1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Basic/Builtins.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Overload.h" 25 #include "clang/Sema/ScopeInfo.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "llvm/ADT/SmallSet.h" 28 29 using namespace clang; 30 using namespace sema; 31 32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 33 SourceLocation Loc, bool &Res) { 34 DeclarationName DN = S.PP.getIdentifierInfo(Name); 35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 36 // Suppress diagnostics when a private member is selected. The same warnings 37 // will be produced again when building the call. 38 LR.suppressDiagnostics(); 39 Res = S.LookupQualifiedName(LR, RD); 40 return LR; 41 } 42 43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 44 SourceLocation Loc) { 45 bool Res; 46 lookupMember(S, Name, RD, Loc, Res); 47 return Res; 48 } 49 50 /// Look up the std::coroutine_traits<...>::promise_type for the given 51 /// function type. 52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 53 SourceLocation KwLoc) { 54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 55 const SourceLocation FuncLoc = FD->getLocation(); 56 57 ClassTemplateDecl *CoroTraits = 58 S.lookupCoroutineTraits(KwLoc, FuncLoc); 59 if (!CoroTraits) 60 return QualType(); 61 62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 63 // to [dcl.fct.def.coroutine]3 64 TemplateArgumentListInfo Args(KwLoc, KwLoc); 65 auto AddArg = [&](QualType T) { 66 Args.addArgument(TemplateArgumentLoc( 67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 68 }; 69 AddArg(FnType->getReturnType()); 70 // If the function is a non-static member function, add the type 71 // of the implicit object parameter before the formal parameters. 72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 73 if (MD->isImplicitObjectMemberFunction()) { 74 // [over.match.funcs]4 75 // For non-static member functions, the type of the implicit object 76 // parameter is 77 // -- "lvalue reference to cv X" for functions declared without a 78 // ref-qualifier or with the & ref-qualifier 79 // -- "rvalue reference to cv X" for functions declared with the && 80 // ref-qualifier 81 QualType T = MD->getFunctionObjectParameterType(); 82 T = FnType->getRefQualifier() == RQ_RValue 83 ? S.Context.getRValueReferenceType(T) 84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 85 AddArg(T); 86 } 87 } 88 for (QualType T : FnType->getParamTypes()) 89 AddArg(T); 90 91 // Build the template-id. 92 QualType CoroTrait = 93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 94 if (CoroTrait.isNull()) 95 return QualType(); 96 if (S.RequireCompleteType(KwLoc, CoroTrait, 97 diag::err_coroutine_type_missing_specialization)) 98 return QualType(); 99 100 auto *RD = CoroTrait->getAsCXXRecordDecl(); 101 assert(RD && "specialization of class template is not a class?"); 102 103 // Look up the ::promise_type member. 104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 105 Sema::LookupOrdinaryName); 106 S.LookupQualifiedName(R, RD); 107 auto *Promise = R.getAsSingle<TypeDecl>(); 108 if (!Promise) { 109 S.Diag(FuncLoc, 110 diag::err_implied_std_coroutine_traits_promise_type_not_found) 111 << RD; 112 return QualType(); 113 } 114 // The promise type is required to be a class type. 115 QualType PromiseType = S.Context.getTypeDeclType(Promise); 116 117 auto buildElaboratedType = [&]() { 118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace()); 119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 120 CoroTrait.getTypePtr()); 121 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType); 122 }; 123 124 if (!PromiseType->getAsCXXRecordDecl()) { 125 S.Diag(FuncLoc, 126 diag::err_implied_std_coroutine_traits_promise_type_not_class) 127 << buildElaboratedType(); 128 return QualType(); 129 } 130 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 131 diag::err_coroutine_promise_type_incomplete)) 132 return QualType(); 133 134 return PromiseType; 135 } 136 137 /// Look up the std::coroutine_handle<PromiseType>. 138 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 139 SourceLocation Loc) { 140 if (PromiseType.isNull()) 141 return QualType(); 142 143 NamespaceDecl *CoroNamespace = S.getStdNamespace(); 144 assert(CoroNamespace && "Should already be diagnosed"); 145 146 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 147 Loc, Sema::LookupOrdinaryName); 148 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 149 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 150 << "std::coroutine_handle"; 151 return QualType(); 152 } 153 154 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 155 if (!CoroHandle) { 156 Result.suppressDiagnostics(); 157 // We found something weird. Complain about the first thing we found. 158 NamedDecl *Found = *Result.begin(); 159 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 160 return QualType(); 161 } 162 163 // Form template argument list for coroutine_handle<Promise>. 164 TemplateArgumentListInfo Args(Loc, Loc); 165 Args.addArgument(TemplateArgumentLoc( 166 TemplateArgument(PromiseType), 167 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 168 169 // Build the template-id. 170 QualType CoroHandleType = 171 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 172 if (CoroHandleType.isNull()) 173 return QualType(); 174 if (S.RequireCompleteType(Loc, CoroHandleType, 175 diag::err_coroutine_type_missing_specialization)) 176 return QualType(); 177 178 return CoroHandleType; 179 } 180 181 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 182 StringRef Keyword) { 183 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 184 // a function body. 185 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 186 // appear in a default argument." But the diagnostic QoI here could be 187 // improved to inform the user that default arguments specifically are not 188 // allowed. 189 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 190 if (!FD) { 191 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 192 ? diag::err_coroutine_objc_method 193 : diag::err_coroutine_outside_function) << Keyword; 194 return false; 195 } 196 197 // An enumeration for mapping the diagnostic type to the correct diagnostic 198 // selection index. 199 enum InvalidFuncDiag { 200 DiagCtor = 0, 201 DiagDtor, 202 DiagMain, 203 DiagConstexpr, 204 DiagAutoRet, 205 DiagVarargs, 206 DiagConsteval, 207 }; 208 bool Diagnosed = false; 209 auto DiagInvalid = [&](InvalidFuncDiag ID) { 210 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 211 Diagnosed = true; 212 return false; 213 }; 214 215 // Diagnose when a constructor, destructor 216 // or the function 'main' are declared as a coroutine. 217 auto *MD = dyn_cast<CXXMethodDecl>(FD); 218 // [class.ctor]p11: "A constructor shall not be a coroutine." 219 if (MD && isa<CXXConstructorDecl>(MD)) 220 return DiagInvalid(DiagCtor); 221 // [class.dtor]p17: "A destructor shall not be a coroutine." 222 else if (MD && isa<CXXDestructorDecl>(MD)) 223 return DiagInvalid(DiagDtor); 224 // [basic.start.main]p3: "The function main shall not be a coroutine." 225 else if (FD->isMain()) 226 return DiagInvalid(DiagMain); 227 228 // Emit a diagnostics for each of the following conditions which is not met. 229 // [expr.const]p2: "An expression e is a core constant expression unless the 230 // evaluation of e [...] would evaluate one of the following expressions: 231 // [...] an await-expression [...] a yield-expression." 232 if (FD->isConstexpr()) 233 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 234 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 235 // placeholder type shall not be a coroutine." 236 if (FD->getReturnType()->isUndeducedType()) 237 DiagInvalid(DiagAutoRet); 238 // [dcl.fct.def.coroutine]p1 239 // The parameter-declaration-clause of the coroutine shall not terminate with 240 // an ellipsis that is not part of a parameter-declaration. 241 if (FD->isVariadic()) 242 DiagInvalid(DiagVarargs); 243 244 return !Diagnosed; 245 } 246 247 /// Build a call to 'operator co_await' if there is a suitable operator for 248 /// the given expression. 249 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 250 UnresolvedLookupExpr *Lookup) { 251 UnresolvedSet<16> Functions; 252 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 253 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 254 } 255 256 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 257 SourceLocation Loc, Expr *E) { 258 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 259 if (R.isInvalid()) 260 return ExprError(); 261 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 262 cast<UnresolvedLookupExpr>(R.get())); 263 } 264 265 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 266 SourceLocation Loc) { 267 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 268 if (CoroHandleType.isNull()) 269 return ExprError(); 270 271 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 272 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 273 Sema::LookupOrdinaryName); 274 if (!S.LookupQualifiedName(Found, LookupCtx)) { 275 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 276 << "from_address"; 277 return ExprError(); 278 } 279 280 Expr *FramePtr = 281 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 282 283 CXXScopeSpec SS; 284 ExprResult FromAddr = 285 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 286 if (FromAddr.isInvalid()) 287 return ExprError(); 288 289 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 290 } 291 292 struct ReadySuspendResumeResult { 293 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 294 Expr *Results[3]; 295 OpaqueValueExpr *OpaqueValue; 296 bool IsInvalid; 297 }; 298 299 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 300 StringRef Name, MultiExprArg Args) { 301 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 302 303 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 304 CXXScopeSpec SS; 305 ExprResult Result = S.BuildMemberReferenceExpr( 306 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, 307 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, 308 /*Scope=*/nullptr); 309 if (Result.isInvalid()) 310 return ExprError(); 311 312 // We meant exactly what we asked for. No need for typo correction. 313 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 314 S.clearDelayedTypo(TE); 315 S.Diag(Loc, diag::err_no_member) 316 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 317 << Base->getSourceRange(); 318 return ExprError(); 319 } 320 321 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); 322 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr); 323 } 324 325 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 326 // on its address. This is to enable the support for coroutine-handle 327 // returning await_suspend that results in a guaranteed tail call to the target 328 // coroutine. 329 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 330 SourceLocation Loc) { 331 if (RetType->isReferenceType()) 332 return nullptr; 333 Type const *T = RetType.getTypePtr(); 334 if (!T->isClassType() && !T->isStructureType()) 335 return nullptr; 336 337 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 338 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 339 // a private function in SemaExprCXX.cpp 340 341 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); 342 if (AddressExpr.isInvalid()) 343 return nullptr; 344 345 Expr *JustAddress = AddressExpr.get(); 346 347 // FIXME: Without optimizations, the temporary result from `await_suspend()` 348 // may be put on the coroutine frame since the coroutine frame constructor 349 // will think the temporary variable will escape from the 350 // `coroutine_handle<>::address()` call. This is problematic since the 351 // coroutine should be considered to be suspended after it enters 352 // `await_suspend` so it shouldn't access/update the coroutine frame after 353 // that. 354 // 355 // See https://github.com/llvm/llvm-project/issues/65054 for the report. 356 // 357 // The long term solution may wrap the whole logic about `await-suspend` 358 // into a standalone function. This is similar to the proposed solution 359 // in tryMarkAwaitSuspendNoInline. See the comments there for details. 360 // 361 // The short term solution here is to mark `coroutine_handle<>::address()` 362 // function as always-inline so that the coroutine frame constructor won't 363 // think the temporary result is escaped incorrectly. 364 if (auto *FD = cast<CallExpr>(JustAddress)->getDirectCallee()) 365 if (!FD->hasAttr<AlwaysInlineAttr>() && !FD->hasAttr<NoInlineAttr>()) 366 FD->addAttr(AlwaysInlineAttr::CreateImplicit(S.getASTContext(), 367 FD->getLocation())); 368 369 // Check that the type of AddressExpr is void* 370 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 371 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 372 diag::warn_coroutine_handle_address_invalid_return_type) 373 << JustAddress->getType(); 374 375 // Clean up temporary objects so that they don't live across suspension points 376 // unnecessarily. We choose to clean up before the call to 377 // __builtin_coro_resume so that the cleanup code are not inserted in-between 378 // the resume call and return instruction, which would interfere with the 379 // musttail call contract. 380 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress); 381 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume, 382 JustAddress); 383 } 384 385 /// The await_suspend call performed by co_await is essentially asynchronous 386 /// to the execution of the coroutine. Inlining it normally into an unsplit 387 /// coroutine can cause miscompilation because the coroutine CFG misrepresents 388 /// the true control flow of the program: things that happen in the 389 /// await_suspend are not guaranteed to happen prior to the resumption of the 390 /// coroutine, and things that happen after the resumption of the coroutine 391 /// (including its exit and the potential deallocation of the coroutine frame) 392 /// are not guaranteed to happen only after the end of await_suspend. 393 /// 394 /// See https://github.com/llvm/llvm-project/issues/56301 and 395 /// https://reviews.llvm.org/D157070 for the example and the full discussion. 396 /// 397 /// The short-term solution to this problem is to mark the call as uninlinable. 398 /// But we don't want to do this if the call is known to be trivial, which is 399 /// very common. 400 /// 401 /// The long-term solution may introduce patterns like: 402 /// 403 /// call @llvm.coro.await_suspend(ptr %awaiter, ptr %handle, 404 /// ptr @awaitSuspendFn) 405 /// 406 /// Then it is much easier to perform the safety analysis in the middle end. 407 /// If it is safe to inline the call to awaitSuspend, we can replace it in the 408 /// CoroEarly pass. Otherwise we could replace it in the CoroSplit pass. 409 static void tryMarkAwaitSuspendNoInline(Sema &S, OpaqueValueExpr *Awaiter, 410 CallExpr *AwaitSuspend) { 411 // The method here to extract the awaiter decl is not precise. 412 // This is intentional. Since it is hard to perform the analysis in the 413 // frontend due to the complexity of C++'s type systems. 414 // And we prefer to perform such analysis in the middle end since it is 415 // easier to implement and more powerful. 416 CXXRecordDecl *AwaiterDecl = 417 Awaiter->getType().getNonReferenceType()->getAsCXXRecordDecl(); 418 419 if (AwaiterDecl && AwaiterDecl->field_empty()) 420 return; 421 422 FunctionDecl *FD = AwaitSuspend->getDirectCallee(); 423 424 assert(FD); 425 426 // If the `await_suspend()` function is marked as `always_inline` explicitly, 427 // we should give the user the right to control the codegen. 428 if (FD->hasAttr<NoInlineAttr>() || FD->hasAttr<AlwaysInlineAttr>()) 429 return; 430 431 // This is problematic if the user calls the await_suspend standalone. But on 432 // the on hand, it is not incorrect semantically since inlining is not part 433 // of the standard. On the other hand, it is relatively rare to call 434 // the await_suspend function standalone. 435 // 436 // And given we've already had the long-term plan, the current workaround 437 // looks relatively tolerant. 438 FD->addAttr( 439 NoInlineAttr::CreateImplicit(S.getASTContext(), FD->getLocation())); 440 } 441 442 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 443 /// expression. 444 /// The generated AST tries to clean up temporary objects as early as 445 /// possible so that they don't live across suspension points if possible. 446 /// Having temporary objects living across suspension points unnecessarily can 447 /// lead to large frame size, and also lead to memory corruptions if the 448 /// coroutine frame is destroyed after coming back from suspension. This is done 449 /// by wrapping both the await_ready call and the await_suspend call with 450 /// ExprWithCleanups. In the end of this function, we also need to explicitly 451 /// set cleanup state so that the CoawaitExpr is also wrapped with an 452 /// ExprWithCleanups to clean up the awaiter associated with the co_await 453 /// expression. 454 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 455 SourceLocation Loc, Expr *E) { 456 OpaqueValueExpr *Operand = new (S.Context) 457 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 458 459 // Assume valid until we see otherwise. 460 // Further operations are responsible for setting IsInalid to true. 461 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 462 463 using ACT = ReadySuspendResumeResult::AwaitCallType; 464 465 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 466 MultiExprArg Arg) -> Expr * { 467 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 468 if (Result.isInvalid()) { 469 Calls.IsInvalid = true; 470 return nullptr; 471 } 472 Calls.Results[CallType] = Result.get(); 473 return Result.get(); 474 }; 475 476 CallExpr *AwaitReady = cast_or_null<CallExpr>( 477 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); 478 if (!AwaitReady) 479 return Calls; 480 if (!AwaitReady->getType()->isDependentType()) { 481 // [expr.await]p3 [...] 482 // — await-ready is the expression e.await_ready(), contextually converted 483 // to bool. 484 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 485 if (Conv.isInvalid()) { 486 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 487 diag::note_await_ready_no_bool_conversion); 488 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 489 << AwaitReady->getDirectCallee() << E->getSourceRange(); 490 Calls.IsInvalid = true; 491 } else 492 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 493 } 494 495 ExprResult CoroHandleRes = 496 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 497 if (CoroHandleRes.isInvalid()) { 498 Calls.IsInvalid = true; 499 return Calls; 500 } 501 Expr *CoroHandle = CoroHandleRes.get(); 502 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 503 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 504 if (!AwaitSuspend) 505 return Calls; 506 if (!AwaitSuspend->getType()->isDependentType()) { 507 // [expr.await]p3 [...] 508 // - await-suspend is the expression e.await_suspend(h), which shall be 509 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 510 // type Z. 511 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 512 513 // We need to mark await_suspend as noinline temporarily. See the comment 514 // of tryMarkAwaitSuspendNoInline for details. 515 tryMarkAwaitSuspendNoInline(S, Operand, AwaitSuspend); 516 517 // Support for coroutine_handle returning await_suspend. 518 if (Expr *TailCallSuspend = 519 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 520 // Note that we don't wrap the expression with ExprWithCleanups here 521 // because that might interfere with tailcall contract (e.g. inserting 522 // clean up instructions in-between tailcall and return). Instead 523 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 524 // call. 525 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 526 else { 527 // non-class prvalues always have cv-unqualified types 528 if (RetType->isReferenceType() || 529 (!RetType->isBooleanType() && !RetType->isVoidType())) { 530 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 531 diag::err_await_suspend_invalid_return_type) 532 << RetType; 533 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 534 << AwaitSuspend->getDirectCallee(); 535 Calls.IsInvalid = true; 536 } else 537 Calls.Results[ACT::ACT_Suspend] = 538 S.MaybeCreateExprWithCleanups(AwaitSuspend); 539 } 540 } 541 542 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); 543 544 // Make sure the awaiter object gets a chance to be cleaned up. 545 S.Cleanup.setExprNeedsCleanups(true); 546 547 return Calls; 548 } 549 550 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 551 SourceLocation Loc, StringRef Name, 552 MultiExprArg Args) { 553 554 // Form a reference to the promise. 555 ExprResult PromiseRef = S.BuildDeclRefExpr( 556 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 557 if (PromiseRef.isInvalid()) 558 return ExprError(); 559 560 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 561 } 562 563 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 564 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 565 auto *FD = cast<FunctionDecl>(CurContext); 566 bool IsThisDependentType = [&] { 567 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD)) 568 return MD->isImplicitObjectMemberFunction() && 569 MD->getThisType()->isDependentType(); 570 return false; 571 }(); 572 573 QualType T = FD->getType()->isDependentType() || IsThisDependentType 574 ? Context.DependentTy 575 : lookupPromiseType(*this, FD, Loc); 576 if (T.isNull()) 577 return nullptr; 578 579 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 580 &PP.getIdentifierTable().get("__promise"), T, 581 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 582 VD->setImplicit(); 583 CheckVariableDeclarationType(VD); 584 if (VD->isInvalidDecl()) 585 return nullptr; 586 587 auto *ScopeInfo = getCurFunction(); 588 589 // Build a list of arguments, based on the coroutine function's arguments, 590 // that if present will be passed to the promise type's constructor. 591 llvm::SmallVector<Expr *, 4> CtorArgExprs; 592 593 // Add implicit object parameter. 594 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 595 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 596 ExprResult ThisExpr = ActOnCXXThis(Loc); 597 if (ThisExpr.isInvalid()) 598 return nullptr; 599 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 600 if (ThisExpr.isInvalid()) 601 return nullptr; 602 CtorArgExprs.push_back(ThisExpr.get()); 603 } 604 } 605 606 // Add the coroutine function's parameters. 607 auto &Moves = ScopeInfo->CoroutineParameterMoves; 608 for (auto *PD : FD->parameters()) { 609 if (PD->getType()->isDependentType()) 610 continue; 611 612 auto RefExpr = ExprEmpty(); 613 auto Move = Moves.find(PD); 614 assert(Move != Moves.end() && 615 "Coroutine function parameter not inserted into move map"); 616 // If a reference to the function parameter exists in the coroutine 617 // frame, use that reference. 618 auto *MoveDecl = 619 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 620 RefExpr = 621 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 622 ExprValueKind::VK_LValue, FD->getLocation()); 623 if (RefExpr.isInvalid()) 624 return nullptr; 625 CtorArgExprs.push_back(RefExpr.get()); 626 } 627 628 // If we have a non-zero number of constructor arguments, try to use them. 629 // Otherwise, fall back to the promise type's default constructor. 630 if (!CtorArgExprs.empty()) { 631 // Create an initialization sequence for the promise type using the 632 // constructor arguments, wrapped in a parenthesized list expression. 633 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 634 CtorArgExprs, FD->getLocation()); 635 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 636 InitializationKind Kind = InitializationKind::CreateForInit( 637 VD->getLocation(), /*DirectInit=*/true, PLE); 638 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 639 /*TopLevelOfInitList=*/false, 640 /*TreatUnavailableAsInvalid=*/false); 641 642 // [dcl.fct.def.coroutine]5.7 643 // promise-constructor-arguments is determined as follows: overload 644 // resolution is performed on a promise constructor call created by 645 // assembling an argument list q_1 ... q_n . If a viable constructor is 646 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 647 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 648 if (InitSeq) { 649 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 650 if (Result.isInvalid()) { 651 VD->setInvalidDecl(); 652 } else if (Result.get()) { 653 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 654 VD->setInitStyle(VarDecl::CallInit); 655 CheckCompleteVariableDeclaration(VD); 656 } 657 } else 658 ActOnUninitializedDecl(VD); 659 } else 660 ActOnUninitializedDecl(VD); 661 662 FD->addDecl(VD); 663 return VD; 664 } 665 666 /// Check that this is a context in which a coroutine suspension can appear. 667 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 668 StringRef Keyword, 669 bool IsImplicit = false) { 670 if (!isValidCoroutineContext(S, Loc, Keyword)) 671 return nullptr; 672 673 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 674 675 auto *ScopeInfo = S.getCurFunction(); 676 assert(ScopeInfo && "missing function scope for function"); 677 678 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 679 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 680 681 if (ScopeInfo->CoroutinePromise) 682 return ScopeInfo; 683 684 if (!S.buildCoroutineParameterMoves(Loc)) 685 return nullptr; 686 687 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 688 if (!ScopeInfo->CoroutinePromise) 689 return nullptr; 690 691 return ScopeInfo; 692 } 693 694 /// Recursively check \p E and all its children to see if any call target 695 /// (including constructor call) is declared noexcept. Also any value returned 696 /// from the call has a noexcept destructor. 697 static void checkNoThrow(Sema &S, const Stmt *E, 698 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 699 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 700 // In the case of dtor, the call to dtor is implicit and hence we should 701 // pass nullptr to canCalleeThrow. 702 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 703 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 704 // co_await promise.final_suspend() could end up calling 705 // __builtin_coro_resume for symmetric transfer if await_suspend() 706 // returns a handle. In that case, even __builtin_coro_resume is not 707 // declared as noexcept and may throw, it does not throw _into_ the 708 // coroutine that just suspended, but rather throws back out from 709 // whoever called coroutine_handle::resume(), hence we claim that 710 // logically it does not throw. 711 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 712 return; 713 } 714 if (ThrowingDecls.empty()) { 715 // [dcl.fct.def.coroutine]p15 716 // The expression co_await promise.final_suspend() shall not be 717 // potentially-throwing ([except.spec]). 718 // 719 // First time seeing an error, emit the error message. 720 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 721 diag::err_coroutine_promise_final_suspend_requires_nothrow); 722 } 723 ThrowingDecls.insert(D); 724 } 725 }; 726 727 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 728 CXXConstructorDecl *Ctor = CE->getConstructor(); 729 checkDeclNoexcept(Ctor); 730 // Check the corresponding destructor of the constructor. 731 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 732 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 733 if (CE->isTypeDependent()) 734 return; 735 736 checkDeclNoexcept(CE->getCalleeDecl()); 737 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 738 // Check the destructor of the call return type, if any. 739 if (ReturnType.isDestructedType() == 740 QualType::DestructionKind::DK_cxx_destructor) { 741 const auto *T = 742 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 743 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 744 /*IsDtor=*/true); 745 } 746 } else 747 for (const auto *Child : E->children()) { 748 if (!Child) 749 continue; 750 checkNoThrow(S, Child, ThrowingDecls); 751 } 752 } 753 754 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 755 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 756 // We first collect all declarations that should not throw but not declared 757 // with noexcept. We then sort them based on the location before printing. 758 // This is to avoid emitting the same note multiple times on the same 759 // declaration, and also provide a deterministic order for the messages. 760 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 761 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 762 ThrowingDecls.end()}; 763 sort(SortedDecls, [](const Decl *A, const Decl *B) { 764 return A->getEndLoc() < B->getEndLoc(); 765 }); 766 for (const auto *D : SortedDecls) { 767 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 768 } 769 return ThrowingDecls.empty(); 770 } 771 772 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 773 StringRef Keyword) { 774 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 775 return false; 776 auto *ScopeInfo = getCurFunction(); 777 assert(ScopeInfo->CoroutinePromise); 778 779 // If we have existing coroutine statements then we have already built 780 // the initial and final suspend points. 781 if (!ScopeInfo->NeedsCoroutineSuspends) 782 return true; 783 784 ScopeInfo->setNeedsCoroutineSuspends(false); 785 786 auto *Fn = cast<FunctionDecl>(CurContext); 787 SourceLocation Loc = Fn->getLocation(); 788 // Build the initial suspend point 789 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 790 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, 791 Loc, Name, std::nullopt); 792 if (Operand.isInvalid()) 793 return StmtError(); 794 ExprResult Suspend = 795 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 796 if (Suspend.isInvalid()) 797 return StmtError(); 798 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 799 /*IsImplicit*/ true); 800 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 801 if (Suspend.isInvalid()) { 802 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 803 << ((Name == "initial_suspend") ? 0 : 1); 804 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 805 return StmtError(); 806 } 807 return cast<Stmt>(Suspend.get()); 808 }; 809 810 StmtResult InitSuspend = buildSuspends("initial_suspend"); 811 if (InitSuspend.isInvalid()) 812 return true; 813 814 StmtResult FinalSuspend = buildSuspends("final_suspend"); 815 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 816 return true; 817 818 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 819 820 return true; 821 } 822 823 // Recursively walks up the scope hierarchy until either a 'catch' or a function 824 // scope is found, whichever comes first. 825 static bool isWithinCatchScope(Scope *S) { 826 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 827 // lambdas that use 'co_await' are allowed. The loop below ends when a 828 // function scope is found in order to ensure the following behavior: 829 // 830 // void foo() { // <- function scope 831 // try { // 832 // co_await x; // <- 'co_await' is OK within a function scope 833 // } catch { // <- catch scope 834 // co_await x; // <- 'co_await' is not OK within a catch scope 835 // []() { // <- function scope 836 // co_await x; // <- 'co_await' is OK within a function scope 837 // }(); 838 // } 839 // } 840 while (S && !S->isFunctionScope()) { 841 if (S->isCatchScope()) 842 return true; 843 S = S->getParent(); 844 } 845 return false; 846 } 847 848 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 849 // a *potentially evaluated* expression within the compound-statement of a 850 // function-body *outside of a handler* [...] A context within a function 851 // where an await-expression can appear is called a suspension context of the 852 // function." 853 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 854 StringRef Keyword) { 855 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 856 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 857 // \c sizeof. 858 if (S.isUnevaluatedContext()) { 859 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 860 return false; 861 } 862 863 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 864 if (isWithinCatchScope(S.getCurScope())) { 865 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 866 return false; 867 } 868 869 return true; 870 } 871 872 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 873 if (!checkSuspensionContext(*this, Loc, "co_await")) 874 return ExprError(); 875 876 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 877 CorrectDelayedTyposInExpr(E); 878 return ExprError(); 879 } 880 881 if (E->hasPlaceholderType()) { 882 ExprResult R = CheckPlaceholderExpr(E); 883 if (R.isInvalid()) return ExprError(); 884 E = R.get(); 885 } 886 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 887 if (Lookup.isInvalid()) 888 return ExprError(); 889 return BuildUnresolvedCoawaitExpr(Loc, E, 890 cast<UnresolvedLookupExpr>(Lookup.get())); 891 } 892 893 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 894 DeclarationName OpName = 895 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 896 LookupResult Operators(*this, OpName, SourceLocation(), 897 Sema::LookupOperatorName); 898 LookupName(Operators, S); 899 900 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 901 const auto &Functions = Operators.asUnresolvedSet(); 902 bool IsOverloaded = 903 Functions.size() > 1 || 904 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 905 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 906 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 907 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded, 908 Functions.begin(), Functions.end()); 909 assert(CoawaitOp); 910 return CoawaitOp; 911 } 912 913 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 914 // DependentCoawaitExpr if needed. 915 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 916 UnresolvedLookupExpr *Lookup) { 917 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 918 if (!FSI) 919 return ExprError(); 920 921 if (Operand->hasPlaceholderType()) { 922 ExprResult R = CheckPlaceholderExpr(Operand); 923 if (R.isInvalid()) 924 return ExprError(); 925 Operand = R.get(); 926 } 927 928 auto *Promise = FSI->CoroutinePromise; 929 if (Promise->getType()->isDependentType()) { 930 Expr *Res = new (Context) 931 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 932 return Res; 933 } 934 935 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 936 auto *Transformed = Operand; 937 if (lookupMember(*this, "await_transform", RD, Loc)) { 938 ExprResult R = 939 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 940 if (R.isInvalid()) { 941 Diag(Loc, 942 diag::note_coroutine_promise_implicit_await_transform_required_here) 943 << Operand->getSourceRange(); 944 return ExprError(); 945 } 946 Transformed = R.get(); 947 } 948 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 949 if (Awaiter.isInvalid()) 950 return ExprError(); 951 952 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 953 } 954 955 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 956 Expr *Awaiter, bool IsImplicit) { 957 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 958 if (!Coroutine) 959 return ExprError(); 960 961 if (Awaiter->hasPlaceholderType()) { 962 ExprResult R = CheckPlaceholderExpr(Awaiter); 963 if (R.isInvalid()) return ExprError(); 964 Awaiter = R.get(); 965 } 966 967 if (Awaiter->getType()->isDependentType()) { 968 Expr *Res = new (Context) 969 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 970 return Res; 971 } 972 973 // If the expression is a temporary, materialize it as an lvalue so that we 974 // can use it multiple times. 975 if (Awaiter->isPRValue()) 976 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 977 978 // The location of the `co_await` token cannot be used when constructing 979 // the member call expressions since it's before the location of `Expr`, which 980 // is used as the start of the member call expression. 981 SourceLocation CallLoc = Awaiter->getExprLoc(); 982 983 // Build the await_ready, await_suspend, await_resume calls. 984 ReadySuspendResumeResult RSS = 985 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 986 if (RSS.IsInvalid) 987 return ExprError(); 988 989 Expr *Res = new (Context) 990 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 991 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 992 993 return Res; 994 } 995 996 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 997 if (!checkSuspensionContext(*this, Loc, "co_yield")) 998 return ExprError(); 999 1000 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 1001 CorrectDelayedTyposInExpr(E); 1002 return ExprError(); 1003 } 1004 1005 // Build yield_value call. 1006 ExprResult Awaitable = buildPromiseCall( 1007 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 1008 if (Awaitable.isInvalid()) 1009 return ExprError(); 1010 1011 // Build 'operator co_await' call. 1012 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 1013 if (Awaitable.isInvalid()) 1014 return ExprError(); 1015 1016 return BuildCoyieldExpr(Loc, Awaitable.get()); 1017 } 1018 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 1019 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 1020 if (!Coroutine) 1021 return ExprError(); 1022 1023 if (E->hasPlaceholderType()) { 1024 ExprResult R = CheckPlaceholderExpr(E); 1025 if (R.isInvalid()) return ExprError(); 1026 E = R.get(); 1027 } 1028 1029 Expr *Operand = E; 1030 1031 if (E->getType()->isDependentType()) { 1032 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 1033 return Res; 1034 } 1035 1036 // If the expression is a temporary, materialize it as an lvalue so that we 1037 // can use it multiple times. 1038 if (E->isPRValue()) 1039 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 1040 1041 // Build the await_ready, await_suspend, await_resume calls. 1042 ReadySuspendResumeResult RSS = buildCoawaitCalls( 1043 *this, Coroutine->CoroutinePromise, Loc, E); 1044 if (RSS.IsInvalid) 1045 return ExprError(); 1046 1047 Expr *Res = 1048 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 1049 RSS.Results[2], RSS.OpaqueValue); 1050 1051 return Res; 1052 } 1053 1054 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 1055 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 1056 CorrectDelayedTyposInExpr(E); 1057 return StmtError(); 1058 } 1059 return BuildCoreturnStmt(Loc, E); 1060 } 1061 1062 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 1063 bool IsImplicit) { 1064 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 1065 if (!FSI) 1066 return StmtError(); 1067 1068 if (E && E->hasPlaceholderType() && 1069 !E->hasPlaceholderType(BuiltinType::Overload)) { 1070 ExprResult R = CheckPlaceholderExpr(E); 1071 if (R.isInvalid()) return StmtError(); 1072 E = R.get(); 1073 } 1074 1075 VarDecl *Promise = FSI->CoroutinePromise; 1076 ExprResult PC; 1077 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 1078 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 1079 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 1080 } else { 1081 E = MakeFullDiscardedValueExpr(E).get(); 1082 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); 1083 } 1084 if (PC.isInvalid()) 1085 return StmtError(); 1086 1087 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1088 1089 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1090 return Res; 1091 } 1092 1093 /// Look up the std::nothrow object. 1094 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1095 NamespaceDecl *Std = S.getStdNamespace(); 1096 assert(Std && "Should already be diagnosed"); 1097 1098 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1099 Sema::LookupOrdinaryName); 1100 if (!S.LookupQualifiedName(Result, Std)) { 1101 // <coroutine> is not requred to include <new>, so we couldn't omit 1102 // the check here. 1103 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1104 return nullptr; 1105 } 1106 1107 auto *VD = Result.getAsSingle<VarDecl>(); 1108 if (!VD) { 1109 Result.suppressDiagnostics(); 1110 // We found something weird. Complain about the first thing we found. 1111 NamedDecl *Found = *Result.begin(); 1112 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1113 return nullptr; 1114 } 1115 1116 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1117 if (DR.isInvalid()) 1118 return nullptr; 1119 1120 return DR.get(); 1121 } 1122 1123 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1124 SourceLocation Loc) { 1125 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1126 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1127 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1128 } 1129 1130 // Find an appropriate delete for the promise. 1131 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1132 FunctionDecl *&OperatorDelete) { 1133 DeclarationName DeleteName = 1134 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1135 1136 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1137 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1138 1139 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1140 1141 // [dcl.fct.def.coroutine]p12 1142 // The deallocation function's name is looked up by searching for it in the 1143 // scope of the promise type. If nothing is found, a search is performed in 1144 // the global scope. 1145 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1146 /*Diagnose*/ true, /*WantSize*/ true, 1147 /*WantAligned*/ Overaligned)) 1148 return false; 1149 1150 // [dcl.fct.def.coroutine]p12 1151 // If both a usual deallocation function with only a pointer parameter and a 1152 // usual deallocation function with both a pointer parameter and a size 1153 // parameter are found, then the selected deallocation function shall be the 1154 // one with two parameters. Otherwise, the selected deallocation function 1155 // shall be the function with one parameter. 1156 if (!OperatorDelete) { 1157 // Look for a global declaration. 1158 // Coroutines can always provide their required size. 1159 const bool CanProvideSize = true; 1160 // Sema::FindUsualDeallocationFunction will try to find the one with two 1161 // parameters first. It will return the deallocation function with one 1162 // parameter if failed. 1163 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1164 Overaligned, DeleteName); 1165 1166 if (!OperatorDelete) 1167 return false; 1168 } 1169 1170 S.MarkFunctionReferenced(Loc, OperatorDelete); 1171 return true; 1172 } 1173 1174 1175 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1176 FunctionScopeInfo *Fn = getCurFunction(); 1177 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1178 if (!Body) { 1179 assert(FD->isInvalidDecl() && 1180 "a null body is only allowed for invalid declarations"); 1181 return; 1182 } 1183 // We have a function that uses coroutine keywords, but we failed to build 1184 // the promise type. 1185 if (!Fn->CoroutinePromise) 1186 return FD->setInvalidDecl(); 1187 1188 if (isa<CoroutineBodyStmt>(Body)) { 1189 // Nothing todo. the body is already a transformed coroutine body statement. 1190 return; 1191 } 1192 1193 // The always_inline attribute doesn't reliably apply to a coroutine, 1194 // because the coroutine will be split into pieces and some pieces 1195 // might be called indirectly, as in a virtual call. Even the ramp 1196 // function cannot be inlined at -O0, due to pipeline ordering 1197 // problems (see https://llvm.org/PR53413). Tell the user about it. 1198 if (FD->hasAttr<AlwaysInlineAttr>()) 1199 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1200 1201 // [stmt.return.coroutine]p1: 1202 // A coroutine shall not enclose a return statement ([stmt.return]). 1203 if (Fn->FirstReturnLoc.isValid()) { 1204 assert(Fn->FirstCoroutineStmtLoc.isValid() && 1205 "first coroutine location not set"); 1206 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); 1207 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1208 << Fn->getFirstCoroutineStmtKeyword(); 1209 } 1210 1211 // Coroutines will get splitted into pieces. The GNU address of label 1212 // extension wouldn't be meaningful in coroutines. 1213 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1214 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1215 1216 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1217 if (Builder.isInvalid() || !Builder.buildStatements()) 1218 return FD->setInvalidDecl(); 1219 1220 // Build body for the coroutine wrapper statement. 1221 Body = CoroutineBodyStmt::Create(Context, Builder); 1222 } 1223 1224 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { 1225 if (auto *CS = dyn_cast<CompoundStmt>(Body)) 1226 return CS; 1227 1228 // The body of the coroutine may be a try statement if it is in 1229 // 'function-try-block' syntax. Here we wrap it into a compound 1230 // statement for consistency. 1231 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type"); 1232 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(), 1233 SourceLocation(), SourceLocation()); 1234 } 1235 1236 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1237 sema::FunctionScopeInfo &Fn, 1238 Stmt *Body) 1239 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1240 IsPromiseDependentType( 1241 !Fn.CoroutinePromise || 1242 Fn.CoroutinePromise->getType()->isDependentType()) { 1243 this->Body = buildCoroutineBody(Body, S.getASTContext()); 1244 1245 for (auto KV : Fn.CoroutineParameterMoves) 1246 this->ParamMovesVector.push_back(KV.second); 1247 this->ParamMoves = this->ParamMovesVector; 1248 1249 if (!IsPromiseDependentType) { 1250 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1251 assert(PromiseRecordDecl && "Type should have already been checked"); 1252 } 1253 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1254 } 1255 1256 bool CoroutineStmtBuilder::buildStatements() { 1257 assert(this->IsValid && "coroutine already invalid"); 1258 this->IsValid = makeReturnObject(); 1259 if (this->IsValid && !IsPromiseDependentType) 1260 buildDependentStatements(); 1261 return this->IsValid; 1262 } 1263 1264 bool CoroutineStmtBuilder::buildDependentStatements() { 1265 assert(this->IsValid && "coroutine already invalid"); 1266 assert(!this->IsPromiseDependentType && 1267 "coroutine cannot have a dependent promise type"); 1268 this->IsValid = makeOnException() && makeOnFallthrough() && 1269 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1270 makeNewAndDeleteExpr(); 1271 return this->IsValid; 1272 } 1273 1274 bool CoroutineStmtBuilder::makePromiseStmt() { 1275 // Form a declaration statement for the promise declaration, so that AST 1276 // visitors can more easily find it. 1277 StmtResult PromiseStmt = 1278 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1279 if (PromiseStmt.isInvalid()) 1280 return false; 1281 1282 this->Promise = PromiseStmt.get(); 1283 return true; 1284 } 1285 1286 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1287 if (Fn.hasInvalidCoroutineSuspends()) 1288 return false; 1289 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1290 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1291 return true; 1292 } 1293 1294 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1295 CXXRecordDecl *PromiseRecordDecl, 1296 FunctionScopeInfo &Fn) { 1297 auto Loc = E->getExprLoc(); 1298 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1299 auto *Decl = DeclRef->getDecl(); 1300 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1301 if (Method->isStatic()) 1302 return true; 1303 else 1304 Loc = Decl->getLocation(); 1305 } 1306 } 1307 1308 S.Diag( 1309 Loc, 1310 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1311 << PromiseRecordDecl; 1312 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1313 << Fn.getFirstCoroutineStmtKeyword(); 1314 return false; 1315 } 1316 1317 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1318 assert(!IsPromiseDependentType && 1319 "cannot make statement while the promise type is dependent"); 1320 1321 // [dcl.fct.def.coroutine]p10 1322 // If a search for the name get_return_object_on_allocation_failure in 1323 // the scope of the promise type ([class.member.lookup]) finds any 1324 // declarations, then the result of a call to an allocation function used to 1325 // obtain storage for the coroutine state is assumed to return nullptr if it 1326 // fails to obtain storage, ... If the allocation function returns nullptr, 1327 // ... and the return value is obtained by a call to 1328 // T::get_return_object_on_allocation_failure(), where T is the 1329 // promise type. 1330 DeclarationName DN = 1331 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1332 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1333 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1334 return true; 1335 1336 CXXScopeSpec SS; 1337 ExprResult DeclNameExpr = 1338 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1339 if (DeclNameExpr.isInvalid()) 1340 return false; 1341 1342 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1343 return false; 1344 1345 ExprResult ReturnObjectOnAllocationFailure = 1346 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1347 if (ReturnObjectOnAllocationFailure.isInvalid()) 1348 return false; 1349 1350 StmtResult ReturnStmt = 1351 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1352 if (ReturnStmt.isInvalid()) { 1353 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1354 << DN; 1355 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1356 << Fn.getFirstCoroutineStmtKeyword(); 1357 return false; 1358 } 1359 1360 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1361 return true; 1362 } 1363 1364 // Collect placement arguments for allocation function of coroutine FD. 1365 // Return true if we collect placement arguments succesfully. Return false, 1366 // otherwise. 1367 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1368 SmallVectorImpl<Expr *> &PlacementArgs) { 1369 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1370 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 1371 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1372 if (ThisExpr.isInvalid()) 1373 return false; 1374 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1375 if (ThisExpr.isInvalid()) 1376 return false; 1377 PlacementArgs.push_back(ThisExpr.get()); 1378 } 1379 } 1380 1381 for (auto *PD : FD.parameters()) { 1382 if (PD->getType()->isDependentType()) 1383 continue; 1384 1385 // Build a reference to the parameter. 1386 auto PDLoc = PD->getLocation(); 1387 ExprResult PDRefExpr = 1388 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1389 ExprValueKind::VK_LValue, PDLoc); 1390 if (PDRefExpr.isInvalid()) 1391 return false; 1392 1393 PlacementArgs.push_back(PDRefExpr.get()); 1394 } 1395 1396 return true; 1397 } 1398 1399 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1400 // Form and check allocation and deallocation calls. 1401 assert(!IsPromiseDependentType && 1402 "cannot make statement while the promise type is dependent"); 1403 QualType PromiseType = Fn.CoroutinePromise->getType(); 1404 1405 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1406 return false; 1407 1408 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1409 1410 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1411 // parameter list composed of the requested size of the coroutine state being 1412 // allocated, followed by the coroutine function's arguments. If a matching 1413 // allocation function exists, use it. Otherwise, use an allocation function 1414 // that just takes the requested size. 1415 // 1416 // [dcl.fct.def.coroutine]p9 1417 // An implementation may need to allocate additional storage for a 1418 // coroutine. 1419 // This storage is known as the coroutine state and is obtained by calling a 1420 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1421 // allocation function's name is looked up by searching for it in the scope of 1422 // the promise type. 1423 // - If any declarations are found, overload resolution is performed on a 1424 // function call created by assembling an argument list. The first argument is 1425 // the amount of space requested, and has type std::size_t. The 1426 // lvalues p1 ... pn are the succeeding arguments. 1427 // 1428 // ...where "p1 ... pn" are defined earlier as: 1429 // 1430 // [dcl.fct.def.coroutine]p3 1431 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1432 // Pn>` 1433 // , where R is the return type of the function, and `P1, ..., Pn` are the 1434 // sequence of types of the non-object function parameters, preceded by the 1435 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1436 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1437 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1438 // the i-th non-object function parameter for a non-static member function, 1439 // and p_i denotes the i-th function parameter otherwise. For a non-static 1440 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1441 // lvalue that denotes the parameter copy corresponding to p_i. 1442 1443 FunctionDecl *OperatorNew = nullptr; 1444 SmallVector<Expr *, 1> PlacementArgs; 1445 1446 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1447 DeclarationName NewName = 1448 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1449 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1450 1451 if (PromiseType->isRecordType()) 1452 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1453 1454 return !R.empty() && !R.isAmbiguous(); 1455 }(); 1456 1457 // Helper function to indicate whether the last lookup found the aligned 1458 // allocation function. 1459 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1460 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1461 Sema::AFS_Both, 1462 bool WithoutPlacementArgs = false, 1463 bool ForceNonAligned = false) { 1464 // [dcl.fct.def.coroutine]p9 1465 // The allocation function's name is looked up by searching for it in the 1466 // scope of the promise type. 1467 // - If any declarations are found, ... 1468 // - If no declarations are found in the scope of the promise type, a search 1469 // is performed in the global scope. 1470 if (NewScope == Sema::AFS_Both) 1471 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1472 1473 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1474 FunctionDecl *UnusedResult = nullptr; 1475 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1476 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1477 /*isArray*/ false, PassAlignment, 1478 WithoutPlacementArgs ? MultiExprArg{} 1479 : PlacementArgs, 1480 OperatorNew, UnusedResult, /*Diagnose*/ false); 1481 }; 1482 1483 // We don't expect to call to global operator new with (size, p0, …, pn). 1484 // So if we choose to lookup the allocation function in global scope, we 1485 // shouldn't lookup placement arguments. 1486 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1487 return false; 1488 1489 LookupAllocationFunction(); 1490 1491 if (PromiseContainsNew && !PlacementArgs.empty()) { 1492 // [dcl.fct.def.coroutine]p9 1493 // If no viable function is found ([over.match.viable]), overload 1494 // resolution 1495 // is performed again on a function call created by passing just the amount 1496 // of space required as an argument of type std::size_t. 1497 // 1498 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1499 // Otherwise, overload resolution is performed again on a function call 1500 // created 1501 // by passing the amount of space requested as an argument of type 1502 // std::size_t as the first argument, and the requested alignment as 1503 // an argument of type std:align_val_t as the second argument. 1504 if (!OperatorNew || 1505 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1506 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1507 /*WithoutPlacementArgs*/ true); 1508 } 1509 1510 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1511 // Otherwise, overload resolution is performed again on a function call 1512 // created 1513 // by passing the amount of space requested as an argument of type 1514 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1515 // succeeding arguments. Otherwise, overload resolution is performed again 1516 // on a function call created by passing just the amount of space required as 1517 // an argument of type std::size_t. 1518 // 1519 // So within the proposed change in P2014RO, the priority order of aligned 1520 // allocation functions wiht promise_type is: 1521 // 1522 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1523 // void* operator new( std::size_t, std::align_val_t); 1524 // void* operator new( std::size_t, placement_args... ); 1525 // void* operator new( std::size_t); 1526 1527 // Helper variable to emit warnings. 1528 bool FoundNonAlignedInPromise = false; 1529 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1530 if (!OperatorNew || !PassAlignment) { 1531 FoundNonAlignedInPromise = OperatorNew; 1532 1533 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1534 /*WithoutPlacementArgs*/ false, 1535 /*ForceNonAligned*/ true); 1536 1537 if (!OperatorNew && !PlacementArgs.empty()) 1538 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1539 /*WithoutPlacementArgs*/ true, 1540 /*ForceNonAligned*/ true); 1541 } 1542 1543 bool IsGlobalOverload = 1544 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1545 // If we didn't find a class-local new declaration and non-throwing new 1546 // was is required then we need to lookup the non-throwing global operator 1547 // instead. 1548 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1549 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1550 if (!StdNoThrow) 1551 return false; 1552 PlacementArgs = {StdNoThrow}; 1553 OperatorNew = nullptr; 1554 LookupAllocationFunction(Sema::AFS_Global); 1555 } 1556 1557 // If we found a non-aligned allocation function in the promise_type, 1558 // it indicates the user forgot to update the allocation function. Let's emit 1559 // a warning here. 1560 if (FoundNonAlignedInPromise) { 1561 S.Diag(OperatorNew->getLocation(), 1562 diag::warn_non_aligned_allocation_function) 1563 << &FD; 1564 } 1565 1566 if (!OperatorNew) { 1567 if (PromiseContainsNew) 1568 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1569 else if (RequiresNoThrowAlloc) 1570 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1571 << &FD << S.getLangOpts().CoroAlignedAllocation; 1572 1573 return false; 1574 } 1575 1576 if (RequiresNoThrowAlloc) { 1577 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1578 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1579 S.Diag(OperatorNew->getLocation(), 1580 diag::err_coroutine_promise_new_requires_nothrow) 1581 << OperatorNew; 1582 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1583 << OperatorNew; 1584 return false; 1585 } 1586 } 1587 1588 FunctionDecl *OperatorDelete = nullptr; 1589 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1590 // FIXME: We should add an error here. According to: 1591 // [dcl.fct.def.coroutine]p12 1592 // If no usual deallocation function is found, the program is ill-formed. 1593 return false; 1594 } 1595 1596 Expr *FramePtr = 1597 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1598 1599 Expr *FrameSize = 1600 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1601 1602 Expr *FrameAlignment = nullptr; 1603 1604 if (S.getLangOpts().CoroAlignedAllocation) { 1605 FrameAlignment = 1606 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1607 1608 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1609 if (!AlignValTy) 1610 return false; 1611 1612 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1613 FrameAlignment, SourceRange(Loc, Loc), 1614 SourceRange(Loc, Loc)) 1615 .get(); 1616 } 1617 1618 // Make new call. 1619 ExprResult NewRef = 1620 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1621 if (NewRef.isInvalid()) 1622 return false; 1623 1624 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1625 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1626 NewArgs.push_back(FrameAlignment); 1627 1628 if (OperatorNew->getNumParams() > NewArgs.size()) 1629 llvm::append_range(NewArgs, PlacementArgs); 1630 1631 ExprResult NewExpr = 1632 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1633 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1634 if (NewExpr.isInvalid()) 1635 return false; 1636 1637 // Make delete call. 1638 1639 QualType OpDeleteQualType = OperatorDelete->getType(); 1640 1641 ExprResult DeleteRef = 1642 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1643 if (DeleteRef.isInvalid()) 1644 return false; 1645 1646 Expr *CoroFree = 1647 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1648 1649 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1650 1651 // [dcl.fct.def.coroutine]p12 1652 // The selected deallocation function shall be called with the address of 1653 // the block of storage to be reclaimed as its first argument. If a 1654 // deallocation function with a parameter of type std::size_t is 1655 // used, the size of the block is passed as the corresponding argument. 1656 const auto *OpDeleteType = 1657 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1658 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1659 S.getASTContext().hasSameUnqualifiedType( 1660 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1661 DeleteArgs.push_back(FrameSize); 1662 1663 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1664 // If deallocation function lookup finds a usual deallocation function with 1665 // a pointer parameter, size parameter and alignment parameter then this 1666 // will be the selected deallocation function, otherwise if lookup finds a 1667 // usual deallocation function with both a pointer parameter and a size 1668 // parameter, then this will be the selected deallocation function. 1669 // Otherwise, if lookup finds a usual deallocation function with only a 1670 // pointer parameter, then this will be the selected deallocation 1671 // function. 1672 // 1673 // So we are not forced to pass alignment to the deallocation function. 1674 if (S.getLangOpts().CoroAlignedAllocation && 1675 OpDeleteType->getNumParams() > DeleteArgs.size() && 1676 S.getASTContext().hasSameUnqualifiedType( 1677 OpDeleteType->getParamType(DeleteArgs.size()), 1678 FrameAlignment->getType())) 1679 DeleteArgs.push_back(FrameAlignment); 1680 1681 ExprResult DeleteExpr = 1682 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1683 DeleteExpr = 1684 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1685 if (DeleteExpr.isInvalid()) 1686 return false; 1687 1688 this->Allocate = NewExpr.get(); 1689 this->Deallocate = DeleteExpr.get(); 1690 1691 return true; 1692 } 1693 1694 bool CoroutineStmtBuilder::makeOnFallthrough() { 1695 assert(!IsPromiseDependentType && 1696 "cannot make statement while the promise type is dependent"); 1697 1698 // [dcl.fct.def.coroutine]/p6 1699 // If searches for the names return_void and return_value in the scope of 1700 // the promise type each find any declarations, the program is ill-formed. 1701 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1702 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1703 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1704 // end note] 1705 bool HasRVoid, HasRValue; 1706 LookupResult LRVoid = 1707 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1708 LookupResult LRValue = 1709 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1710 1711 StmtResult Fallthrough; 1712 if (HasRVoid && HasRValue) { 1713 // FIXME Improve this diagnostic 1714 S.Diag(FD.getLocation(), 1715 diag::err_coroutine_promise_incompatible_return_functions) 1716 << PromiseRecordDecl; 1717 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1718 diag::note_member_first_declared_here) 1719 << LRVoid.getLookupName(); 1720 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1721 diag::note_member_first_declared_here) 1722 << LRValue.getLookupName(); 1723 return false; 1724 } else if (!HasRVoid && !HasRValue) { 1725 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1726 // think the coroutine has defined a return_value method. So it might emit 1727 // **false** positive warning. e.g., 1728 // 1729 // promise_without_return_func foo() { 1730 // co_await something(); 1731 // } 1732 // 1733 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1734 // co_return statements, which isn't correct. 1735 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1736 if (Fallthrough.isInvalid()) 1737 return false; 1738 } else if (HasRVoid) { 1739 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1740 /*IsImplicit*/false); 1741 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1742 if (Fallthrough.isInvalid()) 1743 return false; 1744 } 1745 1746 this->OnFallthrough = Fallthrough.get(); 1747 return true; 1748 } 1749 1750 bool CoroutineStmtBuilder::makeOnException() { 1751 // Try to form 'p.unhandled_exception();' 1752 assert(!IsPromiseDependentType && 1753 "cannot make statement while the promise type is dependent"); 1754 1755 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1756 1757 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1758 auto DiagID = 1759 RequireUnhandledException 1760 ? diag::err_coroutine_promise_unhandled_exception_required 1761 : diag:: 1762 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1763 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1764 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1765 << PromiseRecordDecl; 1766 return !RequireUnhandledException; 1767 } 1768 1769 // If exceptions are disabled, don't try to build OnException. 1770 if (!S.getLangOpts().CXXExceptions) 1771 return true; 1772 1773 ExprResult UnhandledException = buildPromiseCall( 1774 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); 1775 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1776 /*DiscardedValue*/ false); 1777 if (UnhandledException.isInvalid()) 1778 return false; 1779 1780 // Since the body of the coroutine will be wrapped in try-catch, it will 1781 // be incompatible with SEH __try if present in a function. 1782 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1783 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1784 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1785 << Fn.getFirstCoroutineStmtKeyword(); 1786 return false; 1787 } 1788 1789 this->OnException = UnhandledException.get(); 1790 return true; 1791 } 1792 1793 bool CoroutineStmtBuilder::makeReturnObject() { 1794 // [dcl.fct.def.coroutine]p7 1795 // The expression promise.get_return_object() is used to initialize the 1796 // returned reference or prvalue result object of a call to a coroutine. 1797 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, 1798 "get_return_object", std::nullopt); 1799 if (ReturnObject.isInvalid()) 1800 return false; 1801 1802 this->ReturnValue = ReturnObject.get(); 1803 return true; 1804 } 1805 1806 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1807 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1808 auto *MethodDecl = MbrRef->getMethodDecl(); 1809 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1810 << MethodDecl; 1811 } 1812 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1813 << Fn.getFirstCoroutineStmtKeyword(); 1814 } 1815 1816 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1817 assert(!IsPromiseDependentType && 1818 "cannot make statement while the promise type is dependent"); 1819 assert(this->ReturnValue && "ReturnValue must be already formed"); 1820 1821 QualType const GroType = this->ReturnValue->getType(); 1822 assert(!GroType->isDependentType() && 1823 "get_return_object type must no longer be dependent"); 1824 1825 QualType const FnRetType = FD.getReturnType(); 1826 assert(!FnRetType->isDependentType() && 1827 "get_return_object type must no longer be dependent"); 1828 1829 // The call to get_return_object is sequenced before the call to 1830 // initial_suspend and is invoked at most once, but there are caveats 1831 // regarding on whether the prvalue result object may be initialized 1832 // directly/eager or delayed, depending on the types involved. 1833 // 1834 // More info at https://github.com/cplusplus/papers/issues/1414 1835 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType); 1836 1837 if (FnRetType->isVoidType()) { 1838 ExprResult Res = 1839 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1840 if (Res.isInvalid()) 1841 return false; 1842 1843 if (!GroMatchesRetType) 1844 this->ResultDecl = Res.get(); 1845 return true; 1846 } 1847 1848 if (GroType->isVoidType()) { 1849 // Trigger a nice error message. 1850 InitializedEntity Entity = 1851 InitializedEntity::InitializeResult(Loc, FnRetType); 1852 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1853 noteMemberDeclaredHere(S, ReturnValue, Fn); 1854 return false; 1855 } 1856 1857 StmtResult ReturnStmt; 1858 clang::VarDecl *GroDecl = nullptr; 1859 if (GroMatchesRetType) { 1860 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1861 } else { 1862 GroDecl = VarDecl::Create( 1863 S.Context, &FD, FD.getLocation(), FD.getLocation(), 1864 &S.PP.getIdentifierTable().get("__coro_gro"), GroType, 1865 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None); 1866 GroDecl->setImplicit(); 1867 1868 S.CheckVariableDeclarationType(GroDecl); 1869 if (GroDecl->isInvalidDecl()) 1870 return false; 1871 1872 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl); 1873 ExprResult Res = 1874 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1875 if (Res.isInvalid()) 1876 return false; 1877 1878 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false); 1879 if (Res.isInvalid()) 1880 return false; 1881 1882 S.AddInitializerToDecl(GroDecl, Res.get(), 1883 /*DirectInit=*/false); 1884 1885 S.FinalizeDeclaration(GroDecl); 1886 1887 // Form a declaration statement for the return declaration, so that AST 1888 // visitors can more easily find it. 1889 StmtResult GroDeclStmt = 1890 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc); 1891 if (GroDeclStmt.isInvalid()) 1892 return false; 1893 1894 this->ResultDecl = GroDeclStmt.get(); 1895 1896 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc); 1897 if (declRef.isInvalid()) 1898 return false; 1899 1900 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get()); 1901 } 1902 1903 if (ReturnStmt.isInvalid()) { 1904 noteMemberDeclaredHere(S, ReturnValue, Fn); 1905 return false; 1906 } 1907 1908 if (!GroMatchesRetType && 1909 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl) 1910 GroDecl->setNRVOVariable(true); 1911 1912 this->ReturnStmt = ReturnStmt.get(); 1913 return true; 1914 } 1915 1916 // Create a static_cast\<T&&>(expr). 1917 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1918 if (T.isNull()) 1919 T = E->getType(); 1920 QualType TargetType = S.BuildReferenceType( 1921 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1922 SourceLocation ExprLoc = E->getBeginLoc(); 1923 TypeSourceInfo *TargetLoc = 1924 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1925 1926 return S 1927 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1928 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1929 .get(); 1930 } 1931 1932 /// Build a variable declaration for move parameter. 1933 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1934 IdentifierInfo *II) { 1935 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1936 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1937 TInfo, SC_None); 1938 Decl->setImplicit(); 1939 return Decl; 1940 } 1941 1942 // Build statements that move coroutine function parameters to the coroutine 1943 // frame, and store them on the function scope info. 1944 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1945 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1946 auto *FD = cast<FunctionDecl>(CurContext); 1947 1948 auto *ScopeInfo = getCurFunction(); 1949 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1950 return false; 1951 1952 // [dcl.fct.def.coroutine]p13 1953 // When a coroutine is invoked, after initializing its parameters 1954 // ([expr.call]), a copy is created for each coroutine parameter. For a 1955 // parameter of type cv T, the copy is a variable of type cv T with 1956 // automatic storage duration that is direct-initialized from an xvalue of 1957 // type T referring to the parameter. 1958 for (auto *PD : FD->parameters()) { 1959 if (PD->getType()->isDependentType()) 1960 continue; 1961 1962 ExprResult PDRefExpr = 1963 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1964 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1965 if (PDRefExpr.isInvalid()) 1966 return false; 1967 1968 Expr *CExpr = nullptr; 1969 if (PD->getType()->getAsCXXRecordDecl() || 1970 PD->getType()->isRValueReferenceType()) 1971 CExpr = castForMoving(*this, PDRefExpr.get()); 1972 else 1973 CExpr = PDRefExpr.get(); 1974 // [dcl.fct.def.coroutine]p13 1975 // The initialization and destruction of each parameter copy occurs in the 1976 // context of the called coroutine. 1977 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1978 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1979 1980 // Convert decl to a statement. 1981 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1982 if (Stmt.isInvalid()) 1983 return false; 1984 1985 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 1986 } 1987 return true; 1988 } 1989 1990 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 1991 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 1992 if (!Res) 1993 return StmtError(); 1994 return Res; 1995 } 1996 1997 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 1998 SourceLocation FuncLoc) { 1999 if (StdCoroutineTraitsCache) 2000 return StdCoroutineTraitsCache; 2001 2002 IdentifierInfo const &TraitIdent = 2003 PP.getIdentifierTable().get("coroutine_traits"); 2004 2005 NamespaceDecl *StdSpace = getStdNamespace(); 2006 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 2007 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace); 2008 2009 if (!Found) { 2010 // The goggles, we found nothing! 2011 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 2012 << "std::coroutine_traits"; 2013 return nullptr; 2014 } 2015 2016 // coroutine_traits is required to be a class template. 2017 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 2018 if (!StdCoroutineTraitsCache) { 2019 Result.suppressDiagnostics(); 2020 NamedDecl *Found = *Result.begin(); 2021 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 2022 return nullptr; 2023 } 2024 2025 return StdCoroutineTraitsCache; 2026 } 2027