1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "clang/Sema/EnterExpressionEvaluationContext.h" 25 #include "clang/Sema/Initialization.h" 26 #include "clang/Sema/Overload.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "clang/Sema/SemaInternal.h" 29 #include "llvm/ADT/SmallSet.h" 30 31 using namespace clang; 32 using namespace sema; 33 34 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 35 SourceLocation Loc, bool &Res) { 36 DeclarationName DN = S.PP.getIdentifierInfo(Name); 37 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 38 // Suppress diagnostics when a private member is selected. The same warnings 39 // will be produced again when building the call. 40 LR.suppressDiagnostics(); 41 Res = S.LookupQualifiedName(LR, RD); 42 return LR; 43 } 44 45 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 46 SourceLocation Loc) { 47 bool Res; 48 lookupMember(S, Name, RD, Loc, Res); 49 return Res; 50 } 51 52 /// Look up the std::coroutine_traits<...>::promise_type for the given 53 /// function type. 54 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 55 SourceLocation KwLoc) { 56 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 57 const SourceLocation FuncLoc = FD->getLocation(); 58 59 ClassTemplateDecl *CoroTraits = 60 S.lookupCoroutineTraits(KwLoc, FuncLoc); 61 if (!CoroTraits) 62 return QualType(); 63 64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 65 // to [dcl.fct.def.coroutine]3 66 TemplateArgumentListInfo Args(KwLoc, KwLoc); 67 auto AddArg = [&](QualType T) { 68 Args.addArgument(TemplateArgumentLoc( 69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 70 }; 71 AddArg(FnType->getReturnType()); 72 // If the function is a non-static member function, add the type 73 // of the implicit object parameter before the formal parameters. 74 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 75 if (MD->isImplicitObjectMemberFunction()) { 76 // [over.match.funcs]4 77 // For non-static member functions, the type of the implicit object 78 // parameter is 79 // -- "lvalue reference to cv X" for functions declared without a 80 // ref-qualifier or with the & ref-qualifier 81 // -- "rvalue reference to cv X" for functions declared with the && 82 // ref-qualifier 83 QualType T = MD->getFunctionObjectParameterType(); 84 T = FnType->getRefQualifier() == RQ_RValue 85 ? S.Context.getRValueReferenceType(T) 86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 87 AddArg(T); 88 } 89 } 90 for (QualType T : FnType->getParamTypes()) 91 AddArg(T); 92 93 // Build the template-id. 94 QualType CoroTrait = 95 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 96 if (CoroTrait.isNull()) 97 return QualType(); 98 if (S.RequireCompleteType(KwLoc, CoroTrait, 99 diag::err_coroutine_type_missing_specialization)) 100 return QualType(); 101 102 auto *RD = CoroTrait->getAsCXXRecordDecl(); 103 assert(RD && "specialization of class template is not a class?"); 104 105 // Look up the ::promise_type member. 106 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 107 Sema::LookupOrdinaryName); 108 S.LookupQualifiedName(R, RD); 109 auto *Promise = R.getAsSingle<TypeDecl>(); 110 if (!Promise) { 111 S.Diag(FuncLoc, 112 diag::err_implied_std_coroutine_traits_promise_type_not_found) 113 << RD; 114 return QualType(); 115 } 116 // The promise type is required to be a class type. 117 QualType PromiseType = S.Context.getTypeDeclType(Promise); 118 119 auto buildElaboratedType = [&]() { 120 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace()); 121 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 122 CoroTrait.getTypePtr()); 123 return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, 124 PromiseType); 125 }; 126 127 if (!PromiseType->getAsCXXRecordDecl()) { 128 S.Diag(FuncLoc, 129 diag::err_implied_std_coroutine_traits_promise_type_not_class) 130 << buildElaboratedType(); 131 return QualType(); 132 } 133 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 134 diag::err_coroutine_promise_type_incomplete)) 135 return QualType(); 136 137 return PromiseType; 138 } 139 140 /// Look up the std::coroutine_handle<PromiseType>. 141 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 142 SourceLocation Loc) { 143 if (PromiseType.isNull()) 144 return QualType(); 145 146 NamespaceDecl *CoroNamespace = S.getStdNamespace(); 147 assert(CoroNamespace && "Should already be diagnosed"); 148 149 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 150 Loc, Sema::LookupOrdinaryName); 151 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 152 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 153 << "std::coroutine_handle"; 154 return QualType(); 155 } 156 157 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 158 if (!CoroHandle) { 159 Result.suppressDiagnostics(); 160 // We found something weird. Complain about the first thing we found. 161 NamedDecl *Found = *Result.begin(); 162 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 163 return QualType(); 164 } 165 166 // Form template argument list for coroutine_handle<Promise>. 167 TemplateArgumentListInfo Args(Loc, Loc); 168 Args.addArgument(TemplateArgumentLoc( 169 TemplateArgument(PromiseType), 170 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 171 172 // Build the template-id. 173 QualType CoroHandleType = 174 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 175 if (CoroHandleType.isNull()) 176 return QualType(); 177 if (S.RequireCompleteType(Loc, CoroHandleType, 178 diag::err_coroutine_type_missing_specialization)) 179 return QualType(); 180 181 return CoroHandleType; 182 } 183 184 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 185 StringRef Keyword) { 186 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 187 // a function body. 188 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 189 // appear in a default argument." But the diagnostic QoI here could be 190 // improved to inform the user that default arguments specifically are not 191 // allowed. 192 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 193 if (!FD) { 194 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 195 ? diag::err_coroutine_objc_method 196 : diag::err_coroutine_outside_function) << Keyword; 197 return false; 198 } 199 200 // An enumeration for mapping the diagnostic type to the correct diagnostic 201 // selection index. 202 enum InvalidFuncDiag { 203 DiagCtor = 0, 204 DiagDtor, 205 DiagMain, 206 DiagConstexpr, 207 DiagAutoRet, 208 DiagVarargs, 209 DiagConsteval, 210 }; 211 bool Diagnosed = false; 212 auto DiagInvalid = [&](InvalidFuncDiag ID) { 213 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 214 Diagnosed = true; 215 return false; 216 }; 217 218 // Diagnose when a constructor, destructor 219 // or the function 'main' are declared as a coroutine. 220 auto *MD = dyn_cast<CXXMethodDecl>(FD); 221 // [class.ctor]p11: "A constructor shall not be a coroutine." 222 if (MD && isa<CXXConstructorDecl>(MD)) 223 return DiagInvalid(DiagCtor); 224 // [class.dtor]p17: "A destructor shall not be a coroutine." 225 else if (MD && isa<CXXDestructorDecl>(MD)) 226 return DiagInvalid(DiagDtor); 227 // [basic.start.main]p3: "The function main shall not be a coroutine." 228 else if (FD->isMain()) 229 return DiagInvalid(DiagMain); 230 231 // Emit a diagnostics for each of the following conditions which is not met. 232 // [expr.const]p2: "An expression e is a core constant expression unless the 233 // evaluation of e [...] would evaluate one of the following expressions: 234 // [...] an await-expression [...] a yield-expression." 235 if (FD->isConstexpr()) 236 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 237 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 238 // placeholder type shall not be a coroutine." 239 if (FD->getReturnType()->isUndeducedType()) 240 DiagInvalid(DiagAutoRet); 241 // [dcl.fct.def.coroutine]p1 242 // The parameter-declaration-clause of the coroutine shall not terminate with 243 // an ellipsis that is not part of a parameter-declaration. 244 if (FD->isVariadic()) 245 DiagInvalid(DiagVarargs); 246 247 return !Diagnosed; 248 } 249 250 /// Build a call to 'operator co_await' if there is a suitable operator for 251 /// the given expression. 252 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 253 UnresolvedLookupExpr *Lookup) { 254 UnresolvedSet<16> Functions; 255 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 256 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 257 } 258 259 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 260 SourceLocation Loc, Expr *E) { 261 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 262 if (R.isInvalid()) 263 return ExprError(); 264 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 265 cast<UnresolvedLookupExpr>(R.get())); 266 } 267 268 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 269 SourceLocation Loc) { 270 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 271 if (CoroHandleType.isNull()) 272 return ExprError(); 273 274 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 275 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 276 Sema::LookupOrdinaryName); 277 if (!S.LookupQualifiedName(Found, LookupCtx)) { 278 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 279 << "from_address"; 280 return ExprError(); 281 } 282 283 Expr *FramePtr = 284 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 285 286 CXXScopeSpec SS; 287 ExprResult FromAddr = 288 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 289 if (FromAddr.isInvalid()) 290 return ExprError(); 291 292 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 293 } 294 295 struct ReadySuspendResumeResult { 296 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 297 Expr *Results[3]; 298 OpaqueValueExpr *OpaqueValue; 299 bool IsInvalid; 300 }; 301 302 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 303 StringRef Name, MultiExprArg Args) { 304 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 305 306 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 307 CXXScopeSpec SS; 308 ExprResult Result = S.BuildMemberReferenceExpr( 309 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, SourceLocation(), 310 NameInfo, /*TemplateArgs=*/nullptr, 311 /*Scope=*/nullptr); 312 if (Result.isInvalid()) 313 return ExprError(); 314 315 // We meant exactly what we asked for. No need for typo correction. 316 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 317 S.clearDelayedTypo(TE); 318 S.Diag(Loc, diag::err_no_member) 319 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 320 << Base->getSourceRange(); 321 return ExprError(); 322 } 323 324 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); 325 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr); 326 } 327 328 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 329 // on its address. This is to enable the support for coroutine-handle 330 // returning await_suspend that results in a guaranteed tail call to the target 331 // coroutine. 332 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 333 SourceLocation Loc) { 334 if (RetType->isReferenceType()) 335 return nullptr; 336 Type const *T = RetType.getTypePtr(); 337 if (!T->isClassType() && !T->isStructureType()) 338 return nullptr; 339 340 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 341 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 342 // a private function in SemaExprCXX.cpp 343 344 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); 345 if (AddressExpr.isInvalid()) 346 return nullptr; 347 348 Expr *JustAddress = AddressExpr.get(); 349 350 // Check that the type of AddressExpr is void* 351 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 352 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 353 diag::warn_coroutine_handle_address_invalid_return_type) 354 << JustAddress->getType(); 355 356 // Clean up temporary objects, because the resulting expression 357 // will become the body of await_suspend wrapper. 358 return S.MaybeCreateExprWithCleanups(JustAddress); 359 } 360 361 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 362 /// expression. 363 /// The generated AST tries to clean up temporary objects as early as 364 /// possible so that they don't live across suspension points if possible. 365 /// Having temporary objects living across suspension points unnecessarily can 366 /// lead to large frame size, and also lead to memory corruptions if the 367 /// coroutine frame is destroyed after coming back from suspension. This is done 368 /// by wrapping both the await_ready call and the await_suspend call with 369 /// ExprWithCleanups. In the end of this function, we also need to explicitly 370 /// set cleanup state so that the CoawaitExpr is also wrapped with an 371 /// ExprWithCleanups to clean up the awaiter associated with the co_await 372 /// expression. 373 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 374 SourceLocation Loc, Expr *E) { 375 OpaqueValueExpr *Operand = new (S.Context) 376 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 377 378 // Assume valid until we see otherwise. 379 // Further operations are responsible for setting IsInalid to true. 380 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 381 382 using ACT = ReadySuspendResumeResult::AwaitCallType; 383 384 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 385 MultiExprArg Arg) -> Expr * { 386 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 387 if (Result.isInvalid()) { 388 Calls.IsInvalid = true; 389 return nullptr; 390 } 391 Calls.Results[CallType] = Result.get(); 392 return Result.get(); 393 }; 394 395 CallExpr *AwaitReady = cast_or_null<CallExpr>( 396 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); 397 if (!AwaitReady) 398 return Calls; 399 if (!AwaitReady->getType()->isDependentType()) { 400 // [expr.await]p3 [...] 401 // — await-ready is the expression e.await_ready(), contextually converted 402 // to bool. 403 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 404 if (Conv.isInvalid()) { 405 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 406 diag::note_await_ready_no_bool_conversion); 407 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 408 << AwaitReady->getDirectCallee() << E->getSourceRange(); 409 Calls.IsInvalid = true; 410 } else 411 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 412 } 413 414 ExprResult CoroHandleRes = 415 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 416 if (CoroHandleRes.isInvalid()) { 417 Calls.IsInvalid = true; 418 return Calls; 419 } 420 Expr *CoroHandle = CoroHandleRes.get(); 421 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 422 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 423 if (!AwaitSuspend) 424 return Calls; 425 if (!AwaitSuspend->getType()->isDependentType()) { 426 // [expr.await]p3 [...] 427 // - await-suspend is the expression e.await_suspend(h), which shall be 428 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 429 // type Z. 430 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 431 432 // Support for coroutine_handle returning await_suspend. 433 if (Expr *TailCallSuspend = 434 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 435 // Note that we don't wrap the expression with ExprWithCleanups here 436 // because that might interfere with tailcall contract (e.g. inserting 437 // clean up instructions in-between tailcall and return). Instead 438 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 439 // call. 440 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 441 else { 442 // non-class prvalues always have cv-unqualified types 443 if (RetType->isReferenceType() || 444 (!RetType->isBooleanType() && !RetType->isVoidType())) { 445 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 446 diag::err_await_suspend_invalid_return_type) 447 << RetType; 448 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 449 << AwaitSuspend->getDirectCallee(); 450 Calls.IsInvalid = true; 451 } else 452 Calls.Results[ACT::ACT_Suspend] = 453 S.MaybeCreateExprWithCleanups(AwaitSuspend); 454 } 455 } 456 457 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); 458 459 // Make sure the awaiter object gets a chance to be cleaned up. 460 S.Cleanup.setExprNeedsCleanups(true); 461 462 return Calls; 463 } 464 465 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 466 SourceLocation Loc, StringRef Name, 467 MultiExprArg Args) { 468 469 // Form a reference to the promise. 470 ExprResult PromiseRef = S.BuildDeclRefExpr( 471 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 472 if (PromiseRef.isInvalid()) 473 return ExprError(); 474 475 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 476 } 477 478 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 479 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 480 auto *FD = cast<FunctionDecl>(CurContext); 481 bool IsThisDependentType = [&] { 482 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD)) 483 return MD->isImplicitObjectMemberFunction() && 484 MD->getThisType()->isDependentType(); 485 return false; 486 }(); 487 488 QualType T = FD->getType()->isDependentType() || IsThisDependentType 489 ? Context.DependentTy 490 : lookupPromiseType(*this, FD, Loc); 491 if (T.isNull()) 492 return nullptr; 493 494 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 495 &PP.getIdentifierTable().get("__promise"), T, 496 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 497 VD->setImplicit(); 498 CheckVariableDeclarationType(VD); 499 if (VD->isInvalidDecl()) 500 return nullptr; 501 502 auto *ScopeInfo = getCurFunction(); 503 504 // Build a list of arguments, based on the coroutine function's arguments, 505 // that if present will be passed to the promise type's constructor. 506 llvm::SmallVector<Expr *, 4> CtorArgExprs; 507 508 // Add implicit object parameter. 509 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 510 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 511 ExprResult ThisExpr = ActOnCXXThis(Loc); 512 if (ThisExpr.isInvalid()) 513 return nullptr; 514 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 515 if (ThisExpr.isInvalid()) 516 return nullptr; 517 CtorArgExprs.push_back(ThisExpr.get()); 518 } 519 } 520 521 // Add the coroutine function's parameters. 522 auto &Moves = ScopeInfo->CoroutineParameterMoves; 523 for (auto *PD : FD->parameters()) { 524 if (PD->getType()->isDependentType()) 525 continue; 526 527 auto RefExpr = ExprEmpty(); 528 auto Move = Moves.find(PD); 529 assert(Move != Moves.end() && 530 "Coroutine function parameter not inserted into move map"); 531 // If a reference to the function parameter exists in the coroutine 532 // frame, use that reference. 533 auto *MoveDecl = 534 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 535 RefExpr = 536 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 537 ExprValueKind::VK_LValue, FD->getLocation()); 538 if (RefExpr.isInvalid()) 539 return nullptr; 540 CtorArgExprs.push_back(RefExpr.get()); 541 } 542 543 // If we have a non-zero number of constructor arguments, try to use them. 544 // Otherwise, fall back to the promise type's default constructor. 545 if (!CtorArgExprs.empty()) { 546 // Create an initialization sequence for the promise type using the 547 // constructor arguments, wrapped in a parenthesized list expression. 548 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 549 CtorArgExprs, FD->getLocation()); 550 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 551 InitializationKind Kind = InitializationKind::CreateForInit( 552 VD->getLocation(), /*DirectInit=*/true, PLE); 553 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 554 /*TopLevelOfInitList=*/false, 555 /*TreatUnavailableAsInvalid=*/false); 556 557 // [dcl.fct.def.coroutine]5.7 558 // promise-constructor-arguments is determined as follows: overload 559 // resolution is performed on a promise constructor call created by 560 // assembling an argument list q_1 ... q_n . If a viable constructor is 561 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 562 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 563 if (InitSeq) { 564 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 565 if (Result.isInvalid()) { 566 VD->setInvalidDecl(); 567 } else if (Result.get()) { 568 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 569 VD->setInitStyle(VarDecl::CallInit); 570 CheckCompleteVariableDeclaration(VD); 571 } 572 } else 573 ActOnUninitializedDecl(VD); 574 } else 575 ActOnUninitializedDecl(VD); 576 577 FD->addDecl(VD); 578 return VD; 579 } 580 581 /// Check that this is a context in which a coroutine suspension can appear. 582 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 583 StringRef Keyword, 584 bool IsImplicit = false) { 585 if (!isValidCoroutineContext(S, Loc, Keyword)) 586 return nullptr; 587 588 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 589 590 auto *ScopeInfo = S.getCurFunction(); 591 assert(ScopeInfo && "missing function scope for function"); 592 593 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 594 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 595 596 if (ScopeInfo->CoroutinePromise) 597 return ScopeInfo; 598 599 if (!S.buildCoroutineParameterMoves(Loc)) 600 return nullptr; 601 602 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 603 if (!ScopeInfo->CoroutinePromise) 604 return nullptr; 605 606 return ScopeInfo; 607 } 608 609 /// Recursively check \p E and all its children to see if any call target 610 /// (including constructor call) is declared noexcept. Also any value returned 611 /// from the call has a noexcept destructor. 612 static void checkNoThrow(Sema &S, const Stmt *E, 613 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 614 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 615 // In the case of dtor, the call to dtor is implicit and hence we should 616 // pass nullptr to canCalleeThrow. 617 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 618 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 619 // co_await promise.final_suspend() could end up calling 620 // __builtin_coro_resume for symmetric transfer if await_suspend() 621 // returns a handle. In that case, even __builtin_coro_resume is not 622 // declared as noexcept and may throw, it does not throw _into_ the 623 // coroutine that just suspended, but rather throws back out from 624 // whoever called coroutine_handle::resume(), hence we claim that 625 // logically it does not throw. 626 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 627 return; 628 } 629 if (ThrowingDecls.empty()) { 630 // [dcl.fct.def.coroutine]p15 631 // The expression co_await promise.final_suspend() shall not be 632 // potentially-throwing ([except.spec]). 633 // 634 // First time seeing an error, emit the error message. 635 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 636 diag::err_coroutine_promise_final_suspend_requires_nothrow); 637 } 638 ThrowingDecls.insert(D); 639 } 640 }; 641 642 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 643 CXXConstructorDecl *Ctor = CE->getConstructor(); 644 checkDeclNoexcept(Ctor); 645 // Check the corresponding destructor of the constructor. 646 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 647 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 648 if (CE->isTypeDependent()) 649 return; 650 651 checkDeclNoexcept(CE->getCalleeDecl()); 652 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 653 // Check the destructor of the call return type, if any. 654 if (ReturnType.isDestructedType() == 655 QualType::DestructionKind::DK_cxx_destructor) { 656 const auto *T = 657 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 658 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 659 /*IsDtor=*/true); 660 } 661 } else 662 for (const auto *Child : E->children()) { 663 if (!Child) 664 continue; 665 checkNoThrow(S, Child, ThrowingDecls); 666 } 667 } 668 669 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 670 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 671 // We first collect all declarations that should not throw but not declared 672 // with noexcept. We then sort them based on the location before printing. 673 // This is to avoid emitting the same note multiple times on the same 674 // declaration, and also provide a deterministic order for the messages. 675 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 676 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 677 ThrowingDecls.end()}; 678 sort(SortedDecls, [](const Decl *A, const Decl *B) { 679 return A->getEndLoc() < B->getEndLoc(); 680 }); 681 for (const auto *D : SortedDecls) { 682 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 683 } 684 return ThrowingDecls.empty(); 685 } 686 687 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 688 StringRef Keyword) { 689 // Ignore previous expr evaluation contexts. 690 EnterExpressionEvaluationContext PotentiallyEvaluated( 691 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 692 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 693 return false; 694 auto *ScopeInfo = getCurFunction(); 695 assert(ScopeInfo->CoroutinePromise); 696 697 // If we have existing coroutine statements then we have already built 698 // the initial and final suspend points. 699 if (!ScopeInfo->NeedsCoroutineSuspends) 700 return true; 701 702 ScopeInfo->setNeedsCoroutineSuspends(false); 703 704 auto *Fn = cast<FunctionDecl>(CurContext); 705 SourceLocation Loc = Fn->getLocation(); 706 // Build the initial suspend point 707 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 708 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, 709 Loc, Name, std::nullopt); 710 if (Operand.isInvalid()) 711 return StmtError(); 712 ExprResult Suspend = 713 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 714 if (Suspend.isInvalid()) 715 return StmtError(); 716 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 717 /*IsImplicit*/ true); 718 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 719 if (Suspend.isInvalid()) { 720 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 721 << ((Name == "initial_suspend") ? 0 : 1); 722 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 723 return StmtError(); 724 } 725 return cast<Stmt>(Suspend.get()); 726 }; 727 728 StmtResult InitSuspend = buildSuspends("initial_suspend"); 729 if (InitSuspend.isInvalid()) 730 return true; 731 732 StmtResult FinalSuspend = buildSuspends("final_suspend"); 733 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 734 return true; 735 736 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 737 738 return true; 739 } 740 741 // Recursively walks up the scope hierarchy until either a 'catch' or a function 742 // scope is found, whichever comes first. 743 static bool isWithinCatchScope(Scope *S) { 744 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 745 // lambdas that use 'co_await' are allowed. The loop below ends when a 746 // function scope is found in order to ensure the following behavior: 747 // 748 // void foo() { // <- function scope 749 // try { // 750 // co_await x; // <- 'co_await' is OK within a function scope 751 // } catch { // <- catch scope 752 // co_await x; // <- 'co_await' is not OK within a catch scope 753 // []() { // <- function scope 754 // co_await x; // <- 'co_await' is OK within a function scope 755 // }(); 756 // } 757 // } 758 while (S && !S->isFunctionScope()) { 759 if (S->isCatchScope()) 760 return true; 761 S = S->getParent(); 762 } 763 return false; 764 } 765 766 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 767 // a *potentially evaluated* expression within the compound-statement of a 768 // function-body *outside of a handler* [...] A context within a function 769 // where an await-expression can appear is called a suspension context of the 770 // function." 771 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 772 StringRef Keyword) { 773 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 774 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 775 // \c sizeof. 776 if (S.isUnevaluatedContext()) { 777 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 778 return false; 779 } 780 781 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 782 if (isWithinCatchScope(S.getCurScope())) { 783 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 784 return false; 785 } 786 787 return true; 788 } 789 790 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 791 if (!checkSuspensionContext(*this, Loc, "co_await")) 792 return ExprError(); 793 794 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 795 CorrectDelayedTyposInExpr(E); 796 return ExprError(); 797 } 798 799 if (E->hasPlaceholderType()) { 800 ExprResult R = CheckPlaceholderExpr(E); 801 if (R.isInvalid()) return ExprError(); 802 E = R.get(); 803 } 804 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 805 if (Lookup.isInvalid()) 806 return ExprError(); 807 return BuildUnresolvedCoawaitExpr(Loc, E, 808 cast<UnresolvedLookupExpr>(Lookup.get())); 809 } 810 811 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 812 DeclarationName OpName = 813 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 814 LookupResult Operators(*this, OpName, SourceLocation(), 815 Sema::LookupOperatorName); 816 LookupName(Operators, S); 817 818 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 819 const auto &Functions = Operators.asUnresolvedSet(); 820 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 821 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 822 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Functions.begin(), 823 Functions.end(), /*KnownDependent=*/false); 824 assert(CoawaitOp); 825 return CoawaitOp; 826 } 827 828 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 829 // DependentCoawaitExpr if needed. 830 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 831 UnresolvedLookupExpr *Lookup) { 832 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 833 if (!FSI) 834 return ExprError(); 835 836 if (Operand->hasPlaceholderType()) { 837 ExprResult R = CheckPlaceholderExpr(Operand); 838 if (R.isInvalid()) 839 return ExprError(); 840 Operand = R.get(); 841 } 842 843 auto *Promise = FSI->CoroutinePromise; 844 if (Promise->getType()->isDependentType()) { 845 Expr *Res = new (Context) 846 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 847 return Res; 848 } 849 850 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 851 auto *Transformed = Operand; 852 if (lookupMember(*this, "await_transform", RD, Loc)) { 853 ExprResult R = 854 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 855 if (R.isInvalid()) { 856 Diag(Loc, 857 diag::note_coroutine_promise_implicit_await_transform_required_here) 858 << Operand->getSourceRange(); 859 return ExprError(); 860 } 861 Transformed = R.get(); 862 } 863 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 864 if (Awaiter.isInvalid()) 865 return ExprError(); 866 867 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 868 } 869 870 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 871 Expr *Awaiter, bool IsImplicit) { 872 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 873 if (!Coroutine) 874 return ExprError(); 875 876 if (Awaiter->hasPlaceholderType()) { 877 ExprResult R = CheckPlaceholderExpr(Awaiter); 878 if (R.isInvalid()) return ExprError(); 879 Awaiter = R.get(); 880 } 881 882 if (Awaiter->getType()->isDependentType()) { 883 Expr *Res = new (Context) 884 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 885 return Res; 886 } 887 888 // If the expression is a temporary, materialize it as an lvalue so that we 889 // can use it multiple times. 890 if (Awaiter->isPRValue()) 891 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 892 893 // The location of the `co_await` token cannot be used when constructing 894 // the member call expressions since it's before the location of `Expr`, which 895 // is used as the start of the member call expression. 896 SourceLocation CallLoc = Awaiter->getExprLoc(); 897 898 // Build the await_ready, await_suspend, await_resume calls. 899 ReadySuspendResumeResult RSS = 900 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 901 if (RSS.IsInvalid) 902 return ExprError(); 903 904 Expr *Res = new (Context) 905 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 906 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 907 908 return Res; 909 } 910 911 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 912 if (!checkSuspensionContext(*this, Loc, "co_yield")) 913 return ExprError(); 914 915 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 916 CorrectDelayedTyposInExpr(E); 917 return ExprError(); 918 } 919 920 // Build yield_value call. 921 ExprResult Awaitable = buildPromiseCall( 922 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 923 if (Awaitable.isInvalid()) 924 return ExprError(); 925 926 // Build 'operator co_await' call. 927 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 928 if (Awaitable.isInvalid()) 929 return ExprError(); 930 931 return BuildCoyieldExpr(Loc, Awaitable.get()); 932 } 933 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 934 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 935 if (!Coroutine) 936 return ExprError(); 937 938 if (E->hasPlaceholderType()) { 939 ExprResult R = CheckPlaceholderExpr(E); 940 if (R.isInvalid()) return ExprError(); 941 E = R.get(); 942 } 943 944 Expr *Operand = E; 945 946 if (E->getType()->isDependentType()) { 947 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 948 return Res; 949 } 950 951 // If the expression is a temporary, materialize it as an lvalue so that we 952 // can use it multiple times. 953 if (E->isPRValue()) 954 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 955 956 // Build the await_ready, await_suspend, await_resume calls. 957 ReadySuspendResumeResult RSS = buildCoawaitCalls( 958 *this, Coroutine->CoroutinePromise, Loc, E); 959 if (RSS.IsInvalid) 960 return ExprError(); 961 962 Expr *Res = 963 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 964 RSS.Results[2], RSS.OpaqueValue); 965 966 return Res; 967 } 968 969 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 970 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 971 CorrectDelayedTyposInExpr(E); 972 return StmtError(); 973 } 974 return BuildCoreturnStmt(Loc, E); 975 } 976 977 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 978 bool IsImplicit) { 979 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 980 if (!FSI) 981 return StmtError(); 982 983 if (E && E->hasPlaceholderType() && 984 !E->hasPlaceholderType(BuiltinType::Overload)) { 985 ExprResult R = CheckPlaceholderExpr(E); 986 if (R.isInvalid()) return StmtError(); 987 E = R.get(); 988 } 989 990 VarDecl *Promise = FSI->CoroutinePromise; 991 ExprResult PC; 992 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 993 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 994 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 995 } else { 996 E = MakeFullDiscardedValueExpr(E).get(); 997 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); 998 } 999 if (PC.isInvalid()) 1000 return StmtError(); 1001 1002 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1003 1004 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1005 return Res; 1006 } 1007 1008 /// Look up the std::nothrow object. 1009 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1010 NamespaceDecl *Std = S.getStdNamespace(); 1011 assert(Std && "Should already be diagnosed"); 1012 1013 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1014 Sema::LookupOrdinaryName); 1015 if (!S.LookupQualifiedName(Result, Std)) { 1016 // <coroutine> is not requred to include <new>, so we couldn't omit 1017 // the check here. 1018 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1019 return nullptr; 1020 } 1021 1022 auto *VD = Result.getAsSingle<VarDecl>(); 1023 if (!VD) { 1024 Result.suppressDiagnostics(); 1025 // We found something weird. Complain about the first thing we found. 1026 NamedDecl *Found = *Result.begin(); 1027 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1028 return nullptr; 1029 } 1030 1031 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1032 if (DR.isInvalid()) 1033 return nullptr; 1034 1035 return DR.get(); 1036 } 1037 1038 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1039 SourceLocation Loc) { 1040 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1041 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1042 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1043 } 1044 1045 // Find an appropriate delete for the promise. 1046 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1047 FunctionDecl *&OperatorDelete) { 1048 DeclarationName DeleteName = 1049 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1050 1051 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1052 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1053 1054 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1055 1056 // [dcl.fct.def.coroutine]p12 1057 // The deallocation function's name is looked up by searching for it in the 1058 // scope of the promise type. If nothing is found, a search is performed in 1059 // the global scope. 1060 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1061 /*Diagnose*/ true, /*WantSize*/ true, 1062 /*WantAligned*/ Overaligned)) 1063 return false; 1064 1065 // [dcl.fct.def.coroutine]p12 1066 // If both a usual deallocation function with only a pointer parameter and a 1067 // usual deallocation function with both a pointer parameter and a size 1068 // parameter are found, then the selected deallocation function shall be the 1069 // one with two parameters. Otherwise, the selected deallocation function 1070 // shall be the function with one parameter. 1071 if (!OperatorDelete) { 1072 // Look for a global declaration. 1073 // Coroutines can always provide their required size. 1074 const bool CanProvideSize = true; 1075 // Sema::FindUsualDeallocationFunction will try to find the one with two 1076 // parameters first. It will return the deallocation function with one 1077 // parameter if failed. 1078 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1079 Overaligned, DeleteName); 1080 1081 if (!OperatorDelete) 1082 return false; 1083 } 1084 1085 S.MarkFunctionReferenced(Loc, OperatorDelete); 1086 return true; 1087 } 1088 1089 1090 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1091 FunctionScopeInfo *Fn = getCurFunction(); 1092 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1093 if (!Body) { 1094 assert(FD->isInvalidDecl() && 1095 "a null body is only allowed for invalid declarations"); 1096 return; 1097 } 1098 // We have a function that uses coroutine keywords, but we failed to build 1099 // the promise type. 1100 if (!Fn->CoroutinePromise) 1101 return FD->setInvalidDecl(); 1102 1103 if (isa<CoroutineBodyStmt>(Body)) { 1104 // Nothing todo. the body is already a transformed coroutine body statement. 1105 return; 1106 } 1107 1108 // The always_inline attribute doesn't reliably apply to a coroutine, 1109 // because the coroutine will be split into pieces and some pieces 1110 // might be called indirectly, as in a virtual call. Even the ramp 1111 // function cannot be inlined at -O0, due to pipeline ordering 1112 // problems (see https://llvm.org/PR53413). Tell the user about it. 1113 if (FD->hasAttr<AlwaysInlineAttr>()) 1114 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1115 1116 // The design of coroutines means we cannot allow use of VLAs within one, so 1117 // diagnose if we've seen a VLA in the body of this function. 1118 if (Fn->FirstVLALoc.isValid()) 1119 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported); 1120 1121 // [stmt.return.coroutine]p1: 1122 // A coroutine shall not enclose a return statement ([stmt.return]). 1123 if (Fn->FirstReturnLoc.isValid()) { 1124 assert(Fn->FirstCoroutineStmtLoc.isValid() && 1125 "first coroutine location not set"); 1126 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); 1127 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1128 << Fn->getFirstCoroutineStmtKeyword(); 1129 } 1130 1131 // Coroutines will get splitted into pieces. The GNU address of label 1132 // extension wouldn't be meaningful in coroutines. 1133 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1134 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1135 1136 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1137 if (Builder.isInvalid() || !Builder.buildStatements()) 1138 return FD->setInvalidDecl(); 1139 1140 // Build body for the coroutine wrapper statement. 1141 Body = CoroutineBodyStmt::Create(Context, Builder); 1142 } 1143 1144 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { 1145 if (auto *CS = dyn_cast<CompoundStmt>(Body)) 1146 return CS; 1147 1148 // The body of the coroutine may be a try statement if it is in 1149 // 'function-try-block' syntax. Here we wrap it into a compound 1150 // statement for consistency. 1151 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type"); 1152 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(), 1153 SourceLocation(), SourceLocation()); 1154 } 1155 1156 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1157 sema::FunctionScopeInfo &Fn, 1158 Stmt *Body) 1159 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1160 IsPromiseDependentType( 1161 !Fn.CoroutinePromise || 1162 Fn.CoroutinePromise->getType()->isDependentType()) { 1163 this->Body = buildCoroutineBody(Body, S.getASTContext()); 1164 1165 for (auto KV : Fn.CoroutineParameterMoves) 1166 this->ParamMovesVector.push_back(KV.second); 1167 this->ParamMoves = this->ParamMovesVector; 1168 1169 if (!IsPromiseDependentType) { 1170 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1171 assert(PromiseRecordDecl && "Type should have already been checked"); 1172 } 1173 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1174 } 1175 1176 bool CoroutineStmtBuilder::buildStatements() { 1177 assert(this->IsValid && "coroutine already invalid"); 1178 this->IsValid = makeReturnObject(); 1179 if (this->IsValid && !IsPromiseDependentType) 1180 buildDependentStatements(); 1181 return this->IsValid; 1182 } 1183 1184 bool CoroutineStmtBuilder::buildDependentStatements() { 1185 assert(this->IsValid && "coroutine already invalid"); 1186 assert(!this->IsPromiseDependentType && 1187 "coroutine cannot have a dependent promise type"); 1188 this->IsValid = makeOnException() && makeOnFallthrough() && 1189 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1190 makeNewAndDeleteExpr(); 1191 return this->IsValid; 1192 } 1193 1194 bool CoroutineStmtBuilder::makePromiseStmt() { 1195 // Form a declaration statement for the promise declaration, so that AST 1196 // visitors can more easily find it. 1197 StmtResult PromiseStmt = 1198 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1199 if (PromiseStmt.isInvalid()) 1200 return false; 1201 1202 this->Promise = PromiseStmt.get(); 1203 return true; 1204 } 1205 1206 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1207 if (Fn.hasInvalidCoroutineSuspends()) 1208 return false; 1209 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1210 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1211 return true; 1212 } 1213 1214 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1215 CXXRecordDecl *PromiseRecordDecl, 1216 FunctionScopeInfo &Fn) { 1217 auto Loc = E->getExprLoc(); 1218 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1219 auto *Decl = DeclRef->getDecl(); 1220 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1221 if (Method->isStatic()) 1222 return true; 1223 else 1224 Loc = Decl->getLocation(); 1225 } 1226 } 1227 1228 S.Diag( 1229 Loc, 1230 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1231 << PromiseRecordDecl; 1232 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1233 << Fn.getFirstCoroutineStmtKeyword(); 1234 return false; 1235 } 1236 1237 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1238 assert(!IsPromiseDependentType && 1239 "cannot make statement while the promise type is dependent"); 1240 1241 // [dcl.fct.def.coroutine]p10 1242 // If a search for the name get_return_object_on_allocation_failure in 1243 // the scope of the promise type ([class.member.lookup]) finds any 1244 // declarations, then the result of a call to an allocation function used to 1245 // obtain storage for the coroutine state is assumed to return nullptr if it 1246 // fails to obtain storage, ... If the allocation function returns nullptr, 1247 // ... and the return value is obtained by a call to 1248 // T::get_return_object_on_allocation_failure(), where T is the 1249 // promise type. 1250 DeclarationName DN = 1251 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1252 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1253 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1254 return true; 1255 1256 CXXScopeSpec SS; 1257 ExprResult DeclNameExpr = 1258 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1259 if (DeclNameExpr.isInvalid()) 1260 return false; 1261 1262 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1263 return false; 1264 1265 ExprResult ReturnObjectOnAllocationFailure = 1266 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1267 if (ReturnObjectOnAllocationFailure.isInvalid()) 1268 return false; 1269 1270 StmtResult ReturnStmt = 1271 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1272 if (ReturnStmt.isInvalid()) { 1273 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1274 << DN; 1275 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1276 << Fn.getFirstCoroutineStmtKeyword(); 1277 return false; 1278 } 1279 1280 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1281 return true; 1282 } 1283 1284 // Collect placement arguments for allocation function of coroutine FD. 1285 // Return true if we collect placement arguments succesfully. Return false, 1286 // otherwise. 1287 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1288 SmallVectorImpl<Expr *> &PlacementArgs) { 1289 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1290 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 1291 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1292 if (ThisExpr.isInvalid()) 1293 return false; 1294 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1295 if (ThisExpr.isInvalid()) 1296 return false; 1297 PlacementArgs.push_back(ThisExpr.get()); 1298 } 1299 } 1300 1301 for (auto *PD : FD.parameters()) { 1302 if (PD->getType()->isDependentType()) 1303 continue; 1304 1305 // Build a reference to the parameter. 1306 auto PDLoc = PD->getLocation(); 1307 ExprResult PDRefExpr = 1308 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1309 ExprValueKind::VK_LValue, PDLoc); 1310 if (PDRefExpr.isInvalid()) 1311 return false; 1312 1313 PlacementArgs.push_back(PDRefExpr.get()); 1314 } 1315 1316 return true; 1317 } 1318 1319 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1320 // Form and check allocation and deallocation calls. 1321 assert(!IsPromiseDependentType && 1322 "cannot make statement while the promise type is dependent"); 1323 QualType PromiseType = Fn.CoroutinePromise->getType(); 1324 1325 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1326 return false; 1327 1328 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1329 1330 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1331 // parameter list composed of the requested size of the coroutine state being 1332 // allocated, followed by the coroutine function's arguments. If a matching 1333 // allocation function exists, use it. Otherwise, use an allocation function 1334 // that just takes the requested size. 1335 // 1336 // [dcl.fct.def.coroutine]p9 1337 // An implementation may need to allocate additional storage for a 1338 // coroutine. 1339 // This storage is known as the coroutine state and is obtained by calling a 1340 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1341 // allocation function's name is looked up by searching for it in the scope of 1342 // the promise type. 1343 // - If any declarations are found, overload resolution is performed on a 1344 // function call created by assembling an argument list. The first argument is 1345 // the amount of space requested, and has type std::size_t. The 1346 // lvalues p1 ... pn are the succeeding arguments. 1347 // 1348 // ...where "p1 ... pn" are defined earlier as: 1349 // 1350 // [dcl.fct.def.coroutine]p3 1351 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1352 // Pn>` 1353 // , where R is the return type of the function, and `P1, ..., Pn` are the 1354 // sequence of types of the non-object function parameters, preceded by the 1355 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1356 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1357 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1358 // the i-th non-object function parameter for a non-static member function, 1359 // and p_i denotes the i-th function parameter otherwise. For a non-static 1360 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1361 // lvalue that denotes the parameter copy corresponding to p_i. 1362 1363 FunctionDecl *OperatorNew = nullptr; 1364 SmallVector<Expr *, 1> PlacementArgs; 1365 1366 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1367 DeclarationName NewName = 1368 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1369 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1370 1371 if (PromiseType->isRecordType()) 1372 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1373 1374 return !R.empty() && !R.isAmbiguous(); 1375 }(); 1376 1377 // Helper function to indicate whether the last lookup found the aligned 1378 // allocation function. 1379 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1380 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1381 Sema::AFS_Both, 1382 bool WithoutPlacementArgs = false, 1383 bool ForceNonAligned = false) { 1384 // [dcl.fct.def.coroutine]p9 1385 // The allocation function's name is looked up by searching for it in the 1386 // scope of the promise type. 1387 // - If any declarations are found, ... 1388 // - If no declarations are found in the scope of the promise type, a search 1389 // is performed in the global scope. 1390 if (NewScope == Sema::AFS_Both) 1391 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1392 1393 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1394 FunctionDecl *UnusedResult = nullptr; 1395 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1396 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1397 /*isArray*/ false, PassAlignment, 1398 WithoutPlacementArgs ? MultiExprArg{} 1399 : PlacementArgs, 1400 OperatorNew, UnusedResult, /*Diagnose*/ false); 1401 }; 1402 1403 // We don't expect to call to global operator new with (size, p0, …, pn). 1404 // So if we choose to lookup the allocation function in global scope, we 1405 // shouldn't lookup placement arguments. 1406 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1407 return false; 1408 1409 LookupAllocationFunction(); 1410 1411 if (PromiseContainsNew && !PlacementArgs.empty()) { 1412 // [dcl.fct.def.coroutine]p9 1413 // If no viable function is found ([over.match.viable]), overload 1414 // resolution 1415 // is performed again on a function call created by passing just the amount 1416 // of space required as an argument of type std::size_t. 1417 // 1418 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1419 // Otherwise, overload resolution is performed again on a function call 1420 // created 1421 // by passing the amount of space requested as an argument of type 1422 // std::size_t as the first argument, and the requested alignment as 1423 // an argument of type std:align_val_t as the second argument. 1424 if (!OperatorNew || 1425 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1426 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1427 /*WithoutPlacementArgs*/ true); 1428 } 1429 1430 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1431 // Otherwise, overload resolution is performed again on a function call 1432 // created 1433 // by passing the amount of space requested as an argument of type 1434 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1435 // succeeding arguments. Otherwise, overload resolution is performed again 1436 // on a function call created by passing just the amount of space required as 1437 // an argument of type std::size_t. 1438 // 1439 // So within the proposed change in P2014RO, the priority order of aligned 1440 // allocation functions wiht promise_type is: 1441 // 1442 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1443 // void* operator new( std::size_t, std::align_val_t); 1444 // void* operator new( std::size_t, placement_args... ); 1445 // void* operator new( std::size_t); 1446 1447 // Helper variable to emit warnings. 1448 bool FoundNonAlignedInPromise = false; 1449 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1450 if (!OperatorNew || !PassAlignment) { 1451 FoundNonAlignedInPromise = OperatorNew; 1452 1453 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1454 /*WithoutPlacementArgs*/ false, 1455 /*ForceNonAligned*/ true); 1456 1457 if (!OperatorNew && !PlacementArgs.empty()) 1458 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1459 /*WithoutPlacementArgs*/ true, 1460 /*ForceNonAligned*/ true); 1461 } 1462 1463 bool IsGlobalOverload = 1464 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1465 // If we didn't find a class-local new declaration and non-throwing new 1466 // was is required then we need to lookup the non-throwing global operator 1467 // instead. 1468 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1469 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1470 if (!StdNoThrow) 1471 return false; 1472 PlacementArgs = {StdNoThrow}; 1473 OperatorNew = nullptr; 1474 LookupAllocationFunction(Sema::AFS_Global); 1475 } 1476 1477 // If we found a non-aligned allocation function in the promise_type, 1478 // it indicates the user forgot to update the allocation function. Let's emit 1479 // a warning here. 1480 if (FoundNonAlignedInPromise) { 1481 S.Diag(OperatorNew->getLocation(), 1482 diag::warn_non_aligned_allocation_function) 1483 << &FD; 1484 } 1485 1486 if (!OperatorNew) { 1487 if (PromiseContainsNew) 1488 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1489 else if (RequiresNoThrowAlloc) 1490 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1491 << &FD << S.getLangOpts().CoroAlignedAllocation; 1492 1493 return false; 1494 } 1495 1496 if (RequiresNoThrowAlloc) { 1497 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1498 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1499 S.Diag(OperatorNew->getLocation(), 1500 diag::err_coroutine_promise_new_requires_nothrow) 1501 << OperatorNew; 1502 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1503 << OperatorNew; 1504 return false; 1505 } 1506 } 1507 1508 FunctionDecl *OperatorDelete = nullptr; 1509 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1510 // FIXME: We should add an error here. According to: 1511 // [dcl.fct.def.coroutine]p12 1512 // If no usual deallocation function is found, the program is ill-formed. 1513 return false; 1514 } 1515 1516 Expr *FramePtr = 1517 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1518 1519 Expr *FrameSize = 1520 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1521 1522 Expr *FrameAlignment = nullptr; 1523 1524 if (S.getLangOpts().CoroAlignedAllocation) { 1525 FrameAlignment = 1526 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1527 1528 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1529 if (!AlignValTy) 1530 return false; 1531 1532 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1533 FrameAlignment, SourceRange(Loc, Loc), 1534 SourceRange(Loc, Loc)) 1535 .get(); 1536 } 1537 1538 // Make new call. 1539 ExprResult NewRef = 1540 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1541 if (NewRef.isInvalid()) 1542 return false; 1543 1544 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1545 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1546 NewArgs.push_back(FrameAlignment); 1547 1548 if (OperatorNew->getNumParams() > NewArgs.size()) 1549 llvm::append_range(NewArgs, PlacementArgs); 1550 1551 ExprResult NewExpr = 1552 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1553 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1554 if (NewExpr.isInvalid()) 1555 return false; 1556 1557 // Make delete call. 1558 1559 QualType OpDeleteQualType = OperatorDelete->getType(); 1560 1561 ExprResult DeleteRef = 1562 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1563 if (DeleteRef.isInvalid()) 1564 return false; 1565 1566 Expr *CoroFree = 1567 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1568 1569 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1570 1571 // [dcl.fct.def.coroutine]p12 1572 // The selected deallocation function shall be called with the address of 1573 // the block of storage to be reclaimed as its first argument. If a 1574 // deallocation function with a parameter of type std::size_t is 1575 // used, the size of the block is passed as the corresponding argument. 1576 const auto *OpDeleteType = 1577 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1578 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1579 S.getASTContext().hasSameUnqualifiedType( 1580 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1581 DeleteArgs.push_back(FrameSize); 1582 1583 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1584 // If deallocation function lookup finds a usual deallocation function with 1585 // a pointer parameter, size parameter and alignment parameter then this 1586 // will be the selected deallocation function, otherwise if lookup finds a 1587 // usual deallocation function with both a pointer parameter and a size 1588 // parameter, then this will be the selected deallocation function. 1589 // Otherwise, if lookup finds a usual deallocation function with only a 1590 // pointer parameter, then this will be the selected deallocation 1591 // function. 1592 // 1593 // So we are not forced to pass alignment to the deallocation function. 1594 if (S.getLangOpts().CoroAlignedAllocation && 1595 OpDeleteType->getNumParams() > DeleteArgs.size() && 1596 S.getASTContext().hasSameUnqualifiedType( 1597 OpDeleteType->getParamType(DeleteArgs.size()), 1598 FrameAlignment->getType())) 1599 DeleteArgs.push_back(FrameAlignment); 1600 1601 ExprResult DeleteExpr = 1602 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1603 DeleteExpr = 1604 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1605 if (DeleteExpr.isInvalid()) 1606 return false; 1607 1608 this->Allocate = NewExpr.get(); 1609 this->Deallocate = DeleteExpr.get(); 1610 1611 return true; 1612 } 1613 1614 bool CoroutineStmtBuilder::makeOnFallthrough() { 1615 assert(!IsPromiseDependentType && 1616 "cannot make statement while the promise type is dependent"); 1617 1618 // [dcl.fct.def.coroutine]/p6 1619 // If searches for the names return_void and return_value in the scope of 1620 // the promise type each find any declarations, the program is ill-formed. 1621 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1622 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1623 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1624 // end note] 1625 bool HasRVoid, HasRValue; 1626 LookupResult LRVoid = 1627 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1628 LookupResult LRValue = 1629 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1630 1631 StmtResult Fallthrough; 1632 if (HasRVoid && HasRValue) { 1633 // FIXME Improve this diagnostic 1634 S.Diag(FD.getLocation(), 1635 diag::err_coroutine_promise_incompatible_return_functions) 1636 << PromiseRecordDecl; 1637 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1638 diag::note_member_first_declared_here) 1639 << LRVoid.getLookupName(); 1640 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1641 diag::note_member_first_declared_here) 1642 << LRValue.getLookupName(); 1643 return false; 1644 } else if (!HasRVoid && !HasRValue) { 1645 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1646 // think the coroutine has defined a return_value method. So it might emit 1647 // **false** positive warning. e.g., 1648 // 1649 // promise_without_return_func foo() { 1650 // co_await something(); 1651 // } 1652 // 1653 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1654 // co_return statements, which isn't correct. 1655 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1656 if (Fallthrough.isInvalid()) 1657 return false; 1658 } else if (HasRVoid) { 1659 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1660 /*IsImplicit=*/true); 1661 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1662 if (Fallthrough.isInvalid()) 1663 return false; 1664 } 1665 1666 this->OnFallthrough = Fallthrough.get(); 1667 return true; 1668 } 1669 1670 bool CoroutineStmtBuilder::makeOnException() { 1671 // Try to form 'p.unhandled_exception();' 1672 assert(!IsPromiseDependentType && 1673 "cannot make statement while the promise type is dependent"); 1674 1675 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1676 1677 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1678 auto DiagID = 1679 RequireUnhandledException 1680 ? diag::err_coroutine_promise_unhandled_exception_required 1681 : diag:: 1682 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1683 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1684 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1685 << PromiseRecordDecl; 1686 return !RequireUnhandledException; 1687 } 1688 1689 // If exceptions are disabled, don't try to build OnException. 1690 if (!S.getLangOpts().CXXExceptions) 1691 return true; 1692 1693 ExprResult UnhandledException = buildPromiseCall( 1694 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); 1695 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1696 /*DiscardedValue*/ false); 1697 if (UnhandledException.isInvalid()) 1698 return false; 1699 1700 // Since the body of the coroutine will be wrapped in try-catch, it will 1701 // be incompatible with SEH __try if present in a function. 1702 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1703 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1704 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1705 << Fn.getFirstCoroutineStmtKeyword(); 1706 return false; 1707 } 1708 1709 this->OnException = UnhandledException.get(); 1710 return true; 1711 } 1712 1713 bool CoroutineStmtBuilder::makeReturnObject() { 1714 // [dcl.fct.def.coroutine]p7 1715 // The expression promise.get_return_object() is used to initialize the 1716 // returned reference or prvalue result object of a call to a coroutine. 1717 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, 1718 "get_return_object", std::nullopt); 1719 if (ReturnObject.isInvalid()) 1720 return false; 1721 1722 this->ReturnValue = ReturnObject.get(); 1723 return true; 1724 } 1725 1726 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1727 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1728 auto *MethodDecl = MbrRef->getMethodDecl(); 1729 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1730 << MethodDecl; 1731 } 1732 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1733 << Fn.getFirstCoroutineStmtKeyword(); 1734 } 1735 1736 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1737 assert(!IsPromiseDependentType && 1738 "cannot make statement while the promise type is dependent"); 1739 assert(this->ReturnValue && "ReturnValue must be already formed"); 1740 1741 QualType const GroType = this->ReturnValue->getType(); 1742 assert(!GroType->isDependentType() && 1743 "get_return_object type must no longer be dependent"); 1744 1745 QualType const FnRetType = FD.getReturnType(); 1746 assert(!FnRetType->isDependentType() && 1747 "get_return_object type must no longer be dependent"); 1748 1749 // The call to get_return_object is sequenced before the call to 1750 // initial_suspend and is invoked at most once, but there are caveats 1751 // regarding on whether the prvalue result object may be initialized 1752 // directly/eager or delayed, depending on the types involved. 1753 // 1754 // More info at https://github.com/cplusplus/papers/issues/1414 1755 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType); 1756 1757 if (FnRetType->isVoidType()) { 1758 ExprResult Res = 1759 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1760 if (Res.isInvalid()) 1761 return false; 1762 1763 if (!GroMatchesRetType) 1764 this->ResultDecl = Res.get(); 1765 return true; 1766 } 1767 1768 if (GroType->isVoidType()) { 1769 // Trigger a nice error message. 1770 InitializedEntity Entity = 1771 InitializedEntity::InitializeResult(Loc, FnRetType); 1772 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1773 noteMemberDeclaredHere(S, ReturnValue, Fn); 1774 return false; 1775 } 1776 1777 StmtResult ReturnStmt; 1778 clang::VarDecl *GroDecl = nullptr; 1779 if (GroMatchesRetType) { 1780 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1781 } else { 1782 GroDecl = VarDecl::Create( 1783 S.Context, &FD, FD.getLocation(), FD.getLocation(), 1784 &S.PP.getIdentifierTable().get("__coro_gro"), GroType, 1785 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None); 1786 GroDecl->setImplicit(); 1787 1788 S.CheckVariableDeclarationType(GroDecl); 1789 if (GroDecl->isInvalidDecl()) 1790 return false; 1791 1792 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl); 1793 ExprResult Res = 1794 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1795 if (Res.isInvalid()) 1796 return false; 1797 1798 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false); 1799 if (Res.isInvalid()) 1800 return false; 1801 1802 S.AddInitializerToDecl(GroDecl, Res.get(), 1803 /*DirectInit=*/false); 1804 1805 S.FinalizeDeclaration(GroDecl); 1806 1807 // Form a declaration statement for the return declaration, so that AST 1808 // visitors can more easily find it. 1809 StmtResult GroDeclStmt = 1810 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc); 1811 if (GroDeclStmt.isInvalid()) 1812 return false; 1813 1814 this->ResultDecl = GroDeclStmt.get(); 1815 1816 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc); 1817 if (declRef.isInvalid()) 1818 return false; 1819 1820 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get()); 1821 } 1822 1823 if (ReturnStmt.isInvalid()) { 1824 noteMemberDeclaredHere(S, ReturnValue, Fn); 1825 return false; 1826 } 1827 1828 if (!GroMatchesRetType && 1829 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl) 1830 GroDecl->setNRVOVariable(true); 1831 1832 this->ReturnStmt = ReturnStmt.get(); 1833 return true; 1834 } 1835 1836 // Create a static_cast\<T&&>(expr). 1837 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1838 if (T.isNull()) 1839 T = E->getType(); 1840 QualType TargetType = S.BuildReferenceType( 1841 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1842 SourceLocation ExprLoc = E->getBeginLoc(); 1843 TypeSourceInfo *TargetLoc = 1844 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1845 1846 return S 1847 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1848 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1849 .get(); 1850 } 1851 1852 /// Build a variable declaration for move parameter. 1853 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1854 IdentifierInfo *II) { 1855 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1856 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1857 TInfo, SC_None); 1858 Decl->setImplicit(); 1859 return Decl; 1860 } 1861 1862 // Build statements that move coroutine function parameters to the coroutine 1863 // frame, and store them on the function scope info. 1864 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1865 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1866 auto *FD = cast<FunctionDecl>(CurContext); 1867 1868 auto *ScopeInfo = getCurFunction(); 1869 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1870 return false; 1871 1872 // [dcl.fct.def.coroutine]p13 1873 // When a coroutine is invoked, after initializing its parameters 1874 // ([expr.call]), a copy is created for each coroutine parameter. For a 1875 // parameter of type cv T, the copy is a variable of type cv T with 1876 // automatic storage duration that is direct-initialized from an xvalue of 1877 // type T referring to the parameter. 1878 for (auto *PD : FD->parameters()) { 1879 if (PD->getType()->isDependentType()) 1880 continue; 1881 1882 // Preserve the referenced state for unused parameter diagnostics. 1883 bool DeclReferenced = PD->isReferenced(); 1884 1885 ExprResult PDRefExpr = 1886 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1887 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1888 1889 PD->setReferenced(DeclReferenced); 1890 1891 if (PDRefExpr.isInvalid()) 1892 return false; 1893 1894 Expr *CExpr = nullptr; 1895 if (PD->getType()->getAsCXXRecordDecl() || 1896 PD->getType()->isRValueReferenceType()) 1897 CExpr = castForMoving(*this, PDRefExpr.get()); 1898 else 1899 CExpr = PDRefExpr.get(); 1900 // [dcl.fct.def.coroutine]p13 1901 // The initialization and destruction of each parameter copy occurs in the 1902 // context of the called coroutine. 1903 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1904 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1905 1906 // Convert decl to a statement. 1907 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1908 if (Stmt.isInvalid()) 1909 return false; 1910 1911 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 1912 } 1913 return true; 1914 } 1915 1916 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 1917 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 1918 if (!Res) 1919 return StmtError(); 1920 return Res; 1921 } 1922 1923 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 1924 SourceLocation FuncLoc) { 1925 if (StdCoroutineTraitsCache) 1926 return StdCoroutineTraitsCache; 1927 1928 IdentifierInfo const &TraitIdent = 1929 PP.getIdentifierTable().get("coroutine_traits"); 1930 1931 NamespaceDecl *StdSpace = getStdNamespace(); 1932 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 1933 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace); 1934 1935 if (!Found) { 1936 // The goggles, we found nothing! 1937 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 1938 << "std::coroutine_traits"; 1939 return nullptr; 1940 } 1941 1942 // coroutine_traits is required to be a class template. 1943 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 1944 if (!StdCoroutineTraitsCache) { 1945 Result.suppressDiagnostics(); 1946 NamedDecl *Found = *Result.begin(); 1947 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 1948 return nullptr; 1949 } 1950 1951 return StdCoroutineTraitsCache; 1952 } 1953