsumer() { }
4014 
4015 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
4016 
4017 namespace {
4018 
4019 class ShadowContextRAII;
4020 
4021 class VisibleDeclsRecord {
4022 public:
4023   /// An entry in the shadow map, which is optimized to store a
4024   /// single declaration (the common case) but can also store a list
4025   /// of declarations.
4026   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
4027 
4028 private:
4029   /// A mapping from declaration names to the declarations that have
4030   /// this name within a particular scope.
4031   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
4032 
4033   /// A list of shadow maps, which is used to model name hiding.
4034   std::list<ShadowMap> ShadowMaps;
4035 
4036   /// The declaration contexts we have already visited.
4037   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
4038 
4039   friend class ShadowContextRAII;
4040 
4041 public:
4042   /// Determine whether we have already visited this context
4043   /// (and, if not, note that we are going to visit that context now).
4044   bool visitedContext(DeclContext *Ctx) {
4045     return !VisitedContexts.insert(Ctx).second;
4046   }
4047 
4048   bool alreadyVisitedContext(DeclContext *Ctx) {
4049     return VisitedContexts.count(Ctx);
4050   }
4051 
4052   /// Determine whether the given declaration is hidden in the
4053   /// current scope.
4054   ///
4055   /// \returns the declaration that hides the given declaration, or
4056   /// NULL if no such declaration exists.
4057   NamedDecl *checkHidden(NamedDecl *ND);
4058 
4059   /// Add a declaration to the current shadow map.
4060   void add(NamedDecl *ND) {
4061     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
4062   }
4063 };
4064 
4065 /// RAII object that records when we've entered a shadow context.
4066 class ShadowContextRAII {
4067   VisibleDeclsRecord &Visible;
4068 
4069   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4070 
4071 public:
4072   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4073     Visible.ShadowMaps.emplace_back();
4074   }
4075 
4076   ~ShadowContextRAII() {
4077     Visible.ShadowMaps.pop_back();
4078   }
4079 };
4080 
4081 } // end anonymous namespace
4082 
4083 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4084   unsigned IDNS = ND->getIdentifierNamespace();
4085   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4086   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4087        SM != SMEnd; ++SM) {
4088     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4089     if (Pos == SM->end())
4090       continue;
4091 
4092     for (auto *D : Pos->second) {
4093       // A tag declaration does not hide a non-tag declaration.
4094       if (D->hasTagIdentifierNamespace() &&
4095           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4096                    Decl::IDNS_ObjCProtocol)))
4097         continue;
4098 
4099       // Protocols are in distinct namespaces from everything else.
4100       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4101            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4102           D->getIdentifierNamespace() != IDNS)
4103         continue;
4104 
4105       // Functions and function templates in the same scope overload
4106       // rather than hide.  FIXME: Look for hiding based on function
4107       // signatures!
4108       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4109           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4110           SM == ShadowMaps.rbegin())
4111         continue;
4112 
4113       // A shadow declaration that's created by a resolved using declaration
4114       // is not hidden by the same using declaration.
4115       if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4116           cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4117         continue;
4118 
4119       // We've found a declaration that hides this one.
4120       return D;
4121     }
4122   }
4123 
4124   return nullptr;
4125 }
4126 
4127 namespace {
4128 class LookupVisibleHelper {
4129 public:
4130   LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4131                       bool LoadExternal)
4132       : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4133         LoadExternal(LoadExternal) {}
4134 
4135   void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4136                           bool IncludeGlobalScope) {
4137     // Determine the set of using directives available during
4138     // unqualified name lookup.
4139     Scope *Initial = S;
4140     UnqualUsingDirectiveSet UDirs(SemaRef);
4141     if (SemaRef.getLangOpts().CPlusPlus) {
4142       // Find the first namespace or translation-unit scope.
4143       while (S && !isNamespaceOrTranslationUnitScope(S))
4144         S = S->getParent();
4145 
4146       UDirs.visitScopeChain(Initial, S);
4147     }
4148     UDirs.done();
4149 
4150     // Look for visible declarations.
4151     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4152     Result.setAllowHidden(Consumer.includeHiddenDecls());
4153     if (!IncludeGlobalScope)
4154       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4155     ShadowContextRAII Shadow(Visited);
4156     lookupInScope(Initial, Result, UDirs);
4157   }
4158 
4159   void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4160                           Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4161     LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4162     Result.setAllowHidden(Consumer.includeHiddenDecls());
4163     if (!IncludeGlobalScope)
4164       Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4165 
4166     ShadowContextRAII Shadow(Visited);
4167     lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4168                         /*InBaseClass=*/false);
4169   }
4170 
4171 private:
4172   void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4173                            bool QualifiedNameLookup, bool InBaseClass) {
4174     if (!Ctx)
4175       return;
4176 
4177     // Make sure we don't visit the same context twice.
4178     if (Visited.visitedContext(Ctx->getPrimaryContext()))
4179       return;
4180 
4181     Consumer.EnteredContext(Ctx);
4182 
4183     // Outside C++, lookup results for the TU live on identifiers.
4184     if (isa<TranslationUnitDecl>(Ctx) &&
4185         !Result.getSema().getLangOpts().CPlusPlus) {
4186       auto &S = Result.getSema();
4187       auto &Idents = S.Context.Idents;
4188 
4189       // Ensure all external identifiers are in the identifier table.
4190       if (LoadExternal)
4191         if (IdentifierInfoLookup *External =
4192                 Idents.getExternalIdentifierLookup()) {
4193           std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4194           for (StringRef Name = Iter->Next(); !Name.empty();
4195                Name = Iter->Next())
4196             Idents.get(Name);
4197         }
4198 
4199       // Walk all lookup results in the TU for each identifier.
4200       for (const auto &Ident : Idents) {
4201         for (auto I = S.IdResolver.begin(Ident.getValue()),
4202                   E = S.IdResolver.end();
4203              I != E; ++I) {
4204           if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4205             if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4206               Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4207               Visited.add(ND);
4208             }
4209           }
4210         }
4211       }
4212 
4213       return;
4214     }
4215 
4216     if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4217       Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4218 
4219     llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4220     // We sometimes skip loading namespace-level results (they tend to be huge).
4221     bool Load = LoadExternal ||
4222                 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4223     // Enumerate all of the results in this context.
4224     for (DeclContextLookupResult R :
4225          Load ? Ctx->lookups()
4226               : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4227       for (auto *D : R)
4228         // Rather than visit immediately, we put ND into a vector and visit
4229         // all decls, in order, outside of this loop. The reason is that
4230         // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4231         // may invalidate the iterators used in the two
4232         // loops above.
4233         DeclsToVisit.push_back(D);
4234 
4235     for (auto *D : DeclsToVisit)
4236       if (auto *ND = Result.getAcceptableDecl(D)) {
4237         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4238         Visited.add(ND);
4239       }
4240 
4241     DeclsToVisit.clear();
4242 
4243     // Traverse using directives for qualified name lookup.
4244     if (QualifiedNameLookup) {
4245       ShadowContextRAII Shadow(Visited);
4246       for (auto *I : Ctx->using_directives()) {
4247         if (!Result.getSema().isVisible(I))
4248           continue;
4249         lookupInDeclContext(I->getNominatedNamespace(), Result,
4250                             QualifiedNameLookup, InBaseClass);
4251       }
4252     }
4253 
4254     // Traverse the contexts of inherited C++ classes.
4255     if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4256       if (!Record->hasDefinition())
4257         return;
4258 
4259       for (const auto &B : Record->bases()) {
4260         QualType BaseType = B.getType();
4261 
4262         RecordDecl *RD;
4263         if (BaseType->isDependentType()) {
4264           if (!IncludeDependentBases) {
4265             // Don't look into dependent bases, because name lookup can't look
4266             // there anyway.
4267             continue;
4268           }
4269           const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4270           if (!TST)
4271             continue;
4272           TemplateName TN = TST->getTemplateName();
4273           const auto *TD =
4274               dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4275           if (!TD)
4276             continue;
4277           RD = TD->getTemplatedDecl();
4278         } else {
4279           const auto *Record = BaseType->getAs<RecordType>();
4280           if (!Record)
4281             continue;
4282           RD = Record->getDecl();
4283         }
4284 
4285         // FIXME: It would be nice to be able to determine whether referencing
4286         // a particular member would be ambiguous. For example, given
4287         //
4288         //   struct A { int member; };
4289         //   struct B { int member; };
4290         //   struct C : A, B { };
4291         //
4292         //   void f(C *c) { c->### }
4293         //
4294         // accessing 'member' would result in an ambiguity. However, we
4295         // could be smart enough to qualify the member with the base
4296         // class, e.g.,
4297         //
4298         //   c->B::member
4299         //
4300         // or
4301         //
4302         //   c->A::member
4303 
4304         // Find results in this base class (and its bases).
4305         ShadowContextRAII Shadow(Visited);
4306         lookupInDeclContext(RD, Result, QualifiedNameLookup,
4307                             /*InBaseClass=*/true);
4308       }
4309     }
4310 
4311     // Traverse the contexts of Objective-C classes.
4312     if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4313       // Traverse categories.
4314       for (auto *Cat : IFace->visible_categories()) {
4315         ShadowContextRAII Shadow(Visited);
4316         lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4317                             /*InBaseClass=*/false);
4318       }
4319 
4320       // Traverse protocols.
4321       for (auto *I : IFace->all_referenced_protocols()) {
4322         ShadowContextRAII Shadow(Visited);
4323         lookupInDeclContext(I, Result, QualifiedNameLookup,
4324                             /*InBaseClass=*/false);
4325       }
4326 
4327       // Traverse the superclass.
4328       if (IFace->getSuperClass()) {
4329         ShadowContextRAII Shadow(Visited);
4330         lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4331                             /*InBaseClass=*/true);
4332       }
4333 
4334       // If there is an implementation, traverse it. We do this to find
4335       // synthesized ivars.
4336       if (IFace->getImplementation()) {
4337         ShadowContextRAII Shadow(Visited);
4338         lookupInDeclContext(IFace->getImplementation(), Result,
4339                             QualifiedNameLookup, InBaseClass);
4340       }
4341     } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4342       for (auto *I : Protocol->protocols()) {
4343         ShadowContextRAII Shadow(Visited);
4344         lookupInDeclContext(I, Result, QualifiedNameLookup,
4345                             /*InBaseClass=*/false);
4346       }
4347     } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4348       for (auto *I : Category->protocols()) {
4349         ShadowContextRAII Shadow(Visited);
4350         lookupInDeclContext(I, Result, QualifiedNameLookup,
4351                             /*InBaseClass=*/false);
4352       }
4353 
4354       // If there is an implementation, traverse it.
4355       if (Category->getImplementation()) {
4356         ShadowContextRAII Shadow(Visited);
4357         lookupInDeclContext(Category->getImplementation(), Result,
4358                             QualifiedNameLookup, /*InBaseClass=*/true);
4359       }
4360     }
4361   }
4362 
4363   void lookupInScope(Scope *S, LookupResult &Result,
4364                      UnqualUsingDirectiveSet &UDirs) {
4365     // No clients run in this mode and it's not supported. Please add tests and
4366     // remove the assertion if you start relying on it.
4367     assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4368 
4369     if (!S)
4370       return;
4371 
4372     if (!S->getEntity() ||
4373         (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4374         (S->getEntity())->isFunctionOrMethod()) {
4375       FindLocalExternScope FindLocals(Result);
4376       // Walk through the declarations in this Scope. The consumer might add new
4377       // decls to the scope as part of deserialization, so make a copy first.
4378       SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4379       for (Decl *D : ScopeDecls) {
4380         if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4381           if ((ND = Result.getAcceptableDecl(ND))) {
4382             Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4383             Visited.add(ND);
4384           }
4385       }
4386     }
4387 
4388     DeclContext *Entity = S->getLookupEntity();
4389     if (Entity) {
4390       // Look into this scope's declaration context, along with any of its
4391       // parent lookup contexts (e.g., enclosing classes), up to the point
4392       // where we hit the context stored in the next outer scope.
4393       DeclContext *OuterCtx = findOuterContext(S);
4394 
4395       for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4396            Ctx = Ctx->getLookupParent()) {
4397         if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4398           if (Method->isInstanceMethod()) {
4399             // For instance methods, look for ivars in the method's interface.
4400             LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4401                                     Result.getNameLoc(),
4402                                     Sema::LookupMemberName);
4403             if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4404               lookupInDeclContext(IFace, IvarResult,
4405                                   /*QualifiedNameLookup=*/false,
4406                                   /*InBaseClass=*/false);
4407             }
4408           }
4409 
4410           // We've already performed all of the name lookup that we need
4411           // to for Objective-C methods; the next context will be the
4412           // outer scope.
4413           break;
4414         }
4415 
4416         if (Ctx->isFunctionOrMethod())
4417           continue;
4418 
4419         lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4420                             /*InBaseClass=*/false);
4421       }
4422     } else if (!S->getParent()) {
4423       // Look into the translation unit scope. We walk through the translation
4424       // unit's declaration context, because the Scope itself won't have all of
4425       // the declarations if we loaded a precompiled header.
4426       // FIXME: We would like the translation unit's Scope object to point to
4427       // the translation unit, so we don't need this special "if" branch.
4428       // However, doing so would force the normal C++ name-lookup code to look
4429       // into the translation unit decl when the IdentifierInfo chains would
4430       // suffice. Once we fix that problem (which is part of a more general
4431       // "don't look in DeclContexts unless we have to" optimization), we can
4432       // eliminate this.
4433       Entity = Result.getSema().Context.getTranslationUnitDecl();
4434       lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4435                           /*InBaseClass=*/false);
4436     }
4437 
4438     if (Entity) {
4439       // Lookup visible declarations in any namespaces found by using
4440       // directives.
4441       for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4442         lookupInDeclContext(
4443             const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4444             /*QualifiedNameLookup=*/false,
4445             /*InBaseClass=*/false);
4446     }
4447 
4448     // Lookup names in the parent scope.
4449     ShadowContextRAII Shadow(Visited);
4450     lookupInScope(S->getParent(), Result, UDirs);
4451   }
4452 
4453 private:
4454   VisibleDeclsRecord Visited;
4455   VisibleDeclConsumer &Consumer;
4456   bool IncludeDependentBases;
4457   bool LoadExternal;
4458 };
4459 } // namespace
4460 
4461 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4462                               VisibleDeclConsumer &Consumer,
4463                               bool IncludeGlobalScope, bool LoadExternal) {
4464   LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4465                         LoadExternal);
4466   H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4467 }
4468 
4469 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4470                               VisibleDeclConsumer &Consumer,
4471                               bool IncludeGlobalScope,
4472                               bool IncludeDependentBases, bool LoadExternal) {
4473   LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4474   H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4475 }
4476 
4477 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4478 /// If GnuLabelLoc is a valid source location, then this is a definition
4479 /// of an __label__ label name, otherwise it is a normal label definition
4480 /// or use.
4481 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4482                                      SourceLocation GnuLabelLoc) {
4483   // Do a lookup to see if we have a label with this name already.
4484   NamedDecl *Res = nullptr;
4485 
4486   if (GnuLabelLoc.isValid()) {
4487     // Local label definitions always shadow existing labels.
4488     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4489     Scope *S = CurScope;
4490     PushOnScopeChains(Res, S, true);
4491     return cast<LabelDecl>(Res);
4492   }
4493 
4494   // Not a GNU local label.
4495   Res = LookupSingleName(CurScope, II, Loc, LookupLabel,
4496                          RedeclarationKind::NotForRedeclaration);
4497   // If we found a label, check to see if it is in the same context as us.
4498   // When in a Block, we don't want to reuse a label in an enclosing function.
4499   if (Res && Res->getDeclContext() != CurContext)
4500     Res = nullptr;
4501   if (!Res) {
4502     // If not forward referenced or defined already, create the backing decl.
4503     Res = LabelDecl::Create(Context, CurContext, Loc, II);
4504     Scope *S = CurScope->getFnParent();
4505     assert(S && "Not in a function?");
4506     PushOnScopeChains(Res, S, true);
4507   }
4508   return cast<LabelDecl>(Res);
4509 }
4510 
4511 //===----------------------------------------------------------------------===//
4512 // Typo correction
4513 //===----------------------------------------------------------------------===//
4514 
4515 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4516                               TypoCorrection &Candidate) {
4517   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4518   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4519 }
4520 
4521 static void LookupPotentialTypoResult(Sema &SemaRef,
4522                                       LookupResult &Res,
4523                                       IdentifierInfo *Name,
4524                                       Scope *S, CXXScopeSpec *SS,
4525                                       DeclContext *MemberContext,
4526                                       bool EnteringContext,
4527                                       bool isObjCIvarLookup,
4528                                       bool FindHidden);
4529 
4530 /// Check whether the declarations found for a typo correction are
4531 /// visible. Set the correction's RequiresImport flag to true if none of the
4532 /// declarations are visible, false otherwise.
4533 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4534   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4535 
4536   for (/**/; DI != DE; ++DI)
4537     if (!LookupResult::isVisible(SemaRef, *DI))
4538       break;
4539   // No filtering needed if all decls are visible.
4540   if (DI == DE) {
4541     TC.setRequiresImport(false);
4542     return;
4543   }
4544 
4545   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4546   bool AnyVisibleDecls = !NewDecls.empty();
4547 
4548   for (/**/; DI != DE; ++DI) {
4549     if (LookupResult::isVisible(SemaRef, *DI)) {
4550       if (!AnyVisibleDecls) {
4551         // Found a visible decl, discard all hidden ones.
4552         AnyVisibleDecls = true;
4553         NewDecls.clear();
4554       }
4555       NewDecls.push_back(*DI);
4556     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4557       NewDecls.push_back(*DI);
4558   }
4559 
4560   if (NewDecls.empty())
4561     TC = TypoCorrection();
4562   else {
4563     TC.setCorrectionDecls(NewDecls);
4564     TC.setRequiresImport(!AnyVisibleDecls);
4565   }
4566 }
4567 
4568 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4569 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4570 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4571 static void getNestedNameSpecifierIdentifiers(
4572     NestedNameSpecifier *NNS,
4573     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4574   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4575     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4576   else
4577     Identifiers.clear();
4578 
4579   const IdentifierInfo *II = nullptr;
4580 
4581   switch (NNS->getKind()) {
4582   case NestedNameSpecifier::Identifier:
4583     II = NNS->getAsIdentifier();
4584     break;
4585 
4586   case NestedNameSpecifier::Namespace:
4587     if (NNS->getAsNamespace()->isAnonymousNamespace())
4588       return;
4589     II = NNS->getAsNamespace()->getIdentifier();
4590     break;
4591 
4592   case NestedNameSpecifier::NamespaceAlias:
4593     II = NNS->getAsNamespaceAlias()->getIdentifier();
4594     break;
4595 
4596   case NestedNameSpecifier::TypeSpecWithTemplate:
4597   case NestedNameSpecifier::TypeSpec:
4598     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4599     break;
4600 
4601   case NestedNameSpecifier::Global:
4602   case NestedNameSpecifier::Super:
4603     return;
4604   }
4605 
4606   if (II)
4607     Identifiers.push_back(II);
4608 }
4609 
4610 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4611                                        DeclContext *Ctx, bool InBaseClass) {
4612   // Don't consider hidden names for typo correction.
4613   if (Hiding)
4614     return;
4615 
4616   // Only consider entities with identifiers for names, ignoring
4617   // special names (constructors, overloaded operators, selectors,
4618   // etc.).
4619   IdentifierInfo *Name = ND->getIdentifier();
4620   if (!Name)
4621     return;
4622 
4623   // Only consider visible declarations and declarations from modules with
4624   // names that exactly match.
4625   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4626     return;
4627 
4628   FoundName(Name->getName());
4629 }
4630 
4631 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4632   // Compute the edit distance between the typo and the name of this
4633   // entity, and add the identifier to the list of results.
4634   addName(Name, nullptr);
4635 }
4636 
4637 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4638   // Compute the edit distance between the typo and this keyword,
4639   // and add the keyword to the list of results.
4640   addName(Keyword, nullptr, nullptr, true);
4641 }
4642 
4643 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4644                                      NestedNameSpecifier *NNS, bool isKeyword) {
4645   // Use a simple length-based heuristic to determine the minimum possible
4646   // edit distance. If the minimum isn't good enough, bail out early.
4647   StringRef TypoStr = Typo->getName();
4648   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4649   if (MinED && TypoStr.size() / MinED < 3)
4650     return;
4651 
4652   // Compute an upper bound on the allowable edit distance, so that the
4653   // edit-distance algorithm can short-circuit.
4654   unsigned UpperBound = (TypoStr.size() + 2) / 3;
4655   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4656   if (ED > UpperBound) return;
4657 
4658   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4659   if (isKeyword) TC.makeKeyword();
4660   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4661   addCorrection(TC);
4662 }
4663 
4664 static const unsigned MaxTypoDistanceResultSets = 5;
4665 
4666 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4667   StringRef TypoStr = Typo->getName();
4668   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4669 
4670   // For very short typos, ignore potential corrections that have a different
4671   // base identifier from the typo or which have a normalized edit distance
4672   // longer than the typo itself.
4673   if (TypoStr.size() < 3 &&
4674       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4675     return;
4676 
4677   // If the correction is resolved but is not viable, ignore it.
4678   if (Correction.isResolved()) {
4679     checkCorrectionVisibility(SemaRef, Correction);
4680     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4681       return;
4682   }
4683 
4684   TypoResultList &CList =
4685       CorrectionResults[Correction.getEditDistance(false)][Name];
4686 
4687   if (!CList.empty() && !CList.back().isResolved())
4688     CList.pop_back();
4689   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4690     auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4691       return TypoCorr.getCorrectionDecl() == NewND;
4692     });
4693     if (RI != CList.end()) {
4694       // The Correction refers to a decl already in the list. No insertion is
4695       // necessary and all further cases will return.
4696 
4697       auto IsDeprecated = [](Decl *D) {
4698         while (D) {
4699           if (D->isDeprecated())
4700             return true;
4701           D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4702         }
4703         return false;
4704       };
4705 
4706       // Prefer non deprecated Corrections over deprecated and only then
4707       // sort using an alphabetical order.
4708       std::pair<bool, std::string> NewKey = {
4709           IsDeprecated(Correction.getFoundDecl()),
4710           Correction.getAsString(SemaRef.getLangOpts())};
4711 
4712       std::pair<bool, std::string> PrevKey = {
4713           IsDeprecated(RI->getFoundDecl()),
4714           RI->getAsString(SemaRef.getLangOpts())};
4715 
4716       if (NewKey < PrevKey)
4717         *RI = Correction;
4718       return;
4719     }
4720   }
4721   if (CList.empty() || Correction.isResolved())
4722     CList.push_back(Correction);
4723 
4724   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4725     CorrectionResults.erase(std::prev(CorrectionResults.end()));
4726 }
4727 
4728 void TypoCorrectionConsumer::addNamespaces(
4729     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4730   SearchNamespaces = true;
4731 
4732   for (auto KNPair : KnownNamespaces)
4733     Namespaces.addNameSpecifier(KNPair.first);
4734 
4735   bool SSIsTemplate = false;
4736   if (NestedNameSpecifier *NNS =
4737           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4738     if (const Type *T = NNS->getAsType())
4739       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4740   }
4741   // Do not transform this into an iterator-based loop. The loop body can
4742   // trigger the creation of further types (through lazy deserialization) and
4743   // invalid iterators into this list.
4744   auto &Types = SemaRef.getASTContext().getTypes();
4745   for (unsigned I = 0; I != Types.size(); ++I) {
4746     const auto *TI = Types[I];
4747     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4748       CD = CD->getCanonicalDecl();
4749       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4750           !CD->isUnion() && CD->getIdentifier() &&
4751           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4752           (CD->isBeingDefined() || CD->isCompleteDefinition()))
4753         Namespaces.addNameSpecifier(CD);
4754     }
4755   }
4756 }
4757 
4758 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4759   if (++CurrentTCIndex < ValidatedCorrections.size())
4760     return ValidatedCorrections[CurrentTCIndex];
4761 
4762   CurrentTCIndex = ValidatedCorrections.size();
4763   while (!CorrectionResults.empty()) {
4764     auto DI = CorrectionResults.begin();
4765     if (DI->second.empty()) {
4766       CorrectionResults.erase(DI);
4767       continue;
4768     }
4769 
4770     auto RI = DI->second.begin();
4771     if (RI->second.empty()) {
4772       DI->second.erase(RI);
4773       performQualifiedLookups();
4774       continue;
4775     }
4776 
4777     TypoCorrection TC = RI->second.pop_back_val();
4778     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4779       ValidatedCorrections.push_back(TC);
4780       return ValidatedCorrections[CurrentTCIndex];
4781     }
4782   }
4783   return ValidatedCorrections[0];  // The empty correction.
4784 }
4785 
4786 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4787   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4788   DeclContext *TempMemberContext = MemberContext;
4789   CXXScopeSpec *TempSS = SS.get();
4790 retry_lookup:
4791   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4792                             EnteringContext,
4793                             CorrectionValidator->IsObjCIvarLookup,
4794                             Name == Typo && !Candidate.WillReplaceSpecifier());
4795   switch (Result.getResultKind()) {
4796   case LookupResult::NotFound:
4797   case LookupResult::NotFoundInCurrentInstantiation:
4798   case LookupResult::FoundUnresolvedValue:
4799     if (TempSS) {
4800       // Immediately retry the lookup without the given CXXScopeSpec
4801       TempSS = nullptr;
4802       Candidate.WillReplaceSpecifier(true);
4803       goto retry_lookup;
4804     }
4805     if (TempMemberContext) {
4806       if (SS && !TempSS)
4807         TempSS = SS.get();
4808       TempMemberContext = nullptr;
4809       goto retry_lookup;
4810     }
4811     if (SearchNamespaces)
4812       QualifiedResults.push_back(Candidate);
4813     break;
4814 
4815   case LookupResult::Ambiguous:
4816     // We don't deal with ambiguities.
4817     break;
4818 
4819   case LookupResult::Found:
4820   case LookupResult::FoundOverloaded:
4821     // Store all of the Decls for overloaded symbols
4822     for (auto *TRD : Result)
4823       Candidate.addCorrectionDecl(TRD);
4824     checkCorrectionVisibility(SemaRef, Candidate);
4825     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4826       if (SearchNamespaces)
4827         QualifiedResults.push_back(Candidate);
4828       break;
4829     }
4830     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4831     return true;
4832   }
4833   return false;
4834 }
4835 
4836 void TypoCorrectionConsumer::performQualifiedLookups() {
4837   unsigned TypoLen = Typo->getName().size();
4838   for (const TypoCorrection &QR : QualifiedResults) {
4839     for (const auto &NSI : Namespaces) {
4840       DeclContext *Ctx = NSI.DeclCtx;
4841       const Type *NSType = NSI.NameSpecifier->getAsType();
4842 
4843       // If the current NestedNameSpecifier refers to a class and the
4844       // current correction candidate is the name of that class, then skip
4845       // it as it is unlikely a qualified version of the class' constructor
4846       // is an appropriate correction.
4847       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4848                                            nullptr) {
4849         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4850           continue;
4851       }
4852 
4853       TypoCorrection TC(QR);
4854       TC.ClearCorrectionDecls();
4855       TC.setCorrectionSpecifier(NSI.NameSpecifier);
4856       TC.setQualifierDistance(NSI.EditDistance);
4857       TC.setCallbackDistance(0); // Reset the callback distance
4858 
4859       // If the current correction candidate and namespace combination are
4860       // too far away from the original typo based on the normalized edit
4861       // distance, then skip performing a qualified name lookup.
4862       unsigned TmpED = TC.getEditDistance(true);
4863       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4864           TypoLen / TmpED < 3)
4865         continue;
4866 
4867       Result.clear();
4868       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4869       if (!SemaRef.LookupQualifiedName(Result, Ctx))
4870         continue;
4871 
4872       // Any corrections added below will be validated in subsequent
4873       // iterations of the main while() loop over the Consumer's contents.
4874       switch (Result.getResultKind()) {
4875       case LookupResult::Found:
4876       case LookupResult::FoundOverloaded: {
4877         if (SS && SS->isValid()) {
4878           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4879           std::string OldQualified;
4880           llvm::raw_string_ostream OldOStream(OldQualified);
4881           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4882           OldOStream << Typo->getName();
4883           // If correction candidate would be an identical written qualified
4884           // identifier, then the existing CXXScopeSpec probably included a
4885           // typedef that didn't get accounted for properly.
4886           if (OldOStream.str() == NewQualified)
4887             break;
4888         }
4889         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4890              TRD != TRDEnd; ++TRD) {
4891           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4892                                         NSType ? NSType->getAsCXXRecordDecl()
4893                                                : nullptr,
4894                                         TRD.getPair()) == Sema::AR_accessible)
4895             TC.addCorrectionDecl(*TRD);
4896         }
4897         if (TC.isResolved()) {
4898           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4899           addCorrection(TC);
4900         }
4901         break;
4902       }
4903       case LookupResult::NotFound:
4904       case LookupResult::NotFoundInCurrentInstantiation:
4905       case LookupResult::Ambiguous:
4906       case LookupResult::FoundUnresolvedValue:
4907         break;
4908       }
4909     }
4910   }
4911   QualifiedResults.clear();
4912 }
4913 
4914 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4915     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4916     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4917   if (NestedNameSpecifier *NNS =
4918           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4919     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4920     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4921 
4922     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4923   }
4924   // Build the list of identifiers that would be used for an absolute
4925   // (from the global context) NestedNameSpecifier referring to the current
4926   // context.
4927   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4928     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4929       CurContextIdentifiers.push_back(ND->getIdentifier());
4930   }
4931 
4932   // Add the global context as a NestedNameSpecifier
4933   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4934                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
4935   DistanceMap[1].push_back(SI);
4936 }
4937 
4938 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4939     DeclContext *Start) -> DeclContextList {
4940   assert(Start && "Building a context chain from a null context");
4941   DeclContextList Chain;
4942   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4943        DC = DC->getLookupParent()) {
4944     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4945     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4946         !(ND && ND->isAnonymousNamespace()))
4947       Chain.push_back(DC->getPrimaryContext());
4948   }
4949   return Chain;
4950 }
4951 
4952 unsigned
4953 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4954     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4955   unsigned NumSpecifiers = 0;
4956   for (DeclContext *C : llvm::reverse(DeclChain)) {
4957     if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4958       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4959       ++NumSpecifiers;
4960     } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4961       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4962                                         RD->getTypeForDecl());
4963       ++NumSpecifiers;
4964     }
4965   }
4966   return NumSpecifiers;
4967 }
4968 
4969 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4970     DeclContext *Ctx) {
4971   NestedNameSpecifier *NNS = nullptr;
4972   unsigned NumSpecifiers = 0;
4973   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4974   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4975 
4976   // Eliminate common elements from the two DeclContext chains.
4977   for (DeclContext *C : llvm::reverse(CurContextChain)) {
4978     if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4979       break;
4980     NamespaceDeclChain.pop_back();
4981   }
4982 
4983   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4984   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4985 
4986   // Add an explicit leading '::' specifier if needed.
4987   if (NamespaceDeclChain.empty()) {
4988     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4989     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4990     NumSpecifiers =
4991         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4992   } else if (NamedDecl *ND =
4993                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4994     IdentifierInfo *Name = ND->getIdentifier();
4995     bool SameNameSpecifier = false;
4996     if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4997       std::string NewNameSpecifier;
4998       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4999       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
5000       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
5001       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
5002       SpecifierOStream.flush();
5003       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
5004     }
5005     if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
5006       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
5007       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
5008       NumSpecifiers =
5009           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
5010     }
5011   }
5012 
5013   // If the built NestedNameSpecifier would be replacing an existing
5014   // NestedNameSpecifier, use the number of component identifiers that
5015   // would need to be changed as the edit distance instead of the number
5016   // of components in the built NestedNameSpecifier.
5017   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
5018     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
5019     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
5020     NumSpecifiers =
5021         llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
5022                                   llvm::ArrayRef(NewNameSpecifierIdentifiers));
5023   }
5024 
5025   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
5026   DistanceMap[NumSpecifiers].push_back(SI);
5027 }
5028 
5029 /// Perform name lookup for a possible result for typo correction.
5030 static void LookupPotentialTypoResult(Sema &SemaRef,
5031                                       LookupResult &Res,
5032                                       IdentifierInfo *Name,
5033                                       Scope *S, CXXScopeSpec *SS,
5034                                       DeclContext *MemberContext,
5035                                       bool EnteringContext,
5036                                       bool isObjCIvarLookup,
5037                                       bool FindHidden) {
5038   Res.suppressDiagnostics();
5039   Res.clear();
5040   Res.setLookupName(Name);
5041   Res.setAllowHidden(FindHidden);
5042   if (MemberContext) {
5043     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
5044       if (isObjCIvarLookup) {
5045         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
5046           Res.addDecl(Ivar);
5047           Res.resolveKind();
5048           return;
5049         }
5050       }
5051 
5052       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
5053               Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
5054         Res.addDecl(Prop);
5055         Res.resolveKind();
5056         return;
5057       }
5058     }
5059 
5060     SemaRef.LookupQualifiedName(Res, MemberContext);
5061     return;
5062   }
5063 
5064   SemaRef.LookupParsedName(Res, S, SS,
5065                            /*ObjectType=*/QualType(),
5066                            /*AllowBuiltinCreation=*/false, EnteringContext);
5067 
5068   // Fake ivar lookup; this should really be part of
5069   // LookupParsedName.
5070   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5071     if (Method->isInstanceMethod() && Method->getClassInterface() &&
5072         (Res.empty() ||
5073          (Res.isSingleResult() &&
5074           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5075        if (ObjCIvarDecl *IV
5076              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5077          Res.addDecl(IV);
5078          Res.resolveKind();
5079        }
5080      }
5081   }
5082 }
5083 
5084 /// Add keywords to the consumer as possible typo corrections.
5085 static void AddKeywordsToConsumer(Sema &SemaRef,
5086                                   TypoCorrectionConsumer &Consumer,
5087                                   Scope *S, CorrectionCandidateCallback &CCC,
5088                                   bool AfterNestedNameSpecifier) {
5089   if (AfterNestedNameSpecifier) {
5090     // For 'X::', we know exactly which keywords can appear next.
5091     Consumer.addKeywordResult("template");
5092     if (CCC.WantExpressionKeywords)
5093       Consumer.addKeywordResult("operator");
5094     return;
5095   }
5096 
5097   if (CCC.WantObjCSuper)
5098     Consumer.addKeywordResult("super");
5099 
5100   if (CCC.WantTypeSpecifiers) {
5101     // Add type-specifier keywords to the set of results.
5102     static const char *const CTypeSpecs[] = {
5103       "char", "const", "double", "enum", "float", "int", "long", "short",
5104       "signed", "struct", "union", "unsigned", "void", "volatile",
5105       "_Complex", "_Imaginary",
5106       // storage-specifiers as well
5107       "extern", "inline", "static", "typedef"
5108     };
5109 
5110     for (const auto *CTS : CTypeSpecs)
5111       Consumer.addKeywordResult(CTS);
5112 
5113     if (SemaRef.getLangOpts().C99)
5114       Consumer.addKeywordResult("restrict");
5115     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5116       Consumer.addKeywordResult("bool");
5117     else if (SemaRef.getLangOpts().C99)
5118       Consumer.addKeywordResult("_Bool");
5119 
5120     if (SemaRef.getLangOpts().CPlusPlus) {
5121       Consumer.addKeywordResult("class");
5122       Consumer.addKeywordResult("typename");
5123       Consumer.addKeywordResult("wchar_t");
5124 
5125       if (SemaRef.getLangOpts().CPlusPlus11) {
5126         Consumer.addKeywordResult("char16_t");
5127         Consumer.addKeywordResult("char32_t");
5128         Consumer.addKeywordResult("constexpr");
5129         Consumer.addKeywordResult("decltype");
5130         Consumer.addKeywordResult("thread_local");
5131       }
5132     }
5133 
5134     if (SemaRef.getLangOpts().GNUKeywords)
5135       Consumer.addKeywordResult("typeof");
5136   } else if (CCC.WantFunctionLikeCasts) {
5137     static const char *const CastableTypeSpecs[] = {
5138       "char", "double", "float", "int", "long", "short",
5139       "signed", "unsigned", "void"
5140     };
5141     for (auto *kw : CastableTypeSpecs)
5142       Consumer.addKeywordResult(kw);
5143   }
5144 
5145   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5146     Consumer.addKeywordResult("const_cast");
5147     Consumer.addKeywordResult("dynamic_cast");
5148     Consumer.addKeywordResult("reinterpret_cast");
5149     Consumer.addKeywordResult("static_cast");
5150   }
5151 
5152   if (CCC.WantExpressionKeywords) {
5153     Consumer.addKeywordResult("sizeof");
5154     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5155       Consumer.addKeywordResult("false");
5156       Consumer.addKeywordResult("true");
5157     }
5158 
5159     if (SemaRef.getLangOpts().CPlusPlus) {
5160       static const char *const CXXExprs[] = {
5161         "delete", "new", "operator", "throw", "typeid"
5162       };
5163       for (const auto *CE : CXXExprs)
5164         Consumer.addKeywordResult(CE);
5165 
5166       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5167           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5168         Consumer.addKeywordResult("this");
5169 
5170       if (SemaRef.getLangOpts().CPlusPlus11) {
5171         Consumer.addKeywordResult("alignof");
5172         Consumer.addKeywordResult("nullptr");
5173       }
5174     }
5175 
5176     if (SemaRef.getLangOpts().C11) {
5177       // FIXME: We should not suggest _Alignof if the alignof macro
5178       // is present.
5179       Consumer.addKeywordResult("_Alignof");
5180     }
5181   }
5182 
5183   if (CCC.WantRemainingKeywords) {
5184     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5185       // Statements.
5186       static const char *const CStmts[] = {
5187         "do", "else", "for", "goto", "if", "return", "switch", "while" };
5188       for (const auto *CS : CStmts)
5189         Consumer.addKeywordResult(CS);
5190 
5191       if (SemaRef.getLangOpts().CPlusPlus) {
5192         Consumer.addKeywordResult("catch");
5193         Consumer.addKeywordResult("try");
5194       }
5195 
5196       if (S && S->getBreakParent())
5197         Consumer.addKeywordResult("break");
5198 
5199       if (S && S->getContinueParent())
5200         Consumer.addKeywordResult("continue");
5201 
5202       if (SemaRef.getCurFunction() &&
5203           !SemaRef.getCurFunction()->SwitchStack.empty()) {
5204         Consumer.addKeywordResult("case");
5205         Consumer.addKeywordResult("default");
5206       }
5207     } else {
5208       if (SemaRef.getLangOpts().CPlusPlus) {
5209         Consumer.addKeywordResult("namespace");
5210         Consumer.addKeywordResult("template");
5211       }
5212 
5213       if (S && S->isClassScope()) {
5214         Consumer.addKeywordResult("explicit");
5215         Consumer.addKeywordResult("friend");
5216         Consumer.addKeywordResult("mutable");
5217         Consumer.addKeywordResult("private");
5218         Consumer.addKeywordResult("protected");
5219         Consumer.addKeywordResult("public");
5220         Consumer.addKeywordResult("virtual");
5221       }
5222     }
5223 
5224     if (SemaRef.getLangOpts().CPlusPlus) {
5225       Consumer.addKeywordResult("using");
5226 
5227       if (SemaRef.getLangOpts().CPlusPlus11)
5228         Consumer.addKeywordResult("static_assert");
5229     }
5230   }
5231 }
5232 
5233 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5234     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5235     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5236     DeclContext *MemberContext, bool EnteringContext,
5237     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5238 
5239   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5240       DisableTypoCorrection)
5241     return nullptr;
5242 
5243   // In Microsoft mode, don't perform typo correction in a template member
5244   // function dependent context because it interferes with the "lookup into
5245   // dependent bases of class templates" feature.
5246   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5247       isa<CXXMethodDecl>(CurContext))
5248     return nullptr;
5249 
5250   // We only attempt to correct typos for identifiers.
5251   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5252   if (!Typo)
5253     return nullptr;
5254 
5255   // If the scope specifier itself was invalid, don't try to correct
5256   // typos.
5257   if (SS && SS->isInvalid())
5258     return nullptr;
5259 
5260   // Never try to correct typos during any kind of code synthesis.
5261   if (!CodeSynthesisContexts.empty())
5262     return nullptr;
5263 
5264   // Don't try to correct 'super'.
5265   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5266     return nullptr;
5267 
5268   // Abort if typo correction already failed for this specific typo.
5269   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5270   if (locs != TypoCorrectionFailures.end() &&
5271       locs->second.count(TypoName.getLoc()))
5272     return nullptr;
5273 
5274   // Don't try to correct the identifier "vector" when in AltiVec mode.
5275   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5276   // remove this workaround.
5277   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5278     return nullptr;
5279 
5280   // Provide a stop gap for files that are just seriously broken.  Trying
5281   // to correct all typos can turn into a HUGE performance penalty, causing
5282   // some files to take minutes to get rejected by the parser.
5283   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5284   if (Limit && TyposCorrected >= Limit)
5285     return nullptr;
5286   ++TyposCorrected;
5287 
5288   // If we're handling a missing symbol error, using modules, and the
5289   // special search all modules option is used, look for a missing import.
5290   if (ErrorRecovery && getLangOpts().Modules &&
5291       getLangOpts().ModulesSearchAll) {
5292     // The following has the side effect of loading the missing module.
5293     getModuleLoader().lookupMissingImports(Typo->getName(),
5294                                            TypoName.getBeginLoc());
5295   }
5296 
5297   // Extend the lifetime of the callback. We delayed this until here
5298   // to avoid allocations in the hot path (which is where no typo correction
5299   // occurs). Note that CorrectionCandidateCallback is polymorphic and
5300   // initially stack-allocated.
5301   std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5302   auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5303       *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5304       EnteringContext);
5305 
5306   // Perform name lookup to find visible, similarly-named entities.
5307   bool IsUnqualifiedLookup = false;
5308   DeclContext *QualifiedDC = MemberContext;
5309   if (MemberContext) {
5310     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5311 
5312     // Look in qualified interfaces.
5313     if (OPT) {
5314       for (auto *I : OPT->quals())
5315         LookupVisibleDecls(I, LookupKind, *Consumer);
5316     }
5317   } else if (SS && SS->isSet()) {
5318     QualifiedDC = computeDeclContext(*SS, EnteringContext);
5319     if (!QualifiedDC)
5320       return nullptr;
5321 
5322     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5323   } else {
5324     IsUnqualifiedLookup = true;
5325   }
5326 
5327   // Determine whether we are going to search in the various namespaces for
5328   // corrections.
5329   bool SearchNamespaces
5330     = getLangOpts().CPlusPlus &&
5331       (IsUnqualifiedLookup || (SS && SS->isSet()));
5332 
5333   if (IsUnqualifiedLookup || SearchNamespaces) {
5334     // For unqualified lookup, look through all of the names that we have
5335     // seen in this translation unit.
5336     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5337     for (const auto &I : Context.Idents)
5338       Consumer->FoundName(I.getKey());
5339 
5340     // Walk through identifiers in external identifier sources.
5341     // FIXME: Re-add the ability to skip very unlikely potential corrections.
5342     if (IdentifierInfoLookup *External
5343                             = Context.Idents.getExternalIdentifierLookup()) {
5344       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5345       do {
5346         StringRef Name = Iter->Next();
5347         if (Name.empty())
5348           break;
5349 
5350         Consumer->FoundName(Name);
5351       } while (true);
5352     }
5353   }
5354 
5355   AddKeywordsToConsumer(*this, *Consumer, S,
5356                         *Consumer->getCorrectionValidator(),
5357                         SS && SS->isNotEmpty());
5358 
5359   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5360   // to search those namespaces.
5361   if (SearchNamespaces) {
5362     // Load any externally-known namespaces.
5363     if (ExternalSource && !LoadedExternalKnownNamespaces) {
5364       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5365       LoadedExternalKnownNamespaces = true;
5366       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5367       for (auto *N : ExternalKnownNamespaces)
5368         KnownNamespaces[N] = true;
5369     }
5370 
5371     Consumer->addNamespaces(KnownNamespaces);
5372   }
5373 
5374   return Consumer;
5375 }
5376 
5377 /// Try to "correct" a typo in the source code by finding
5378 /// visible declarations whose names are similar to the name that was
5379 /// present in the source code.
5380 ///
5381 /// \param TypoName the \c DeclarationNameInfo structure that contains
5382 /// the name that was present in the source code along with its location.
5383 ///
5384 /// \param LookupKind the name-lookup criteria used to search for the name.
5385 ///
5386 /// \param S the scope in which name lookup occurs.
5387 ///
5388 /// \param SS the nested-name-specifier that precedes the name we're
5389 /// looking for, if present.
5390 ///
5391 /// \param CCC A CorrectionCandidateCallback object that provides further
5392 /// validation of typo correction candidates. It also provides flags for
5393 /// determining the set of keywords permitted.
5394 ///
5395 /// \param MemberContext if non-NULL, the context in which to look for
5396 /// a member access expression.
5397 ///
5398 /// \param EnteringContext whether we're entering the context described by
5399 /// the nested-name-specifier SS.
5400 ///
5401 /// \param OPT when non-NULL, the search for visible declarations will
5402 /// also walk the protocols in the qualified interfaces of \p OPT.
5403 ///
5404 /// \returns a \c TypoCorrection containing the corrected name if the typo
5405 /// along with information such as the \c NamedDecl where the corrected name
5406 /// was declared, and any additional \c NestedNameSpecifier needed to access
5407 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5408 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5409                                  Sema::LookupNameKind LookupKind,
5410                                  Scope *S, CXXScopeSpec *SS,
5411                                  CorrectionCandidateCallback &CCC,
5412                                  CorrectTypoKind Mode,
5413                                  DeclContext *MemberContext,
5414                                  bool EnteringContext,
5415                                  const ObjCObjectPointerType *OPT,
5416                                  bool RecordFailure) {
5417   // Always let the ExternalSource have the first chance at correction, even
5418   // if we would otherwise have given up.
5419   if (ExternalSource) {
5420     if (TypoCorrection Correction =
5421             ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5422                                         MemberContext, EnteringContext, OPT))
5423       return Correction;
5424   }
5425 
5426   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5427   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5428   // some instances of CTC_Unknown, while WantRemainingKeywords is true
5429   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5430   bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5431 
5432   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5433   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5434                                              MemberContext, EnteringContext,
5435                                              OPT, Mode == CTK_ErrorRecovery);
5436 
5437   if (!Consumer)
5438     return TypoCorrection();
5439 
5440   // If we haven't found anything, we're done.
5441   if (Consumer->empty())
5442     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5443 
5444   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5445   // is not more that about a third of the length of the typo's identifier.
5446   unsigned ED = Consumer->getBestEditDistance(true);
5447   unsigned TypoLen = Typo->getName().size();
5448   if (ED > 0 && TypoLen / ED < 3)
5449     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5450 
5451   TypoCorrection BestTC = Consumer->getNextCorrection();
5452   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5453   if (!BestTC)
5454     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5455 
5456   ED = BestTC.getEditDistance();
5457 
5458   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5459     // If this was an unqualified lookup and we believe the callback
5460     // object wouldn't have filtered out possible corrections, note
5461     // that no correction was found.
5462     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5463   }
5464 
5465   // If only a single name remains, return that result.
5466   if (!SecondBestTC ||
5467       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5468     const TypoCorrection &Result = BestTC;
5469 
5470     // Don't correct to a keyword that's the same as the typo; the keyword
5471     // wasn't actually in scope.
5472     if (ED == 0 && Result.isKeyword())
5473       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5474 
5475     TypoCorrection TC = Result;
5476     TC.setCorrectionRange(SS, TypoName);
5477     checkCorrectionVisibility(*this, TC);
5478     return TC;
5479   } else if (SecondBestTC && ObjCMessageReceiver) {
5480     // Prefer 'super' when we're completing in a message-receiver
5481     // context.
5482 
5483     if (BestTC.getCorrection().getAsString() != "super") {
5484       if (SecondBestTC.getCorrection().getAsString() == "super")
5485         BestTC = SecondBestTC;
5486       else if ((*Consumer)["super"].front().isKeyword())
5487         BestTC = (*Consumer)["super"].front();
5488     }
5489     // Don't correct to a keyword that's the same as the typo; the keyword
5490     // wasn't actually in scope.
5491     if (BestTC.getEditDistance() == 0 ||
5492         BestTC.getCorrection().getAsString() != "super")
5493       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5494 
5495     BestTC.setCorrectionRange(SS, TypoName);
5496     return BestTC;
5497   }
5498 
5499   // Record the failure's location if needed and return an empty correction. If
5500   // this was an unqualified lookup and we believe the callback object did not
5501   // filter out possible corrections, also cache the failure for the typo.
5502   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5503 }
5504 
5505 /// Try to "correct" a typo in the source code by finding
5506 /// visible declarations whose names are similar to the name that was
5507 /// present in the source code.
5508 ///
5509 /// \param TypoName the \c DeclarationNameInfo structure that contains
5510 /// the name that was present in the source code along with its location.
5511 ///
5512 /// \param LookupKind the name-lookup criteria used to search for the name.
5513 ///
5514 /// \param S the scope in which name lookup occurs.
5515 ///
5516 /// \param SS the nested-name-specifier that precedes the name we're
5517 /// looking for, if present.
5518 ///
5519 /// \param CCC A CorrectionCandidateCallback object that provides further
5520 /// validation of typo correction candidates. It also provides flags for
5521 /// determining the set of keywords permitted.
5522 ///
5523 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5524 /// diagnostics when the actual typo correction is attempted.
5525 ///
5526 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5527 /// Expr from a typo correction candidate.
5528 ///
5529 /// \param MemberContext if non-NULL, the context in which to look for
5530 /// a member access expression.
5531 ///
5532 /// \param EnteringContext whether we're entering the context described by
5533 /// the nested-name-specifier SS.
5534 ///
5535 /// \param OPT when non-NULL, the search for visible declarations will
5536 /// also walk the protocols in the qualified interfaces of \p OPT.
5537 ///
5538 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5539 /// Expr representing the result of performing typo correction, or nullptr if
5540 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5541 /// be emitted and it is the responsibility of the caller to emit any that are
5542 /// needed.
5543 TypoExpr *Sema::CorrectTypoDelayed(
5544     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5545     Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5546     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5547     DeclContext *MemberContext, bool EnteringContext,
5548     const ObjCObjectPointerType *OPT) {
5549   auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5550                                              MemberContext, EnteringContext,
5551                                              OPT, Mode == CTK_ErrorRecovery);
5552 
5553   // Give the external sema source a chance to correct the typo.
5554   TypoCorrection ExternalTypo;
5555   if (ExternalSource && Consumer) {
5556     ExternalTypo = ExternalSource->CorrectTypo(
5557         TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5558         MemberContext, EnteringContext, OPT);
5559     if (ExternalTypo)
5560       Consumer->addCorrection(ExternalTypo);
5561   }
5562 
5563   if (!Consumer || Consumer->empty())
5564     return nullptr;
5565 
5566   // Make sure the best edit distance (prior to adding any namespace qualifiers)
5567   // is not more that about a third of the length of the typo's identifier.
5568   unsigned ED = Consumer->getBestEditDistance(true);
5569   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5570   if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5571     return nullptr;
5572   ExprEvalContexts.back().NumTypos++;
5573   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5574                            TypoName.getLoc());
5575 }
5576 
5577 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5578   if (!CDecl) return;
5579 
5580   if (isKeyword())
5581     CorrectionDecls.clear();
5582 
5583   CorrectionDecls.push_back(CDecl);
5584 
5585   if (!CorrectionName)
5586     CorrectionName = CDecl->getDeclName();
5587 }
5588 
5589 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5590   if (CorrectionNameSpec) {
5591     std::string tmpBuffer;
5592     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5593     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5594     PrefixOStream << CorrectionName;
5595     return PrefixOStream.str();
5596   }
5597 
5598   return CorrectionName.getAsString();
5599 }
5600 
5601 bool CorrectionCandidateCallback::ValidateCandidate(
5602     const TypoCorrection &candidate) {
5603   if (!candidate.isResolved())
5604     return true;
5605 
5606   if (candidate.isKeyword())
5607     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5608            WantRemainingKeywords || WantObjCSuper;
5609 
5610   bool HasNonType = false;
5611   bool HasStaticMethod = false;
5612   bool HasNonStaticMethod = false;
5613   for (Decl *D : candidate) {
5614     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5615       D = FTD->getTemplatedDecl();
5616     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5617       if (Method->isStatic())
5618         HasStaticMethod = true;
5619       else
5620         HasNonStaticMethod = true;
5621     }
5622     if (!isa<TypeDecl>(D))
5623       HasNonType = true;
5624   }
5625 
5626   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5627       !candidate.getCorrectionSpecifier())
5628     return false;
5629 
5630   return WantTypeSpecifiers || HasNonType;
5631 }
5632 
5633 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5634                                              bool HasExplicitTemplateArgs,
5635                                              MemberExpr *ME)
5636     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5637       CurContext(SemaRef.CurContext), MemberFn(ME) {
5638   WantTypeSpecifiers = false;
5639   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5640                           !HasExplicitTemplateArgs && NumArgs == 1;
5641   WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5642   WantRemainingKeywords = false;
5643 }
5644 
5645 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5646   if (!candidate.getCorrectionDecl())
5647     return candidate.isKeyword();
5648 
5649   for (auto *C : candidate) {
5650     FunctionDecl *FD = nullptr;
5651     NamedDecl *ND = C->getUnderlyingDecl();
5652     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5653       FD = FTD->getTemplatedDecl();
5654     if (!HasExplicitTemplateArgs && !FD) {
5655       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5656         // If the Decl is neither a function nor a template function,
5657         // determine if it is a pointer or reference to a function. If so,
5658         // check against the number of arguments expected for the pointee.
5659         QualType ValType = cast<ValueDecl>(ND)->getType();
5660         if (ValType.isNull())
5661           continue;
5662         if (ValType->isAnyPointerType() || ValType->isReferenceType())
5663           ValType = ValType->getPointeeType();
5664         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5665           if (FPT->getNumParams() == NumArgs)
5666             return true;
5667       }
5668     }
5669 
5670     // A typo for a function-style cast can look like a function call in C++.
5671     if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5672                                  : isa<TypeDecl>(ND)) &&
5673         CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5674       // Only a class or class template can take two or more arguments.
5675       return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5676 
5677     // Skip the current candidate if it is not a FunctionDecl or does not accept
5678     // the current number of arguments.
5679     if (!FD || !(FD->getNumParams() >= NumArgs &&
5680                  FD->getMinRequiredArguments() <= NumArgs))
5681       continue;
5682 
5683     // If the current candidate is a non-static C++ method, skip the candidate
5684     // unless the method being corrected--or the current DeclContext, if the
5685     // function being corrected is not a method--is a method in the same class
5686     // or a descendent class of the candidate's parent class.
5687     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5688       if (MemberFn || !MD->isStatic()) {
5689         const auto *CurMD =
5690             MemberFn
5691                 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5692                 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5693         const CXXRecordDecl *CurRD =
5694             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5695         const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5696         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5697           continue;
5698       }
5699     }
5700     return true;
5701   }
5702   return false;
5703 }
5704 
5705 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5706                         const PartialDiagnostic &TypoDiag,
5707                         bool ErrorRecovery) {
5708   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5709                ErrorRecovery);
5710 }
5711 
5712 /// Find which declaration we should import to provide the definition of
5713 /// the given declaration.
5714 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5715   if (const auto *VD = dyn_cast<VarDecl>(D))
5716     return VD->getDefinition();
5717   if (const auto *FD = dyn_cast<FunctionDecl>(D))
5718     return FD->getDefinition();
5719   if (const auto *TD = dyn_cast<TagDecl>(D))
5720     return TD->getDefinition();
5721   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5722     return ID->getDefinition();
5723   if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5724     return PD->getDefinition();
5725   if (const auto *TD = dyn_cast<TemplateDecl>(D))
5726     if (const NamedDecl *TTD = TD->getTemplatedDecl())
5727       return getDefinitionToImport(TTD);
5728   return nullptr;
5729 }
5730 
5731 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5732                                  MissingImportKind MIK, bool Recover) {
5733   // Suggest importing a module providing the definition of this entity, if
5734   // possible.
5735   const NamedDecl *Def = getDefinitionToImport(Decl);
5736   if (!Def)
5737     Def = Decl;
5738 
5739   Module *Owner = getOwningModule(Def);
5740   assert(Owner && "definition of hidden declaration is not in a module");
5741 
5742   llvm::SmallVector<Module*, 8> OwningModules;
5743   OwningModules.push_back(Owner);
5744   auto Merged = Context.getModulesWithMergedDefinition(Def);
5745   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5746 
5747   diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5748                         Recover);
5749 }
5750 
5751 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5752 /// suggesting the addition of a #include of the specified file.
5753 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E,
5754                                           llvm::StringRef IncludingFile) {
5755   bool IsAngled = false;
5756   auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5757       E, IncludingFile, &IsAngled);
5758   return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"');
5759 }
5760 
5761 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5762                                  SourceLocation DeclLoc,
5763                                  ArrayRef<Module *> Modules,
5764                                  MissingImportKind MIK, bool Recover) {
5765   assert(!Modules.empty());
5766 
5767   // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5768   // confusing than helpful to show the namespace is not visible.
5769   if (isa<NamespaceDecl>(Decl))
5770     return;
5771 
5772   auto NotePrevious = [&] {
5773     // FIXME: Suppress the note backtrace even under
5774     // -fdiagnostics-show-note-include-stack. We don't care how this
5775     // declaration was previously reached.
5776     Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5777   };
5778 
5779   // Weed out duplicates from module list.
5780   llvm::SmallVector<Module*, 8> UniqueModules;
5781   llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5782   for (auto *M : Modules) {
5783     if (M->isExplicitGlobalModule() || M->isPrivateModule())
5784       continue;
5785     if (UniqueModuleSet.insert(M).second)
5786       UniqueModules.push_back(M);
5787   }
5788 
5789   // Try to find a suitable header-name to #include.
5790   std::string HeaderName;
5791   if (OptionalFileEntryRef Header =
5792           PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5793     if (const FileEntry *FE =
5794             SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5795       HeaderName =
5796           getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName());
5797   }
5798 
5799   // If we have a #include we should suggest, or if all definition locations
5800   // were in global module fragments, don't suggest an import.
5801   if (!HeaderName.empty() || UniqueModules.empty()) {
5802     // FIXME: Find a smart place to suggest inserting a #include, and add
5803     // a FixItHint there.
5804     Diag(UseLoc, diag::err_module_unimported_use_header)
5805         << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5806     // Produce a note showing where the entity was declared.
5807     NotePrevious();
5808     if (Recover)
5809       createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5810     return;
5811   }
5812 
5813   Modules = UniqueModules;
5814 
5815   auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string {
5816     if (M->isModuleMapModule())
5817       return M->getFullModuleName();
5818 
5819     Module *CurrentModule = getCurrentModule();
5820 
5821     if (M->isImplicitGlobalModule())
5822       M = M->getTopLevelModule();
5823 
5824     bool IsInTheSameModule =
5825         CurrentModule && CurrentModule->getPrimaryModuleInterfaceName() ==
5826                              M->getPrimaryModuleInterfaceName();
5827 
5828     // If the current module unit is in the same module with M, it is OK to show
5829     // the partition name. Otherwise, it'll be sufficient to show the primary
5830     // module name.
5831     if (IsInTheSameModule)
5832       return M->getTopLevelModuleName().str();
5833     else
5834       return M->getPrimaryModuleInterfaceName().str();
5835   };
5836 
5837   if (Modules.size() > 1) {
5838     std::string ModuleList;
5839     unsigned N = 0;
5840     for (const auto *M : Modules) {
5841       ModuleList += "\n        ";
5842       if (++N == 5 && N != Modules.size()) {
5843         ModuleList += "[...]";
5844         break;
5845       }
5846       ModuleList += GetModuleNameForDiagnostic(M);
5847     }
5848 
5849     Diag(UseLoc, diag::err_module_unimported_use_multiple)
5850       << (int)MIK << Decl << ModuleList;
5851   } else {
5852     // FIXME: Add a FixItHint that imports the corresponding module.
5853     Diag(UseLoc, diag::err_module_unimported_use)
5854         << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]);
5855   }
5856 
5857   NotePrevious();
5858 
5859   // Try to recover by implicitly importing this module.
5860   if (Recover)
5861     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5862 }
5863 
5864 /// Diagnose a successfully-corrected typo. Separated from the correction
5865 /// itself to allow external validation of the result, etc.
5866 ///
5867 /// \param Correction The result of performing typo correction.
5868 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5869 ///        string added to it (and usually also a fixit).
5870 /// \param PrevNote A note to use when indicating the location of the entity to
5871 ///        which we are correcting. Will have the correction string added to it.
5872 /// \param ErrorRecovery If \c true (the default), the caller is going to
5873 ///        recover from the typo as if the corrected string had been typed.
5874 ///        In this case, \c PDiag must be an error, and we will attach a fixit
5875 ///        to it.
5876 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5877                         const PartialDiagnostic &TypoDiag,
5878                         const PartialDiagnostic &PrevNote,
5879                         bool ErrorRecovery) {
5880   std::string CorrectedStr = Correction.getAsString(getLangOpts());
5881   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5882   FixItHint FixTypo = FixItHint::CreateReplacement(
5883       Correction.getCorrectionRange(), CorrectedStr);
5884 
5885   // Maybe we're just missing a module import.
5886   if (Correction.requiresImport()) {
5887     NamedDecl *Decl = Correction.getFoundDecl();
5888     assert(Decl && "import required but no declaration to import");
5889 
5890     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5891                           MissingImportKind::Declaration, ErrorRecovery);
5892     return;
5893   }
5894 
5895   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5896     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5897 
5898   NamedDecl *ChosenDecl =
5899       Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5900   if (PrevNote.getDiagID() && ChosenDecl)
5901     Diag(ChosenDecl->getLocation(), PrevNote)
5902       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5903 
5904   // Add any extra diagnostics.
5905   for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5906     Diag(Correction.getCorrectionRange().getBegin(), PD);
5907 }
5908 
5909 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5910                                   TypoDiagnosticGenerator TDG,
5911                                   TypoRecoveryCallback TRC,
5912                                   SourceLocation TypoLoc) {
5913   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5914   auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5915   auto &State = DelayedTypos[TE];
5916   State.Consumer = std::move(TCC);
5917   State.DiagHandler = std::move(TDG);
5918   State.RecoveryHandler = std::move(TRC);
5919   if (TE)
5920     TypoExprs.push_back(TE);
5921   return TE;
5922 }
5923 
5924 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5925   auto Entry = DelayedTypos.find(TE);
5926   assert(Entry != DelayedTypos.end() &&
5927          "Failed to get the state for a TypoExpr!");
5928   return Entry->second;
5929 }
5930 
5931 void Sema::clearDelayedTypo(TypoExpr *TE) {
5932   DelayedTypos.erase(TE);
5933 }
5934 
5935 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5936   DeclarationNameInfo Name(II, IILoc);
5937   LookupResult R(*this, Name, LookupAnyName,
5938                  RedeclarationKind::NotForRedeclaration);
5939   R.suppressDiagnostics();
5940   R.setHideTags(false);
5941   LookupName(R, S);
5942   R.dump();
5943 }
5944 
5945 void Sema::ActOnPragmaDump(Expr *E) {
5946   E->dump();
5947 }
5948 
5949 RedeclarationKind Sema::forRedeclarationInCurContext() const {
5950   // A declaration with an owning module for linkage can never link against
5951   // anything that is not visible. We don't need to check linkage here; if
5952   // the context has internal linkage, redeclaration lookup won't find things
5953   // from other TUs, and we can't safely compute linkage yet in general.
5954   if (cast<Decl>(CurContext)->getOwningModuleForLinkage(/*IgnoreLinkage*/ true))
5955     return RedeclarationKind::ForVisibleRedeclaration;
5956   return RedeclarationKind::ForExternalRedeclaration;
5957 }
5958