1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "clang/Sema/EnterExpressionEvaluationContext.h" 25 #include "clang/Sema/Initialization.h" 26 #include "clang/Sema/Overload.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "clang/Sema/SemaInternal.h" 29 #include "llvm/ADT/SmallSet.h" 30 31 using namespace clang; 32 using namespace sema; 33 34 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 35 SourceLocation Loc, bool &Res) { 36 DeclarationName DN = S.PP.getIdentifierInfo(Name); 37 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 38 // Suppress diagnostics when a private member is selected. The same warnings 39 // will be produced again when building the call. 40 LR.suppressDiagnostics(); 41 Res = S.LookupQualifiedName(LR, RD); 42 return LR; 43 } 44 45 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 46 SourceLocation Loc) { 47 bool Res; 48 lookupMember(S, Name, RD, Loc, Res); 49 return Res; 50 } 51 52 /// Look up the std::coroutine_traits<...>::promise_type for the given 53 /// function type. 54 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 55 SourceLocation KwLoc) { 56 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 57 const SourceLocation FuncLoc = FD->getLocation(); 58 59 ClassTemplateDecl *CoroTraits = 60 S.lookupCoroutineTraits(KwLoc, FuncLoc); 61 if (!CoroTraits) 62 return QualType(); 63 64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 65 // to [dcl.fct.def.coroutine]3 66 TemplateArgumentListInfo Args(KwLoc, KwLoc); 67 auto AddArg = [&](QualType T) { 68 Args.addArgument(TemplateArgumentLoc( 69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 70 }; 71 AddArg(FnType->getReturnType()); 72 // If the function is a non-static member function, add the type 73 // of the implicit object parameter before the formal parameters. 74 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 75 if (MD->isImplicitObjectMemberFunction()) { 76 // [over.match.funcs]4 77 // For non-static member functions, the type of the implicit object 78 // parameter is 79 // -- "lvalue reference to cv X" for functions declared without a 80 // ref-qualifier or with the & ref-qualifier 81 // -- "rvalue reference to cv X" for functions declared with the && 82 // ref-qualifier 83 QualType T = MD->getFunctionObjectParameterType(); 84 T = FnType->getRefQualifier() == RQ_RValue 85 ? S.Context.getRValueReferenceType(T) 86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 87 AddArg(T); 88 } 89 } 90 for (QualType T : FnType->getParamTypes()) 91 AddArg(T); 92 93 // Build the template-id. 94 QualType CoroTrait = 95 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 96 if (CoroTrait.isNull()) 97 return QualType(); 98 if (S.RequireCompleteType(KwLoc, CoroTrait, 99 diag::err_coroutine_type_missing_specialization)) 100 return QualType(); 101 102 auto *RD = CoroTrait->getAsCXXRecordDecl(); 103 assert(RD && "specialization of class template is not a class?"); 104 105 // Look up the ::promise_type member. 106 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 107 Sema::LookupOrdinaryName); 108 S.LookupQualifiedName(R, RD); 109 auto *Promise = R.getAsSingle<TypeDecl>(); 110 if (!Promise) { 111 S.Diag(FuncLoc, 112 diag::err_implied_std_coroutine_traits_promise_type_not_found) 113 << RD; 114 return QualType(); 115 } 116 // The promise type is required to be a class type. 117 QualType PromiseType = S.Context.getTypeDeclType(Promise); 118 119 auto buildElaboratedType = [&]() { 120 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace()); 121 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 122 CoroTrait.getTypePtr()); 123 return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, 124 PromiseType); 125 }; 126 127 if (!PromiseType->getAsCXXRecordDecl()) { 128 S.Diag(FuncLoc, 129 diag::err_implied_std_coroutine_traits_promise_type_not_class) 130 << buildElaboratedType(); 131 return QualType(); 132 } 133 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 134 diag::err_coroutine_promise_type_incomplete)) 135 return QualType(); 136 137 return PromiseType; 138 } 139 140 /// Look up the std::coroutine_handle<PromiseType>. 141 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 142 SourceLocation Loc) { 143 if (PromiseType.isNull()) 144 return QualType(); 145 146 NamespaceDecl *CoroNamespace = S.getStdNamespace(); 147 assert(CoroNamespace && "Should already be diagnosed"); 148 149 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 150 Loc, Sema::LookupOrdinaryName); 151 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 152 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 153 << "std::coroutine_handle"; 154 return QualType(); 155 } 156 157 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 158 if (!CoroHandle) { 159 Result.suppressDiagnostics(); 160 // We found something weird. Complain about the first thing we found. 161 NamedDecl *Found = *Result.begin(); 162 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 163 return QualType(); 164 } 165 166 // Form template argument list for coroutine_handle<Promise>. 167 TemplateArgumentListInfo Args(Loc, Loc); 168 Args.addArgument(TemplateArgumentLoc( 169 TemplateArgument(PromiseType), 170 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 171 172 // Build the template-id. 173 QualType CoroHandleType = 174 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 175 if (CoroHandleType.isNull()) 176 return QualType(); 177 if (S.RequireCompleteType(Loc, CoroHandleType, 178 diag::err_coroutine_type_missing_specialization)) 179 return QualType(); 180 181 return CoroHandleType; 182 } 183 184 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 185 StringRef Keyword) { 186 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 187 // a function body. 188 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 189 // appear in a default argument." But the diagnostic QoI here could be 190 // improved to inform the user that default arguments specifically are not 191 // allowed. 192 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 193 if (!FD) { 194 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 195 ? diag::err_coroutine_objc_method 196 : diag::err_coroutine_outside_function) << Keyword; 197 return false; 198 } 199 200 // An enumeration for mapping the diagnostic type to the correct diagnostic 201 // selection index. 202 enum InvalidFuncDiag { 203 DiagCtor = 0, 204 DiagDtor, 205 DiagMain, 206 DiagConstexpr, 207 DiagAutoRet, 208 DiagVarargs, 209 DiagConsteval, 210 }; 211 bool Diagnosed = false; 212 auto DiagInvalid = [&](InvalidFuncDiag ID) { 213 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 214 Diagnosed = true; 215 return false; 216 }; 217 218 // Diagnose when a constructor, destructor 219 // or the function 'main' are declared as a coroutine. 220 auto *MD = dyn_cast<CXXMethodDecl>(FD); 221 // [class.ctor]p11: "A constructor shall not be a coroutine." 222 if (MD && isa<CXXConstructorDecl>(MD)) 223 return DiagInvalid(DiagCtor); 224 // [class.dtor]p17: "A destructor shall not be a coroutine." 225 else if (MD && isa<CXXDestructorDecl>(MD)) 226 return DiagInvalid(DiagDtor); 227 // [basic.start.main]p3: "The function main shall not be a coroutine." 228 else if (FD->isMain()) 229 return DiagInvalid(DiagMain); 230 231 // Emit a diagnostics for each of the following conditions which is not met. 232 // [expr.const]p2: "An expression e is a core constant expression unless the 233 // evaluation of e [...] would evaluate one of the following expressions: 234 // [...] an await-expression [...] a yield-expression." 235 if (FD->isConstexpr()) 236 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 237 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 238 // placeholder type shall not be a coroutine." 239 if (FD->getReturnType()->isUndeducedType()) 240 DiagInvalid(DiagAutoRet); 241 // [dcl.fct.def.coroutine]p1 242 // The parameter-declaration-clause of the coroutine shall not terminate with 243 // an ellipsis that is not part of a parameter-declaration. 244 if (FD->isVariadic()) 245 DiagInvalid(DiagVarargs); 246 247 return !Diagnosed; 248 } 249 250 /// Build a call to 'operator co_await' if there is a suitable operator for 251 /// the given expression. 252 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 253 UnresolvedLookupExpr *Lookup) { 254 UnresolvedSet<16> Functions; 255 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 256 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 257 } 258 259 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 260 SourceLocation Loc, Expr *E) { 261 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 262 if (R.isInvalid()) 263 return ExprError(); 264 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 265 cast<UnresolvedLookupExpr>(R.get())); 266 } 267 268 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 269 SourceLocation Loc) { 270 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 271 if (CoroHandleType.isNull()) 272 return ExprError(); 273 274 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 275 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 276 Sema::LookupOrdinaryName); 277 if (!S.LookupQualifiedName(Found, LookupCtx)) { 278 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 279 << "from_address"; 280 return ExprError(); 281 } 282 283 Expr *FramePtr = 284 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 285 286 CXXScopeSpec SS; 287 ExprResult FromAddr = 288 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 289 if (FromAddr.isInvalid()) 290 return ExprError(); 291 292 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 293 } 294 295 struct ReadySuspendResumeResult { 296 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 297 Expr *Results[3]; 298 OpaqueValueExpr *OpaqueValue; 299 bool IsInvalid; 300 }; 301 302 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 303 StringRef Name, MultiExprArg Args) { 304 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 305 306 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 307 CXXScopeSpec SS; 308 ExprResult Result = S.BuildMemberReferenceExpr( 309 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, 310 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, 311 /*Scope=*/nullptr); 312 if (Result.isInvalid()) 313 return ExprError(); 314 315 // We meant exactly what we asked for. No need for typo correction. 316 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 317 S.clearDelayedTypo(TE); 318 S.Diag(Loc, diag::err_no_member) 319 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 320 << Base->getSourceRange(); 321 return ExprError(); 322 } 323 324 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); 325 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr); 326 } 327 328 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 329 // on its address. This is to enable the support for coroutine-handle 330 // returning await_suspend that results in a guaranteed tail call to the target 331 // coroutine. 332 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 333 SourceLocation Loc) { 334 if (RetType->isReferenceType()) 335 return nullptr; 336 Type const *T = RetType.getTypePtr(); 337 if (!T->isClassType() && !T->isStructureType()) 338 return nullptr; 339 340 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 341 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 342 // a private function in SemaExprCXX.cpp 343 344 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", {}); 345 if (AddressExpr.isInvalid()) 346 return nullptr; 347 348 Expr *JustAddress = AddressExpr.get(); 349 350 // Check that the type of AddressExpr is void* 351 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 352 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 353 diag::warn_coroutine_handle_address_invalid_return_type) 354 << JustAddress->getType(); 355 356 // Clean up temporary objects, because the resulting expression 357 // will become the body of await_suspend wrapper. 358 return S.MaybeCreateExprWithCleanups(JustAddress); 359 } 360 361 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 362 /// expression. 363 /// The generated AST tries to clean up temporary objects as early as 364 /// possible so that they don't live across suspension points if possible. 365 /// Having temporary objects living across suspension points unnecessarily can 366 /// lead to large frame size, and also lead to memory corruptions if the 367 /// coroutine frame is destroyed after coming back from suspension. This is done 368 /// by wrapping both the await_ready call and the await_suspend call with 369 /// ExprWithCleanups. In the end of this function, we also need to explicitly 370 /// set cleanup state so that the CoawaitExpr is also wrapped with an 371 /// ExprWithCleanups to clean up the awaiter associated with the co_await 372 /// expression. 373 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 374 SourceLocation Loc, Expr *E) { 375 OpaqueValueExpr *Operand = new (S.Context) 376 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 377 378 // Assume valid until we see otherwise. 379 // Further operations are responsible for setting IsInalid to true. 380 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 381 382 using ACT = ReadySuspendResumeResult::AwaitCallType; 383 384 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 385 MultiExprArg Arg) -> Expr * { 386 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 387 if (Result.isInvalid()) { 388 Calls.IsInvalid = true; 389 return nullptr; 390 } 391 Calls.Results[CallType] = Result.get(); 392 return Result.get(); 393 }; 394 395 CallExpr *AwaitReady = 396 cast_or_null<CallExpr>(BuildSubExpr(ACT::ACT_Ready, "await_ready", {})); 397 if (!AwaitReady) 398 return Calls; 399 if (!AwaitReady->getType()->isDependentType()) { 400 // [expr.await]p3 [...] 401 // — await-ready is the expression e.await_ready(), contextually converted 402 // to bool. 403 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 404 if (Conv.isInvalid()) { 405 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 406 diag::note_await_ready_no_bool_conversion); 407 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 408 << AwaitReady->getDirectCallee() << E->getSourceRange(); 409 Calls.IsInvalid = true; 410 } else 411 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 412 } 413 414 ExprResult CoroHandleRes = 415 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 416 if (CoroHandleRes.isInvalid()) { 417 Calls.IsInvalid = true; 418 return Calls; 419 } 420 Expr *CoroHandle = CoroHandleRes.get(); 421 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 422 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 423 if (!AwaitSuspend) 424 return Calls; 425 if (!AwaitSuspend->getType()->isDependentType()) { 426 // [expr.await]p3 [...] 427 // - await-suspend is the expression e.await_suspend(h), which shall be 428 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 429 // type Z. 430 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 431 432 // Support for coroutine_handle returning await_suspend. 433 if (Expr *TailCallSuspend = 434 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 435 // Note that we don't wrap the expression with ExprWithCleanups here 436 // because that might interfere with tailcall contract (e.g. inserting 437 // clean up instructions in-between tailcall and return). Instead 438 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 439 // call. 440 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 441 else { 442 // non-class prvalues always have cv-unqualified types 443 if (RetType->isReferenceType() || 444 (!RetType->isBooleanType() && !RetType->isVoidType())) { 445 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 446 diag::err_await_suspend_invalid_return_type) 447 << RetType; 448 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 449 << AwaitSuspend->getDirectCallee(); 450 Calls.IsInvalid = true; 451 } else 452 Calls.Results[ACT::ACT_Suspend] = 453 S.MaybeCreateExprWithCleanups(AwaitSuspend); 454 } 455 } 456 457 BuildSubExpr(ACT::ACT_Resume, "await_resume", {}); 458 459 // Make sure the awaiter object gets a chance to be cleaned up. 460 S.Cleanup.setExprNeedsCleanups(true); 461 462 return Calls; 463 } 464 465 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 466 SourceLocation Loc, StringRef Name, 467 MultiExprArg Args) { 468 469 // Form a reference to the promise. 470 ExprResult PromiseRef = S.BuildDeclRefExpr( 471 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 472 if (PromiseRef.isInvalid()) 473 return ExprError(); 474 475 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 476 } 477 478 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 479 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 480 auto *FD = cast<FunctionDecl>(CurContext); 481 bool IsThisDependentType = [&] { 482 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD)) 483 return MD->isImplicitObjectMemberFunction() && 484 MD->getThisType()->isDependentType(); 485 return false; 486 }(); 487 488 QualType T = FD->getType()->isDependentType() || IsThisDependentType 489 ? Context.DependentTy 490 : lookupPromiseType(*this, FD, Loc); 491 if (T.isNull()) 492 return nullptr; 493 494 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 495 &PP.getIdentifierTable().get("__promise"), T, 496 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 497 VD->setImplicit(); 498 CheckVariableDeclarationType(VD); 499 if (VD->isInvalidDecl()) 500 return nullptr; 501 502 auto *ScopeInfo = getCurFunction(); 503 504 // Build a list of arguments, based on the coroutine function's arguments, 505 // that if present will be passed to the promise type's constructor. 506 llvm::SmallVector<Expr *, 4> CtorArgExprs; 507 508 // Add implicit object parameter. 509 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 510 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 511 ExprResult ThisExpr = ActOnCXXThis(Loc); 512 if (ThisExpr.isInvalid()) 513 return nullptr; 514 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 515 if (ThisExpr.isInvalid()) 516 return nullptr; 517 CtorArgExprs.push_back(ThisExpr.get()); 518 } 519 } 520 521 // Add the coroutine function's parameters. 522 auto &Moves = ScopeInfo->CoroutineParameterMoves; 523 for (auto *PD : FD->parameters()) { 524 if (PD->getType()->isDependentType()) 525 continue; 526 527 auto RefExpr = ExprEmpty(); 528 auto Move = Moves.find(PD); 529 assert(Move != Moves.end() && 530 "Coroutine function parameter not inserted into move map"); 531 // If a reference to the function parameter exists in the coroutine 532 // frame, use that reference. 533 auto *MoveDecl = 534 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 535 RefExpr = 536 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 537 ExprValueKind::VK_LValue, FD->getLocation()); 538 if (RefExpr.isInvalid()) 539 return nullptr; 540 CtorArgExprs.push_back(RefExpr.get()); 541 } 542 543 // If we have a non-zero number of constructor arguments, try to use them. 544 // Otherwise, fall back to the promise type's default constructor. 545 if (!CtorArgExprs.empty()) { 546 // Create an initialization sequence for the promise type using the 547 // constructor arguments, wrapped in a parenthesized list expression. 548 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 549 CtorArgExprs, FD->getLocation()); 550 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 551 InitializationKind Kind = InitializationKind::CreateForInit( 552 VD->getLocation(), /*DirectInit=*/true, PLE); 553 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 554 /*TopLevelOfInitList=*/false, 555 /*TreatUnavailableAsInvalid=*/false); 556 557 // [dcl.fct.def.coroutine]5.7 558 // promise-constructor-arguments is determined as follows: overload 559 // resolution is performed on a promise constructor call created by 560 // assembling an argument list q_1 ... q_n . If a viable constructor is 561 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 562 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 563 if (InitSeq) { 564 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 565 if (Result.isInvalid()) { 566 VD->setInvalidDecl(); 567 } else if (Result.get()) { 568 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 569 VD->setInitStyle(VarDecl::CallInit); 570 CheckCompleteVariableDeclaration(VD); 571 } 572 } else 573 ActOnUninitializedDecl(VD); 574 } else 575 ActOnUninitializedDecl(VD); 576 577 FD->addDecl(VD); 578 return VD; 579 } 580 581 /// Check that this is a context in which a coroutine suspension can appear. 582 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 583 StringRef Keyword, 584 bool IsImplicit = false) { 585 if (!isValidCoroutineContext(S, Loc, Keyword)) 586 return nullptr; 587 588 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 589 590 auto *ScopeInfo = S.getCurFunction(); 591 assert(ScopeInfo && "missing function scope for function"); 592 593 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 594 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 595 596 if (ScopeInfo->CoroutinePromise) 597 return ScopeInfo; 598 599 if (!S.buildCoroutineParameterMoves(Loc)) 600 return nullptr; 601 602 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 603 if (!ScopeInfo->CoroutinePromise) 604 return nullptr; 605 606 return ScopeInfo; 607 } 608 609 /// Recursively check \p E and all its children to see if any call target 610 /// (including constructor call) is declared noexcept. Also any value returned 611 /// from the call has a noexcept destructor. 612 static void checkNoThrow(Sema &S, const Stmt *E, 613 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 614 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 615 // In the case of dtor, the call to dtor is implicit and hence we should 616 // pass nullptr to canCalleeThrow. 617 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 618 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 619 // co_await promise.final_suspend() could end up calling 620 // __builtin_coro_resume for symmetric transfer if await_suspend() 621 // returns a handle. In that case, even __builtin_coro_resume is not 622 // declared as noexcept and may throw, it does not throw _into_ the 623 // coroutine that just suspended, but rather throws back out from 624 // whoever called coroutine_handle::resume(), hence we claim that 625 // logically it does not throw. 626 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 627 return; 628 } 629 if (ThrowingDecls.empty()) { 630 // [dcl.fct.def.coroutine]p15 631 // The expression co_await promise.final_suspend() shall not be 632 // potentially-throwing ([except.spec]). 633 // 634 // First time seeing an error, emit the error message. 635 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 636 diag::err_coroutine_promise_final_suspend_requires_nothrow); 637 } 638 ThrowingDecls.insert(D); 639 } 640 }; 641 642 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 643 CXXConstructorDecl *Ctor = CE->getConstructor(); 644 checkDeclNoexcept(Ctor); 645 // Check the corresponding destructor of the constructor. 646 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 647 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 648 if (CE->isTypeDependent()) 649 return; 650 651 checkDeclNoexcept(CE->getCalleeDecl()); 652 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 653 // Check the destructor of the call return type, if any. 654 if (ReturnType.isDestructedType() == 655 QualType::DestructionKind::DK_cxx_destructor) { 656 const auto *T = 657 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 658 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 659 /*IsDtor=*/true); 660 } 661 } else 662 for (const auto *Child : E->children()) { 663 if (!Child) 664 continue; 665 checkNoThrow(S, Child, ThrowingDecls); 666 } 667 } 668 669 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 670 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 671 // We first collect all declarations that should not throw but not declared 672 // with noexcept. We then sort them based on the location before printing. 673 // This is to avoid emitting the same note multiple times on the same 674 // declaration, and also provide a deterministic order for the messages. 675 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 676 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 677 ThrowingDecls.end()}; 678 sort(SortedDecls, [](const Decl *A, const Decl *B) { 679 return A->getEndLoc() < B->getEndLoc(); 680 }); 681 for (const auto *D : SortedDecls) { 682 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 683 } 684 return ThrowingDecls.empty(); 685 } 686 687 // [stmt.return.coroutine]p1: 688 // A coroutine shall not enclose a return statement ([stmt.return]). 689 static void checkReturnStmtInCoroutine(Sema &S, FunctionScopeInfo *FSI) { 690 assert(FSI && "FunctionScopeInfo is null"); 691 assert(FSI->FirstCoroutineStmtLoc.isValid() && 692 "first coroutine location not set"); 693 if (FSI->FirstReturnLoc.isInvalid()) 694 return; 695 S.Diag(FSI->FirstReturnLoc, diag::err_return_in_coroutine); 696 S.Diag(FSI->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 697 << FSI->getFirstCoroutineStmtKeyword(); 698 } 699 700 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 701 StringRef Keyword) { 702 // Ignore previous expr evaluation contexts. 703 EnterExpressionEvaluationContext PotentiallyEvaluated( 704 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 705 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 706 return false; 707 auto *ScopeInfo = getCurFunction(); 708 assert(ScopeInfo->CoroutinePromise); 709 710 // Avoid duplicate errors, report only on first keyword. 711 if (ScopeInfo->FirstCoroutineStmtLoc == KWLoc) 712 checkReturnStmtInCoroutine(*this, ScopeInfo); 713 714 // If we have existing coroutine statements then we have already built 715 // the initial and final suspend points. 716 if (!ScopeInfo->NeedsCoroutineSuspends) 717 return true; 718 719 ScopeInfo->setNeedsCoroutineSuspends(false); 720 721 auto *Fn = cast<FunctionDecl>(CurContext); 722 SourceLocation Loc = Fn->getLocation(); 723 // Build the initial suspend point 724 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 725 ExprResult Operand = 726 buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, {}); 727 if (Operand.isInvalid()) 728 return StmtError(); 729 ExprResult Suspend = 730 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 731 if (Suspend.isInvalid()) 732 return StmtError(); 733 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 734 /*IsImplicit*/ true); 735 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 736 if (Suspend.isInvalid()) { 737 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 738 << ((Name == "initial_suspend") ? 0 : 1); 739 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 740 return StmtError(); 741 } 742 return cast<Stmt>(Suspend.get()); 743 }; 744 745 StmtResult InitSuspend = buildSuspends("initial_suspend"); 746 if (InitSuspend.isInvalid()) 747 return true; 748 749 StmtResult FinalSuspend = buildSuspends("final_suspend"); 750 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 751 return true; 752 753 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 754 755 return true; 756 } 757 758 // Recursively walks up the scope hierarchy until either a 'catch' or a function 759 // scope is found, whichever comes first. 760 static bool isWithinCatchScope(Scope *S) { 761 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 762 // lambdas that use 'co_await' are allowed. The loop below ends when a 763 // function scope is found in order to ensure the following behavior: 764 // 765 // void foo() { // <- function scope 766 // try { // 767 // co_await x; // <- 'co_await' is OK within a function scope 768 // } catch { // <- catch scope 769 // co_await x; // <- 'co_await' is not OK within a catch scope 770 // []() { // <- function scope 771 // co_await x; // <- 'co_await' is OK within a function scope 772 // }(); 773 // } 774 // } 775 while (S && !S->isFunctionScope()) { 776 if (S->isCatchScope()) 777 return true; 778 S = S->getParent(); 779 } 780 return false; 781 } 782 783 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 784 // a *potentially evaluated* expression within the compound-statement of a 785 // function-body *outside of a handler* [...] A context within a function 786 // where an await-expression can appear is called a suspension context of the 787 // function." 788 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 789 StringRef Keyword) { 790 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 791 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 792 // \c sizeof. 793 if (S.isUnevaluatedContext()) { 794 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 795 return false; 796 } 797 798 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 799 if (isWithinCatchScope(S.getCurScope())) { 800 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 801 return false; 802 } 803 804 return true; 805 } 806 807 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 808 if (!checkSuspensionContext(*this, Loc, "co_await")) 809 return ExprError(); 810 811 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 812 CorrectDelayedTyposInExpr(E); 813 return ExprError(); 814 } 815 816 if (E->hasPlaceholderType()) { 817 ExprResult R = CheckPlaceholderExpr(E); 818 if (R.isInvalid()) return ExprError(); 819 E = R.get(); 820 } 821 822 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 823 if (Lookup.isInvalid()) 824 return ExprError(); 825 return BuildUnresolvedCoawaitExpr(Loc, E, 826 cast<UnresolvedLookupExpr>(Lookup.get())); 827 } 828 829 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 830 DeclarationName OpName = 831 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 832 LookupResult Operators(*this, OpName, SourceLocation(), 833 Sema::LookupOperatorName); 834 LookupName(Operators, S); 835 836 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 837 const auto &Functions = Operators.asUnresolvedSet(); 838 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 839 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 840 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Functions.begin(), 841 Functions.end(), /*KnownDependent=*/false, 842 /*KnownInstantiationDependent=*/false); 843 assert(CoawaitOp); 844 return CoawaitOp; 845 } 846 847 static bool isAttributedCoroAwaitElidable(const QualType &QT) { 848 auto *Record = QT->getAsCXXRecordDecl(); 849 return Record && Record->hasAttr<CoroAwaitElidableAttr>(); 850 } 851 852 static void applySafeElideContext(Expr *Operand) { 853 auto *Call = dyn_cast<CallExpr>(Operand->IgnoreImplicit()); 854 if (!Call || !Call->isPRValue()) 855 return; 856 857 if (!isAttributedCoroAwaitElidable(Call->getType())) 858 return; 859 860 Call->setCoroElideSafe(); 861 862 // Check parameter 863 auto *Fn = llvm::dyn_cast_if_present<FunctionDecl>(Call->getCalleeDecl()); 864 if (!Fn) 865 return; 866 867 size_t ParmIdx = 0; 868 for (ParmVarDecl *PD : Fn->parameters()) { 869 if (PD->hasAttr<CoroAwaitElidableArgumentAttr>()) 870 applySafeElideContext(Call->getArg(ParmIdx)); 871 872 ParmIdx++; 873 } 874 } 875 876 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 877 // DependentCoawaitExpr if needed. 878 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 879 UnresolvedLookupExpr *Lookup) { 880 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 881 if (!FSI) 882 return ExprError(); 883 884 if (Operand->hasPlaceholderType()) { 885 ExprResult R = CheckPlaceholderExpr(Operand); 886 if (R.isInvalid()) 887 return ExprError(); 888 Operand = R.get(); 889 } 890 891 auto *Promise = FSI->CoroutinePromise; 892 if (Promise->getType()->isDependentType()) { 893 Expr *Res = new (Context) 894 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 895 return Res; 896 } 897 898 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 899 900 bool CurFnAwaitElidable = isAttributedCoroAwaitElidable( 901 getCurFunctionDecl(/*AllowLambda=*/true)->getReturnType()); 902 903 if (CurFnAwaitElidable) 904 applySafeElideContext(Operand); 905 906 Expr *Transformed = Operand; 907 if (lookupMember(*this, "await_transform", RD, Loc)) { 908 ExprResult R = 909 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 910 if (R.isInvalid()) { 911 Diag(Loc, 912 diag::note_coroutine_promise_implicit_await_transform_required_here) 913 << Operand->getSourceRange(); 914 return ExprError(); 915 } 916 Transformed = R.get(); 917 } 918 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 919 if (Awaiter.isInvalid()) 920 return ExprError(); 921 922 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 923 } 924 925 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 926 Expr *Awaiter, bool IsImplicit) { 927 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 928 if (!Coroutine) 929 return ExprError(); 930 931 if (Awaiter->hasPlaceholderType()) { 932 ExprResult R = CheckPlaceholderExpr(Awaiter); 933 if (R.isInvalid()) return ExprError(); 934 Awaiter = R.get(); 935 } 936 937 if (Awaiter->getType()->isDependentType()) { 938 Expr *Res = new (Context) 939 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 940 return Res; 941 } 942 943 // If the expression is a temporary, materialize it as an lvalue so that we 944 // can use it multiple times. 945 if (Awaiter->isPRValue()) 946 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 947 948 // The location of the `co_await` token cannot be used when constructing 949 // the member call expressions since it's before the location of `Expr`, which 950 // is used as the start of the member call expression. 951 SourceLocation CallLoc = Awaiter->getExprLoc(); 952 953 // Build the await_ready, await_suspend, await_resume calls. 954 ReadySuspendResumeResult RSS = 955 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 956 if (RSS.IsInvalid) 957 return ExprError(); 958 959 Expr *Res = new (Context) 960 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 961 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 962 963 return Res; 964 } 965 966 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 967 if (!checkSuspensionContext(*this, Loc, "co_yield")) 968 return ExprError(); 969 970 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 971 CorrectDelayedTyposInExpr(E); 972 return ExprError(); 973 } 974 975 // Build yield_value call. 976 ExprResult Awaitable = buildPromiseCall( 977 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 978 if (Awaitable.isInvalid()) 979 return ExprError(); 980 981 // Build 'operator co_await' call. 982 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 983 if (Awaitable.isInvalid()) 984 return ExprError(); 985 986 return BuildCoyieldExpr(Loc, Awaitable.get()); 987 } 988 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 989 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 990 if (!Coroutine) 991 return ExprError(); 992 993 if (E->hasPlaceholderType()) { 994 ExprResult R = CheckPlaceholderExpr(E); 995 if (R.isInvalid()) return ExprError(); 996 E = R.get(); 997 } 998 999 Expr *Operand = E; 1000 1001 if (E->getType()->isDependentType()) { 1002 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 1003 return Res; 1004 } 1005 1006 // If the expression is a temporary, materialize it as an lvalue so that we 1007 // can use it multiple times. 1008 if (E->isPRValue()) 1009 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 1010 1011 // Build the await_ready, await_suspend, await_resume calls. 1012 ReadySuspendResumeResult RSS = buildCoawaitCalls( 1013 *this, Coroutine->CoroutinePromise, Loc, E); 1014 if (RSS.IsInvalid) 1015 return ExprError(); 1016 1017 Expr *Res = 1018 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 1019 RSS.Results[2], RSS.OpaqueValue); 1020 1021 return Res; 1022 } 1023 1024 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 1025 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 1026 CorrectDelayedTyposInExpr(E); 1027 return StmtError(); 1028 } 1029 return BuildCoreturnStmt(Loc, E); 1030 } 1031 1032 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 1033 bool IsImplicit) { 1034 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 1035 if (!FSI) 1036 return StmtError(); 1037 1038 if (E && E->hasPlaceholderType() && 1039 !E->hasPlaceholderType(BuiltinType::Overload)) { 1040 ExprResult R = CheckPlaceholderExpr(E); 1041 if (R.isInvalid()) return StmtError(); 1042 E = R.get(); 1043 } 1044 1045 VarDecl *Promise = FSI->CoroutinePromise; 1046 ExprResult PC; 1047 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 1048 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 1049 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 1050 } else { 1051 E = MakeFullDiscardedValueExpr(E).get(); 1052 PC = buildPromiseCall(*this, Promise, Loc, "return_void", {}); 1053 } 1054 if (PC.isInvalid()) 1055 return StmtError(); 1056 1057 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1058 1059 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1060 return Res; 1061 } 1062 1063 /// Look up the std::nothrow object. 1064 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1065 NamespaceDecl *Std = S.getStdNamespace(); 1066 assert(Std && "Should already be diagnosed"); 1067 1068 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1069 Sema::LookupOrdinaryName); 1070 if (!S.LookupQualifiedName(Result, Std)) { 1071 // <coroutine> is not requred to include <new>, so we couldn't omit 1072 // the check here. 1073 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1074 return nullptr; 1075 } 1076 1077 auto *VD = Result.getAsSingle<VarDecl>(); 1078 if (!VD) { 1079 Result.suppressDiagnostics(); 1080 // We found something weird. Complain about the first thing we found. 1081 NamedDecl *Found = *Result.begin(); 1082 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1083 return nullptr; 1084 } 1085 1086 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1087 if (DR.isInvalid()) 1088 return nullptr; 1089 1090 return DR.get(); 1091 } 1092 1093 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1094 SourceLocation Loc) { 1095 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1096 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1097 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1098 } 1099 1100 // Find an appropriate delete for the promise. 1101 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1102 FunctionDecl *&OperatorDelete) { 1103 DeclarationName DeleteName = 1104 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1105 1106 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1107 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1108 1109 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1110 1111 // [dcl.fct.def.coroutine]p12 1112 // The deallocation function's name is looked up by searching for it in the 1113 // scope of the promise type. If nothing is found, a search is performed in 1114 // the global scope. 1115 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1116 /*Diagnose*/ true, /*WantSize*/ true, 1117 /*WantAligned*/ Overaligned)) 1118 return false; 1119 1120 // [dcl.fct.def.coroutine]p12 1121 // If both a usual deallocation function with only a pointer parameter and a 1122 // usual deallocation function with both a pointer parameter and a size 1123 // parameter are found, then the selected deallocation function shall be the 1124 // one with two parameters. Otherwise, the selected deallocation function 1125 // shall be the function with one parameter. 1126 if (!OperatorDelete) { 1127 // Look for a global declaration. 1128 // Coroutines can always provide their required size. 1129 const bool CanProvideSize = true; 1130 // Sema::FindUsualDeallocationFunction will try to find the one with two 1131 // parameters first. It will return the deallocation function with one 1132 // parameter if failed. 1133 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1134 Overaligned, DeleteName); 1135 1136 if (!OperatorDelete) 1137 return false; 1138 } 1139 1140 S.MarkFunctionReferenced(Loc, OperatorDelete); 1141 return true; 1142 } 1143 1144 1145 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1146 FunctionScopeInfo *Fn = getCurFunction(); 1147 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1148 if (!Body) { 1149 assert(FD->isInvalidDecl() && 1150 "a null body is only allowed for invalid declarations"); 1151 return; 1152 } 1153 // We have a function that uses coroutine keywords, but we failed to build 1154 // the promise type. 1155 if (!Fn->CoroutinePromise) 1156 return FD->setInvalidDecl(); 1157 1158 if (isa<CoroutineBodyStmt>(Body)) { 1159 // Nothing todo. the body is already a transformed coroutine body statement. 1160 return; 1161 } 1162 1163 // The always_inline attribute doesn't reliably apply to a coroutine, 1164 // because the coroutine will be split into pieces and some pieces 1165 // might be called indirectly, as in a virtual call. Even the ramp 1166 // function cannot be inlined at -O0, due to pipeline ordering 1167 // problems (see https://llvm.org/PR53413). Tell the user about it. 1168 if (FD->hasAttr<AlwaysInlineAttr>()) 1169 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1170 1171 // The design of coroutines means we cannot allow use of VLAs within one, so 1172 // diagnose if we've seen a VLA in the body of this function. 1173 if (Fn->FirstVLALoc.isValid()) 1174 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported); 1175 1176 // Coroutines will get splitted into pieces. The GNU address of label 1177 // extension wouldn't be meaningful in coroutines. 1178 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1179 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1180 1181 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1182 if (Builder.isInvalid() || !Builder.buildStatements()) 1183 return FD->setInvalidDecl(); 1184 1185 // Build body for the coroutine wrapper statement. 1186 Body = CoroutineBodyStmt::Create(Context, Builder); 1187 } 1188 1189 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { 1190 if (auto *CS = dyn_cast<CompoundStmt>(Body)) 1191 return CS; 1192 1193 // The body of the coroutine may be a try statement if it is in 1194 // 'function-try-block' syntax. Here we wrap it into a compound 1195 // statement for consistency. 1196 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type"); 1197 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(), 1198 SourceLocation(), SourceLocation()); 1199 } 1200 1201 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1202 sema::FunctionScopeInfo &Fn, 1203 Stmt *Body) 1204 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1205 IsPromiseDependentType( 1206 !Fn.CoroutinePromise || 1207 Fn.CoroutinePromise->getType()->isDependentType()) { 1208 this->Body = buildCoroutineBody(Body, S.getASTContext()); 1209 1210 for (auto KV : Fn.CoroutineParameterMoves) 1211 this->ParamMovesVector.push_back(KV.second); 1212 this->ParamMoves = this->ParamMovesVector; 1213 1214 if (!IsPromiseDependentType) { 1215 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1216 assert(PromiseRecordDecl && "Type should have already been checked"); 1217 } 1218 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1219 } 1220 1221 bool CoroutineStmtBuilder::buildStatements() { 1222 assert(this->IsValid && "coroutine already invalid"); 1223 this->IsValid = makeReturnObject(); 1224 if (this->IsValid && !IsPromiseDependentType) 1225 buildDependentStatements(); 1226 return this->IsValid; 1227 } 1228 1229 bool CoroutineStmtBuilder::buildDependentStatements() { 1230 assert(this->IsValid && "coroutine already invalid"); 1231 assert(!this->IsPromiseDependentType && 1232 "coroutine cannot have a dependent promise type"); 1233 this->IsValid = makeOnException() && makeOnFallthrough() && 1234 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1235 makeNewAndDeleteExpr(); 1236 return this->IsValid; 1237 } 1238 1239 bool CoroutineStmtBuilder::makePromiseStmt() { 1240 // Form a declaration statement for the promise declaration, so that AST 1241 // visitors can more easily find it. 1242 StmtResult PromiseStmt = 1243 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1244 if (PromiseStmt.isInvalid()) 1245 return false; 1246 1247 this->Promise = PromiseStmt.get(); 1248 return true; 1249 } 1250 1251 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1252 if (Fn.hasInvalidCoroutineSuspends()) 1253 return false; 1254 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1255 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1256 return true; 1257 } 1258 1259 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1260 CXXRecordDecl *PromiseRecordDecl, 1261 FunctionScopeInfo &Fn) { 1262 auto Loc = E->getExprLoc(); 1263 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1264 auto *Decl = DeclRef->getDecl(); 1265 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1266 if (Method->isStatic()) 1267 return true; 1268 else 1269 Loc = Decl->getLocation(); 1270 } 1271 } 1272 1273 S.Diag( 1274 Loc, 1275 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1276 << PromiseRecordDecl; 1277 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1278 << Fn.getFirstCoroutineStmtKeyword(); 1279 return false; 1280 } 1281 1282 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1283 assert(!IsPromiseDependentType && 1284 "cannot make statement while the promise type is dependent"); 1285 1286 // [dcl.fct.def.coroutine]p10 1287 // If a search for the name get_return_object_on_allocation_failure in 1288 // the scope of the promise type ([class.member.lookup]) finds any 1289 // declarations, then the result of a call to an allocation function used to 1290 // obtain storage for the coroutine state is assumed to return nullptr if it 1291 // fails to obtain storage, ... If the allocation function returns nullptr, 1292 // ... and the return value is obtained by a call to 1293 // T::get_return_object_on_allocation_failure(), where T is the 1294 // promise type. 1295 DeclarationName DN = 1296 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1297 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1298 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1299 return true; 1300 1301 CXXScopeSpec SS; 1302 ExprResult DeclNameExpr = 1303 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1304 if (DeclNameExpr.isInvalid()) 1305 return false; 1306 1307 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1308 return false; 1309 1310 ExprResult ReturnObjectOnAllocationFailure = 1311 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1312 if (ReturnObjectOnAllocationFailure.isInvalid()) 1313 return false; 1314 1315 StmtResult ReturnStmt = 1316 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1317 if (ReturnStmt.isInvalid()) { 1318 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1319 << DN; 1320 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1321 << Fn.getFirstCoroutineStmtKeyword(); 1322 return false; 1323 } 1324 1325 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1326 return true; 1327 } 1328 1329 // Collect placement arguments for allocation function of coroutine FD. 1330 // Return true if we collect placement arguments succesfully. Return false, 1331 // otherwise. 1332 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1333 SmallVectorImpl<Expr *> &PlacementArgs) { 1334 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1335 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 1336 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1337 if (ThisExpr.isInvalid()) 1338 return false; 1339 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1340 if (ThisExpr.isInvalid()) 1341 return false; 1342 PlacementArgs.push_back(ThisExpr.get()); 1343 } 1344 } 1345 1346 for (auto *PD : FD.parameters()) { 1347 if (PD->getType()->isDependentType()) 1348 continue; 1349 1350 // Build a reference to the parameter. 1351 auto PDLoc = PD->getLocation(); 1352 ExprResult PDRefExpr = 1353 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1354 ExprValueKind::VK_LValue, PDLoc); 1355 if (PDRefExpr.isInvalid()) 1356 return false; 1357 1358 PlacementArgs.push_back(PDRefExpr.get()); 1359 } 1360 1361 return true; 1362 } 1363 1364 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1365 // Form and check allocation and deallocation calls. 1366 assert(!IsPromiseDependentType && 1367 "cannot make statement while the promise type is dependent"); 1368 QualType PromiseType = Fn.CoroutinePromise->getType(); 1369 1370 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1371 return false; 1372 1373 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1374 1375 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1376 // parameter list composed of the requested size of the coroutine state being 1377 // allocated, followed by the coroutine function's arguments. If a matching 1378 // allocation function exists, use it. Otherwise, use an allocation function 1379 // that just takes the requested size. 1380 // 1381 // [dcl.fct.def.coroutine]p9 1382 // An implementation may need to allocate additional storage for a 1383 // coroutine. 1384 // This storage is known as the coroutine state and is obtained by calling a 1385 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1386 // allocation function's name is looked up by searching for it in the scope of 1387 // the promise type. 1388 // - If any declarations are found, overload resolution is performed on a 1389 // function call created by assembling an argument list. The first argument is 1390 // the amount of space requested, and has type std::size_t. The 1391 // lvalues p1 ... pn are the succeeding arguments. 1392 // 1393 // ...where "p1 ... pn" are defined earlier as: 1394 // 1395 // [dcl.fct.def.coroutine]p3 1396 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1397 // Pn>` 1398 // , where R is the return type of the function, and `P1, ..., Pn` are the 1399 // sequence of types of the non-object function parameters, preceded by the 1400 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1401 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1402 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1403 // the i-th non-object function parameter for a non-static member function, 1404 // and p_i denotes the i-th function parameter otherwise. For a non-static 1405 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1406 // lvalue that denotes the parameter copy corresponding to p_i. 1407 1408 FunctionDecl *OperatorNew = nullptr; 1409 SmallVector<Expr *, 1> PlacementArgs; 1410 1411 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1412 DeclarationName NewName = 1413 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1414 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1415 1416 if (PromiseType->isRecordType()) 1417 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1418 1419 return !R.empty() && !R.isAmbiguous(); 1420 }(); 1421 1422 // Helper function to indicate whether the last lookup found the aligned 1423 // allocation function. 1424 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1425 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1426 Sema::AFS_Both, 1427 bool WithoutPlacementArgs = false, 1428 bool ForceNonAligned = false) { 1429 // [dcl.fct.def.coroutine]p9 1430 // The allocation function's name is looked up by searching for it in the 1431 // scope of the promise type. 1432 // - If any declarations are found, ... 1433 // - If no declarations are found in the scope of the promise type, a search 1434 // is performed in the global scope. 1435 if (NewScope == Sema::AFS_Both) 1436 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1437 1438 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1439 FunctionDecl *UnusedResult = nullptr; 1440 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1441 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1442 /*isArray*/ false, PassAlignment, 1443 WithoutPlacementArgs ? MultiExprArg{} 1444 : PlacementArgs, 1445 OperatorNew, UnusedResult, /*Diagnose*/ false); 1446 }; 1447 1448 // We don't expect to call to global operator new with (size, p0, …, pn). 1449 // So if we choose to lookup the allocation function in global scope, we 1450 // shouldn't lookup placement arguments. 1451 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1452 return false; 1453 1454 LookupAllocationFunction(); 1455 1456 if (PromiseContainsNew && !PlacementArgs.empty()) { 1457 // [dcl.fct.def.coroutine]p9 1458 // If no viable function is found ([over.match.viable]), overload 1459 // resolution 1460 // is performed again on a function call created by passing just the amount 1461 // of space required as an argument of type std::size_t. 1462 // 1463 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1464 // Otherwise, overload resolution is performed again on a function call 1465 // created 1466 // by passing the amount of space requested as an argument of type 1467 // std::size_t as the first argument, and the requested alignment as 1468 // an argument of type std:align_val_t as the second argument. 1469 if (!OperatorNew || 1470 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1471 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1472 /*WithoutPlacementArgs*/ true); 1473 } 1474 1475 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1476 // Otherwise, overload resolution is performed again on a function call 1477 // created 1478 // by passing the amount of space requested as an argument of type 1479 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1480 // succeeding arguments. Otherwise, overload resolution is performed again 1481 // on a function call created by passing just the amount of space required as 1482 // an argument of type std::size_t. 1483 // 1484 // So within the proposed change in P2014RO, the priority order of aligned 1485 // allocation functions wiht promise_type is: 1486 // 1487 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1488 // void* operator new( std::size_t, std::align_val_t); 1489 // void* operator new( std::size_t, placement_args... ); 1490 // void* operator new( std::size_t); 1491 1492 // Helper variable to emit warnings. 1493 bool FoundNonAlignedInPromise = false; 1494 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1495 if (!OperatorNew || !PassAlignment) { 1496 FoundNonAlignedInPromise = OperatorNew; 1497 1498 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1499 /*WithoutPlacementArgs*/ false, 1500 /*ForceNonAligned*/ true); 1501 1502 if (!OperatorNew && !PlacementArgs.empty()) 1503 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1504 /*WithoutPlacementArgs*/ true, 1505 /*ForceNonAligned*/ true); 1506 } 1507 1508 bool IsGlobalOverload = 1509 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1510 // If we didn't find a class-local new declaration and non-throwing new 1511 // was is required then we need to lookup the non-throwing global operator 1512 // instead. 1513 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1514 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1515 if (!StdNoThrow) 1516 return false; 1517 PlacementArgs = {StdNoThrow}; 1518 OperatorNew = nullptr; 1519 LookupAllocationFunction(Sema::AFS_Global); 1520 } 1521 1522 // If we found a non-aligned allocation function in the promise_type, 1523 // it indicates the user forgot to update the allocation function. Let's emit 1524 // a warning here. 1525 if (FoundNonAlignedInPromise) { 1526 S.Diag(OperatorNew->getLocation(), 1527 diag::warn_non_aligned_allocation_function) 1528 << &FD; 1529 } 1530 1531 if (!OperatorNew) { 1532 if (PromiseContainsNew) 1533 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1534 else if (RequiresNoThrowAlloc) 1535 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1536 << &FD << S.getLangOpts().CoroAlignedAllocation; 1537 1538 return false; 1539 } 1540 1541 if (RequiresNoThrowAlloc) { 1542 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1543 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1544 S.Diag(OperatorNew->getLocation(), 1545 diag::err_coroutine_promise_new_requires_nothrow) 1546 << OperatorNew; 1547 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1548 << OperatorNew; 1549 return false; 1550 } 1551 } 1552 1553 FunctionDecl *OperatorDelete = nullptr; 1554 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1555 // FIXME: We should add an error here. According to: 1556 // [dcl.fct.def.coroutine]p12 1557 // If no usual deallocation function is found, the program is ill-formed. 1558 return false; 1559 } 1560 1561 Expr *FramePtr = 1562 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1563 1564 Expr *FrameSize = 1565 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1566 1567 Expr *FrameAlignment = nullptr; 1568 1569 if (S.getLangOpts().CoroAlignedAllocation) { 1570 FrameAlignment = 1571 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1572 1573 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1574 if (!AlignValTy) 1575 return false; 1576 1577 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1578 FrameAlignment, SourceRange(Loc, Loc), 1579 SourceRange(Loc, Loc)) 1580 .get(); 1581 } 1582 1583 // Make new call. 1584 ExprResult NewRef = 1585 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1586 if (NewRef.isInvalid()) 1587 return false; 1588 1589 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1590 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1591 NewArgs.push_back(FrameAlignment); 1592 1593 if (OperatorNew->getNumParams() > NewArgs.size()) 1594 llvm::append_range(NewArgs, PlacementArgs); 1595 1596 ExprResult NewExpr = 1597 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1598 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1599 if (NewExpr.isInvalid()) 1600 return false; 1601 1602 // Make delete call. 1603 1604 QualType OpDeleteQualType = OperatorDelete->getType(); 1605 1606 ExprResult DeleteRef = 1607 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1608 if (DeleteRef.isInvalid()) 1609 return false; 1610 1611 Expr *CoroFree = 1612 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1613 1614 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1615 1616 // [dcl.fct.def.coroutine]p12 1617 // The selected deallocation function shall be called with the address of 1618 // the block of storage to be reclaimed as its first argument. If a 1619 // deallocation function with a parameter of type std::size_t is 1620 // used, the size of the block is passed as the corresponding argument. 1621 const auto *OpDeleteType = 1622 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1623 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1624 S.getASTContext().hasSameUnqualifiedType( 1625 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1626 DeleteArgs.push_back(FrameSize); 1627 1628 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1629 // If deallocation function lookup finds a usual deallocation function with 1630 // a pointer parameter, size parameter and alignment parameter then this 1631 // will be the selected deallocation function, otherwise if lookup finds a 1632 // usual deallocation function with both a pointer parameter and a size 1633 // parameter, then this will be the selected deallocation function. 1634 // Otherwise, if lookup finds a usual deallocation function with only a 1635 // pointer parameter, then this will be the selected deallocation 1636 // function. 1637 // 1638 // So we are not forced to pass alignment to the deallocation function. 1639 if (S.getLangOpts().CoroAlignedAllocation && 1640 OpDeleteType->getNumParams() > DeleteArgs.size() && 1641 S.getASTContext().hasSameUnqualifiedType( 1642 OpDeleteType->getParamType(DeleteArgs.size()), 1643 FrameAlignment->getType())) 1644 DeleteArgs.push_back(FrameAlignment); 1645 1646 ExprResult DeleteExpr = 1647 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1648 DeleteExpr = 1649 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1650 if (DeleteExpr.isInvalid()) 1651 return false; 1652 1653 this->Allocate = NewExpr.get(); 1654 this->Deallocate = DeleteExpr.get(); 1655 1656 return true; 1657 } 1658 1659 bool CoroutineStmtBuilder::makeOnFallthrough() { 1660 assert(!IsPromiseDependentType && 1661 "cannot make statement while the promise type is dependent"); 1662 1663 // [dcl.fct.def.coroutine]/p6 1664 // If searches for the names return_void and return_value in the scope of 1665 // the promise type each find any declarations, the program is ill-formed. 1666 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1667 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1668 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1669 // end note] 1670 bool HasRVoid, HasRValue; 1671 LookupResult LRVoid = 1672 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1673 LookupResult LRValue = 1674 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1675 1676 StmtResult Fallthrough; 1677 if (HasRVoid && HasRValue) { 1678 // FIXME Improve this diagnostic 1679 S.Diag(FD.getLocation(), 1680 diag::err_coroutine_promise_incompatible_return_functions) 1681 << PromiseRecordDecl; 1682 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1683 diag::note_member_first_declared_here) 1684 << LRVoid.getLookupName(); 1685 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1686 diag::note_member_first_declared_here) 1687 << LRValue.getLookupName(); 1688 return false; 1689 } else if (!HasRVoid && !HasRValue) { 1690 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1691 // think the coroutine has defined a return_value method. So it might emit 1692 // **false** positive warning. e.g., 1693 // 1694 // promise_without_return_func foo() { 1695 // co_await something(); 1696 // } 1697 // 1698 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1699 // co_return statements, which isn't correct. 1700 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1701 if (Fallthrough.isInvalid()) 1702 return false; 1703 } else if (HasRVoid) { 1704 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1705 /*IsImplicit=*/true); 1706 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1707 if (Fallthrough.isInvalid()) 1708 return false; 1709 } 1710 1711 this->OnFallthrough = Fallthrough.get(); 1712 return true; 1713 } 1714 1715 bool CoroutineStmtBuilder::makeOnException() { 1716 // Try to form 'p.unhandled_exception();' 1717 assert(!IsPromiseDependentType && 1718 "cannot make statement while the promise type is dependent"); 1719 1720 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1721 1722 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1723 auto DiagID = 1724 RequireUnhandledException 1725 ? diag::err_coroutine_promise_unhandled_exception_required 1726 : diag:: 1727 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1728 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1729 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1730 << PromiseRecordDecl; 1731 return !RequireUnhandledException; 1732 } 1733 1734 // If exceptions are disabled, don't try to build OnException. 1735 if (!S.getLangOpts().CXXExceptions) 1736 return true; 1737 1738 ExprResult UnhandledException = 1739 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "unhandled_exception", {}); 1740 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1741 /*DiscardedValue*/ false); 1742 if (UnhandledException.isInvalid()) 1743 return false; 1744 1745 // Since the body of the coroutine will be wrapped in try-catch, it will 1746 // be incompatible with SEH __try if present in a function. 1747 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1748 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1749 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1750 << Fn.getFirstCoroutineStmtKeyword(); 1751 return false; 1752 } 1753 1754 this->OnException = UnhandledException.get(); 1755 return true; 1756 } 1757 1758 bool CoroutineStmtBuilder::makeReturnObject() { 1759 // [dcl.fct.def.coroutine]p7 1760 // The expression promise.get_return_object() is used to initialize the 1761 // returned reference or prvalue result object of a call to a coroutine. 1762 ExprResult ReturnObject = 1763 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", {}); 1764 if (ReturnObject.isInvalid()) 1765 return false; 1766 1767 this->ReturnValue = ReturnObject.get(); 1768 return true; 1769 } 1770 1771 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1772 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1773 auto *MethodDecl = MbrRef->getMethodDecl(); 1774 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1775 << MethodDecl; 1776 } 1777 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1778 << Fn.getFirstCoroutineStmtKeyword(); 1779 } 1780 1781 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1782 assert(!IsPromiseDependentType && 1783 "cannot make statement while the promise type is dependent"); 1784 assert(this->ReturnValue && "ReturnValue must be already formed"); 1785 1786 QualType const GroType = this->ReturnValue->getType(); 1787 assert(!GroType->isDependentType() && 1788 "get_return_object type must no longer be dependent"); 1789 1790 QualType const FnRetType = FD.getReturnType(); 1791 assert(!FnRetType->isDependentType() && 1792 "get_return_object type must no longer be dependent"); 1793 1794 // The call to get_return_object is sequenced before the call to 1795 // initial_suspend and is invoked at most once, but there are caveats 1796 // regarding on whether the prvalue result object may be initialized 1797 // directly/eager or delayed, depending on the types involved. 1798 // 1799 // More info at https://github.com/cplusplus/papers/issues/1414 1800 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType); 1801 1802 if (FnRetType->isVoidType()) { 1803 ExprResult Res = 1804 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1805 if (Res.isInvalid()) 1806 return false; 1807 1808 if (!GroMatchesRetType) 1809 this->ResultDecl = Res.get(); 1810 return true; 1811 } 1812 1813 if (GroType->isVoidType()) { 1814 // Trigger a nice error message. 1815 InitializedEntity Entity = 1816 InitializedEntity::InitializeResult(Loc, FnRetType); 1817 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1818 noteMemberDeclaredHere(S, ReturnValue, Fn); 1819 return false; 1820 } 1821 1822 StmtResult ReturnStmt; 1823 clang::VarDecl *GroDecl = nullptr; 1824 if (GroMatchesRetType) { 1825 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1826 } else { 1827 GroDecl = VarDecl::Create( 1828 S.Context, &FD, FD.getLocation(), FD.getLocation(), 1829 &S.PP.getIdentifierTable().get("__coro_gro"), GroType, 1830 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None); 1831 GroDecl->setImplicit(); 1832 1833 S.CheckVariableDeclarationType(GroDecl); 1834 if (GroDecl->isInvalidDecl()) 1835 return false; 1836 1837 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl); 1838 ExprResult Res = 1839 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1840 if (Res.isInvalid()) 1841 return false; 1842 1843 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false); 1844 if (Res.isInvalid()) 1845 return false; 1846 1847 S.AddInitializerToDecl(GroDecl, Res.get(), 1848 /*DirectInit=*/false); 1849 1850 S.FinalizeDeclaration(GroDecl); 1851 1852 // Form a declaration statement for the return declaration, so that AST 1853 // visitors can more easily find it. 1854 StmtResult GroDeclStmt = 1855 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc); 1856 if (GroDeclStmt.isInvalid()) 1857 return false; 1858 1859 this->ResultDecl = GroDeclStmt.get(); 1860 1861 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc); 1862 if (declRef.isInvalid()) 1863 return false; 1864 1865 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get()); 1866 } 1867 1868 if (ReturnStmt.isInvalid()) { 1869 noteMemberDeclaredHere(S, ReturnValue, Fn); 1870 return false; 1871 } 1872 1873 if (!GroMatchesRetType && 1874 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl) 1875 GroDecl->setNRVOVariable(true); 1876 1877 this->ReturnStmt = ReturnStmt.get(); 1878 return true; 1879 } 1880 1881 // Create a static_cast\<T&&>(expr). 1882 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1883 if (T.isNull()) 1884 T = E->getType(); 1885 QualType TargetType = S.BuildReferenceType( 1886 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1887 SourceLocation ExprLoc = E->getBeginLoc(); 1888 TypeSourceInfo *TargetLoc = 1889 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1890 1891 return S 1892 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1893 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1894 .get(); 1895 } 1896 1897 /// Build a variable declaration for move parameter. 1898 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1899 IdentifierInfo *II) { 1900 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1901 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1902 TInfo, SC_None); 1903 Decl->setImplicit(); 1904 return Decl; 1905 } 1906 1907 // Build statements that move coroutine function parameters to the coroutine 1908 // frame, and store them on the function scope info. 1909 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1910 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1911 auto *FD = cast<FunctionDecl>(CurContext); 1912 1913 auto *ScopeInfo = getCurFunction(); 1914 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1915 return false; 1916 1917 // [dcl.fct.def.coroutine]p13 1918 // When a coroutine is invoked, after initializing its parameters 1919 // ([expr.call]), a copy is created for each coroutine parameter. For a 1920 // parameter of type cv T, the copy is a variable of type cv T with 1921 // automatic storage duration that is direct-initialized from an xvalue of 1922 // type T referring to the parameter. 1923 for (auto *PD : FD->parameters()) { 1924 if (PD->getType()->isDependentType()) 1925 continue; 1926 1927 // Preserve the referenced state for unused parameter diagnostics. 1928 bool DeclReferenced = PD->isReferenced(); 1929 1930 ExprResult PDRefExpr = 1931 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1932 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1933 1934 PD->setReferenced(DeclReferenced); 1935 1936 if (PDRefExpr.isInvalid()) 1937 return false; 1938 1939 Expr *CExpr = nullptr; 1940 if (PD->getType()->getAsCXXRecordDecl() || 1941 PD->getType()->isRValueReferenceType()) 1942 CExpr = castForMoving(*this, PDRefExpr.get()); 1943 else 1944 CExpr = PDRefExpr.get(); 1945 // [dcl.fct.def.coroutine]p13 1946 // The initialization and destruction of each parameter copy occurs in the 1947 // context of the called coroutine. 1948 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1949 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1950 1951 // Convert decl to a statement. 1952 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1953 if (Stmt.isInvalid()) 1954 return false; 1955 1956 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 1957 } 1958 return true; 1959 } 1960 1961 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 1962 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 1963 if (!Res) 1964 return StmtError(); 1965 return Res; 1966 } 1967 1968 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 1969 SourceLocation FuncLoc) { 1970 if (StdCoroutineTraitsCache) 1971 return StdCoroutineTraitsCache; 1972 1973 IdentifierInfo const &TraitIdent = 1974 PP.getIdentifierTable().get("coroutine_traits"); 1975 1976 NamespaceDecl *StdSpace = getStdNamespace(); 1977 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 1978 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace); 1979 1980 if (!Found) { 1981 // The goggles, we found nothing! 1982 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 1983 << "std::coroutine_traits"; 1984 return nullptr; 1985 } 1986 1987 // coroutine_traits is required to be a class template. 1988 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 1989 if (!StdCoroutineTraitsCache) { 1990 Result.suppressDiagnostics(); 1991 NamedDecl *Found = *Result.begin(); 1992 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 1993 return nullptr; 1994 } 1995 1996 return StdCoroutineTraitsCache; 1997 } 1998