1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements name lookup for C, C++, Objective-C, and 10 // Objective-C++. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Decl.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/DeclLookups.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/Basic/Builtins.h" 24 #include "clang/Basic/FileManager.h" 25 #include "clang/Basic/LangOptions.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/ModuleLoader.h" 28 #include "clang/Lex/Preprocessor.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/Lookup.h" 31 #include "clang/Sema/Overload.h" 32 #include "clang/Sema/RISCVIntrinsicManager.h" 33 #include "clang/Sema/Scope.h" 34 #include "clang/Sema/ScopeInfo.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Sema/SemaInternal.h" 37 #include "clang/Sema/SemaRISCV.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "clang/Sema/TypoCorrection.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/STLForwardCompat.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/TinyPtrVector.h" 44 #include "llvm/ADT/edit_distance.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include <algorithm> 48 #include <iterator> 49 #include <list> 50 #include <optional> 51 #include <set> 52 #include <utility> 53 #include <vector> 54 55 #include "OpenCLBuiltins.inc" 56 57 using namespace clang; 58 using namespace sema; 59 60 namespace { 61 class UnqualUsingEntry { 62 const DeclContext *Nominated; 63 const DeclContext *CommonAncestor; 64 65 public: 66 UnqualUsingEntry(const DeclContext *Nominated, 67 const DeclContext *CommonAncestor) 68 : Nominated(Nominated), CommonAncestor(CommonAncestor) { 69 } 70 71 const DeclContext *getCommonAncestor() const { 72 return CommonAncestor; 73 } 74 75 const DeclContext *getNominatedNamespace() const { 76 return Nominated; 77 } 78 79 // Sort by the pointer value of the common ancestor. 80 struct Comparator { 81 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { 82 return L.getCommonAncestor() < R.getCommonAncestor(); 83 } 84 85 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { 86 return E.getCommonAncestor() < DC; 87 } 88 89 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { 90 return DC < E.getCommonAncestor(); 91 } 92 }; 93 }; 94 95 /// A collection of using directives, as used by C++ unqualified 96 /// lookup. 97 class UnqualUsingDirectiveSet { 98 Sema &SemaRef; 99 100 typedef SmallVector<UnqualUsingEntry, 8> ListTy; 101 102 ListTy list; 103 llvm::SmallPtrSet<DeclContext*, 8> visited; 104 105 public: 106 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} 107 108 void visitScopeChain(Scope *S, Scope *InnermostFileScope) { 109 // C++ [namespace.udir]p1: 110 // During unqualified name lookup, the names appear as if they 111 // were declared in the nearest enclosing namespace which contains 112 // both the using-directive and the nominated namespace. 113 DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); 114 assert(InnermostFileDC && InnermostFileDC->isFileContext()); 115 116 for (; S; S = S->getParent()) { 117 // C++ [namespace.udir]p1: 118 // A using-directive shall not appear in class scope, but may 119 // appear in namespace scope or in block scope. 120 DeclContext *Ctx = S->getEntity(); 121 if (Ctx && Ctx->isFileContext()) { 122 visit(Ctx, Ctx); 123 } else if (!Ctx || Ctx->isFunctionOrMethod()) { 124 for (auto *I : S->using_directives()) 125 if (SemaRef.isVisible(I)) 126 visit(I, InnermostFileDC); 127 } 128 } 129 } 130 131 // Visits a context and collect all of its using directives 132 // recursively. Treats all using directives as if they were 133 // declared in the context. 134 // 135 // A given context is only every visited once, so it is important 136 // that contexts be visited from the inside out in order to get 137 // the effective DCs right. 138 void visit(DeclContext *DC, DeclContext *EffectiveDC) { 139 if (!visited.insert(DC).second) 140 return; 141 142 addUsingDirectives(DC, EffectiveDC); 143 } 144 145 // Visits a using directive and collects all of its using 146 // directives recursively. Treats all using directives as if they 147 // were declared in the effective DC. 148 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 149 DeclContext *NS = UD->getNominatedNamespace(); 150 if (!visited.insert(NS).second) 151 return; 152 153 addUsingDirective(UD, EffectiveDC); 154 addUsingDirectives(NS, EffectiveDC); 155 } 156 157 // Adds all the using directives in a context (and those nominated 158 // by its using directives, transitively) as if they appeared in 159 // the given effective context. 160 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { 161 SmallVector<DeclContext*, 4> queue; 162 while (true) { 163 for (auto *UD : DC->using_directives()) { 164 DeclContext *NS = UD->getNominatedNamespace(); 165 if (SemaRef.isVisible(UD) && visited.insert(NS).second) { 166 addUsingDirective(UD, EffectiveDC); 167 queue.push_back(NS); 168 } 169 } 170 171 if (queue.empty()) 172 return; 173 174 DC = queue.pop_back_val(); 175 } 176 } 177 178 // Add a using directive as if it had been declared in the given 179 // context. This helps implement C++ [namespace.udir]p3: 180 // The using-directive is transitive: if a scope contains a 181 // using-directive that nominates a second namespace that itself 182 // contains using-directives, the effect is as if the 183 // using-directives from the second namespace also appeared in 184 // the first. 185 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { 186 // Find the common ancestor between the effective context and 187 // the nominated namespace. 188 DeclContext *Common = UD->getNominatedNamespace(); 189 while (!Common->Encloses(EffectiveDC)) 190 Common = Common->getParent(); 191 Common = Common->getPrimaryContext(); 192 193 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); 194 } 195 196 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } 197 198 typedef ListTy::const_iterator const_iterator; 199 200 const_iterator begin() const { return list.begin(); } 201 const_iterator end() const { return list.end(); } 202 203 llvm::iterator_range<const_iterator> 204 getNamespacesFor(const DeclContext *DC) const { 205 return llvm::make_range(std::equal_range(begin(), end(), 206 DC->getPrimaryContext(), 207 UnqualUsingEntry::Comparator())); 208 } 209 }; 210 } // end anonymous namespace 211 212 // Retrieve the set of identifier namespaces that correspond to a 213 // specific kind of name lookup. 214 static inline unsigned getIDNS(Sema::LookupNameKind NameKind, 215 bool CPlusPlus, 216 bool Redeclaration) { 217 unsigned IDNS = 0; 218 switch (NameKind) { 219 case Sema::LookupObjCImplicitSelfParam: 220 case Sema::LookupOrdinaryName: 221 case Sema::LookupRedeclarationWithLinkage: 222 case Sema::LookupLocalFriendName: 223 case Sema::LookupDestructorName: 224 IDNS = Decl::IDNS_Ordinary; 225 if (CPlusPlus) { 226 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; 227 if (Redeclaration) 228 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; 229 } 230 if (Redeclaration) 231 IDNS |= Decl::IDNS_LocalExtern; 232 break; 233 234 case Sema::LookupOperatorName: 235 // Operator lookup is its own crazy thing; it is not the same 236 // as (e.g.) looking up an operator name for redeclaration. 237 assert(!Redeclaration && "cannot do redeclaration operator lookup"); 238 IDNS = Decl::IDNS_NonMemberOperator; 239 break; 240 241 case Sema::LookupTagName: 242 if (CPlusPlus) { 243 IDNS = Decl::IDNS_Type; 244 245 // When looking for a redeclaration of a tag name, we add: 246 // 1) TagFriend to find undeclared friend decls 247 // 2) Namespace because they can't "overload" with tag decls. 248 // 3) Tag because it includes class templates, which can't 249 // "overload" with tag decls. 250 if (Redeclaration) 251 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; 252 } else { 253 IDNS = Decl::IDNS_Tag; 254 } 255 break; 256 257 case Sema::LookupLabel: 258 IDNS = Decl::IDNS_Label; 259 break; 260 261 case Sema::LookupMemberName: 262 IDNS = Decl::IDNS_Member; 263 if (CPlusPlus) 264 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; 265 break; 266 267 case Sema::LookupNestedNameSpecifierName: 268 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; 269 break; 270 271 case Sema::LookupNamespaceName: 272 IDNS = Decl::IDNS_Namespace; 273 break; 274 275 case Sema::LookupUsingDeclName: 276 assert(Redeclaration && "should only be used for redecl lookup"); 277 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | 278 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | 279 Decl::IDNS_LocalExtern; 280 break; 281 282 case Sema::LookupObjCProtocolName: 283 IDNS = Decl::IDNS_ObjCProtocol; 284 break; 285 286 case Sema::LookupOMPReductionName: 287 IDNS = Decl::IDNS_OMPReduction; 288 break; 289 290 case Sema::LookupOMPMapperName: 291 IDNS = Decl::IDNS_OMPMapper; 292 break; 293 294 case Sema::LookupAnyName: 295 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member 296 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol 297 | Decl::IDNS_Type; 298 break; 299 } 300 return IDNS; 301 } 302 303 void LookupResult::configure() { 304 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, 305 isForRedeclaration()); 306 307 // If we're looking for one of the allocation or deallocation 308 // operators, make sure that the implicitly-declared new and delete 309 // operators can be found. 310 switch (NameInfo.getName().getCXXOverloadedOperator()) { 311 case OO_New: 312 case OO_Delete: 313 case OO_Array_New: 314 case OO_Array_Delete: 315 getSema().DeclareGlobalNewDelete(); 316 break; 317 318 default: 319 break; 320 } 321 322 // Compiler builtins are always visible, regardless of where they end 323 // up being declared. 324 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { 325 if (unsigned BuiltinID = Id->getBuiltinID()) { 326 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 327 AllowHidden = true; 328 } 329 } 330 } 331 332 bool LookupResult::checkDebugAssumptions() const { 333 // This function is never called by NDEBUG builds. 334 assert(ResultKind != NotFound || Decls.size() == 0); 335 assert(ResultKind != Found || Decls.size() == 1); 336 assert(ResultKind != FoundOverloaded || Decls.size() > 1 || 337 (Decls.size() == 1 && 338 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); 339 assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); 340 assert(ResultKind != Ambiguous || Decls.size() > 1 || 341 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || 342 Ambiguity == AmbiguousBaseSubobjectTypes))); 343 assert((Paths != nullptr) == (ResultKind == Ambiguous && 344 (Ambiguity == AmbiguousBaseSubobjectTypes || 345 Ambiguity == AmbiguousBaseSubobjects))); 346 return true; 347 } 348 349 // Necessary because CXXBasePaths is not complete in Sema.h 350 void LookupResult::deletePaths(CXXBasePaths *Paths) { 351 delete Paths; 352 } 353 354 /// Get a representative context for a declaration such that two declarations 355 /// will have the same context if they were found within the same scope. 356 static const DeclContext *getContextForScopeMatching(const Decl *D) { 357 // For function-local declarations, use that function as the context. This 358 // doesn't account for scopes within the function; the caller must deal with 359 // those. 360 if (const DeclContext *DC = D->getLexicalDeclContext(); 361 DC->isFunctionOrMethod()) 362 return DC; 363 364 // Otherwise, look at the semantic context of the declaration. The 365 // declaration must have been found there. 366 return D->getDeclContext()->getRedeclContext(); 367 } 368 369 /// Determine whether \p D is a better lookup result than \p Existing, 370 /// given that they declare the same entity. 371 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, 372 const NamedDecl *D, 373 const NamedDecl *Existing) { 374 // When looking up redeclarations of a using declaration, prefer a using 375 // shadow declaration over any other declaration of the same entity. 376 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && 377 !isa<UsingShadowDecl>(Existing)) 378 return true; 379 380 const auto *DUnderlying = D->getUnderlyingDecl(); 381 const auto *EUnderlying = Existing->getUnderlyingDecl(); 382 383 // If they have different underlying declarations, prefer a typedef over the 384 // original type (this happens when two type declarations denote the same 385 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef 386 // might carry additional semantic information, such as an alignment override. 387 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag 388 // declaration over a typedef. Also prefer a tag over a typedef for 389 // destructor name lookup because in some contexts we only accept a 390 // class-name in a destructor declaration. 391 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { 392 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); 393 bool HaveTag = isa<TagDecl>(EUnderlying); 394 bool WantTag = 395 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; 396 return HaveTag != WantTag; 397 } 398 399 // Pick the function with more default arguments. 400 // FIXME: In the presence of ambiguous default arguments, we should keep both, 401 // so we can diagnose the ambiguity if the default argument is needed. 402 // See C++ [over.match.best]p3. 403 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { 404 const auto *EFD = cast<FunctionDecl>(EUnderlying); 405 unsigned DMin = DFD->getMinRequiredArguments(); 406 unsigned EMin = EFD->getMinRequiredArguments(); 407 // If D has more default arguments, it is preferred. 408 if (DMin != EMin) 409 return DMin < EMin; 410 // FIXME: When we track visibility for default function arguments, check 411 // that we pick the declaration with more visible default arguments. 412 } 413 414 // Pick the template with more default template arguments. 415 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { 416 const auto *ETD = cast<TemplateDecl>(EUnderlying); 417 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); 418 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); 419 // If D has more default arguments, it is preferred. Note that default 420 // arguments (and their visibility) is monotonically increasing across the 421 // redeclaration chain, so this is a quick proxy for "is more recent". 422 if (DMin != EMin) 423 return DMin < EMin; 424 // If D has more *visible* default arguments, it is preferred. Note, an 425 // earlier default argument being visible does not imply that a later 426 // default argument is visible, so we can't just check the first one. 427 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); 428 I != N; ++I) { 429 if (!S.hasVisibleDefaultArgument( 430 ETD->getTemplateParameters()->getParam(I)) && 431 S.hasVisibleDefaultArgument( 432 DTD->getTemplateParameters()->getParam(I))) 433 return true; 434 } 435 } 436 437 // VarDecl can have incomplete array types, prefer the one with more complete 438 // array type. 439 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { 440 const auto *EVD = cast<VarDecl>(EUnderlying); 441 if (EVD->getType()->isIncompleteType() && 442 !DVD->getType()->isIncompleteType()) { 443 // Prefer the decl with a more complete type if visible. 444 return S.isVisible(DVD); 445 } 446 return false; // Avoid picking up a newer decl, just because it was newer. 447 } 448 449 // For most kinds of declaration, it doesn't really matter which one we pick. 450 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { 451 // If the existing declaration is hidden, prefer the new one. Otherwise, 452 // keep what we've got. 453 return !S.isVisible(Existing); 454 } 455 456 // Pick the newer declaration; it might have a more precise type. 457 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; 458 Prev = Prev->getPreviousDecl()) 459 if (Prev == EUnderlying) 460 return true; 461 return false; 462 } 463 464 /// Determine whether \p D can hide a tag declaration. 465 static bool canHideTag(const NamedDecl *D) { 466 // C++ [basic.scope.declarative]p4: 467 // Given a set of declarations in a single declarative region [...] 468 // exactly one declaration shall declare a class name or enumeration name 469 // that is not a typedef name and the other declarations shall all refer to 470 // the same variable, non-static data member, or enumerator, or all refer 471 // to functions and function templates; in this case the class name or 472 // enumeration name is hidden. 473 // C++ [basic.scope.hiding]p2: 474 // A class name or enumeration name can be hidden by the name of a 475 // variable, data member, function, or enumerator declared in the same 476 // scope. 477 // An UnresolvedUsingValueDecl always instantiates to one of these. 478 D = D->getUnderlyingDecl(); 479 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || 480 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || 481 isa<UnresolvedUsingValueDecl>(D); 482 } 483 484 /// Resolves the result kind of this lookup. 485 void LookupResult::resolveKind() { 486 unsigned N = Decls.size(); 487 488 // Fast case: no possible ambiguity. 489 if (N == 0) { 490 assert(ResultKind == NotFound || 491 ResultKind == NotFoundInCurrentInstantiation); 492 return; 493 } 494 495 // If there's a single decl, we need to examine it to decide what 496 // kind of lookup this is. 497 if (N == 1) { 498 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); 499 if (isa<FunctionTemplateDecl>(D)) 500 ResultKind = FoundOverloaded; 501 else if (isa<UnresolvedUsingValueDecl>(D)) 502 ResultKind = FoundUnresolvedValue; 503 return; 504 } 505 506 // Don't do any extra resolution if we've already resolved as ambiguous. 507 if (ResultKind == Ambiguous) return; 508 509 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; 510 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; 511 512 bool Ambiguous = false; 513 bool ReferenceToPlaceHolderVariable = false; 514 bool HasTag = false, HasFunction = false; 515 bool HasFunctionTemplate = false, HasUnresolved = false; 516 const NamedDecl *HasNonFunction = nullptr; 517 518 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; 519 llvm::BitVector RemovedDecls(N); 520 521 for (unsigned I = 0; I < N; I++) { 522 const NamedDecl *D = Decls[I]->getUnderlyingDecl(); 523 D = cast<NamedDecl>(D->getCanonicalDecl()); 524 525 // Ignore an invalid declaration unless it's the only one left. 526 // Also ignore HLSLBufferDecl which not have name conflict with other Decls. 527 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && 528 N - RemovedDecls.count() > 1) { 529 RemovedDecls.set(I); 530 continue; 531 } 532 533 // C++ [basic.scope.hiding]p2: 534 // A class name or enumeration name can be hidden by the name of 535 // an object, function, or enumerator declared in the same 536 // scope. If a class or enumeration name and an object, function, 537 // or enumerator are declared in the same scope (in any order) 538 // with the same name, the class or enumeration name is hidden 539 // wherever the object, function, or enumerator name is visible. 540 if (HideTags && isa<TagDecl>(D)) { 541 bool Hidden = false; 542 for (auto *OtherDecl : Decls) { 543 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && 544 getContextForScopeMatching(OtherDecl)->Equals( 545 getContextForScopeMatching(Decls[I]))) { 546 RemovedDecls.set(I); 547 Hidden = true; 548 break; 549 } 550 } 551 if (Hidden) 552 continue; 553 } 554 555 std::optional<unsigned> ExistingI; 556 557 // Redeclarations of types via typedef can occur both within a scope 558 // and, through using declarations and directives, across scopes. There is 559 // no ambiguity if they all refer to the same type, so unique based on the 560 // canonical type. 561 if (const auto *TD = dyn_cast<TypeDecl>(D)) { 562 QualType T = getSema().Context.getTypeDeclType(TD); 563 auto UniqueResult = UniqueTypes.insert( 564 std::make_pair(getSema().Context.getCanonicalType(T), I)); 565 if (!UniqueResult.second) { 566 // The type is not unique. 567 ExistingI = UniqueResult.first->second; 568 } 569 } 570 571 // For non-type declarations, check for a prior lookup result naming this 572 // canonical declaration. 573 if (!ExistingI) { 574 auto UniqueResult = Unique.insert(std::make_pair(D, I)); 575 if (!UniqueResult.second) { 576 // We've seen this entity before. 577 ExistingI = UniqueResult.first->second; 578 } 579 } 580 581 if (ExistingI) { 582 // This is not a unique lookup result. Pick one of the results and 583 // discard the other. 584 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], 585 Decls[*ExistingI])) 586 Decls[*ExistingI] = Decls[I]; 587 RemovedDecls.set(I); 588 continue; 589 } 590 591 // Otherwise, do some decl type analysis and then continue. 592 593 if (isa<UnresolvedUsingValueDecl>(D)) { 594 HasUnresolved = true; 595 } else if (isa<TagDecl>(D)) { 596 if (HasTag) 597 Ambiguous = true; 598 HasTag = true; 599 } else if (isa<FunctionTemplateDecl>(D)) { 600 HasFunction = true; 601 HasFunctionTemplate = true; 602 } else if (isa<FunctionDecl>(D)) { 603 HasFunction = true; 604 } else { 605 if (HasNonFunction) { 606 // If we're about to create an ambiguity between two declarations that 607 // are equivalent, but one is an internal linkage declaration from one 608 // module and the other is an internal linkage declaration from another 609 // module, just skip it. 610 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, 611 D)) { 612 EquivalentNonFunctions.push_back(D); 613 RemovedDecls.set(I); 614 continue; 615 } 616 if (D->isPlaceholderVar(getSema().getLangOpts()) && 617 getContextForScopeMatching(D) == 618 getContextForScopeMatching(Decls[I])) { 619 ReferenceToPlaceHolderVariable = true; 620 } 621 Ambiguous = true; 622 } 623 HasNonFunction = D; 624 } 625 } 626 627 // FIXME: This diagnostic should really be delayed until we're done with 628 // the lookup result, in case the ambiguity is resolved by the caller. 629 if (!EquivalentNonFunctions.empty() && !Ambiguous) 630 getSema().diagnoseEquivalentInternalLinkageDeclarations( 631 getNameLoc(), HasNonFunction, EquivalentNonFunctions); 632 633 // Remove decls by replacing them with decls from the end (which 634 // means that we need to iterate from the end) and then truncating 635 // to the new size. 636 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) 637 Decls[I] = Decls[--N]; 638 Decls.truncate(N); 639 640 if ((HasNonFunction && (HasFunction || HasUnresolved)) || 641 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) 642 Ambiguous = true; 643 644 if (Ambiguous && ReferenceToPlaceHolderVariable) 645 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); 646 else if (Ambiguous) 647 setAmbiguous(LookupResult::AmbiguousReference); 648 else if (HasUnresolved) 649 ResultKind = LookupResult::FoundUnresolvedValue; 650 else if (N > 1 || HasFunctionTemplate) 651 ResultKind = LookupResult::FoundOverloaded; 652 else 653 ResultKind = LookupResult::Found; 654 } 655 656 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { 657 CXXBasePaths::const_paths_iterator I, E; 658 for (I = P.begin(), E = P.end(); I != E; ++I) 659 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; 660 ++DI) 661 addDecl(*DI); 662 } 663 664 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { 665 Paths = new CXXBasePaths; 666 Paths->swap(P); 667 addDeclsFromBasePaths(*Paths); 668 resolveKind(); 669 setAmbiguous(AmbiguousBaseSubobjects); 670 } 671 672 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { 673 Paths = new CXXBasePaths; 674 Paths->swap(P); 675 addDeclsFromBasePaths(*Paths); 676 resolveKind(); 677 setAmbiguous(AmbiguousBaseSubobjectTypes); 678 } 679 680 void LookupResult::print(raw_ostream &Out) { 681 Out << Decls.size() << " result(s)"; 682 if (isAmbiguous()) Out << ", ambiguous"; 683 if (Paths) Out << ", base paths present"; 684 685 for (iterator I = begin(), E = end(); I != E; ++I) { 686 Out << "\n"; 687 (*I)->print(Out, 2); 688 } 689 } 690 691 LLVM_DUMP_METHOD void LookupResult::dump() { 692 llvm::errs() << "lookup results for " << getLookupName().getAsString() 693 << ":\n"; 694 for (NamedDecl *D : *this) 695 D->dump(); 696 } 697 698 /// Diagnose a missing builtin type. 699 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, 700 llvm::StringRef Name) { 701 S.Diag(SourceLocation(), diag::err_opencl_type_not_found) 702 << TypeClass << Name; 703 return S.Context.VoidTy; 704 } 705 706 /// Lookup an OpenCL enum type. 707 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { 708 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 709 Sema::LookupTagName); 710 S.LookupName(Result, S.TUScope); 711 if (Result.empty()) 712 return diagOpenCLBuiltinTypeError(S, "enum", Name); 713 EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); 714 if (!Decl) 715 return diagOpenCLBuiltinTypeError(S, "enum", Name); 716 return S.Context.getEnumType(Decl); 717 } 718 719 /// Lookup an OpenCL typedef type. 720 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { 721 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), 722 Sema::LookupOrdinaryName); 723 S.LookupName(Result, S.TUScope); 724 if (Result.empty()) 725 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 726 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); 727 if (!Decl) 728 return diagOpenCLBuiltinTypeError(S, "typedef", Name); 729 return S.Context.getTypedefType(Decl); 730 } 731 732 /// Get the QualType instances of the return type and arguments for an OpenCL 733 /// builtin function signature. 734 /// \param S (in) The Sema instance. 735 /// \param OpenCLBuiltin (in) The signature currently handled. 736 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic 737 /// type used as return type or as argument. 738 /// Only meaningful for generic types, otherwise equals 1. 739 /// \param RetTypes (out) List of the possible return types. 740 /// \param ArgTypes (out) List of the possible argument types. For each 741 /// argument, ArgTypes contains QualTypes for the Cartesian product 742 /// of (vector sizes) x (types) . 743 static void GetQualTypesForOpenCLBuiltin( 744 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, 745 SmallVector<QualType, 1> &RetTypes, 746 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 747 // Get the QualType instances of the return types. 748 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; 749 OCL2Qual(S, TypeTable[Sig], RetTypes); 750 GenTypeMaxCnt = RetTypes.size(); 751 752 // Get the QualType instances of the arguments. 753 // First type is the return type, skip it. 754 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { 755 SmallVector<QualType, 1> Ty; 756 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], 757 Ty); 758 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; 759 ArgTypes.push_back(std::move(Ty)); 760 } 761 } 762 763 /// Create a list of the candidate function overloads for an OpenCL builtin 764 /// function. 765 /// \param Context (in) The ASTContext instance. 766 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic 767 /// type used as return type or as argument. 768 /// Only meaningful for generic types, otherwise equals 1. 769 /// \param FunctionList (out) List of FunctionTypes. 770 /// \param RetTypes (in) List of the possible return types. 771 /// \param ArgTypes (in) List of the possible types for the arguments. 772 static void GetOpenCLBuiltinFctOverloads( 773 ASTContext &Context, unsigned GenTypeMaxCnt, 774 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, 775 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { 776 FunctionProtoType::ExtProtoInfo PI( 777 Context.getDefaultCallingConvention(false, false, true)); 778 PI.Variadic = false; 779 780 // Do not attempt to create any FunctionTypes if there are no return types, 781 // which happens when a type belongs to a disabled extension. 782 if (RetTypes.size() == 0) 783 return; 784 785 // Create FunctionTypes for each (gen)type. 786 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { 787 SmallVector<QualType, 5> ArgList; 788 789 for (unsigned A = 0; A < ArgTypes.size(); A++) { 790 // Bail out if there is an argument that has no available types. 791 if (ArgTypes[A].size() == 0) 792 return; 793 794 // Builtins such as "max" have an "sgentype" argument that represents 795 // the corresponding scalar type of a gentype. The number of gentypes 796 // must be a multiple of the number of sgentypes. 797 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && 798 "argument type count not compatible with gentype type count"); 799 unsigned Idx = IGenType % ArgTypes[A].size(); 800 ArgList.push_back(ArgTypes[A][Idx]); 801 } 802 803 FunctionList.push_back(Context.getFunctionType( 804 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); 805 } 806 } 807 808 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a 809 /// non-null <Index, Len> pair, then the name is referencing an OpenCL 810 /// builtin function. Add all candidate signatures to the LookUpResult. 811 /// 812 /// \param S (in) The Sema instance. 813 /// \param LR (inout) The LookupResult instance. 814 /// \param II (in) The identifier being resolved. 815 /// \param FctIndex (in) Starting index in the BuiltinTable. 816 /// \param Len (in) The signature list has Len elements. 817 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, 818 IdentifierInfo *II, 819 const unsigned FctIndex, 820 const unsigned Len) { 821 // The builtin function declaration uses generic types (gentype). 822 bool HasGenType = false; 823 824 // Maximum number of types contained in a generic type used as return type or 825 // as argument. Only meaningful for generic types, otherwise equals 1. 826 unsigned GenTypeMaxCnt; 827 828 ASTContext &Context = S.Context; 829 830 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { 831 const OpenCLBuiltinStruct &OpenCLBuiltin = 832 BuiltinTable[FctIndex + SignatureIndex]; 833 834 // Ignore this builtin function if it is not available in the currently 835 // selected language version. 836 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), 837 OpenCLBuiltin.Versions)) 838 continue; 839 840 // Ignore this builtin function if it carries an extension macro that is 841 // not defined. This indicates that the extension is not supported by the 842 // target, so the builtin function should not be available. 843 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; 844 if (!Extensions.empty()) { 845 SmallVector<StringRef, 2> ExtVec; 846 Extensions.split(ExtVec, " "); 847 bool AllExtensionsDefined = true; 848 for (StringRef Ext : ExtVec) { 849 if (!S.getPreprocessor().isMacroDefined(Ext)) { 850 AllExtensionsDefined = false; 851 break; 852 } 853 } 854 if (!AllExtensionsDefined) 855 continue; 856 } 857 858 SmallVector<QualType, 1> RetTypes; 859 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; 860 861 // Obtain QualType lists for the function signature. 862 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, 863 ArgTypes); 864 if (GenTypeMaxCnt > 1) { 865 HasGenType = true; 866 } 867 868 // Create function overload for each type combination. 869 std::vector<QualType> FunctionList; 870 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, 871 ArgTypes); 872 873 SourceLocation Loc = LR.getNameLoc(); 874 DeclContext *Parent = Context.getTranslationUnitDecl(); 875 FunctionDecl *NewOpenCLBuiltin; 876 877 for (const auto &FTy : FunctionList) { 878 NewOpenCLBuiltin = FunctionDecl::Create( 879 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, 880 S.getCurFPFeatures().isFPConstrained(), false, 881 FTy->isFunctionProtoType()); 882 NewOpenCLBuiltin->setImplicit(); 883 884 // Create Decl objects for each parameter, adding them to the 885 // FunctionDecl. 886 const auto *FP = cast<FunctionProtoType>(FTy); 887 SmallVector<ParmVarDecl *, 4> ParmList; 888 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { 889 ParmVarDecl *Parm = ParmVarDecl::Create( 890 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), 891 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); 892 Parm->setScopeInfo(0, IParm); 893 ParmList.push_back(Parm); 894 } 895 NewOpenCLBuiltin->setParams(ParmList); 896 897 // Add function attributes. 898 if (OpenCLBuiltin.IsPure) 899 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); 900 if (OpenCLBuiltin.IsConst) 901 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); 902 if (OpenCLBuiltin.IsConv) 903 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); 904 905 if (!S.getLangOpts().OpenCLCPlusPlus) 906 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); 907 908 LR.addDecl(NewOpenCLBuiltin); 909 } 910 } 911 912 // If we added overloads, need to resolve the lookup result. 913 if (Len > 1 || HasGenType) 914 LR.resolveKind(); 915 } 916 917 bool Sema::LookupBuiltin(LookupResult &R) { 918 Sema::LookupNameKind NameKind = R.getLookupKind(); 919 920 // If we didn't find a use of this identifier, and if the identifier 921 // corresponds to a compiler builtin, create the decl object for the builtin 922 // now, injecting it into translation unit scope, and return it. 923 if (NameKind == Sema::LookupOrdinaryName || 924 NameKind == Sema::LookupRedeclarationWithLinkage) { 925 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); 926 if (II) { 927 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { 928 if (II == getASTContext().getMakeIntegerSeqName()) { 929 R.addDecl(getASTContext().getMakeIntegerSeqDecl()); 930 return true; 931 } 932 if (II == getASTContext().getTypePackElementName()) { 933 R.addDecl(getASTContext().getTypePackElementDecl()); 934 return true; 935 } 936 if (II == getASTContext().getBuiltinCommonTypeName()) { 937 R.addDecl(getASTContext().getBuiltinCommonTypeDecl()); 938 return true; 939 } 940 } 941 942 // Check if this is an OpenCL Builtin, and if so, insert its overloads. 943 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { 944 auto Index = isOpenCLBuiltin(II->getName()); 945 if (Index.first) { 946 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, 947 Index.second); 948 return true; 949 } 950 } 951 952 if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) { 953 if (!RISCV().IntrinsicManager) 954 RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this); 955 956 RISCV().IntrinsicManager->InitIntrinsicList(); 957 958 if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) 959 return true; 960 } 961 962 // If this is a builtin on this (or all) targets, create the decl. 963 if (unsigned BuiltinID = II->getBuiltinID()) { 964 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined 965 // library functions like 'malloc'. Instead, we'll just error. 966 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && 967 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 968 return false; 969 970 if (NamedDecl *D = 971 LazilyCreateBuiltin(II, BuiltinID, TUScope, 972 R.isForRedeclaration(), R.getNameLoc())) { 973 R.addDecl(D); 974 return true; 975 } 976 } 977 } 978 } 979 980 return false; 981 } 982 983 /// Looks up the declaration of "struct objc_super" and 984 /// saves it for later use in building builtin declaration of 985 /// objc_msgSendSuper and objc_msgSendSuper_stret. 986 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { 987 ASTContext &Context = Sema.Context; 988 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), 989 Sema::LookupTagName); 990 Sema.LookupName(Result, S); 991 if (Result.getResultKind() == LookupResult::Found) 992 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 993 Context.setObjCSuperType(Context.getTagDeclType(TD)); 994 } 995 996 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { 997 if (ID == Builtin::BIobjc_msgSendSuper) 998 LookupPredefedObjCSuperType(*this, S); 999 } 1000 1001 /// Determine whether we can declare a special member function within 1002 /// the class at this point. 1003 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { 1004 // We need to have a definition for the class. 1005 if (!Class->getDefinition() || Class->isDependentContext()) 1006 return false; 1007 1008 // We can't be in the middle of defining the class. 1009 return !Class->isBeingDefined(); 1010 } 1011 1012 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { 1013 if (!CanDeclareSpecialMemberFunction(Class)) 1014 return; 1015 1016 // If the default constructor has not yet been declared, do so now. 1017 if (Class->needsImplicitDefaultConstructor()) 1018 DeclareImplicitDefaultConstructor(Class); 1019 1020 // If the copy constructor has not yet been declared, do so now. 1021 if (Class->needsImplicitCopyConstructor()) 1022 DeclareImplicitCopyConstructor(Class); 1023 1024 // If the copy assignment operator has not yet been declared, do so now. 1025 if (Class->needsImplicitCopyAssignment()) 1026 DeclareImplicitCopyAssignment(Class); 1027 1028 if (getLangOpts().CPlusPlus11) { 1029 // If the move constructor has not yet been declared, do so now. 1030 if (Class->needsImplicitMoveConstructor()) 1031 DeclareImplicitMoveConstructor(Class); 1032 1033 // If the move assignment operator has not yet been declared, do so now. 1034 if (Class->needsImplicitMoveAssignment()) 1035 DeclareImplicitMoveAssignment(Class); 1036 } 1037 1038 // If the destructor has not yet been declared, do so now. 1039 if (Class->needsImplicitDestructor()) 1040 DeclareImplicitDestructor(Class); 1041 } 1042 1043 /// Determine whether this is the name of an implicitly-declared 1044 /// special member function. 1045 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { 1046 switch (Name.getNameKind()) { 1047 case DeclarationName::CXXConstructorName: 1048 case DeclarationName::CXXDestructorName: 1049 return true; 1050 1051 case DeclarationName::CXXOperatorName: 1052 return Name.getCXXOverloadedOperator() == OO_Equal; 1053 1054 default: 1055 break; 1056 } 1057 1058 return false; 1059 } 1060 1061 /// If there are any implicit member functions with the given name 1062 /// that need to be declared in the given declaration context, do so. 1063 static void DeclareImplicitMemberFunctionsWithName(Sema &S, 1064 DeclarationName Name, 1065 SourceLocation Loc, 1066 const DeclContext *DC) { 1067 if (!DC) 1068 return; 1069 1070 switch (Name.getNameKind()) { 1071 case DeclarationName::CXXConstructorName: 1072 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1073 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1074 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1075 if (Record->needsImplicitDefaultConstructor()) 1076 S.DeclareImplicitDefaultConstructor(Class); 1077 if (Record->needsImplicitCopyConstructor()) 1078 S.DeclareImplicitCopyConstructor(Class); 1079 if (S.getLangOpts().CPlusPlus11 && 1080 Record->needsImplicitMoveConstructor()) 1081 S.DeclareImplicitMoveConstructor(Class); 1082 } 1083 break; 1084 1085 case DeclarationName::CXXDestructorName: 1086 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) 1087 if (Record->getDefinition() && Record->needsImplicitDestructor() && 1088 CanDeclareSpecialMemberFunction(Record)) 1089 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); 1090 break; 1091 1092 case DeclarationName::CXXOperatorName: 1093 if (Name.getCXXOverloadedOperator() != OO_Equal) 1094 break; 1095 1096 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { 1097 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { 1098 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); 1099 if (Record->needsImplicitCopyAssignment()) 1100 S.DeclareImplicitCopyAssignment(Class); 1101 if (S.getLangOpts().CPlusPlus11 && 1102 Record->needsImplicitMoveAssignment()) 1103 S.DeclareImplicitMoveAssignment(Class); 1104 } 1105 } 1106 break; 1107 1108 case DeclarationName::CXXDeductionGuideName: 1109 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); 1110 break; 1111 1112 default: 1113 break; 1114 } 1115 } 1116 1117 // Adds all qualifying matches for a name within a decl context to the 1118 // given lookup result. Returns true if any matches were found. 1119 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { 1120 bool Found = false; 1121 1122 // Lazily declare C++ special member functions. 1123 if (S.getLangOpts().CPlusPlus) 1124 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), 1125 DC); 1126 1127 // Perform lookup into this declaration context. 1128 DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); 1129 for (NamedDecl *D : DR) { 1130 if ((D = R.getAcceptableDecl(D))) { 1131 R.addDecl(D); 1132 Found = true; 1133 } 1134 } 1135 1136 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) 1137 return true; 1138 1139 if (R.getLookupName().getNameKind() 1140 != DeclarationName::CXXConversionFunctionName || 1141 R.getLookupName().getCXXNameType()->isDependentType() || 1142 !isa<CXXRecordDecl>(DC)) 1143 return Found; 1144 1145 // C++ [temp.mem]p6: 1146 // A specialization of a conversion function template is not found by 1147 // name lookup. Instead, any conversion function templates visible in the 1148 // context of the use are considered. [...] 1149 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 1150 if (!Record->isCompleteDefinition()) 1151 return Found; 1152 1153 // For conversion operators, 'operator auto' should only match 1154 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered 1155 // as a candidate for template substitution. 1156 auto *ContainedDeducedType = 1157 R.getLookupName().getCXXNameType()->getContainedDeducedType(); 1158 if (R.getLookupName().getNameKind() == 1159 DeclarationName::CXXConversionFunctionName && 1160 ContainedDeducedType && ContainedDeducedType->isUndeducedType()) 1161 return Found; 1162 1163 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), 1164 UEnd = Record->conversion_end(); U != UEnd; ++U) { 1165 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); 1166 if (!ConvTemplate) 1167 continue; 1168 1169 // When we're performing lookup for the purposes of redeclaration, just 1170 // add the conversion function template. When we deduce template 1171 // arguments for specializations, we'll end up unifying the return 1172 // type of the new declaration with the type of the function template. 1173 if (R.isForRedeclaration()) { 1174 R.addDecl(ConvTemplate); 1175 Found = true; 1176 continue; 1177 } 1178 1179 // C++ [temp.mem]p6: 1180 // [...] For each such operator, if argument deduction succeeds 1181 // (14.9.2.3), the resulting specialization is used as if found by 1182 // name lookup. 1183 // 1184 // When referencing a conversion function for any purpose other than 1185 // a redeclaration (such that we'll be building an expression with the 1186 // result), perform template argument deduction and place the 1187 // specialization into the result set. We do this to avoid forcing all 1188 // callers to perform special deduction for conversion functions. 1189 TemplateDeductionInfo Info(R.getNameLoc()); 1190 FunctionDecl *Specialization = nullptr; 1191 1192 const FunctionProtoType *ConvProto 1193 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); 1194 assert(ConvProto && "Nonsensical conversion function template type"); 1195 1196 // Compute the type of the function that we would expect the conversion 1197 // function to have, if it were to match the name given. 1198 // FIXME: Calling convention! 1199 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); 1200 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); 1201 EPI.ExceptionSpec = EST_None; 1202 QualType ExpectedType = R.getSema().Context.getFunctionType( 1203 R.getLookupName().getCXXNameType(), std::nullopt, EPI); 1204 1205 // Perform template argument deduction against the type that we would 1206 // expect the function to have. 1207 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, 1208 Specialization, Info) == 1209 TemplateDeductionResult::Success) { 1210 R.addDecl(Specialization); 1211 Found = true; 1212 } 1213 } 1214 1215 return Found; 1216 } 1217 1218 // Performs C++ unqualified lookup into the given file context. 1219 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, 1220 const DeclContext *NS, 1221 UnqualUsingDirectiveSet &UDirs) { 1222 1223 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); 1224 1225 // Perform direct name lookup into the LookupCtx. 1226 bool Found = LookupDirect(S, R, NS); 1227 1228 // Perform direct name lookup into the namespaces nominated by the 1229 // using directives whose common ancestor is this namespace. 1230 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) 1231 if (LookupDirect(S, R, UUE.getNominatedNamespace())) 1232 Found = true; 1233 1234 R.resolveKind(); 1235 1236 return Found; 1237 } 1238 1239 static bool isNamespaceOrTranslationUnitScope(Scope *S) { 1240 if (DeclContext *Ctx = S->getEntity()) 1241 return Ctx->isFileContext(); 1242 return false; 1243 } 1244 1245 /// Find the outer declaration context from this scope. This indicates the 1246 /// context that we should search up to (exclusive) before considering the 1247 /// parent of the specified scope. 1248 static DeclContext *findOuterContext(Scope *S) { 1249 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) 1250 if (DeclContext *DC = OuterS->getLookupEntity()) 1251 return DC; 1252 return nullptr; 1253 } 1254 1255 namespace { 1256 /// An RAII object to specify that we want to find block scope extern 1257 /// declarations. 1258 struct FindLocalExternScope { 1259 FindLocalExternScope(LookupResult &R) 1260 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & 1261 Decl::IDNS_LocalExtern) { 1262 R.setFindLocalExtern(R.getIdentifierNamespace() & 1263 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); 1264 } 1265 void restore() { 1266 R.setFindLocalExtern(OldFindLocalExtern); 1267 } 1268 ~FindLocalExternScope() { 1269 restore(); 1270 } 1271 LookupResult &R; 1272 bool OldFindLocalExtern; 1273 }; 1274 } // end anonymous namespace 1275 1276 bool Sema::CppLookupName(LookupResult &R, Scope *S) { 1277 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); 1278 1279 DeclarationName Name = R.getLookupName(); 1280 Sema::LookupNameKind NameKind = R.getLookupKind(); 1281 1282 // If this is the name of an implicitly-declared special member function, 1283 // go through the scope stack to implicitly declare 1284 if (isImplicitlyDeclaredMemberFunctionName(Name)) { 1285 for (Scope *PreS = S; PreS; PreS = PreS->getParent()) 1286 if (DeclContext *DC = PreS->getEntity()) 1287 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); 1288 } 1289 1290 // C++23 [temp.dep.general]p2: 1291 // The component name of an unqualified-id is dependent if 1292 // - it is a conversion-function-id whose conversion-type-id 1293 // is dependent, or 1294 // - it is operator= and the current class is a templated entity, or 1295 // - the unqualified-id is the postfix-expression in a dependent call. 1296 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 1297 Name.getCXXNameType()->isDependentType()) { 1298 R.setNotFoundInCurrentInstantiation(); 1299 return false; 1300 } 1301 1302 // Implicitly declare member functions with the name we're looking for, if in 1303 // fact we are in a scope where it matters. 1304 1305 Scope *Initial = S; 1306 IdentifierResolver::iterator 1307 I = IdResolver.begin(Name), 1308 IEnd = IdResolver.end(); 1309 1310 // First we lookup local scope. 1311 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] 1312 // ...During unqualified name lookup (3.4.1), the names appear as if 1313 // they were declared in the nearest enclosing namespace which contains 1314 // both the using-directive and the nominated namespace. 1315 // [Note: in this context, "contains" means "contains directly or 1316 // indirectly". 1317 // 1318 // For example: 1319 // namespace A { int i; } 1320 // void foo() { 1321 // int i; 1322 // { 1323 // using namespace A; 1324 // ++i; // finds local 'i', A::i appears at global scope 1325 // } 1326 // } 1327 // 1328 UnqualUsingDirectiveSet UDirs(*this); 1329 bool VisitedUsingDirectives = false; 1330 bool LeftStartingScope = false; 1331 1332 // When performing a scope lookup, we want to find local extern decls. 1333 FindLocalExternScope FindLocals(R); 1334 1335 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { 1336 bool SearchNamespaceScope = true; 1337 // Check whether the IdResolver has anything in this scope. 1338 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1339 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1340 if (NameKind == LookupRedeclarationWithLinkage && 1341 !(*I)->isTemplateParameter()) { 1342 // If it's a template parameter, we still find it, so we can diagnose 1343 // the invalid redeclaration. 1344 1345 // Determine whether this (or a previous) declaration is 1346 // out-of-scope. 1347 if (!LeftStartingScope && !Initial->isDeclScope(*I)) 1348 LeftStartingScope = true; 1349 1350 // If we found something outside of our starting scope that 1351 // does not have linkage, skip it. 1352 if (LeftStartingScope && !((*I)->hasLinkage())) { 1353 R.setShadowed(); 1354 continue; 1355 } 1356 } else { 1357 // We found something in this scope, we should not look at the 1358 // namespace scope 1359 SearchNamespaceScope = false; 1360 } 1361 R.addDecl(ND); 1362 } 1363 } 1364 if (!SearchNamespaceScope) { 1365 R.resolveKind(); 1366 if (S->isClassScope()) 1367 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) 1368 R.setNamingClass(Record); 1369 return true; 1370 } 1371 1372 if (NameKind == LookupLocalFriendName && !S->isClassScope()) { 1373 // C++11 [class.friend]p11: 1374 // If a friend declaration appears in a local class and the name 1375 // specified is an unqualified name, a prior declaration is 1376 // looked up without considering scopes that are outside the 1377 // innermost enclosing non-class scope. 1378 return false; 1379 } 1380 1381 if (DeclContext *Ctx = S->getLookupEntity()) { 1382 DeclContext *OuterCtx = findOuterContext(S); 1383 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1384 // We do not directly look into transparent contexts, since 1385 // those entities will be found in the nearest enclosing 1386 // non-transparent context. 1387 if (Ctx->isTransparentContext()) 1388 continue; 1389 1390 // We do not look directly into function or method contexts, 1391 // since all of the local variables and parameters of the 1392 // function/method are present within the Scope. 1393 if (Ctx->isFunctionOrMethod()) { 1394 // If we have an Objective-C instance method, look for ivars 1395 // in the corresponding interface. 1396 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 1397 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) 1398 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { 1399 ObjCInterfaceDecl *ClassDeclared; 1400 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( 1401 Name.getAsIdentifierInfo(), 1402 ClassDeclared)) { 1403 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { 1404 R.addDecl(ND); 1405 R.resolveKind(); 1406 return true; 1407 } 1408 } 1409 } 1410 } 1411 1412 continue; 1413 } 1414 1415 // If this is a file context, we need to perform unqualified name 1416 // lookup considering using directives. 1417 if (Ctx->isFileContext()) { 1418 // If we haven't handled using directives yet, do so now. 1419 if (!VisitedUsingDirectives) { 1420 // Add using directives from this context up to the top level. 1421 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { 1422 if (UCtx->isTransparentContext()) 1423 continue; 1424 1425 UDirs.visit(UCtx, UCtx); 1426 } 1427 1428 // Find the innermost file scope, so we can add using directives 1429 // from local scopes. 1430 Scope *InnermostFileScope = S; 1431 while (InnermostFileScope && 1432 !isNamespaceOrTranslationUnitScope(InnermostFileScope)) 1433 InnermostFileScope = InnermostFileScope->getParent(); 1434 UDirs.visitScopeChain(Initial, InnermostFileScope); 1435 1436 UDirs.done(); 1437 1438 VisitedUsingDirectives = true; 1439 } 1440 1441 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { 1442 R.resolveKind(); 1443 return true; 1444 } 1445 1446 continue; 1447 } 1448 1449 // Perform qualified name lookup into this context. 1450 // FIXME: In some cases, we know that every name that could be found by 1451 // this qualified name lookup will also be on the identifier chain. For 1452 // example, inside a class without any base classes, we never need to 1453 // perform qualified lookup because all of the members are on top of the 1454 // identifier chain. 1455 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) 1456 return true; 1457 } 1458 } 1459 } 1460 1461 // Stop if we ran out of scopes. 1462 // FIXME: This really, really shouldn't be happening. 1463 if (!S) return false; 1464 1465 // If we are looking for members, no need to look into global/namespace scope. 1466 if (NameKind == LookupMemberName) 1467 return false; 1468 1469 // Collect UsingDirectiveDecls in all scopes, and recursively all 1470 // nominated namespaces by those using-directives. 1471 // 1472 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we 1473 // don't build it for each lookup! 1474 if (!VisitedUsingDirectives) { 1475 UDirs.visitScopeChain(Initial, S); 1476 UDirs.done(); 1477 } 1478 1479 // If we're not performing redeclaration lookup, do not look for local 1480 // extern declarations outside of a function scope. 1481 if (!R.isForRedeclaration()) 1482 FindLocals.restore(); 1483 1484 // Lookup namespace scope, and global scope. 1485 // Unqualified name lookup in C++ requires looking into scopes 1486 // that aren't strictly lexical, and therefore we walk through the 1487 // context as well as walking through the scopes. 1488 for (; S; S = S->getParent()) { 1489 // Check whether the IdResolver has anything in this scope. 1490 bool Found = false; 1491 for (; I != IEnd && S->isDeclScope(*I); ++I) { 1492 if (NamedDecl *ND = R.getAcceptableDecl(*I)) { 1493 // We found something. Look for anything else in our scope 1494 // with this same name and in an acceptable identifier 1495 // namespace, so that we can construct an overload set if we 1496 // need to. 1497 Found = true; 1498 R.addDecl(ND); 1499 } 1500 } 1501 1502 if (Found && S->isTemplateParamScope()) { 1503 R.resolveKind(); 1504 return true; 1505 } 1506 1507 DeclContext *Ctx = S->getLookupEntity(); 1508 if (Ctx) { 1509 DeclContext *OuterCtx = findOuterContext(S); 1510 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { 1511 // We do not directly look into transparent contexts, since 1512 // those entities will be found in the nearest enclosing 1513 // non-transparent context. 1514 if (Ctx->isTransparentContext()) 1515 continue; 1516 1517 // If we have a context, and it's not a context stashed in the 1518 // template parameter scope for an out-of-line definition, also 1519 // look into that context. 1520 if (!(Found && S->isTemplateParamScope())) { 1521 assert(Ctx->isFileContext() && 1522 "We should have been looking only at file context here already."); 1523 1524 // Look into context considering using-directives. 1525 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) 1526 Found = true; 1527 } 1528 1529 if (Found) { 1530 R.resolveKind(); 1531 return true; 1532 } 1533 1534 if (R.isForRedeclaration() && !Ctx->isTransparentContext()) 1535 return false; 1536 } 1537 } 1538 1539 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) 1540 return false; 1541 } 1542 1543 return !R.empty(); 1544 } 1545 1546 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { 1547 if (auto *M = getCurrentModule()) 1548 Context.mergeDefinitionIntoModule(ND, M); 1549 else 1550 // We're not building a module; just make the definition visible. 1551 ND->setVisibleDespiteOwningModule(); 1552 1553 // If ND is a template declaration, make the template parameters 1554 // visible too. They're not (necessarily) within a mergeable DeclContext. 1555 if (auto *TD = dyn_cast<TemplateDecl>(ND)) 1556 for (auto *Param : *TD->getTemplateParameters()) 1557 makeMergedDefinitionVisible(Param); 1558 } 1559 1560 /// Find the module in which the given declaration was defined. 1561 static Module *getDefiningModule(Sema &S, Decl *Entity) { 1562 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { 1563 // If this function was instantiated from a template, the defining module is 1564 // the module containing the pattern. 1565 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) 1566 Entity = Pattern; 1567 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { 1568 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) 1569 Entity = Pattern; 1570 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { 1571 if (auto *Pattern = ED->getTemplateInstantiationPattern()) 1572 Entity = Pattern; 1573 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { 1574 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) 1575 Entity = Pattern; 1576 } 1577 1578 // Walk up to the containing context. That might also have been instantiated 1579 // from a template. 1580 DeclContext *Context = Entity->getLexicalDeclContext(); 1581 if (Context->isFileContext()) 1582 return S.getOwningModule(Entity); 1583 return getDefiningModule(S, cast<Decl>(Context)); 1584 } 1585 1586 llvm::DenseSet<Module*> &Sema::getLookupModules() { 1587 unsigned N = CodeSynthesisContexts.size(); 1588 for (unsigned I = CodeSynthesisContextLookupModules.size(); 1589 I != N; ++I) { 1590 Module *M = CodeSynthesisContexts[I].Entity ? 1591 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : 1592 nullptr; 1593 if (M && !LookupModulesCache.insert(M).second) 1594 M = nullptr; 1595 CodeSynthesisContextLookupModules.push_back(M); 1596 } 1597 return LookupModulesCache; 1598 } 1599 1600 bool Sema::isUsableModule(const Module *M) { 1601 assert(M && "We shouldn't check nullness for module here"); 1602 // Return quickly if we cached the result. 1603 if (UsableModuleUnitsCache.count(M)) 1604 return true; 1605 1606 // If M is the global module fragment of the current translation unit. So it 1607 // should be usable. 1608 // [module.global.frag]p1: 1609 // The global module fragment can be used to provide declarations that are 1610 // attached to the global module and usable within the module unit. 1611 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { 1612 UsableModuleUnitsCache.insert(M); 1613 return true; 1614 } 1615 1616 // Otherwise, the global module fragment from other translation unit is not 1617 // directly usable. 1618 if (M->isGlobalModule()) 1619 return false; 1620 1621 Module *Current = getCurrentModule(); 1622 1623 // If we're not parsing a module, we can't use all the declarations from 1624 // another module easily. 1625 if (!Current) 1626 return false; 1627 1628 // If M is the module we're parsing or M and the current module unit lives in 1629 // the same module, M should be usable. 1630 // 1631 // Note: It should be fine to search the vector `ModuleScopes` linearly since 1632 // it should be generally small enough. There should be rare module fragments 1633 // in a named module unit. 1634 if (llvm::count_if(ModuleScopes, 1635 [&M](const ModuleScope &MS) { return MS.Module == M; }) || 1636 getASTContext().isInSameModule(M, Current)) { 1637 UsableModuleUnitsCache.insert(M); 1638 return true; 1639 } 1640 1641 return false; 1642 } 1643 1644 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { 1645 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1646 if (isModuleVisible(Merged)) 1647 return true; 1648 return false; 1649 } 1650 1651 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { 1652 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) 1653 if (isUsableModule(Merged)) 1654 return true; 1655 return false; 1656 } 1657 1658 template <typename ParmDecl> 1659 static bool 1660 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, 1661 llvm::SmallVectorImpl<Module *> *Modules, 1662 Sema::AcceptableKind Kind) { 1663 if (!D->hasDefaultArgument()) 1664 return false; 1665 1666 llvm::SmallPtrSet<const ParmDecl *, 4> Visited; 1667 while (D && Visited.insert(D).second) { 1668 auto &DefaultArg = D->getDefaultArgStorage(); 1669 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) 1670 return true; 1671 1672 if (!DefaultArg.isInherited() && Modules) { 1673 auto *NonConstD = const_cast<ParmDecl*>(D); 1674 Modules->push_back(S.getOwningModule(NonConstD)); 1675 } 1676 1677 // If there was a previous default argument, maybe its parameter is 1678 // acceptable. 1679 D = DefaultArg.getInheritedFrom(); 1680 } 1681 return false; 1682 } 1683 1684 bool Sema::hasAcceptableDefaultArgument( 1685 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, 1686 Sema::AcceptableKind Kind) { 1687 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) 1688 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1689 1690 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) 1691 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); 1692 1693 return ::hasAcceptableDefaultArgument( 1694 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); 1695 } 1696 1697 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, 1698 llvm::SmallVectorImpl<Module *> *Modules) { 1699 return hasAcceptableDefaultArgument(D, Modules, 1700 Sema::AcceptableKind::Visible); 1701 } 1702 1703 bool Sema::hasReachableDefaultArgument( 1704 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1705 return hasAcceptableDefaultArgument(D, Modules, 1706 Sema::AcceptableKind::Reachable); 1707 } 1708 1709 template <typename Filter> 1710 static bool 1711 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, 1712 llvm::SmallVectorImpl<Module *> *Modules, Filter F, 1713 Sema::AcceptableKind Kind) { 1714 bool HasFilteredRedecls = false; 1715 1716 for (auto *Redecl : D->redecls()) { 1717 auto *R = cast<NamedDecl>(Redecl); 1718 if (!F(R)) 1719 continue; 1720 1721 if (S.isAcceptable(R, Kind)) 1722 return true; 1723 1724 HasFilteredRedecls = true; 1725 1726 if (Modules) 1727 Modules->push_back(R->getOwningModule()); 1728 } 1729 1730 // Only return false if there is at least one redecl that is not filtered out. 1731 if (HasFilteredRedecls) 1732 return false; 1733 1734 return true; 1735 } 1736 1737 static bool 1738 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, 1739 llvm::SmallVectorImpl<Module *> *Modules, 1740 Sema::AcceptableKind Kind) { 1741 return hasAcceptableDeclarationImpl( 1742 S, D, Modules, 1743 [](const NamedDecl *D) { 1744 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 1745 return RD->getTemplateSpecializationKind() == 1746 TSK_ExplicitSpecialization; 1747 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1748 return FD->getTemplateSpecializationKind() == 1749 TSK_ExplicitSpecialization; 1750 if (auto *VD = dyn_cast<VarDecl>(D)) 1751 return VD->getTemplateSpecializationKind() == 1752 TSK_ExplicitSpecialization; 1753 llvm_unreachable("unknown explicit specialization kind"); 1754 }, 1755 Kind); 1756 } 1757 1758 bool Sema::hasVisibleExplicitSpecialization( 1759 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1760 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1761 Sema::AcceptableKind::Visible); 1762 } 1763 1764 bool Sema::hasReachableExplicitSpecialization( 1765 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1766 return ::hasAcceptableExplicitSpecialization(*this, D, Modules, 1767 Sema::AcceptableKind::Reachable); 1768 } 1769 1770 static bool 1771 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, 1772 llvm::SmallVectorImpl<Module *> *Modules, 1773 Sema::AcceptableKind Kind) { 1774 assert(isa<CXXRecordDecl>(D->getDeclContext()) && 1775 "not a member specialization"); 1776 return hasAcceptableDeclarationImpl( 1777 S, D, Modules, 1778 [](const NamedDecl *D) { 1779 // If the specialization is declared at namespace scope, then it's a 1780 // member specialization declaration. If it's lexically inside the class 1781 // definition then it was instantiated. 1782 // 1783 // FIXME: This is a hack. There should be a better way to determine 1784 // this. 1785 // FIXME: What about MS-style explicit specializations declared within a 1786 // class definition? 1787 return D->getLexicalDeclContext()->isFileContext(); 1788 }, 1789 Kind); 1790 } 1791 1792 bool Sema::hasVisibleMemberSpecialization( 1793 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1794 return hasAcceptableMemberSpecialization(*this, D, Modules, 1795 Sema::AcceptableKind::Visible); 1796 } 1797 1798 bool Sema::hasReachableMemberSpecialization( 1799 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 1800 return hasAcceptableMemberSpecialization(*this, D, Modules, 1801 Sema::AcceptableKind::Reachable); 1802 } 1803 1804 /// Determine whether a declaration is acceptable to name lookup. 1805 /// 1806 /// This routine determines whether the declaration D is acceptable in the 1807 /// current lookup context, taking into account the current template 1808 /// instantiation stack. During template instantiation, a declaration is 1809 /// acceptable if it is acceptable from a module containing any entity on the 1810 /// template instantiation path (by instantiating a template, you allow it to 1811 /// see the declarations that your module can see, including those later on in 1812 /// your module). 1813 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, 1814 Sema::AcceptableKind Kind) { 1815 assert(!D->isUnconditionallyVisible() && 1816 "should not call this: not in slow case"); 1817 1818 Module *DeclModule = SemaRef.getOwningModule(D); 1819 assert(DeclModule && "hidden decl has no owning module"); 1820 1821 // If the owning module is visible, the decl is acceptable. 1822 if (SemaRef.isModuleVisible(DeclModule, 1823 D->isInvisibleOutsideTheOwningModule())) 1824 return true; 1825 1826 // Determine whether a decl context is a file context for the purpose of 1827 // visibility/reachability. This looks through some (export and linkage spec) 1828 // transparent contexts, but not others (enums). 1829 auto IsEffectivelyFileContext = [](const DeclContext *DC) { 1830 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || 1831 isa<ExportDecl>(DC); 1832 }; 1833 1834 // If this declaration is not at namespace scope 1835 // then it is acceptable if its lexical parent has a acceptable definition. 1836 DeclContext *DC = D->getLexicalDeclContext(); 1837 if (DC && !IsEffectivelyFileContext(DC)) { 1838 // For a parameter, check whether our current template declaration's 1839 // lexical context is acceptable, not whether there's some other acceptable 1840 // definition of it, because parameters aren't "within" the definition. 1841 // 1842 // In C++ we need to check for a acceptable definition due to ODR merging, 1843 // and in C we must not because each declaration of a function gets its own 1844 // set of declarations for tags in prototype scope. 1845 bool AcceptableWithinParent; 1846 if (D->isTemplateParameter()) { 1847 bool SearchDefinitions = true; 1848 if (const auto *DCD = dyn_cast<Decl>(DC)) { 1849 if (const auto *TD = DCD->getDescribedTemplate()) { 1850 TemplateParameterList *TPL = TD->getTemplateParameters(); 1851 auto Index = getDepthAndIndex(D).second; 1852 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; 1853 } 1854 } 1855 if (SearchDefinitions) 1856 AcceptableWithinParent = 1857 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1858 else 1859 AcceptableWithinParent = 1860 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1861 } else if (isa<ParmVarDecl>(D) || 1862 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) 1863 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); 1864 else if (D->isModulePrivate()) { 1865 // A module-private declaration is only acceptable if an enclosing lexical 1866 // parent was merged with another definition in the current module. 1867 AcceptableWithinParent = false; 1868 do { 1869 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { 1870 AcceptableWithinParent = true; 1871 break; 1872 } 1873 DC = DC->getLexicalParent(); 1874 } while (!IsEffectivelyFileContext(DC)); 1875 } else { 1876 AcceptableWithinParent = 1877 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); 1878 } 1879 1880 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && 1881 Kind == Sema::AcceptableKind::Visible && 1882 // FIXME: Do something better in this case. 1883 !SemaRef.getLangOpts().ModulesLocalVisibility) { 1884 // Cache the fact that this declaration is implicitly visible because 1885 // its parent has a visible definition. 1886 D->setVisibleDespiteOwningModule(); 1887 } 1888 return AcceptableWithinParent; 1889 } 1890 1891 if (Kind == Sema::AcceptableKind::Visible) 1892 return false; 1893 1894 assert(Kind == Sema::AcceptableKind::Reachable && 1895 "Additional Sema::AcceptableKind?"); 1896 return isReachableSlow(SemaRef, D); 1897 } 1898 1899 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { 1900 // The module might be ordinarily visible. For a module-private query, that 1901 // means it is part of the current module. 1902 if (ModulePrivate && isUsableModule(M)) 1903 return true; 1904 1905 // For a query which is not module-private, that means it is in our visible 1906 // module set. 1907 if (!ModulePrivate && VisibleModules.isVisible(M)) 1908 return true; 1909 1910 // Otherwise, it might be visible by virtue of the query being within a 1911 // template instantiation or similar that is permitted to look inside M. 1912 1913 // Find the extra places where we need to look. 1914 const auto &LookupModules = getLookupModules(); 1915 if (LookupModules.empty()) 1916 return false; 1917 1918 // If our lookup set contains the module, it's visible. 1919 if (LookupModules.count(M)) 1920 return true; 1921 1922 // The global module fragments are visible to its corresponding module unit. 1923 // So the global module fragment should be visible if the its corresponding 1924 // module unit is visible. 1925 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) 1926 return true; 1927 1928 // For a module-private query, that's everywhere we get to look. 1929 if (ModulePrivate) 1930 return false; 1931 1932 // Check whether M is transitively exported to an import of the lookup set. 1933 return llvm::any_of(LookupModules, [&](const Module *LookupM) { 1934 return LookupM->isModuleVisible(M); 1935 }); 1936 } 1937 1938 // FIXME: Return false directly if we don't have an interface dependency on the 1939 // translation unit containing D. 1940 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { 1941 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); 1942 1943 Module *DeclModule = SemaRef.getOwningModule(D); 1944 assert(DeclModule && "hidden decl has no owning module"); 1945 1946 // Entities in header like modules are reachable only if they're visible. 1947 if (DeclModule->isHeaderLikeModule()) 1948 return false; 1949 1950 if (!D->isInAnotherModuleUnit()) 1951 return true; 1952 1953 // [module.reach]/p3: 1954 // A declaration D is reachable from a point P if: 1955 // ... 1956 // - D is not discarded ([module.global.frag]), appears in a translation unit 1957 // that is reachable from P, and does not appear within a private module 1958 // fragment. 1959 // 1960 // A declaration that's discarded in the GMF should be module-private. 1961 if (D->isModulePrivate()) 1962 return false; 1963 1964 // [module.reach]/p1 1965 // A translation unit U is necessarily reachable from a point P if U is a 1966 // module interface unit on which the translation unit containing P has an 1967 // interface dependency, or the translation unit containing P imports U, in 1968 // either case prior to P ([module.import]). 1969 // 1970 // [module.import]/p10 1971 // A translation unit has an interface dependency on a translation unit U if 1972 // it contains a declaration (possibly a module-declaration) that imports U 1973 // or if it has an interface dependency on a translation unit that has an 1974 // interface dependency on U. 1975 // 1976 // So we could conclude the module unit U is necessarily reachable if: 1977 // (1) The module unit U is module interface unit. 1978 // (2) The current unit has an interface dependency on the module unit U. 1979 // 1980 // Here we only check for the first condition. Since we couldn't see 1981 // DeclModule if it isn't (transitively) imported. 1982 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) 1983 return true; 1984 1985 // [module.reach]/p2 1986 // Additional translation units on 1987 // which the point within the program has an interface dependency may be 1988 // considered reachable, but it is unspecified which are and under what 1989 // circumstances. 1990 // 1991 // The decision here is to treat all additional tranditional units as 1992 // unreachable. 1993 return false; 1994 } 1995 1996 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { 1997 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); 1998 } 1999 2000 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { 2001 // FIXME: If there are both visible and hidden declarations, we need to take 2002 // into account whether redeclaration is possible. Example: 2003 // 2004 // Non-imported module: 2005 // int f(T); // #1 2006 // Some TU: 2007 // static int f(U); // #2, not a redeclaration of #1 2008 // int f(T); // #3, finds both, should link with #1 if T != U, but 2009 // // with #2 if T == U; neither should be ambiguous. 2010 for (auto *D : R) { 2011 if (isVisible(D)) 2012 return true; 2013 assert(D->isExternallyDeclarable() && 2014 "should not have hidden, non-externally-declarable result here"); 2015 } 2016 2017 // This function is called once "New" is essentially complete, but before a 2018 // previous declaration is attached. We can't query the linkage of "New" in 2019 // general, because attaching the previous declaration can change the 2020 // linkage of New to match the previous declaration. 2021 // 2022 // However, because we've just determined that there is no *visible* prior 2023 // declaration, we can compute the linkage here. There are two possibilities: 2024 // 2025 // * This is not a redeclaration; it's safe to compute the linkage now. 2026 // 2027 // * This is a redeclaration of a prior declaration that is externally 2028 // redeclarable. In that case, the linkage of the declaration is not 2029 // changed by attaching the prior declaration, because both are externally 2030 // declarable (and thus ExternalLinkage or VisibleNoLinkage). 2031 // 2032 // FIXME: This is subtle and fragile. 2033 return New->isExternallyDeclarable(); 2034 } 2035 2036 /// Retrieve the visible declaration corresponding to D, if any. 2037 /// 2038 /// This routine determines whether the declaration D is visible in the current 2039 /// module, with the current imports. If not, it checks whether any 2040 /// redeclaration of D is visible, and if so, returns that declaration. 2041 /// 2042 /// \returns D, or a visible previous declaration of D, whichever is more recent 2043 /// and visible. If no declaration of D is visible, returns null. 2044 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, 2045 unsigned IDNS) { 2046 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); 2047 2048 for (auto *RD : D->redecls()) { 2049 // Don't bother with extra checks if we already know this one isn't visible. 2050 if (RD == D) 2051 continue; 2052 2053 auto ND = cast<NamedDecl>(RD); 2054 // FIXME: This is wrong in the case where the previous declaration is not 2055 // visible in the same scope as D. This needs to be done much more 2056 // carefully. 2057 if (ND->isInIdentifierNamespace(IDNS) && 2058 LookupResult::isAvailableForLookup(SemaRef, ND)) 2059 return ND; 2060 } 2061 2062 return nullptr; 2063 } 2064 2065 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, 2066 llvm::SmallVectorImpl<Module *> *Modules) { 2067 assert(!isVisible(D) && "not in slow case"); 2068 return hasAcceptableDeclarationImpl( 2069 *this, D, Modules, [](const NamedDecl *) { return true; }, 2070 Sema::AcceptableKind::Visible); 2071 } 2072 2073 bool Sema::hasReachableDeclarationSlow( 2074 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { 2075 assert(!isReachable(D) && "not in slow case"); 2076 return hasAcceptableDeclarationImpl( 2077 *this, D, Modules, [](const NamedDecl *) { return true; }, 2078 Sema::AcceptableKind::Reachable); 2079 } 2080 2081 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { 2082 if (auto *ND = dyn_cast<NamespaceDecl>(D)) { 2083 // Namespaces are a bit of a special case: we expect there to be a lot of 2084 // redeclarations of some namespaces, all declarations of a namespace are 2085 // essentially interchangeable, all declarations are found by name lookup 2086 // if any is, and namespaces are never looked up during template 2087 // instantiation. So we benefit from caching the check in this case, and 2088 // it is correct to do so. 2089 auto *Key = ND->getCanonicalDecl(); 2090 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) 2091 return Acceptable; 2092 auto *Acceptable = isVisible(getSema(), Key) 2093 ? Key 2094 : findAcceptableDecl(getSema(), Key, IDNS); 2095 if (Acceptable) 2096 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); 2097 return Acceptable; 2098 } 2099 2100 return findAcceptableDecl(getSema(), D, IDNS); 2101 } 2102 2103 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { 2104 // If this declaration is already visible, return it directly. 2105 if (D->isUnconditionallyVisible()) 2106 return true; 2107 2108 // During template instantiation, we can refer to hidden declarations, if 2109 // they were visible in any module along the path of instantiation. 2110 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); 2111 } 2112 2113 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { 2114 if (D->isUnconditionallyVisible()) 2115 return true; 2116 2117 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); 2118 } 2119 2120 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { 2121 // We should check the visibility at the callsite already. 2122 if (isVisible(SemaRef, ND)) 2123 return true; 2124 2125 // Deduction guide lives in namespace scope generally, but it is just a 2126 // hint to the compilers. What we actually lookup for is the generated member 2127 // of the corresponding template. So it is sufficient to check the 2128 // reachability of the template decl. 2129 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) 2130 return SemaRef.hasReachableDefinition(DeductionGuide); 2131 2132 // FIXME: The lookup for allocation function is a standalone process. 2133 // (We can find the logics in Sema::FindAllocationFunctions) 2134 // 2135 // Such structure makes it a problem when we instantiate a template 2136 // declaration using placement allocation function if the placement 2137 // allocation function is invisible. 2138 // (See https://github.com/llvm/llvm-project/issues/59601) 2139 // 2140 // Here we workaround it by making the placement allocation functions 2141 // always acceptable. The downside is that we can't diagnose the direct 2142 // use of the invisible placement allocation functions. (Although such uses 2143 // should be rare). 2144 if (auto *FD = dyn_cast<FunctionDecl>(ND); 2145 FD && FD->isReservedGlobalPlacementOperator()) 2146 return true; 2147 2148 auto *DC = ND->getDeclContext(); 2149 // If ND is not visible and it is at namespace scope, it shouldn't be found 2150 // by name lookup. 2151 if (DC->isFileContext()) 2152 return false; 2153 2154 // [module.interface]p7 2155 // Class and enumeration member names can be found by name lookup in any 2156 // context in which a definition of the type is reachable. 2157 // 2158 // FIXME: The current implementation didn't consider about scope. For example, 2159 // ``` 2160 // // m.cppm 2161 // export module m; 2162 // enum E1 { e1 }; 2163 // // Use.cpp 2164 // import m; 2165 // void test() { 2166 // auto a = E1::e1; // Error as expected. 2167 // auto b = e1; // Should be error. namespace-scope name e1 is not visible 2168 // } 2169 // ``` 2170 // For the above example, the current implementation would emit error for `a` 2171 // correctly. However, the implementation wouldn't diagnose about `b` now. 2172 // Since we only check the reachability for the parent only. 2173 // See clang/test/CXX/module/module.interface/p7.cpp for example. 2174 if (auto *TD = dyn_cast<TagDecl>(DC)) 2175 return SemaRef.hasReachableDefinition(TD); 2176 2177 return false; 2178 } 2179 2180 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, 2181 bool ForceNoCPlusPlus) { 2182 DeclarationName Name = R.getLookupName(); 2183 if (!Name) return false; 2184 2185 LookupNameKind NameKind = R.getLookupKind(); 2186 2187 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { 2188 // Unqualified name lookup in C/Objective-C is purely lexical, so 2189 // search in the declarations attached to the name. 2190 if (NameKind == Sema::LookupRedeclarationWithLinkage) { 2191 // Find the nearest non-transparent declaration scope. 2192 while (!(S->getFlags() & Scope::DeclScope) || 2193 (S->getEntity() && S->getEntity()->isTransparentContext())) 2194 S = S->getParent(); 2195 } 2196 2197 // When performing a scope lookup, we want to find local extern decls. 2198 FindLocalExternScope FindLocals(R); 2199 2200 // Scan up the scope chain looking for a decl that matches this 2201 // identifier that is in the appropriate namespace. This search 2202 // should not take long, as shadowing of names is uncommon, and 2203 // deep shadowing is extremely uncommon. 2204 bool LeftStartingScope = false; 2205 2206 for (IdentifierResolver::iterator I = IdResolver.begin(Name), 2207 IEnd = IdResolver.end(); 2208 I != IEnd; ++I) 2209 if (NamedDecl *D = R.getAcceptableDecl(*I)) { 2210 if (NameKind == LookupRedeclarationWithLinkage) { 2211 // Determine whether this (or a previous) declaration is 2212 // out-of-scope. 2213 if (!LeftStartingScope && !S->isDeclScope(*I)) 2214 LeftStartingScope = true; 2215 2216 // If we found something outside of our starting scope that 2217 // does not have linkage, skip it. 2218 if (LeftStartingScope && !((*I)->hasLinkage())) { 2219 R.setShadowed(); 2220 continue; 2221 } 2222 } 2223 else if (NameKind == LookupObjCImplicitSelfParam && 2224 !isa<ImplicitParamDecl>(*I)) 2225 continue; 2226 2227 R.addDecl(D); 2228 2229 // Check whether there are any other declarations with the same name 2230 // and in the same scope. 2231 if (I != IEnd) { 2232 // Find the scope in which this declaration was declared (if it 2233 // actually exists in a Scope). 2234 while (S && !S->isDeclScope(D)) 2235 S = S->getParent(); 2236 2237 // If the scope containing the declaration is the translation unit, 2238 // then we'll need to perform our checks based on the matching 2239 // DeclContexts rather than matching scopes. 2240 if (S && isNamespaceOrTranslationUnitScope(S)) 2241 S = nullptr; 2242 2243 // Compute the DeclContext, if we need it. 2244 DeclContext *DC = nullptr; 2245 if (!S) 2246 DC = (*I)->getDeclContext()->getRedeclContext(); 2247 2248 IdentifierResolver::iterator LastI = I; 2249 for (++LastI; LastI != IEnd; ++LastI) { 2250 if (S) { 2251 // Match based on scope. 2252 if (!S->isDeclScope(*LastI)) 2253 break; 2254 } else { 2255 // Match based on DeclContext. 2256 DeclContext *LastDC 2257 = (*LastI)->getDeclContext()->getRedeclContext(); 2258 if (!LastDC->Equals(DC)) 2259 break; 2260 } 2261 2262 // If the declaration is in the right namespace and visible, add it. 2263 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) 2264 R.addDecl(LastD); 2265 } 2266 2267 R.resolveKind(); 2268 } 2269 2270 return true; 2271 } 2272 } else { 2273 // Perform C++ unqualified name lookup. 2274 if (CppLookupName(R, S)) 2275 return true; 2276 } 2277 2278 // If we didn't find a use of this identifier, and if the identifier 2279 // corresponds to a compiler builtin, create the decl object for the builtin 2280 // now, injecting it into translation unit scope, and return it. 2281 if (AllowBuiltinCreation && LookupBuiltin(R)) 2282 return true; 2283 2284 // If we didn't find a use of this identifier, the ExternalSource 2285 // may be able to handle the situation. 2286 // Note: some lookup failures are expected! 2287 // See e.g. R.isForRedeclaration(). 2288 return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); 2289 } 2290 2291 /// Perform qualified name lookup in the namespaces nominated by 2292 /// using directives by the given context. 2293 /// 2294 /// C++98 [namespace.qual]p2: 2295 /// Given X::m (where X is a user-declared namespace), or given \::m 2296 /// (where X is the global namespace), let S be the set of all 2297 /// declarations of m in X and in the transitive closure of all 2298 /// namespaces nominated by using-directives in X and its used 2299 /// namespaces, except that using-directives are ignored in any 2300 /// namespace, including X, directly containing one or more 2301 /// declarations of m. No namespace is searched more than once in 2302 /// the lookup of a name. If S is the empty set, the program is 2303 /// ill-formed. Otherwise, if S has exactly one member, or if the 2304 /// context of the reference is a using-declaration 2305 /// (namespace.udecl), S is the required set of declarations of 2306 /// m. Otherwise if the use of m is not one that allows a unique 2307 /// declaration to be chosen from S, the program is ill-formed. 2308 /// 2309 /// C++98 [namespace.qual]p5: 2310 /// During the lookup of a qualified namespace member name, if the 2311 /// lookup finds more than one declaration of the member, and if one 2312 /// declaration introduces a class name or enumeration name and the 2313 /// other declarations either introduce the same object, the same 2314 /// enumerator or a set of functions, the non-type name hides the 2315 /// class or enumeration name if and only if the declarations are 2316 /// from the same namespace; otherwise (the declarations are from 2317 /// different namespaces), the program is ill-formed. 2318 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, 2319 DeclContext *StartDC) { 2320 assert(StartDC->isFileContext() && "start context is not a file context"); 2321 2322 // We have not yet looked into these namespaces, much less added 2323 // their "using-children" to the queue. 2324 SmallVector<NamespaceDecl*, 8> Queue; 2325 2326 // We have at least added all these contexts to the queue. 2327 llvm::SmallPtrSet<DeclContext*, 8> Visited; 2328 Visited.insert(StartDC); 2329 2330 // We have already looked into the initial namespace; seed the queue 2331 // with its using-children. 2332 for (auto *I : StartDC->using_directives()) { 2333 NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); 2334 if (S.isVisible(I) && Visited.insert(ND).second) 2335 Queue.push_back(ND); 2336 } 2337 2338 // The easiest way to implement the restriction in [namespace.qual]p5 2339 // is to check whether any of the individual results found a tag 2340 // and, if so, to declare an ambiguity if the final result is not 2341 // a tag. 2342 bool FoundTag = false; 2343 bool FoundNonTag = false; 2344 2345 LookupResult LocalR(LookupResult::Temporary, R); 2346 2347 bool Found = false; 2348 while (!Queue.empty()) { 2349 NamespaceDecl *ND = Queue.pop_back_val(); 2350 2351 // We go through some convolutions here to avoid copying results 2352 // between LookupResults. 2353 bool UseLocal = !R.empty(); 2354 LookupResult &DirectR = UseLocal ? LocalR : R; 2355 bool FoundDirect = LookupDirect(S, DirectR, ND); 2356 2357 if (FoundDirect) { 2358 // First do any local hiding. 2359 DirectR.resolveKind(); 2360 2361 // If the local result is a tag, remember that. 2362 if (DirectR.isSingleTagDecl()) 2363 FoundTag = true; 2364 else 2365 FoundNonTag = true; 2366 2367 // Append the local results to the total results if necessary. 2368 if (UseLocal) { 2369 R.addAllDecls(LocalR); 2370 LocalR.clear(); 2371 } 2372 } 2373 2374 // If we find names in this namespace, ignore its using directives. 2375 if (FoundDirect) { 2376 Found = true; 2377 continue; 2378 } 2379 2380 for (auto *I : ND->using_directives()) { 2381 NamespaceDecl *Nom = I->getNominatedNamespace(); 2382 if (S.isVisible(I) && Visited.insert(Nom).second) 2383 Queue.push_back(Nom); 2384 } 2385 } 2386 2387 if (Found) { 2388 if (FoundTag && FoundNonTag) 2389 R.setAmbiguousQualifiedTagHiding(); 2390 else 2391 R.resolveKind(); 2392 } 2393 2394 return Found; 2395 } 2396 2397 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2398 bool InUnqualifiedLookup) { 2399 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); 2400 2401 if (!R.getLookupName()) 2402 return false; 2403 2404 // Make sure that the declaration context is complete. 2405 assert((!isa<TagDecl>(LookupCtx) || 2406 LookupCtx->isDependentContext() || 2407 cast<TagDecl>(LookupCtx)->isCompleteDefinition() || 2408 cast<TagDecl>(LookupCtx)->isBeingDefined()) && 2409 "Declaration context must already be complete!"); 2410 2411 struct QualifiedLookupInScope { 2412 bool oldVal; 2413 DeclContext *Context; 2414 // Set flag in DeclContext informing debugger that we're looking for qualified name 2415 QualifiedLookupInScope(DeclContext *ctx) 2416 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { 2417 ctx->setUseQualifiedLookup(); 2418 } 2419 ~QualifiedLookupInScope() { 2420 Context->setUseQualifiedLookup(oldVal); 2421 } 2422 } QL(LookupCtx); 2423 2424 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); 2425 // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent 2426 // if it's a dependent conversion-function-id or operator= where the current 2427 // class is a templated entity. This should be handled in LookupName. 2428 if (!InUnqualifiedLookup && !R.isForRedeclaration()) { 2429 // C++23 [temp.dep.type]p5: 2430 // A qualified name is dependent if 2431 // - it is a conversion-function-id whose conversion-type-id 2432 // is dependent, or 2433 // - [...] 2434 // - its lookup context is the current instantiation and it 2435 // is operator=, or 2436 // - [...] 2437 if (DeclarationName Name = R.getLookupName(); 2438 Name.getNameKind() == DeclarationName::CXXConversionFunctionName && 2439 Name.getCXXNameType()->isDependentType()) { 2440 R.setNotFoundInCurrentInstantiation(); 2441 return false; 2442 } 2443 } 2444 2445 if (LookupDirect(*this, R, LookupCtx)) { 2446 R.resolveKind(); 2447 if (LookupRec) 2448 R.setNamingClass(LookupRec); 2449 return true; 2450 } 2451 2452 // Don't descend into implied contexts for redeclarations. 2453 // C++98 [namespace.qual]p6: 2454 // In a declaration for a namespace member in which the 2455 // declarator-id is a qualified-id, given that the qualified-id 2456 // for the namespace member has the form 2457 // nested-name-specifier unqualified-id 2458 // the unqualified-id shall name a member of the namespace 2459 // designated by the nested-name-specifier. 2460 // See also [class.mfct]p5 and [class.static.data]p2. 2461 if (R.isForRedeclaration()) 2462 return false; 2463 2464 // If this is a namespace, look it up in the implied namespaces. 2465 if (LookupCtx->isFileContext()) 2466 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); 2467 2468 // If this isn't a C++ class, we aren't allowed to look into base 2469 // classes, we're done. 2470 if (!LookupRec || !LookupRec->getDefinition()) 2471 return false; 2472 2473 // We're done for lookups that can never succeed for C++ classes. 2474 if (R.getLookupKind() == LookupOperatorName || 2475 R.getLookupKind() == LookupNamespaceName || 2476 R.getLookupKind() == LookupObjCProtocolName || 2477 R.getLookupKind() == LookupLabel) 2478 return false; 2479 2480 // If we're performing qualified name lookup into a dependent class, 2481 // then we are actually looking into a current instantiation. If we have any 2482 // dependent base classes, then we either have to delay lookup until 2483 // template instantiation time (at which point all bases will be available) 2484 // or we have to fail. 2485 if (!InUnqualifiedLookup && LookupRec->isDependentContext() && 2486 LookupRec->hasAnyDependentBases()) { 2487 R.setNotFoundInCurrentInstantiation(); 2488 return false; 2489 } 2490 2491 // Perform lookup into our base classes. 2492 2493 DeclarationName Name = R.getLookupName(); 2494 unsigned IDNS = R.getIdentifierNamespace(); 2495 2496 // Look for this member in our base classes. 2497 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, 2498 CXXBasePath &Path) -> bool { 2499 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 2500 // Drop leading non-matching lookup results from the declaration list so 2501 // we don't need to consider them again below. 2502 for (Path.Decls = BaseRecord->lookup(Name).begin(); 2503 Path.Decls != Path.Decls.end(); ++Path.Decls) { 2504 if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) 2505 return true; 2506 } 2507 return false; 2508 }; 2509 2510 CXXBasePaths Paths; 2511 Paths.setOrigin(LookupRec); 2512 if (!LookupRec->lookupInBases(BaseCallback, Paths)) 2513 return false; 2514 2515 R.setNamingClass(LookupRec); 2516 2517 // C++ [class.member.lookup]p2: 2518 // [...] If the resulting set of declarations are not all from 2519 // sub-objects of the same type, or the set has a nonstatic member 2520 // and includes members from distinct sub-objects, there is an 2521 // ambiguity and the program is ill-formed. Otherwise that set is 2522 // the result of the lookup. 2523 QualType SubobjectType; 2524 int SubobjectNumber = 0; 2525 AccessSpecifier SubobjectAccess = AS_none; 2526 2527 // Check whether the given lookup result contains only static members. 2528 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { 2529 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) 2530 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) 2531 return false; 2532 return true; 2533 }; 2534 2535 bool TemplateNameLookup = R.isTemplateNameLookup(); 2536 2537 // Determine whether two sets of members contain the same members, as 2538 // required by C++ [class.member.lookup]p6. 2539 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, 2540 DeclContext::lookup_iterator B) { 2541 using Iterator = DeclContextLookupResult::iterator; 2542 using Result = const void *; 2543 2544 auto Next = [&](Iterator &It, Iterator End) -> Result { 2545 while (It != End) { 2546 NamedDecl *ND = *It++; 2547 if (!ND->isInIdentifierNamespace(IDNS)) 2548 continue; 2549 2550 // C++ [temp.local]p3: 2551 // A lookup that finds an injected-class-name (10.2) can result in 2552 // an ambiguity in certain cases (for example, if it is found in 2553 // more than one base class). If all of the injected-class-names 2554 // that are found refer to specializations of the same class 2555 // template, and if the name is used as a template-name, the 2556 // reference refers to the class template itself and not a 2557 // specialization thereof, and is not ambiguous. 2558 if (TemplateNameLookup) 2559 if (auto *TD = getAsTemplateNameDecl(ND)) 2560 ND = TD; 2561 2562 // C++ [class.member.lookup]p3: 2563 // type declarations (including injected-class-names) are replaced by 2564 // the types they designate 2565 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { 2566 QualType T = Context.getTypeDeclType(TD); 2567 return T.getCanonicalType().getAsOpaquePtr(); 2568 } 2569 2570 return ND->getUnderlyingDecl()->getCanonicalDecl(); 2571 } 2572 return nullptr; 2573 }; 2574 2575 // We'll often find the declarations are in the same order. Handle this 2576 // case (and the special case of only one declaration) efficiently. 2577 Iterator AIt = A, BIt = B, AEnd, BEnd; 2578 while (true) { 2579 Result AResult = Next(AIt, AEnd); 2580 Result BResult = Next(BIt, BEnd); 2581 if (!AResult && !BResult) 2582 return true; 2583 if (!AResult || !BResult) 2584 return false; 2585 if (AResult != BResult) { 2586 // Found a mismatch; carefully check both lists, accounting for the 2587 // possibility of declarations appearing more than once. 2588 llvm::SmallDenseMap<Result, bool, 32> AResults; 2589 for (; AResult; AResult = Next(AIt, AEnd)) 2590 AResults.insert({AResult, /*FoundInB*/false}); 2591 unsigned Found = 0; 2592 for (; BResult; BResult = Next(BIt, BEnd)) { 2593 auto It = AResults.find(BResult); 2594 if (It == AResults.end()) 2595 return false; 2596 if (!It->second) { 2597 It->second = true; 2598 ++Found; 2599 } 2600 } 2601 return AResults.size() == Found; 2602 } 2603 } 2604 }; 2605 2606 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); 2607 Path != PathEnd; ++Path) { 2608 const CXXBasePathElement &PathElement = Path->back(); 2609 2610 // Pick the best (i.e. most permissive i.e. numerically lowest) access 2611 // across all paths. 2612 SubobjectAccess = std::min(SubobjectAccess, Path->Access); 2613 2614 // Determine whether we're looking at a distinct sub-object or not. 2615 if (SubobjectType.isNull()) { 2616 // This is the first subobject we've looked at. Record its type. 2617 SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); 2618 SubobjectNumber = PathElement.SubobjectNumber; 2619 continue; 2620 } 2621 2622 if (SubobjectType != 2623 Context.getCanonicalType(PathElement.Base->getType())) { 2624 // We found members of the given name in two subobjects of 2625 // different types. If the declaration sets aren't the same, this 2626 // lookup is ambiguous. 2627 // 2628 // FIXME: The language rule says that this applies irrespective of 2629 // whether the sets contain only static members. 2630 if (HasOnlyStaticMembers(Path->Decls) && 2631 HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) 2632 continue; 2633 2634 R.setAmbiguousBaseSubobjectTypes(Paths); 2635 return true; 2636 } 2637 2638 // FIXME: This language rule no longer exists. Checking for ambiguous base 2639 // subobjects should be done as part of formation of a class member access 2640 // expression (when converting the object parameter to the member's type). 2641 if (SubobjectNumber != PathElement.SubobjectNumber) { 2642 // We have a different subobject of the same type. 2643 2644 // C++ [class.member.lookup]p5: 2645 // A static member, a nested type or an enumerator defined in 2646 // a base class T can unambiguously be found even if an object 2647 // has more than one base class subobject of type T. 2648 if (HasOnlyStaticMembers(Path->Decls)) 2649 continue; 2650 2651 // We have found a nonstatic member name in multiple, distinct 2652 // subobjects. Name lookup is ambiguous. 2653 R.setAmbiguousBaseSubobjects(Paths); 2654 return true; 2655 } 2656 } 2657 2658 // Lookup in a base class succeeded; return these results. 2659 2660 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); 2661 I != E; ++I) { 2662 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, 2663 (*I)->getAccess()); 2664 if (NamedDecl *ND = R.getAcceptableDecl(*I)) 2665 R.addDecl(ND, AS); 2666 } 2667 R.resolveKind(); 2668 return true; 2669 } 2670 2671 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, 2672 CXXScopeSpec &SS) { 2673 auto *NNS = SS.getScopeRep(); 2674 if (NNS && NNS->getKind() == NestedNameSpecifier::Super) 2675 return LookupInSuper(R, NNS->getAsRecordDecl()); 2676 else 2677 2678 return LookupQualifiedName(R, LookupCtx); 2679 } 2680 2681 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, 2682 QualType ObjectType, bool AllowBuiltinCreation, 2683 bool EnteringContext) { 2684 // When the scope specifier is invalid, don't even look for anything. 2685 if (SS && SS->isInvalid()) 2686 return false; 2687 2688 // Determine where to perform name lookup 2689 DeclContext *DC = nullptr; 2690 bool IsDependent = false; 2691 if (!ObjectType.isNull()) { 2692 // This nested-name-specifier occurs in a member access expression, e.g., 2693 // x->B::f, and we are looking into the type of the object. 2694 assert((!SS || SS->isEmpty()) && 2695 "ObjectType and scope specifier cannot coexist"); 2696 DC = computeDeclContext(ObjectType); 2697 IsDependent = !DC && ObjectType->isDependentType(); 2698 assert(((!DC && ObjectType->isDependentType()) || 2699 !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || 2700 ObjectType->castAs<TagType>()->isBeingDefined()) && 2701 "Caller should have completed object type"); 2702 } else if (SS && SS->isNotEmpty()) { 2703 // This nested-name-specifier occurs after another nested-name-specifier, 2704 // so long into the context associated with the prior nested-name-specifier. 2705 if ((DC = computeDeclContext(*SS, EnteringContext))) { 2706 // The declaration context must be complete. 2707 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) 2708 return false; 2709 R.setContextRange(SS->getRange()); 2710 // FIXME: '__super' lookup semantics could be implemented by a 2711 // LookupResult::isSuperLookup flag which skips the initial search of 2712 // the lookup context in LookupQualified. 2713 if (NestedNameSpecifier *NNS = SS->getScopeRep(); 2714 NNS->getKind() == NestedNameSpecifier::Super) 2715 return LookupInSuper(R, NNS->getAsRecordDecl()); 2716 } 2717 IsDependent = !DC && isDependentScopeSpecifier(*SS); 2718 } else { 2719 // Perform unqualified name lookup starting in the given scope. 2720 return LookupName(R, S, AllowBuiltinCreation); 2721 } 2722 2723 // If we were able to compute a declaration context, perform qualified name 2724 // lookup in that context. 2725 if (DC) 2726 return LookupQualifiedName(R, DC); 2727 else if (IsDependent) 2728 // We could not resolve the scope specified to a specific declaration 2729 // context, which means that SS refers to an unknown specialization. 2730 // Name lookup can't find anything in this case. 2731 R.setNotFoundInCurrentInstantiation(); 2732 return false; 2733 } 2734 2735 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { 2736 // The access-control rules we use here are essentially the rules for 2737 // doing a lookup in Class that just magically skipped the direct 2738 // members of Class itself. That is, the naming class is Class, and the 2739 // access includes the access of the base. 2740 for (const auto &BaseSpec : Class->bases()) { 2741 CXXRecordDecl *RD = cast<CXXRecordDecl>( 2742 BaseSpec.getType()->castAs<RecordType>()->getDecl()); 2743 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); 2744 Result.setBaseObjectType(Context.getRecordType(Class)); 2745 LookupQualifiedName(Result, RD); 2746 2747 // Copy the lookup results into the target, merging the base's access into 2748 // the path access. 2749 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { 2750 R.addDecl(I.getDecl(), 2751 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), 2752 I.getAccess())); 2753 } 2754 2755 Result.suppressDiagnostics(); 2756 } 2757 2758 R.resolveKind(); 2759 R.setNamingClass(Class); 2760 2761 return !R.empty(); 2762 } 2763 2764 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { 2765 assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); 2766 2767 DeclarationName Name = Result.getLookupName(); 2768 SourceLocation NameLoc = Result.getNameLoc(); 2769 SourceRange LookupRange = Result.getContextRange(); 2770 2771 switch (Result.getAmbiguityKind()) { 2772 case LookupResult::AmbiguousBaseSubobjects: { 2773 CXXBasePaths *Paths = Result.getBasePaths(); 2774 QualType SubobjectType = Paths->front().back().Base->getType(); 2775 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) 2776 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) 2777 << LookupRange; 2778 2779 DeclContext::lookup_iterator Found = Paths->front().Decls; 2780 while (isa<CXXMethodDecl>(*Found) && 2781 cast<CXXMethodDecl>(*Found)->isStatic()) 2782 ++Found; 2783 2784 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); 2785 break; 2786 } 2787 2788 case LookupResult::AmbiguousBaseSubobjectTypes: { 2789 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) 2790 << Name << LookupRange; 2791 2792 CXXBasePaths *Paths = Result.getBasePaths(); 2793 std::set<const NamedDecl *> DeclsPrinted; 2794 for (CXXBasePaths::paths_iterator Path = Paths->begin(), 2795 PathEnd = Paths->end(); 2796 Path != PathEnd; ++Path) { 2797 const NamedDecl *D = *Path->Decls; 2798 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) 2799 continue; 2800 if (DeclsPrinted.insert(D).second) { 2801 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) 2802 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2803 << TD->getUnderlyingType(); 2804 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 2805 Diag(D->getLocation(), diag::note_ambiguous_member_type_found) 2806 << Context.getTypeDeclType(TD); 2807 else 2808 Diag(D->getLocation(), diag::note_ambiguous_member_found); 2809 } 2810 } 2811 break; 2812 } 2813 2814 case LookupResult::AmbiguousTagHiding: { 2815 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; 2816 2817 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; 2818 2819 for (auto *D : Result) 2820 if (TagDecl *TD = dyn_cast<TagDecl>(D)) { 2821 TagDecls.insert(TD); 2822 Diag(TD->getLocation(), diag::note_hidden_tag); 2823 } 2824 2825 for (auto *D : Result) 2826 if (!isa<TagDecl>(D)) 2827 Diag(D->getLocation(), diag::note_hiding_object); 2828 2829 // For recovery purposes, go ahead and implement the hiding. 2830 LookupResult::Filter F = Result.makeFilter(); 2831 while (F.hasNext()) { 2832 if (TagDecls.count(F.next())) 2833 F.erase(); 2834 } 2835 F.done(); 2836 break; 2837 } 2838 2839 case LookupResult::AmbiguousReferenceToPlaceholderVariable: { 2840 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; 2841 DeclContext *DC = nullptr; 2842 for (auto *D : Result) { 2843 Diag(D->getLocation(), diag::note_reference_placeholder) << D; 2844 if (DC != nullptr && DC != D->getDeclContext()) 2845 break; 2846 DC = D->getDeclContext(); 2847 } 2848 break; 2849 } 2850 2851 case LookupResult::AmbiguousReference: { 2852 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; 2853 2854 for (auto *D : Result) 2855 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; 2856 break; 2857 } 2858 } 2859 } 2860 2861 namespace { 2862 struct AssociatedLookup { 2863 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, 2864 Sema::AssociatedNamespaceSet &Namespaces, 2865 Sema::AssociatedClassSet &Classes) 2866 : S(S), Namespaces(Namespaces), Classes(Classes), 2867 InstantiationLoc(InstantiationLoc) { 2868 } 2869 2870 bool addClassTransitive(CXXRecordDecl *RD) { 2871 Classes.insert(RD); 2872 return ClassesTransitive.insert(RD); 2873 } 2874 2875 Sema &S; 2876 Sema::AssociatedNamespaceSet &Namespaces; 2877 Sema::AssociatedClassSet &Classes; 2878 SourceLocation InstantiationLoc; 2879 2880 private: 2881 Sema::AssociatedClassSet ClassesTransitive; 2882 }; 2883 } // end anonymous namespace 2884 2885 static void 2886 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); 2887 2888 // Given the declaration context \param Ctx of a class, class template or 2889 // enumeration, add the associated namespaces to \param Namespaces as described 2890 // in [basic.lookup.argdep]p2. 2891 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, 2892 DeclContext *Ctx) { 2893 // The exact wording has been changed in C++14 as a result of 2894 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally 2895 // to all language versions since it is possible to return a local type 2896 // from a lambda in C++11. 2897 // 2898 // C++14 [basic.lookup.argdep]p2: 2899 // If T is a class type [...]. Its associated namespaces are the innermost 2900 // enclosing namespaces of its associated classes. [...] 2901 // 2902 // If T is an enumeration type, its associated namespace is the innermost 2903 // enclosing namespace of its declaration. [...] 2904 2905 // We additionally skip inline namespaces. The innermost non-inline namespace 2906 // contains all names of all its nested inline namespaces anyway, so we can 2907 // replace the entire inline namespace tree with its root. 2908 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 2909 Ctx = Ctx->getParent(); 2910 2911 Namespaces.insert(Ctx->getPrimaryContext()); 2912 } 2913 2914 // Add the associated classes and namespaces for argument-dependent 2915 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). 2916 static void 2917 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2918 const TemplateArgument &Arg) { 2919 // C++ [basic.lookup.argdep]p2, last bullet: 2920 // -- [...] ; 2921 switch (Arg.getKind()) { 2922 case TemplateArgument::Null: 2923 break; 2924 2925 case TemplateArgument::Type: 2926 // [...] the namespaces and classes associated with the types of the 2927 // template arguments provided for template type parameters (excluding 2928 // template template parameters) 2929 addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); 2930 break; 2931 2932 case TemplateArgument::Template: 2933 case TemplateArgument::TemplateExpansion: { 2934 // [...] the namespaces in which any template template arguments are 2935 // defined; and the classes in which any member templates used as 2936 // template template arguments are defined. 2937 TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); 2938 if (ClassTemplateDecl *ClassTemplate 2939 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { 2940 DeclContext *Ctx = ClassTemplate->getDeclContext(); 2941 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2942 Result.Classes.insert(EnclosingClass); 2943 // Add the associated namespace for this class. 2944 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2945 } 2946 break; 2947 } 2948 2949 case TemplateArgument::Declaration: 2950 case TemplateArgument::Integral: 2951 case TemplateArgument::Expression: 2952 case TemplateArgument::NullPtr: 2953 case TemplateArgument::StructuralValue: 2954 // [Note: non-type template arguments do not contribute to the set of 2955 // associated namespaces. ] 2956 break; 2957 2958 case TemplateArgument::Pack: 2959 for (const auto &P : Arg.pack_elements()) 2960 addAssociatedClassesAndNamespaces(Result, P); 2961 break; 2962 } 2963 } 2964 2965 // Add the associated classes and namespaces for argument-dependent lookup 2966 // with an argument of class type (C++ [basic.lookup.argdep]p2). 2967 static void 2968 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, 2969 CXXRecordDecl *Class) { 2970 2971 // Just silently ignore anything whose name is __va_list_tag. 2972 if (Class->getDeclName() == Result.S.VAListTagName) 2973 return; 2974 2975 // C++ [basic.lookup.argdep]p2: 2976 // [...] 2977 // -- If T is a class type (including unions), its associated 2978 // classes are: the class itself; the class of which it is a 2979 // member, if any; and its direct and indirect base classes. 2980 // Its associated namespaces are the innermost enclosing 2981 // namespaces of its associated classes. 2982 2983 // Add the class of which it is a member, if any. 2984 DeclContext *Ctx = Class->getDeclContext(); 2985 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 2986 Result.Classes.insert(EnclosingClass); 2987 2988 // Add the associated namespace for this class. 2989 CollectEnclosingNamespace(Result.Namespaces, Ctx); 2990 2991 // -- If T is a template-id, its associated namespaces and classes are 2992 // the namespace in which the template is defined; for member 2993 // templates, the member template's class; the namespaces and classes 2994 // associated with the types of the template arguments provided for 2995 // template type parameters (excluding template template parameters); the 2996 // namespaces in which any template template arguments are defined; and 2997 // the classes in which any member templates used as template template 2998 // arguments are defined. [Note: non-type template arguments do not 2999 // contribute to the set of associated namespaces. ] 3000 if (ClassTemplateSpecializationDecl *Spec 3001 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { 3002 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); 3003 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3004 Result.Classes.insert(EnclosingClass); 3005 // Add the associated namespace for this class. 3006 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3007 3008 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 3009 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 3010 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); 3011 } 3012 3013 // Add the class itself. If we've already transitively visited this class, 3014 // we don't need to visit base classes. 3015 if (!Result.addClassTransitive(Class)) 3016 return; 3017 3018 // Only recurse into base classes for complete types. 3019 if (!Result.S.isCompleteType(Result.InstantiationLoc, 3020 Result.S.Context.getRecordType(Class))) 3021 return; 3022 3023 // Add direct and indirect base classes along with their associated 3024 // namespaces. 3025 SmallVector<CXXRecordDecl *, 32> Bases; 3026 Bases.push_back(Class); 3027 while (!Bases.empty()) { 3028 // Pop this class off the stack. 3029 Class = Bases.pop_back_val(); 3030 3031 // Visit the base classes. 3032 for (const auto &Base : Class->bases()) { 3033 const RecordType *BaseType = Base.getType()->getAs<RecordType>(); 3034 // In dependent contexts, we do ADL twice, and the first time around, 3035 // the base type might be a dependent TemplateSpecializationType, or a 3036 // TemplateTypeParmType. If that happens, simply ignore it. 3037 // FIXME: If we want to support export, we probably need to add the 3038 // namespace of the template in a TemplateSpecializationType, or even 3039 // the classes and namespaces of known non-dependent arguments. 3040 if (!BaseType) 3041 continue; 3042 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); 3043 if (Result.addClassTransitive(BaseDecl)) { 3044 // Find the associated namespace for this base class. 3045 DeclContext *BaseCtx = BaseDecl->getDeclContext(); 3046 CollectEnclosingNamespace(Result.Namespaces, BaseCtx); 3047 3048 // Make sure we visit the bases of this base class. 3049 if (BaseDecl->bases_begin() != BaseDecl->bases_end()) 3050 Bases.push_back(BaseDecl); 3051 } 3052 } 3053 } 3054 } 3055 3056 // Add the associated classes and namespaces for 3057 // argument-dependent lookup with an argument of type T 3058 // (C++ [basic.lookup.koenig]p2). 3059 static void 3060 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { 3061 // C++ [basic.lookup.koenig]p2: 3062 // 3063 // For each argument type T in the function call, there is a set 3064 // of zero or more associated namespaces and a set of zero or more 3065 // associated classes to be considered. The sets of namespaces and 3066 // classes is determined entirely by the types of the function 3067 // arguments (and the namespace of any template template 3068 // argument). Typedef names and using-declarations used to specify 3069 // the types do not contribute to this set. The sets of namespaces 3070 // and classes are determined in the following way: 3071 3072 SmallVector<const Type *, 16> Queue; 3073 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); 3074 3075 while (true) { 3076 switch (T->getTypeClass()) { 3077 3078 #define TYPE(Class, Base) 3079 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 3080 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 3081 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 3082 #define ABSTRACT_TYPE(Class, Base) 3083 #include "clang/AST/TypeNodes.inc" 3084 // T is canonical. We can also ignore dependent types because 3085 // we don't need to do ADL at the definition point, but if we 3086 // wanted to implement template export (or if we find some other 3087 // use for associated classes and namespaces...) this would be 3088 // wrong. 3089 break; 3090 3091 // -- If T is a pointer to U or an array of U, its associated 3092 // namespaces and classes are those associated with U. 3093 case Type::Pointer: 3094 T = cast<PointerType>(T)->getPointeeType().getTypePtr(); 3095 continue; 3096 case Type::ConstantArray: 3097 case Type::IncompleteArray: 3098 case Type::VariableArray: 3099 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 3100 continue; 3101 3102 // -- If T is a fundamental type, its associated sets of 3103 // namespaces and classes are both empty. 3104 case Type::Builtin: 3105 break; 3106 3107 // -- If T is a class type (including unions), its associated 3108 // classes are: the class itself; the class of which it is 3109 // a member, if any; and its direct and indirect base classes. 3110 // Its associated namespaces are the innermost enclosing 3111 // namespaces of its associated classes. 3112 case Type::Record: { 3113 CXXRecordDecl *Class = 3114 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); 3115 addAssociatedClassesAndNamespaces(Result, Class); 3116 break; 3117 } 3118 3119 // -- If T is an enumeration type, its associated namespace 3120 // is the innermost enclosing namespace of its declaration. 3121 // If it is a class member, its associated class is the 3122 // member’s class; else it has no associated class. 3123 case Type::Enum: { 3124 EnumDecl *Enum = cast<EnumType>(T)->getDecl(); 3125 3126 DeclContext *Ctx = Enum->getDeclContext(); 3127 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) 3128 Result.Classes.insert(EnclosingClass); 3129 3130 // Add the associated namespace for this enumeration. 3131 CollectEnclosingNamespace(Result.Namespaces, Ctx); 3132 3133 break; 3134 } 3135 3136 // -- If T is a function type, its associated namespaces and 3137 // classes are those associated with the function parameter 3138 // types and those associated with the return type. 3139 case Type::FunctionProto: { 3140 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 3141 for (const auto &Arg : Proto->param_types()) 3142 Queue.push_back(Arg.getTypePtr()); 3143 // fallthrough 3144 [[fallthrough]]; 3145 } 3146 case Type::FunctionNoProto: { 3147 const FunctionType *FnType = cast<FunctionType>(T); 3148 T = FnType->getReturnType().getTypePtr(); 3149 continue; 3150 } 3151 3152 // -- If T is a pointer to a member function of a class X, its 3153 // associated namespaces and classes are those associated 3154 // with the function parameter types and return type, 3155 // together with those associated with X. 3156 // 3157 // -- If T is a pointer to a data member of class X, its 3158 // associated namespaces and classes are those associated 3159 // with the member type together with those associated with 3160 // X. 3161 case Type::MemberPointer: { 3162 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); 3163 3164 // Queue up the class type into which this points. 3165 Queue.push_back(MemberPtr->getClass()); 3166 3167 // And directly continue with the pointee type. 3168 T = MemberPtr->getPointeeType().getTypePtr(); 3169 continue; 3170 } 3171 3172 // As an extension, treat this like a normal pointer. 3173 case Type::BlockPointer: 3174 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); 3175 continue; 3176 3177 // References aren't covered by the standard, but that's such an 3178 // obvious defect that we cover them anyway. 3179 case Type::LValueReference: 3180 case Type::RValueReference: 3181 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); 3182 continue; 3183 3184 // These are fundamental types. 3185 case Type::Vector: 3186 case Type::ExtVector: 3187 case Type::ConstantMatrix: 3188 case Type::Complex: 3189 case Type::BitInt: 3190 break; 3191 3192 // Non-deduced auto types only get here for error cases. 3193 case Type::Auto: 3194 case Type::DeducedTemplateSpecialization: 3195 break; 3196 3197 // If T is an Objective-C object or interface type, or a pointer to an 3198 // object or interface type, the associated namespace is the global 3199 // namespace. 3200 case Type::ObjCObject: 3201 case Type::ObjCInterface: 3202 case Type::ObjCObjectPointer: 3203 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); 3204 break; 3205 3206 // Atomic types are just wrappers; use the associations of the 3207 // contained type. 3208 case Type::Atomic: 3209 T = cast<AtomicType>(T)->getValueType().getTypePtr(); 3210 continue; 3211 case Type::Pipe: 3212 T = cast<PipeType>(T)->getElementType().getTypePtr(); 3213 continue; 3214 3215 // Array parameter types are treated as fundamental types. 3216 case Type::ArrayParameter: 3217 break; 3218 } 3219 3220 if (Queue.empty()) 3221 break; 3222 T = Queue.pop_back_val(); 3223 } 3224 } 3225 3226 void Sema::FindAssociatedClassesAndNamespaces( 3227 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, 3228 AssociatedNamespaceSet &AssociatedNamespaces, 3229 AssociatedClassSet &AssociatedClasses) { 3230 AssociatedNamespaces.clear(); 3231 AssociatedClasses.clear(); 3232 3233 AssociatedLookup Result(*this, InstantiationLoc, 3234 AssociatedNamespaces, AssociatedClasses); 3235 3236 // C++ [basic.lookup.koenig]p2: 3237 // For each argument type T in the function call, there is a set 3238 // of zero or more associated namespaces and a set of zero or more 3239 // associated classes to be considered. The sets of namespaces and 3240 // classes is determined entirely by the types of the function 3241 // arguments (and the namespace of any template template 3242 // argument). 3243 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { 3244 Expr *Arg = Args[ArgIdx]; 3245 3246 if (Arg->getType() != Context.OverloadTy) { 3247 addAssociatedClassesAndNamespaces(Result, Arg->getType()); 3248 continue; 3249 } 3250 3251 // [...] In addition, if the argument is the name or address of a 3252 // set of overloaded functions and/or function templates, its 3253 // associated classes and namespaces are the union of those 3254 // associated with each of the members of the set: the namespace 3255 // in which the function or function template is defined and the 3256 // classes and namespaces associated with its (non-dependent) 3257 // parameter types and return type. 3258 OverloadExpr *OE = OverloadExpr::find(Arg).Expression; 3259 3260 for (const NamedDecl *D : OE->decls()) { 3261 // Look through any using declarations to find the underlying function. 3262 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); 3263 3264 // Add the classes and namespaces associated with the parameter 3265 // types and return type of this function. 3266 addAssociatedClassesAndNamespaces(Result, FDecl->getType()); 3267 } 3268 } 3269 } 3270 3271 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, 3272 SourceLocation Loc, 3273 LookupNameKind NameKind, 3274 RedeclarationKind Redecl) { 3275 LookupResult R(*this, Name, Loc, NameKind, Redecl); 3276 LookupName(R, S); 3277 return R.getAsSingle<NamedDecl>(); 3278 } 3279 3280 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, 3281 UnresolvedSetImpl &Functions) { 3282 // C++ [over.match.oper]p3: 3283 // -- The set of non-member candidates is the result of the 3284 // unqualified lookup of operator@ in the context of the 3285 // expression according to the usual rules for name lookup in 3286 // unqualified function calls (3.4.2) except that all member 3287 // functions are ignored. 3288 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 3289 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); 3290 LookupName(Operators, S); 3291 3292 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 3293 Functions.append(Operators.begin(), Operators.end()); 3294 } 3295 3296 Sema::SpecialMemberOverloadResult 3297 Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, 3298 bool ConstArg, bool VolatileArg, bool RValueThis, 3299 bool ConstThis, bool VolatileThis) { 3300 assert(CanDeclareSpecialMemberFunction(RD) && 3301 "doing special member lookup into record that isn't fully complete"); 3302 RD = RD->getDefinition(); 3303 if (RValueThis || ConstThis || VolatileThis) 3304 assert((SM == CXXSpecialMemberKind::CopyAssignment || 3305 SM == CXXSpecialMemberKind::MoveAssignment) && 3306 "constructors and destructors always have unqualified lvalue this"); 3307 if (ConstArg || VolatileArg) 3308 assert((SM != CXXSpecialMemberKind::DefaultConstructor && 3309 SM != CXXSpecialMemberKind::Destructor) && 3310 "parameter-less special members can't have qualified arguments"); 3311 3312 // FIXME: Get the caller to pass in a location for the lookup. 3313 SourceLocation LookupLoc = RD->getLocation(); 3314 3315 llvm::FoldingSetNodeID ID; 3316 ID.AddPointer(RD); 3317 ID.AddInteger(llvm::to_underlying(SM)); 3318 ID.AddInteger(ConstArg); 3319 ID.AddInteger(VolatileArg); 3320 ID.AddInteger(RValueThis); 3321 ID.AddInteger(ConstThis); 3322 ID.AddInteger(VolatileThis); 3323 3324 void *InsertPoint; 3325 SpecialMemberOverloadResultEntry *Result = 3326 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); 3327 3328 // This was already cached 3329 if (Result) 3330 return *Result; 3331 3332 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); 3333 Result = new (Result) SpecialMemberOverloadResultEntry(ID); 3334 SpecialMemberCache.InsertNode(Result, InsertPoint); 3335 3336 if (SM == CXXSpecialMemberKind::Destructor) { 3337 if (RD->needsImplicitDestructor()) { 3338 runWithSufficientStackSpace(RD->getLocation(), [&] { 3339 DeclareImplicitDestructor(RD); 3340 }); 3341 } 3342 CXXDestructorDecl *DD = RD->getDestructor(); 3343 Result->setMethod(DD); 3344 Result->setKind(DD && !DD->isDeleted() 3345 ? SpecialMemberOverloadResult::Success 3346 : SpecialMemberOverloadResult::NoMemberOrDeleted); 3347 return *Result; 3348 } 3349 3350 // Prepare for overload resolution. Here we construct a synthetic argument 3351 // if necessary and make sure that implicit functions are declared. 3352 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); 3353 DeclarationName Name; 3354 Expr *Arg = nullptr; 3355 unsigned NumArgs; 3356 3357 QualType ArgType = CanTy; 3358 ExprValueKind VK = VK_LValue; 3359 3360 if (SM == CXXSpecialMemberKind::DefaultConstructor) { 3361 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3362 NumArgs = 0; 3363 if (RD->needsImplicitDefaultConstructor()) { 3364 runWithSufficientStackSpace(RD->getLocation(), [&] { 3365 DeclareImplicitDefaultConstructor(RD); 3366 }); 3367 } 3368 } else { 3369 if (SM == CXXSpecialMemberKind::CopyConstructor || 3370 SM == CXXSpecialMemberKind::MoveConstructor) { 3371 Name = Context.DeclarationNames.getCXXConstructorName(CanTy); 3372 if (RD->needsImplicitCopyConstructor()) { 3373 runWithSufficientStackSpace(RD->getLocation(), [&] { 3374 DeclareImplicitCopyConstructor(RD); 3375 }); 3376 } 3377 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { 3378 runWithSufficientStackSpace(RD->getLocation(), [&] { 3379 DeclareImplicitMoveConstructor(RD); 3380 }); 3381 } 3382 } else { 3383 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); 3384 if (RD->needsImplicitCopyAssignment()) { 3385 runWithSufficientStackSpace(RD->getLocation(), [&] { 3386 DeclareImplicitCopyAssignment(RD); 3387 }); 3388 } 3389 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { 3390 runWithSufficientStackSpace(RD->getLocation(), [&] { 3391 DeclareImplicitMoveAssignment(RD); 3392 }); 3393 } 3394 } 3395 3396 if (ConstArg) 3397 ArgType.addConst(); 3398 if (VolatileArg) 3399 ArgType.addVolatile(); 3400 3401 // This isn't /really/ specified by the standard, but it's implied 3402 // we should be working from a PRValue in the case of move to ensure 3403 // that we prefer to bind to rvalue references, and an LValue in the 3404 // case of copy to ensure we don't bind to rvalue references. 3405 // Possibly an XValue is actually correct in the case of move, but 3406 // there is no semantic difference for class types in this restricted 3407 // case. 3408 if (SM == CXXSpecialMemberKind::CopyConstructor || 3409 SM == CXXSpecialMemberKind::CopyAssignment) 3410 VK = VK_LValue; 3411 else 3412 VK = VK_PRValue; 3413 } 3414 3415 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); 3416 3417 if (SM != CXXSpecialMemberKind::DefaultConstructor) { 3418 NumArgs = 1; 3419 Arg = &FakeArg; 3420 } 3421 3422 // Create the object argument 3423 QualType ThisTy = CanTy; 3424 if (ConstThis) 3425 ThisTy.addConst(); 3426 if (VolatileThis) 3427 ThisTy.addVolatile(); 3428 Expr::Classification Classification = 3429 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) 3430 .Classify(Context); 3431 3432 // Now we perform lookup on the name we computed earlier and do overload 3433 // resolution. Lookup is only performed directly into the class since there 3434 // will always be a (possibly implicit) declaration to shadow any others. 3435 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); 3436 DeclContext::lookup_result R = RD->lookup(Name); 3437 3438 if (R.empty()) { 3439 // We might have no default constructor because we have a lambda's closure 3440 // type, rather than because there's some other declared constructor. 3441 // Every class has a copy/move constructor, copy/move assignment, and 3442 // destructor. 3443 assert(SM == CXXSpecialMemberKind::DefaultConstructor && 3444 "lookup for a constructor or assignment operator was empty"); 3445 Result->setMethod(nullptr); 3446 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3447 return *Result; 3448 } 3449 3450 // Copy the candidates as our processing of them may load new declarations 3451 // from an external source and invalidate lookup_result. 3452 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); 3453 3454 for (NamedDecl *CandDecl : Candidates) { 3455 if (CandDecl->isInvalidDecl()) 3456 continue; 3457 3458 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); 3459 auto CtorInfo = getConstructorInfo(Cand); 3460 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { 3461 if (SM == CXXSpecialMemberKind::CopyAssignment || 3462 SM == CXXSpecialMemberKind::MoveAssignment) 3463 AddMethodCandidate(M, Cand, RD, ThisTy, Classification, 3464 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3465 else if (CtorInfo) 3466 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, 3467 llvm::ArrayRef(&Arg, NumArgs), OCS, 3468 /*SuppressUserConversions*/ true); 3469 else 3470 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, 3471 /*SuppressUserConversions*/ true); 3472 } else if (FunctionTemplateDecl *Tmpl = 3473 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { 3474 if (SM == CXXSpecialMemberKind::CopyAssignment || 3475 SM == CXXSpecialMemberKind::MoveAssignment) 3476 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, 3477 Classification, 3478 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3479 else if (CtorInfo) 3480 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, 3481 CtorInfo.FoundDecl, nullptr, 3482 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3483 else 3484 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, 3485 llvm::ArrayRef(&Arg, NumArgs), OCS, true); 3486 } else { 3487 assert(isa<UsingDecl>(Cand.getDecl()) && 3488 "illegal Kind of operator = Decl"); 3489 } 3490 } 3491 3492 OverloadCandidateSet::iterator Best; 3493 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { 3494 case OR_Success: 3495 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3496 Result->setKind(SpecialMemberOverloadResult::Success); 3497 break; 3498 3499 case OR_Deleted: 3500 Result->setMethod(cast<CXXMethodDecl>(Best->Function)); 3501 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3502 break; 3503 3504 case OR_Ambiguous: 3505 Result->setMethod(nullptr); 3506 Result->setKind(SpecialMemberOverloadResult::Ambiguous); 3507 break; 3508 3509 case OR_No_Viable_Function: 3510 Result->setMethod(nullptr); 3511 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); 3512 break; 3513 } 3514 3515 return *Result; 3516 } 3517 3518 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { 3519 SpecialMemberOverloadResult Result = 3520 LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor, 3521 false, false, false, false, false); 3522 3523 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3524 } 3525 3526 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, 3527 unsigned Quals) { 3528 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3529 "non-const, non-volatile qualifiers for copy ctor arg"); 3530 SpecialMemberOverloadResult Result = LookupSpecialMember( 3531 Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const, 3532 Quals & Qualifiers::Volatile, false, false, false); 3533 3534 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3535 } 3536 3537 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, 3538 unsigned Quals) { 3539 SpecialMemberOverloadResult Result = LookupSpecialMember( 3540 Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const, 3541 Quals & Qualifiers::Volatile, false, false, false); 3542 3543 return cast_or_null<CXXConstructorDecl>(Result.getMethod()); 3544 } 3545 3546 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { 3547 // If the implicit constructors have not yet been declared, do so now. 3548 if (CanDeclareSpecialMemberFunction(Class)) { 3549 runWithSufficientStackSpace(Class->getLocation(), [&] { 3550 if (Class->needsImplicitDefaultConstructor()) 3551 DeclareImplicitDefaultConstructor(Class); 3552 if (Class->needsImplicitCopyConstructor()) 3553 DeclareImplicitCopyConstructor(Class); 3554 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) 3555 DeclareImplicitMoveConstructor(Class); 3556 }); 3557 } 3558 3559 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); 3560 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); 3561 return Class->lookup(Name); 3562 } 3563 3564 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, 3565 unsigned Quals, bool RValueThis, 3566 unsigned ThisQuals) { 3567 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3568 "non-const, non-volatile qualifiers for copy assignment arg"); 3569 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3570 "non-const, non-volatile qualifiers for copy assignment this"); 3571 SpecialMemberOverloadResult Result = LookupSpecialMember( 3572 Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const, 3573 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, 3574 ThisQuals & Qualifiers::Volatile); 3575 3576 return Result.getMethod(); 3577 } 3578 3579 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, 3580 unsigned Quals, 3581 bool RValueThis, 3582 unsigned ThisQuals) { 3583 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && 3584 "non-const, non-volatile qualifiers for copy assignment this"); 3585 SpecialMemberOverloadResult Result = LookupSpecialMember( 3586 Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const, 3587 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const, 3588 ThisQuals & Qualifiers::Volatile); 3589 3590 return Result.getMethod(); 3591 } 3592 3593 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { 3594 return cast_or_null<CXXDestructorDecl>( 3595 LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false, 3596 false, false, false) 3597 .getMethod()); 3598 } 3599 3600 Sema::LiteralOperatorLookupResult 3601 Sema::LookupLiteralOperator(Scope *S, LookupResult &R, 3602 ArrayRef<QualType> ArgTys, bool AllowRaw, 3603 bool AllowTemplate, bool AllowStringTemplatePack, 3604 bool DiagnoseMissing, StringLiteral *StringLit) { 3605 LookupName(R, S); 3606 assert(R.getResultKind() != LookupResult::Ambiguous && 3607 "literal operator lookup can't be ambiguous"); 3608 3609 // Filter the lookup results appropriately. 3610 LookupResult::Filter F = R.makeFilter(); 3611 3612 bool AllowCooked = true; 3613 bool FoundRaw = false; 3614 bool FoundTemplate = false; 3615 bool FoundStringTemplatePack = false; 3616 bool FoundCooked = false; 3617 3618 while (F.hasNext()) { 3619 Decl *D = F.next(); 3620 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) 3621 D = USD->getTargetDecl(); 3622 3623 // If the declaration we found is invalid, skip it. 3624 if (D->isInvalidDecl()) { 3625 F.erase(); 3626 continue; 3627 } 3628 3629 bool IsRaw = false; 3630 bool IsTemplate = false; 3631 bool IsStringTemplatePack = false; 3632 bool IsCooked = false; 3633 3634 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 3635 if (FD->getNumParams() == 1 && 3636 FD->getParamDecl(0)->getType()->getAs<PointerType>()) 3637 IsRaw = true; 3638 else if (FD->getNumParams() == ArgTys.size()) { 3639 IsCooked = true; 3640 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { 3641 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); 3642 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { 3643 IsCooked = false; 3644 break; 3645 } 3646 } 3647 } 3648 } 3649 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { 3650 TemplateParameterList *Params = FD->getTemplateParameters(); 3651 if (Params->size() == 1) { 3652 IsTemplate = true; 3653 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { 3654 // Implied but not stated: user-defined integer and floating literals 3655 // only ever use numeric literal operator templates, not templates 3656 // taking a parameter of class type. 3657 F.erase(); 3658 continue; 3659 } 3660 3661 // A string literal template is only considered if the string literal 3662 // is a well-formed template argument for the template parameter. 3663 if (StringLit) { 3664 SFINAETrap Trap(*this); 3665 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; 3666 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); 3667 if (CheckTemplateArgument( 3668 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), 3669 0, SugaredChecked, CanonicalChecked, CTAK_Specified) || 3670 Trap.hasErrorOccurred()) 3671 IsTemplate = false; 3672 } 3673 } else { 3674 IsStringTemplatePack = true; 3675 } 3676 } 3677 3678 if (AllowTemplate && StringLit && IsTemplate) { 3679 FoundTemplate = true; 3680 AllowRaw = false; 3681 AllowCooked = false; 3682 AllowStringTemplatePack = false; 3683 if (FoundRaw || FoundCooked || FoundStringTemplatePack) { 3684 F.restart(); 3685 FoundRaw = FoundCooked = FoundStringTemplatePack = false; 3686 } 3687 } else if (AllowCooked && IsCooked) { 3688 FoundCooked = true; 3689 AllowRaw = false; 3690 AllowTemplate = StringLit; 3691 AllowStringTemplatePack = false; 3692 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { 3693 // Go through again and remove the raw and template decls we've 3694 // already found. 3695 F.restart(); 3696 FoundRaw = FoundTemplate = FoundStringTemplatePack = false; 3697 } 3698 } else if (AllowRaw && IsRaw) { 3699 FoundRaw = true; 3700 } else if (AllowTemplate && IsTemplate) { 3701 FoundTemplate = true; 3702 } else if (AllowStringTemplatePack && IsStringTemplatePack) { 3703 FoundStringTemplatePack = true; 3704 } else { 3705 F.erase(); 3706 } 3707 } 3708 3709 F.done(); 3710 3711 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template 3712 // form for string literal operator templates. 3713 if (StringLit && FoundTemplate) 3714 return LOLR_Template; 3715 3716 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching 3717 // parameter type, that is used in preference to a raw literal operator 3718 // or literal operator template. 3719 if (FoundCooked) 3720 return LOLR_Cooked; 3721 3722 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal 3723 // operator template, but not both. 3724 if (FoundRaw && FoundTemplate) { 3725 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); 3726 for (const NamedDecl *D : R) 3727 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); 3728 return LOLR_Error; 3729 } 3730 3731 if (FoundRaw) 3732 return LOLR_Raw; 3733 3734 if (FoundTemplate) 3735 return LOLR_Template; 3736 3737 if (FoundStringTemplatePack) 3738 return LOLR_StringTemplatePack; 3739 3740 // Didn't find anything we could use. 3741 if (DiagnoseMissing) { 3742 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) 3743 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] 3744 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw 3745 << (AllowTemplate || AllowStringTemplatePack); 3746 return LOLR_Error; 3747 } 3748 3749 return LOLR_ErrorNoDiagnostic; 3750 } 3751 3752 void ADLResult::insert(NamedDecl *New) { 3753 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; 3754 3755 // If we haven't yet seen a decl for this key, or the last decl 3756 // was exactly this one, we're done. 3757 if (Old == nullptr || Old == New) { 3758 Old = New; 3759 return; 3760 } 3761 3762 // Otherwise, decide which is a more recent redeclaration. 3763 FunctionDecl *OldFD = Old->getAsFunction(); 3764 FunctionDecl *NewFD = New->getAsFunction(); 3765 3766 FunctionDecl *Cursor = NewFD; 3767 while (true) { 3768 Cursor = Cursor->getPreviousDecl(); 3769 3770 // If we got to the end without finding OldFD, OldFD is the newer 3771 // declaration; leave things as they are. 3772 if (!Cursor) return; 3773 3774 // If we do find OldFD, then NewFD is newer. 3775 if (Cursor == OldFD) break; 3776 3777 // Otherwise, keep looking. 3778 } 3779 3780 Old = New; 3781 } 3782 3783 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, 3784 ArrayRef<Expr *> Args, ADLResult &Result) { 3785 // Find all of the associated namespaces and classes based on the 3786 // arguments we have. 3787 AssociatedNamespaceSet AssociatedNamespaces; 3788 AssociatedClassSet AssociatedClasses; 3789 FindAssociatedClassesAndNamespaces(Loc, Args, 3790 AssociatedNamespaces, 3791 AssociatedClasses); 3792 3793 // C++ [basic.lookup.argdep]p3: 3794 // Let X be the lookup set produced by unqualified lookup (3.4.1) 3795 // and let Y be the lookup set produced by argument dependent 3796 // lookup (defined as follows). If X contains [...] then Y is 3797 // empty. Otherwise Y is the set of declarations found in the 3798 // namespaces associated with the argument types as described 3799 // below. The set of declarations found by the lookup of the name 3800 // is the union of X and Y. 3801 // 3802 // Here, we compute Y and add its members to the overloaded 3803 // candidate set. 3804 for (auto *NS : AssociatedNamespaces) { 3805 // When considering an associated namespace, the lookup is the 3806 // same as the lookup performed when the associated namespace is 3807 // used as a qualifier (3.4.3.2) except that: 3808 // 3809 // -- Any using-directives in the associated namespace are 3810 // ignored. 3811 // 3812 // -- Any namespace-scope friend functions declared in 3813 // associated classes are visible within their respective 3814 // namespaces even if they are not visible during an ordinary 3815 // lookup (11.4). 3816 // 3817 // C++20 [basic.lookup.argdep] p4.3 3818 // -- are exported, are attached to a named module M, do not appear 3819 // in the translation unit containing the point of the lookup, and 3820 // have the same innermost enclosing non-inline namespace scope as 3821 // a declaration of an associated entity attached to M. 3822 DeclContext::lookup_result R = NS->lookup(Name); 3823 for (auto *D : R) { 3824 auto *Underlying = D; 3825 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) 3826 Underlying = USD->getTargetDecl(); 3827 3828 if (!isa<FunctionDecl>(Underlying) && 3829 !isa<FunctionTemplateDecl>(Underlying)) 3830 continue; 3831 3832 // The declaration is visible to argument-dependent lookup if either 3833 // it's ordinarily visible or declared as a friend in an associated 3834 // class. 3835 bool Visible = false; 3836 for (D = D->getMostRecentDecl(); D; 3837 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { 3838 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { 3839 if (isVisible(D)) { 3840 Visible = true; 3841 break; 3842 } 3843 3844 if (!getLangOpts().CPlusPlusModules) 3845 continue; 3846 3847 if (D->isInExportDeclContext()) { 3848 Module *FM = D->getOwningModule(); 3849 // C++20 [basic.lookup.argdep] p4.3 .. are exported ... 3850 // exports are only valid in module purview and outside of any 3851 // PMF (although a PMF should not even be present in a module 3852 // with an import). 3853 assert(FM && 3854 (FM->isNamedModule() || FM->isImplicitGlobalModule()) && 3855 !FM->isPrivateModule() && "bad export context"); 3856 // .. are attached to a named module M, do not appear in the 3857 // translation unit containing the point of the lookup.. 3858 if (D->isInAnotherModuleUnit() && 3859 llvm::any_of(AssociatedClasses, [&](auto *E) { 3860 // ... and have the same innermost enclosing non-inline 3861 // namespace scope as a declaration of an associated entity 3862 // attached to M 3863 if (E->getOwningModule() != FM) 3864 return false; 3865 // TODO: maybe this could be cached when generating the 3866 // associated namespaces / entities. 3867 DeclContext *Ctx = E->getDeclContext(); 3868 while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) 3869 Ctx = Ctx->getParent(); 3870 return Ctx == NS; 3871 })) { 3872 Visible = true; 3873 break; 3874 } 3875 } 3876 } else if (D->getFriendObjectKind()) { 3877 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); 3878 // [basic.lookup.argdep]p4: 3879 // Argument-dependent lookup finds all declarations of functions and 3880 // function templates that 3881 // - ... 3882 // - are declared as a friend ([class.friend]) of any class with a 3883 // reachable definition in the set of associated entities, 3884 // 3885 // FIXME: If there's a merged definition of D that is reachable, then 3886 // the friend declaration should be considered. 3887 if (AssociatedClasses.count(RD) && isReachable(D)) { 3888 Visible = true; 3889 break; 3890 } 3891 } 3892 } 3893 3894 // FIXME: Preserve D as the FoundDecl. 3895 if (Visible) 3896 Result.insert(Underlying); 3897 } 3898 } 3899 } 3900 3901 //---------------------------------------------------------------------------- 3902 // Search for all visible declarations. 3903 //---------------------------------------------------------------------------- 3904 VisibleDeclConsumer::~VisibleDeclConsumer() { } 3905 3906 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } 3907 3908 namespace { 3909 3910 class ShadowContextRAII; 3911 3912 class VisibleDeclsRecord { 3913 public: 3914 /// An entry in the shadow map, which is optimized to store a 3915 /// single declaration (the common case) but can also store a list 3916 /// of declarations. 3917 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; 3918 3919 private: 3920 /// A mapping from declaration names to the declarations that have 3921 /// this name within a particular scope. 3922 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 3923 3924 /// A list of shadow maps, which is used to model name hiding. 3925 std::list<ShadowMap> ShadowMaps; 3926 3927 /// The declaration contexts we have already visited. 3928 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; 3929 3930 friend class ShadowContextRAII; 3931 3932 public: 3933 /// Determine whether we have already visited this context 3934 /// (and, if not, note that we are going to visit that context now). 3935 bool visitedContext(DeclContext *Ctx) { 3936 return !VisitedContexts.insert(Ctx).second; 3937 } 3938 3939 bool alreadyVisitedContext(DeclContext *Ctx) { 3940 return VisitedContexts.count(Ctx); 3941 } 3942 3943 /// Determine whether the given declaration is hidden in the 3944 /// current scope. 3945 /// 3946 /// \returns the declaration that hides the given declaration, or 3947 /// NULL if no such declaration exists. 3948 NamedDecl *checkHidden(NamedDecl *ND); 3949 3950 /// Add a declaration to the current shadow map. 3951 void add(NamedDecl *ND) { 3952 ShadowMaps.back()[ND->getDeclName()].push_back(ND); 3953 } 3954 }; 3955 3956 /// RAII object that records when we've entered a shadow context. 3957 class ShadowContextRAII { 3958 VisibleDeclsRecord &Visible; 3959 3960 typedef VisibleDeclsRecord::ShadowMap ShadowMap; 3961 3962 public: 3963 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { 3964 Visible.ShadowMaps.emplace_back(); 3965 } 3966 3967 ~ShadowContextRAII() { 3968 Visible.ShadowMaps.pop_back(); 3969 } 3970 }; 3971 3972 } // end anonymous namespace 3973 3974 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { 3975 unsigned IDNS = ND->getIdentifierNamespace(); 3976 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); 3977 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); 3978 SM != SMEnd; ++SM) { 3979 ShadowMap::iterator Pos = SM->find(ND->getDeclName()); 3980 if (Pos == SM->end()) 3981 continue; 3982 3983 for (auto *D : Pos->second) { 3984 // A tag declaration does not hide a non-tag declaration. 3985 if (D->hasTagIdentifierNamespace() && 3986 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 3987 Decl::IDNS_ObjCProtocol))) 3988 continue; 3989 3990 // Protocols are in distinct namespaces from everything else. 3991 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) 3992 || (IDNS & Decl::IDNS_ObjCProtocol)) && 3993 D->getIdentifierNamespace() != IDNS) 3994 continue; 3995 3996 // Functions and function templates in the same scope overload 3997 // rather than hide. FIXME: Look for hiding based on function 3998 // signatures! 3999 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4000 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && 4001 SM == ShadowMaps.rbegin()) 4002 continue; 4003 4004 // A shadow declaration that's created by a resolved using declaration 4005 // is not hidden by the same using declaration. 4006 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && 4007 cast<UsingShadowDecl>(ND)->getIntroducer() == D) 4008 continue; 4009 4010 // We've found a declaration that hides this one. 4011 return D; 4012 } 4013 } 4014 4015 return nullptr; 4016 } 4017 4018 namespace { 4019 class LookupVisibleHelper { 4020 public: 4021 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, 4022 bool LoadExternal) 4023 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), 4024 LoadExternal(LoadExternal) {} 4025 4026 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, 4027 bool IncludeGlobalScope) { 4028 // Determine the set of using directives available during 4029 // unqualified name lookup. 4030 Scope *Initial = S; 4031 UnqualUsingDirectiveSet UDirs(SemaRef); 4032 if (SemaRef.getLangOpts().CPlusPlus) { 4033 // Find the first namespace or translation-unit scope. 4034 while (S && !isNamespaceOrTranslationUnitScope(S)) 4035 S = S->getParent(); 4036 4037 UDirs.visitScopeChain(Initial, S); 4038 } 4039 UDirs.done(); 4040 4041 // Look for visible declarations. 4042 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4043 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4044 if (!IncludeGlobalScope) 4045 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4046 ShadowContextRAII Shadow(Visited); 4047 lookupInScope(Initial, Result, UDirs); 4048 } 4049 4050 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, 4051 Sema::LookupNameKind Kind, bool IncludeGlobalScope) { 4052 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); 4053 Result.setAllowHidden(Consumer.includeHiddenDecls()); 4054 if (!IncludeGlobalScope) 4055 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); 4056 4057 ShadowContextRAII Shadow(Visited); 4058 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, 4059 /*InBaseClass=*/false); 4060 } 4061 4062 private: 4063 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, 4064 bool QualifiedNameLookup, bool InBaseClass) { 4065 if (!Ctx) 4066 return; 4067 4068 // Make sure we don't visit the same context twice. 4069 if (Visited.visitedContext(Ctx->getPrimaryContext())) 4070 return; 4071 4072 Consumer.EnteredContext(Ctx); 4073 4074 // Outside C++, lookup results for the TU live on identifiers. 4075 if (isa<TranslationUnitDecl>(Ctx) && 4076 !Result.getSema().getLangOpts().CPlusPlus) { 4077 auto &S = Result.getSema(); 4078 auto &Idents = S.Context.Idents; 4079 4080 // Ensure all external identifiers are in the identifier table. 4081 if (LoadExternal) 4082 if (IdentifierInfoLookup *External = 4083 Idents.getExternalIdentifierLookup()) { 4084 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 4085 for (StringRef Name = Iter->Next(); !Name.empty(); 4086 Name = Iter->Next()) 4087 Idents.get(Name); 4088 } 4089 4090 // Walk all lookup results in the TU for each identifier. 4091 for (const auto &Ident : Idents) { 4092 for (auto I = S.IdResolver.begin(Ident.getValue()), 4093 E = S.IdResolver.end(); 4094 I != E; ++I) { 4095 if (S.IdResolver.isDeclInScope(*I, Ctx)) { 4096 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { 4097 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4098 Visited.add(ND); 4099 } 4100 } 4101 } 4102 } 4103 4104 return; 4105 } 4106 4107 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) 4108 Result.getSema().ForceDeclarationOfImplicitMembers(Class); 4109 4110 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; 4111 // We sometimes skip loading namespace-level results (they tend to be huge). 4112 bool Load = LoadExternal || 4113 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); 4114 // Enumerate all of the results in this context. 4115 for (DeclContextLookupResult R : 4116 Load ? Ctx->lookups() 4117 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) 4118 for (auto *D : R) 4119 // Rather than visit immediately, we put ND into a vector and visit 4120 // all decls, in order, outside of this loop. The reason is that 4121 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) 4122 // may invalidate the iterators used in the two 4123 // loops above. 4124 DeclsToVisit.push_back(D); 4125 4126 for (auto *D : DeclsToVisit) 4127 if (auto *ND = Result.getAcceptableDecl(D)) { 4128 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); 4129 Visited.add(ND); 4130 } 4131 4132 DeclsToVisit.clear(); 4133 4134 // Traverse using directives for qualified name lookup. 4135 if (QualifiedNameLookup) { 4136 ShadowContextRAII Shadow(Visited); 4137 for (auto *I : Ctx->using_directives()) { 4138 if (!Result.getSema().isVisible(I)) 4139 continue; 4140 lookupInDeclContext(I->getNominatedNamespace(), Result, 4141 QualifiedNameLookup, InBaseClass); 4142 } 4143 } 4144 4145 // Traverse the contexts of inherited C++ classes. 4146 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { 4147 if (!Record->hasDefinition()) 4148 return; 4149 4150 for (const auto &B : Record->bases()) { 4151 QualType BaseType = B.getType(); 4152 4153 RecordDecl *RD; 4154 if (BaseType->isDependentType()) { 4155 if (!IncludeDependentBases) { 4156 // Don't look into dependent bases, because name lookup can't look 4157 // there anyway. 4158 continue; 4159 } 4160 const auto *TST = BaseType->getAs<TemplateSpecializationType>(); 4161 if (!TST) 4162 continue; 4163 TemplateName TN = TST->getTemplateName(); 4164 const auto *TD = 4165 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); 4166 if (!TD) 4167 continue; 4168 RD = TD->getTemplatedDecl(); 4169 } else { 4170 const auto *Record = BaseType->getAs<RecordType>(); 4171 if (!Record) 4172 continue; 4173 RD = Record->getDecl(); 4174 } 4175 4176 // FIXME: It would be nice to be able to determine whether referencing 4177 // a particular member would be ambiguous. For example, given 4178 // 4179 // struct A { int member; }; 4180 // struct B { int member; }; 4181 // struct C : A, B { }; 4182 // 4183 // void f(C *c) { c->### } 4184 // 4185 // accessing 'member' would result in an ambiguity. However, we 4186 // could be smart enough to qualify the member with the base 4187 // class, e.g., 4188 // 4189 // c->B::member 4190 // 4191 // or 4192 // 4193 // c->A::member 4194 4195 // Find results in this base class (and its bases). 4196 ShadowContextRAII Shadow(Visited); 4197 lookupInDeclContext(RD, Result, QualifiedNameLookup, 4198 /*InBaseClass=*/true); 4199 } 4200 } 4201 4202 // Traverse the contexts of Objective-C classes. 4203 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { 4204 // Traverse categories. 4205 for (auto *Cat : IFace->visible_categories()) { 4206 ShadowContextRAII Shadow(Visited); 4207 lookupInDeclContext(Cat, Result, QualifiedNameLookup, 4208 /*InBaseClass=*/false); 4209 } 4210 4211 // Traverse protocols. 4212 for (auto *I : IFace->all_referenced_protocols()) { 4213 ShadowContextRAII Shadow(Visited); 4214 lookupInDeclContext(I, Result, QualifiedNameLookup, 4215 /*InBaseClass=*/false); 4216 } 4217 4218 // Traverse the superclass. 4219 if (IFace->getSuperClass()) { 4220 ShadowContextRAII Shadow(Visited); 4221 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, 4222 /*InBaseClass=*/true); 4223 } 4224 4225 // If there is an implementation, traverse it. We do this to find 4226 // synthesized ivars. 4227 if (IFace->getImplementation()) { 4228 ShadowContextRAII Shadow(Visited); 4229 lookupInDeclContext(IFace->getImplementation(), Result, 4230 QualifiedNameLookup, InBaseClass); 4231 } 4232 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { 4233 for (auto *I : Protocol->protocols()) { 4234 ShadowContextRAII Shadow(Visited); 4235 lookupInDeclContext(I, Result, QualifiedNameLookup, 4236 /*InBaseClass=*/false); 4237 } 4238 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { 4239 for (auto *I : Category->protocols()) { 4240 ShadowContextRAII Shadow(Visited); 4241 lookupInDeclContext(I, Result, QualifiedNameLookup, 4242 /*InBaseClass=*/false); 4243 } 4244 4245 // If there is an implementation, traverse it. 4246 if (Category->getImplementation()) { 4247 ShadowContextRAII Shadow(Visited); 4248 lookupInDeclContext(Category->getImplementation(), Result, 4249 QualifiedNameLookup, /*InBaseClass=*/true); 4250 } 4251 } 4252 } 4253 4254 void lookupInScope(Scope *S, LookupResult &Result, 4255 UnqualUsingDirectiveSet &UDirs) { 4256 // No clients run in this mode and it's not supported. Please add tests and 4257 // remove the assertion if you start relying on it. 4258 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); 4259 4260 if (!S) 4261 return; 4262 4263 if (!S->getEntity() || 4264 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || 4265 (S->getEntity())->isFunctionOrMethod()) { 4266 FindLocalExternScope FindLocals(Result); 4267 // Walk through the declarations in this Scope. The consumer might add new 4268 // decls to the scope as part of deserialization, so make a copy first. 4269 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); 4270 for (Decl *D : ScopeDecls) { 4271 if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) 4272 if ((ND = Result.getAcceptableDecl(ND))) { 4273 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); 4274 Visited.add(ND); 4275 } 4276 } 4277 } 4278 4279 DeclContext *Entity = S->getLookupEntity(); 4280 if (Entity) { 4281 // Look into this scope's declaration context, along with any of its 4282 // parent lookup contexts (e.g., enclosing classes), up to the point 4283 // where we hit the context stored in the next outer scope. 4284 DeclContext *OuterCtx = findOuterContext(S); 4285 4286 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); 4287 Ctx = Ctx->getLookupParent()) { 4288 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { 4289 if (Method->isInstanceMethod()) { 4290 // For instance methods, look for ivars in the method's interface. 4291 LookupResult IvarResult(Result.getSema(), Result.getLookupName(), 4292 Result.getNameLoc(), 4293 Sema::LookupMemberName); 4294 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { 4295 lookupInDeclContext(IFace, IvarResult, 4296 /*QualifiedNameLookup=*/false, 4297 /*InBaseClass=*/false); 4298 } 4299 } 4300 4301 // We've already performed all of the name lookup that we need 4302 // to for Objective-C methods; the next context will be the 4303 // outer scope. 4304 break; 4305 } 4306 4307 if (Ctx->isFunctionOrMethod()) 4308 continue; 4309 4310 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, 4311 /*InBaseClass=*/false); 4312 } 4313 } else if (!S->getParent()) { 4314 // Look into the translation unit scope. We walk through the translation 4315 // unit's declaration context, because the Scope itself won't have all of 4316 // the declarations if we loaded a precompiled header. 4317 // FIXME: We would like the translation unit's Scope object to point to 4318 // the translation unit, so we don't need this special "if" branch. 4319 // However, doing so would force the normal C++ name-lookup code to look 4320 // into the translation unit decl when the IdentifierInfo chains would 4321 // suffice. Once we fix that problem (which is part of a more general 4322 // "don't look in DeclContexts unless we have to" optimization), we can 4323 // eliminate this. 4324 Entity = Result.getSema().Context.getTranslationUnitDecl(); 4325 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, 4326 /*InBaseClass=*/false); 4327 } 4328 4329 if (Entity) { 4330 // Lookup visible declarations in any namespaces found by using 4331 // directives. 4332 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) 4333 lookupInDeclContext( 4334 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, 4335 /*QualifiedNameLookup=*/false, 4336 /*InBaseClass=*/false); 4337 } 4338 4339 // Lookup names in the parent scope. 4340 ShadowContextRAII Shadow(Visited); 4341 lookupInScope(S->getParent(), Result, UDirs); 4342 } 4343 4344 private: 4345 VisibleDeclsRecord Visited; 4346 VisibleDeclConsumer &Consumer; 4347 bool IncludeDependentBases; 4348 bool LoadExternal; 4349 }; 4350 } // namespace 4351 4352 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, 4353 VisibleDeclConsumer &Consumer, 4354 bool IncludeGlobalScope, bool LoadExternal) { 4355 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, 4356 LoadExternal); 4357 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); 4358 } 4359 4360 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, 4361 VisibleDeclConsumer &Consumer, 4362 bool IncludeGlobalScope, 4363 bool IncludeDependentBases, bool LoadExternal) { 4364 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); 4365 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); 4366 } 4367 4368 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, 4369 SourceLocation GnuLabelLoc) { 4370 // Do a lookup to see if we have a label with this name already. 4371 NamedDecl *Res = nullptr; 4372 4373 if (GnuLabelLoc.isValid()) { 4374 // Local label definitions always shadow existing labels. 4375 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); 4376 Scope *S = CurScope; 4377 PushOnScopeChains(Res, S, true); 4378 return cast<LabelDecl>(Res); 4379 } 4380 4381 // Not a GNU local label. 4382 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, 4383 RedeclarationKind::NotForRedeclaration); 4384 // If we found a label, check to see if it is in the same context as us. 4385 // When in a Block, we don't want to reuse a label in an enclosing function. 4386 if (Res && Res->getDeclContext() != CurContext) 4387 Res = nullptr; 4388 if (!Res) { 4389 // If not forward referenced or defined already, create the backing decl. 4390 Res = LabelDecl::Create(Context, CurContext, Loc, II); 4391 Scope *S = CurScope->getFnParent(); 4392 assert(S && "Not in a function?"); 4393 PushOnScopeChains(Res, S, true); 4394 } 4395 return cast<LabelDecl>(Res); 4396 } 4397 4398 //===----------------------------------------------------------------------===// 4399 // Typo correction 4400 //===----------------------------------------------------------------------===// 4401 4402 static bool isCandidateViable(CorrectionCandidateCallback &CCC, 4403 TypoCorrection &Candidate) { 4404 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); 4405 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; 4406 } 4407 4408 static void LookupPotentialTypoResult(Sema &SemaRef, 4409 LookupResult &Res, 4410 IdentifierInfo *Name, 4411 Scope *S, CXXScopeSpec *SS, 4412 DeclContext *MemberContext, 4413 bool EnteringContext, 4414 bool isObjCIvarLookup, 4415 bool FindHidden); 4416 4417 /// Check whether the declarations found for a typo correction are 4418 /// visible. Set the correction's RequiresImport flag to true if none of the 4419 /// declarations are visible, false otherwise. 4420 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { 4421 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); 4422 4423 for (/**/; DI != DE; ++DI) 4424 if (!LookupResult::isVisible(SemaRef, *DI)) 4425 break; 4426 // No filtering needed if all decls are visible. 4427 if (DI == DE) { 4428 TC.setRequiresImport(false); 4429 return; 4430 } 4431 4432 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); 4433 bool AnyVisibleDecls = !NewDecls.empty(); 4434 4435 for (/**/; DI != DE; ++DI) { 4436 if (LookupResult::isVisible(SemaRef, *DI)) { 4437 if (!AnyVisibleDecls) { 4438 // Found a visible decl, discard all hidden ones. 4439 AnyVisibleDecls = true; 4440 NewDecls.clear(); 4441 } 4442 NewDecls.push_back(*DI); 4443 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) 4444 NewDecls.push_back(*DI); 4445 } 4446 4447 if (NewDecls.empty()) 4448 TC = TypoCorrection(); 4449 else { 4450 TC.setCorrectionDecls(NewDecls); 4451 TC.setRequiresImport(!AnyVisibleDecls); 4452 } 4453 } 4454 4455 // Fill the supplied vector with the IdentifierInfo pointers for each piece of 4456 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", 4457 // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). 4458 static void getNestedNameSpecifierIdentifiers( 4459 NestedNameSpecifier *NNS, 4460 SmallVectorImpl<const IdentifierInfo*> &Identifiers) { 4461 if (NestedNameSpecifier *Prefix = NNS->getPrefix()) 4462 getNestedNameSpecifierIdentifiers(Prefix, Identifiers); 4463 else 4464 Identifiers.clear(); 4465 4466 const IdentifierInfo *II = nullptr; 4467 4468 switch (NNS->getKind()) { 4469 case NestedNameSpecifier::Identifier: 4470 II = NNS->getAsIdentifier(); 4471 break; 4472 4473 case NestedNameSpecifier::Namespace: 4474 if (NNS->getAsNamespace()->isAnonymousNamespace()) 4475 return; 4476 II = NNS->getAsNamespace()->getIdentifier(); 4477 break; 4478 4479 case NestedNameSpecifier::NamespaceAlias: 4480 II = NNS->getAsNamespaceAlias()->getIdentifier(); 4481 break; 4482 4483 case NestedNameSpecifier::TypeSpecWithTemplate: 4484 case NestedNameSpecifier::TypeSpec: 4485 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); 4486 break; 4487 4488 case NestedNameSpecifier::Global: 4489 case NestedNameSpecifier::Super: 4490 return; 4491 } 4492 4493 if (II) 4494 Identifiers.push_back(II); 4495 } 4496 4497 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, 4498 DeclContext *Ctx, bool InBaseClass) { 4499 // Don't consider hidden names for typo correction. 4500 if (Hiding) 4501 return; 4502 4503 // Only consider entities with identifiers for names, ignoring 4504 // special names (constructors, overloaded operators, selectors, 4505 // etc.). 4506 IdentifierInfo *Name = ND->getIdentifier(); 4507 if (!Name) 4508 return; 4509 4510 // Only consider visible declarations and declarations from modules with 4511 // names that exactly match. 4512 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) 4513 return; 4514 4515 FoundName(Name->getName()); 4516 } 4517 4518 void TypoCorrectionConsumer::FoundName(StringRef Name) { 4519 // Compute the edit distance between the typo and the name of this 4520 // entity, and add the identifier to the list of results. 4521 addName(Name, nullptr); 4522 } 4523 4524 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { 4525 // Compute the edit distance between the typo and this keyword, 4526 // and add the keyword to the list of results. 4527 addName(Keyword, nullptr, nullptr, true); 4528 } 4529 4530 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, 4531 NestedNameSpecifier *NNS, bool isKeyword) { 4532 // Use a simple length-based heuristic to determine the minimum possible 4533 // edit distance. If the minimum isn't good enough, bail out early. 4534 StringRef TypoStr = Typo->getName(); 4535 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); 4536 if (MinED && TypoStr.size() / MinED < 3) 4537 return; 4538 4539 // Compute an upper bound on the allowable edit distance, so that the 4540 // edit-distance algorithm can short-circuit. 4541 unsigned UpperBound = (TypoStr.size() + 2) / 3; 4542 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); 4543 if (ED > UpperBound) return; 4544 4545 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); 4546 if (isKeyword) TC.makeKeyword(); 4547 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); 4548 addCorrection(TC); 4549 } 4550 4551 static const unsigned MaxTypoDistanceResultSets = 5; 4552 4553 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { 4554 StringRef TypoStr = Typo->getName(); 4555 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); 4556 4557 // For very short typos, ignore potential corrections that have a different 4558 // base identifier from the typo or which have a normalized edit distance 4559 // longer than the typo itself. 4560 if (TypoStr.size() < 3 && 4561 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) 4562 return; 4563 4564 // If the correction is resolved but is not viable, ignore it. 4565 if (Correction.isResolved()) { 4566 checkCorrectionVisibility(SemaRef, Correction); 4567 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) 4568 return; 4569 } 4570 4571 TypoResultList &CList = 4572 CorrectionResults[Correction.getEditDistance(false)][Name]; 4573 4574 if (!CList.empty() && !CList.back().isResolved()) 4575 CList.pop_back(); 4576 if (NamedDecl *NewND = Correction.getCorrectionDecl()) { 4577 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { 4578 return TypoCorr.getCorrectionDecl() == NewND; 4579 }); 4580 if (RI != CList.end()) { 4581 // The Correction refers to a decl already in the list. No insertion is 4582 // necessary and all further cases will return. 4583 4584 auto IsDeprecated = [](Decl *D) { 4585 while (D) { 4586 if (D->isDeprecated()) 4587 return true; 4588 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); 4589 } 4590 return false; 4591 }; 4592 4593 // Prefer non deprecated Corrections over deprecated and only then 4594 // sort using an alphabetical order. 4595 std::pair<bool, std::string> NewKey = { 4596 IsDeprecated(Correction.getFoundDecl()), 4597 Correction.getAsString(SemaRef.getLangOpts())}; 4598 4599 std::pair<bool, std::string> PrevKey = { 4600 IsDeprecated(RI->getFoundDecl()), 4601 RI->getAsString(SemaRef.getLangOpts())}; 4602 4603 if (NewKey < PrevKey) 4604 *RI = Correction; 4605 return; 4606 } 4607 } 4608 if (CList.empty() || Correction.isResolved()) 4609 CList.push_back(Correction); 4610 4611 while (CorrectionResults.size() > MaxTypoDistanceResultSets) 4612 CorrectionResults.erase(std::prev(CorrectionResults.end())); 4613 } 4614 4615 void TypoCorrectionConsumer::addNamespaces( 4616 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { 4617 SearchNamespaces = true; 4618 4619 for (auto KNPair : KnownNamespaces) 4620 Namespaces.addNameSpecifier(KNPair.first); 4621 4622 bool SSIsTemplate = false; 4623 if (NestedNameSpecifier *NNS = 4624 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { 4625 if (const Type *T = NNS->getAsType()) 4626 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; 4627 } 4628 // Do not transform this into an iterator-based loop. The loop body can 4629 // trigger the creation of further types (through lazy deserialization) and 4630 // invalid iterators into this list. 4631 auto &Types = SemaRef.getASTContext().getTypes(); 4632 for (unsigned I = 0; I != Types.size(); ++I) { 4633 const auto *TI = Types[I]; 4634 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { 4635 CD = CD->getCanonicalDecl(); 4636 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && 4637 !CD->isUnion() && CD->getIdentifier() && 4638 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && 4639 (CD->isBeingDefined() || CD->isCompleteDefinition())) 4640 Namespaces.addNameSpecifier(CD); 4641 } 4642 } 4643 } 4644 4645 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { 4646 if (++CurrentTCIndex < ValidatedCorrections.size()) 4647 return ValidatedCorrections[CurrentTCIndex]; 4648 4649 CurrentTCIndex = ValidatedCorrections.size(); 4650 while (!CorrectionResults.empty()) { 4651 auto DI = CorrectionResults.begin(); 4652 if (DI->second.empty()) { 4653 CorrectionResults.erase(DI); 4654 continue; 4655 } 4656 4657 auto RI = DI->second.begin(); 4658 if (RI->second.empty()) { 4659 DI->second.erase(RI); 4660 performQualifiedLookups(); 4661 continue; 4662 } 4663 4664 TypoCorrection TC = RI->second.pop_back_val(); 4665 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { 4666 ValidatedCorrections.push_back(TC); 4667 return ValidatedCorrections[CurrentTCIndex]; 4668 } 4669 } 4670 return ValidatedCorrections[0]; // The empty correction. 4671 } 4672 4673 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { 4674 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); 4675 DeclContext *TempMemberContext = MemberContext; 4676 CXXScopeSpec *TempSS = SS.get(); 4677 retry_lookup: 4678 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, 4679 EnteringContext, 4680 CorrectionValidator->IsObjCIvarLookup, 4681 Name == Typo && !Candidate.WillReplaceSpecifier()); 4682 switch (Result.getResultKind()) { 4683 case LookupResult::NotFound: 4684 case LookupResult::NotFoundInCurrentInstantiation: 4685 case LookupResult::FoundUnresolvedValue: 4686 if (TempSS) { 4687 // Immediately retry the lookup without the given CXXScopeSpec 4688 TempSS = nullptr; 4689 Candidate.WillReplaceSpecifier(true); 4690 goto retry_lookup; 4691 } 4692 if (TempMemberContext) { 4693 if (SS && !TempSS) 4694 TempSS = SS.get(); 4695 TempMemberContext = nullptr; 4696 goto retry_lookup; 4697 } 4698 if (SearchNamespaces) 4699 QualifiedResults.push_back(Candidate); 4700 break; 4701 4702 case LookupResult::Ambiguous: 4703 // We don't deal with ambiguities. 4704 break; 4705 4706 case LookupResult::Found: 4707 case LookupResult::FoundOverloaded: 4708 // Store all of the Decls for overloaded symbols 4709 for (auto *TRD : Result) 4710 Candidate.addCorrectionDecl(TRD); 4711 checkCorrectionVisibility(SemaRef, Candidate); 4712 if (!isCandidateViable(*CorrectionValidator, Candidate)) { 4713 if (SearchNamespaces) 4714 QualifiedResults.push_back(Candidate); 4715 break; 4716 } 4717 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4718 return true; 4719 } 4720 return false; 4721 } 4722 4723 void TypoCorrectionConsumer::performQualifiedLookups() { 4724 unsigned TypoLen = Typo->getName().size(); 4725 for (const TypoCorrection &QR : QualifiedResults) { 4726 for (const auto &NSI : Namespaces) { 4727 DeclContext *Ctx = NSI.DeclCtx; 4728 const Type *NSType = NSI.NameSpecifier->getAsType(); 4729 4730 // If the current NestedNameSpecifier refers to a class and the 4731 // current correction candidate is the name of that class, then skip 4732 // it as it is unlikely a qualified version of the class' constructor 4733 // is an appropriate correction. 4734 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : 4735 nullptr) { 4736 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) 4737 continue; 4738 } 4739 4740 TypoCorrection TC(QR); 4741 TC.ClearCorrectionDecls(); 4742 TC.setCorrectionSpecifier(NSI.NameSpecifier); 4743 TC.setQualifierDistance(NSI.EditDistance); 4744 TC.setCallbackDistance(0); // Reset the callback distance 4745 4746 // If the current correction candidate and namespace combination are 4747 // too far away from the original typo based on the normalized edit 4748 // distance, then skip performing a qualified name lookup. 4749 unsigned TmpED = TC.getEditDistance(true); 4750 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && 4751 TypoLen / TmpED < 3) 4752 continue; 4753 4754 Result.clear(); 4755 Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); 4756 if (!SemaRef.LookupQualifiedName(Result, Ctx)) 4757 continue; 4758 4759 // Any corrections added below will be validated in subsequent 4760 // iterations of the main while() loop over the Consumer's contents. 4761 switch (Result.getResultKind()) { 4762 case LookupResult::Found: 4763 case LookupResult::FoundOverloaded: { 4764 if (SS && SS->isValid()) { 4765 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); 4766 std::string OldQualified; 4767 llvm::raw_string_ostream OldOStream(OldQualified); 4768 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); 4769 OldOStream << Typo->getName(); 4770 // If correction candidate would be an identical written qualified 4771 // identifier, then the existing CXXScopeSpec probably included a 4772 // typedef that didn't get accounted for properly. 4773 if (OldOStream.str() == NewQualified) 4774 break; 4775 } 4776 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); 4777 TRD != TRDEnd; ++TRD) { 4778 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), 4779 NSType ? NSType->getAsCXXRecordDecl() 4780 : nullptr, 4781 TRD.getPair()) == Sema::AR_accessible) 4782 TC.addCorrectionDecl(*TRD); 4783 } 4784 if (TC.isResolved()) { 4785 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); 4786 addCorrection(TC); 4787 } 4788 break; 4789 } 4790 case LookupResult::NotFound: 4791 case LookupResult::NotFoundInCurrentInstantiation: 4792 case LookupResult::Ambiguous: 4793 case LookupResult::FoundUnresolvedValue: 4794 break; 4795 } 4796 } 4797 } 4798 QualifiedResults.clear(); 4799 } 4800 4801 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( 4802 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) 4803 : Context(Context), CurContextChain(buildContextChain(CurContext)) { 4804 if (NestedNameSpecifier *NNS = 4805 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { 4806 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); 4807 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4808 4809 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); 4810 } 4811 // Build the list of identifiers that would be used for an absolute 4812 // (from the global context) NestedNameSpecifier referring to the current 4813 // context. 4814 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4815 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) 4816 CurContextIdentifiers.push_back(ND->getIdentifier()); 4817 } 4818 4819 // Add the global context as a NestedNameSpecifier 4820 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), 4821 NestedNameSpecifier::GlobalSpecifier(Context), 1}; 4822 DistanceMap[1].push_back(SI); 4823 } 4824 4825 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( 4826 DeclContext *Start) -> DeclContextList { 4827 assert(Start && "Building a context chain from a null context"); 4828 DeclContextList Chain; 4829 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; 4830 DC = DC->getLookupParent()) { 4831 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); 4832 if (!DC->isInlineNamespace() && !DC->isTransparentContext() && 4833 !(ND && ND->isAnonymousNamespace())) 4834 Chain.push_back(DC->getPrimaryContext()); 4835 } 4836 return Chain; 4837 } 4838 4839 unsigned 4840 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( 4841 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { 4842 unsigned NumSpecifiers = 0; 4843 for (DeclContext *C : llvm::reverse(DeclChain)) { 4844 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { 4845 NNS = NestedNameSpecifier::Create(Context, NNS, ND); 4846 ++NumSpecifiers; 4847 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { 4848 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), 4849 RD->getTypeForDecl()); 4850 ++NumSpecifiers; 4851 } 4852 } 4853 return NumSpecifiers; 4854 } 4855 4856 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( 4857 DeclContext *Ctx) { 4858 NestedNameSpecifier *NNS = nullptr; 4859 unsigned NumSpecifiers = 0; 4860 DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); 4861 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); 4862 4863 // Eliminate common elements from the two DeclContext chains. 4864 for (DeclContext *C : llvm::reverse(CurContextChain)) { 4865 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) 4866 break; 4867 NamespaceDeclChain.pop_back(); 4868 } 4869 4870 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain 4871 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); 4872 4873 // Add an explicit leading '::' specifier if needed. 4874 if (NamespaceDeclChain.empty()) { 4875 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4876 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4877 NumSpecifiers = 4878 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4879 } else if (NamedDecl *ND = 4880 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { 4881 IdentifierInfo *Name = ND->getIdentifier(); 4882 bool SameNameSpecifier = false; 4883 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { 4884 std::string NewNameSpecifier; 4885 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); 4886 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; 4887 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4888 NNS->print(SpecifierOStream, Context.getPrintingPolicy()); 4889 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; 4890 } 4891 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { 4892 // Rebuild the NestedNameSpecifier as a globally-qualified specifier. 4893 NNS = NestedNameSpecifier::GlobalSpecifier(Context); 4894 NumSpecifiers = 4895 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); 4896 } 4897 } 4898 4899 // If the built NestedNameSpecifier would be replacing an existing 4900 // NestedNameSpecifier, use the number of component identifiers that 4901 // would need to be changed as the edit distance instead of the number 4902 // of components in the built NestedNameSpecifier. 4903 if (NNS && !CurNameSpecifierIdentifiers.empty()) { 4904 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; 4905 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); 4906 NumSpecifiers = 4907 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), 4908 llvm::ArrayRef(NewNameSpecifierIdentifiers)); 4909 } 4910 4911 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; 4912 DistanceMap[NumSpecifiers].push_back(SI); 4913 } 4914 4915 /// Perform name lookup for a possible result for typo correction. 4916 static void LookupPotentialTypoResult(Sema &SemaRef, 4917 LookupResult &Res, 4918 IdentifierInfo *Name, 4919 Scope *S, CXXScopeSpec *SS, 4920 DeclContext *MemberContext, 4921 bool EnteringContext, 4922 bool isObjCIvarLookup, 4923 bool FindHidden) { 4924 Res.suppressDiagnostics(); 4925 Res.clear(); 4926 Res.setLookupName(Name); 4927 Res.setAllowHidden(FindHidden); 4928 if (MemberContext) { 4929 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { 4930 if (isObjCIvarLookup) { 4931 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { 4932 Res.addDecl(Ivar); 4933 Res.resolveKind(); 4934 return; 4935 } 4936 } 4937 4938 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( 4939 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 4940 Res.addDecl(Prop); 4941 Res.resolveKind(); 4942 return; 4943 } 4944 } 4945 4946 SemaRef.LookupQualifiedName(Res, MemberContext); 4947 return; 4948 } 4949 4950 SemaRef.LookupParsedName(Res, S, SS, 4951 /*ObjectType=*/QualType(), 4952 /*AllowBuiltinCreation=*/false, EnteringContext); 4953 4954 // Fake ivar lookup; this should really be part of 4955 // LookupParsedName. 4956 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 4957 if (Method->isInstanceMethod() && Method->getClassInterface() && 4958 (Res.empty() || 4959 (Res.isSingleResult() && 4960 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { 4961 if (ObjCIvarDecl *IV 4962 = Method->getClassInterface()->lookupInstanceVariable(Name)) { 4963 Res.addDecl(IV); 4964 Res.resolveKind(); 4965 } 4966 } 4967 } 4968 } 4969 4970 /// Add keywords to the consumer as possible typo corrections. 4971 static void AddKeywordsToConsumer(Sema &SemaRef, 4972 TypoCorrectionConsumer &Consumer, 4973 Scope *S, CorrectionCandidateCallback &CCC, 4974 bool AfterNestedNameSpecifier) { 4975 if (AfterNestedNameSpecifier) { 4976 // For 'X::', we know exactly which keywords can appear next. 4977 Consumer.addKeywordResult("template"); 4978 if (CCC.WantExpressionKeywords) 4979 Consumer.addKeywordResult("operator"); 4980 return; 4981 } 4982 4983 if (CCC.WantObjCSuper) 4984 Consumer.addKeywordResult("super"); 4985 4986 if (CCC.WantTypeSpecifiers) { 4987 // Add type-specifier keywords to the set of results. 4988 static const char *const CTypeSpecs[] = { 4989 "char", "const", "double", "enum", "float", "int", "long", "short", 4990 "signed", "struct", "union", "unsigned", "void", "volatile", 4991 "_Complex", 4992 // storage-specifiers as well 4993 "extern", "inline", "static", "typedef" 4994 }; 4995 4996 for (const auto *CTS : CTypeSpecs) 4997 Consumer.addKeywordResult(CTS); 4998 4999 if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) 5000 Consumer.addKeywordResult("_Imaginary"); 5001 5002 if (SemaRef.getLangOpts().C99) 5003 Consumer.addKeywordResult("restrict"); 5004 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) 5005 Consumer.addKeywordResult("bool"); 5006 else if (SemaRef.getLangOpts().C99) 5007 Consumer.addKeywordResult("_Bool"); 5008 5009 if (SemaRef.getLangOpts().CPlusPlus) { 5010 Consumer.addKeywordResult("class"); 5011 Consumer.addKeywordResult("typename"); 5012 Consumer.addKeywordResult("wchar_t"); 5013 5014 if (SemaRef.getLangOpts().CPlusPlus11) { 5015 Consumer.addKeywordResult("char16_t"); 5016 Consumer.addKeywordResult("char32_t"); 5017 Consumer.addKeywordResult("constexpr"); 5018 Consumer.addKeywordResult("decltype"); 5019 Consumer.addKeywordResult("thread_local"); 5020 } 5021 } 5022 5023 if (SemaRef.getLangOpts().GNUKeywords) 5024 Consumer.addKeywordResult("typeof"); 5025 } else if (CCC.WantFunctionLikeCasts) { 5026 static const char *const CastableTypeSpecs[] = { 5027 "char", "double", "float", "int", "long", "short", 5028 "signed", "unsigned", "void" 5029 }; 5030 for (auto *kw : CastableTypeSpecs) 5031 Consumer.addKeywordResult(kw); 5032 } 5033 5034 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { 5035 Consumer.addKeywordResult("const_cast"); 5036 Consumer.addKeywordResult("dynamic_cast"); 5037 Consumer.addKeywordResult("reinterpret_cast"); 5038 Consumer.addKeywordResult("static_cast"); 5039 } 5040 5041 if (CCC.WantExpressionKeywords) { 5042 Consumer.addKeywordResult("sizeof"); 5043 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { 5044 Consumer.addKeywordResult("false"); 5045 Consumer.addKeywordResult("true"); 5046 } 5047 5048 if (SemaRef.getLangOpts().CPlusPlus) { 5049 static const char *const CXXExprs[] = { 5050 "delete", "new", "operator", "throw", "typeid" 5051 }; 5052 for (const auto *CE : CXXExprs) 5053 Consumer.addKeywordResult(CE); 5054 5055 if (isa<CXXMethodDecl>(SemaRef.CurContext) && 5056 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) 5057 Consumer.addKeywordResult("this"); 5058 5059 if (SemaRef.getLangOpts().CPlusPlus11) { 5060 Consumer.addKeywordResult("alignof"); 5061 Consumer.addKeywordResult("nullptr"); 5062 } 5063 } 5064 5065 if (SemaRef.getLangOpts().C11) { 5066 // FIXME: We should not suggest _Alignof if the alignof macro 5067 // is present. 5068 Consumer.addKeywordResult("_Alignof"); 5069 } 5070 } 5071 5072 if (CCC.WantRemainingKeywords) { 5073 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { 5074 // Statements. 5075 static const char *const CStmts[] = { 5076 "do", "else", "for", "goto", "if", "return", "switch", "while" }; 5077 for (const auto *CS : CStmts) 5078 Consumer.addKeywordResult(CS); 5079 5080 if (SemaRef.getLangOpts().CPlusPlus) { 5081 Consumer.addKeywordResult("catch"); 5082 Consumer.addKeywordResult("try"); 5083 } 5084 5085 if (S && S->getBreakParent()) 5086 Consumer.addKeywordResult("break"); 5087 5088 if (S && S->getContinueParent()) 5089 Consumer.addKeywordResult("continue"); 5090 5091 if (SemaRef.getCurFunction() && 5092 !SemaRef.getCurFunction()->SwitchStack.empty()) { 5093 Consumer.addKeywordResult("case"); 5094 Consumer.addKeywordResult("default"); 5095 } 5096 } else { 5097 if (SemaRef.getLangOpts().CPlusPlus) { 5098 Consumer.addKeywordResult("namespace"); 5099 Consumer.addKeywordResult("template"); 5100 } 5101 5102 if (S && S->isClassScope()) { 5103 Consumer.addKeywordResult("explicit"); 5104 Consumer.addKeywordResult("friend"); 5105 Consumer.addKeywordResult("mutable"); 5106 Consumer.addKeywordResult("private"); 5107 Consumer.addKeywordResult("protected"); 5108 Consumer.addKeywordResult("public"); 5109 Consumer.addKeywordResult("virtual"); 5110 } 5111 } 5112 5113 if (SemaRef.getLangOpts().CPlusPlus) { 5114 Consumer.addKeywordResult("using"); 5115 5116 if (SemaRef.getLangOpts().CPlusPlus11) 5117 Consumer.addKeywordResult("static_assert"); 5118 } 5119 } 5120 } 5121 5122 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( 5123 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5124 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5125 DeclContext *MemberContext, bool EnteringContext, 5126 const ObjCObjectPointerType *OPT, bool ErrorRecovery) { 5127 5128 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || 5129 DisableTypoCorrection) 5130 return nullptr; 5131 5132 // In Microsoft mode, don't perform typo correction in a template member 5133 // function dependent context because it interferes with the "lookup into 5134 // dependent bases of class templates" feature. 5135 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && 5136 isa<CXXMethodDecl>(CurContext)) 5137 return nullptr; 5138 5139 // We only attempt to correct typos for identifiers. 5140 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5141 if (!Typo) 5142 return nullptr; 5143 5144 // If the scope specifier itself was invalid, don't try to correct 5145 // typos. 5146 if (SS && SS->isInvalid()) 5147 return nullptr; 5148 5149 // Never try to correct typos during any kind of code synthesis. 5150 if (!CodeSynthesisContexts.empty()) 5151 return nullptr; 5152 5153 // Don't try to correct 'super'. 5154 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) 5155 return nullptr; 5156 5157 // Abort if typo correction already failed for this specific typo. 5158 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); 5159 if (locs != TypoCorrectionFailures.end() && 5160 locs->second.count(TypoName.getLoc())) 5161 return nullptr; 5162 5163 // Don't try to correct the identifier "vector" when in AltiVec mode. 5164 // TODO: Figure out why typo correction misbehaves in this case, fix it, and 5165 // remove this workaround. 5166 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) 5167 return nullptr; 5168 5169 // Provide a stop gap for files that are just seriously broken. Trying 5170 // to correct all typos can turn into a HUGE performance penalty, causing 5171 // some files to take minutes to get rejected by the parser. 5172 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; 5173 if (Limit && TyposCorrected >= Limit) 5174 return nullptr; 5175 ++TyposCorrected; 5176 5177 // If we're handling a missing symbol error, using modules, and the 5178 // special search all modules option is used, look for a missing import. 5179 if (ErrorRecovery && getLangOpts().Modules && 5180 getLangOpts().ModulesSearchAll) { 5181 // The following has the side effect of loading the missing module. 5182 getModuleLoader().lookupMissingImports(Typo->getName(), 5183 TypoName.getBeginLoc()); 5184 } 5185 5186 // Extend the lifetime of the callback. We delayed this until here 5187 // to avoid allocations in the hot path (which is where no typo correction 5188 // occurs). Note that CorrectionCandidateCallback is polymorphic and 5189 // initially stack-allocated. 5190 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); 5191 auto Consumer = std::make_unique<TypoCorrectionConsumer>( 5192 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, 5193 EnteringContext); 5194 5195 // Perform name lookup to find visible, similarly-named entities. 5196 bool IsUnqualifiedLookup = false; 5197 DeclContext *QualifiedDC = MemberContext; 5198 if (MemberContext) { 5199 LookupVisibleDecls(MemberContext, LookupKind, *Consumer); 5200 5201 // Look in qualified interfaces. 5202 if (OPT) { 5203 for (auto *I : OPT->quals()) 5204 LookupVisibleDecls(I, LookupKind, *Consumer); 5205 } 5206 } else if (SS && SS->isSet()) { 5207 QualifiedDC = computeDeclContext(*SS, EnteringContext); 5208 if (!QualifiedDC) 5209 return nullptr; 5210 5211 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); 5212 } else { 5213 IsUnqualifiedLookup = true; 5214 } 5215 5216 // Determine whether we are going to search in the various namespaces for 5217 // corrections. 5218 bool SearchNamespaces 5219 = getLangOpts().CPlusPlus && 5220 (IsUnqualifiedLookup || (SS && SS->isSet())); 5221 5222 if (IsUnqualifiedLookup || SearchNamespaces) { 5223 // For unqualified lookup, look through all of the names that we have 5224 // seen in this translation unit. 5225 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5226 for (const auto &I : Context.Idents) 5227 Consumer->FoundName(I.getKey()); 5228 5229 // Walk through identifiers in external identifier sources. 5230 // FIXME: Re-add the ability to skip very unlikely potential corrections. 5231 if (IdentifierInfoLookup *External 5232 = Context.Idents.getExternalIdentifierLookup()) { 5233 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); 5234 do { 5235 StringRef Name = Iter->Next(); 5236 if (Name.empty()) 5237 break; 5238 5239 Consumer->FoundName(Name); 5240 } while (true); 5241 } 5242 } 5243 5244 AddKeywordsToConsumer(*this, *Consumer, S, 5245 *Consumer->getCorrectionValidator(), 5246 SS && SS->isNotEmpty()); 5247 5248 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going 5249 // to search those namespaces. 5250 if (SearchNamespaces) { 5251 // Load any externally-known namespaces. 5252 if (ExternalSource && !LoadedExternalKnownNamespaces) { 5253 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; 5254 LoadedExternalKnownNamespaces = true; 5255 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); 5256 for (auto *N : ExternalKnownNamespaces) 5257 KnownNamespaces[N] = true; 5258 } 5259 5260 Consumer->addNamespaces(KnownNamespaces); 5261 } 5262 5263 return Consumer; 5264 } 5265 5266 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, 5267 Sema::LookupNameKind LookupKind, 5268 Scope *S, CXXScopeSpec *SS, 5269 CorrectionCandidateCallback &CCC, 5270 CorrectTypoKind Mode, 5271 DeclContext *MemberContext, 5272 bool EnteringContext, 5273 const ObjCObjectPointerType *OPT, 5274 bool RecordFailure) { 5275 // Always let the ExternalSource have the first chance at correction, even 5276 // if we would otherwise have given up. 5277 if (ExternalSource) { 5278 if (TypoCorrection Correction = 5279 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, 5280 MemberContext, EnteringContext, OPT)) 5281 return Correction; 5282 } 5283 5284 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; 5285 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for 5286 // some instances of CTC_Unknown, while WantRemainingKeywords is true 5287 // for CTC_Unknown but not for CTC_ObjCMessageReceiver. 5288 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; 5289 5290 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5291 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5292 MemberContext, EnteringContext, 5293 OPT, Mode == CTK_ErrorRecovery); 5294 5295 if (!Consumer) 5296 return TypoCorrection(); 5297 5298 // If we haven't found anything, we're done. 5299 if (Consumer->empty()) 5300 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5301 5302 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5303 // is not more that about a third of the length of the typo's identifier. 5304 unsigned ED = Consumer->getBestEditDistance(true); 5305 unsigned TypoLen = Typo->getName().size(); 5306 if (ED > 0 && TypoLen / ED < 3) 5307 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5308 5309 TypoCorrection BestTC = Consumer->getNextCorrection(); 5310 TypoCorrection SecondBestTC = Consumer->getNextCorrection(); 5311 if (!BestTC) 5312 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5313 5314 ED = BestTC.getEditDistance(); 5315 5316 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { 5317 // If this was an unqualified lookup and we believe the callback 5318 // object wouldn't have filtered out possible corrections, note 5319 // that no correction was found. 5320 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5321 } 5322 5323 // If only a single name remains, return that result. 5324 if (!SecondBestTC || 5325 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { 5326 const TypoCorrection &Result = BestTC; 5327 5328 // Don't correct to a keyword that's the same as the typo; the keyword 5329 // wasn't actually in scope. 5330 if (ED == 0 && Result.isKeyword()) 5331 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5332 5333 TypoCorrection TC = Result; 5334 TC.setCorrectionRange(SS, TypoName); 5335 checkCorrectionVisibility(*this, TC); 5336 return TC; 5337 } else if (SecondBestTC && ObjCMessageReceiver) { 5338 // Prefer 'super' when we're completing in a message-receiver 5339 // context. 5340 5341 if (BestTC.getCorrection().getAsString() != "super") { 5342 if (SecondBestTC.getCorrection().getAsString() == "super") 5343 BestTC = SecondBestTC; 5344 else if ((*Consumer)["super"].front().isKeyword()) 5345 BestTC = (*Consumer)["super"].front(); 5346 } 5347 // Don't correct to a keyword that's the same as the typo; the keyword 5348 // wasn't actually in scope. 5349 if (BestTC.getEditDistance() == 0 || 5350 BestTC.getCorrection().getAsString() != "super") 5351 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); 5352 5353 BestTC.setCorrectionRange(SS, TypoName); 5354 return BestTC; 5355 } 5356 5357 // Record the failure's location if needed and return an empty correction. If 5358 // this was an unqualified lookup and we believe the callback object did not 5359 // filter out possible corrections, also cache the failure for the typo. 5360 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); 5361 } 5362 5363 TypoExpr *Sema::CorrectTypoDelayed( 5364 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, 5365 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, 5366 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, 5367 DeclContext *MemberContext, bool EnteringContext, 5368 const ObjCObjectPointerType *OPT) { 5369 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, 5370 MemberContext, EnteringContext, 5371 OPT, Mode == CTK_ErrorRecovery); 5372 5373 // Give the external sema source a chance to correct the typo. 5374 TypoCorrection ExternalTypo; 5375 if (ExternalSource && Consumer) { 5376 ExternalTypo = ExternalSource->CorrectTypo( 5377 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), 5378 MemberContext, EnteringContext, OPT); 5379 if (ExternalTypo) 5380 Consumer->addCorrection(ExternalTypo); 5381 } 5382 5383 if (!Consumer || Consumer->empty()) 5384 return nullptr; 5385 5386 // Make sure the best edit distance (prior to adding any namespace qualifiers) 5387 // is not more that about a third of the length of the typo's identifier. 5388 unsigned ED = Consumer->getBestEditDistance(true); 5389 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); 5390 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) 5391 return nullptr; 5392 ExprEvalContexts.back().NumTypos++; 5393 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), 5394 TypoName.getLoc()); 5395 } 5396 5397 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { 5398 if (!CDecl) return; 5399 5400 if (isKeyword()) 5401 CorrectionDecls.clear(); 5402 5403 CorrectionDecls.push_back(CDecl); 5404 5405 if (!CorrectionName) 5406 CorrectionName = CDecl->getDeclName(); 5407 } 5408 5409 std::string TypoCorrection::getAsString(const LangOptions &LO) const { 5410 if (CorrectionNameSpec) { 5411 std::string tmpBuffer; 5412 llvm::raw_string_ostream PrefixOStream(tmpBuffer); 5413 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); 5414 PrefixOStream << CorrectionName; 5415 return PrefixOStream.str(); 5416 } 5417 5418 return CorrectionName.getAsString(); 5419 } 5420 5421 bool CorrectionCandidateCallback::ValidateCandidate( 5422 const TypoCorrection &candidate) { 5423 if (!candidate.isResolved()) 5424 return true; 5425 5426 if (candidate.isKeyword()) 5427 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || 5428 WantRemainingKeywords || WantObjCSuper; 5429 5430 bool HasNonType = false; 5431 bool HasStaticMethod = false; 5432 bool HasNonStaticMethod = false; 5433 for (Decl *D : candidate) { 5434 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) 5435 D = FTD->getTemplatedDecl(); 5436 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 5437 if (Method->isStatic()) 5438 HasStaticMethod = true; 5439 else 5440 HasNonStaticMethod = true; 5441 } 5442 if (!isa<TypeDecl>(D)) 5443 HasNonType = true; 5444 } 5445 5446 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && 5447 !candidate.getCorrectionSpecifier()) 5448 return false; 5449 5450 return WantTypeSpecifiers || HasNonType; 5451 } 5452 5453 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, 5454 bool HasExplicitTemplateArgs, 5455 MemberExpr *ME) 5456 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), 5457 CurContext(SemaRef.CurContext), MemberFn(ME) { 5458 WantTypeSpecifiers = false; 5459 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && 5460 !HasExplicitTemplateArgs && NumArgs == 1; 5461 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; 5462 WantRemainingKeywords = false; 5463 } 5464 5465 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { 5466 if (!candidate.getCorrectionDecl()) 5467 return candidate.isKeyword(); 5468 5469 for (auto *C : candidate) { 5470 FunctionDecl *FD = nullptr; 5471 NamedDecl *ND = C->getUnderlyingDecl(); 5472 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) 5473 FD = FTD->getTemplatedDecl(); 5474 if (!HasExplicitTemplateArgs && !FD) { 5475 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { 5476 // If the Decl is neither a function nor a template function, 5477 // determine if it is a pointer or reference to a function. If so, 5478 // check against the number of arguments expected for the pointee. 5479 QualType ValType = cast<ValueDecl>(ND)->getType(); 5480 if (ValType.isNull()) 5481 continue; 5482 if (ValType->isAnyPointerType() || ValType->isReferenceType()) 5483 ValType = ValType->getPointeeType(); 5484 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) 5485 if (FPT->getNumParams() == NumArgs) 5486 return true; 5487 } 5488 } 5489 5490 // A typo for a function-style cast can look like a function call in C++. 5491 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr 5492 : isa<TypeDecl>(ND)) && 5493 CurContext->getParentASTContext().getLangOpts().CPlusPlus) 5494 // Only a class or class template can take two or more arguments. 5495 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); 5496 5497 // Skip the current candidate if it is not a FunctionDecl or does not accept 5498 // the current number of arguments. 5499 if (!FD || !(FD->getNumParams() >= NumArgs && 5500 FD->getMinRequiredArguments() <= NumArgs)) 5501 continue; 5502 5503 // If the current candidate is a non-static C++ method, skip the candidate 5504 // unless the method being corrected--or the current DeclContext, if the 5505 // function being corrected is not a method--is a method in the same class 5506 // or a descendent class of the candidate's parent class. 5507 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 5508 if (MemberFn || !MD->isStatic()) { 5509 const auto *CurMD = 5510 MemberFn 5511 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) 5512 : dyn_cast_if_present<CXXMethodDecl>(CurContext); 5513 const CXXRecordDecl *CurRD = 5514 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; 5515 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); 5516 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) 5517 continue; 5518 } 5519 } 5520 return true; 5521 } 5522 return false; 5523 } 5524 5525 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5526 const PartialDiagnostic &TypoDiag, 5527 bool ErrorRecovery) { 5528 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), 5529 ErrorRecovery); 5530 } 5531 5532 /// Find which declaration we should import to provide the definition of 5533 /// the given declaration. 5534 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { 5535 if (const auto *VD = dyn_cast<VarDecl>(D)) 5536 return VD->getDefinition(); 5537 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 5538 return FD->getDefinition(); 5539 if (const auto *TD = dyn_cast<TagDecl>(D)) 5540 return TD->getDefinition(); 5541 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) 5542 return ID->getDefinition(); 5543 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) 5544 return PD->getDefinition(); 5545 if (const auto *TD = dyn_cast<TemplateDecl>(D)) 5546 if (const NamedDecl *TTD = TD->getTemplatedDecl()) 5547 return getDefinitionToImport(TTD); 5548 return nullptr; 5549 } 5550 5551 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, 5552 MissingImportKind MIK, bool Recover) { 5553 // Suggest importing a module providing the definition of this entity, if 5554 // possible. 5555 const NamedDecl *Def = getDefinitionToImport(Decl); 5556 if (!Def) 5557 Def = Decl; 5558 5559 Module *Owner = getOwningModule(Def); 5560 assert(Owner && "definition of hidden declaration is not in a module"); 5561 5562 llvm::SmallVector<Module*, 8> OwningModules; 5563 OwningModules.push_back(Owner); 5564 auto Merged = Context.getModulesWithMergedDefinition(Def); 5565 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); 5566 5567 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, 5568 Recover); 5569 } 5570 5571 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic 5572 /// suggesting the addition of a #include of the specified file. 5573 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, 5574 llvm::StringRef IncludingFile) { 5575 bool IsAngled = false; 5576 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( 5577 E, IncludingFile, &IsAngled); 5578 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); 5579 } 5580 5581 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, 5582 SourceLocation DeclLoc, 5583 ArrayRef<Module *> Modules, 5584 MissingImportKind MIK, bool Recover) { 5585 assert(!Modules.empty()); 5586 5587 // See https://github.com/llvm/llvm-project/issues/73893. It is generally 5588 // confusing than helpful to show the namespace is not visible. 5589 if (isa<NamespaceDecl>(Decl)) 5590 return; 5591 5592 auto NotePrevious = [&] { 5593 // FIXME: Suppress the note backtrace even under 5594 // -fdiagnostics-show-note-include-stack. We don't care how this 5595 // declaration was previously reached. 5596 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; 5597 }; 5598 5599 // Weed out duplicates from module list. 5600 llvm::SmallVector<Module*, 8> UniqueModules; 5601 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; 5602 for (auto *M : Modules) { 5603 if (M->isExplicitGlobalModule() || M->isPrivateModule()) 5604 continue; 5605 if (UniqueModuleSet.insert(M).second) 5606 UniqueModules.push_back(M); 5607 } 5608 5609 // Try to find a suitable header-name to #include. 5610 std::string HeaderName; 5611 if (OptionalFileEntryRef Header = 5612 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { 5613 if (const FileEntry *FE = 5614 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) 5615 HeaderName = 5616 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); 5617 } 5618 5619 // If we have a #include we should suggest, or if all definition locations 5620 // were in global module fragments, don't suggest an import. 5621 if (!HeaderName.empty() || UniqueModules.empty()) { 5622 // FIXME: Find a smart place to suggest inserting a #include, and add 5623 // a FixItHint there. 5624 Diag(UseLoc, diag::err_module_unimported_use_header) 5625 << (int)MIK << Decl << !HeaderName.empty() << HeaderName; 5626 // Produce a note showing where the entity was declared. 5627 NotePrevious(); 5628 if (Recover) 5629 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5630 return; 5631 } 5632 5633 Modules = UniqueModules; 5634 5635 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { 5636 if (M->isModuleMapModule()) 5637 return M->getFullModuleName(); 5638 5639 if (M->isImplicitGlobalModule()) 5640 M = M->getTopLevelModule(); 5641 5642 // If the current module unit is in the same module with M, it is OK to show 5643 // the partition name. Otherwise, it'll be sufficient to show the primary 5644 // module name. 5645 if (getASTContext().isInSameModule(M, getCurrentModule())) 5646 return M->getTopLevelModuleName().str(); 5647 else 5648 return M->getPrimaryModuleInterfaceName().str(); 5649 }; 5650 5651 if (Modules.size() > 1) { 5652 std::string ModuleList; 5653 unsigned N = 0; 5654 for (const auto *M : Modules) { 5655 ModuleList += "\n "; 5656 if (++N == 5 && N != Modules.size()) { 5657 ModuleList += "[...]"; 5658 break; 5659 } 5660 ModuleList += GetModuleNameForDiagnostic(M); 5661 } 5662 5663 Diag(UseLoc, diag::err_module_unimported_use_multiple) 5664 << (int)MIK << Decl << ModuleList; 5665 } else { 5666 // FIXME: Add a FixItHint that imports the corresponding module. 5667 Diag(UseLoc, diag::err_module_unimported_use) 5668 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); 5669 } 5670 5671 NotePrevious(); 5672 5673 // Try to recover by implicitly importing this module. 5674 if (Recover) 5675 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); 5676 } 5677 5678 void Sema::diagnoseTypo(const TypoCorrection &Correction, 5679 const PartialDiagnostic &TypoDiag, 5680 const PartialDiagnostic &PrevNote, 5681 bool ErrorRecovery) { 5682 std::string CorrectedStr = Correction.getAsString(getLangOpts()); 5683 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); 5684 FixItHint FixTypo = FixItHint::CreateReplacement( 5685 Correction.getCorrectionRange(), CorrectedStr); 5686 5687 // Maybe we're just missing a module import. 5688 if (Correction.requiresImport()) { 5689 NamedDecl *Decl = Correction.getFoundDecl(); 5690 assert(Decl && "import required but no declaration to import"); 5691 5692 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, 5693 MissingImportKind::Declaration, ErrorRecovery); 5694 return; 5695 } 5696 5697 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) 5698 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); 5699 5700 NamedDecl *ChosenDecl = 5701 Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); 5702 5703 // For builtin functions which aren't declared anywhere in source, 5704 // don't emit the "declared here" note. 5705 if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl); 5706 FD && FD->getBuiltinID() && 5707 PrevNote.getDiagID() == diag::note_previous_decl && 5708 Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { 5709 ChosenDecl = nullptr; 5710 } 5711 5712 if (PrevNote.getDiagID() && ChosenDecl) 5713 Diag(ChosenDecl->getLocation(), PrevNote) 5714 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); 5715 5716 // Add any extra diagnostics. 5717 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) 5718 Diag(Correction.getCorrectionRange().getBegin(), PD); 5719 } 5720 5721 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, 5722 TypoDiagnosticGenerator TDG, 5723 TypoRecoveryCallback TRC, 5724 SourceLocation TypoLoc) { 5725 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); 5726 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); 5727 auto &State = DelayedTypos[TE]; 5728 State.Consumer = std::move(TCC); 5729 State.DiagHandler = std::move(TDG); 5730 State.RecoveryHandler = std::move(TRC); 5731 if (TE) 5732 TypoExprs.push_back(TE); 5733 return TE; 5734 } 5735 5736 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { 5737 auto Entry = DelayedTypos.find(TE); 5738 assert(Entry != DelayedTypos.end() && 5739 "Failed to get the state for a TypoExpr!"); 5740 return Entry->second; 5741 } 5742 5743 void Sema::clearDelayedTypo(TypoExpr *TE) { 5744 DelayedTypos.erase(TE); 5745 } 5746 5747 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { 5748 DeclarationNameInfo Name(II, IILoc); 5749 LookupResult R(*this, Name, LookupAnyName, 5750 RedeclarationKind::NotForRedeclaration); 5751 R.suppressDiagnostics(); 5752 R.setHideTags(false); 5753 LookupName(R, S); 5754 R.dump(); 5755 } 5756 5757 void Sema::ActOnPragmaDump(Expr *E) { 5758 E->dump(); 5759 } 5760 5761 RedeclarationKind Sema::forRedeclarationInCurContext() const { 5762 // A declaration with an owning module for linkage can never link against 5763 // anything that is not visible. We don't need to check linkage here; if 5764 // the context has internal linkage, redeclaration lookup won't find things 5765 // from other TUs, and we can't safely compute linkage yet in general. 5766 if (cast<Decl>(CurContext)->getOwningModuleForLinkage()) 5767 return RedeclarationKind::ForVisibleRedeclaration; 5768 return RedeclarationKind::ForExternalRedeclaration; 5769 } 5770