1 //===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the code-completion semantic actions. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/AST/ASTConcept.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/AST/DeclBase.h" 15 #include "clang/AST/DeclCXX.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/DeclTemplate.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprConcepts.h" 21 #include "clang/AST/ExprObjC.h" 22 #include "clang/AST/NestedNameSpecifier.h" 23 #include "clang/AST/OperationKinds.h" 24 #include "clang/AST/QualTypeNames.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/Type.h" 27 #include "clang/Basic/AttributeCommonInfo.h" 28 #include "clang/Basic/CharInfo.h" 29 #include "clang/Basic/OperatorKinds.h" 30 #include "clang/Basic/Specifiers.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/MacroInfo.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/DeclSpec.h" 36 #include "clang/Sema/Designator.h" 37 #include "clang/Sema/Lookup.h" 38 #include "clang/Sema/Overload.h" 39 #include "clang/Sema/ParsedAttr.h" 40 #include "clang/Sema/ParsedTemplate.h" 41 #include "clang/Sema/Scope.h" 42 #include "clang/Sema/ScopeInfo.h" 43 #include "clang/Sema/Sema.h" 44 #include "clang/Sema/SemaInternal.h" 45 #include "llvm/ADT/ArrayRef.h" 46 #include "llvm/ADT/DenseSet.h" 47 #include "llvm/ADT/SmallBitVector.h" 48 #include "llvm/ADT/SmallPtrSet.h" 49 #include "llvm/ADT/SmallString.h" 50 #include "llvm/ADT/StringExtras.h" 51 #include "llvm/ADT/StringSwitch.h" 52 #include "llvm/ADT/Twine.h" 53 #include "llvm/ADT/iterator_range.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Path.h" 56 #include "llvm/Support/raw_ostream.h" 57 58 #include <list> 59 #include <map> 60 #include <optional> 61 #include <string> 62 #include <vector> 63 64 using namespace clang; 65 using namespace sema; 66 67 namespace { 68 /// A container of code-completion results. 69 class ResultBuilder { 70 public: 71 /// The type of a name-lookup filter, which can be provided to the 72 /// name-lookup routines to specify which declarations should be included in 73 /// the result set (when it returns true) and which declarations should be 74 /// filtered out (returns false). 75 typedef bool (ResultBuilder::*LookupFilter)(const NamedDecl *) const; 76 77 typedef CodeCompletionResult Result; 78 79 private: 80 /// The actual results we have found. 81 std::vector<Result> Results; 82 83 /// A record of all of the declarations we have found and placed 84 /// into the result set, used to ensure that no declaration ever gets into 85 /// the result set twice. 86 llvm::SmallPtrSet<const Decl *, 16> AllDeclsFound; 87 88 typedef std::pair<const NamedDecl *, unsigned> DeclIndexPair; 89 90 /// An entry in the shadow map, which is optimized to store 91 /// a single (declaration, index) mapping (the common case) but 92 /// can also store a list of (declaration, index) mappings. 93 class ShadowMapEntry { 94 typedef SmallVector<DeclIndexPair, 4> DeclIndexPairVector; 95 96 /// Contains either the solitary NamedDecl * or a vector 97 /// of (declaration, index) pairs. 98 llvm::PointerUnion<const NamedDecl *, DeclIndexPairVector *> DeclOrVector; 99 100 /// When the entry contains a single declaration, this is 101 /// the index associated with that entry. 102 unsigned SingleDeclIndex = 0; 103 104 public: 105 ShadowMapEntry() = default; 106 ShadowMapEntry(const ShadowMapEntry &) = delete; 107 ShadowMapEntry(ShadowMapEntry &&Move) { *this = std::move(Move); } 108 ShadowMapEntry &operator=(const ShadowMapEntry &) = delete; 109 ShadowMapEntry &operator=(ShadowMapEntry &&Move) { 110 SingleDeclIndex = Move.SingleDeclIndex; 111 DeclOrVector = Move.DeclOrVector; 112 Move.DeclOrVector = nullptr; 113 return *this; 114 } 115 116 void Add(const NamedDecl *ND, unsigned Index) { 117 if (DeclOrVector.isNull()) { 118 // 0 - > 1 elements: just set the single element information. 119 DeclOrVector = ND; 120 SingleDeclIndex = Index; 121 return; 122 } 123 124 if (const NamedDecl *PrevND = 125 DeclOrVector.dyn_cast<const NamedDecl *>()) { 126 // 1 -> 2 elements: create the vector of results and push in the 127 // existing declaration. 128 DeclIndexPairVector *Vec = new DeclIndexPairVector; 129 Vec->push_back(DeclIndexPair(PrevND, SingleDeclIndex)); 130 DeclOrVector = Vec; 131 } 132 133 // Add the new element to the end of the vector. 134 DeclOrVector.get<DeclIndexPairVector *>()->push_back( 135 DeclIndexPair(ND, Index)); 136 } 137 138 ~ShadowMapEntry() { 139 if (DeclIndexPairVector *Vec = 140 DeclOrVector.dyn_cast<DeclIndexPairVector *>()) { 141 delete Vec; 142 DeclOrVector = ((NamedDecl *)nullptr); 143 } 144 } 145 146 // Iteration. 147 class iterator; 148 iterator begin() const; 149 iterator end() const; 150 }; 151 152 /// A mapping from declaration names to the declarations that have 153 /// this name within a particular scope and their index within the list of 154 /// results. 155 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; 156 157 /// The semantic analysis object for which results are being 158 /// produced. 159 Sema &SemaRef; 160 161 /// The allocator used to allocate new code-completion strings. 162 CodeCompletionAllocator &Allocator; 163 164 CodeCompletionTUInfo &CCTUInfo; 165 166 /// If non-NULL, a filter function used to remove any code-completion 167 /// results that are not desirable. 168 LookupFilter Filter; 169 170 /// Whether we should allow declarations as 171 /// nested-name-specifiers that would otherwise be filtered out. 172 bool AllowNestedNameSpecifiers; 173 174 /// If set, the type that we would prefer our resulting value 175 /// declarations to have. 176 /// 177 /// Closely matching the preferred type gives a boost to a result's 178 /// priority. 179 CanQualType PreferredType; 180 181 /// A list of shadow maps, which is used to model name hiding at 182 /// different levels of, e.g., the inheritance hierarchy. 183 std::list<ShadowMap> ShadowMaps; 184 185 /// Overloaded C++ member functions found by SemaLookup. 186 /// Used to determine when one overload is dominated by another. 187 llvm::DenseMap<std::pair<DeclContext *, /*Name*/uintptr_t>, ShadowMapEntry> 188 OverloadMap; 189 190 /// If we're potentially referring to a C++ member function, the set 191 /// of qualifiers applied to the object type. 192 Qualifiers ObjectTypeQualifiers; 193 /// The kind of the object expression, for rvalue/lvalue overloads. 194 ExprValueKind ObjectKind; 195 196 /// Whether the \p ObjectTypeQualifiers field is active. 197 bool HasObjectTypeQualifiers; 198 199 /// The selector that we prefer. 200 Selector PreferredSelector; 201 202 /// The completion context in which we are gathering results. 203 CodeCompletionContext CompletionContext; 204 205 /// If we are in an instance method definition, the \@implementation 206 /// object. 207 ObjCImplementationDecl *ObjCImplementation; 208 209 void AdjustResultPriorityForDecl(Result &R); 210 211 void MaybeAddConstructorResults(Result R); 212 213 public: 214 explicit ResultBuilder(Sema &SemaRef, CodeCompletionAllocator &Allocator, 215 CodeCompletionTUInfo &CCTUInfo, 216 const CodeCompletionContext &CompletionContext, 217 LookupFilter Filter = nullptr) 218 : SemaRef(SemaRef), Allocator(Allocator), CCTUInfo(CCTUInfo), 219 Filter(Filter), AllowNestedNameSpecifiers(false), 220 HasObjectTypeQualifiers(false), CompletionContext(CompletionContext), 221 ObjCImplementation(nullptr) { 222 // If this is an Objective-C instance method definition, dig out the 223 // corresponding implementation. 224 switch (CompletionContext.getKind()) { 225 case CodeCompletionContext::CCC_Expression: 226 case CodeCompletionContext::CCC_ObjCMessageReceiver: 227 case CodeCompletionContext::CCC_ParenthesizedExpression: 228 case CodeCompletionContext::CCC_Statement: 229 case CodeCompletionContext::CCC_TopLevelOrExpression: 230 case CodeCompletionContext::CCC_Recovery: 231 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) 232 if (Method->isInstanceMethod()) 233 if (ObjCInterfaceDecl *Interface = Method->getClassInterface()) 234 ObjCImplementation = Interface->getImplementation(); 235 break; 236 237 default: 238 break; 239 } 240 } 241 242 /// Determine the priority for a reference to the given declaration. 243 unsigned getBasePriority(const NamedDecl *D); 244 245 /// Whether we should include code patterns in the completion 246 /// results. 247 bool includeCodePatterns() const { 248 return SemaRef.CodeCompleter && 249 SemaRef.CodeCompleter->includeCodePatterns(); 250 } 251 252 /// Set the filter used for code-completion results. 253 void setFilter(LookupFilter Filter) { this->Filter = Filter; } 254 255 Result *data() { return Results.empty() ? nullptr : &Results.front(); } 256 unsigned size() const { return Results.size(); } 257 bool empty() const { return Results.empty(); } 258 259 /// Specify the preferred type. 260 void setPreferredType(QualType T) { 261 PreferredType = SemaRef.Context.getCanonicalType(T); 262 } 263 264 /// Set the cv-qualifiers on the object type, for us in filtering 265 /// calls to member functions. 266 /// 267 /// When there are qualifiers in this set, they will be used to filter 268 /// out member functions that aren't available (because there will be a 269 /// cv-qualifier mismatch) or prefer functions with an exact qualifier 270 /// match. 271 void setObjectTypeQualifiers(Qualifiers Quals, ExprValueKind Kind) { 272 ObjectTypeQualifiers = Quals; 273 ObjectKind = Kind; 274 HasObjectTypeQualifiers = true; 275 } 276 277 /// Set the preferred selector. 278 /// 279 /// When an Objective-C method declaration result is added, and that 280 /// method's selector matches this preferred selector, we give that method 281 /// a slight priority boost. 282 void setPreferredSelector(Selector Sel) { PreferredSelector = Sel; } 283 284 /// Retrieve the code-completion context for which results are 285 /// being collected. 286 const CodeCompletionContext &getCompletionContext() const { 287 return CompletionContext; 288 } 289 290 /// Specify whether nested-name-specifiers are allowed. 291 void allowNestedNameSpecifiers(bool Allow = true) { 292 AllowNestedNameSpecifiers = Allow; 293 } 294 295 /// Return the semantic analysis object for which we are collecting 296 /// code completion results. 297 Sema &getSema() const { return SemaRef; } 298 299 /// Retrieve the allocator used to allocate code completion strings. 300 CodeCompletionAllocator &getAllocator() const { return Allocator; } 301 302 CodeCompletionTUInfo &getCodeCompletionTUInfo() const { return CCTUInfo; } 303 304 /// Determine whether the given declaration is at all interesting 305 /// as a code-completion result. 306 /// 307 /// \param ND the declaration that we are inspecting. 308 /// 309 /// \param AsNestedNameSpecifier will be set true if this declaration is 310 /// only interesting when it is a nested-name-specifier. 311 bool isInterestingDecl(const NamedDecl *ND, 312 bool &AsNestedNameSpecifier) const; 313 314 /// Decide whether or not a use of function Decl can be a call. 315 /// 316 /// \param ND the function declaration. 317 /// 318 /// \param BaseExprType the object type in a member access expression, 319 /// if any. 320 bool canFunctionBeCalled(const NamedDecl *ND, QualType BaseExprType) const; 321 322 /// Decide whether or not a use of member function Decl can be a call. 323 /// 324 /// \param Method the function declaration. 325 /// 326 /// \param BaseExprType the object type in a member access expression, 327 /// if any. 328 bool canCxxMethodBeCalled(const CXXMethodDecl *Method, 329 QualType BaseExprType) const; 330 331 /// Check whether the result is hidden by the Hiding declaration. 332 /// 333 /// \returns true if the result is hidden and cannot be found, false if 334 /// the hidden result could still be found. When false, \p R may be 335 /// modified to describe how the result can be found (e.g., via extra 336 /// qualification). 337 bool CheckHiddenResult(Result &R, DeclContext *CurContext, 338 const NamedDecl *Hiding); 339 340 /// Add a new result to this result set (if it isn't already in one 341 /// of the shadow maps), or replace an existing result (for, e.g., a 342 /// redeclaration). 343 /// 344 /// \param R the result to add (if it is unique). 345 /// 346 /// \param CurContext the context in which this result will be named. 347 void MaybeAddResult(Result R, DeclContext *CurContext = nullptr); 348 349 /// Add a new result to this result set, where we already know 350 /// the hiding declaration (if any). 351 /// 352 /// \param R the result to add (if it is unique). 353 /// 354 /// \param CurContext the context in which this result will be named. 355 /// 356 /// \param Hiding the declaration that hides the result. 357 /// 358 /// \param InBaseClass whether the result was found in a base 359 /// class of the searched context. 360 /// 361 /// \param BaseExprType the type of expression that precedes the "." or "->" 362 /// in a member access expression. 363 void AddResult(Result R, DeclContext *CurContext, NamedDecl *Hiding, 364 bool InBaseClass, QualType BaseExprType); 365 366 /// Add a new non-declaration result to this result set. 367 void AddResult(Result R); 368 369 /// Enter into a new scope. 370 void EnterNewScope(); 371 372 /// Exit from the current scope. 373 void ExitScope(); 374 375 /// Ignore this declaration, if it is seen again. 376 void Ignore(const Decl *D) { AllDeclsFound.insert(D->getCanonicalDecl()); } 377 378 /// Add a visited context. 379 void addVisitedContext(DeclContext *Ctx) { 380 CompletionContext.addVisitedContext(Ctx); 381 } 382 383 /// \name Name lookup predicates 384 /// 385 /// These predicates can be passed to the name lookup functions to filter the 386 /// results of name lookup. All of the predicates have the same type, so that 387 /// 388 //@{ 389 bool IsOrdinaryName(const NamedDecl *ND) const; 390 bool IsOrdinaryNonTypeName(const NamedDecl *ND) const; 391 bool IsIntegralConstantValue(const NamedDecl *ND) const; 392 bool IsOrdinaryNonValueName(const NamedDecl *ND) const; 393 bool IsNestedNameSpecifier(const NamedDecl *ND) const; 394 bool IsEnum(const NamedDecl *ND) const; 395 bool IsClassOrStruct(const NamedDecl *ND) const; 396 bool IsUnion(const NamedDecl *ND) const; 397 bool IsNamespace(const NamedDecl *ND) const; 398 bool IsNamespaceOrAlias(const NamedDecl *ND) const; 399 bool IsType(const NamedDecl *ND) const; 400 bool IsMember(const NamedDecl *ND) const; 401 bool IsObjCIvar(const NamedDecl *ND) const; 402 bool IsObjCMessageReceiver(const NamedDecl *ND) const; 403 bool IsObjCMessageReceiverOrLambdaCapture(const NamedDecl *ND) const; 404 bool IsObjCCollection(const NamedDecl *ND) const; 405 bool IsImpossibleToSatisfy(const NamedDecl *ND) const; 406 //@} 407 }; 408 } // namespace 409 410 void PreferredTypeBuilder::enterReturn(Sema &S, SourceLocation Tok) { 411 if (!Enabled) 412 return; 413 if (isa<BlockDecl>(S.CurContext)) { 414 if (sema::BlockScopeInfo *BSI = S.getCurBlock()) { 415 ComputeType = nullptr; 416 Type = BSI->ReturnType; 417 ExpectedLoc = Tok; 418 } 419 } else if (const auto *Function = dyn_cast<FunctionDecl>(S.CurContext)) { 420 ComputeType = nullptr; 421 Type = Function->getReturnType(); 422 ExpectedLoc = Tok; 423 } else if (const auto *Method = dyn_cast<ObjCMethodDecl>(S.CurContext)) { 424 ComputeType = nullptr; 425 Type = Method->getReturnType(); 426 ExpectedLoc = Tok; 427 } 428 } 429 430 void PreferredTypeBuilder::enterVariableInit(SourceLocation Tok, Decl *D) { 431 if (!Enabled) 432 return; 433 auto *VD = llvm::dyn_cast_or_null<ValueDecl>(D); 434 ComputeType = nullptr; 435 Type = VD ? VD->getType() : QualType(); 436 ExpectedLoc = Tok; 437 } 438 439 static QualType getDesignatedType(QualType BaseType, const Designation &Desig); 440 441 void PreferredTypeBuilder::enterDesignatedInitializer(SourceLocation Tok, 442 QualType BaseType, 443 const Designation &D) { 444 if (!Enabled) 445 return; 446 ComputeType = nullptr; 447 Type = getDesignatedType(BaseType, D); 448 ExpectedLoc = Tok; 449 } 450 451 void PreferredTypeBuilder::enterFunctionArgument( 452 SourceLocation Tok, llvm::function_ref<QualType()> ComputeType) { 453 if (!Enabled) 454 return; 455 this->ComputeType = ComputeType; 456 Type = QualType(); 457 ExpectedLoc = Tok; 458 } 459 460 void PreferredTypeBuilder::enterParenExpr(SourceLocation Tok, 461 SourceLocation LParLoc) { 462 if (!Enabled) 463 return; 464 // expected type for parenthesized expression does not change. 465 if (ExpectedLoc == LParLoc) 466 ExpectedLoc = Tok; 467 } 468 469 static QualType getPreferredTypeOfBinaryRHS(Sema &S, Expr *LHS, 470 tok::TokenKind Op) { 471 if (!LHS) 472 return QualType(); 473 474 QualType LHSType = LHS->getType(); 475 if (LHSType->isPointerType()) { 476 if (Op == tok::plus || Op == tok::plusequal || Op == tok::minusequal) 477 return S.getASTContext().getPointerDiffType(); 478 // Pointer difference is more common than subtracting an int from a pointer. 479 if (Op == tok::minus) 480 return LHSType; 481 } 482 483 switch (Op) { 484 // No way to infer the type of RHS from LHS. 485 case tok::comma: 486 return QualType(); 487 // Prefer the type of the left operand for all of these. 488 // Arithmetic operations. 489 case tok::plus: 490 case tok::plusequal: 491 case tok::minus: 492 case tok::minusequal: 493 case tok::percent: 494 case tok::percentequal: 495 case tok::slash: 496 case tok::slashequal: 497 case tok::star: 498 case tok::starequal: 499 // Assignment. 500 case tok::equal: 501 // Comparison operators. 502 case tok::equalequal: 503 case tok::exclaimequal: 504 case tok::less: 505 case tok::lessequal: 506 case tok::greater: 507 case tok::greaterequal: 508 case tok::spaceship: 509 return LHS->getType(); 510 // Binary shifts are often overloaded, so don't try to guess those. 511 case tok::greatergreater: 512 case tok::greatergreaterequal: 513 case tok::lessless: 514 case tok::lesslessequal: 515 if (LHSType->isIntegralOrEnumerationType()) 516 return S.getASTContext().IntTy; 517 return QualType(); 518 // Logical operators, assume we want bool. 519 case tok::ampamp: 520 case tok::pipepipe: 521 case tok::caretcaret: 522 return S.getASTContext().BoolTy; 523 // Operators often used for bit manipulation are typically used with the type 524 // of the left argument. 525 case tok::pipe: 526 case tok::pipeequal: 527 case tok::caret: 528 case tok::caretequal: 529 case tok::amp: 530 case tok::ampequal: 531 if (LHSType->isIntegralOrEnumerationType()) 532 return LHSType; 533 return QualType(); 534 // RHS should be a pointer to a member of the 'LHS' type, but we can't give 535 // any particular type here. 536 case tok::periodstar: 537 case tok::arrowstar: 538 return QualType(); 539 default: 540 // FIXME(ibiryukov): handle the missing op, re-add the assertion. 541 // assert(false && "unhandled binary op"); 542 return QualType(); 543 } 544 } 545 546 /// Get preferred type for an argument of an unary expression. \p ContextType is 547 /// preferred type of the whole unary expression. 548 static QualType getPreferredTypeOfUnaryArg(Sema &S, QualType ContextType, 549 tok::TokenKind Op) { 550 switch (Op) { 551 case tok::exclaim: 552 return S.getASTContext().BoolTy; 553 case tok::amp: 554 if (!ContextType.isNull() && ContextType->isPointerType()) 555 return ContextType->getPointeeType(); 556 return QualType(); 557 case tok::star: 558 if (ContextType.isNull()) 559 return QualType(); 560 return S.getASTContext().getPointerType(ContextType.getNonReferenceType()); 561 case tok::plus: 562 case tok::minus: 563 case tok::tilde: 564 case tok::minusminus: 565 case tok::plusplus: 566 if (ContextType.isNull()) 567 return S.getASTContext().IntTy; 568 // leave as is, these operators typically return the same type. 569 return ContextType; 570 case tok::kw___real: 571 case tok::kw___imag: 572 return QualType(); 573 default: 574 assert(false && "unhandled unary op"); 575 return QualType(); 576 } 577 } 578 579 void PreferredTypeBuilder::enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, 580 tok::TokenKind Op) { 581 if (!Enabled) 582 return; 583 ComputeType = nullptr; 584 Type = getPreferredTypeOfBinaryRHS(S, LHS, Op); 585 ExpectedLoc = Tok; 586 } 587 588 void PreferredTypeBuilder::enterMemAccess(Sema &S, SourceLocation Tok, 589 Expr *Base) { 590 if (!Enabled || !Base) 591 return; 592 // Do we have expected type for Base? 593 if (ExpectedLoc != Base->getBeginLoc()) 594 return; 595 // Keep the expected type, only update the location. 596 ExpectedLoc = Tok; 597 } 598 599 void PreferredTypeBuilder::enterUnary(Sema &S, SourceLocation Tok, 600 tok::TokenKind OpKind, 601 SourceLocation OpLoc) { 602 if (!Enabled) 603 return; 604 ComputeType = nullptr; 605 Type = getPreferredTypeOfUnaryArg(S, this->get(OpLoc), OpKind); 606 ExpectedLoc = Tok; 607 } 608 609 void PreferredTypeBuilder::enterSubscript(Sema &S, SourceLocation Tok, 610 Expr *LHS) { 611 if (!Enabled) 612 return; 613 ComputeType = nullptr; 614 Type = S.getASTContext().IntTy; 615 ExpectedLoc = Tok; 616 } 617 618 void PreferredTypeBuilder::enterTypeCast(SourceLocation Tok, 619 QualType CastType) { 620 if (!Enabled) 621 return; 622 ComputeType = nullptr; 623 Type = !CastType.isNull() ? CastType.getCanonicalType() : QualType(); 624 ExpectedLoc = Tok; 625 } 626 627 void PreferredTypeBuilder::enterCondition(Sema &S, SourceLocation Tok) { 628 if (!Enabled) 629 return; 630 ComputeType = nullptr; 631 Type = S.getASTContext().BoolTy; 632 ExpectedLoc = Tok; 633 } 634 635 class ResultBuilder::ShadowMapEntry::iterator { 636 llvm::PointerUnion<const NamedDecl *, const DeclIndexPair *> DeclOrIterator; 637 unsigned SingleDeclIndex; 638 639 public: 640 typedef DeclIndexPair value_type; 641 typedef value_type reference; 642 typedef std::ptrdiff_t difference_type; 643 typedef std::input_iterator_tag iterator_category; 644 645 class pointer { 646 DeclIndexPair Value; 647 648 public: 649 pointer(const DeclIndexPair &Value) : Value(Value) {} 650 651 const DeclIndexPair *operator->() const { return &Value; } 652 }; 653 654 iterator() : DeclOrIterator((NamedDecl *)nullptr), SingleDeclIndex(0) {} 655 656 iterator(const NamedDecl *SingleDecl, unsigned Index) 657 : DeclOrIterator(SingleDecl), SingleDeclIndex(Index) {} 658 659 iterator(const DeclIndexPair *Iterator) 660 : DeclOrIterator(Iterator), SingleDeclIndex(0) {} 661 662 iterator &operator++() { 663 if (DeclOrIterator.is<const NamedDecl *>()) { 664 DeclOrIterator = (NamedDecl *)nullptr; 665 SingleDeclIndex = 0; 666 return *this; 667 } 668 669 const DeclIndexPair *I = DeclOrIterator.get<const DeclIndexPair *>(); 670 ++I; 671 DeclOrIterator = I; 672 return *this; 673 } 674 675 /*iterator operator++(int) { 676 iterator tmp(*this); 677 ++(*this); 678 return tmp; 679 }*/ 680 681 reference operator*() const { 682 if (const NamedDecl *ND = DeclOrIterator.dyn_cast<const NamedDecl *>()) 683 return reference(ND, SingleDeclIndex); 684 685 return *DeclOrIterator.get<const DeclIndexPair *>(); 686 } 687 688 pointer operator->() const { return pointer(**this); } 689 690 friend bool operator==(const iterator &X, const iterator &Y) { 691 return X.DeclOrIterator.getOpaqueValue() == 692 Y.DeclOrIterator.getOpaqueValue() && 693 X.SingleDeclIndex == Y.SingleDeclIndex; 694 } 695 696 friend bool operator!=(const iterator &X, const iterator &Y) { 697 return !(X == Y); 698 } 699 }; 700 701 ResultBuilder::ShadowMapEntry::iterator 702 ResultBuilder::ShadowMapEntry::begin() const { 703 if (DeclOrVector.isNull()) 704 return iterator(); 705 706 if (const NamedDecl *ND = DeclOrVector.dyn_cast<const NamedDecl *>()) 707 return iterator(ND, SingleDeclIndex); 708 709 return iterator(DeclOrVector.get<DeclIndexPairVector *>()->begin()); 710 } 711 712 ResultBuilder::ShadowMapEntry::iterator 713 ResultBuilder::ShadowMapEntry::end() const { 714 if (DeclOrVector.is<const NamedDecl *>() || DeclOrVector.isNull()) 715 return iterator(); 716 717 return iterator(DeclOrVector.get<DeclIndexPairVector *>()->end()); 718 } 719 720 /// Compute the qualification required to get from the current context 721 /// (\p CurContext) to the target context (\p TargetContext). 722 /// 723 /// \param Context the AST context in which the qualification will be used. 724 /// 725 /// \param CurContext the context where an entity is being named, which is 726 /// typically based on the current scope. 727 /// 728 /// \param TargetContext the context in which the named entity actually 729 /// resides. 730 /// 731 /// \returns a nested name specifier that refers into the target context, or 732 /// NULL if no qualification is needed. 733 static NestedNameSpecifier * 734 getRequiredQualification(ASTContext &Context, const DeclContext *CurContext, 735 const DeclContext *TargetContext) { 736 SmallVector<const DeclContext *, 4> TargetParents; 737 738 for (const DeclContext *CommonAncestor = TargetContext; 739 CommonAncestor && !CommonAncestor->Encloses(CurContext); 740 CommonAncestor = CommonAncestor->getLookupParent()) { 741 if (CommonAncestor->isTransparentContext() || 742 CommonAncestor->isFunctionOrMethod()) 743 continue; 744 745 TargetParents.push_back(CommonAncestor); 746 } 747 748 NestedNameSpecifier *Result = nullptr; 749 while (!TargetParents.empty()) { 750 const DeclContext *Parent = TargetParents.pop_back_val(); 751 752 if (const auto *Namespace = dyn_cast<NamespaceDecl>(Parent)) { 753 if (!Namespace->getIdentifier()) 754 continue; 755 756 Result = NestedNameSpecifier::Create(Context, Result, Namespace); 757 } else if (const auto *TD = dyn_cast<TagDecl>(Parent)) 758 Result = NestedNameSpecifier::Create( 759 Context, Result, false, Context.getTypeDeclType(TD).getTypePtr()); 760 } 761 return Result; 762 } 763 764 // Some declarations have reserved names that we don't want to ever show. 765 // Filter out names reserved for the implementation if they come from a 766 // system header. 767 static bool shouldIgnoreDueToReservedName(const NamedDecl *ND, Sema &SemaRef) { 768 // Debuggers want access to all identifiers, including reserved ones. 769 if (SemaRef.getLangOpts().DebuggerSupport) 770 return false; 771 772 ReservedIdentifierStatus Status = ND->isReserved(SemaRef.getLangOpts()); 773 // Ignore reserved names for compiler provided decls. 774 if (isReservedInAllContexts(Status) && ND->getLocation().isInvalid()) 775 return true; 776 777 // For system headers ignore only double-underscore names. 778 // This allows for system headers providing private symbols with a single 779 // underscore. 780 if (Status == ReservedIdentifierStatus::StartsWithDoubleUnderscore && 781 SemaRef.SourceMgr.isInSystemHeader( 782 SemaRef.SourceMgr.getSpellingLoc(ND->getLocation()))) 783 return true; 784 785 return false; 786 } 787 788 bool ResultBuilder::isInterestingDecl(const NamedDecl *ND, 789 bool &AsNestedNameSpecifier) const { 790 AsNestedNameSpecifier = false; 791 792 auto *Named = ND; 793 ND = ND->getUnderlyingDecl(); 794 795 // Skip unnamed entities. 796 if (!ND->getDeclName()) 797 return false; 798 799 // Friend declarations and declarations introduced due to friends are never 800 // added as results. 801 if (ND->getFriendObjectKind() == Decl::FOK_Undeclared) 802 return false; 803 804 // Class template (partial) specializations are never added as results. 805 if (isa<ClassTemplateSpecializationDecl>(ND) || 806 isa<ClassTemplatePartialSpecializationDecl>(ND)) 807 return false; 808 809 // Using declarations themselves are never added as results. 810 if (isa<UsingDecl>(ND)) 811 return false; 812 813 if (shouldIgnoreDueToReservedName(ND, SemaRef)) 814 return false; 815 816 if (Filter == &ResultBuilder::IsNestedNameSpecifier || 817 (isa<NamespaceDecl>(ND) && Filter != &ResultBuilder::IsNamespace && 818 Filter != &ResultBuilder::IsNamespaceOrAlias && Filter != nullptr)) 819 AsNestedNameSpecifier = true; 820 821 // Filter out any unwanted results. 822 if (Filter && !(this->*Filter)(Named)) { 823 // Check whether it is interesting as a nested-name-specifier. 824 if (AllowNestedNameSpecifiers && SemaRef.getLangOpts().CPlusPlus && 825 IsNestedNameSpecifier(ND) && 826 (Filter != &ResultBuilder::IsMember || 827 (isa<CXXRecordDecl>(ND) && 828 cast<CXXRecordDecl>(ND)->isInjectedClassName()))) { 829 AsNestedNameSpecifier = true; 830 return true; 831 } 832 833 return false; 834 } 835 // ... then it must be interesting! 836 return true; 837 } 838 839 bool ResultBuilder::CheckHiddenResult(Result &R, DeclContext *CurContext, 840 const NamedDecl *Hiding) { 841 // In C, there is no way to refer to a hidden name. 842 // FIXME: This isn't true; we can find a tag name hidden by an ordinary 843 // name if we introduce the tag type. 844 if (!SemaRef.getLangOpts().CPlusPlus) 845 return true; 846 847 const DeclContext *HiddenCtx = 848 R.Declaration->getDeclContext()->getRedeclContext(); 849 850 // There is no way to qualify a name declared in a function or method. 851 if (HiddenCtx->isFunctionOrMethod()) 852 return true; 853 854 if (HiddenCtx == Hiding->getDeclContext()->getRedeclContext()) 855 return true; 856 857 // We can refer to the result with the appropriate qualification. Do it. 858 R.Hidden = true; 859 R.QualifierIsInformative = false; 860 861 if (!R.Qualifier) 862 R.Qualifier = getRequiredQualification(SemaRef.Context, CurContext, 863 R.Declaration->getDeclContext()); 864 return false; 865 } 866 867 /// A simplified classification of types used to determine whether two 868 /// types are "similar enough" when adjusting priorities. 869 SimplifiedTypeClass clang::getSimplifiedTypeClass(CanQualType T) { 870 switch (T->getTypeClass()) { 871 case Type::Builtin: 872 switch (cast<BuiltinType>(T)->getKind()) { 873 case BuiltinType::Void: 874 return STC_Void; 875 876 case BuiltinType::NullPtr: 877 return STC_Pointer; 878 879 case BuiltinType::Overload: 880 case BuiltinType::Dependent: 881 return STC_Other; 882 883 case BuiltinType::ObjCId: 884 case BuiltinType::ObjCClass: 885 case BuiltinType::ObjCSel: 886 return STC_ObjectiveC; 887 888 default: 889 return STC_Arithmetic; 890 } 891 892 case Type::Complex: 893 return STC_Arithmetic; 894 895 case Type::Pointer: 896 return STC_Pointer; 897 898 case Type::BlockPointer: 899 return STC_Block; 900 901 case Type::LValueReference: 902 case Type::RValueReference: 903 return getSimplifiedTypeClass(T->getAs<ReferenceType>()->getPointeeType()); 904 905 case Type::ConstantArray: 906 case Type::IncompleteArray: 907 case Type::VariableArray: 908 case Type::DependentSizedArray: 909 return STC_Array; 910 911 case Type::DependentSizedExtVector: 912 case Type::Vector: 913 case Type::ExtVector: 914 return STC_Arithmetic; 915 916 case Type::FunctionProto: 917 case Type::FunctionNoProto: 918 return STC_Function; 919 920 case Type::Record: 921 return STC_Record; 922 923 case Type::Enum: 924 return STC_Arithmetic; 925 926 case Type::ObjCObject: 927 case Type::ObjCInterface: 928 case Type::ObjCObjectPointer: 929 return STC_ObjectiveC; 930 931 default: 932 return STC_Other; 933 } 934 } 935 936 /// Get the type that a given expression will have if this declaration 937 /// is used as an expression in its "typical" code-completion form. 938 QualType clang::getDeclUsageType(ASTContext &C, const NamedDecl *ND) { 939 ND = ND->getUnderlyingDecl(); 940 941 if (const auto *Type = dyn_cast<TypeDecl>(ND)) 942 return C.getTypeDeclType(Type); 943 if (const auto *Iface = dyn_cast<ObjCInterfaceDecl>(ND)) 944 return C.getObjCInterfaceType(Iface); 945 946 QualType T; 947 if (const FunctionDecl *Function = ND->getAsFunction()) 948 T = Function->getCallResultType(); 949 else if (const auto *Method = dyn_cast<ObjCMethodDecl>(ND)) 950 T = Method->getSendResultType(); 951 else if (const auto *Enumerator = dyn_cast<EnumConstantDecl>(ND)) 952 T = C.getTypeDeclType(cast<EnumDecl>(Enumerator->getDeclContext())); 953 else if (const auto *Property = dyn_cast<ObjCPropertyDecl>(ND)) 954 T = Property->getType(); 955 else if (const auto *Value = dyn_cast<ValueDecl>(ND)) 956 T = Value->getType(); 957 958 if (T.isNull()) 959 return QualType(); 960 961 // Dig through references, function pointers, and block pointers to 962 // get down to the likely type of an expression when the entity is 963 // used. 964 do { 965 if (const auto *Ref = T->getAs<ReferenceType>()) { 966 T = Ref->getPointeeType(); 967 continue; 968 } 969 970 if (const auto *Pointer = T->getAs<PointerType>()) { 971 if (Pointer->getPointeeType()->isFunctionType()) { 972 T = Pointer->getPointeeType(); 973 continue; 974 } 975 976 break; 977 } 978 979 if (const auto *Block = T->getAs<BlockPointerType>()) { 980 T = Block->getPointeeType(); 981 continue; 982 } 983 984 if (const auto *Function = T->getAs<FunctionType>()) { 985 T = Function->getReturnType(); 986 continue; 987 } 988 989 break; 990 } while (true); 991 992 return T; 993 } 994 995 unsigned ResultBuilder::getBasePriority(const NamedDecl *ND) { 996 if (!ND) 997 return CCP_Unlikely; 998 999 // Context-based decisions. 1000 const DeclContext *LexicalDC = ND->getLexicalDeclContext(); 1001 if (LexicalDC->isFunctionOrMethod()) { 1002 // _cmd is relatively rare 1003 if (const auto *ImplicitParam = dyn_cast<ImplicitParamDecl>(ND)) 1004 if (ImplicitParam->getIdentifier() && 1005 ImplicitParam->getIdentifier()->isStr("_cmd")) 1006 return CCP_ObjC_cmd; 1007 1008 return CCP_LocalDeclaration; 1009 } 1010 1011 const DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 1012 if (DC->isRecord() || isa<ObjCContainerDecl>(DC)) { 1013 // Explicit destructor calls are very rare. 1014 if (isa<CXXDestructorDecl>(ND)) 1015 return CCP_Unlikely; 1016 // Explicit operator and conversion function calls are also very rare. 1017 auto DeclNameKind = ND->getDeclName().getNameKind(); 1018 if (DeclNameKind == DeclarationName::CXXOperatorName || 1019 DeclNameKind == DeclarationName::CXXLiteralOperatorName || 1020 DeclNameKind == DeclarationName::CXXConversionFunctionName) 1021 return CCP_Unlikely; 1022 return CCP_MemberDeclaration; 1023 } 1024 1025 // Content-based decisions. 1026 if (isa<EnumConstantDecl>(ND)) 1027 return CCP_Constant; 1028 1029 // Use CCP_Type for type declarations unless we're in a statement, Objective-C 1030 // message receiver, or parenthesized expression context. There, it's as 1031 // likely that the user will want to write a type as other declarations. 1032 if ((isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) && 1033 !(CompletionContext.getKind() == CodeCompletionContext::CCC_Statement || 1034 CompletionContext.getKind() == 1035 CodeCompletionContext::CCC_ObjCMessageReceiver || 1036 CompletionContext.getKind() == 1037 CodeCompletionContext::CCC_ParenthesizedExpression)) 1038 return CCP_Type; 1039 1040 return CCP_Declaration; 1041 } 1042 1043 void ResultBuilder::AdjustResultPriorityForDecl(Result &R) { 1044 // If this is an Objective-C method declaration whose selector matches our 1045 // preferred selector, give it a priority boost. 1046 if (!PreferredSelector.isNull()) 1047 if (const auto *Method = dyn_cast<ObjCMethodDecl>(R.Declaration)) 1048 if (PreferredSelector == Method->getSelector()) 1049 R.Priority += CCD_SelectorMatch; 1050 1051 // If we have a preferred type, adjust the priority for results with exactly- 1052 // matching or nearly-matching types. 1053 if (!PreferredType.isNull()) { 1054 QualType T = getDeclUsageType(SemaRef.Context, R.Declaration); 1055 if (!T.isNull()) { 1056 CanQualType TC = SemaRef.Context.getCanonicalType(T); 1057 // Check for exactly-matching types (modulo qualifiers). 1058 if (SemaRef.Context.hasSameUnqualifiedType(PreferredType, TC)) 1059 R.Priority /= CCF_ExactTypeMatch; 1060 // Check for nearly-matching types, based on classification of each. 1061 else if ((getSimplifiedTypeClass(PreferredType) == 1062 getSimplifiedTypeClass(TC)) && 1063 !(PreferredType->isEnumeralType() && TC->isEnumeralType())) 1064 R.Priority /= CCF_SimilarTypeMatch; 1065 } 1066 } 1067 } 1068 1069 static DeclContext::lookup_result getConstructors(ASTContext &Context, 1070 const CXXRecordDecl *Record) { 1071 QualType RecordTy = Context.getTypeDeclType(Record); 1072 DeclarationName ConstructorName = 1073 Context.DeclarationNames.getCXXConstructorName( 1074 Context.getCanonicalType(RecordTy)); 1075 return Record->lookup(ConstructorName); 1076 } 1077 1078 void ResultBuilder::MaybeAddConstructorResults(Result R) { 1079 if (!SemaRef.getLangOpts().CPlusPlus || !R.Declaration || 1080 !CompletionContext.wantConstructorResults()) 1081 return; 1082 1083 const NamedDecl *D = R.Declaration; 1084 const CXXRecordDecl *Record = nullptr; 1085 if (const ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(D)) 1086 Record = ClassTemplate->getTemplatedDecl(); 1087 else if ((Record = dyn_cast<CXXRecordDecl>(D))) { 1088 // Skip specializations and partial specializations. 1089 if (isa<ClassTemplateSpecializationDecl>(Record)) 1090 return; 1091 } else { 1092 // There are no constructors here. 1093 return; 1094 } 1095 1096 Record = Record->getDefinition(); 1097 if (!Record) 1098 return; 1099 1100 for (NamedDecl *Ctor : getConstructors(SemaRef.Context, Record)) { 1101 R.Declaration = Ctor; 1102 R.CursorKind = getCursorKindForDecl(R.Declaration); 1103 Results.push_back(R); 1104 } 1105 } 1106 1107 static bool isConstructor(const Decl *ND) { 1108 if (const auto *Tmpl = dyn_cast<FunctionTemplateDecl>(ND)) 1109 ND = Tmpl->getTemplatedDecl(); 1110 return isa<CXXConstructorDecl>(ND); 1111 } 1112 1113 void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) { 1114 assert(!ShadowMaps.empty() && "Must enter into a results scope"); 1115 1116 if (R.Kind != Result::RK_Declaration) { 1117 // For non-declaration results, just add the result. 1118 Results.push_back(R); 1119 return; 1120 } 1121 1122 // Look through using declarations. 1123 if (const UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(R.Declaration)) { 1124 CodeCompletionResult Result(Using->getTargetDecl(), 1125 getBasePriority(Using->getTargetDecl()), 1126 R.Qualifier, false, 1127 (R.Availability == CXAvailability_Available || 1128 R.Availability == CXAvailability_Deprecated), 1129 std::move(R.FixIts)); 1130 Result.ShadowDecl = Using; 1131 MaybeAddResult(Result, CurContext); 1132 return; 1133 } 1134 1135 const Decl *CanonDecl = R.Declaration->getCanonicalDecl(); 1136 unsigned IDNS = CanonDecl->getIdentifierNamespace(); 1137 1138 bool AsNestedNameSpecifier = false; 1139 if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier)) 1140 return; 1141 1142 // C++ constructors are never found by name lookup. 1143 if (isConstructor(R.Declaration)) 1144 return; 1145 1146 ShadowMap &SMap = ShadowMaps.back(); 1147 ShadowMapEntry::iterator I, IEnd; 1148 ShadowMap::iterator NamePos = SMap.find(R.Declaration->getDeclName()); 1149 if (NamePos != SMap.end()) { 1150 I = NamePos->second.begin(); 1151 IEnd = NamePos->second.end(); 1152 } 1153 1154 for (; I != IEnd; ++I) { 1155 const NamedDecl *ND = I->first; 1156 unsigned Index = I->second; 1157 if (ND->getCanonicalDecl() == CanonDecl) { 1158 // This is a redeclaration. Always pick the newer declaration. 1159 Results[Index].Declaration = R.Declaration; 1160 1161 // We're done. 1162 return; 1163 } 1164 } 1165 1166 // This is a new declaration in this scope. However, check whether this 1167 // declaration name is hidden by a similarly-named declaration in an outer 1168 // scope. 1169 std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end(); 1170 --SMEnd; 1171 for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) { 1172 ShadowMapEntry::iterator I, IEnd; 1173 ShadowMap::iterator NamePos = SM->find(R.Declaration->getDeclName()); 1174 if (NamePos != SM->end()) { 1175 I = NamePos->second.begin(); 1176 IEnd = NamePos->second.end(); 1177 } 1178 for (; I != IEnd; ++I) { 1179 // A tag declaration does not hide a non-tag declaration. 1180 if (I->first->hasTagIdentifierNamespace() && 1181 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | 1182 Decl::IDNS_LocalExtern | Decl::IDNS_ObjCProtocol))) 1183 continue; 1184 1185 // Protocols are in distinct namespaces from everything else. 1186 if (((I->first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) || 1187 (IDNS & Decl::IDNS_ObjCProtocol)) && 1188 I->first->getIdentifierNamespace() != IDNS) 1189 continue; 1190 1191 // The newly-added result is hidden by an entry in the shadow map. 1192 if (CheckHiddenResult(R, CurContext, I->first)) 1193 return; 1194 1195 break; 1196 } 1197 } 1198 1199 // Make sure that any given declaration only shows up in the result set once. 1200 if (!AllDeclsFound.insert(CanonDecl).second) 1201 return; 1202 1203 // If the filter is for nested-name-specifiers, then this result starts a 1204 // nested-name-specifier. 1205 if (AsNestedNameSpecifier) { 1206 R.StartsNestedNameSpecifier = true; 1207 R.Priority = CCP_NestedNameSpecifier; 1208 } else 1209 AdjustResultPriorityForDecl(R); 1210 1211 // If this result is supposed to have an informative qualifier, add one. 1212 if (R.QualifierIsInformative && !R.Qualifier && 1213 !R.StartsNestedNameSpecifier) { 1214 const DeclContext *Ctx = R.Declaration->getDeclContext(); 1215 if (const NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Ctx)) 1216 R.Qualifier = 1217 NestedNameSpecifier::Create(SemaRef.Context, nullptr, Namespace); 1218 else if (const TagDecl *Tag = dyn_cast<TagDecl>(Ctx)) 1219 R.Qualifier = NestedNameSpecifier::Create( 1220 SemaRef.Context, nullptr, false, 1221 SemaRef.Context.getTypeDeclType(Tag).getTypePtr()); 1222 else 1223 R.QualifierIsInformative = false; 1224 } 1225 1226 // Insert this result into the set of results and into the current shadow 1227 // map. 1228 SMap[R.Declaration->getDeclName()].Add(R.Declaration, Results.size()); 1229 Results.push_back(R); 1230 1231 if (!AsNestedNameSpecifier) 1232 MaybeAddConstructorResults(R); 1233 } 1234 1235 static void setInBaseClass(ResultBuilder::Result &R) { 1236 R.Priority += CCD_InBaseClass; 1237 R.InBaseClass = true; 1238 } 1239 1240 enum class OverloadCompare { BothViable, Dominates, Dominated }; 1241 // Will Candidate ever be called on the object, when overloaded with Incumbent? 1242 // Returns Dominates if Candidate is always called, Dominated if Incumbent is 1243 // always called, BothViable if either may be called depending on arguments. 1244 // Precondition: must actually be overloads! 1245 static OverloadCompare compareOverloads(const CXXMethodDecl &Candidate, 1246 const CXXMethodDecl &Incumbent, 1247 const Qualifiers &ObjectQuals, 1248 ExprValueKind ObjectKind) { 1249 // Base/derived shadowing is handled elsewhere. 1250 if (Candidate.getDeclContext() != Incumbent.getDeclContext()) 1251 return OverloadCompare::BothViable; 1252 if (Candidate.isVariadic() != Incumbent.isVariadic() || 1253 Candidate.getNumParams() != Incumbent.getNumParams() || 1254 Candidate.getMinRequiredArguments() != 1255 Incumbent.getMinRequiredArguments()) 1256 return OverloadCompare::BothViable; 1257 for (unsigned I = 0, E = Candidate.getNumParams(); I != E; ++I) 1258 if (Candidate.parameters()[I]->getType().getCanonicalType() != 1259 Incumbent.parameters()[I]->getType().getCanonicalType()) 1260 return OverloadCompare::BothViable; 1261 if (!Candidate.specific_attrs<EnableIfAttr>().empty() || 1262 !Incumbent.specific_attrs<EnableIfAttr>().empty()) 1263 return OverloadCompare::BothViable; 1264 // At this point, we know calls can't pick one or the other based on 1265 // arguments, so one of the two must win. (Or both fail, handled elsewhere). 1266 RefQualifierKind CandidateRef = Candidate.getRefQualifier(); 1267 RefQualifierKind IncumbentRef = Incumbent.getRefQualifier(); 1268 if (CandidateRef != IncumbentRef) { 1269 // If the object kind is LValue/RValue, there's one acceptable ref-qualifier 1270 // and it can't be mixed with ref-unqualified overloads (in valid code). 1271 1272 // For xvalue objects, we prefer the rvalue overload even if we have to 1273 // add qualifiers (which is rare, because const&& is rare). 1274 if (ObjectKind == clang::VK_XValue) 1275 return CandidateRef == RQ_RValue ? OverloadCompare::Dominates 1276 : OverloadCompare::Dominated; 1277 } 1278 // Now the ref qualifiers are the same (or we're in some invalid state). 1279 // So make some decision based on the qualifiers. 1280 Qualifiers CandidateQual = Candidate.getMethodQualifiers(); 1281 Qualifiers IncumbentQual = Incumbent.getMethodQualifiers(); 1282 bool CandidateSuperset = CandidateQual.compatiblyIncludes(IncumbentQual); 1283 bool IncumbentSuperset = IncumbentQual.compatiblyIncludes(CandidateQual); 1284 if (CandidateSuperset == IncumbentSuperset) 1285 return OverloadCompare::BothViable; 1286 return IncumbentSuperset ? OverloadCompare::Dominates 1287 : OverloadCompare::Dominated; 1288 } 1289 1290 bool ResultBuilder::canCxxMethodBeCalled(const CXXMethodDecl *Method, 1291 QualType BaseExprType) const { 1292 // Find the class scope that we're currently in. 1293 // We could e.g. be inside a lambda, so walk up the DeclContext until we 1294 // find a CXXMethodDecl. 1295 DeclContext *CurContext = SemaRef.CurContext; 1296 const auto *CurrentClassScope = [&]() -> const CXXRecordDecl * { 1297 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getParent()) { 1298 const auto *CtxMethod = llvm::dyn_cast<CXXMethodDecl>(Ctx); 1299 if (CtxMethod && !CtxMethod->getParent()->isLambda()) { 1300 return CtxMethod->getParent(); 1301 } 1302 } 1303 return nullptr; 1304 }(); 1305 1306 // If we're not inside the scope of the method's class, it can't be a call. 1307 bool FunctionCanBeCall = 1308 CurrentClassScope && 1309 (CurrentClassScope == Method->getParent() || 1310 CurrentClassScope->isDerivedFrom(Method->getParent())); 1311 1312 // We skip the following calculation for exceptions if it's already true. 1313 if (FunctionCanBeCall) 1314 return true; 1315 1316 // Exception: foo->FooBase::bar() or foo->Foo::bar() *is* a call. 1317 if (const CXXRecordDecl *MaybeDerived = 1318 BaseExprType.isNull() ? nullptr 1319 : BaseExprType->getAsCXXRecordDecl()) { 1320 auto *MaybeBase = Method->getParent(); 1321 FunctionCanBeCall = 1322 MaybeDerived == MaybeBase || MaybeDerived->isDerivedFrom(MaybeBase); 1323 } 1324 1325 return FunctionCanBeCall; 1326 } 1327 1328 bool ResultBuilder::canFunctionBeCalled(const NamedDecl *ND, 1329 QualType BaseExprType) const { 1330 // We apply heuristics only to CCC_Symbol: 1331 // * CCC_{Arrow,Dot}MemberAccess reflect member access expressions: 1332 // f.method() and f->method(). These are always calls. 1333 // * A qualified name to a member function may *not* be a call. We have to 1334 // subdivide the cases: For example, f.Base::method(), which is regarded as 1335 // CCC_Symbol, should be a call. 1336 // * Non-member functions and static member functions are always considered 1337 // calls. 1338 if (CompletionContext.getKind() == clang::CodeCompletionContext::CCC_Symbol) { 1339 if (const auto *FuncTmpl = dyn_cast<FunctionTemplateDecl>(ND)) { 1340 ND = FuncTmpl->getTemplatedDecl(); 1341 } 1342 const auto *Method = dyn_cast<CXXMethodDecl>(ND); 1343 if (Method && !Method->isStatic()) { 1344 return canCxxMethodBeCalled(Method, BaseExprType); 1345 } 1346 } 1347 return true; 1348 } 1349 1350 void ResultBuilder::AddResult(Result R, DeclContext *CurContext, 1351 NamedDecl *Hiding, bool InBaseClass = false, 1352 QualType BaseExprType = QualType()) { 1353 if (R.Kind != Result::RK_Declaration) { 1354 // For non-declaration results, just add the result. 1355 Results.push_back(R); 1356 return; 1357 } 1358 1359 // Look through using declarations. 1360 if (const auto *Using = dyn_cast<UsingShadowDecl>(R.Declaration)) { 1361 CodeCompletionResult Result(Using->getTargetDecl(), 1362 getBasePriority(Using->getTargetDecl()), 1363 R.Qualifier, false, 1364 (R.Availability == CXAvailability_Available || 1365 R.Availability == CXAvailability_Deprecated), 1366 std::move(R.FixIts)); 1367 Result.ShadowDecl = Using; 1368 AddResult(Result, CurContext, Hiding, /*InBaseClass=*/false, 1369 /*BaseExprType=*/BaseExprType); 1370 return; 1371 } 1372 1373 bool AsNestedNameSpecifier = false; 1374 if (!isInterestingDecl(R.Declaration, AsNestedNameSpecifier)) 1375 return; 1376 1377 // C++ constructors are never found by name lookup. 1378 if (isConstructor(R.Declaration)) 1379 return; 1380 1381 if (Hiding && CheckHiddenResult(R, CurContext, Hiding)) 1382 return; 1383 1384 // Make sure that any given declaration only shows up in the result set once. 1385 if (!AllDeclsFound.insert(R.Declaration->getCanonicalDecl()).second) 1386 return; 1387 1388 // If the filter is for nested-name-specifiers, then this result starts a 1389 // nested-name-specifier. 1390 if (AsNestedNameSpecifier) { 1391 R.StartsNestedNameSpecifier = true; 1392 R.Priority = CCP_NestedNameSpecifier; 1393 } else if (Filter == &ResultBuilder::IsMember && !R.Qualifier && 1394 InBaseClass && 1395 isa<CXXRecordDecl>( 1396 R.Declaration->getDeclContext()->getRedeclContext())) 1397 R.QualifierIsInformative = true; 1398 1399 // If this result is supposed to have an informative qualifier, add one. 1400 if (R.QualifierIsInformative && !R.Qualifier && 1401 !R.StartsNestedNameSpecifier) { 1402 const DeclContext *Ctx = R.Declaration->getDeclContext(); 1403 if (const auto *Namespace = dyn_cast<NamespaceDecl>(Ctx)) 1404 R.Qualifier = 1405 NestedNameSpecifier::Create(SemaRef.Context, nullptr, Namespace); 1406 else if (const auto *Tag = dyn_cast<TagDecl>(Ctx)) 1407 R.Qualifier = NestedNameSpecifier::Create( 1408 SemaRef.Context, nullptr, false, 1409 SemaRef.Context.getTypeDeclType(Tag).getTypePtr()); 1410 else 1411 R.QualifierIsInformative = false; 1412 } 1413 1414 // Adjust the priority if this result comes from a base class. 1415 if (InBaseClass) 1416 setInBaseClass(R); 1417 1418 AdjustResultPriorityForDecl(R); 1419 1420 if (HasObjectTypeQualifiers) 1421 if (const auto *Method = dyn_cast<CXXMethodDecl>(R.Declaration)) 1422 if (Method->isInstance()) { 1423 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1424 if (ObjectTypeQualifiers == MethodQuals) 1425 R.Priority += CCD_ObjectQualifierMatch; 1426 else if (ObjectTypeQualifiers - MethodQuals) { 1427 // The method cannot be invoked, because doing so would drop 1428 // qualifiers. 1429 return; 1430 } 1431 // Detect cases where a ref-qualified method cannot be invoked. 1432 switch (Method->getRefQualifier()) { 1433 case RQ_LValue: 1434 if (ObjectKind != VK_LValue && !MethodQuals.hasConst()) 1435 return; 1436 break; 1437 case RQ_RValue: 1438 if (ObjectKind == VK_LValue) 1439 return; 1440 break; 1441 case RQ_None: 1442 break; 1443 } 1444 1445 /// Check whether this dominates another overloaded method, which should 1446 /// be suppressed (or vice versa). 1447 /// Motivating case is const_iterator begin() const vs iterator begin(). 1448 auto &OverloadSet = OverloadMap[std::make_pair( 1449 CurContext, Method->getDeclName().getAsOpaqueInteger())]; 1450 for (const DeclIndexPair Entry : OverloadSet) { 1451 Result &Incumbent = Results[Entry.second]; 1452 switch (compareOverloads(*Method, 1453 *cast<CXXMethodDecl>(Incumbent.Declaration), 1454 ObjectTypeQualifiers, ObjectKind)) { 1455 case OverloadCompare::Dominates: 1456 // Replace the dominated overload with this one. 1457 // FIXME: if the overload dominates multiple incumbents then we 1458 // should remove all. But two overloads is by far the common case. 1459 Incumbent = std::move(R); 1460 return; 1461 case OverloadCompare::Dominated: 1462 // This overload can't be called, drop it. 1463 return; 1464 case OverloadCompare::BothViable: 1465 break; 1466 } 1467 } 1468 OverloadSet.Add(Method, Results.size()); 1469 } 1470 1471 R.FunctionCanBeCall = canFunctionBeCalled(R.getDeclaration(), BaseExprType); 1472 1473 // Insert this result into the set of results. 1474 Results.push_back(R); 1475 1476 if (!AsNestedNameSpecifier) 1477 MaybeAddConstructorResults(R); 1478 } 1479 1480 void ResultBuilder::AddResult(Result R) { 1481 assert(R.Kind != Result::RK_Declaration && 1482 "Declaration results need more context"); 1483 Results.push_back(R); 1484 } 1485 1486 /// Enter into a new scope. 1487 void ResultBuilder::EnterNewScope() { ShadowMaps.emplace_back(); } 1488 1489 /// Exit from the current scope. 1490 void ResultBuilder::ExitScope() { 1491 ShadowMaps.pop_back(); 1492 } 1493 1494 /// Determines whether this given declaration will be found by 1495 /// ordinary name lookup. 1496 bool ResultBuilder::IsOrdinaryName(const NamedDecl *ND) const { 1497 ND = ND->getUnderlyingDecl(); 1498 1499 // If name lookup finds a local extern declaration, then we are in a 1500 // context where it behaves like an ordinary name. 1501 unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_LocalExtern; 1502 if (SemaRef.getLangOpts().CPlusPlus) 1503 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member; 1504 else if (SemaRef.getLangOpts().ObjC) { 1505 if (isa<ObjCIvarDecl>(ND)) 1506 return true; 1507 } 1508 1509 return ND->getIdentifierNamespace() & IDNS; 1510 } 1511 1512 /// Determines whether this given declaration will be found by 1513 /// ordinary name lookup but is not a type name. 1514 bool ResultBuilder::IsOrdinaryNonTypeName(const NamedDecl *ND) const { 1515 ND = ND->getUnderlyingDecl(); 1516 if (isa<TypeDecl>(ND)) 1517 return false; 1518 // Objective-C interfaces names are not filtered by this method because they 1519 // can be used in a class property expression. We can still filter out 1520 // @class declarations though. 1521 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND)) { 1522 if (!ID->getDefinition()) 1523 return false; 1524 } 1525 1526 unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_LocalExtern; 1527 if (SemaRef.getLangOpts().CPlusPlus) 1528 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace | Decl::IDNS_Member; 1529 else if (SemaRef.getLangOpts().ObjC) { 1530 if (isa<ObjCIvarDecl>(ND)) 1531 return true; 1532 } 1533 1534 return ND->getIdentifierNamespace() & IDNS; 1535 } 1536 1537 bool ResultBuilder::IsIntegralConstantValue(const NamedDecl *ND) const { 1538 if (!IsOrdinaryNonTypeName(ND)) 1539 return false; 1540 1541 if (const auto *VD = dyn_cast<ValueDecl>(ND->getUnderlyingDecl())) 1542 if (VD->getType()->isIntegralOrEnumerationType()) 1543 return true; 1544 1545 return false; 1546 } 1547 1548 /// Determines whether this given declaration will be found by 1549 /// ordinary name lookup. 1550 bool ResultBuilder::IsOrdinaryNonValueName(const NamedDecl *ND) const { 1551 ND = ND->getUnderlyingDecl(); 1552 1553 unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_LocalExtern; 1554 if (SemaRef.getLangOpts().CPlusPlus) 1555 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Namespace; 1556 1557 return (ND->getIdentifierNamespace() & IDNS) && !isa<ValueDecl>(ND) && 1558 !isa<FunctionTemplateDecl>(ND) && !isa<ObjCPropertyDecl>(ND); 1559 } 1560 1561 /// Determines whether the given declaration is suitable as the 1562 /// start of a C++ nested-name-specifier, e.g., a class or namespace. 1563 bool ResultBuilder::IsNestedNameSpecifier(const NamedDecl *ND) const { 1564 // Allow us to find class templates, too. 1565 if (const auto *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND)) 1566 ND = ClassTemplate->getTemplatedDecl(); 1567 1568 return SemaRef.isAcceptableNestedNameSpecifier(ND); 1569 } 1570 1571 /// Determines whether the given declaration is an enumeration. 1572 bool ResultBuilder::IsEnum(const NamedDecl *ND) const { 1573 return isa<EnumDecl>(ND); 1574 } 1575 1576 /// Determines whether the given declaration is a class or struct. 1577 bool ResultBuilder::IsClassOrStruct(const NamedDecl *ND) const { 1578 // Allow us to find class templates, too. 1579 if (const auto *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND)) 1580 ND = ClassTemplate->getTemplatedDecl(); 1581 1582 // For purposes of this check, interfaces match too. 1583 if (const auto *RD = dyn_cast<RecordDecl>(ND)) 1584 return RD->getTagKind() == TagTypeKind::Class || 1585 RD->getTagKind() == TagTypeKind::Struct || 1586 RD->getTagKind() == TagTypeKind::Interface; 1587 1588 return false; 1589 } 1590 1591 /// Determines whether the given declaration is a union. 1592 bool ResultBuilder::IsUnion(const NamedDecl *ND) const { 1593 // Allow us to find class templates, too. 1594 if (const auto *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND)) 1595 ND = ClassTemplate->getTemplatedDecl(); 1596 1597 if (const auto *RD = dyn_cast<RecordDecl>(ND)) 1598 return RD->getTagKind() == TagTypeKind::Union; 1599 1600 return false; 1601 } 1602 1603 /// Determines whether the given declaration is a namespace. 1604 bool ResultBuilder::IsNamespace(const NamedDecl *ND) const { 1605 return isa<NamespaceDecl>(ND); 1606 } 1607 1608 /// Determines whether the given declaration is a namespace or 1609 /// namespace alias. 1610 bool ResultBuilder::IsNamespaceOrAlias(const NamedDecl *ND) const { 1611 return isa<NamespaceDecl>(ND->getUnderlyingDecl()); 1612 } 1613 1614 /// Determines whether the given declaration is a type. 1615 bool ResultBuilder::IsType(const NamedDecl *ND) const { 1616 ND = ND->getUnderlyingDecl(); 1617 return isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 1618 } 1619 1620 /// Determines which members of a class should be visible via 1621 /// "." or "->". Only value declarations, nested name specifiers, and 1622 /// using declarations thereof should show up. 1623 bool ResultBuilder::IsMember(const NamedDecl *ND) const { 1624 ND = ND->getUnderlyingDecl(); 1625 return isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND) || 1626 isa<ObjCPropertyDecl>(ND); 1627 } 1628 1629 static bool isObjCReceiverType(ASTContext &C, QualType T) { 1630 T = C.getCanonicalType(T); 1631 switch (T->getTypeClass()) { 1632 case Type::ObjCObject: 1633 case Type::ObjCInterface: 1634 case Type::ObjCObjectPointer: 1635 return true; 1636 1637 case Type::Builtin: 1638 switch (cast<BuiltinType>(T)->getKind()) { 1639 case BuiltinType::ObjCId: 1640 case BuiltinType::ObjCClass: 1641 case BuiltinType::ObjCSel: 1642 return true; 1643 1644 default: 1645 break; 1646 } 1647 return false; 1648 1649 default: 1650 break; 1651 } 1652 1653 if (!C.getLangOpts().CPlusPlus) 1654 return false; 1655 1656 // FIXME: We could perform more analysis here to determine whether a 1657 // particular class type has any conversions to Objective-C types. For now, 1658 // just accept all class types. 1659 return T->isDependentType() || T->isRecordType(); 1660 } 1661 1662 bool ResultBuilder::IsObjCMessageReceiver(const NamedDecl *ND) const { 1663 QualType T = getDeclUsageType(SemaRef.Context, ND); 1664 if (T.isNull()) 1665 return false; 1666 1667 T = SemaRef.Context.getBaseElementType(T); 1668 return isObjCReceiverType(SemaRef.Context, T); 1669 } 1670 1671 bool ResultBuilder::IsObjCMessageReceiverOrLambdaCapture( 1672 const NamedDecl *ND) const { 1673 if (IsObjCMessageReceiver(ND)) 1674 return true; 1675 1676 const auto *Var = dyn_cast<VarDecl>(ND); 1677 if (!Var) 1678 return false; 1679 1680 return Var->hasLocalStorage() && !Var->hasAttr<BlocksAttr>(); 1681 } 1682 1683 bool ResultBuilder::IsObjCCollection(const NamedDecl *ND) const { 1684 if ((SemaRef.getLangOpts().CPlusPlus && !IsOrdinaryName(ND)) || 1685 (!SemaRef.getLangOpts().CPlusPlus && !IsOrdinaryNonTypeName(ND))) 1686 return false; 1687 1688 QualType T = getDeclUsageType(SemaRef.Context, ND); 1689 if (T.isNull()) 1690 return false; 1691 1692 T = SemaRef.Context.getBaseElementType(T); 1693 return T->isObjCObjectType() || T->isObjCObjectPointerType() || 1694 T->isObjCIdType() || 1695 (SemaRef.getLangOpts().CPlusPlus && T->isRecordType()); 1696 } 1697 1698 bool ResultBuilder::IsImpossibleToSatisfy(const NamedDecl *ND) const { 1699 return false; 1700 } 1701 1702 /// Determines whether the given declaration is an Objective-C 1703 /// instance variable. 1704 bool ResultBuilder::IsObjCIvar(const NamedDecl *ND) const { 1705 return isa<ObjCIvarDecl>(ND); 1706 } 1707 1708 namespace { 1709 1710 /// Visible declaration consumer that adds a code-completion result 1711 /// for each visible declaration. 1712 class CodeCompletionDeclConsumer : public VisibleDeclConsumer { 1713 ResultBuilder &Results; 1714 DeclContext *InitialLookupCtx; 1715 // NamingClass and BaseType are used for access-checking. See 1716 // Sema::IsSimplyAccessible for details. 1717 CXXRecordDecl *NamingClass; 1718 QualType BaseType; 1719 std::vector<FixItHint> FixIts; 1720 1721 public: 1722 CodeCompletionDeclConsumer( 1723 ResultBuilder &Results, DeclContext *InitialLookupCtx, 1724 QualType BaseType = QualType(), 1725 std::vector<FixItHint> FixIts = std::vector<FixItHint>()) 1726 : Results(Results), InitialLookupCtx(InitialLookupCtx), 1727 FixIts(std::move(FixIts)) { 1728 NamingClass = llvm::dyn_cast<CXXRecordDecl>(InitialLookupCtx); 1729 // If BaseType was not provided explicitly, emulate implicit 'this->'. 1730 if (BaseType.isNull()) { 1731 auto ThisType = Results.getSema().getCurrentThisType(); 1732 if (!ThisType.isNull()) { 1733 assert(ThisType->isPointerType()); 1734 BaseType = ThisType->getPointeeType(); 1735 if (!NamingClass) 1736 NamingClass = BaseType->getAsCXXRecordDecl(); 1737 } 1738 } 1739 this->BaseType = BaseType; 1740 } 1741 1742 void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx, 1743 bool InBaseClass) override { 1744 ResultBuilder::Result Result(ND, Results.getBasePriority(ND), nullptr, 1745 false, IsAccessible(ND, Ctx), FixIts); 1746 Results.AddResult(Result, InitialLookupCtx, Hiding, InBaseClass, BaseType); 1747 } 1748 1749 void EnteredContext(DeclContext *Ctx) override { 1750 Results.addVisitedContext(Ctx); 1751 } 1752 1753 private: 1754 bool IsAccessible(NamedDecl *ND, DeclContext *Ctx) { 1755 // Naming class to use for access check. In most cases it was provided 1756 // explicitly (e.g. member access (lhs.foo) or qualified lookup (X::)), 1757 // for unqualified lookup we fallback to the \p Ctx in which we found the 1758 // member. 1759 auto *NamingClass = this->NamingClass; 1760 QualType BaseType = this->BaseType; 1761 if (auto *Cls = llvm::dyn_cast_or_null<CXXRecordDecl>(Ctx)) { 1762 if (!NamingClass) 1763 NamingClass = Cls; 1764 // When we emulate implicit 'this->' in an unqualified lookup, we might 1765 // end up with an invalid naming class. In that case, we avoid emulating 1766 // 'this->' qualifier to satisfy preconditions of the access checking. 1767 if (NamingClass->getCanonicalDecl() != Cls->getCanonicalDecl() && 1768 !NamingClass->isDerivedFrom(Cls)) { 1769 NamingClass = Cls; 1770 BaseType = QualType(); 1771 } 1772 } else { 1773 // The decl was found outside the C++ class, so only ObjC access checks 1774 // apply. Those do not rely on NamingClass and BaseType, so we clear them 1775 // out. 1776 NamingClass = nullptr; 1777 BaseType = QualType(); 1778 } 1779 return Results.getSema().IsSimplyAccessible(ND, NamingClass, BaseType); 1780 } 1781 }; 1782 } // namespace 1783 1784 /// Add type specifiers for the current language as keyword results. 1785 static void AddTypeSpecifierResults(const LangOptions &LangOpts, 1786 ResultBuilder &Results) { 1787 typedef CodeCompletionResult Result; 1788 Results.AddResult(Result("short", CCP_Type)); 1789 Results.AddResult(Result("long", CCP_Type)); 1790 Results.AddResult(Result("signed", CCP_Type)); 1791 Results.AddResult(Result("unsigned", CCP_Type)); 1792 Results.AddResult(Result("void", CCP_Type)); 1793 Results.AddResult(Result("char", CCP_Type)); 1794 Results.AddResult(Result("int", CCP_Type)); 1795 Results.AddResult(Result("float", CCP_Type)); 1796 Results.AddResult(Result("double", CCP_Type)); 1797 Results.AddResult(Result("enum", CCP_Type)); 1798 Results.AddResult(Result("struct", CCP_Type)); 1799 Results.AddResult(Result("union", CCP_Type)); 1800 Results.AddResult(Result("const", CCP_Type)); 1801 Results.AddResult(Result("volatile", CCP_Type)); 1802 1803 if (LangOpts.C99) { 1804 // C99-specific 1805 Results.AddResult(Result("_Complex", CCP_Type)); 1806 Results.AddResult(Result("_Imaginary", CCP_Type)); 1807 Results.AddResult(Result("_Bool", CCP_Type)); 1808 Results.AddResult(Result("restrict", CCP_Type)); 1809 } 1810 1811 CodeCompletionBuilder Builder(Results.getAllocator(), 1812 Results.getCodeCompletionTUInfo()); 1813 if (LangOpts.CPlusPlus) { 1814 // C++-specific 1815 Results.AddResult( 1816 Result("bool", CCP_Type + (LangOpts.ObjC ? CCD_bool_in_ObjC : 0))); 1817 Results.AddResult(Result("class", CCP_Type)); 1818 Results.AddResult(Result("wchar_t", CCP_Type)); 1819 1820 // typename name 1821 Builder.AddTypedTextChunk("typename"); 1822 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 1823 Builder.AddPlaceholderChunk("name"); 1824 Results.AddResult(Result(Builder.TakeString())); 1825 1826 if (LangOpts.CPlusPlus11) { 1827 Results.AddResult(Result("auto", CCP_Type)); 1828 Results.AddResult(Result("char16_t", CCP_Type)); 1829 Results.AddResult(Result("char32_t", CCP_Type)); 1830 1831 Builder.AddTypedTextChunk("decltype"); 1832 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 1833 Builder.AddPlaceholderChunk("expression"); 1834 Builder.AddChunk(CodeCompletionString::CK_RightParen); 1835 Results.AddResult(Result(Builder.TakeString())); 1836 } 1837 } else 1838 Results.AddResult(Result("__auto_type", CCP_Type)); 1839 1840 // GNU keywords 1841 if (LangOpts.GNUKeywords) { 1842 // FIXME: Enable when we actually support decimal floating point. 1843 // Results.AddResult(Result("_Decimal32")); 1844 // Results.AddResult(Result("_Decimal64")); 1845 // Results.AddResult(Result("_Decimal128")); 1846 1847 Builder.AddTypedTextChunk("typeof"); 1848 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 1849 Builder.AddPlaceholderChunk("expression"); 1850 Results.AddResult(Result(Builder.TakeString())); 1851 1852 Builder.AddTypedTextChunk("typeof"); 1853 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 1854 Builder.AddPlaceholderChunk("type"); 1855 Builder.AddChunk(CodeCompletionString::CK_RightParen); 1856 Results.AddResult(Result(Builder.TakeString())); 1857 } 1858 1859 // Nullability 1860 Results.AddResult(Result("_Nonnull", CCP_Type)); 1861 Results.AddResult(Result("_Null_unspecified", CCP_Type)); 1862 Results.AddResult(Result("_Nullable", CCP_Type)); 1863 } 1864 1865 static void AddStorageSpecifiers(Sema::ParserCompletionContext CCC, 1866 const LangOptions &LangOpts, 1867 ResultBuilder &Results) { 1868 typedef CodeCompletionResult Result; 1869 // Note: we don't suggest either "auto" or "register", because both 1870 // are pointless as storage specifiers. Elsewhere, we suggest "auto" 1871 // in C++0x as a type specifier. 1872 Results.AddResult(Result("extern")); 1873 Results.AddResult(Result("static")); 1874 1875 if (LangOpts.CPlusPlus11) { 1876 CodeCompletionAllocator &Allocator = Results.getAllocator(); 1877 CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo()); 1878 1879 // alignas 1880 Builder.AddTypedTextChunk("alignas"); 1881 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 1882 Builder.AddPlaceholderChunk("expression"); 1883 Builder.AddChunk(CodeCompletionString::CK_RightParen); 1884 Results.AddResult(Result(Builder.TakeString())); 1885 1886 Results.AddResult(Result("constexpr")); 1887 Results.AddResult(Result("thread_local")); 1888 } 1889 } 1890 1891 static void AddFunctionSpecifiers(Sema::ParserCompletionContext CCC, 1892 const LangOptions &LangOpts, 1893 ResultBuilder &Results) { 1894 typedef CodeCompletionResult Result; 1895 switch (CCC) { 1896 case Sema::PCC_Class: 1897 case Sema::PCC_MemberTemplate: 1898 if (LangOpts.CPlusPlus) { 1899 Results.AddResult(Result("explicit")); 1900 Results.AddResult(Result("friend")); 1901 Results.AddResult(Result("mutable")); 1902 Results.AddResult(Result("virtual")); 1903 } 1904 [[fallthrough]]; 1905 1906 case Sema::PCC_ObjCInterface: 1907 case Sema::PCC_ObjCImplementation: 1908 case Sema::PCC_Namespace: 1909 case Sema::PCC_Template: 1910 if (LangOpts.CPlusPlus || LangOpts.C99) 1911 Results.AddResult(Result("inline")); 1912 break; 1913 1914 case Sema::PCC_ObjCInstanceVariableList: 1915 case Sema::PCC_Expression: 1916 case Sema::PCC_Statement: 1917 case Sema::PCC_TopLevelOrExpression: 1918 case Sema::PCC_ForInit: 1919 case Sema::PCC_Condition: 1920 case Sema::PCC_RecoveryInFunction: 1921 case Sema::PCC_Type: 1922 case Sema::PCC_ParenthesizedExpression: 1923 case Sema::PCC_LocalDeclarationSpecifiers: 1924 break; 1925 } 1926 } 1927 1928 static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt); 1929 static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt); 1930 static void AddObjCVisibilityResults(const LangOptions &LangOpts, 1931 ResultBuilder &Results, bool NeedAt); 1932 static void AddObjCImplementationResults(const LangOptions &LangOpts, 1933 ResultBuilder &Results, bool NeedAt); 1934 static void AddObjCInterfaceResults(const LangOptions &LangOpts, 1935 ResultBuilder &Results, bool NeedAt); 1936 static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt); 1937 1938 static void AddTypedefResult(ResultBuilder &Results) { 1939 CodeCompletionBuilder Builder(Results.getAllocator(), 1940 Results.getCodeCompletionTUInfo()); 1941 Builder.AddTypedTextChunk("typedef"); 1942 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 1943 Builder.AddPlaceholderChunk("type"); 1944 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 1945 Builder.AddPlaceholderChunk("name"); 1946 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 1947 Results.AddResult(CodeCompletionResult(Builder.TakeString())); 1948 } 1949 1950 // using name = type 1951 static void AddUsingAliasResult(CodeCompletionBuilder &Builder, 1952 ResultBuilder &Results) { 1953 Builder.AddTypedTextChunk("using"); 1954 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 1955 Builder.AddPlaceholderChunk("name"); 1956 Builder.AddChunk(CodeCompletionString::CK_Equal); 1957 Builder.AddPlaceholderChunk("type"); 1958 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 1959 Results.AddResult(CodeCompletionResult(Builder.TakeString())); 1960 } 1961 1962 static bool WantTypesInContext(Sema::ParserCompletionContext CCC, 1963 const LangOptions &LangOpts) { 1964 switch (CCC) { 1965 case Sema::PCC_Namespace: 1966 case Sema::PCC_Class: 1967 case Sema::PCC_ObjCInstanceVariableList: 1968 case Sema::PCC_Template: 1969 case Sema::PCC_MemberTemplate: 1970 case Sema::PCC_Statement: 1971 case Sema::PCC_RecoveryInFunction: 1972 case Sema::PCC_Type: 1973 case Sema::PCC_ParenthesizedExpression: 1974 case Sema::PCC_LocalDeclarationSpecifiers: 1975 case Sema::PCC_TopLevelOrExpression: 1976 return true; 1977 1978 case Sema::PCC_Expression: 1979 case Sema::PCC_Condition: 1980 return LangOpts.CPlusPlus; 1981 1982 case Sema::PCC_ObjCInterface: 1983 case Sema::PCC_ObjCImplementation: 1984 return false; 1985 1986 case Sema::PCC_ForInit: 1987 return LangOpts.CPlusPlus || LangOpts.ObjC || LangOpts.C99; 1988 } 1989 1990 llvm_unreachable("Invalid ParserCompletionContext!"); 1991 } 1992 1993 static PrintingPolicy getCompletionPrintingPolicy(const ASTContext &Context, 1994 const Preprocessor &PP) { 1995 PrintingPolicy Policy = Sema::getPrintingPolicy(Context, PP); 1996 Policy.AnonymousTagLocations = false; 1997 Policy.SuppressStrongLifetime = true; 1998 Policy.SuppressUnwrittenScope = true; 1999 Policy.SuppressScope = true; 2000 Policy.CleanUglifiedParameters = true; 2001 return Policy; 2002 } 2003 2004 /// Retrieve a printing policy suitable for code completion. 2005 static PrintingPolicy getCompletionPrintingPolicy(Sema &S) { 2006 return getCompletionPrintingPolicy(S.Context, S.PP); 2007 } 2008 2009 /// Retrieve the string representation of the given type as a string 2010 /// that has the appropriate lifetime for code completion. 2011 /// 2012 /// This routine provides a fast path where we provide constant strings for 2013 /// common type names. 2014 static const char *GetCompletionTypeString(QualType T, ASTContext &Context, 2015 const PrintingPolicy &Policy, 2016 CodeCompletionAllocator &Allocator) { 2017 if (!T.getLocalQualifiers()) { 2018 // Built-in type names are constant strings. 2019 if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) 2020 return BT->getNameAsCString(Policy); 2021 2022 // Anonymous tag types are constant strings. 2023 if (const TagType *TagT = dyn_cast<TagType>(T)) 2024 if (TagDecl *Tag = TagT->getDecl()) 2025 if (!Tag->hasNameForLinkage()) { 2026 switch (Tag->getTagKind()) { 2027 case TagTypeKind::Struct: 2028 return "struct <anonymous>"; 2029 case TagTypeKind::Interface: 2030 return "__interface <anonymous>"; 2031 case TagTypeKind::Class: 2032 return "class <anonymous>"; 2033 case TagTypeKind::Union: 2034 return "union <anonymous>"; 2035 case TagTypeKind::Enum: 2036 return "enum <anonymous>"; 2037 } 2038 } 2039 } 2040 2041 // Slow path: format the type as a string. 2042 std::string Result; 2043 T.getAsStringInternal(Result, Policy); 2044 return Allocator.CopyString(Result); 2045 } 2046 2047 /// Add a completion for "this", if we're in a member function. 2048 static void addThisCompletion(Sema &S, ResultBuilder &Results) { 2049 QualType ThisTy = S.getCurrentThisType(); 2050 if (ThisTy.isNull()) 2051 return; 2052 2053 CodeCompletionAllocator &Allocator = Results.getAllocator(); 2054 CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo()); 2055 PrintingPolicy Policy = getCompletionPrintingPolicy(S); 2056 Builder.AddResultTypeChunk( 2057 GetCompletionTypeString(ThisTy, S.Context, Policy, Allocator)); 2058 Builder.AddTypedTextChunk("this"); 2059 Results.AddResult(CodeCompletionResult(Builder.TakeString())); 2060 } 2061 2062 static void AddStaticAssertResult(CodeCompletionBuilder &Builder, 2063 ResultBuilder &Results, 2064 const LangOptions &LangOpts) { 2065 if (!LangOpts.CPlusPlus11) 2066 return; 2067 2068 Builder.AddTypedTextChunk("static_assert"); 2069 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2070 Builder.AddPlaceholderChunk("expression"); 2071 Builder.AddChunk(CodeCompletionString::CK_Comma); 2072 Builder.AddPlaceholderChunk("message"); 2073 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2074 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2075 Results.AddResult(CodeCompletionResult(Builder.TakeString())); 2076 } 2077 2078 static void AddOverrideResults(ResultBuilder &Results, 2079 const CodeCompletionContext &CCContext, 2080 CodeCompletionBuilder &Builder) { 2081 Sema &S = Results.getSema(); 2082 const auto *CR = llvm::dyn_cast<CXXRecordDecl>(S.CurContext); 2083 // If not inside a class/struct/union return empty. 2084 if (!CR) 2085 return; 2086 // First store overrides within current class. 2087 // These are stored by name to make querying fast in the later step. 2088 llvm::StringMap<std::vector<FunctionDecl *>> Overrides; 2089 for (auto *Method : CR->methods()) { 2090 if (!Method->isVirtual() || !Method->getIdentifier()) 2091 continue; 2092 Overrides[Method->getName()].push_back(Method); 2093 } 2094 2095 for (const auto &Base : CR->bases()) { 2096 const auto *BR = Base.getType().getTypePtr()->getAsCXXRecordDecl(); 2097 if (!BR) 2098 continue; 2099 for (auto *Method : BR->methods()) { 2100 if (!Method->isVirtual() || !Method->getIdentifier()) 2101 continue; 2102 const auto it = Overrides.find(Method->getName()); 2103 bool IsOverriden = false; 2104 if (it != Overrides.end()) { 2105 for (auto *MD : it->second) { 2106 // If the method in current body is not an overload of this virtual 2107 // function, then it overrides this one. 2108 if (!S.IsOverload(MD, Method, false)) { 2109 IsOverriden = true; 2110 break; 2111 } 2112 } 2113 } 2114 if (!IsOverriden) { 2115 // Generates a new CodeCompletionResult by taking this function and 2116 // converting it into an override declaration with only one chunk in the 2117 // final CodeCompletionString as a TypedTextChunk. 2118 std::string OverrideSignature; 2119 llvm::raw_string_ostream OS(OverrideSignature); 2120 CodeCompletionResult CCR(Method, 0); 2121 PrintingPolicy Policy = 2122 getCompletionPrintingPolicy(S.getASTContext(), S.getPreprocessor()); 2123 auto *CCS = CCR.createCodeCompletionStringForOverride( 2124 S.getPreprocessor(), S.getASTContext(), Builder, 2125 /*IncludeBriefComments=*/false, CCContext, Policy); 2126 Results.AddResult(CodeCompletionResult(CCS, Method, CCP_CodePattern)); 2127 } 2128 } 2129 } 2130 } 2131 2132 /// Add language constructs that show up for "ordinary" names. 2133 static void AddOrdinaryNameResults(Sema::ParserCompletionContext CCC, Scope *S, 2134 Sema &SemaRef, ResultBuilder &Results) { 2135 CodeCompletionAllocator &Allocator = Results.getAllocator(); 2136 CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo()); 2137 2138 typedef CodeCompletionResult Result; 2139 switch (CCC) { 2140 case Sema::PCC_Namespace: 2141 if (SemaRef.getLangOpts().CPlusPlus) { 2142 if (Results.includeCodePatterns()) { 2143 // namespace <identifier> { declarations } 2144 Builder.AddTypedTextChunk("namespace"); 2145 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2146 Builder.AddPlaceholderChunk("identifier"); 2147 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2148 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2149 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2150 Builder.AddPlaceholderChunk("declarations"); 2151 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2152 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2153 Results.AddResult(Result(Builder.TakeString())); 2154 } 2155 2156 // namespace identifier = identifier ; 2157 Builder.AddTypedTextChunk("namespace"); 2158 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2159 Builder.AddPlaceholderChunk("name"); 2160 Builder.AddChunk(CodeCompletionString::CK_Equal); 2161 Builder.AddPlaceholderChunk("namespace"); 2162 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2163 Results.AddResult(Result(Builder.TakeString())); 2164 2165 // Using directives 2166 Builder.AddTypedTextChunk("using namespace"); 2167 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2168 Builder.AddPlaceholderChunk("identifier"); 2169 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2170 Results.AddResult(Result(Builder.TakeString())); 2171 2172 // asm(string-literal) 2173 Builder.AddTypedTextChunk("asm"); 2174 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2175 Builder.AddPlaceholderChunk("string-literal"); 2176 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2177 Results.AddResult(Result(Builder.TakeString())); 2178 2179 if (Results.includeCodePatterns()) { 2180 // Explicit template instantiation 2181 Builder.AddTypedTextChunk("template"); 2182 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2183 Builder.AddPlaceholderChunk("declaration"); 2184 Results.AddResult(Result(Builder.TakeString())); 2185 } else { 2186 Results.AddResult(Result("template", CodeCompletionResult::RK_Keyword)); 2187 } 2188 } 2189 2190 if (SemaRef.getLangOpts().ObjC) 2191 AddObjCTopLevelResults(Results, true); 2192 2193 AddTypedefResult(Results); 2194 [[fallthrough]]; 2195 2196 case Sema::PCC_Class: 2197 if (SemaRef.getLangOpts().CPlusPlus) { 2198 // Using declaration 2199 Builder.AddTypedTextChunk("using"); 2200 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2201 Builder.AddPlaceholderChunk("qualifier"); 2202 Builder.AddTextChunk("::"); 2203 Builder.AddPlaceholderChunk("name"); 2204 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2205 Results.AddResult(Result(Builder.TakeString())); 2206 2207 if (SemaRef.getLangOpts().CPlusPlus11) 2208 AddUsingAliasResult(Builder, Results); 2209 2210 // using typename qualifier::name (only in a dependent context) 2211 if (SemaRef.CurContext->isDependentContext()) { 2212 Builder.AddTypedTextChunk("using typename"); 2213 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2214 Builder.AddPlaceholderChunk("qualifier"); 2215 Builder.AddTextChunk("::"); 2216 Builder.AddPlaceholderChunk("name"); 2217 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2218 Results.AddResult(Result(Builder.TakeString())); 2219 } 2220 2221 AddStaticAssertResult(Builder, Results, SemaRef.getLangOpts()); 2222 2223 if (CCC == Sema::PCC_Class) { 2224 AddTypedefResult(Results); 2225 2226 bool IsNotInheritanceScope = !S->isClassInheritanceScope(); 2227 // public: 2228 Builder.AddTypedTextChunk("public"); 2229 if (IsNotInheritanceScope && Results.includeCodePatterns()) 2230 Builder.AddChunk(CodeCompletionString::CK_Colon); 2231 Results.AddResult(Result(Builder.TakeString())); 2232 2233 // protected: 2234 Builder.AddTypedTextChunk("protected"); 2235 if (IsNotInheritanceScope && Results.includeCodePatterns()) 2236 Builder.AddChunk(CodeCompletionString::CK_Colon); 2237 Results.AddResult(Result(Builder.TakeString())); 2238 2239 // private: 2240 Builder.AddTypedTextChunk("private"); 2241 if (IsNotInheritanceScope && Results.includeCodePatterns()) 2242 Builder.AddChunk(CodeCompletionString::CK_Colon); 2243 Results.AddResult(Result(Builder.TakeString())); 2244 2245 // FIXME: This adds override results only if we are at the first word of 2246 // the declaration/definition. Also call this from other sides to have 2247 // more use-cases. 2248 AddOverrideResults(Results, CodeCompletionContext::CCC_ClassStructUnion, 2249 Builder); 2250 } 2251 } 2252 [[fallthrough]]; 2253 2254 case Sema::PCC_Template: 2255 case Sema::PCC_MemberTemplate: 2256 if (SemaRef.getLangOpts().CPlusPlus && Results.includeCodePatterns()) { 2257 // template < parameters > 2258 Builder.AddTypedTextChunk("template"); 2259 Builder.AddChunk(CodeCompletionString::CK_LeftAngle); 2260 Builder.AddPlaceholderChunk("parameters"); 2261 Builder.AddChunk(CodeCompletionString::CK_RightAngle); 2262 Results.AddResult(Result(Builder.TakeString())); 2263 } else { 2264 Results.AddResult(Result("template", CodeCompletionResult::RK_Keyword)); 2265 } 2266 2267 AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2268 AddFunctionSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2269 break; 2270 2271 case Sema::PCC_ObjCInterface: 2272 AddObjCInterfaceResults(SemaRef.getLangOpts(), Results, true); 2273 AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2274 AddFunctionSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2275 break; 2276 2277 case Sema::PCC_ObjCImplementation: 2278 AddObjCImplementationResults(SemaRef.getLangOpts(), Results, true); 2279 AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2280 AddFunctionSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2281 break; 2282 2283 case Sema::PCC_ObjCInstanceVariableList: 2284 AddObjCVisibilityResults(SemaRef.getLangOpts(), Results, true); 2285 break; 2286 2287 case Sema::PCC_RecoveryInFunction: 2288 case Sema::PCC_TopLevelOrExpression: 2289 case Sema::PCC_Statement: { 2290 if (SemaRef.getLangOpts().CPlusPlus11) 2291 AddUsingAliasResult(Builder, Results); 2292 2293 AddTypedefResult(Results); 2294 2295 if (SemaRef.getLangOpts().CPlusPlus && Results.includeCodePatterns() && 2296 SemaRef.getLangOpts().CXXExceptions) { 2297 Builder.AddTypedTextChunk("try"); 2298 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2299 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2300 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2301 Builder.AddPlaceholderChunk("statements"); 2302 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2303 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2304 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2305 Builder.AddTextChunk("catch"); 2306 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2307 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2308 Builder.AddPlaceholderChunk("declaration"); 2309 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2310 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2311 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2312 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2313 Builder.AddPlaceholderChunk("statements"); 2314 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2315 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2316 Results.AddResult(Result(Builder.TakeString())); 2317 } 2318 if (SemaRef.getLangOpts().ObjC) 2319 AddObjCStatementResults(Results, true); 2320 2321 if (Results.includeCodePatterns()) { 2322 // if (condition) { statements } 2323 Builder.AddTypedTextChunk("if"); 2324 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2325 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2326 if (SemaRef.getLangOpts().CPlusPlus) 2327 Builder.AddPlaceholderChunk("condition"); 2328 else 2329 Builder.AddPlaceholderChunk("expression"); 2330 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2331 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2332 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2333 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2334 Builder.AddPlaceholderChunk("statements"); 2335 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2336 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2337 Results.AddResult(Result(Builder.TakeString())); 2338 2339 // switch (condition) { } 2340 Builder.AddTypedTextChunk("switch"); 2341 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2342 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2343 if (SemaRef.getLangOpts().CPlusPlus) 2344 Builder.AddPlaceholderChunk("condition"); 2345 else 2346 Builder.AddPlaceholderChunk("expression"); 2347 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2348 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2349 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2350 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2351 Builder.AddPlaceholderChunk("cases"); 2352 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2353 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2354 Results.AddResult(Result(Builder.TakeString())); 2355 } 2356 2357 // Switch-specific statements. 2358 if (SemaRef.getCurFunction() && 2359 !SemaRef.getCurFunction()->SwitchStack.empty()) { 2360 // case expression: 2361 Builder.AddTypedTextChunk("case"); 2362 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2363 Builder.AddPlaceholderChunk("expression"); 2364 Builder.AddChunk(CodeCompletionString::CK_Colon); 2365 Results.AddResult(Result(Builder.TakeString())); 2366 2367 // default: 2368 Builder.AddTypedTextChunk("default"); 2369 Builder.AddChunk(CodeCompletionString::CK_Colon); 2370 Results.AddResult(Result(Builder.TakeString())); 2371 } 2372 2373 if (Results.includeCodePatterns()) { 2374 /// while (condition) { statements } 2375 Builder.AddTypedTextChunk("while"); 2376 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2377 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2378 if (SemaRef.getLangOpts().CPlusPlus) 2379 Builder.AddPlaceholderChunk("condition"); 2380 else 2381 Builder.AddPlaceholderChunk("expression"); 2382 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2383 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2384 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2385 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2386 Builder.AddPlaceholderChunk("statements"); 2387 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2388 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2389 Results.AddResult(Result(Builder.TakeString())); 2390 2391 // do { statements } while ( expression ); 2392 Builder.AddTypedTextChunk("do"); 2393 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2394 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2395 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2396 Builder.AddPlaceholderChunk("statements"); 2397 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2398 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2399 Builder.AddTextChunk("while"); 2400 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2401 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2402 Builder.AddPlaceholderChunk("expression"); 2403 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2404 Results.AddResult(Result(Builder.TakeString())); 2405 2406 // for ( for-init-statement ; condition ; expression ) { statements } 2407 Builder.AddTypedTextChunk("for"); 2408 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2409 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2410 if (SemaRef.getLangOpts().CPlusPlus || SemaRef.getLangOpts().C99) 2411 Builder.AddPlaceholderChunk("init-statement"); 2412 else 2413 Builder.AddPlaceholderChunk("init-expression"); 2414 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2415 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2416 Builder.AddPlaceholderChunk("condition"); 2417 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2418 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2419 Builder.AddPlaceholderChunk("inc-expression"); 2420 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2421 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2422 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2423 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2424 Builder.AddPlaceholderChunk("statements"); 2425 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2426 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2427 Results.AddResult(Result(Builder.TakeString())); 2428 2429 if (SemaRef.getLangOpts().CPlusPlus11 || SemaRef.getLangOpts().ObjC) { 2430 // for ( range_declaration (:|in) range_expression ) { statements } 2431 Builder.AddTypedTextChunk("for"); 2432 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2433 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2434 Builder.AddPlaceholderChunk("range-declaration"); 2435 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2436 if (SemaRef.getLangOpts().ObjC) 2437 Builder.AddTextChunk("in"); 2438 else 2439 Builder.AddChunk(CodeCompletionString::CK_Colon); 2440 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2441 Builder.AddPlaceholderChunk("range-expression"); 2442 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2443 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2444 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 2445 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2446 Builder.AddPlaceholderChunk("statements"); 2447 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 2448 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 2449 Results.AddResult(Result(Builder.TakeString())); 2450 } 2451 } 2452 2453 if (S->getContinueParent()) { 2454 // continue ; 2455 Builder.AddTypedTextChunk("continue"); 2456 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2457 Results.AddResult(Result(Builder.TakeString())); 2458 } 2459 2460 if (S->getBreakParent()) { 2461 // break ; 2462 Builder.AddTypedTextChunk("break"); 2463 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2464 Results.AddResult(Result(Builder.TakeString())); 2465 } 2466 2467 // "return expression ;" or "return ;", depending on the return type. 2468 QualType ReturnType; 2469 if (const auto *Function = dyn_cast<FunctionDecl>(SemaRef.CurContext)) 2470 ReturnType = Function->getReturnType(); 2471 else if (const auto *Method = dyn_cast<ObjCMethodDecl>(SemaRef.CurContext)) 2472 ReturnType = Method->getReturnType(); 2473 else if (SemaRef.getCurBlock() && 2474 !SemaRef.getCurBlock()->ReturnType.isNull()) 2475 ReturnType = SemaRef.getCurBlock()->ReturnType;; 2476 if (ReturnType.isNull() || ReturnType->isVoidType()) { 2477 Builder.AddTypedTextChunk("return"); 2478 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2479 Results.AddResult(Result(Builder.TakeString())); 2480 } else { 2481 assert(!ReturnType.isNull()); 2482 // "return expression ;" 2483 Builder.AddTypedTextChunk("return"); 2484 Builder.AddChunk(clang::CodeCompletionString::CK_HorizontalSpace); 2485 Builder.AddPlaceholderChunk("expression"); 2486 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2487 Results.AddResult(Result(Builder.TakeString())); 2488 // When boolean, also add 'return true;' and 'return false;'. 2489 if (ReturnType->isBooleanType()) { 2490 Builder.AddTypedTextChunk("return true"); 2491 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2492 Results.AddResult(Result(Builder.TakeString())); 2493 2494 Builder.AddTypedTextChunk("return false"); 2495 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2496 Results.AddResult(Result(Builder.TakeString())); 2497 } 2498 // For pointers, suggest 'return nullptr' in C++. 2499 if (SemaRef.getLangOpts().CPlusPlus11 && 2500 (ReturnType->isPointerType() || ReturnType->isMemberPointerType())) { 2501 Builder.AddTypedTextChunk("return nullptr"); 2502 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2503 Results.AddResult(Result(Builder.TakeString())); 2504 } 2505 } 2506 2507 // goto identifier ; 2508 Builder.AddTypedTextChunk("goto"); 2509 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2510 Builder.AddPlaceholderChunk("label"); 2511 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2512 Results.AddResult(Result(Builder.TakeString())); 2513 2514 // Using directives 2515 Builder.AddTypedTextChunk("using namespace"); 2516 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2517 Builder.AddPlaceholderChunk("identifier"); 2518 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 2519 Results.AddResult(Result(Builder.TakeString())); 2520 2521 AddStaticAssertResult(Builder, Results, SemaRef.getLangOpts()); 2522 } 2523 [[fallthrough]]; 2524 2525 // Fall through (for statement expressions). 2526 case Sema::PCC_ForInit: 2527 case Sema::PCC_Condition: 2528 AddStorageSpecifiers(CCC, SemaRef.getLangOpts(), Results); 2529 // Fall through: conditions and statements can have expressions. 2530 [[fallthrough]]; 2531 2532 case Sema::PCC_ParenthesizedExpression: 2533 if (SemaRef.getLangOpts().ObjCAutoRefCount && 2534 CCC == Sema::PCC_ParenthesizedExpression) { 2535 // (__bridge <type>)<expression> 2536 Builder.AddTypedTextChunk("__bridge"); 2537 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2538 Builder.AddPlaceholderChunk("type"); 2539 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2540 Builder.AddPlaceholderChunk("expression"); 2541 Results.AddResult(Result(Builder.TakeString())); 2542 2543 // (__bridge_transfer <Objective-C type>)<expression> 2544 Builder.AddTypedTextChunk("__bridge_transfer"); 2545 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2546 Builder.AddPlaceholderChunk("Objective-C type"); 2547 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2548 Builder.AddPlaceholderChunk("expression"); 2549 Results.AddResult(Result(Builder.TakeString())); 2550 2551 // (__bridge_retained <CF type>)<expression> 2552 Builder.AddTypedTextChunk("__bridge_retained"); 2553 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2554 Builder.AddPlaceholderChunk("CF type"); 2555 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2556 Builder.AddPlaceholderChunk("expression"); 2557 Results.AddResult(Result(Builder.TakeString())); 2558 } 2559 // Fall through 2560 [[fallthrough]]; 2561 2562 case Sema::PCC_Expression: { 2563 if (SemaRef.getLangOpts().CPlusPlus) { 2564 // 'this', if we're in a non-static member function. 2565 addThisCompletion(SemaRef, Results); 2566 2567 // true 2568 Builder.AddResultTypeChunk("bool"); 2569 Builder.AddTypedTextChunk("true"); 2570 Results.AddResult(Result(Builder.TakeString())); 2571 2572 // false 2573 Builder.AddResultTypeChunk("bool"); 2574 Builder.AddTypedTextChunk("false"); 2575 Results.AddResult(Result(Builder.TakeString())); 2576 2577 if (SemaRef.getLangOpts().RTTI) { 2578 // dynamic_cast < type-id > ( expression ) 2579 Builder.AddTypedTextChunk("dynamic_cast"); 2580 Builder.AddChunk(CodeCompletionString::CK_LeftAngle); 2581 Builder.AddPlaceholderChunk("type"); 2582 Builder.AddChunk(CodeCompletionString::CK_RightAngle); 2583 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2584 Builder.AddPlaceholderChunk("expression"); 2585 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2586 Results.AddResult(Result(Builder.TakeString())); 2587 } 2588 2589 // static_cast < type-id > ( expression ) 2590 Builder.AddTypedTextChunk("static_cast"); 2591 Builder.AddChunk(CodeCompletionString::CK_LeftAngle); 2592 Builder.AddPlaceholderChunk("type"); 2593 Builder.AddChunk(CodeCompletionString::CK_RightAngle); 2594 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2595 Builder.AddPlaceholderChunk("expression"); 2596 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2597 Results.AddResult(Result(Builder.TakeString())); 2598 2599 // reinterpret_cast < type-id > ( expression ) 2600 Builder.AddTypedTextChunk("reinterpret_cast"); 2601 Builder.AddChunk(CodeCompletionString::CK_LeftAngle); 2602 Builder.AddPlaceholderChunk("type"); 2603 Builder.AddChunk(CodeCompletionString::CK_RightAngle); 2604 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2605 Builder.AddPlaceholderChunk("expression"); 2606 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2607 Results.AddResult(Result(Builder.TakeString())); 2608 2609 // const_cast < type-id > ( expression ) 2610 Builder.AddTypedTextChunk("const_cast"); 2611 Builder.AddChunk(CodeCompletionString::CK_LeftAngle); 2612 Builder.AddPlaceholderChunk("type"); 2613 Builder.AddChunk(CodeCompletionString::CK_RightAngle); 2614 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2615 Builder.AddPlaceholderChunk("expression"); 2616 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2617 Results.AddResult(Result(Builder.TakeString())); 2618 2619 if (SemaRef.getLangOpts().RTTI) { 2620 // typeid ( expression-or-type ) 2621 Builder.AddResultTypeChunk("std::type_info"); 2622 Builder.AddTypedTextChunk("typeid"); 2623 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2624 Builder.AddPlaceholderChunk("expression-or-type"); 2625 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2626 Results.AddResult(Result(Builder.TakeString())); 2627 } 2628 2629 // new T ( ... ) 2630 Builder.AddTypedTextChunk("new"); 2631 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2632 Builder.AddPlaceholderChunk("type"); 2633 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2634 Builder.AddPlaceholderChunk("expressions"); 2635 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2636 Results.AddResult(Result(Builder.TakeString())); 2637 2638 // new T [ ] ( ... ) 2639 Builder.AddTypedTextChunk("new"); 2640 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2641 Builder.AddPlaceholderChunk("type"); 2642 Builder.AddChunk(CodeCompletionString::CK_LeftBracket); 2643 Builder.AddPlaceholderChunk("size"); 2644 Builder.AddChunk(CodeCompletionString::CK_RightBracket); 2645 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2646 Builder.AddPlaceholderChunk("expressions"); 2647 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2648 Results.AddResult(Result(Builder.TakeString())); 2649 2650 // delete expression 2651 Builder.AddResultTypeChunk("void"); 2652 Builder.AddTypedTextChunk("delete"); 2653 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2654 Builder.AddPlaceholderChunk("expression"); 2655 Results.AddResult(Result(Builder.TakeString())); 2656 2657 // delete [] expression 2658 Builder.AddResultTypeChunk("void"); 2659 Builder.AddTypedTextChunk("delete"); 2660 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2661 Builder.AddChunk(CodeCompletionString::CK_LeftBracket); 2662 Builder.AddChunk(CodeCompletionString::CK_RightBracket); 2663 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2664 Builder.AddPlaceholderChunk("expression"); 2665 Results.AddResult(Result(Builder.TakeString())); 2666 2667 if (SemaRef.getLangOpts().CXXExceptions) { 2668 // throw expression 2669 Builder.AddResultTypeChunk("void"); 2670 Builder.AddTypedTextChunk("throw"); 2671 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 2672 Builder.AddPlaceholderChunk("expression"); 2673 Results.AddResult(Result(Builder.TakeString())); 2674 } 2675 2676 // FIXME: Rethrow? 2677 2678 if (SemaRef.getLangOpts().CPlusPlus11) { 2679 // nullptr 2680 Builder.AddResultTypeChunk("std::nullptr_t"); 2681 Builder.AddTypedTextChunk("nullptr"); 2682 Results.AddResult(Result(Builder.TakeString())); 2683 2684 // alignof 2685 Builder.AddResultTypeChunk("size_t"); 2686 Builder.AddTypedTextChunk("alignof"); 2687 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2688 Builder.AddPlaceholderChunk("type"); 2689 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2690 Results.AddResult(Result(Builder.TakeString())); 2691 2692 // noexcept 2693 Builder.AddResultTypeChunk("bool"); 2694 Builder.AddTypedTextChunk("noexcept"); 2695 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2696 Builder.AddPlaceholderChunk("expression"); 2697 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2698 Results.AddResult(Result(Builder.TakeString())); 2699 2700 // sizeof... expression 2701 Builder.AddResultTypeChunk("size_t"); 2702 Builder.AddTypedTextChunk("sizeof..."); 2703 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2704 Builder.AddPlaceholderChunk("parameter-pack"); 2705 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2706 Results.AddResult(Result(Builder.TakeString())); 2707 } 2708 } 2709 2710 if (SemaRef.getLangOpts().ObjC) { 2711 // Add "super", if we're in an Objective-C class with a superclass. 2712 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { 2713 // The interface can be NULL. 2714 if (ObjCInterfaceDecl *ID = Method->getClassInterface()) 2715 if (ID->getSuperClass()) { 2716 std::string SuperType; 2717 SuperType = ID->getSuperClass()->getNameAsString(); 2718 if (Method->isInstanceMethod()) 2719 SuperType += " *"; 2720 2721 Builder.AddResultTypeChunk(Allocator.CopyString(SuperType)); 2722 Builder.AddTypedTextChunk("super"); 2723 Results.AddResult(Result(Builder.TakeString())); 2724 } 2725 } 2726 2727 AddObjCExpressionResults(Results, true); 2728 } 2729 2730 if (SemaRef.getLangOpts().C11) { 2731 // _Alignof 2732 Builder.AddResultTypeChunk("size_t"); 2733 if (SemaRef.PP.isMacroDefined("alignof")) 2734 Builder.AddTypedTextChunk("alignof"); 2735 else 2736 Builder.AddTypedTextChunk("_Alignof"); 2737 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2738 Builder.AddPlaceholderChunk("type"); 2739 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2740 Results.AddResult(Result(Builder.TakeString())); 2741 } 2742 2743 if (SemaRef.getLangOpts().C23) { 2744 // nullptr 2745 Builder.AddResultTypeChunk("nullptr_t"); 2746 Builder.AddTypedTextChunk("nullptr"); 2747 Results.AddResult(Result(Builder.TakeString())); 2748 } 2749 2750 // sizeof expression 2751 Builder.AddResultTypeChunk("size_t"); 2752 Builder.AddTypedTextChunk("sizeof"); 2753 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 2754 Builder.AddPlaceholderChunk("expression-or-type"); 2755 Builder.AddChunk(CodeCompletionString::CK_RightParen); 2756 Results.AddResult(Result(Builder.TakeString())); 2757 break; 2758 } 2759 2760 case Sema::PCC_Type: 2761 case Sema::PCC_LocalDeclarationSpecifiers: 2762 break; 2763 } 2764 2765 if (WantTypesInContext(CCC, SemaRef.getLangOpts())) 2766 AddTypeSpecifierResults(SemaRef.getLangOpts(), Results); 2767 2768 if (SemaRef.getLangOpts().CPlusPlus && CCC != Sema::PCC_Type) 2769 Results.AddResult(Result("operator")); 2770 } 2771 2772 /// If the given declaration has an associated type, add it as a result 2773 /// type chunk. 2774 static void AddResultTypeChunk(ASTContext &Context, 2775 const PrintingPolicy &Policy, 2776 const NamedDecl *ND, QualType BaseType, 2777 CodeCompletionBuilder &Result) { 2778 if (!ND) 2779 return; 2780 2781 // Skip constructors and conversion functions, which have their return types 2782 // built into their names. 2783 if (isConstructor(ND) || isa<CXXConversionDecl>(ND)) 2784 return; 2785 2786 // Determine the type of the declaration (if it has a type). 2787 QualType T; 2788 if (const FunctionDecl *Function = ND->getAsFunction()) 2789 T = Function->getReturnType(); 2790 else if (const auto *Method = dyn_cast<ObjCMethodDecl>(ND)) { 2791 if (!BaseType.isNull()) 2792 T = Method->getSendResultType(BaseType); 2793 else 2794 T = Method->getReturnType(); 2795 } else if (const auto *Enumerator = dyn_cast<EnumConstantDecl>(ND)) { 2796 T = Context.getTypeDeclType(cast<TypeDecl>(Enumerator->getDeclContext())); 2797 T = clang::TypeName::getFullyQualifiedType(T, Context); 2798 } else if (isa<UnresolvedUsingValueDecl>(ND)) { 2799 /* Do nothing: ignore unresolved using declarations*/ 2800 } else if (const auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 2801 if (!BaseType.isNull()) 2802 T = Ivar->getUsageType(BaseType); 2803 else 2804 T = Ivar->getType(); 2805 } else if (const auto *Value = dyn_cast<ValueDecl>(ND)) { 2806 T = Value->getType(); 2807 } else if (const auto *Property = dyn_cast<ObjCPropertyDecl>(ND)) { 2808 if (!BaseType.isNull()) 2809 T = Property->getUsageType(BaseType); 2810 else 2811 T = Property->getType(); 2812 } 2813 2814 if (T.isNull() || Context.hasSameType(T, Context.DependentTy)) 2815 return; 2816 2817 Result.AddResultTypeChunk( 2818 GetCompletionTypeString(T, Context, Policy, Result.getAllocator())); 2819 } 2820 2821 static void MaybeAddSentinel(Preprocessor &PP, 2822 const NamedDecl *FunctionOrMethod, 2823 CodeCompletionBuilder &Result) { 2824 if (SentinelAttr *Sentinel = FunctionOrMethod->getAttr<SentinelAttr>()) 2825 if (Sentinel->getSentinel() == 0) { 2826 if (PP.getLangOpts().ObjC && PP.isMacroDefined("nil")) 2827 Result.AddTextChunk(", nil"); 2828 else if (PP.isMacroDefined("NULL")) 2829 Result.AddTextChunk(", NULL"); 2830 else 2831 Result.AddTextChunk(", (void*)0"); 2832 } 2833 } 2834 2835 static std::string formatObjCParamQualifiers(unsigned ObjCQuals, 2836 QualType &Type) { 2837 std::string Result; 2838 if (ObjCQuals & Decl::OBJC_TQ_In) 2839 Result += "in "; 2840 else if (ObjCQuals & Decl::OBJC_TQ_Inout) 2841 Result += "inout "; 2842 else if (ObjCQuals & Decl::OBJC_TQ_Out) 2843 Result += "out "; 2844 if (ObjCQuals & Decl::OBJC_TQ_Bycopy) 2845 Result += "bycopy "; 2846 else if (ObjCQuals & Decl::OBJC_TQ_Byref) 2847 Result += "byref "; 2848 if (ObjCQuals & Decl::OBJC_TQ_Oneway) 2849 Result += "oneway "; 2850 if (ObjCQuals & Decl::OBJC_TQ_CSNullability) { 2851 if (auto nullability = AttributedType::stripOuterNullability(Type)) { 2852 switch (*nullability) { 2853 case NullabilityKind::NonNull: 2854 Result += "nonnull "; 2855 break; 2856 2857 case NullabilityKind::Nullable: 2858 Result += "nullable "; 2859 break; 2860 2861 case NullabilityKind::Unspecified: 2862 Result += "null_unspecified "; 2863 break; 2864 2865 case NullabilityKind::NullableResult: 2866 llvm_unreachable("Not supported as a context-sensitive keyword!"); 2867 break; 2868 } 2869 } 2870 } 2871 return Result; 2872 } 2873 2874 /// Tries to find the most appropriate type location for an Objective-C 2875 /// block placeholder. 2876 /// 2877 /// This function ignores things like typedefs and qualifiers in order to 2878 /// present the most relevant and accurate block placeholders in code completion 2879 /// results. 2880 static void findTypeLocationForBlockDecl(const TypeSourceInfo *TSInfo, 2881 FunctionTypeLoc &Block, 2882 FunctionProtoTypeLoc &BlockProto, 2883 bool SuppressBlock = false) { 2884 if (!TSInfo) 2885 return; 2886 TypeLoc TL = TSInfo->getTypeLoc().getUnqualifiedLoc(); 2887 while (true) { 2888 // Look through typedefs. 2889 if (!SuppressBlock) { 2890 if (TypedefTypeLoc TypedefTL = TL.getAsAdjusted<TypedefTypeLoc>()) { 2891 if (TypeSourceInfo *InnerTSInfo = 2892 TypedefTL.getTypedefNameDecl()->getTypeSourceInfo()) { 2893 TL = InnerTSInfo->getTypeLoc().getUnqualifiedLoc(); 2894 continue; 2895 } 2896 } 2897 2898 // Look through qualified types 2899 if (QualifiedTypeLoc QualifiedTL = TL.getAs<QualifiedTypeLoc>()) { 2900 TL = QualifiedTL.getUnqualifiedLoc(); 2901 continue; 2902 } 2903 2904 if (AttributedTypeLoc AttrTL = TL.getAs<AttributedTypeLoc>()) { 2905 TL = AttrTL.getModifiedLoc(); 2906 continue; 2907 } 2908 } 2909 2910 // Try to get the function prototype behind the block pointer type, 2911 // then we're done. 2912 if (BlockPointerTypeLoc BlockPtr = TL.getAs<BlockPointerTypeLoc>()) { 2913 TL = BlockPtr.getPointeeLoc().IgnoreParens(); 2914 Block = TL.getAs<FunctionTypeLoc>(); 2915 BlockProto = TL.getAs<FunctionProtoTypeLoc>(); 2916 } 2917 break; 2918 } 2919 } 2920 2921 static std::string formatBlockPlaceholder( 2922 const PrintingPolicy &Policy, const NamedDecl *BlockDecl, 2923 FunctionTypeLoc &Block, FunctionProtoTypeLoc &BlockProto, 2924 bool SuppressBlockName = false, bool SuppressBlock = false, 2925 std::optional<ArrayRef<QualType>> ObjCSubsts = std::nullopt); 2926 2927 static std::string FormatFunctionParameter( 2928 const PrintingPolicy &Policy, const DeclaratorDecl *Param, 2929 bool SuppressName = false, bool SuppressBlock = false, 2930 std::optional<ArrayRef<QualType>> ObjCSubsts = std::nullopt) { 2931 // Params are unavailable in FunctionTypeLoc if the FunctionType is invalid. 2932 // It would be better to pass in the param Type, which is usually available. 2933 // But this case is rare, so just pretend we fell back to int as elsewhere. 2934 if (!Param) 2935 return "int"; 2936 Decl::ObjCDeclQualifier ObjCQual = Decl::OBJC_TQ_None; 2937 if (const auto *PVD = dyn_cast<ParmVarDecl>(Param)) 2938 ObjCQual = PVD->getObjCDeclQualifier(); 2939 bool ObjCMethodParam = isa<ObjCMethodDecl>(Param->getDeclContext()); 2940 if (Param->getType()->isDependentType() || 2941 !Param->getType()->isBlockPointerType()) { 2942 // The argument for a dependent or non-block parameter is a placeholder 2943 // containing that parameter's type. 2944 std::string Result; 2945 2946 if (Param->getIdentifier() && !ObjCMethodParam && !SuppressName) 2947 Result = std::string(Param->getIdentifier()->deuglifiedName()); 2948 2949 QualType Type = Param->getType(); 2950 if (ObjCSubsts) 2951 Type = Type.substObjCTypeArgs(Param->getASTContext(), *ObjCSubsts, 2952 ObjCSubstitutionContext::Parameter); 2953 if (ObjCMethodParam) { 2954 Result = "(" + formatObjCParamQualifiers(ObjCQual, Type); 2955 Result += Type.getAsString(Policy) + ")"; 2956 if (Param->getIdentifier() && !SuppressName) 2957 Result += Param->getIdentifier()->deuglifiedName(); 2958 } else { 2959 Type.getAsStringInternal(Result, Policy); 2960 } 2961 return Result; 2962 } 2963 2964 // The argument for a block pointer parameter is a block literal with 2965 // the appropriate type. 2966 FunctionTypeLoc Block; 2967 FunctionProtoTypeLoc BlockProto; 2968 findTypeLocationForBlockDecl(Param->getTypeSourceInfo(), Block, BlockProto, 2969 SuppressBlock); 2970 // Try to retrieve the block type information from the property if this is a 2971 // parameter in a setter. 2972 if (!Block && ObjCMethodParam && 2973 cast<ObjCMethodDecl>(Param->getDeclContext())->isPropertyAccessor()) { 2974 if (const auto *PD = cast<ObjCMethodDecl>(Param->getDeclContext()) 2975 ->findPropertyDecl(/*CheckOverrides=*/false)) 2976 findTypeLocationForBlockDecl(PD->getTypeSourceInfo(), Block, BlockProto, 2977 SuppressBlock); 2978 } 2979 2980 if (!Block) { 2981 // We were unable to find a FunctionProtoTypeLoc with parameter names 2982 // for the block; just use the parameter type as a placeholder. 2983 std::string Result; 2984 if (!ObjCMethodParam && Param->getIdentifier()) 2985 Result = std::string(Param->getIdentifier()->deuglifiedName()); 2986 2987 QualType Type = Param->getType().getUnqualifiedType(); 2988 2989 if (ObjCMethodParam) { 2990 Result = Type.getAsString(Policy); 2991 std::string Quals = formatObjCParamQualifiers(ObjCQual, Type); 2992 if (!Quals.empty()) 2993 Result = "(" + Quals + " " + Result + ")"; 2994 if (Result.back() != ')') 2995 Result += " "; 2996 if (Param->getIdentifier()) 2997 Result += Param->getIdentifier()->deuglifiedName(); 2998 } else { 2999 Type.getAsStringInternal(Result, Policy); 3000 } 3001 3002 return Result; 3003 } 3004 3005 // We have the function prototype behind the block pointer type, as it was 3006 // written in the source. 3007 return formatBlockPlaceholder(Policy, Param, Block, BlockProto, 3008 /*SuppressBlockName=*/false, SuppressBlock, 3009 ObjCSubsts); 3010 } 3011 3012 /// Returns a placeholder string that corresponds to an Objective-C block 3013 /// declaration. 3014 /// 3015 /// \param BlockDecl A declaration with an Objective-C block type. 3016 /// 3017 /// \param Block The most relevant type location for that block type. 3018 /// 3019 /// \param SuppressBlockName Determines whether or not the name of the block 3020 /// declaration is included in the resulting string. 3021 static std::string 3022 formatBlockPlaceholder(const PrintingPolicy &Policy, const NamedDecl *BlockDecl, 3023 FunctionTypeLoc &Block, FunctionProtoTypeLoc &BlockProto, 3024 bool SuppressBlockName, bool SuppressBlock, 3025 std::optional<ArrayRef<QualType>> ObjCSubsts) { 3026 std::string Result; 3027 QualType ResultType = Block.getTypePtr()->getReturnType(); 3028 if (ObjCSubsts) 3029 ResultType = 3030 ResultType.substObjCTypeArgs(BlockDecl->getASTContext(), *ObjCSubsts, 3031 ObjCSubstitutionContext::Result); 3032 if (!ResultType->isVoidType() || SuppressBlock) 3033 ResultType.getAsStringInternal(Result, Policy); 3034 3035 // Format the parameter list. 3036 std::string Params; 3037 if (!BlockProto || Block.getNumParams() == 0) { 3038 if (BlockProto && BlockProto.getTypePtr()->isVariadic()) 3039 Params = "(...)"; 3040 else 3041 Params = "(void)"; 3042 } else { 3043 Params += "("; 3044 for (unsigned I = 0, N = Block.getNumParams(); I != N; ++I) { 3045 if (I) 3046 Params += ", "; 3047 Params += FormatFunctionParameter(Policy, Block.getParam(I), 3048 /*SuppressName=*/false, 3049 /*SuppressBlock=*/true, ObjCSubsts); 3050 3051 if (I == N - 1 && BlockProto.getTypePtr()->isVariadic()) 3052 Params += ", ..."; 3053 } 3054 Params += ")"; 3055 } 3056 3057 if (SuppressBlock) { 3058 // Format as a parameter. 3059 Result = Result + " (^"; 3060 if (!SuppressBlockName && BlockDecl->getIdentifier()) 3061 Result += BlockDecl->getIdentifier()->getName(); 3062 Result += ")"; 3063 Result += Params; 3064 } else { 3065 // Format as a block literal argument. 3066 Result = '^' + Result; 3067 Result += Params; 3068 3069 if (!SuppressBlockName && BlockDecl->getIdentifier()) 3070 Result += BlockDecl->getIdentifier()->getName(); 3071 } 3072 3073 return Result; 3074 } 3075 3076 static std::string GetDefaultValueString(const ParmVarDecl *Param, 3077 const SourceManager &SM, 3078 const LangOptions &LangOpts) { 3079 const SourceRange SrcRange = Param->getDefaultArgRange(); 3080 CharSourceRange CharSrcRange = CharSourceRange::getTokenRange(SrcRange); 3081 bool Invalid = CharSrcRange.isInvalid(); 3082 if (Invalid) 3083 return ""; 3084 StringRef srcText = 3085 Lexer::getSourceText(CharSrcRange, SM, LangOpts, &Invalid); 3086 if (Invalid) 3087 return ""; 3088 3089 if (srcText.empty() || srcText == "=") { 3090 // Lexer can't determine the value. 3091 // This happens if the code is incorrect (for example class is forward 3092 // declared). 3093 return ""; 3094 } 3095 std::string DefValue(srcText.str()); 3096 // FIXME: remove this check if the Lexer::getSourceText value is fixed and 3097 // this value always has (or always does not have) '=' in front of it 3098 if (DefValue.at(0) != '=') { 3099 // If we don't have '=' in front of value. 3100 // Lexer returns built-in types values without '=' and user-defined types 3101 // values with it. 3102 return " = " + DefValue; 3103 } 3104 return " " + DefValue; 3105 } 3106 3107 /// Add function parameter chunks to the given code completion string. 3108 static void AddFunctionParameterChunks(Preprocessor &PP, 3109 const PrintingPolicy &Policy, 3110 const FunctionDecl *Function, 3111 CodeCompletionBuilder &Result, 3112 unsigned Start = 0, 3113 bool InOptional = false) { 3114 bool FirstParameter = true; 3115 3116 for (unsigned P = Start, N = Function->getNumParams(); P != N; ++P) { 3117 const ParmVarDecl *Param = Function->getParamDecl(P); 3118 3119 if (Param->hasDefaultArg() && !InOptional) { 3120 // When we see an optional default argument, put that argument and 3121 // the remaining default arguments into a new, optional string. 3122 CodeCompletionBuilder Opt(Result.getAllocator(), 3123 Result.getCodeCompletionTUInfo()); 3124 if (!FirstParameter) 3125 Opt.AddChunk(CodeCompletionString::CK_Comma); 3126 AddFunctionParameterChunks(PP, Policy, Function, Opt, P, true); 3127 Result.AddOptionalChunk(Opt.TakeString()); 3128 break; 3129 } 3130 3131 if (FirstParameter) 3132 FirstParameter = false; 3133 else 3134 Result.AddChunk(CodeCompletionString::CK_Comma); 3135 3136 InOptional = false; 3137 3138 // Format the placeholder string. 3139 std::string PlaceholderStr = FormatFunctionParameter(Policy, Param); 3140 if (Param->hasDefaultArg()) 3141 PlaceholderStr += 3142 GetDefaultValueString(Param, PP.getSourceManager(), PP.getLangOpts()); 3143 3144 if (Function->isVariadic() && P == N - 1) 3145 PlaceholderStr += ", ..."; 3146 3147 // Add the placeholder string. 3148 Result.AddPlaceholderChunk( 3149 Result.getAllocator().CopyString(PlaceholderStr)); 3150 } 3151 3152 if (const auto *Proto = Function->getType()->getAs<FunctionProtoType>()) 3153 if (Proto->isVariadic()) { 3154 if (Proto->getNumParams() == 0) 3155 Result.AddPlaceholderChunk("..."); 3156 3157 MaybeAddSentinel(PP, Function, Result); 3158 } 3159 } 3160 3161 /// Add template parameter chunks to the given code completion string. 3162 static void AddTemplateParameterChunks( 3163 ASTContext &Context, const PrintingPolicy &Policy, 3164 const TemplateDecl *Template, CodeCompletionBuilder &Result, 3165 unsigned MaxParameters = 0, unsigned Start = 0, bool InDefaultArg = false) { 3166 bool FirstParameter = true; 3167 3168 // Prefer to take the template parameter names from the first declaration of 3169 // the template. 3170 Template = cast<TemplateDecl>(Template->getCanonicalDecl()); 3171 3172 TemplateParameterList *Params = Template->getTemplateParameters(); 3173 TemplateParameterList::iterator PEnd = Params->end(); 3174 if (MaxParameters) 3175 PEnd = Params->begin() + MaxParameters; 3176 for (TemplateParameterList::iterator P = Params->begin() + Start; P != PEnd; 3177 ++P) { 3178 bool HasDefaultArg = false; 3179 std::string PlaceholderStr; 3180 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { 3181 if (TTP->wasDeclaredWithTypename()) 3182 PlaceholderStr = "typename"; 3183 else if (const auto *TC = TTP->getTypeConstraint()) { 3184 llvm::raw_string_ostream OS(PlaceholderStr); 3185 TC->print(OS, Policy); 3186 OS.flush(); 3187 } else 3188 PlaceholderStr = "class"; 3189 3190 if (TTP->getIdentifier()) { 3191 PlaceholderStr += ' '; 3192 PlaceholderStr += TTP->getIdentifier()->deuglifiedName(); 3193 } 3194 3195 HasDefaultArg = TTP->hasDefaultArgument(); 3196 } else if (NonTypeTemplateParmDecl *NTTP = 3197 dyn_cast<NonTypeTemplateParmDecl>(*P)) { 3198 if (NTTP->getIdentifier()) 3199 PlaceholderStr = std::string(NTTP->getIdentifier()->deuglifiedName()); 3200 NTTP->getType().getAsStringInternal(PlaceholderStr, Policy); 3201 HasDefaultArg = NTTP->hasDefaultArgument(); 3202 } else { 3203 assert(isa<TemplateTemplateParmDecl>(*P)); 3204 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); 3205 3206 // Since putting the template argument list into the placeholder would 3207 // be very, very long, we just use an abbreviation. 3208 PlaceholderStr = "template<...> class"; 3209 if (TTP->getIdentifier()) { 3210 PlaceholderStr += ' '; 3211 PlaceholderStr += TTP->getIdentifier()->deuglifiedName(); 3212 } 3213 3214 HasDefaultArg = TTP->hasDefaultArgument(); 3215 } 3216 3217 if (HasDefaultArg && !InDefaultArg) { 3218 // When we see an optional default argument, put that argument and 3219 // the remaining default arguments into a new, optional string. 3220 CodeCompletionBuilder Opt(Result.getAllocator(), 3221 Result.getCodeCompletionTUInfo()); 3222 if (!FirstParameter) 3223 Opt.AddChunk(CodeCompletionString::CK_Comma); 3224 AddTemplateParameterChunks(Context, Policy, Template, Opt, MaxParameters, 3225 P - Params->begin(), true); 3226 Result.AddOptionalChunk(Opt.TakeString()); 3227 break; 3228 } 3229 3230 InDefaultArg = false; 3231 3232 if (FirstParameter) 3233 FirstParameter = false; 3234 else 3235 Result.AddChunk(CodeCompletionString::CK_Comma); 3236 3237 // Add the placeholder string. 3238 Result.AddPlaceholderChunk( 3239 Result.getAllocator().CopyString(PlaceholderStr)); 3240 } 3241 } 3242 3243 /// Add a qualifier to the given code-completion string, if the 3244 /// provided nested-name-specifier is non-NULL. 3245 static void AddQualifierToCompletionString(CodeCompletionBuilder &Result, 3246 NestedNameSpecifier *Qualifier, 3247 bool QualifierIsInformative, 3248 ASTContext &Context, 3249 const PrintingPolicy &Policy) { 3250 if (!Qualifier) 3251 return; 3252 3253 std::string PrintedNNS; 3254 { 3255 llvm::raw_string_ostream OS(PrintedNNS); 3256 Qualifier->print(OS, Policy); 3257 } 3258 if (QualifierIsInformative) 3259 Result.AddInformativeChunk(Result.getAllocator().CopyString(PrintedNNS)); 3260 else 3261 Result.AddTextChunk(Result.getAllocator().CopyString(PrintedNNS)); 3262 } 3263 3264 static void 3265 AddFunctionTypeQualsToCompletionString(CodeCompletionBuilder &Result, 3266 const FunctionDecl *Function) { 3267 const auto *Proto = Function->getType()->getAs<FunctionProtoType>(); 3268 if (!Proto || !Proto->getMethodQuals()) 3269 return; 3270 3271 // FIXME: Add ref-qualifier! 3272 3273 // Handle single qualifiers without copying 3274 if (Proto->getMethodQuals().hasOnlyConst()) { 3275 Result.AddInformativeChunk(" const"); 3276 return; 3277 } 3278 3279 if (Proto->getMethodQuals().hasOnlyVolatile()) { 3280 Result.AddInformativeChunk(" volatile"); 3281 return; 3282 } 3283 3284 if (Proto->getMethodQuals().hasOnlyRestrict()) { 3285 Result.AddInformativeChunk(" restrict"); 3286 return; 3287 } 3288 3289 // Handle multiple qualifiers. 3290 std::string QualsStr; 3291 if (Proto->isConst()) 3292 QualsStr += " const"; 3293 if (Proto->isVolatile()) 3294 QualsStr += " volatile"; 3295 if (Proto->isRestrict()) 3296 QualsStr += " restrict"; 3297 Result.AddInformativeChunk(Result.getAllocator().CopyString(QualsStr)); 3298 } 3299 3300 /// Add the name of the given declaration 3301 static void AddTypedNameChunk(ASTContext &Context, const PrintingPolicy &Policy, 3302 const NamedDecl *ND, 3303 CodeCompletionBuilder &Result) { 3304 DeclarationName Name = ND->getDeclName(); 3305 if (!Name) 3306 return; 3307 3308 switch (Name.getNameKind()) { 3309 case DeclarationName::CXXOperatorName: { 3310 const char *OperatorName = nullptr; 3311 switch (Name.getCXXOverloadedOperator()) { 3312 case OO_None: 3313 case OO_Conditional: 3314 case NUM_OVERLOADED_OPERATORS: 3315 OperatorName = "operator"; 3316 break; 3317 3318 #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ 3319 case OO_##Name: \ 3320 OperatorName = "operator" Spelling; \ 3321 break; 3322 #define OVERLOADED_OPERATOR_MULTI(Name, Spelling, Unary, Binary, MemberOnly) 3323 #include "clang/Basic/OperatorKinds.def" 3324 3325 case OO_New: 3326 OperatorName = "operator new"; 3327 break; 3328 case OO_Delete: 3329 OperatorName = "operator delete"; 3330 break; 3331 case OO_Array_New: 3332 OperatorName = "operator new[]"; 3333 break; 3334 case OO_Array_Delete: 3335 OperatorName = "operator delete[]"; 3336 break; 3337 case OO_Call: 3338 OperatorName = "operator()"; 3339 break; 3340 case OO_Subscript: 3341 OperatorName = "operator[]"; 3342 break; 3343 } 3344 Result.AddTypedTextChunk(OperatorName); 3345 break; 3346 } 3347 3348 case DeclarationName::Identifier: 3349 case DeclarationName::CXXConversionFunctionName: 3350 case DeclarationName::CXXDestructorName: 3351 case DeclarationName::CXXLiteralOperatorName: 3352 Result.AddTypedTextChunk( 3353 Result.getAllocator().CopyString(ND->getNameAsString())); 3354 break; 3355 3356 case DeclarationName::CXXDeductionGuideName: 3357 case DeclarationName::CXXUsingDirective: 3358 case DeclarationName::ObjCZeroArgSelector: 3359 case DeclarationName::ObjCOneArgSelector: 3360 case DeclarationName::ObjCMultiArgSelector: 3361 break; 3362 3363 case DeclarationName::CXXConstructorName: { 3364 CXXRecordDecl *Record = nullptr; 3365 QualType Ty = Name.getCXXNameType(); 3366 if (const auto *RecordTy = Ty->getAs<RecordType>()) 3367 Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 3368 else if (const auto *InjectedTy = Ty->getAs<InjectedClassNameType>()) 3369 Record = InjectedTy->getDecl(); 3370 else { 3371 Result.AddTypedTextChunk( 3372 Result.getAllocator().CopyString(ND->getNameAsString())); 3373 break; 3374 } 3375 3376 Result.AddTypedTextChunk( 3377 Result.getAllocator().CopyString(Record->getNameAsString())); 3378 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) { 3379 Result.AddChunk(CodeCompletionString::CK_LeftAngle); 3380 AddTemplateParameterChunks(Context, Policy, Template, Result); 3381 Result.AddChunk(CodeCompletionString::CK_RightAngle); 3382 } 3383 break; 3384 } 3385 } 3386 } 3387 3388 CodeCompletionString *CodeCompletionResult::CreateCodeCompletionString( 3389 Sema &S, const CodeCompletionContext &CCContext, 3390 CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, 3391 bool IncludeBriefComments) { 3392 return CreateCodeCompletionString(S.Context, S.PP, CCContext, Allocator, 3393 CCTUInfo, IncludeBriefComments); 3394 } 3395 3396 CodeCompletionString *CodeCompletionResult::CreateCodeCompletionStringForMacro( 3397 Preprocessor &PP, CodeCompletionAllocator &Allocator, 3398 CodeCompletionTUInfo &CCTUInfo) { 3399 assert(Kind == RK_Macro); 3400 CodeCompletionBuilder Result(Allocator, CCTUInfo, Priority, Availability); 3401 const MacroInfo *MI = PP.getMacroInfo(Macro); 3402 Result.AddTypedTextChunk(Result.getAllocator().CopyString(Macro->getName())); 3403 3404 if (!MI || !MI->isFunctionLike()) 3405 return Result.TakeString(); 3406 3407 // Format a function-like macro with placeholders for the arguments. 3408 Result.AddChunk(CodeCompletionString::CK_LeftParen); 3409 MacroInfo::param_iterator A = MI->param_begin(), AEnd = MI->param_end(); 3410 3411 // C99 variadic macros add __VA_ARGS__ at the end. Skip it. 3412 if (MI->isC99Varargs()) { 3413 --AEnd; 3414 3415 if (A == AEnd) { 3416 Result.AddPlaceholderChunk("..."); 3417 } 3418 } 3419 3420 for (MacroInfo::param_iterator A = MI->param_begin(); A != AEnd; ++A) { 3421 if (A != MI->param_begin()) 3422 Result.AddChunk(CodeCompletionString::CK_Comma); 3423 3424 if (MI->isVariadic() && (A + 1) == AEnd) { 3425 SmallString<32> Arg = (*A)->getName(); 3426 if (MI->isC99Varargs()) 3427 Arg += ", ..."; 3428 else 3429 Arg += "..."; 3430 Result.AddPlaceholderChunk(Result.getAllocator().CopyString(Arg)); 3431 break; 3432 } 3433 3434 // Non-variadic macros are simple. 3435 Result.AddPlaceholderChunk( 3436 Result.getAllocator().CopyString((*A)->getName())); 3437 } 3438 Result.AddChunk(CodeCompletionString::CK_RightParen); 3439 return Result.TakeString(); 3440 } 3441 3442 /// If possible, create a new code completion string for the given 3443 /// result. 3444 /// 3445 /// \returns Either a new, heap-allocated code completion string describing 3446 /// how to use this result, or NULL to indicate that the string or name of the 3447 /// result is all that is needed. 3448 CodeCompletionString *CodeCompletionResult::CreateCodeCompletionString( 3449 ASTContext &Ctx, Preprocessor &PP, const CodeCompletionContext &CCContext, 3450 CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, 3451 bool IncludeBriefComments) { 3452 if (Kind == RK_Macro) 3453 return CreateCodeCompletionStringForMacro(PP, Allocator, CCTUInfo); 3454 3455 CodeCompletionBuilder Result(Allocator, CCTUInfo, Priority, Availability); 3456 3457 PrintingPolicy Policy = getCompletionPrintingPolicy(Ctx, PP); 3458 if (Kind == RK_Pattern) { 3459 Pattern->Priority = Priority; 3460 Pattern->Availability = Availability; 3461 3462 if (Declaration) { 3463 Result.addParentContext(Declaration->getDeclContext()); 3464 Pattern->ParentName = Result.getParentName(); 3465 if (const RawComment *RC = 3466 getPatternCompletionComment(Ctx, Declaration)) { 3467 Result.addBriefComment(RC->getBriefText(Ctx)); 3468 Pattern->BriefComment = Result.getBriefComment(); 3469 } 3470 } 3471 3472 return Pattern; 3473 } 3474 3475 if (Kind == RK_Keyword) { 3476 Result.AddTypedTextChunk(Keyword); 3477 return Result.TakeString(); 3478 } 3479 assert(Kind == RK_Declaration && "Missed a result kind?"); 3480 return createCodeCompletionStringForDecl( 3481 PP, Ctx, Result, IncludeBriefComments, CCContext, Policy); 3482 } 3483 3484 static void printOverrideString(const CodeCompletionString &CCS, 3485 std::string &BeforeName, 3486 std::string &NameAndSignature) { 3487 bool SeenTypedChunk = false; 3488 for (auto &Chunk : CCS) { 3489 if (Chunk.Kind == CodeCompletionString::CK_Optional) { 3490 assert(SeenTypedChunk && "optional parameter before name"); 3491 // Note that we put all chunks inside into NameAndSignature. 3492 printOverrideString(*Chunk.Optional, NameAndSignature, NameAndSignature); 3493 continue; 3494 } 3495 SeenTypedChunk |= Chunk.Kind == CodeCompletionString::CK_TypedText; 3496 if (SeenTypedChunk) 3497 NameAndSignature += Chunk.Text; 3498 else 3499 BeforeName += Chunk.Text; 3500 } 3501 } 3502 3503 CodeCompletionString * 3504 CodeCompletionResult::createCodeCompletionStringForOverride( 3505 Preprocessor &PP, ASTContext &Ctx, CodeCompletionBuilder &Result, 3506 bool IncludeBriefComments, const CodeCompletionContext &CCContext, 3507 PrintingPolicy &Policy) { 3508 auto *CCS = createCodeCompletionStringForDecl(PP, Ctx, Result, 3509 /*IncludeBriefComments=*/false, 3510 CCContext, Policy); 3511 std::string BeforeName; 3512 std::string NameAndSignature; 3513 // For overrides all chunks go into the result, none are informative. 3514 printOverrideString(*CCS, BeforeName, NameAndSignature); 3515 NameAndSignature += " override"; 3516 3517 Result.AddTextChunk(Result.getAllocator().CopyString(BeforeName)); 3518 Result.AddChunk(CodeCompletionString::CK_HorizontalSpace); 3519 Result.AddTypedTextChunk(Result.getAllocator().CopyString(NameAndSignature)); 3520 return Result.TakeString(); 3521 } 3522 3523 // FIXME: Right now this works well with lambdas. Add support for other functor 3524 // types like std::function. 3525 static const NamedDecl *extractFunctorCallOperator(const NamedDecl *ND) { 3526 const auto *VD = dyn_cast<VarDecl>(ND); 3527 if (!VD) 3528 return nullptr; 3529 const auto *RecordDecl = VD->getType()->getAsCXXRecordDecl(); 3530 if (!RecordDecl || !RecordDecl->isLambda()) 3531 return nullptr; 3532 return RecordDecl->getLambdaCallOperator(); 3533 } 3534 3535 CodeCompletionString *CodeCompletionResult::createCodeCompletionStringForDecl( 3536 Preprocessor &PP, ASTContext &Ctx, CodeCompletionBuilder &Result, 3537 bool IncludeBriefComments, const CodeCompletionContext &CCContext, 3538 PrintingPolicy &Policy) { 3539 const NamedDecl *ND = Declaration; 3540 Result.addParentContext(ND->getDeclContext()); 3541 3542 if (IncludeBriefComments) { 3543 // Add documentation comment, if it exists. 3544 if (const RawComment *RC = getCompletionComment(Ctx, Declaration)) { 3545 Result.addBriefComment(RC->getBriefText(Ctx)); 3546 } 3547 } 3548 3549 if (StartsNestedNameSpecifier) { 3550 Result.AddTypedTextChunk( 3551 Result.getAllocator().CopyString(ND->getNameAsString())); 3552 Result.AddTextChunk("::"); 3553 return Result.TakeString(); 3554 } 3555 3556 for (const auto *I : ND->specific_attrs<AnnotateAttr>()) 3557 Result.AddAnnotation(Result.getAllocator().CopyString(I->getAnnotation())); 3558 3559 auto AddFunctionTypeAndResult = [&](const FunctionDecl *Function) { 3560 AddResultTypeChunk(Ctx, Policy, Function, CCContext.getBaseType(), Result); 3561 AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, 3562 Ctx, Policy); 3563 AddTypedNameChunk(Ctx, Policy, ND, Result); 3564 Result.AddChunk(CodeCompletionString::CK_LeftParen); 3565 AddFunctionParameterChunks(PP, Policy, Function, Result); 3566 Result.AddChunk(CodeCompletionString::CK_RightParen); 3567 AddFunctionTypeQualsToCompletionString(Result, Function); 3568 }; 3569 3570 if (const auto *Function = dyn_cast<FunctionDecl>(ND)) { 3571 AddFunctionTypeAndResult(Function); 3572 return Result.TakeString(); 3573 } 3574 3575 if (const auto *CallOperator = 3576 dyn_cast_or_null<FunctionDecl>(extractFunctorCallOperator(ND))) { 3577 AddFunctionTypeAndResult(CallOperator); 3578 return Result.TakeString(); 3579 } 3580 3581 AddResultTypeChunk(Ctx, Policy, ND, CCContext.getBaseType(), Result); 3582 3583 if (const FunctionTemplateDecl *FunTmpl = 3584 dyn_cast<FunctionTemplateDecl>(ND)) { 3585 AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, 3586 Ctx, Policy); 3587 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 3588 AddTypedNameChunk(Ctx, Policy, Function, Result); 3589 3590 // Figure out which template parameters are deduced (or have default 3591 // arguments). 3592 // Note that we're creating a non-empty bit vector so that we can go 3593 // through the loop below to omit default template parameters for non-call 3594 // cases. 3595 llvm::SmallBitVector Deduced(FunTmpl->getTemplateParameters()->size()); 3596 // Avoid running it if this is not a call: We should emit *all* template 3597 // parameters. 3598 if (FunctionCanBeCall) 3599 Sema::MarkDeducedTemplateParameters(Ctx, FunTmpl, Deduced); 3600 unsigned LastDeducibleArgument; 3601 for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0; 3602 --LastDeducibleArgument) { 3603 if (!Deduced[LastDeducibleArgument - 1]) { 3604 // C++0x: Figure out if the template argument has a default. If so, 3605 // the user doesn't need to type this argument. 3606 // FIXME: We need to abstract template parameters better! 3607 bool HasDefaultArg = false; 3608 NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam( 3609 LastDeducibleArgument - 1); 3610 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 3611 HasDefaultArg = TTP->hasDefaultArgument(); 3612 else if (NonTypeTemplateParmDecl *NTTP = 3613 dyn_cast<NonTypeTemplateParmDecl>(Param)) 3614 HasDefaultArg = NTTP->hasDefaultArgument(); 3615 else { 3616 assert(isa<TemplateTemplateParmDecl>(Param)); 3617 HasDefaultArg = 3618 cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument(); 3619 } 3620 3621 if (!HasDefaultArg) 3622 break; 3623 } 3624 } 3625 3626 if (LastDeducibleArgument || !FunctionCanBeCall) { 3627 // Some of the function template arguments cannot be deduced from a 3628 // function call, so we introduce an explicit template argument list 3629 // containing all of the arguments up to the first deducible argument. 3630 // 3631 // Or, if this isn't a call, emit all the template arguments 3632 // to disambiguate the (potential) overloads. 3633 // 3634 // FIXME: Detect cases where the function parameters can be deduced from 3635 // the surrounding context, as per [temp.deduct.funcaddr]. 3636 // e.g., 3637 // template <class T> void foo(T); 3638 // void (*f)(int) = foo; 3639 Result.AddChunk(CodeCompletionString::CK_LeftAngle); 3640 AddTemplateParameterChunks(Ctx, Policy, FunTmpl, Result, 3641 LastDeducibleArgument); 3642 Result.AddChunk(CodeCompletionString::CK_RightAngle); 3643 } 3644 3645 // Add the function parameters 3646 Result.AddChunk(CodeCompletionString::CK_LeftParen); 3647 AddFunctionParameterChunks(PP, Policy, Function, Result); 3648 Result.AddChunk(CodeCompletionString::CK_RightParen); 3649 AddFunctionTypeQualsToCompletionString(Result, Function); 3650 return Result.TakeString(); 3651 } 3652 3653 if (const auto *Template = dyn_cast<TemplateDecl>(ND)) { 3654 AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, 3655 Ctx, Policy); 3656 Result.AddTypedTextChunk( 3657 Result.getAllocator().CopyString(Template->getNameAsString())); 3658 Result.AddChunk(CodeCompletionString::CK_LeftAngle); 3659 AddTemplateParameterChunks(Ctx, Policy, Template, Result); 3660 Result.AddChunk(CodeCompletionString::CK_RightAngle); 3661 return Result.TakeString(); 3662 } 3663 3664 if (const auto *Method = dyn_cast<ObjCMethodDecl>(ND)) { 3665 Selector Sel = Method->getSelector(); 3666 if (Sel.isUnarySelector()) { 3667 Result.AddTypedTextChunk( 3668 Result.getAllocator().CopyString(Sel.getNameForSlot(0))); 3669 return Result.TakeString(); 3670 } 3671 3672 std::string SelName = Sel.getNameForSlot(0).str(); 3673 SelName += ':'; 3674 if (StartParameter == 0) 3675 Result.AddTypedTextChunk(Result.getAllocator().CopyString(SelName)); 3676 else { 3677 Result.AddInformativeChunk(Result.getAllocator().CopyString(SelName)); 3678 3679 // If there is only one parameter, and we're past it, add an empty 3680 // typed-text chunk since there is nothing to type. 3681 if (Method->param_size() == 1) 3682 Result.AddTypedTextChunk(""); 3683 } 3684 unsigned Idx = 0; 3685 // The extra Idx < Sel.getNumArgs() check is needed due to legacy C-style 3686 // method parameters. 3687 for (ObjCMethodDecl::param_const_iterator P = Method->param_begin(), 3688 PEnd = Method->param_end(); 3689 P != PEnd && Idx < Sel.getNumArgs(); (void)++P, ++Idx) { 3690 if (Idx > 0) { 3691 std::string Keyword; 3692 if (Idx > StartParameter) 3693 Result.AddChunk(CodeCompletionString::CK_HorizontalSpace); 3694 if (IdentifierInfo *II = Sel.getIdentifierInfoForSlot(Idx)) 3695 Keyword += II->getName(); 3696 Keyword += ":"; 3697 if (Idx < StartParameter || AllParametersAreInformative) 3698 Result.AddInformativeChunk(Result.getAllocator().CopyString(Keyword)); 3699 else 3700 Result.AddTypedTextChunk(Result.getAllocator().CopyString(Keyword)); 3701 } 3702 3703 // If we're before the starting parameter, skip the placeholder. 3704 if (Idx < StartParameter) 3705 continue; 3706 3707 std::string Arg; 3708 QualType ParamType = (*P)->getType(); 3709 std::optional<ArrayRef<QualType>> ObjCSubsts; 3710 if (!CCContext.getBaseType().isNull()) 3711 ObjCSubsts = CCContext.getBaseType()->getObjCSubstitutions(Method); 3712 3713 if (ParamType->isBlockPointerType() && !DeclaringEntity) 3714 Arg = FormatFunctionParameter(Policy, *P, true, 3715 /*SuppressBlock=*/false, ObjCSubsts); 3716 else { 3717 if (ObjCSubsts) 3718 ParamType = ParamType.substObjCTypeArgs( 3719 Ctx, *ObjCSubsts, ObjCSubstitutionContext::Parameter); 3720 Arg = "(" + formatObjCParamQualifiers((*P)->getObjCDeclQualifier(), 3721 ParamType); 3722 Arg += ParamType.getAsString(Policy) + ")"; 3723 if (IdentifierInfo *II = (*P)->getIdentifier()) 3724 if (DeclaringEntity || AllParametersAreInformative) 3725 Arg += II->getName(); 3726 } 3727 3728 if (Method->isVariadic() && (P + 1) == PEnd) 3729 Arg += ", ..."; 3730 3731 if (DeclaringEntity) 3732 Result.AddTextChunk(Result.getAllocator().CopyString(Arg)); 3733 else if (AllParametersAreInformative) 3734 Result.AddInformativeChunk(Result.getAllocator().CopyString(Arg)); 3735 else 3736 Result.AddPlaceholderChunk(Result.getAllocator().CopyString(Arg)); 3737 } 3738 3739 if (Method->isVariadic()) { 3740 if (Method->param_size() == 0) { 3741 if (DeclaringEntity) 3742 Result.AddTextChunk(", ..."); 3743 else if (AllParametersAreInformative) 3744 Result.AddInformativeChunk(", ..."); 3745 else 3746 Result.AddPlaceholderChunk(", ..."); 3747 } 3748 3749 MaybeAddSentinel(PP, Method, Result); 3750 } 3751 3752 return Result.TakeString(); 3753 } 3754 3755 if (Qualifier) 3756 AddQualifierToCompletionString(Result, Qualifier, QualifierIsInformative, 3757 Ctx, Policy); 3758 3759 Result.AddTypedTextChunk( 3760 Result.getAllocator().CopyString(ND->getNameAsString())); 3761 return Result.TakeString(); 3762 } 3763 3764 const RawComment *clang::getCompletionComment(const ASTContext &Ctx, 3765 const NamedDecl *ND) { 3766 if (!ND) 3767 return nullptr; 3768 if (auto *RC = Ctx.getRawCommentForAnyRedecl(ND)) 3769 return RC; 3770 3771 // Try to find comment from a property for ObjC methods. 3772 const auto *M = dyn_cast<ObjCMethodDecl>(ND); 3773 if (!M) 3774 return nullptr; 3775 const ObjCPropertyDecl *PDecl = M->findPropertyDecl(); 3776 if (!PDecl) 3777 return nullptr; 3778 3779 return Ctx.getRawCommentForAnyRedecl(PDecl); 3780 } 3781 3782 const RawComment *clang::getPatternCompletionComment(const ASTContext &Ctx, 3783 const NamedDecl *ND) { 3784 const auto *M = dyn_cast_or_null<ObjCMethodDecl>(ND); 3785 if (!M || !M->isPropertyAccessor()) 3786 return nullptr; 3787 3788 // Provide code completion comment for self.GetterName where 3789 // GetterName is the getter method for a property with name 3790 // different from the property name (declared via a property 3791 // getter attribute. 3792 const ObjCPropertyDecl *PDecl = M->findPropertyDecl(); 3793 if (!PDecl) 3794 return nullptr; 3795 if (PDecl->getGetterName() == M->getSelector() && 3796 PDecl->getIdentifier() != M->getIdentifier()) { 3797 if (auto *RC = Ctx.getRawCommentForAnyRedecl(M)) 3798 return RC; 3799 if (auto *RC = Ctx.getRawCommentForAnyRedecl(PDecl)) 3800 return RC; 3801 } 3802 return nullptr; 3803 } 3804 3805 const RawComment *clang::getParameterComment( 3806 const ASTContext &Ctx, 3807 const CodeCompleteConsumer::OverloadCandidate &Result, unsigned ArgIndex) { 3808 auto FDecl = Result.getFunction(); 3809 if (!FDecl) 3810 return nullptr; 3811 if (ArgIndex < FDecl->getNumParams()) 3812 return Ctx.getRawCommentForAnyRedecl(FDecl->getParamDecl(ArgIndex)); 3813 return nullptr; 3814 } 3815 3816 static void AddOverloadAggregateChunks(const RecordDecl *RD, 3817 const PrintingPolicy &Policy, 3818 CodeCompletionBuilder &Result, 3819 unsigned CurrentArg) { 3820 unsigned ChunkIndex = 0; 3821 auto AddChunk = [&](llvm::StringRef Placeholder) { 3822 if (ChunkIndex > 0) 3823 Result.AddChunk(CodeCompletionString::CK_Comma); 3824 const char *Copy = Result.getAllocator().CopyString(Placeholder); 3825 if (ChunkIndex == CurrentArg) 3826 Result.AddCurrentParameterChunk(Copy); 3827 else 3828 Result.AddPlaceholderChunk(Copy); 3829 ++ChunkIndex; 3830 }; 3831 // Aggregate initialization has all bases followed by all fields. 3832 // (Bases are not legal in C++11 but in that case we never get here). 3833 if (auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) { 3834 for (const auto &Base : CRD->bases()) 3835 AddChunk(Base.getType().getAsString(Policy)); 3836 } 3837 for (const auto &Field : RD->fields()) 3838 AddChunk(FormatFunctionParameter(Policy, Field)); 3839 } 3840 3841 /// Add function overload parameter chunks to the given code completion 3842 /// string. 3843 static void AddOverloadParameterChunks( 3844 ASTContext &Context, const PrintingPolicy &Policy, 3845 const FunctionDecl *Function, const FunctionProtoType *Prototype, 3846 FunctionProtoTypeLoc PrototypeLoc, CodeCompletionBuilder &Result, 3847 unsigned CurrentArg, unsigned Start = 0, bool InOptional = false) { 3848 if (!Function && !Prototype) { 3849 Result.AddChunk(CodeCompletionString::CK_CurrentParameter, "..."); 3850 return; 3851 } 3852 3853 bool FirstParameter = true; 3854 unsigned NumParams = 3855 Function ? Function->getNumParams() : Prototype->getNumParams(); 3856 3857 for (unsigned P = Start; P != NumParams; ++P) { 3858 if (Function && Function->getParamDecl(P)->hasDefaultArg() && !InOptional) { 3859 // When we see an optional default argument, put that argument and 3860 // the remaining default arguments into a new, optional string. 3861 CodeCompletionBuilder Opt(Result.getAllocator(), 3862 Result.getCodeCompletionTUInfo()); 3863 if (!FirstParameter) 3864 Opt.AddChunk(CodeCompletionString::CK_Comma); 3865 // Optional sections are nested. 3866 AddOverloadParameterChunks(Context, Policy, Function, Prototype, 3867 PrototypeLoc, Opt, CurrentArg, P, 3868 /*InOptional=*/true); 3869 Result.AddOptionalChunk(Opt.TakeString()); 3870 return; 3871 } 3872 3873 if (FirstParameter) 3874 FirstParameter = false; 3875 else 3876 Result.AddChunk(CodeCompletionString::CK_Comma); 3877 3878 InOptional = false; 3879 3880 // Format the placeholder string. 3881 std::string Placeholder; 3882 assert(P < Prototype->getNumParams()); 3883 if (Function || PrototypeLoc) { 3884 const ParmVarDecl *Param = 3885 Function ? Function->getParamDecl(P) : PrototypeLoc.getParam(P); 3886 Placeholder = FormatFunctionParameter(Policy, Param); 3887 if (Param->hasDefaultArg()) 3888 Placeholder += GetDefaultValueString(Param, Context.getSourceManager(), 3889 Context.getLangOpts()); 3890 } else { 3891 Placeholder = Prototype->getParamType(P).getAsString(Policy); 3892 } 3893 3894 if (P == CurrentArg) 3895 Result.AddCurrentParameterChunk( 3896 Result.getAllocator().CopyString(Placeholder)); 3897 else 3898 Result.AddPlaceholderChunk(Result.getAllocator().CopyString(Placeholder)); 3899 } 3900 3901 if (Prototype && Prototype->isVariadic()) { 3902 CodeCompletionBuilder Opt(Result.getAllocator(), 3903 Result.getCodeCompletionTUInfo()); 3904 if (!FirstParameter) 3905 Opt.AddChunk(CodeCompletionString::CK_Comma); 3906 3907 if (CurrentArg < NumParams) 3908 Opt.AddPlaceholderChunk("..."); 3909 else 3910 Opt.AddCurrentParameterChunk("..."); 3911 3912 Result.AddOptionalChunk(Opt.TakeString()); 3913 } 3914 } 3915 3916 static std::string 3917 formatTemplateParameterPlaceholder(const NamedDecl *Param, bool &Optional, 3918 const PrintingPolicy &Policy) { 3919 if (const auto *Type = dyn_cast<TemplateTypeParmDecl>(Param)) { 3920 Optional = Type->hasDefaultArgument(); 3921 } else if (const auto *NonType = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3922 Optional = NonType->hasDefaultArgument(); 3923 } else if (const auto *Template = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3924 Optional = Template->hasDefaultArgument(); 3925 } 3926 std::string Result; 3927 llvm::raw_string_ostream OS(Result); 3928 Param->print(OS, Policy); 3929 return Result; 3930 } 3931 3932 static std::string templateResultType(const TemplateDecl *TD, 3933 const PrintingPolicy &Policy) { 3934 if (const auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) 3935 return CTD->getTemplatedDecl()->getKindName().str(); 3936 if (const auto *VTD = dyn_cast<VarTemplateDecl>(TD)) 3937 return VTD->getTemplatedDecl()->getType().getAsString(Policy); 3938 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(TD)) 3939 return FTD->getTemplatedDecl()->getReturnType().getAsString(Policy); 3940 if (isa<TypeAliasTemplateDecl>(TD)) 3941 return "type"; 3942 if (isa<TemplateTemplateParmDecl>(TD)) 3943 return "class"; 3944 if (isa<ConceptDecl>(TD)) 3945 return "concept"; 3946 return ""; 3947 } 3948 3949 static CodeCompletionString *createTemplateSignatureString( 3950 const TemplateDecl *TD, CodeCompletionBuilder &Builder, unsigned CurrentArg, 3951 const PrintingPolicy &Policy) { 3952 llvm::ArrayRef<NamedDecl *> Params = TD->getTemplateParameters()->asArray(); 3953 CodeCompletionBuilder OptionalBuilder(Builder.getAllocator(), 3954 Builder.getCodeCompletionTUInfo()); 3955 std::string ResultType = templateResultType(TD, Policy); 3956 if (!ResultType.empty()) 3957 Builder.AddResultTypeChunk(Builder.getAllocator().CopyString(ResultType)); 3958 Builder.AddTextChunk( 3959 Builder.getAllocator().CopyString(TD->getNameAsString())); 3960 Builder.AddChunk(CodeCompletionString::CK_LeftAngle); 3961 // Initially we're writing into the main string. Once we see an optional arg 3962 // (with default), we're writing into the nested optional chunk. 3963 CodeCompletionBuilder *Current = &Builder; 3964 for (unsigned I = 0; I < Params.size(); ++I) { 3965 bool Optional = false; 3966 std::string Placeholder = 3967 formatTemplateParameterPlaceholder(Params[I], Optional, Policy); 3968 if (Optional) 3969 Current = &OptionalBuilder; 3970 if (I > 0) 3971 Current->AddChunk(CodeCompletionString::CK_Comma); 3972 Current->AddChunk(I == CurrentArg 3973 ? CodeCompletionString::CK_CurrentParameter 3974 : CodeCompletionString::CK_Placeholder, 3975 Current->getAllocator().CopyString(Placeholder)); 3976 } 3977 // Add the optional chunk to the main string if we ever used it. 3978 if (Current == &OptionalBuilder) 3979 Builder.AddOptionalChunk(OptionalBuilder.TakeString()); 3980 Builder.AddChunk(CodeCompletionString::CK_RightAngle); 3981 // For function templates, ResultType was the function's return type. 3982 // Give some clue this is a function. (Don't show the possibly-bulky params). 3983 if (isa<FunctionTemplateDecl>(TD)) 3984 Builder.AddInformativeChunk("()"); 3985 return Builder.TakeString(); 3986 } 3987 3988 CodeCompletionString * 3989 CodeCompleteConsumer::OverloadCandidate::CreateSignatureString( 3990 unsigned CurrentArg, Sema &S, CodeCompletionAllocator &Allocator, 3991 CodeCompletionTUInfo &CCTUInfo, bool IncludeBriefComments, 3992 bool Braced) const { 3993 PrintingPolicy Policy = getCompletionPrintingPolicy(S); 3994 // Show signatures of constructors as they are declared: 3995 // vector(int n) rather than vector<string>(int n) 3996 // This is less noisy without being less clear, and avoids tricky cases. 3997 Policy.SuppressTemplateArgsInCXXConstructors = true; 3998 3999 // FIXME: Set priority, availability appropriately. 4000 CodeCompletionBuilder Result(Allocator, CCTUInfo, 1, 4001 CXAvailability_Available); 4002 4003 if (getKind() == CK_Template) 4004 return createTemplateSignatureString(getTemplate(), Result, CurrentArg, 4005 Policy); 4006 4007 FunctionDecl *FDecl = getFunction(); 4008 const FunctionProtoType *Proto = 4009 dyn_cast_or_null<FunctionProtoType>(getFunctionType()); 4010 4011 // First, the name/type of the callee. 4012 if (getKind() == CK_Aggregate) { 4013 Result.AddTextChunk( 4014 Result.getAllocator().CopyString(getAggregate()->getName())); 4015 } else if (FDecl) { 4016 if (IncludeBriefComments) { 4017 if (auto RC = getParameterComment(S.getASTContext(), *this, CurrentArg)) 4018 Result.addBriefComment(RC->getBriefText(S.getASTContext())); 4019 } 4020 AddResultTypeChunk(S.Context, Policy, FDecl, QualType(), Result); 4021 4022 std::string Name; 4023 llvm::raw_string_ostream OS(Name); 4024 FDecl->getDeclName().print(OS, Policy); 4025 Result.AddTextChunk(Result.getAllocator().CopyString(OS.str())); 4026 } else { 4027 // Function without a declaration. Just give the return type. 4028 Result.AddResultTypeChunk(Result.getAllocator().CopyString( 4029 getFunctionType()->getReturnType().getAsString(Policy))); 4030 } 4031 4032 // Next, the brackets and parameters. 4033 Result.AddChunk(Braced ? CodeCompletionString::CK_LeftBrace 4034 : CodeCompletionString::CK_LeftParen); 4035 if (getKind() == CK_Aggregate) 4036 AddOverloadAggregateChunks(getAggregate(), Policy, Result, CurrentArg); 4037 else 4038 AddOverloadParameterChunks(S.getASTContext(), Policy, FDecl, Proto, 4039 getFunctionProtoTypeLoc(), Result, CurrentArg); 4040 Result.AddChunk(Braced ? CodeCompletionString::CK_RightBrace 4041 : CodeCompletionString::CK_RightParen); 4042 4043 return Result.TakeString(); 4044 } 4045 4046 unsigned clang::getMacroUsagePriority(StringRef MacroName, 4047 const LangOptions &LangOpts, 4048 bool PreferredTypeIsPointer) { 4049 unsigned Priority = CCP_Macro; 4050 4051 // Treat the "nil", "Nil" and "NULL" macros as null pointer constants. 4052 if (MacroName.equals("nil") || MacroName.equals("NULL") || 4053 MacroName.equals("Nil")) { 4054 Priority = CCP_Constant; 4055 if (PreferredTypeIsPointer) 4056 Priority = Priority / CCF_SimilarTypeMatch; 4057 } 4058 // Treat "YES", "NO", "true", and "false" as constants. 4059 else if (MacroName.equals("YES") || MacroName.equals("NO") || 4060 MacroName.equals("true") || MacroName.equals("false")) 4061 Priority = CCP_Constant; 4062 // Treat "bool" as a type. 4063 else if (MacroName.equals("bool")) 4064 Priority = CCP_Type + (LangOpts.ObjC ? CCD_bool_in_ObjC : 0); 4065 4066 return Priority; 4067 } 4068 4069 CXCursorKind clang::getCursorKindForDecl(const Decl *D) { 4070 if (!D) 4071 return CXCursor_UnexposedDecl; 4072 4073 switch (D->getKind()) { 4074 case Decl::Enum: 4075 return CXCursor_EnumDecl; 4076 case Decl::EnumConstant: 4077 return CXCursor_EnumConstantDecl; 4078 case Decl::Field: 4079 return CXCursor_FieldDecl; 4080 case Decl::Function: 4081 return CXCursor_FunctionDecl; 4082 case Decl::ObjCCategory: 4083 return CXCursor_ObjCCategoryDecl; 4084 case Decl::ObjCCategoryImpl: 4085 return CXCursor_ObjCCategoryImplDecl; 4086 case Decl::ObjCImplementation: 4087 return CXCursor_ObjCImplementationDecl; 4088 4089 case Decl::ObjCInterface: 4090 return CXCursor_ObjCInterfaceDecl; 4091 case Decl::ObjCIvar: 4092 return CXCursor_ObjCIvarDecl; 4093 case Decl::ObjCMethod: 4094 return cast<ObjCMethodDecl>(D)->isInstanceMethod() 4095 ? CXCursor_ObjCInstanceMethodDecl 4096 : CXCursor_ObjCClassMethodDecl; 4097 case Decl::CXXMethod: 4098 return CXCursor_CXXMethod; 4099 case Decl::CXXConstructor: 4100 return CXCursor_Constructor; 4101 case Decl::CXXDestructor: 4102 return CXCursor_Destructor; 4103 case Decl::CXXConversion: 4104 return CXCursor_ConversionFunction; 4105 case Decl::ObjCProperty: 4106 return CXCursor_ObjCPropertyDecl; 4107 case Decl::ObjCProtocol: 4108 return CXCursor_ObjCProtocolDecl; 4109 case Decl::ParmVar: 4110 return CXCursor_ParmDecl; 4111 case Decl::Typedef: 4112 return CXCursor_TypedefDecl; 4113 case Decl::TypeAlias: 4114 return CXCursor_TypeAliasDecl; 4115 case Decl::TypeAliasTemplate: 4116 return CXCursor_TypeAliasTemplateDecl; 4117 case Decl::Var: 4118 return CXCursor_VarDecl; 4119 case Decl::Namespace: 4120 return CXCursor_Namespace; 4121 case Decl::NamespaceAlias: 4122 return CXCursor_NamespaceAlias; 4123 case Decl::TemplateTypeParm: 4124 return CXCursor_TemplateTypeParameter; 4125 case Decl::NonTypeTemplateParm: 4126 return CXCursor_NonTypeTemplateParameter; 4127 case Decl::TemplateTemplateParm: 4128 return CXCursor_TemplateTemplateParameter; 4129 case Decl::FunctionTemplate: 4130 return CXCursor_FunctionTemplate; 4131 case Decl::ClassTemplate: 4132 return CXCursor_ClassTemplate; 4133 case Decl::AccessSpec: 4134 return CXCursor_CXXAccessSpecifier; 4135 case Decl::ClassTemplatePartialSpecialization: 4136 return CXCursor_ClassTemplatePartialSpecialization; 4137 case Decl::UsingDirective: 4138 return CXCursor_UsingDirective; 4139 case Decl::StaticAssert: 4140 return CXCursor_StaticAssert; 4141 case Decl::Friend: 4142 return CXCursor_FriendDecl; 4143 case Decl::TranslationUnit: 4144 return CXCursor_TranslationUnit; 4145 4146 case Decl::Using: 4147 case Decl::UnresolvedUsingValue: 4148 case Decl::UnresolvedUsingTypename: 4149 return CXCursor_UsingDeclaration; 4150 4151 case Decl::UsingEnum: 4152 return CXCursor_EnumDecl; 4153 4154 case Decl::ObjCPropertyImpl: 4155 switch (cast<ObjCPropertyImplDecl>(D)->getPropertyImplementation()) { 4156 case ObjCPropertyImplDecl::Dynamic: 4157 return CXCursor_ObjCDynamicDecl; 4158 4159 case ObjCPropertyImplDecl::Synthesize: 4160 return CXCursor_ObjCSynthesizeDecl; 4161 } 4162 llvm_unreachable("Unexpected Kind!"); 4163 4164 case Decl::Import: 4165 return CXCursor_ModuleImportDecl; 4166 4167 case Decl::ObjCTypeParam: 4168 return CXCursor_TemplateTypeParameter; 4169 4170 case Decl::Concept: 4171 return CXCursor_ConceptDecl; 4172 4173 case Decl::LinkageSpec: 4174 return CXCursor_LinkageSpec; 4175 4176 default: 4177 if (const auto *TD = dyn_cast<TagDecl>(D)) { 4178 switch (TD->getTagKind()) { 4179 case TagTypeKind::Interface: // fall through 4180 case TagTypeKind::Struct: 4181 return CXCursor_StructDecl; 4182 case TagTypeKind::Class: 4183 return CXCursor_ClassDecl; 4184 case TagTypeKind::Union: 4185 return CXCursor_UnionDecl; 4186 case TagTypeKind::Enum: 4187 return CXCursor_EnumDecl; 4188 } 4189 } 4190 } 4191 4192 return CXCursor_UnexposedDecl; 4193 } 4194 4195 static void AddMacroResults(Preprocessor &PP, ResultBuilder &Results, 4196 bool LoadExternal, bool IncludeUndefined, 4197 bool TargetTypeIsPointer = false) { 4198 typedef CodeCompletionResult Result; 4199 4200 Results.EnterNewScope(); 4201 4202 for (Preprocessor::macro_iterator M = PP.macro_begin(LoadExternal), 4203 MEnd = PP.macro_end(LoadExternal); 4204 M != MEnd; ++M) { 4205 auto MD = PP.getMacroDefinition(M->first); 4206 if (IncludeUndefined || MD) { 4207 MacroInfo *MI = MD.getMacroInfo(); 4208 if (MI && MI->isUsedForHeaderGuard()) 4209 continue; 4210 4211 Results.AddResult( 4212 Result(M->first, MI, 4213 getMacroUsagePriority(M->first->getName(), PP.getLangOpts(), 4214 TargetTypeIsPointer))); 4215 } 4216 } 4217 4218 Results.ExitScope(); 4219 } 4220 4221 static void AddPrettyFunctionResults(const LangOptions &LangOpts, 4222 ResultBuilder &Results) { 4223 typedef CodeCompletionResult Result; 4224 4225 Results.EnterNewScope(); 4226 4227 Results.AddResult(Result("__PRETTY_FUNCTION__", CCP_Constant)); 4228 Results.AddResult(Result("__FUNCTION__", CCP_Constant)); 4229 if (LangOpts.C99 || LangOpts.CPlusPlus11) 4230 Results.AddResult(Result("__func__", CCP_Constant)); 4231 Results.ExitScope(); 4232 } 4233 4234 static void HandleCodeCompleteResults(Sema *S, 4235 CodeCompleteConsumer *CodeCompleter, 4236 const CodeCompletionContext &Context, 4237 CodeCompletionResult *Results, 4238 unsigned NumResults) { 4239 if (CodeCompleter) 4240 CodeCompleter->ProcessCodeCompleteResults(*S, Context, Results, NumResults); 4241 } 4242 4243 static CodeCompletionContext 4244 mapCodeCompletionContext(Sema &S, Sema::ParserCompletionContext PCC) { 4245 switch (PCC) { 4246 case Sema::PCC_Namespace: 4247 return CodeCompletionContext::CCC_TopLevel; 4248 4249 case Sema::PCC_Class: 4250 return CodeCompletionContext::CCC_ClassStructUnion; 4251 4252 case Sema::PCC_ObjCInterface: 4253 return CodeCompletionContext::CCC_ObjCInterface; 4254 4255 case Sema::PCC_ObjCImplementation: 4256 return CodeCompletionContext::CCC_ObjCImplementation; 4257 4258 case Sema::PCC_ObjCInstanceVariableList: 4259 return CodeCompletionContext::CCC_ObjCIvarList; 4260 4261 case Sema::PCC_Template: 4262 case Sema::PCC_MemberTemplate: 4263 if (S.CurContext->isFileContext()) 4264 return CodeCompletionContext::CCC_TopLevel; 4265 if (S.CurContext->isRecord()) 4266 return CodeCompletionContext::CCC_ClassStructUnion; 4267 return CodeCompletionContext::CCC_Other; 4268 4269 case Sema::PCC_RecoveryInFunction: 4270 return CodeCompletionContext::CCC_Recovery; 4271 4272 case Sema::PCC_ForInit: 4273 if (S.getLangOpts().CPlusPlus || S.getLangOpts().C99 || 4274 S.getLangOpts().ObjC) 4275 return CodeCompletionContext::CCC_ParenthesizedExpression; 4276 else 4277 return CodeCompletionContext::CCC_Expression; 4278 4279 case Sema::PCC_Expression: 4280 return CodeCompletionContext::CCC_Expression; 4281 case Sema::PCC_Condition: 4282 return CodeCompletionContext(CodeCompletionContext::CCC_Expression, 4283 S.getASTContext().BoolTy); 4284 4285 case Sema::PCC_Statement: 4286 return CodeCompletionContext::CCC_Statement; 4287 4288 case Sema::PCC_Type: 4289 return CodeCompletionContext::CCC_Type; 4290 4291 case Sema::PCC_ParenthesizedExpression: 4292 return CodeCompletionContext::CCC_ParenthesizedExpression; 4293 4294 case Sema::PCC_LocalDeclarationSpecifiers: 4295 return CodeCompletionContext::CCC_Type; 4296 case Sema::PCC_TopLevelOrExpression: 4297 return CodeCompletionContext::CCC_TopLevelOrExpression; 4298 } 4299 4300 llvm_unreachable("Invalid ParserCompletionContext!"); 4301 } 4302 4303 /// If we're in a C++ virtual member function, add completion results 4304 /// that invoke the functions we override, since it's common to invoke the 4305 /// overridden function as well as adding new functionality. 4306 /// 4307 /// \param S The semantic analysis object for which we are generating results. 4308 /// 4309 /// \param InContext This context in which the nested-name-specifier preceding 4310 /// the code-completion point 4311 static void MaybeAddOverrideCalls(Sema &S, DeclContext *InContext, 4312 ResultBuilder &Results) { 4313 // Look through blocks. 4314 DeclContext *CurContext = S.CurContext; 4315 while (isa<BlockDecl>(CurContext)) 4316 CurContext = CurContext->getParent(); 4317 4318 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(CurContext); 4319 if (!Method || !Method->isVirtual()) 4320 return; 4321 4322 // We need to have names for all of the parameters, if we're going to 4323 // generate a forwarding call. 4324 for (auto *P : Method->parameters()) 4325 if (!P->getDeclName()) 4326 return; 4327 4328 PrintingPolicy Policy = getCompletionPrintingPolicy(S); 4329 for (const CXXMethodDecl *Overridden : Method->overridden_methods()) { 4330 CodeCompletionBuilder Builder(Results.getAllocator(), 4331 Results.getCodeCompletionTUInfo()); 4332 if (Overridden->getCanonicalDecl() == Method->getCanonicalDecl()) 4333 continue; 4334 4335 // If we need a nested-name-specifier, add one now. 4336 if (!InContext) { 4337 NestedNameSpecifier *NNS = getRequiredQualification( 4338 S.Context, CurContext, Overridden->getDeclContext()); 4339 if (NNS) { 4340 std::string Str; 4341 llvm::raw_string_ostream OS(Str); 4342 NNS->print(OS, Policy); 4343 Builder.AddTextChunk(Results.getAllocator().CopyString(OS.str())); 4344 } 4345 } else if (!InContext->Equals(Overridden->getDeclContext())) 4346 continue; 4347 4348 Builder.AddTypedTextChunk( 4349 Results.getAllocator().CopyString(Overridden->getNameAsString())); 4350 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 4351 bool FirstParam = true; 4352 for (auto *P : Method->parameters()) { 4353 if (FirstParam) 4354 FirstParam = false; 4355 else 4356 Builder.AddChunk(CodeCompletionString::CK_Comma); 4357 4358 Builder.AddPlaceholderChunk( 4359 Results.getAllocator().CopyString(P->getIdentifier()->getName())); 4360 } 4361 Builder.AddChunk(CodeCompletionString::CK_RightParen); 4362 Results.AddResult(CodeCompletionResult( 4363 Builder.TakeString(), CCP_SuperCompletion, CXCursor_CXXMethod, 4364 CXAvailability_Available, Overridden)); 4365 Results.Ignore(Overridden); 4366 } 4367 } 4368 4369 void Sema::CodeCompleteModuleImport(SourceLocation ImportLoc, 4370 ModuleIdPath Path) { 4371 typedef CodeCompletionResult Result; 4372 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 4373 CodeCompleter->getCodeCompletionTUInfo(), 4374 CodeCompletionContext::CCC_Other); 4375 Results.EnterNewScope(); 4376 4377 CodeCompletionAllocator &Allocator = Results.getAllocator(); 4378 CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo()); 4379 typedef CodeCompletionResult Result; 4380 if (Path.empty()) { 4381 // Enumerate all top-level modules. 4382 SmallVector<Module *, 8> Modules; 4383 PP.getHeaderSearchInfo().collectAllModules(Modules); 4384 for (unsigned I = 0, N = Modules.size(); I != N; ++I) { 4385 Builder.AddTypedTextChunk( 4386 Builder.getAllocator().CopyString(Modules[I]->Name)); 4387 Results.AddResult(Result( 4388 Builder.TakeString(), CCP_Declaration, CXCursor_ModuleImportDecl, 4389 Modules[I]->isAvailable() ? CXAvailability_Available 4390 : CXAvailability_NotAvailable)); 4391 } 4392 } else if (getLangOpts().Modules) { 4393 // Load the named module. 4394 Module *Mod = 4395 PP.getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible, 4396 /*IsInclusionDirective=*/false); 4397 // Enumerate submodules. 4398 if (Mod) { 4399 for (auto *Submodule : Mod->submodules()) { 4400 Builder.AddTypedTextChunk( 4401 Builder.getAllocator().CopyString(Submodule->Name)); 4402 Results.AddResult(Result( 4403 Builder.TakeString(), CCP_Declaration, CXCursor_ModuleImportDecl, 4404 Submodule->isAvailable() ? CXAvailability_Available 4405 : CXAvailability_NotAvailable)); 4406 } 4407 } 4408 } 4409 Results.ExitScope(); 4410 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 4411 Results.data(), Results.size()); 4412 } 4413 4414 void Sema::CodeCompleteOrdinaryName(Scope *S, 4415 ParserCompletionContext CompletionContext) { 4416 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 4417 CodeCompleter->getCodeCompletionTUInfo(), 4418 mapCodeCompletionContext(*this, CompletionContext)); 4419 Results.EnterNewScope(); 4420 4421 // Determine how to filter results, e.g., so that the names of 4422 // values (functions, enumerators, function templates, etc.) are 4423 // only allowed where we can have an expression. 4424 switch (CompletionContext) { 4425 case PCC_Namespace: 4426 case PCC_Class: 4427 case PCC_ObjCInterface: 4428 case PCC_ObjCImplementation: 4429 case PCC_ObjCInstanceVariableList: 4430 case PCC_Template: 4431 case PCC_MemberTemplate: 4432 case PCC_Type: 4433 case PCC_LocalDeclarationSpecifiers: 4434 Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName); 4435 break; 4436 4437 case PCC_Statement: 4438 case PCC_TopLevelOrExpression: 4439 case PCC_ParenthesizedExpression: 4440 case PCC_Expression: 4441 case PCC_ForInit: 4442 case PCC_Condition: 4443 if (WantTypesInContext(CompletionContext, getLangOpts())) 4444 Results.setFilter(&ResultBuilder::IsOrdinaryName); 4445 else 4446 Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName); 4447 4448 if (getLangOpts().CPlusPlus) 4449 MaybeAddOverrideCalls(*this, /*InContext=*/nullptr, Results); 4450 break; 4451 4452 case PCC_RecoveryInFunction: 4453 // Unfiltered 4454 break; 4455 } 4456 4457 // If we are in a C++ non-static member function, check the qualifiers on 4458 // the member function to filter/prioritize the results list. 4459 auto ThisType = getCurrentThisType(); 4460 if (!ThisType.isNull()) 4461 Results.setObjectTypeQualifiers(ThisType->getPointeeType().getQualifiers(), 4462 VK_LValue); 4463 4464 CodeCompletionDeclConsumer Consumer(Results, CurContext); 4465 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 4466 CodeCompleter->includeGlobals(), 4467 CodeCompleter->loadExternal()); 4468 4469 AddOrdinaryNameResults(CompletionContext, S, *this, Results); 4470 Results.ExitScope(); 4471 4472 switch (CompletionContext) { 4473 case PCC_ParenthesizedExpression: 4474 case PCC_Expression: 4475 case PCC_Statement: 4476 case PCC_TopLevelOrExpression: 4477 case PCC_RecoveryInFunction: 4478 if (S->getFnParent()) 4479 AddPrettyFunctionResults(getLangOpts(), Results); 4480 break; 4481 4482 case PCC_Namespace: 4483 case PCC_Class: 4484 case PCC_ObjCInterface: 4485 case PCC_ObjCImplementation: 4486 case PCC_ObjCInstanceVariableList: 4487 case PCC_Template: 4488 case PCC_MemberTemplate: 4489 case PCC_ForInit: 4490 case PCC_Condition: 4491 case PCC_Type: 4492 case PCC_LocalDeclarationSpecifiers: 4493 break; 4494 } 4495 4496 if (CodeCompleter->includeMacros()) 4497 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), false); 4498 4499 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 4500 Results.data(), Results.size()); 4501 } 4502 4503 static void AddClassMessageCompletions(Sema &SemaRef, Scope *S, 4504 ParsedType Receiver, 4505 ArrayRef<IdentifierInfo *> SelIdents, 4506 bool AtArgumentExpression, bool IsSuper, 4507 ResultBuilder &Results); 4508 4509 void Sema::CodeCompleteDeclSpec(Scope *S, DeclSpec &DS, 4510 bool AllowNonIdentifiers, 4511 bool AllowNestedNameSpecifiers) { 4512 typedef CodeCompletionResult Result; 4513 ResultBuilder Results( 4514 *this, CodeCompleter->getAllocator(), 4515 CodeCompleter->getCodeCompletionTUInfo(), 4516 AllowNestedNameSpecifiers 4517 // FIXME: Try to separate codepath leading here to deduce whether we 4518 // need an existing symbol or a new one. 4519 ? CodeCompletionContext::CCC_SymbolOrNewName 4520 : CodeCompletionContext::CCC_NewName); 4521 Results.EnterNewScope(); 4522 4523 // Type qualifiers can come after names. 4524 Results.AddResult(Result("const")); 4525 Results.AddResult(Result("volatile")); 4526 if (getLangOpts().C99) 4527 Results.AddResult(Result("restrict")); 4528 4529 if (getLangOpts().CPlusPlus) { 4530 if (getLangOpts().CPlusPlus11 && 4531 (DS.getTypeSpecType() == DeclSpec::TST_class || 4532 DS.getTypeSpecType() == DeclSpec::TST_struct)) 4533 Results.AddResult("final"); 4534 4535 if (AllowNonIdentifiers) { 4536 Results.AddResult(Result("operator")); 4537 } 4538 4539 // Add nested-name-specifiers. 4540 if (AllowNestedNameSpecifiers) { 4541 Results.allowNestedNameSpecifiers(); 4542 Results.setFilter(&ResultBuilder::IsImpossibleToSatisfy); 4543 CodeCompletionDeclConsumer Consumer(Results, CurContext); 4544 LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer, 4545 CodeCompleter->includeGlobals(), 4546 CodeCompleter->loadExternal()); 4547 Results.setFilter(nullptr); 4548 } 4549 } 4550 Results.ExitScope(); 4551 4552 // If we're in a context where we might have an expression (rather than a 4553 // declaration), and what we've seen so far is an Objective-C type that could 4554 // be a receiver of a class message, this may be a class message send with 4555 // the initial opening bracket '[' missing. Add appropriate completions. 4556 if (AllowNonIdentifiers && !AllowNestedNameSpecifiers && 4557 DS.getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && 4558 DS.getTypeSpecType() == DeclSpec::TST_typename && 4559 DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified && 4560 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && 4561 !DS.isTypeAltiVecVector() && S && 4562 (S->getFlags() & Scope::DeclScope) != 0 && 4563 (S->getFlags() & (Scope::ClassScope | Scope::TemplateParamScope | 4564 Scope::FunctionPrototypeScope | Scope::AtCatchScope)) == 4565 0) { 4566 ParsedType T = DS.getRepAsType(); 4567 if (!T.get().isNull() && T.get()->isObjCObjectOrInterfaceType()) 4568 AddClassMessageCompletions(*this, S, T, std::nullopt, false, false, 4569 Results); 4570 } 4571 4572 // Note that we intentionally suppress macro results here, since we do not 4573 // encourage using macros to produce the names of entities. 4574 4575 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 4576 Results.data(), Results.size()); 4577 } 4578 4579 static const char *underscoreAttrScope(llvm::StringRef Scope) { 4580 if (Scope == "clang") 4581 return "_Clang"; 4582 if (Scope == "gnu") 4583 return "__gnu__"; 4584 return nullptr; 4585 } 4586 4587 static const char *noUnderscoreAttrScope(llvm::StringRef Scope) { 4588 if (Scope == "_Clang") 4589 return "clang"; 4590 if (Scope == "__gnu__") 4591 return "gnu"; 4592 return nullptr; 4593 } 4594 4595 void Sema::CodeCompleteAttribute(AttributeCommonInfo::Syntax Syntax, 4596 AttributeCompletion Completion, 4597 const IdentifierInfo *InScope) { 4598 if (Completion == AttributeCompletion::None) 4599 return; 4600 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 4601 CodeCompleter->getCodeCompletionTUInfo(), 4602 CodeCompletionContext::CCC_Attribute); 4603 4604 // We're going to iterate over the normalized spellings of the attribute. 4605 // These don't include "underscore guarding": the normalized spelling is 4606 // clang::foo but you can also write _Clang::__foo__. 4607 // 4608 // (Clang supports a mix like clang::__foo__ but we won't suggest it: either 4609 // you care about clashing with macros or you don't). 4610 // 4611 // So if we're already in a scope, we determine its canonical spellings 4612 // (for comparison with normalized attr spelling) and remember whether it was 4613 // underscore-guarded (so we know how to spell contained attributes). 4614 llvm::StringRef InScopeName; 4615 bool InScopeUnderscore = false; 4616 if (InScope) { 4617 InScopeName = InScope->getName(); 4618 if (const char *NoUnderscore = noUnderscoreAttrScope(InScopeName)) { 4619 InScopeName = NoUnderscore; 4620 InScopeUnderscore = true; 4621 } 4622 } 4623 bool SyntaxSupportsGuards = Syntax == AttributeCommonInfo::AS_GNU || 4624 Syntax == AttributeCommonInfo::AS_CXX11 || 4625 Syntax == AttributeCommonInfo::AS_C23; 4626 4627 llvm::DenseSet<llvm::StringRef> FoundScopes; 4628 auto AddCompletions = [&](const ParsedAttrInfo &A) { 4629 if (A.IsTargetSpecific && !A.existsInTarget(Context.getTargetInfo())) 4630 return; 4631 if (!A.acceptsLangOpts(getLangOpts())) 4632 return; 4633 for (const auto &S : A.Spellings) { 4634 if (S.Syntax != Syntax) 4635 continue; 4636 llvm::StringRef Name = S.NormalizedFullName; 4637 llvm::StringRef Scope; 4638 if ((Syntax == AttributeCommonInfo::AS_CXX11 || 4639 Syntax == AttributeCommonInfo::AS_C23)) { 4640 std::tie(Scope, Name) = Name.split("::"); 4641 if (Name.empty()) // oops, unscoped 4642 std::swap(Name, Scope); 4643 } 4644 4645 // Do we just want a list of scopes rather than attributes? 4646 if (Completion == AttributeCompletion::Scope) { 4647 // Make sure to emit each scope only once. 4648 if (!Scope.empty() && FoundScopes.insert(Scope).second) { 4649 Results.AddResult( 4650 CodeCompletionResult(Results.getAllocator().CopyString(Scope))); 4651 // Include alternate form (__gnu__ instead of gnu). 4652 if (const char *Scope2 = underscoreAttrScope(Scope)) 4653 Results.AddResult(CodeCompletionResult(Scope2)); 4654 } 4655 continue; 4656 } 4657 4658 // If a scope was specified, it must match but we don't need to print it. 4659 if (!InScopeName.empty()) { 4660 if (Scope != InScopeName) 4661 continue; 4662 Scope = ""; 4663 } 4664 4665 auto Add = [&](llvm::StringRef Scope, llvm::StringRef Name, 4666 bool Underscores) { 4667 CodeCompletionBuilder Builder(Results.getAllocator(), 4668 Results.getCodeCompletionTUInfo()); 4669 llvm::SmallString<32> Text; 4670 if (!Scope.empty()) { 4671 Text.append(Scope); 4672 Text.append("::"); 4673 } 4674 if (Underscores) 4675 Text.append("__"); 4676 Text.append(Name); 4677 if (Underscores) 4678 Text.append("__"); 4679 Builder.AddTypedTextChunk(Results.getAllocator().CopyString(Text)); 4680 4681 if (!A.ArgNames.empty()) { 4682 Builder.AddChunk(CodeCompletionString::CK_LeftParen, "("); 4683 bool First = true; 4684 for (const char *Arg : A.ArgNames) { 4685 if (!First) 4686 Builder.AddChunk(CodeCompletionString::CK_Comma, ", "); 4687 First = false; 4688 Builder.AddPlaceholderChunk(Arg); 4689 } 4690 Builder.AddChunk(CodeCompletionString::CK_RightParen, ")"); 4691 } 4692 4693 Results.AddResult(Builder.TakeString()); 4694 }; 4695 4696 // Generate the non-underscore-guarded result. 4697 // Note this is (a suffix of) the NormalizedFullName, no need to copy. 4698 // If an underscore-guarded scope was specified, only the 4699 // underscore-guarded attribute name is relevant. 4700 if (!InScopeUnderscore) 4701 Add(Scope, Name, /*Underscores=*/false); 4702 4703 // Generate the underscore-guarded version, for syntaxes that support it. 4704 // We skip this if the scope was already spelled and not guarded, or 4705 // we must spell it and can't guard it. 4706 if (!(InScope && !InScopeUnderscore) && SyntaxSupportsGuards) { 4707 llvm::SmallString<32> Guarded; 4708 if (Scope.empty()) { 4709 Add(Scope, Name, /*Underscores=*/true); 4710 } else { 4711 const char *GuardedScope = underscoreAttrScope(Scope); 4712 if (!GuardedScope) 4713 continue; 4714 Add(GuardedScope, Name, /*Underscores=*/true); 4715 } 4716 } 4717 4718 // It may be nice to include the Kind so we can look up the docs later. 4719 } 4720 }; 4721 4722 for (const auto *A : ParsedAttrInfo::getAllBuiltin()) 4723 AddCompletions(*A); 4724 for (const auto &Entry : ParsedAttrInfoRegistry::entries()) 4725 AddCompletions(*Entry.instantiate()); 4726 4727 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 4728 Results.data(), Results.size()); 4729 } 4730 4731 struct Sema::CodeCompleteExpressionData { 4732 CodeCompleteExpressionData(QualType PreferredType = QualType(), 4733 bool IsParenthesized = false) 4734 : PreferredType(PreferredType), IntegralConstantExpression(false), 4735 ObjCCollection(false), IsParenthesized(IsParenthesized) {} 4736 4737 QualType PreferredType; 4738 bool IntegralConstantExpression; 4739 bool ObjCCollection; 4740 bool IsParenthesized; 4741 SmallVector<Decl *, 4> IgnoreDecls; 4742 }; 4743 4744 namespace { 4745 /// Information that allows to avoid completing redundant enumerators. 4746 struct CoveredEnumerators { 4747 llvm::SmallPtrSet<EnumConstantDecl *, 8> Seen; 4748 NestedNameSpecifier *SuggestedQualifier = nullptr; 4749 }; 4750 } // namespace 4751 4752 static void AddEnumerators(ResultBuilder &Results, ASTContext &Context, 4753 EnumDecl *Enum, DeclContext *CurContext, 4754 const CoveredEnumerators &Enumerators) { 4755 NestedNameSpecifier *Qualifier = Enumerators.SuggestedQualifier; 4756 if (Context.getLangOpts().CPlusPlus && !Qualifier && Enumerators.Seen.empty()) { 4757 // If there are no prior enumerators in C++, check whether we have to 4758 // qualify the names of the enumerators that we suggest, because they 4759 // may not be visible in this scope. 4760 Qualifier = getRequiredQualification(Context, CurContext, Enum); 4761 } 4762 4763 Results.EnterNewScope(); 4764 for (auto *E : Enum->enumerators()) { 4765 if (Enumerators.Seen.count(E)) 4766 continue; 4767 4768 CodeCompletionResult R(E, CCP_EnumInCase, Qualifier); 4769 Results.AddResult(R, CurContext, nullptr, false); 4770 } 4771 Results.ExitScope(); 4772 } 4773 4774 /// Try to find a corresponding FunctionProtoType for function-like types (e.g. 4775 /// function pointers, std::function, etc). 4776 static const FunctionProtoType *TryDeconstructFunctionLike(QualType T) { 4777 assert(!T.isNull()); 4778 // Try to extract first template argument from std::function<> and similar. 4779 // Note we only handle the sugared types, they closely match what users wrote. 4780 // We explicitly choose to not handle ClassTemplateSpecializationDecl. 4781 if (auto *Specialization = T->getAs<TemplateSpecializationType>()) { 4782 if (Specialization->template_arguments().size() != 1) 4783 return nullptr; 4784 const TemplateArgument &Argument = Specialization->template_arguments()[0]; 4785 if (Argument.getKind() != TemplateArgument::Type) 4786 return nullptr; 4787 return Argument.getAsType()->getAs<FunctionProtoType>(); 4788 } 4789 // Handle other cases. 4790 if (T->isPointerType()) 4791 T = T->getPointeeType(); 4792 return T->getAs<FunctionProtoType>(); 4793 } 4794 4795 /// Adds a pattern completion for a lambda expression with the specified 4796 /// parameter types and placeholders for parameter names. 4797 static void AddLambdaCompletion(ResultBuilder &Results, 4798 llvm::ArrayRef<QualType> Parameters, 4799 const LangOptions &LangOpts) { 4800 if (!Results.includeCodePatterns()) 4801 return; 4802 CodeCompletionBuilder Completion(Results.getAllocator(), 4803 Results.getCodeCompletionTUInfo()); 4804 // [](<parameters>) {} 4805 Completion.AddChunk(CodeCompletionString::CK_LeftBracket); 4806 Completion.AddPlaceholderChunk("="); 4807 Completion.AddChunk(CodeCompletionString::CK_RightBracket); 4808 if (!Parameters.empty()) { 4809 Completion.AddChunk(CodeCompletionString::CK_LeftParen); 4810 bool First = true; 4811 for (auto Parameter : Parameters) { 4812 if (!First) 4813 Completion.AddChunk(CodeCompletionString::ChunkKind::CK_Comma); 4814 else 4815 First = false; 4816 4817 constexpr llvm::StringLiteral NamePlaceholder = "!#!NAME_GOES_HERE!#!"; 4818 std::string Type = std::string(NamePlaceholder); 4819 Parameter.getAsStringInternal(Type, PrintingPolicy(LangOpts)); 4820 llvm::StringRef Prefix, Suffix; 4821 std::tie(Prefix, Suffix) = llvm::StringRef(Type).split(NamePlaceholder); 4822 Prefix = Prefix.rtrim(); 4823 Suffix = Suffix.ltrim(); 4824 4825 Completion.AddTextChunk(Completion.getAllocator().CopyString(Prefix)); 4826 Completion.AddChunk(CodeCompletionString::CK_HorizontalSpace); 4827 Completion.AddPlaceholderChunk("parameter"); 4828 Completion.AddTextChunk(Completion.getAllocator().CopyString(Suffix)); 4829 }; 4830 Completion.AddChunk(CodeCompletionString::CK_RightParen); 4831 } 4832 Completion.AddChunk(clang::CodeCompletionString::CK_HorizontalSpace); 4833 Completion.AddChunk(CodeCompletionString::CK_LeftBrace); 4834 Completion.AddChunk(CodeCompletionString::CK_HorizontalSpace); 4835 Completion.AddPlaceholderChunk("body"); 4836 Completion.AddChunk(CodeCompletionString::CK_HorizontalSpace); 4837 Completion.AddChunk(CodeCompletionString::CK_RightBrace); 4838 4839 Results.AddResult(Completion.TakeString()); 4840 } 4841 4842 /// Perform code-completion in an expression context when we know what 4843 /// type we're looking for. 4844 void Sema::CodeCompleteExpression(Scope *S, 4845 const CodeCompleteExpressionData &Data) { 4846 ResultBuilder Results( 4847 *this, CodeCompleter->getAllocator(), 4848 CodeCompleter->getCodeCompletionTUInfo(), 4849 CodeCompletionContext( 4850 Data.IsParenthesized 4851 ? CodeCompletionContext::CCC_ParenthesizedExpression 4852 : CodeCompletionContext::CCC_Expression, 4853 Data.PreferredType)); 4854 auto PCC = 4855 Data.IsParenthesized ? PCC_ParenthesizedExpression : PCC_Expression; 4856 if (Data.ObjCCollection) 4857 Results.setFilter(&ResultBuilder::IsObjCCollection); 4858 else if (Data.IntegralConstantExpression) 4859 Results.setFilter(&ResultBuilder::IsIntegralConstantValue); 4860 else if (WantTypesInContext(PCC, getLangOpts())) 4861 Results.setFilter(&ResultBuilder::IsOrdinaryName); 4862 else 4863 Results.setFilter(&ResultBuilder::IsOrdinaryNonTypeName); 4864 4865 if (!Data.PreferredType.isNull()) 4866 Results.setPreferredType(Data.PreferredType.getNonReferenceType()); 4867 4868 // Ignore any declarations that we were told that we don't care about. 4869 for (unsigned I = 0, N = Data.IgnoreDecls.size(); I != N; ++I) 4870 Results.Ignore(Data.IgnoreDecls[I]); 4871 4872 CodeCompletionDeclConsumer Consumer(Results, CurContext); 4873 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 4874 CodeCompleter->includeGlobals(), 4875 CodeCompleter->loadExternal()); 4876 4877 Results.EnterNewScope(); 4878 AddOrdinaryNameResults(PCC, S, *this, Results); 4879 Results.ExitScope(); 4880 4881 bool PreferredTypeIsPointer = false; 4882 if (!Data.PreferredType.isNull()) { 4883 PreferredTypeIsPointer = Data.PreferredType->isAnyPointerType() || 4884 Data.PreferredType->isMemberPointerType() || 4885 Data.PreferredType->isBlockPointerType(); 4886 if (Data.PreferredType->isEnumeralType()) { 4887 EnumDecl *Enum = Data.PreferredType->castAs<EnumType>()->getDecl(); 4888 if (auto *Def = Enum->getDefinition()) 4889 Enum = Def; 4890 // FIXME: collect covered enumerators in cases like: 4891 // if (x == my_enum::one) { ... } else if (x == ^) {} 4892 AddEnumerators(Results, Context, Enum, CurContext, CoveredEnumerators()); 4893 } 4894 } 4895 4896 if (S->getFnParent() && !Data.ObjCCollection && 4897 !Data.IntegralConstantExpression) 4898 AddPrettyFunctionResults(getLangOpts(), Results); 4899 4900 if (CodeCompleter->includeMacros()) 4901 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), false, 4902 PreferredTypeIsPointer); 4903 4904 // Complete a lambda expression when preferred type is a function. 4905 if (!Data.PreferredType.isNull() && getLangOpts().CPlusPlus11) { 4906 if (const FunctionProtoType *F = 4907 TryDeconstructFunctionLike(Data.PreferredType)) 4908 AddLambdaCompletion(Results, F->getParamTypes(), getLangOpts()); 4909 } 4910 4911 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 4912 Results.data(), Results.size()); 4913 } 4914 4915 void Sema::CodeCompleteExpression(Scope *S, QualType PreferredType, 4916 bool IsParenthesized) { 4917 return CodeCompleteExpression( 4918 S, CodeCompleteExpressionData(PreferredType, IsParenthesized)); 4919 } 4920 4921 void Sema::CodeCompletePostfixExpression(Scope *S, ExprResult E, 4922 QualType PreferredType) { 4923 if (E.isInvalid()) 4924 CodeCompleteExpression(S, PreferredType); 4925 else if (getLangOpts().ObjC) 4926 CodeCompleteObjCInstanceMessage(S, E.get(), std::nullopt, false); 4927 } 4928 4929 /// The set of properties that have already been added, referenced by 4930 /// property name. 4931 typedef llvm::SmallPtrSet<IdentifierInfo *, 16> AddedPropertiesSet; 4932 4933 /// Retrieve the container definition, if any? 4934 static ObjCContainerDecl *getContainerDef(ObjCContainerDecl *Container) { 4935 if (ObjCInterfaceDecl *Interface = dyn_cast<ObjCInterfaceDecl>(Container)) { 4936 if (Interface->hasDefinition()) 4937 return Interface->getDefinition(); 4938 4939 return Interface; 4940 } 4941 4942 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) { 4943 if (Protocol->hasDefinition()) 4944 return Protocol->getDefinition(); 4945 4946 return Protocol; 4947 } 4948 return Container; 4949 } 4950 4951 /// Adds a block invocation code completion result for the given block 4952 /// declaration \p BD. 4953 static void AddObjCBlockCall(ASTContext &Context, const PrintingPolicy &Policy, 4954 CodeCompletionBuilder &Builder, 4955 const NamedDecl *BD, 4956 const FunctionTypeLoc &BlockLoc, 4957 const FunctionProtoTypeLoc &BlockProtoLoc) { 4958 Builder.AddResultTypeChunk( 4959 GetCompletionTypeString(BlockLoc.getReturnLoc().getType(), Context, 4960 Policy, Builder.getAllocator())); 4961 4962 AddTypedNameChunk(Context, Policy, BD, Builder); 4963 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 4964 4965 if (BlockProtoLoc && BlockProtoLoc.getTypePtr()->isVariadic()) { 4966 Builder.AddPlaceholderChunk("..."); 4967 } else { 4968 for (unsigned I = 0, N = BlockLoc.getNumParams(); I != N; ++I) { 4969 if (I) 4970 Builder.AddChunk(CodeCompletionString::CK_Comma); 4971 4972 // Format the placeholder string. 4973 std::string PlaceholderStr = 4974 FormatFunctionParameter(Policy, BlockLoc.getParam(I)); 4975 4976 if (I == N - 1 && BlockProtoLoc && 4977 BlockProtoLoc.getTypePtr()->isVariadic()) 4978 PlaceholderStr += ", ..."; 4979 4980 // Add the placeholder string. 4981 Builder.AddPlaceholderChunk( 4982 Builder.getAllocator().CopyString(PlaceholderStr)); 4983 } 4984 } 4985 4986 Builder.AddChunk(CodeCompletionString::CK_RightParen); 4987 } 4988 4989 static void 4990 AddObjCProperties(const CodeCompletionContext &CCContext, 4991 ObjCContainerDecl *Container, bool AllowCategories, 4992 bool AllowNullaryMethods, DeclContext *CurContext, 4993 AddedPropertiesSet &AddedProperties, ResultBuilder &Results, 4994 bool IsBaseExprStatement = false, 4995 bool IsClassProperty = false, bool InOriginalClass = true) { 4996 typedef CodeCompletionResult Result; 4997 4998 // Retrieve the definition. 4999 Container = getContainerDef(Container); 5000 5001 // Add properties in this container. 5002 const auto AddProperty = [&](const ObjCPropertyDecl *P) { 5003 if (!AddedProperties.insert(P->getIdentifier()).second) 5004 return; 5005 5006 // FIXME: Provide block invocation completion for non-statement 5007 // expressions. 5008 if (!P->getType().getTypePtr()->isBlockPointerType() || 5009 !IsBaseExprStatement) { 5010 Result R = Result(P, Results.getBasePriority(P), nullptr); 5011 if (!InOriginalClass) 5012 setInBaseClass(R); 5013 Results.MaybeAddResult(R, CurContext); 5014 return; 5015 } 5016 5017 // Block setter and invocation completion is provided only when we are able 5018 // to find the FunctionProtoTypeLoc with parameter names for the block. 5019 FunctionTypeLoc BlockLoc; 5020 FunctionProtoTypeLoc BlockProtoLoc; 5021 findTypeLocationForBlockDecl(P->getTypeSourceInfo(), BlockLoc, 5022 BlockProtoLoc); 5023 if (!BlockLoc) { 5024 Result R = Result(P, Results.getBasePriority(P), nullptr); 5025 if (!InOriginalClass) 5026 setInBaseClass(R); 5027 Results.MaybeAddResult(R, CurContext); 5028 return; 5029 } 5030 5031 // The default completion result for block properties should be the block 5032 // invocation completion when the base expression is a statement. 5033 CodeCompletionBuilder Builder(Results.getAllocator(), 5034 Results.getCodeCompletionTUInfo()); 5035 AddObjCBlockCall(Container->getASTContext(), 5036 getCompletionPrintingPolicy(Results.getSema()), Builder, P, 5037 BlockLoc, BlockProtoLoc); 5038 Result R = Result(Builder.TakeString(), P, Results.getBasePriority(P)); 5039 if (!InOriginalClass) 5040 setInBaseClass(R); 5041 Results.MaybeAddResult(R, CurContext); 5042 5043 // Provide additional block setter completion iff the base expression is a 5044 // statement and the block property is mutable. 5045 if (!P->isReadOnly()) { 5046 CodeCompletionBuilder Builder(Results.getAllocator(), 5047 Results.getCodeCompletionTUInfo()); 5048 AddResultTypeChunk(Container->getASTContext(), 5049 getCompletionPrintingPolicy(Results.getSema()), P, 5050 CCContext.getBaseType(), Builder); 5051 Builder.AddTypedTextChunk( 5052 Results.getAllocator().CopyString(P->getName())); 5053 Builder.AddChunk(CodeCompletionString::CK_Equal); 5054 5055 std::string PlaceholderStr = formatBlockPlaceholder( 5056 getCompletionPrintingPolicy(Results.getSema()), P, BlockLoc, 5057 BlockProtoLoc, /*SuppressBlockName=*/true); 5058 // Add the placeholder string. 5059 Builder.AddPlaceholderChunk( 5060 Builder.getAllocator().CopyString(PlaceholderStr)); 5061 5062 // When completing blocks properties that return void the default 5063 // property completion result should show up before the setter, 5064 // otherwise the setter completion should show up before the default 5065 // property completion, as we normally want to use the result of the 5066 // call. 5067 Result R = 5068 Result(Builder.TakeString(), P, 5069 Results.getBasePriority(P) + 5070 (BlockLoc.getTypePtr()->getReturnType()->isVoidType() 5071 ? CCD_BlockPropertySetter 5072 : -CCD_BlockPropertySetter)); 5073 if (!InOriginalClass) 5074 setInBaseClass(R); 5075 Results.MaybeAddResult(R, CurContext); 5076 } 5077 }; 5078 5079 if (IsClassProperty) { 5080 for (const auto *P : Container->class_properties()) 5081 AddProperty(P); 5082 } else { 5083 for (const auto *P : Container->instance_properties()) 5084 AddProperty(P); 5085 } 5086 5087 // Add nullary methods or implicit class properties 5088 if (AllowNullaryMethods) { 5089 ASTContext &Context = Container->getASTContext(); 5090 PrintingPolicy Policy = getCompletionPrintingPolicy(Results.getSema()); 5091 // Adds a method result 5092 const auto AddMethod = [&](const ObjCMethodDecl *M) { 5093 IdentifierInfo *Name = M->getSelector().getIdentifierInfoForSlot(0); 5094 if (!Name) 5095 return; 5096 if (!AddedProperties.insert(Name).second) 5097 return; 5098 CodeCompletionBuilder Builder(Results.getAllocator(), 5099 Results.getCodeCompletionTUInfo()); 5100 AddResultTypeChunk(Context, Policy, M, CCContext.getBaseType(), Builder); 5101 Builder.AddTypedTextChunk( 5102 Results.getAllocator().CopyString(Name->getName())); 5103 Result R = Result(Builder.TakeString(), M, 5104 CCP_MemberDeclaration + CCD_MethodAsProperty); 5105 if (!InOriginalClass) 5106 setInBaseClass(R); 5107 Results.MaybeAddResult(R, CurContext); 5108 }; 5109 5110 if (IsClassProperty) { 5111 for (const auto *M : Container->methods()) { 5112 // Gather the class method that can be used as implicit property 5113 // getters. Methods with arguments or methods that return void aren't 5114 // added to the results as they can't be used as a getter. 5115 if (!M->getSelector().isUnarySelector() || 5116 M->getReturnType()->isVoidType() || M->isInstanceMethod()) 5117 continue; 5118 AddMethod(M); 5119 } 5120 } else { 5121 for (auto *M : Container->methods()) { 5122 if (M->getSelector().isUnarySelector()) 5123 AddMethod(M); 5124 } 5125 } 5126 } 5127 5128 // Add properties in referenced protocols. 5129 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) { 5130 for (auto *P : Protocol->protocols()) 5131 AddObjCProperties(CCContext, P, AllowCategories, AllowNullaryMethods, 5132 CurContext, AddedProperties, Results, 5133 IsBaseExprStatement, IsClassProperty, 5134 /*InOriginalClass*/ false); 5135 } else if (ObjCInterfaceDecl *IFace = 5136 dyn_cast<ObjCInterfaceDecl>(Container)) { 5137 if (AllowCategories) { 5138 // Look through categories. 5139 for (auto *Cat : IFace->known_categories()) 5140 AddObjCProperties(CCContext, Cat, AllowCategories, AllowNullaryMethods, 5141 CurContext, AddedProperties, Results, 5142 IsBaseExprStatement, IsClassProperty, 5143 InOriginalClass); 5144 } 5145 5146 // Look through protocols. 5147 for (auto *I : IFace->all_referenced_protocols()) 5148 AddObjCProperties(CCContext, I, AllowCategories, AllowNullaryMethods, 5149 CurContext, AddedProperties, Results, 5150 IsBaseExprStatement, IsClassProperty, 5151 /*InOriginalClass*/ false); 5152 5153 // Look in the superclass. 5154 if (IFace->getSuperClass()) 5155 AddObjCProperties(CCContext, IFace->getSuperClass(), AllowCategories, 5156 AllowNullaryMethods, CurContext, AddedProperties, 5157 Results, IsBaseExprStatement, IsClassProperty, 5158 /*InOriginalClass*/ false); 5159 } else if (const auto *Category = 5160 dyn_cast<ObjCCategoryDecl>(Container)) { 5161 // Look through protocols. 5162 for (auto *P : Category->protocols()) 5163 AddObjCProperties(CCContext, P, AllowCategories, AllowNullaryMethods, 5164 CurContext, AddedProperties, Results, 5165 IsBaseExprStatement, IsClassProperty, 5166 /*InOriginalClass*/ false); 5167 } 5168 } 5169 5170 static void 5171 AddRecordMembersCompletionResults(Sema &SemaRef, ResultBuilder &Results, 5172 Scope *S, QualType BaseType, 5173 ExprValueKind BaseKind, RecordDecl *RD, 5174 std::optional<FixItHint> AccessOpFixIt) { 5175 // Indicate that we are performing a member access, and the cv-qualifiers 5176 // for the base object type. 5177 Results.setObjectTypeQualifiers(BaseType.getQualifiers(), BaseKind); 5178 5179 // Access to a C/C++ class, struct, or union. 5180 Results.allowNestedNameSpecifiers(); 5181 std::vector<FixItHint> FixIts; 5182 if (AccessOpFixIt) 5183 FixIts.emplace_back(*AccessOpFixIt); 5184 CodeCompletionDeclConsumer Consumer(Results, RD, BaseType, std::move(FixIts)); 5185 SemaRef.LookupVisibleDecls(RD, Sema::LookupMemberName, Consumer, 5186 SemaRef.CodeCompleter->includeGlobals(), 5187 /*IncludeDependentBases=*/true, 5188 SemaRef.CodeCompleter->loadExternal()); 5189 5190 if (SemaRef.getLangOpts().CPlusPlus) { 5191 if (!Results.empty()) { 5192 // The "template" keyword can follow "->" or "." in the grammar. 5193 // However, we only want to suggest the template keyword if something 5194 // is dependent. 5195 bool IsDependent = BaseType->isDependentType(); 5196 if (!IsDependent) { 5197 for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent()) 5198 if (DeclContext *Ctx = DepScope->getEntity()) { 5199 IsDependent = Ctx->isDependentContext(); 5200 break; 5201 } 5202 } 5203 5204 if (IsDependent) 5205 Results.AddResult(CodeCompletionResult("template")); 5206 } 5207 } 5208 } 5209 5210 // Returns the RecordDecl inside the BaseType, falling back to primary template 5211 // in case of specializations. Since we might not have a decl for the 5212 // instantiation/specialization yet, e.g. dependent code. 5213 static RecordDecl *getAsRecordDecl(QualType BaseType) { 5214 BaseType = BaseType.getNonReferenceType(); 5215 if (auto *RD = BaseType->getAsRecordDecl()) { 5216 if (const auto *CTSD = 5217 llvm::dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 5218 // Template might not be instantiated yet, fall back to primary template 5219 // in such cases. 5220 if (CTSD->getTemplateSpecializationKind() == TSK_Undeclared) 5221 RD = CTSD->getSpecializedTemplate()->getTemplatedDecl(); 5222 } 5223 return RD; 5224 } 5225 5226 if (const auto *TST = BaseType->getAs<TemplateSpecializationType>()) { 5227 if (const auto *TD = dyn_cast_or_null<ClassTemplateDecl>( 5228 TST->getTemplateName().getAsTemplateDecl())) { 5229 return TD->getTemplatedDecl(); 5230 } 5231 } 5232 5233 return nullptr; 5234 } 5235 5236 namespace { 5237 // Collects completion-relevant information about a concept-constrainted type T. 5238 // In particular, examines the constraint expressions to find members of T. 5239 // 5240 // The design is very simple: we walk down each constraint looking for 5241 // expressions of the form T.foo(). 5242 // If we're extra lucky, the return type is specified. 5243 // We don't do any clever handling of && or || in constraint expressions, we 5244 // take members from both branches. 5245 // 5246 // For example, given: 5247 // template <class T> concept X = requires (T t, string& s) { t.print(s); }; 5248 // template <X U> void foo(U u) { u.^ } 5249 // We want to suggest the inferred member function 'print(string)'. 5250 // We see that u has type U, so X<U> holds. 5251 // X<U> requires t.print(s) to be valid, where t has type U (substituted for T). 5252 // By looking at the CallExpr we find the signature of print(). 5253 // 5254 // While we tend to know in advance which kind of members (access via . -> ::) 5255 // we want, it's simpler just to gather them all and post-filter. 5256 // 5257 // FIXME: some of this machinery could be used for non-concept type-parms too, 5258 // enabling completion for type parameters based on other uses of that param. 5259 // 5260 // FIXME: there are other cases where a type can be constrained by a concept, 5261 // e.g. inside `if constexpr(ConceptSpecializationExpr) { ... }` 5262 class ConceptInfo { 5263 public: 5264 // Describes a likely member of a type, inferred by concept constraints. 5265 // Offered as a code completion for T. T-> and T:: contexts. 5266 struct Member { 5267 // Always non-null: we only handle members with ordinary identifier names. 5268 const IdentifierInfo *Name = nullptr; 5269 // Set for functions we've seen called. 5270 // We don't have the declared parameter types, only the actual types of 5271 // arguments we've seen. These are still valuable, as it's hard to render 5272 // a useful function completion with neither parameter types nor names! 5273 std::optional<SmallVector<QualType, 1>> ArgTypes; 5274 // Whether this is accessed as T.member, T->member, or T::member. 5275 enum AccessOperator { 5276 Colons, 5277 Arrow, 5278 Dot, 5279 } Operator = Dot; 5280 // What's known about the type of a variable or return type of a function. 5281 const TypeConstraint *ResultType = nullptr; 5282 // FIXME: also track: 5283 // - kind of entity (function/variable/type), to expose structured results 5284 // - template args kinds/types, as a proxy for template params 5285 5286 // For now we simply return these results as "pattern" strings. 5287 CodeCompletionString *render(Sema &S, CodeCompletionAllocator &Alloc, 5288 CodeCompletionTUInfo &Info) const { 5289 CodeCompletionBuilder B(Alloc, Info); 5290 // Result type 5291 if (ResultType) { 5292 std::string AsString; 5293 { 5294 llvm::raw_string_ostream OS(AsString); 5295 QualType ExactType = deduceType(*ResultType); 5296 if (!ExactType.isNull()) 5297 ExactType.print(OS, getCompletionPrintingPolicy(S)); 5298 else 5299 ResultType->print(OS, getCompletionPrintingPolicy(S)); 5300 } 5301 B.AddResultTypeChunk(Alloc.CopyString(AsString)); 5302 } 5303 // Member name 5304 B.AddTypedTextChunk(Alloc.CopyString(Name->getName())); 5305 // Function argument list 5306 if (ArgTypes) { 5307 B.AddChunk(clang::CodeCompletionString::CK_LeftParen); 5308 bool First = true; 5309 for (QualType Arg : *ArgTypes) { 5310 if (First) 5311 First = false; 5312 else { 5313 B.AddChunk(clang::CodeCompletionString::CK_Comma); 5314 B.AddChunk(clang::CodeCompletionString::CK_HorizontalSpace); 5315 } 5316 B.AddPlaceholderChunk(Alloc.CopyString( 5317 Arg.getAsString(getCompletionPrintingPolicy(S)))); 5318 } 5319 B.AddChunk(clang::CodeCompletionString::CK_RightParen); 5320 } 5321 return B.TakeString(); 5322 } 5323 }; 5324 5325 // BaseType is the type parameter T to infer members from. 5326 // T must be accessible within S, as we use it to find the template entity 5327 // that T is attached to in order to gather the relevant constraints. 5328 ConceptInfo(const TemplateTypeParmType &BaseType, Scope *S) { 5329 auto *TemplatedEntity = getTemplatedEntity(BaseType.getDecl(), S); 5330 for (const Expr *E : constraintsForTemplatedEntity(TemplatedEntity)) 5331 believe(E, &BaseType); 5332 } 5333 5334 std::vector<Member> members() { 5335 std::vector<Member> Results; 5336 for (const auto &E : this->Results) 5337 Results.push_back(E.second); 5338 llvm::sort(Results, [](const Member &L, const Member &R) { 5339 return L.Name->getName() < R.Name->getName(); 5340 }); 5341 return Results; 5342 } 5343 5344 private: 5345 // Infer members of T, given that the expression E (dependent on T) is true. 5346 void believe(const Expr *E, const TemplateTypeParmType *T) { 5347 if (!E || !T) 5348 return; 5349 if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(E)) { 5350 // If the concept is 5351 // template <class A, class B> concept CD = f<A, B>(); 5352 // And the concept specialization is 5353 // CD<int, T> 5354 // Then we're substituting T for B, so we want to make f<A, B>() true 5355 // by adding members to B - i.e. believe(f<A, B>(), B); 5356 // 5357 // For simplicity: 5358 // - we don't attempt to substitute int for A 5359 // - when T is used in other ways (like CD<T*>) we ignore it 5360 ConceptDecl *CD = CSE->getNamedConcept(); 5361 TemplateParameterList *Params = CD->getTemplateParameters(); 5362 unsigned Index = 0; 5363 for (const auto &Arg : CSE->getTemplateArguments()) { 5364 if (Index >= Params->size()) 5365 break; // Won't happen in valid code. 5366 if (isApprox(Arg, T)) { 5367 auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Params->getParam(Index)); 5368 if (!TTPD) 5369 continue; 5370 // T was used as an argument, and bound to the parameter TT. 5371 auto *TT = cast<TemplateTypeParmType>(TTPD->getTypeForDecl()); 5372 // So now we know the constraint as a function of TT is true. 5373 believe(CD->getConstraintExpr(), TT); 5374 // (concepts themselves have no associated constraints to require) 5375 } 5376 5377 ++Index; 5378 } 5379 } else if (auto *BO = dyn_cast<BinaryOperator>(E)) { 5380 // For A && B, we can infer members from both branches. 5381 // For A || B, the union is still more useful than the intersection. 5382 if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) { 5383 believe(BO->getLHS(), T); 5384 believe(BO->getRHS(), T); 5385 } 5386 } else if (auto *RE = dyn_cast<RequiresExpr>(E)) { 5387 // A requires(){...} lets us infer members from each requirement. 5388 for (const concepts::Requirement *Req : RE->getRequirements()) { 5389 if (!Req->isDependent()) 5390 continue; // Can't tell us anything about T. 5391 // Now Req cannot a substitution-error: those aren't dependent. 5392 5393 if (auto *TR = dyn_cast<concepts::TypeRequirement>(Req)) { 5394 // Do a full traversal so we get `foo` from `typename T::foo::bar`. 5395 QualType AssertedType = TR->getType()->getType(); 5396 ValidVisitor(this, T).TraverseType(AssertedType); 5397 } else if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) { 5398 ValidVisitor Visitor(this, T); 5399 // If we have a type constraint on the value of the expression, 5400 // AND the whole outer expression describes a member, then we'll 5401 // be able to use the constraint to provide the return type. 5402 if (ER->getReturnTypeRequirement().isTypeConstraint()) { 5403 Visitor.OuterType = 5404 ER->getReturnTypeRequirement().getTypeConstraint(); 5405 Visitor.OuterExpr = ER->getExpr(); 5406 } 5407 Visitor.TraverseStmt(ER->getExpr()); 5408 } else if (auto *NR = dyn_cast<concepts::NestedRequirement>(Req)) { 5409 believe(NR->getConstraintExpr(), T); 5410 } 5411 } 5412 } 5413 } 5414 5415 // This visitor infers members of T based on traversing expressions/types 5416 // that involve T. It is invoked with code known to be valid for T. 5417 class ValidVisitor : public RecursiveASTVisitor<ValidVisitor> { 5418 ConceptInfo *Outer; 5419 const TemplateTypeParmType *T; 5420 5421 CallExpr *Caller = nullptr; 5422 Expr *Callee = nullptr; 5423 5424 public: 5425 // If set, OuterExpr is constrained by OuterType. 5426 Expr *OuterExpr = nullptr; 5427 const TypeConstraint *OuterType = nullptr; 5428 5429 ValidVisitor(ConceptInfo *Outer, const TemplateTypeParmType *T) 5430 : Outer(Outer), T(T) { 5431 assert(T); 5432 } 5433 5434 // In T.foo or T->foo, `foo` is a member function/variable. 5435 bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) { 5436 const Type *Base = E->getBaseType().getTypePtr(); 5437 bool IsArrow = E->isArrow(); 5438 if (Base->isPointerType() && IsArrow) { 5439 IsArrow = false; 5440 Base = Base->getPointeeType().getTypePtr(); 5441 } 5442 if (isApprox(Base, T)) 5443 addValue(E, E->getMember(), IsArrow ? Member::Arrow : Member::Dot); 5444 return true; 5445 } 5446 5447 // In T::foo, `foo` is a static member function/variable. 5448 bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) { 5449 if (E->getQualifier() && isApprox(E->getQualifier()->getAsType(), T)) 5450 addValue(E, E->getDeclName(), Member::Colons); 5451 return true; 5452 } 5453 5454 // In T::typename foo, `foo` is a type. 5455 bool VisitDependentNameType(DependentNameType *DNT) { 5456 const auto *Q = DNT->getQualifier(); 5457 if (Q && isApprox(Q->getAsType(), T)) 5458 addType(DNT->getIdentifier()); 5459 return true; 5460 } 5461 5462 // In T::foo::bar, `foo` must be a type. 5463 // VisitNNS() doesn't exist, and TraverseNNS isn't always called :-( 5464 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSL) { 5465 if (NNSL) { 5466 NestedNameSpecifier *NNS = NNSL.getNestedNameSpecifier(); 5467 const auto *Q = NNS->getPrefix(); 5468 if (Q && isApprox(Q->getAsType(), T)) 5469 addType(NNS->getAsIdentifier()); 5470 } 5471 // FIXME: also handle T::foo<X>::bar 5472 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(NNSL); 5473 } 5474 5475 // FIXME also handle T::foo<X> 5476 5477 // Track the innermost caller/callee relationship so we can tell if a 5478 // nested expr is being called as a function. 5479 bool VisitCallExpr(CallExpr *CE) { 5480 Caller = CE; 5481 Callee = CE->getCallee(); 5482 return true; 5483 } 5484 5485 private: 5486 void addResult(Member &&M) { 5487 auto R = Outer->Results.try_emplace(M.Name); 5488 Member &O = R.first->second; 5489 // Overwrite existing if the new member has more info. 5490 // The preference of . vs :: vs -> is fairly arbitrary. 5491 if (/*Inserted*/ R.second || 5492 std::make_tuple(M.ArgTypes.has_value(), M.ResultType != nullptr, 5493 M.Operator) > std::make_tuple(O.ArgTypes.has_value(), 5494 O.ResultType != nullptr, 5495 O.Operator)) 5496 O = std::move(M); 5497 } 5498 5499 void addType(const IdentifierInfo *Name) { 5500 if (!Name) 5501 return; 5502 Member M; 5503 M.Name = Name; 5504 M.Operator = Member::Colons; 5505 addResult(std::move(M)); 5506 } 5507 5508 void addValue(Expr *E, DeclarationName Name, 5509 Member::AccessOperator Operator) { 5510 if (!Name.isIdentifier()) 5511 return; 5512 Member Result; 5513 Result.Name = Name.getAsIdentifierInfo(); 5514 Result.Operator = Operator; 5515 // If this is the callee of an immediately-enclosing CallExpr, then 5516 // treat it as a method, otherwise it's a variable. 5517 if (Caller != nullptr && Callee == E) { 5518 Result.ArgTypes.emplace(); 5519 for (const auto *Arg : Caller->arguments()) 5520 Result.ArgTypes->push_back(Arg->getType()); 5521 if (Caller == OuterExpr) { 5522 Result.ResultType = OuterType; 5523 } 5524 } else { 5525 if (E == OuterExpr) 5526 Result.ResultType = OuterType; 5527 } 5528 addResult(std::move(Result)); 5529 } 5530 }; 5531 5532 static bool isApprox(const TemplateArgument &Arg, const Type *T) { 5533 return Arg.getKind() == TemplateArgument::Type && 5534 isApprox(Arg.getAsType().getTypePtr(), T); 5535 } 5536 5537 static bool isApprox(const Type *T1, const Type *T2) { 5538 return T1 && T2 && 5539 T1->getCanonicalTypeUnqualified() == 5540 T2->getCanonicalTypeUnqualified(); 5541 } 5542 5543 // Returns the DeclContext immediately enclosed by the template parameter 5544 // scope. For primary templates, this is the templated (e.g.) CXXRecordDecl. 5545 // For specializations, this is e.g. ClassTemplatePartialSpecializationDecl. 5546 static DeclContext *getTemplatedEntity(const TemplateTypeParmDecl *D, 5547 Scope *S) { 5548 if (D == nullptr) 5549 return nullptr; 5550 Scope *Inner = nullptr; 5551 while (S) { 5552 if (S->isTemplateParamScope() && S->isDeclScope(D)) 5553 return Inner ? Inner->getEntity() : nullptr; 5554 Inner = S; 5555 S = S->getParent(); 5556 } 5557 return nullptr; 5558 } 5559 5560 // Gets all the type constraint expressions that might apply to the type 5561 // variables associated with DC (as returned by getTemplatedEntity()). 5562 static SmallVector<const Expr *, 1> 5563 constraintsForTemplatedEntity(DeclContext *DC) { 5564 SmallVector<const Expr *, 1> Result; 5565 if (DC == nullptr) 5566 return Result; 5567 // Primary templates can have constraints. 5568 if (const auto *TD = cast<Decl>(DC)->getDescribedTemplate()) 5569 TD->getAssociatedConstraints(Result); 5570 // Partial specializations may have constraints. 5571 if (const auto *CTPSD = 5572 dyn_cast<ClassTemplatePartialSpecializationDecl>(DC)) 5573 CTPSD->getAssociatedConstraints(Result); 5574 if (const auto *VTPSD = dyn_cast<VarTemplatePartialSpecializationDecl>(DC)) 5575 VTPSD->getAssociatedConstraints(Result); 5576 return Result; 5577 } 5578 5579 // Attempt to find the unique type satisfying a constraint. 5580 // This lets us show e.g. `int` instead of `std::same_as<int>`. 5581 static QualType deduceType(const TypeConstraint &T) { 5582 // Assume a same_as<T> return type constraint is std::same_as or equivalent. 5583 // In this case the return type is T. 5584 DeclarationName DN = T.getNamedConcept()->getDeclName(); 5585 if (DN.isIdentifier() && DN.getAsIdentifierInfo()->isStr("same_as")) 5586 if (const auto *Args = T.getTemplateArgsAsWritten()) 5587 if (Args->getNumTemplateArgs() == 1) { 5588 const auto &Arg = Args->arguments().front().getArgument(); 5589 if (Arg.getKind() == TemplateArgument::Type) 5590 return Arg.getAsType(); 5591 } 5592 return {}; 5593 } 5594 5595 llvm::DenseMap<const IdentifierInfo *, Member> Results; 5596 }; 5597 5598 // Returns a type for E that yields acceptable member completions. 5599 // In particular, when E->getType() is DependentTy, try to guess a likely type. 5600 // We accept some lossiness (like dropping parameters). 5601 // We only try to handle common expressions on the LHS of MemberExpr. 5602 QualType getApproximateType(const Expr *E) { 5603 if (E->getType().isNull()) 5604 return QualType(); 5605 E = E->IgnoreParenImpCasts(); 5606 QualType Unresolved = E->getType(); 5607 // We only resolve DependentTy, or undeduced autos (including auto* etc). 5608 if (!Unresolved->isSpecificBuiltinType(BuiltinType::Dependent)) { 5609 AutoType *Auto = Unresolved->getContainedAutoType(); 5610 if (!Auto || !Auto->isUndeducedAutoType()) 5611 return Unresolved; 5612 } 5613 // A call: approximate-resolve callee to a function type, get its return type 5614 if (const CallExpr *CE = llvm::dyn_cast<CallExpr>(E)) { 5615 QualType Callee = getApproximateType(CE->getCallee()); 5616 if (Callee.isNull() || 5617 Callee->isSpecificPlaceholderType(BuiltinType::BoundMember)) 5618 Callee = Expr::findBoundMemberType(CE->getCallee()); 5619 if (Callee.isNull()) 5620 return Unresolved; 5621 5622 if (const auto *FnTypePtr = Callee->getAs<PointerType>()) { 5623 Callee = FnTypePtr->getPointeeType(); 5624 } else if (const auto *BPT = Callee->getAs<BlockPointerType>()) { 5625 Callee = BPT->getPointeeType(); 5626 } 5627 if (const FunctionType *FnType = Callee->getAs<FunctionType>()) 5628 return FnType->getReturnType().getNonReferenceType(); 5629 5630 // Unresolved call: try to guess the return type. 5631 if (const auto *OE = llvm::dyn_cast<OverloadExpr>(CE->getCallee())) { 5632 // If all candidates have the same approximate return type, use it. 5633 // Discard references and const to allow more to be "the same". 5634 // (In particular, if there's one candidate + ADL, resolve it). 5635 const Type *Common = nullptr; 5636 for (const auto *D : OE->decls()) { 5637 QualType ReturnType; 5638 if (const auto *FD = llvm::dyn_cast<FunctionDecl>(D)) 5639 ReturnType = FD->getReturnType(); 5640 else if (const auto *FTD = llvm::dyn_cast<FunctionTemplateDecl>(D)) 5641 ReturnType = FTD->getTemplatedDecl()->getReturnType(); 5642 if (ReturnType.isNull()) 5643 continue; 5644 const Type *Candidate = 5645 ReturnType.getNonReferenceType().getCanonicalType().getTypePtr(); 5646 if (Common && Common != Candidate) 5647 return Unresolved; // Multiple candidates. 5648 Common = Candidate; 5649 } 5650 if (Common != nullptr) 5651 return QualType(Common, 0); 5652 } 5653 } 5654 // A dependent member: approximate-resolve the base, then lookup. 5655 if (const auto *CDSME = llvm::dyn_cast<CXXDependentScopeMemberExpr>(E)) { 5656 QualType Base = CDSME->isImplicitAccess() 5657 ? CDSME->getBaseType() 5658 : getApproximateType(CDSME->getBase()); 5659 if (CDSME->isArrow() && !Base.isNull()) 5660 Base = Base->getPointeeType(); // could handle unique_ptr etc here? 5661 auto *RD = 5662 Base.isNull() 5663 ? nullptr 5664 : llvm::dyn_cast_or_null<CXXRecordDecl>(getAsRecordDecl(Base)); 5665 if (RD && RD->isCompleteDefinition()) { 5666 // Look up member heuristically, including in bases. 5667 for (const auto *Member : RD->lookupDependentName( 5668 CDSME->getMember(), [](const NamedDecl *Member) { 5669 return llvm::isa<ValueDecl>(Member); 5670 })) { 5671 return llvm::cast<ValueDecl>(Member)->getType().getNonReferenceType(); 5672 } 5673 } 5674 } 5675 // A reference to an `auto` variable: approximate-resolve its initializer. 5676 if (const auto *DRE = llvm::dyn_cast<DeclRefExpr>(E)) { 5677 if (const auto *VD = llvm::dyn_cast<VarDecl>(DRE->getDecl())) { 5678 if (VD->hasInit()) 5679 return getApproximateType(VD->getInit()); 5680 } 5681 } 5682 if (const auto *UO = llvm::dyn_cast<UnaryOperator>(E)) { 5683 if (UO->getOpcode() == UnaryOperatorKind::UO_Deref) 5684 return UO->getSubExpr()->getType()->getPointeeType(); 5685 } 5686 return Unresolved; 5687 } 5688 5689 // If \p Base is ParenListExpr, assume a chain of comma operators and pick the 5690 // last expr. We expect other ParenListExprs to be resolved to e.g. constructor 5691 // calls before here. (So the ParenListExpr should be nonempty, but check just 5692 // in case) 5693 Expr *unwrapParenList(Expr *Base) { 5694 if (auto *PLE = llvm::dyn_cast_or_null<ParenListExpr>(Base)) { 5695 if (PLE->getNumExprs() == 0) 5696 return nullptr; 5697 Base = PLE->getExpr(PLE->getNumExprs() - 1); 5698 } 5699 return Base; 5700 } 5701 5702 } // namespace 5703 5704 void Sema::CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, 5705 Expr *OtherOpBase, 5706 SourceLocation OpLoc, bool IsArrow, 5707 bool IsBaseExprStatement, 5708 QualType PreferredType) { 5709 Base = unwrapParenList(Base); 5710 OtherOpBase = unwrapParenList(OtherOpBase); 5711 if (!Base || !CodeCompleter) 5712 return; 5713 5714 ExprResult ConvertedBase = PerformMemberExprBaseConversion(Base, IsArrow); 5715 if (ConvertedBase.isInvalid()) 5716 return; 5717 QualType ConvertedBaseType = getApproximateType(ConvertedBase.get()); 5718 5719 enum CodeCompletionContext::Kind contextKind; 5720 5721 if (IsArrow) { 5722 if (const auto *Ptr = ConvertedBaseType->getAs<PointerType>()) 5723 ConvertedBaseType = Ptr->getPointeeType(); 5724 } 5725 5726 if (IsArrow) { 5727 contextKind = CodeCompletionContext::CCC_ArrowMemberAccess; 5728 } else { 5729 if (ConvertedBaseType->isObjCObjectPointerType() || 5730 ConvertedBaseType->isObjCObjectOrInterfaceType()) { 5731 contextKind = CodeCompletionContext::CCC_ObjCPropertyAccess; 5732 } else { 5733 contextKind = CodeCompletionContext::CCC_DotMemberAccess; 5734 } 5735 } 5736 5737 CodeCompletionContext CCContext(contextKind, ConvertedBaseType); 5738 CCContext.setPreferredType(PreferredType); 5739 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 5740 CodeCompleter->getCodeCompletionTUInfo(), CCContext, 5741 &ResultBuilder::IsMember); 5742 5743 auto DoCompletion = [&](Expr *Base, bool IsArrow, 5744 std::optional<FixItHint> AccessOpFixIt) -> bool { 5745 if (!Base) 5746 return false; 5747 5748 ExprResult ConvertedBase = PerformMemberExprBaseConversion(Base, IsArrow); 5749 if (ConvertedBase.isInvalid()) 5750 return false; 5751 Base = ConvertedBase.get(); 5752 5753 QualType BaseType = getApproximateType(Base); 5754 if (BaseType.isNull()) 5755 return false; 5756 ExprValueKind BaseKind = Base->getValueKind(); 5757 5758 if (IsArrow) { 5759 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { 5760 BaseType = Ptr->getPointeeType(); 5761 BaseKind = VK_LValue; 5762 } else if (BaseType->isObjCObjectPointerType() || 5763 BaseType->isTemplateTypeParmType()) { 5764 // Both cases (dot/arrow) handled below. 5765 } else { 5766 return false; 5767 } 5768 } 5769 5770 if (RecordDecl *RD = getAsRecordDecl(BaseType)) { 5771 AddRecordMembersCompletionResults(*this, Results, S, BaseType, BaseKind, 5772 RD, std::move(AccessOpFixIt)); 5773 } else if (const auto *TTPT = 5774 dyn_cast<TemplateTypeParmType>(BaseType.getTypePtr())) { 5775 auto Operator = 5776 IsArrow ? ConceptInfo::Member::Arrow : ConceptInfo::Member::Dot; 5777 for (const auto &R : ConceptInfo(*TTPT, S).members()) { 5778 if (R.Operator != Operator) 5779 continue; 5780 CodeCompletionResult Result( 5781 R.render(*this, CodeCompleter->getAllocator(), 5782 CodeCompleter->getCodeCompletionTUInfo())); 5783 if (AccessOpFixIt) 5784 Result.FixIts.push_back(*AccessOpFixIt); 5785 Results.AddResult(std::move(Result)); 5786 } 5787 } else if (!IsArrow && BaseType->isObjCObjectPointerType()) { 5788 // Objective-C property reference. Bail if we're performing fix-it code 5789 // completion since Objective-C properties are normally backed by ivars, 5790 // most Objective-C fix-its here would have little value. 5791 if (AccessOpFixIt) { 5792 return false; 5793 } 5794 AddedPropertiesSet AddedProperties; 5795 5796 if (const ObjCObjectPointerType *ObjCPtr = 5797 BaseType->getAsObjCInterfacePointerType()) { 5798 // Add property results based on our interface. 5799 assert(ObjCPtr && "Non-NULL pointer guaranteed above!"); 5800 AddObjCProperties(CCContext, ObjCPtr->getInterfaceDecl(), true, 5801 /*AllowNullaryMethods=*/true, CurContext, 5802 AddedProperties, Results, IsBaseExprStatement); 5803 } 5804 5805 // Add properties from the protocols in a qualified interface. 5806 for (auto *I : BaseType->castAs<ObjCObjectPointerType>()->quals()) 5807 AddObjCProperties(CCContext, I, true, /*AllowNullaryMethods=*/true, 5808 CurContext, AddedProperties, Results, 5809 IsBaseExprStatement, /*IsClassProperty*/ false, 5810 /*InOriginalClass*/ false); 5811 } else if ((IsArrow && BaseType->isObjCObjectPointerType()) || 5812 (!IsArrow && BaseType->isObjCObjectType())) { 5813 // Objective-C instance variable access. Bail if we're performing fix-it 5814 // code completion since Objective-C properties are normally backed by 5815 // ivars, most Objective-C fix-its here would have little value. 5816 if (AccessOpFixIt) { 5817 return false; 5818 } 5819 ObjCInterfaceDecl *Class = nullptr; 5820 if (const ObjCObjectPointerType *ObjCPtr = 5821 BaseType->getAs<ObjCObjectPointerType>()) 5822 Class = ObjCPtr->getInterfaceDecl(); 5823 else 5824 Class = BaseType->castAs<ObjCObjectType>()->getInterface(); 5825 5826 // Add all ivars from this class and its superclasses. 5827 if (Class) { 5828 CodeCompletionDeclConsumer Consumer(Results, Class, BaseType); 5829 Results.setFilter(&ResultBuilder::IsObjCIvar); 5830 LookupVisibleDecls( 5831 Class, LookupMemberName, Consumer, CodeCompleter->includeGlobals(), 5832 /*IncludeDependentBases=*/false, CodeCompleter->loadExternal()); 5833 } 5834 } 5835 5836 // FIXME: How do we cope with isa? 5837 return true; 5838 }; 5839 5840 Results.EnterNewScope(); 5841 5842 bool CompletionSucceded = DoCompletion(Base, IsArrow, std::nullopt); 5843 if (CodeCompleter->includeFixIts()) { 5844 const CharSourceRange OpRange = 5845 CharSourceRange::getTokenRange(OpLoc, OpLoc); 5846 CompletionSucceded |= DoCompletion( 5847 OtherOpBase, !IsArrow, 5848 FixItHint::CreateReplacement(OpRange, IsArrow ? "." : "->")); 5849 } 5850 5851 Results.ExitScope(); 5852 5853 if (!CompletionSucceded) 5854 return; 5855 5856 // Hand off the results found for code completion. 5857 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 5858 Results.data(), Results.size()); 5859 } 5860 5861 void Sema::CodeCompleteObjCClassPropertyRefExpr(Scope *S, 5862 IdentifierInfo &ClassName, 5863 SourceLocation ClassNameLoc, 5864 bool IsBaseExprStatement) { 5865 IdentifierInfo *ClassNamePtr = &ClassName; 5866 ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(ClassNamePtr, ClassNameLoc); 5867 if (!IFace) 5868 return; 5869 CodeCompletionContext CCContext( 5870 CodeCompletionContext::CCC_ObjCPropertyAccess); 5871 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 5872 CodeCompleter->getCodeCompletionTUInfo(), CCContext, 5873 &ResultBuilder::IsMember); 5874 Results.EnterNewScope(); 5875 AddedPropertiesSet AddedProperties; 5876 AddObjCProperties(CCContext, IFace, true, 5877 /*AllowNullaryMethods=*/true, CurContext, AddedProperties, 5878 Results, IsBaseExprStatement, 5879 /*IsClassProperty=*/true); 5880 Results.ExitScope(); 5881 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 5882 Results.data(), Results.size()); 5883 } 5884 5885 void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) { 5886 if (!CodeCompleter) 5887 return; 5888 5889 ResultBuilder::LookupFilter Filter = nullptr; 5890 enum CodeCompletionContext::Kind ContextKind = 5891 CodeCompletionContext::CCC_Other; 5892 switch ((DeclSpec::TST)TagSpec) { 5893 case DeclSpec::TST_enum: 5894 Filter = &ResultBuilder::IsEnum; 5895 ContextKind = CodeCompletionContext::CCC_EnumTag; 5896 break; 5897 5898 case DeclSpec::TST_union: 5899 Filter = &ResultBuilder::IsUnion; 5900 ContextKind = CodeCompletionContext::CCC_UnionTag; 5901 break; 5902 5903 case DeclSpec::TST_struct: 5904 case DeclSpec::TST_class: 5905 case DeclSpec::TST_interface: 5906 Filter = &ResultBuilder::IsClassOrStruct; 5907 ContextKind = CodeCompletionContext::CCC_ClassOrStructTag; 5908 break; 5909 5910 default: 5911 llvm_unreachable("Unknown type specifier kind in CodeCompleteTag"); 5912 } 5913 5914 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 5915 CodeCompleter->getCodeCompletionTUInfo(), ContextKind); 5916 CodeCompletionDeclConsumer Consumer(Results, CurContext); 5917 5918 // First pass: look for tags. 5919 Results.setFilter(Filter); 5920 LookupVisibleDecls(S, LookupTagName, Consumer, 5921 CodeCompleter->includeGlobals(), 5922 CodeCompleter->loadExternal()); 5923 5924 if (CodeCompleter->includeGlobals()) { 5925 // Second pass: look for nested name specifiers. 5926 Results.setFilter(&ResultBuilder::IsNestedNameSpecifier); 5927 LookupVisibleDecls(S, LookupNestedNameSpecifierName, Consumer, 5928 CodeCompleter->includeGlobals(), 5929 CodeCompleter->loadExternal()); 5930 } 5931 5932 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 5933 Results.data(), Results.size()); 5934 } 5935 5936 static void AddTypeQualifierResults(DeclSpec &DS, ResultBuilder &Results, 5937 const LangOptions &LangOpts) { 5938 if (!(DS.getTypeQualifiers() & DeclSpec::TQ_const)) 5939 Results.AddResult("const"); 5940 if (!(DS.getTypeQualifiers() & DeclSpec::TQ_volatile)) 5941 Results.AddResult("volatile"); 5942 if (LangOpts.C99 && !(DS.getTypeQualifiers() & DeclSpec::TQ_restrict)) 5943 Results.AddResult("restrict"); 5944 if (LangOpts.C11 && !(DS.getTypeQualifiers() & DeclSpec::TQ_atomic)) 5945 Results.AddResult("_Atomic"); 5946 if (LangOpts.MSVCCompat && !(DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)) 5947 Results.AddResult("__unaligned"); 5948 } 5949 5950 void Sema::CodeCompleteTypeQualifiers(DeclSpec &DS) { 5951 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 5952 CodeCompleter->getCodeCompletionTUInfo(), 5953 CodeCompletionContext::CCC_TypeQualifiers); 5954 Results.EnterNewScope(); 5955 AddTypeQualifierResults(DS, Results, LangOpts); 5956 Results.ExitScope(); 5957 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 5958 Results.data(), Results.size()); 5959 } 5960 5961 void Sema::CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D, 5962 const VirtSpecifiers *VS) { 5963 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 5964 CodeCompleter->getCodeCompletionTUInfo(), 5965 CodeCompletionContext::CCC_TypeQualifiers); 5966 Results.EnterNewScope(); 5967 AddTypeQualifierResults(DS, Results, LangOpts); 5968 if (LangOpts.CPlusPlus11) { 5969 Results.AddResult("noexcept"); 5970 if (D.getContext() == DeclaratorContext::Member && !D.isCtorOrDtor() && 5971 !D.isStaticMember()) { 5972 if (!VS || !VS->isFinalSpecified()) 5973 Results.AddResult("final"); 5974 if (!VS || !VS->isOverrideSpecified()) 5975 Results.AddResult("override"); 5976 } 5977 } 5978 Results.ExitScope(); 5979 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 5980 Results.data(), Results.size()); 5981 } 5982 5983 void Sema::CodeCompleteBracketDeclarator(Scope *S) { 5984 CodeCompleteExpression(S, QualType(getASTContext().getSizeType())); 5985 } 5986 5987 void Sema::CodeCompleteCase(Scope *S) { 5988 if (getCurFunction()->SwitchStack.empty() || !CodeCompleter) 5989 return; 5990 5991 SwitchStmt *Switch = getCurFunction()->SwitchStack.back().getPointer(); 5992 // Condition expression might be invalid, do not continue in this case. 5993 if (!Switch->getCond()) 5994 return; 5995 QualType type = Switch->getCond()->IgnoreImplicit()->getType(); 5996 if (!type->isEnumeralType()) { 5997 CodeCompleteExpressionData Data(type); 5998 Data.IntegralConstantExpression = true; 5999 CodeCompleteExpression(S, Data); 6000 return; 6001 } 6002 6003 // Code-complete the cases of a switch statement over an enumeration type 6004 // by providing the list of 6005 EnumDecl *Enum = type->castAs<EnumType>()->getDecl(); 6006 if (EnumDecl *Def = Enum->getDefinition()) 6007 Enum = Def; 6008 6009 // Determine which enumerators we have already seen in the switch statement. 6010 // FIXME: Ideally, we would also be able to look *past* the code-completion 6011 // token, in case we are code-completing in the middle of the switch and not 6012 // at the end. However, we aren't able to do so at the moment. 6013 CoveredEnumerators Enumerators; 6014 for (SwitchCase *SC = Switch->getSwitchCaseList(); SC; 6015 SC = SC->getNextSwitchCase()) { 6016 CaseStmt *Case = dyn_cast<CaseStmt>(SC); 6017 if (!Case) 6018 continue; 6019 6020 Expr *CaseVal = Case->getLHS()->IgnoreParenCasts(); 6021 if (auto *DRE = dyn_cast<DeclRefExpr>(CaseVal)) 6022 if (auto *Enumerator = 6023 dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 6024 // We look into the AST of the case statement to determine which 6025 // enumerator was named. Alternatively, we could compute the value of 6026 // the integral constant expression, then compare it against the 6027 // values of each enumerator. However, value-based approach would not 6028 // work as well with C++ templates where enumerators declared within a 6029 // template are type- and value-dependent. 6030 Enumerators.Seen.insert(Enumerator); 6031 6032 // If this is a qualified-id, keep track of the nested-name-specifier 6033 // so that we can reproduce it as part of code completion, e.g., 6034 // 6035 // switch (TagD.getKind()) { 6036 // case TagDecl::TK_enum: 6037 // break; 6038 // case XXX 6039 // 6040 // At the XXX, our completions are TagDecl::TK_union, 6041 // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union, 6042 // TK_struct, and TK_class. 6043 Enumerators.SuggestedQualifier = DRE->getQualifier(); 6044 } 6045 } 6046 6047 // Add any enumerators that have not yet been mentioned. 6048 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6049 CodeCompleter->getCodeCompletionTUInfo(), 6050 CodeCompletionContext::CCC_Expression); 6051 AddEnumerators(Results, Context, Enum, CurContext, Enumerators); 6052 6053 if (CodeCompleter->includeMacros()) { 6054 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), false); 6055 } 6056 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6057 Results.data(), Results.size()); 6058 } 6059 6060 static bool anyNullArguments(ArrayRef<Expr *> Args) { 6061 if (Args.size() && !Args.data()) 6062 return true; 6063 6064 for (unsigned I = 0; I != Args.size(); ++I) 6065 if (!Args[I]) 6066 return true; 6067 6068 return false; 6069 } 6070 6071 typedef CodeCompleteConsumer::OverloadCandidate ResultCandidate; 6072 6073 static void mergeCandidatesWithResults( 6074 Sema &SemaRef, SmallVectorImpl<ResultCandidate> &Results, 6075 OverloadCandidateSet &CandidateSet, SourceLocation Loc, size_t ArgSize) { 6076 // Sort the overload candidate set by placing the best overloads first. 6077 llvm::stable_sort(CandidateSet, [&](const OverloadCandidate &X, 6078 const OverloadCandidate &Y) { 6079 return isBetterOverloadCandidate(SemaRef, X, Y, Loc, 6080 CandidateSet.getKind()); 6081 }); 6082 6083 // Add the remaining viable overload candidates as code-completion results. 6084 for (OverloadCandidate &Candidate : CandidateSet) { 6085 if (Candidate.Function) { 6086 if (Candidate.Function->isDeleted()) 6087 continue; 6088 if (shouldEnforceArgLimit(/*PartialOverloading=*/true, 6089 Candidate.Function) && 6090 Candidate.Function->getNumParams() <= ArgSize && 6091 // Having zero args is annoying, normally we don't surface a function 6092 // with 2 params, if you already have 2 params, because you are 6093 // inserting the 3rd now. But with zero, it helps the user to figure 6094 // out there are no overloads that take any arguments. Hence we are 6095 // keeping the overload. 6096 ArgSize > 0) 6097 continue; 6098 } 6099 if (Candidate.Viable) 6100 Results.push_back(ResultCandidate(Candidate.Function)); 6101 } 6102 } 6103 6104 /// Get the type of the Nth parameter from a given set of overload 6105 /// candidates. 6106 static QualType getParamType(Sema &SemaRef, 6107 ArrayRef<ResultCandidate> Candidates, unsigned N) { 6108 6109 // Given the overloads 'Candidates' for a function call matching all arguments 6110 // up to N, return the type of the Nth parameter if it is the same for all 6111 // overload candidates. 6112 QualType ParamType; 6113 for (auto &Candidate : Candidates) { 6114 QualType CandidateParamType = Candidate.getParamType(N); 6115 if (CandidateParamType.isNull()) 6116 continue; 6117 if (ParamType.isNull()) { 6118 ParamType = CandidateParamType; 6119 continue; 6120 } 6121 if (!SemaRef.Context.hasSameUnqualifiedType( 6122 ParamType.getNonReferenceType(), 6123 CandidateParamType.getNonReferenceType())) 6124 // Two conflicting types, give up. 6125 return QualType(); 6126 } 6127 6128 return ParamType; 6129 } 6130 6131 static QualType 6132 ProduceSignatureHelp(Sema &SemaRef, MutableArrayRef<ResultCandidate> Candidates, 6133 unsigned CurrentArg, SourceLocation OpenParLoc, 6134 bool Braced) { 6135 if (Candidates.empty()) 6136 return QualType(); 6137 if (SemaRef.getPreprocessor().isCodeCompletionReached()) 6138 SemaRef.CodeCompleter->ProcessOverloadCandidates( 6139 SemaRef, CurrentArg, Candidates.data(), Candidates.size(), OpenParLoc, 6140 Braced); 6141 return getParamType(SemaRef, Candidates, CurrentArg); 6142 } 6143 6144 // Given a callee expression `Fn`, if the call is through a function pointer, 6145 // try to find the declaration of the corresponding function pointer type, 6146 // so that we can recover argument names from it. 6147 static FunctionProtoTypeLoc GetPrototypeLoc(Expr *Fn) { 6148 TypeLoc Target; 6149 6150 if (const auto *T = Fn->getType().getTypePtr()->getAs<TypedefType>()) { 6151 Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc(); 6152 6153 } else if (const auto *DR = dyn_cast<DeclRefExpr>(Fn)) { 6154 const auto *D = DR->getDecl(); 6155 if (const auto *const VD = dyn_cast<VarDecl>(D)) { 6156 Target = VD->getTypeSourceInfo()->getTypeLoc(); 6157 } 6158 } else if (const auto *ME = dyn_cast<MemberExpr>(Fn)) { 6159 const auto *MD = ME->getMemberDecl(); 6160 if (const auto *FD = dyn_cast<FieldDecl>(MD)) { 6161 Target = FD->getTypeSourceInfo()->getTypeLoc(); 6162 } 6163 } 6164 6165 if (!Target) 6166 return {}; 6167 6168 // Unwrap types that may be wrapping the function type 6169 while (true) { 6170 if (auto P = Target.getAs<PointerTypeLoc>()) { 6171 Target = P.getPointeeLoc(); 6172 continue; 6173 } 6174 if (auto A = Target.getAs<AttributedTypeLoc>()) { 6175 Target = A.getModifiedLoc(); 6176 continue; 6177 } 6178 if (auto P = Target.getAs<ParenTypeLoc>()) { 6179 Target = P.getInnerLoc(); 6180 continue; 6181 } 6182 break; 6183 } 6184 6185 if (auto F = Target.getAs<FunctionProtoTypeLoc>()) { 6186 return F; 6187 } 6188 6189 return {}; 6190 } 6191 6192 QualType Sema::ProduceCallSignatureHelp(Expr *Fn, ArrayRef<Expr *> Args, 6193 SourceLocation OpenParLoc) { 6194 Fn = unwrapParenList(Fn); 6195 if (!CodeCompleter || !Fn) 6196 return QualType(); 6197 6198 // FIXME: Provide support for variadic template functions. 6199 // Ignore type-dependent call expressions entirely. 6200 if (Fn->isTypeDependent() || anyNullArguments(Args)) 6201 return QualType(); 6202 // In presence of dependent args we surface all possible signatures using the 6203 // non-dependent args in the prefix. Afterwards we do a post filtering to make 6204 // sure provided candidates satisfy parameter count restrictions. 6205 auto ArgsWithoutDependentTypes = 6206 Args.take_while([](Expr *Arg) { return !Arg->isTypeDependent(); }); 6207 6208 SmallVector<ResultCandidate, 8> Results; 6209 6210 Expr *NakedFn = Fn->IgnoreParenCasts(); 6211 // Build an overload candidate set based on the functions we find. 6212 SourceLocation Loc = Fn->getExprLoc(); 6213 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6214 6215 if (auto ULE = dyn_cast<UnresolvedLookupExpr>(NakedFn)) { 6216 AddOverloadedCallCandidates(ULE, ArgsWithoutDependentTypes, CandidateSet, 6217 /*PartialOverloading=*/true); 6218 } else if (auto UME = dyn_cast<UnresolvedMemberExpr>(NakedFn)) { 6219 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 6220 if (UME->hasExplicitTemplateArgs()) { 6221 UME->copyTemplateArgumentsInto(TemplateArgsBuffer); 6222 TemplateArgs = &TemplateArgsBuffer; 6223 } 6224 6225 // Add the base as first argument (use a nullptr if the base is implicit). 6226 SmallVector<Expr *, 12> ArgExprs( 6227 1, UME->isImplicitAccess() ? nullptr : UME->getBase()); 6228 ArgExprs.append(ArgsWithoutDependentTypes.begin(), 6229 ArgsWithoutDependentTypes.end()); 6230 UnresolvedSet<8> Decls; 6231 Decls.append(UME->decls_begin(), UME->decls_end()); 6232 const bool FirstArgumentIsBase = !UME->isImplicitAccess() && UME->getBase(); 6233 AddFunctionCandidates(Decls, ArgExprs, CandidateSet, TemplateArgs, 6234 /*SuppressUserConversions=*/false, 6235 /*PartialOverloading=*/true, FirstArgumentIsBase); 6236 } else { 6237 FunctionDecl *FD = nullptr; 6238 if (auto *MCE = dyn_cast<MemberExpr>(NakedFn)) 6239 FD = dyn_cast<FunctionDecl>(MCE->getMemberDecl()); 6240 else if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) 6241 FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 6242 if (FD) { // We check whether it's a resolved function declaration. 6243 if (!getLangOpts().CPlusPlus || 6244 !FD->getType()->getAs<FunctionProtoType>()) 6245 Results.push_back(ResultCandidate(FD)); 6246 else 6247 AddOverloadCandidate(FD, DeclAccessPair::make(FD, FD->getAccess()), 6248 ArgsWithoutDependentTypes, CandidateSet, 6249 /*SuppressUserConversions=*/false, 6250 /*PartialOverloading=*/true); 6251 6252 } else if (auto DC = NakedFn->getType()->getAsCXXRecordDecl()) { 6253 // If expression's type is CXXRecordDecl, it may overload the function 6254 // call operator, so we check if it does and add them as candidates. 6255 // A complete type is needed to lookup for member function call operators. 6256 if (isCompleteType(Loc, NakedFn->getType())) { 6257 DeclarationName OpName = 6258 Context.DeclarationNames.getCXXOperatorName(OO_Call); 6259 LookupResult R(*this, OpName, Loc, LookupOrdinaryName); 6260 LookupQualifiedName(R, DC); 6261 R.suppressDiagnostics(); 6262 SmallVector<Expr *, 12> ArgExprs(1, NakedFn); 6263 ArgExprs.append(ArgsWithoutDependentTypes.begin(), 6264 ArgsWithoutDependentTypes.end()); 6265 AddFunctionCandidates(R.asUnresolvedSet(), ArgExprs, CandidateSet, 6266 /*ExplicitArgs=*/nullptr, 6267 /*SuppressUserConversions=*/false, 6268 /*PartialOverloading=*/true); 6269 } 6270 } else { 6271 // Lastly we check whether expression's type is function pointer or 6272 // function. 6273 6274 FunctionProtoTypeLoc P = GetPrototypeLoc(NakedFn); 6275 QualType T = NakedFn->getType(); 6276 if (!T->getPointeeType().isNull()) 6277 T = T->getPointeeType(); 6278 6279 if (auto FP = T->getAs<FunctionProtoType>()) { 6280 if (!TooManyArguments(FP->getNumParams(), 6281 ArgsWithoutDependentTypes.size(), 6282 /*PartialOverloading=*/true) || 6283 FP->isVariadic()) { 6284 if (P) { 6285 Results.push_back(ResultCandidate(P)); 6286 } else { 6287 Results.push_back(ResultCandidate(FP)); 6288 } 6289 } 6290 } else if (auto FT = T->getAs<FunctionType>()) 6291 // No prototype and declaration, it may be a K & R style function. 6292 Results.push_back(ResultCandidate(FT)); 6293 } 6294 } 6295 mergeCandidatesWithResults(*this, Results, CandidateSet, Loc, Args.size()); 6296 QualType ParamType = ProduceSignatureHelp(*this, Results, Args.size(), 6297 OpenParLoc, /*Braced=*/false); 6298 return !CandidateSet.empty() ? ParamType : QualType(); 6299 } 6300 6301 // Determine which param to continue aggregate initialization from after 6302 // a designated initializer. 6303 // 6304 // Given struct S { int a,b,c,d,e; }: 6305 // after `S{.b=1,` we want to suggest c to continue 6306 // after `S{.b=1, 2,` we continue with d (this is legal C and ext in C++) 6307 // after `S{.b=1, .a=2,` we continue with b (this is legal C and ext in C++) 6308 // 6309 // Possible outcomes: 6310 // - we saw a designator for a field, and continue from the returned index. 6311 // Only aggregate initialization is allowed. 6312 // - we saw a designator, but it was complex or we couldn't find the field. 6313 // Only aggregate initialization is possible, but we can't assist with it. 6314 // Returns an out-of-range index. 6315 // - we saw no designators, just positional arguments. 6316 // Returns std::nullopt. 6317 static std::optional<unsigned> 6318 getNextAggregateIndexAfterDesignatedInit(const ResultCandidate &Aggregate, 6319 ArrayRef<Expr *> Args) { 6320 static constexpr unsigned Invalid = std::numeric_limits<unsigned>::max(); 6321 assert(Aggregate.getKind() == ResultCandidate::CK_Aggregate); 6322 6323 // Look for designated initializers. 6324 // They're in their syntactic form, not yet resolved to fields. 6325 const IdentifierInfo *DesignatedFieldName = nullptr; 6326 unsigned ArgsAfterDesignator = 0; 6327 for (const Expr *Arg : Args) { 6328 if (const auto *DIE = dyn_cast<DesignatedInitExpr>(Arg)) { 6329 if (DIE->size() == 1 && DIE->getDesignator(0)->isFieldDesignator()) { 6330 DesignatedFieldName = DIE->getDesignator(0)->getFieldName(); 6331 ArgsAfterDesignator = 0; 6332 } else { 6333 return Invalid; // Complicated designator. 6334 } 6335 } else if (isa<DesignatedInitUpdateExpr>(Arg)) { 6336 return Invalid; // Unsupported. 6337 } else { 6338 ++ArgsAfterDesignator; 6339 } 6340 } 6341 if (!DesignatedFieldName) 6342 return std::nullopt; 6343 6344 // Find the index within the class's fields. 6345 // (Probing getParamDecl() directly would be quadratic in number of fields). 6346 unsigned DesignatedIndex = 0; 6347 const FieldDecl *DesignatedField = nullptr; 6348 for (const auto *Field : Aggregate.getAggregate()->fields()) { 6349 if (Field->getIdentifier() == DesignatedFieldName) { 6350 DesignatedField = Field; 6351 break; 6352 } 6353 ++DesignatedIndex; 6354 } 6355 if (!DesignatedField) 6356 return Invalid; // Designator referred to a missing field, give up. 6357 6358 // Find the index within the aggregate (which may have leading bases). 6359 unsigned AggregateSize = Aggregate.getNumParams(); 6360 while (DesignatedIndex < AggregateSize && 6361 Aggregate.getParamDecl(DesignatedIndex) != DesignatedField) 6362 ++DesignatedIndex; 6363 6364 // Continue from the index after the last named field. 6365 return DesignatedIndex + ArgsAfterDesignator + 1; 6366 } 6367 6368 QualType Sema::ProduceConstructorSignatureHelp(QualType Type, 6369 SourceLocation Loc, 6370 ArrayRef<Expr *> Args, 6371 SourceLocation OpenParLoc, 6372 bool Braced) { 6373 if (!CodeCompleter) 6374 return QualType(); 6375 SmallVector<ResultCandidate, 8> Results; 6376 6377 // A complete type is needed to lookup for constructors. 6378 RecordDecl *RD = 6379 isCompleteType(Loc, Type) ? Type->getAsRecordDecl() : nullptr; 6380 if (!RD) 6381 return Type; 6382 CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD); 6383 6384 // Consider aggregate initialization. 6385 // We don't check that types so far are correct. 6386 // We also don't handle C99/C++17 brace-elision, we assume init-list elements 6387 // are 1:1 with fields. 6388 // FIXME: it would be nice to support "unwrapping" aggregates that contain 6389 // a single subaggregate, like std::array<T, N> -> T __elements[N]. 6390 if (Braced && !RD->isUnion() && 6391 (!LangOpts.CPlusPlus || (CRD && CRD->isAggregate()))) { 6392 ResultCandidate AggregateSig(RD); 6393 unsigned AggregateSize = AggregateSig.getNumParams(); 6394 6395 if (auto NextIndex = 6396 getNextAggregateIndexAfterDesignatedInit(AggregateSig, Args)) { 6397 // A designator was used, only aggregate init is possible. 6398 if (*NextIndex >= AggregateSize) 6399 return Type; 6400 Results.push_back(AggregateSig); 6401 return ProduceSignatureHelp(*this, Results, *NextIndex, OpenParLoc, 6402 Braced); 6403 } 6404 6405 // Describe aggregate initialization, but also constructors below. 6406 if (Args.size() < AggregateSize) 6407 Results.push_back(AggregateSig); 6408 } 6409 6410 // FIXME: Provide support for member initializers. 6411 // FIXME: Provide support for variadic template constructors. 6412 6413 if (CRD) { 6414 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6415 for (NamedDecl *C : LookupConstructors(CRD)) { 6416 if (auto *FD = dyn_cast<FunctionDecl>(C)) { 6417 // FIXME: we can't yet provide correct signature help for initializer 6418 // list constructors, so skip them entirely. 6419 if (Braced && LangOpts.CPlusPlus && isInitListConstructor(FD)) 6420 continue; 6421 AddOverloadCandidate(FD, DeclAccessPair::make(FD, C->getAccess()), Args, 6422 CandidateSet, 6423 /*SuppressUserConversions=*/false, 6424 /*PartialOverloading=*/true, 6425 /*AllowExplicit*/ true); 6426 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(C)) { 6427 if (Braced && LangOpts.CPlusPlus && 6428 isInitListConstructor(FTD->getTemplatedDecl())) 6429 continue; 6430 6431 AddTemplateOverloadCandidate( 6432 FTD, DeclAccessPair::make(FTD, C->getAccess()), 6433 /*ExplicitTemplateArgs=*/nullptr, Args, CandidateSet, 6434 /*SuppressUserConversions=*/false, 6435 /*PartialOverloading=*/true); 6436 } 6437 } 6438 mergeCandidatesWithResults(*this, Results, CandidateSet, Loc, Args.size()); 6439 } 6440 6441 return ProduceSignatureHelp(*this, Results, Args.size(), OpenParLoc, Braced); 6442 } 6443 6444 QualType Sema::ProduceCtorInitMemberSignatureHelp( 6445 Decl *ConstructorDecl, CXXScopeSpec SS, ParsedType TemplateTypeTy, 6446 ArrayRef<Expr *> ArgExprs, IdentifierInfo *II, SourceLocation OpenParLoc, 6447 bool Braced) { 6448 if (!CodeCompleter) 6449 return QualType(); 6450 6451 CXXConstructorDecl *Constructor = 6452 dyn_cast<CXXConstructorDecl>(ConstructorDecl); 6453 if (!Constructor) 6454 return QualType(); 6455 // FIXME: Add support for Base class constructors as well. 6456 if (ValueDecl *MemberDecl = tryLookupCtorInitMemberDecl( 6457 Constructor->getParent(), SS, TemplateTypeTy, II)) 6458 return ProduceConstructorSignatureHelp(MemberDecl->getType(), 6459 MemberDecl->getLocation(), ArgExprs, 6460 OpenParLoc, Braced); 6461 return QualType(); 6462 } 6463 6464 static bool argMatchesTemplateParams(const ParsedTemplateArgument &Arg, 6465 unsigned Index, 6466 const TemplateParameterList &Params) { 6467 const NamedDecl *Param; 6468 if (Index < Params.size()) 6469 Param = Params.getParam(Index); 6470 else if (Params.hasParameterPack()) 6471 Param = Params.asArray().back(); 6472 else 6473 return false; // too many args 6474 6475 switch (Arg.getKind()) { 6476 case ParsedTemplateArgument::Type: 6477 return llvm::isa<TemplateTypeParmDecl>(Param); // constraints not checked 6478 case ParsedTemplateArgument::NonType: 6479 return llvm::isa<NonTypeTemplateParmDecl>(Param); // type not checked 6480 case ParsedTemplateArgument::Template: 6481 return llvm::isa<TemplateTemplateParmDecl>(Param); // signature not checked 6482 } 6483 llvm_unreachable("Unhandled switch case"); 6484 } 6485 6486 QualType Sema::ProduceTemplateArgumentSignatureHelp( 6487 TemplateTy ParsedTemplate, ArrayRef<ParsedTemplateArgument> Args, 6488 SourceLocation LAngleLoc) { 6489 if (!CodeCompleter || !ParsedTemplate) 6490 return QualType(); 6491 6492 SmallVector<ResultCandidate, 8> Results; 6493 auto Consider = [&](const TemplateDecl *TD) { 6494 // Only add if the existing args are compatible with the template. 6495 bool Matches = true; 6496 for (unsigned I = 0; I < Args.size(); ++I) { 6497 if (!argMatchesTemplateParams(Args[I], I, *TD->getTemplateParameters())) { 6498 Matches = false; 6499 break; 6500 } 6501 } 6502 if (Matches) 6503 Results.emplace_back(TD); 6504 }; 6505 6506 TemplateName Template = ParsedTemplate.get(); 6507 if (const auto *TD = Template.getAsTemplateDecl()) { 6508 Consider(TD); 6509 } else if (const auto *OTS = Template.getAsOverloadedTemplate()) { 6510 for (const NamedDecl *ND : *OTS) 6511 if (const auto *TD = llvm::dyn_cast<TemplateDecl>(ND)) 6512 Consider(TD); 6513 } 6514 return ProduceSignatureHelp(*this, Results, Args.size(), LAngleLoc, 6515 /*Braced=*/false); 6516 } 6517 6518 static QualType getDesignatedType(QualType BaseType, const Designation &Desig) { 6519 for (unsigned I = 0; I < Desig.getNumDesignators(); ++I) { 6520 if (BaseType.isNull()) 6521 break; 6522 QualType NextType; 6523 const auto &D = Desig.getDesignator(I); 6524 if (D.isArrayDesignator() || D.isArrayRangeDesignator()) { 6525 if (BaseType->isArrayType()) 6526 NextType = BaseType->getAsArrayTypeUnsafe()->getElementType(); 6527 } else { 6528 assert(D.isFieldDesignator()); 6529 auto *RD = getAsRecordDecl(BaseType); 6530 if (RD && RD->isCompleteDefinition()) { 6531 for (const auto *Member : RD->lookup(D.getFieldDecl())) 6532 if (const FieldDecl *FD = llvm::dyn_cast<FieldDecl>(Member)) { 6533 NextType = FD->getType(); 6534 break; 6535 } 6536 } 6537 } 6538 BaseType = NextType; 6539 } 6540 return BaseType; 6541 } 6542 6543 void Sema::CodeCompleteDesignator(QualType BaseType, 6544 llvm::ArrayRef<Expr *> InitExprs, 6545 const Designation &D) { 6546 BaseType = getDesignatedType(BaseType, D); 6547 if (BaseType.isNull()) 6548 return; 6549 const auto *RD = getAsRecordDecl(BaseType); 6550 if (!RD || RD->fields().empty()) 6551 return; 6552 6553 CodeCompletionContext CCC(CodeCompletionContext::CCC_DotMemberAccess, 6554 BaseType); 6555 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6556 CodeCompleter->getCodeCompletionTUInfo(), CCC); 6557 6558 Results.EnterNewScope(); 6559 for (const Decl *D : RD->decls()) { 6560 const FieldDecl *FD; 6561 if (auto *IFD = dyn_cast<IndirectFieldDecl>(D)) 6562 FD = IFD->getAnonField(); 6563 else if (auto *DFD = dyn_cast<FieldDecl>(D)) 6564 FD = DFD; 6565 else 6566 continue; 6567 6568 // FIXME: Make use of previous designators to mark any fields before those 6569 // inaccessible, and also compute the next initializer priority. 6570 ResultBuilder::Result Result(FD, Results.getBasePriority(FD)); 6571 Results.AddResult(Result, CurContext, /*Hiding=*/nullptr); 6572 } 6573 Results.ExitScope(); 6574 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6575 Results.data(), Results.size()); 6576 } 6577 6578 void Sema::CodeCompleteInitializer(Scope *S, Decl *D) { 6579 ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D); 6580 if (!VD) { 6581 CodeCompleteOrdinaryName(S, PCC_Expression); 6582 return; 6583 } 6584 6585 CodeCompleteExpressionData Data; 6586 Data.PreferredType = VD->getType(); 6587 // Ignore VD to avoid completing the variable itself, e.g. in 'int foo = ^'. 6588 Data.IgnoreDecls.push_back(VD); 6589 6590 CodeCompleteExpression(S, Data); 6591 } 6592 6593 void Sema::CodeCompleteAfterIf(Scope *S, bool IsBracedThen) { 6594 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6595 CodeCompleter->getCodeCompletionTUInfo(), 6596 mapCodeCompletionContext(*this, PCC_Statement)); 6597 Results.setFilter(&ResultBuilder::IsOrdinaryName); 6598 Results.EnterNewScope(); 6599 6600 CodeCompletionDeclConsumer Consumer(Results, CurContext); 6601 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 6602 CodeCompleter->includeGlobals(), 6603 CodeCompleter->loadExternal()); 6604 6605 AddOrdinaryNameResults(PCC_Statement, S, *this, Results); 6606 6607 // "else" block 6608 CodeCompletionBuilder Builder(Results.getAllocator(), 6609 Results.getCodeCompletionTUInfo()); 6610 6611 auto AddElseBodyPattern = [&] { 6612 if (IsBracedThen) { 6613 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 6614 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 6615 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 6616 Builder.AddPlaceholderChunk("statements"); 6617 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 6618 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 6619 } else { 6620 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 6621 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 6622 Builder.AddPlaceholderChunk("statement"); 6623 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 6624 } 6625 }; 6626 Builder.AddTypedTextChunk("else"); 6627 if (Results.includeCodePatterns()) 6628 AddElseBodyPattern(); 6629 Results.AddResult(Builder.TakeString()); 6630 6631 // "else if" block 6632 Builder.AddTypedTextChunk("else if"); 6633 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 6634 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 6635 if (getLangOpts().CPlusPlus) 6636 Builder.AddPlaceholderChunk("condition"); 6637 else 6638 Builder.AddPlaceholderChunk("expression"); 6639 Builder.AddChunk(CodeCompletionString::CK_RightParen); 6640 if (Results.includeCodePatterns()) { 6641 AddElseBodyPattern(); 6642 } 6643 Results.AddResult(Builder.TakeString()); 6644 6645 Results.ExitScope(); 6646 6647 if (S->getFnParent()) 6648 AddPrettyFunctionResults(getLangOpts(), Results); 6649 6650 if (CodeCompleter->includeMacros()) 6651 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), false); 6652 6653 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6654 Results.data(), Results.size()); 6655 } 6656 6657 void Sema::CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, 6658 bool EnteringContext, 6659 bool IsUsingDeclaration, QualType BaseType, 6660 QualType PreferredType) { 6661 if (SS.isEmpty() || !CodeCompleter) 6662 return; 6663 6664 CodeCompletionContext CC(CodeCompletionContext::CCC_Symbol, PreferredType); 6665 CC.setIsUsingDeclaration(IsUsingDeclaration); 6666 CC.setCXXScopeSpecifier(SS); 6667 6668 // We want to keep the scope specifier even if it's invalid (e.g. the scope 6669 // "a::b::" is not corresponding to any context/namespace in the AST), since 6670 // it can be useful for global code completion which have information about 6671 // contexts/symbols that are not in the AST. 6672 if (SS.isInvalid()) { 6673 // As SS is invalid, we try to collect accessible contexts from the current 6674 // scope with a dummy lookup so that the completion consumer can try to 6675 // guess what the specified scope is. 6676 ResultBuilder DummyResults(*this, CodeCompleter->getAllocator(), 6677 CodeCompleter->getCodeCompletionTUInfo(), CC); 6678 if (!PreferredType.isNull()) 6679 DummyResults.setPreferredType(PreferredType); 6680 if (S->getEntity()) { 6681 CodeCompletionDeclConsumer Consumer(DummyResults, S->getEntity(), 6682 BaseType); 6683 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 6684 /*IncludeGlobalScope=*/false, 6685 /*LoadExternal=*/false); 6686 } 6687 HandleCodeCompleteResults(this, CodeCompleter, 6688 DummyResults.getCompletionContext(), nullptr, 0); 6689 return; 6690 } 6691 // Always pretend to enter a context to ensure that a dependent type 6692 // resolves to a dependent record. 6693 DeclContext *Ctx = computeDeclContext(SS, /*EnteringContext=*/true); 6694 6695 // Try to instantiate any non-dependent declaration contexts before 6696 // we look in them. Bail out if we fail. 6697 NestedNameSpecifier *NNS = SS.getScopeRep(); 6698 if (NNS != nullptr && SS.isValid() && !NNS->isDependent()) { 6699 if (Ctx == nullptr || RequireCompleteDeclContext(SS, Ctx)) 6700 return; 6701 } 6702 6703 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6704 CodeCompleter->getCodeCompletionTUInfo(), CC); 6705 if (!PreferredType.isNull()) 6706 Results.setPreferredType(PreferredType); 6707 Results.EnterNewScope(); 6708 6709 // The "template" keyword can follow "::" in the grammar, but only 6710 // put it into the grammar if the nested-name-specifier is dependent. 6711 // FIXME: results is always empty, this appears to be dead. 6712 if (!Results.empty() && NNS && NNS->isDependent()) 6713 Results.AddResult("template"); 6714 6715 // If the scope is a concept-constrained type parameter, infer nested 6716 // members based on the constraints. 6717 if (const auto *TTPT = 6718 dyn_cast_or_null<TemplateTypeParmType>(NNS->getAsType())) { 6719 for (const auto &R : ConceptInfo(*TTPT, S).members()) { 6720 if (R.Operator != ConceptInfo::Member::Colons) 6721 continue; 6722 Results.AddResult(CodeCompletionResult( 6723 R.render(*this, CodeCompleter->getAllocator(), 6724 CodeCompleter->getCodeCompletionTUInfo()))); 6725 } 6726 } 6727 6728 // Add calls to overridden virtual functions, if there are any. 6729 // 6730 // FIXME: This isn't wonderful, because we don't know whether we're actually 6731 // in a context that permits expressions. This is a general issue with 6732 // qualified-id completions. 6733 if (Ctx && !EnteringContext) 6734 MaybeAddOverrideCalls(*this, Ctx, Results); 6735 Results.ExitScope(); 6736 6737 if (Ctx && 6738 (CodeCompleter->includeNamespaceLevelDecls() || !Ctx->isFileContext())) { 6739 CodeCompletionDeclConsumer Consumer(Results, Ctx, BaseType); 6740 LookupVisibleDecls(Ctx, LookupOrdinaryName, Consumer, 6741 /*IncludeGlobalScope=*/true, 6742 /*IncludeDependentBases=*/true, 6743 CodeCompleter->loadExternal()); 6744 } 6745 6746 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6747 Results.data(), Results.size()); 6748 } 6749 6750 void Sema::CodeCompleteUsing(Scope *S) { 6751 if (!CodeCompleter) 6752 return; 6753 6754 // This can be both a using alias or using declaration, in the former we 6755 // expect a new name and a symbol in the latter case. 6756 CodeCompletionContext Context(CodeCompletionContext::CCC_SymbolOrNewName); 6757 Context.setIsUsingDeclaration(true); 6758 6759 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6760 CodeCompleter->getCodeCompletionTUInfo(), Context, 6761 &ResultBuilder::IsNestedNameSpecifier); 6762 Results.EnterNewScope(); 6763 6764 // If we aren't in class scope, we could see the "namespace" keyword. 6765 if (!S->isClassScope()) 6766 Results.AddResult(CodeCompletionResult("namespace")); 6767 6768 // After "using", we can see anything that would start a 6769 // nested-name-specifier. 6770 CodeCompletionDeclConsumer Consumer(Results, CurContext); 6771 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 6772 CodeCompleter->includeGlobals(), 6773 CodeCompleter->loadExternal()); 6774 Results.ExitScope(); 6775 6776 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6777 Results.data(), Results.size()); 6778 } 6779 6780 void Sema::CodeCompleteUsingDirective(Scope *S) { 6781 if (!CodeCompleter) 6782 return; 6783 6784 // After "using namespace", we expect to see a namespace name or namespace 6785 // alias. 6786 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6787 CodeCompleter->getCodeCompletionTUInfo(), 6788 CodeCompletionContext::CCC_Namespace, 6789 &ResultBuilder::IsNamespaceOrAlias); 6790 Results.EnterNewScope(); 6791 CodeCompletionDeclConsumer Consumer(Results, CurContext); 6792 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 6793 CodeCompleter->includeGlobals(), 6794 CodeCompleter->loadExternal()); 6795 Results.ExitScope(); 6796 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6797 Results.data(), Results.size()); 6798 } 6799 6800 void Sema::CodeCompleteNamespaceDecl(Scope *S) { 6801 if (!CodeCompleter) 6802 return; 6803 6804 DeclContext *Ctx = S->getEntity(); 6805 if (!S->getParent()) 6806 Ctx = Context.getTranslationUnitDecl(); 6807 6808 bool SuppressedGlobalResults = 6809 Ctx && !CodeCompleter->includeGlobals() && isa<TranslationUnitDecl>(Ctx); 6810 6811 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6812 CodeCompleter->getCodeCompletionTUInfo(), 6813 SuppressedGlobalResults 6814 ? CodeCompletionContext::CCC_Namespace 6815 : CodeCompletionContext::CCC_Other, 6816 &ResultBuilder::IsNamespace); 6817 6818 if (Ctx && Ctx->isFileContext() && !SuppressedGlobalResults) { 6819 // We only want to see those namespaces that have already been defined 6820 // within this scope, because its likely that the user is creating an 6821 // extended namespace declaration. Keep track of the most recent 6822 // definition of each namespace. 6823 std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest; 6824 for (DeclContext::specific_decl_iterator<NamespaceDecl> 6825 NS(Ctx->decls_begin()), 6826 NSEnd(Ctx->decls_end()); 6827 NS != NSEnd; ++NS) 6828 OrigToLatest[NS->getOriginalNamespace()] = *NS; 6829 6830 // Add the most recent definition (or extended definition) of each 6831 // namespace to the list of results. 6832 Results.EnterNewScope(); 6833 for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator 6834 NS = OrigToLatest.begin(), 6835 NSEnd = OrigToLatest.end(); 6836 NS != NSEnd; ++NS) 6837 Results.AddResult( 6838 CodeCompletionResult(NS->second, Results.getBasePriority(NS->second), 6839 nullptr), 6840 CurContext, nullptr, false); 6841 Results.ExitScope(); 6842 } 6843 6844 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6845 Results.data(), Results.size()); 6846 } 6847 6848 void Sema::CodeCompleteNamespaceAliasDecl(Scope *S) { 6849 if (!CodeCompleter) 6850 return; 6851 6852 // After "namespace", we expect to see a namespace or alias. 6853 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6854 CodeCompleter->getCodeCompletionTUInfo(), 6855 CodeCompletionContext::CCC_Namespace, 6856 &ResultBuilder::IsNamespaceOrAlias); 6857 CodeCompletionDeclConsumer Consumer(Results, CurContext); 6858 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 6859 CodeCompleter->includeGlobals(), 6860 CodeCompleter->loadExternal()); 6861 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6862 Results.data(), Results.size()); 6863 } 6864 6865 void Sema::CodeCompleteOperatorName(Scope *S) { 6866 if (!CodeCompleter) 6867 return; 6868 6869 typedef CodeCompletionResult Result; 6870 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6871 CodeCompleter->getCodeCompletionTUInfo(), 6872 CodeCompletionContext::CCC_Type, 6873 &ResultBuilder::IsType); 6874 Results.EnterNewScope(); 6875 6876 // Add the names of overloadable operators. Note that OO_Conditional is not 6877 // actually overloadable. 6878 #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemberOnly) \ 6879 if (OO_##Name != OO_Conditional) \ 6880 Results.AddResult(Result(Spelling)); 6881 #include "clang/Basic/OperatorKinds.def" 6882 6883 // Add any type names visible from the current scope 6884 Results.allowNestedNameSpecifiers(); 6885 CodeCompletionDeclConsumer Consumer(Results, CurContext); 6886 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 6887 CodeCompleter->includeGlobals(), 6888 CodeCompleter->loadExternal()); 6889 6890 // Add any type specifiers 6891 AddTypeSpecifierResults(getLangOpts(), Results); 6892 Results.ExitScope(); 6893 6894 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 6895 Results.data(), Results.size()); 6896 } 6897 6898 void Sema::CodeCompleteConstructorInitializer( 6899 Decl *ConstructorD, ArrayRef<CXXCtorInitializer *> Initializers) { 6900 if (!ConstructorD) 6901 return; 6902 6903 AdjustDeclIfTemplate(ConstructorD); 6904 6905 auto *Constructor = dyn_cast<CXXConstructorDecl>(ConstructorD); 6906 if (!Constructor) 6907 return; 6908 6909 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 6910 CodeCompleter->getCodeCompletionTUInfo(), 6911 CodeCompletionContext::CCC_Symbol); 6912 Results.EnterNewScope(); 6913 6914 // Fill in any already-initialized fields or base classes. 6915 llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields; 6916 llvm::SmallPtrSet<CanQualType, 4> InitializedBases; 6917 for (unsigned I = 0, E = Initializers.size(); I != E; ++I) { 6918 if (Initializers[I]->isBaseInitializer()) 6919 InitializedBases.insert(Context.getCanonicalType( 6920 QualType(Initializers[I]->getBaseClass(), 0))); 6921 else 6922 InitializedFields.insert( 6923 cast<FieldDecl>(Initializers[I]->getAnyMember())); 6924 } 6925 6926 // Add completions for base classes. 6927 PrintingPolicy Policy = getCompletionPrintingPolicy(*this); 6928 bool SawLastInitializer = Initializers.empty(); 6929 CXXRecordDecl *ClassDecl = Constructor->getParent(); 6930 6931 auto GenerateCCS = [&](const NamedDecl *ND, const char *Name) { 6932 CodeCompletionBuilder Builder(Results.getAllocator(), 6933 Results.getCodeCompletionTUInfo()); 6934 Builder.AddTypedTextChunk(Name); 6935 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 6936 if (const auto *Function = dyn_cast<FunctionDecl>(ND)) 6937 AddFunctionParameterChunks(PP, Policy, Function, Builder); 6938 else if (const auto *FunTemplDecl = dyn_cast<FunctionTemplateDecl>(ND)) 6939 AddFunctionParameterChunks(PP, Policy, FunTemplDecl->getTemplatedDecl(), 6940 Builder); 6941 Builder.AddChunk(CodeCompletionString::CK_RightParen); 6942 return Builder.TakeString(); 6943 }; 6944 auto AddDefaultCtorInit = [&](const char *Name, const char *Type, 6945 const NamedDecl *ND) { 6946 CodeCompletionBuilder Builder(Results.getAllocator(), 6947 Results.getCodeCompletionTUInfo()); 6948 Builder.AddTypedTextChunk(Name); 6949 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 6950 Builder.AddPlaceholderChunk(Type); 6951 Builder.AddChunk(CodeCompletionString::CK_RightParen); 6952 if (ND) { 6953 auto CCR = CodeCompletionResult( 6954 Builder.TakeString(), ND, 6955 SawLastInitializer ? CCP_NextInitializer : CCP_MemberDeclaration); 6956 if (isa<FieldDecl>(ND)) 6957 CCR.CursorKind = CXCursor_MemberRef; 6958 return Results.AddResult(CCR); 6959 } 6960 return Results.AddResult(CodeCompletionResult( 6961 Builder.TakeString(), 6962 SawLastInitializer ? CCP_NextInitializer : CCP_MemberDeclaration)); 6963 }; 6964 auto AddCtorsWithName = [&](const CXXRecordDecl *RD, unsigned int Priority, 6965 const char *Name, const FieldDecl *FD) { 6966 if (!RD) 6967 return AddDefaultCtorInit(Name, 6968 FD ? Results.getAllocator().CopyString( 6969 FD->getType().getAsString(Policy)) 6970 : Name, 6971 FD); 6972 auto Ctors = getConstructors(Context, RD); 6973 if (Ctors.begin() == Ctors.end()) 6974 return AddDefaultCtorInit(Name, Name, RD); 6975 for (const NamedDecl *Ctor : Ctors) { 6976 auto CCR = CodeCompletionResult(GenerateCCS(Ctor, Name), RD, Priority); 6977 CCR.CursorKind = getCursorKindForDecl(Ctor); 6978 Results.AddResult(CCR); 6979 } 6980 }; 6981 auto AddBase = [&](const CXXBaseSpecifier &Base) { 6982 const char *BaseName = 6983 Results.getAllocator().CopyString(Base.getType().getAsString(Policy)); 6984 const auto *RD = Base.getType()->getAsCXXRecordDecl(); 6985 AddCtorsWithName( 6986 RD, SawLastInitializer ? CCP_NextInitializer : CCP_MemberDeclaration, 6987 BaseName, nullptr); 6988 }; 6989 auto AddField = [&](const FieldDecl *FD) { 6990 const char *FieldName = 6991 Results.getAllocator().CopyString(FD->getIdentifier()->getName()); 6992 const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl(); 6993 AddCtorsWithName( 6994 RD, SawLastInitializer ? CCP_NextInitializer : CCP_MemberDeclaration, 6995 FieldName, FD); 6996 }; 6997 6998 for (const auto &Base : ClassDecl->bases()) { 6999 if (!InitializedBases.insert(Context.getCanonicalType(Base.getType())) 7000 .second) { 7001 SawLastInitializer = 7002 !Initializers.empty() && Initializers.back()->isBaseInitializer() && 7003 Context.hasSameUnqualifiedType( 7004 Base.getType(), QualType(Initializers.back()->getBaseClass(), 0)); 7005 continue; 7006 } 7007 7008 AddBase(Base); 7009 SawLastInitializer = false; 7010 } 7011 7012 // Add completions for virtual base classes. 7013 for (const auto &Base : ClassDecl->vbases()) { 7014 if (!InitializedBases.insert(Context.getCanonicalType(Base.getType())) 7015 .second) { 7016 SawLastInitializer = 7017 !Initializers.empty() && Initializers.back()->isBaseInitializer() && 7018 Context.hasSameUnqualifiedType( 7019 Base.getType(), QualType(Initializers.back()->getBaseClass(), 0)); 7020 continue; 7021 } 7022 7023 AddBase(Base); 7024 SawLastInitializer = false; 7025 } 7026 7027 // Add completions for members. 7028 for (auto *Field : ClassDecl->fields()) { 7029 if (!InitializedFields.insert(cast<FieldDecl>(Field->getCanonicalDecl())) 7030 .second) { 7031 SawLastInitializer = !Initializers.empty() && 7032 Initializers.back()->isAnyMemberInitializer() && 7033 Initializers.back()->getAnyMember() == Field; 7034 continue; 7035 } 7036 7037 if (!Field->getDeclName()) 7038 continue; 7039 7040 AddField(Field); 7041 SawLastInitializer = false; 7042 } 7043 Results.ExitScope(); 7044 7045 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7046 Results.data(), Results.size()); 7047 } 7048 7049 /// Determine whether this scope denotes a namespace. 7050 static bool isNamespaceScope(Scope *S) { 7051 DeclContext *DC = S->getEntity(); 7052 if (!DC) 7053 return false; 7054 7055 return DC->isFileContext(); 7056 } 7057 7058 void Sema::CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro, 7059 bool AfterAmpersand) { 7060 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7061 CodeCompleter->getCodeCompletionTUInfo(), 7062 CodeCompletionContext::CCC_Other); 7063 Results.EnterNewScope(); 7064 7065 // Note what has already been captured. 7066 llvm::SmallPtrSet<IdentifierInfo *, 4> Known; 7067 bool IncludedThis = false; 7068 for (const auto &C : Intro.Captures) { 7069 if (C.Kind == LCK_This) { 7070 IncludedThis = true; 7071 continue; 7072 } 7073 7074 Known.insert(C.Id); 7075 } 7076 7077 // Look for other capturable variables. 7078 for (; S && !isNamespaceScope(S); S = S->getParent()) { 7079 for (const auto *D : S->decls()) { 7080 const auto *Var = dyn_cast<VarDecl>(D); 7081 if (!Var || !Var->hasLocalStorage() || Var->hasAttr<BlocksAttr>()) 7082 continue; 7083 7084 if (Known.insert(Var->getIdentifier()).second) 7085 Results.AddResult(CodeCompletionResult(Var, CCP_LocalDeclaration), 7086 CurContext, nullptr, false); 7087 } 7088 } 7089 7090 // Add 'this', if it would be valid. 7091 if (!IncludedThis && !AfterAmpersand && Intro.Default != LCD_ByCopy) 7092 addThisCompletion(*this, Results); 7093 7094 Results.ExitScope(); 7095 7096 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7097 Results.data(), Results.size()); 7098 } 7099 7100 void Sema::CodeCompleteAfterFunctionEquals(Declarator &D) { 7101 if (!LangOpts.CPlusPlus11) 7102 return; 7103 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7104 CodeCompleter->getCodeCompletionTUInfo(), 7105 CodeCompletionContext::CCC_Other); 7106 auto ShouldAddDefault = [&D, this]() { 7107 if (!D.isFunctionDeclarator()) 7108 return false; 7109 auto &Id = D.getName(); 7110 if (Id.getKind() == UnqualifiedIdKind::IK_DestructorName) 7111 return true; 7112 // FIXME(liuhui): Ideally, we should check the constructor parameter list to 7113 // verify that it is the default, copy or move constructor? 7114 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName && 7115 D.getFunctionTypeInfo().NumParams <= 1) 7116 return true; 7117 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId) { 7118 auto Op = Id.OperatorFunctionId.Operator; 7119 // FIXME(liuhui): Ideally, we should check the function parameter list to 7120 // verify that it is the copy or move assignment? 7121 if (Op == OverloadedOperatorKind::OO_Equal) 7122 return true; 7123 if (LangOpts.CPlusPlus20 && 7124 (Op == OverloadedOperatorKind::OO_EqualEqual || 7125 Op == OverloadedOperatorKind::OO_ExclaimEqual || 7126 Op == OverloadedOperatorKind::OO_Less || 7127 Op == OverloadedOperatorKind::OO_LessEqual || 7128 Op == OverloadedOperatorKind::OO_Greater || 7129 Op == OverloadedOperatorKind::OO_GreaterEqual || 7130 Op == OverloadedOperatorKind::OO_Spaceship)) 7131 return true; 7132 } 7133 return false; 7134 }; 7135 7136 Results.EnterNewScope(); 7137 if (ShouldAddDefault()) 7138 Results.AddResult("default"); 7139 // FIXME(liuhui): Ideally, we should only provide `delete` completion for the 7140 // first function declaration. 7141 Results.AddResult("delete"); 7142 Results.ExitScope(); 7143 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7144 Results.data(), Results.size()); 7145 } 7146 7147 /// Macro that optionally prepends an "@" to the string literal passed in via 7148 /// Keyword, depending on whether NeedAt is true or false. 7149 #define OBJC_AT_KEYWORD_NAME(NeedAt, Keyword) ((NeedAt) ? "@" Keyword : Keyword) 7150 7151 static void AddObjCImplementationResults(const LangOptions &LangOpts, 7152 ResultBuilder &Results, bool NeedAt) { 7153 typedef CodeCompletionResult Result; 7154 // Since we have an implementation, we can end it. 7155 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "end"))); 7156 7157 CodeCompletionBuilder Builder(Results.getAllocator(), 7158 Results.getCodeCompletionTUInfo()); 7159 if (LangOpts.ObjC) { 7160 // @dynamic 7161 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "dynamic")); 7162 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7163 Builder.AddPlaceholderChunk("property"); 7164 Results.AddResult(Result(Builder.TakeString())); 7165 7166 // @synthesize 7167 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "synthesize")); 7168 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7169 Builder.AddPlaceholderChunk("property"); 7170 Results.AddResult(Result(Builder.TakeString())); 7171 } 7172 } 7173 7174 static void AddObjCInterfaceResults(const LangOptions &LangOpts, 7175 ResultBuilder &Results, bool NeedAt) { 7176 typedef CodeCompletionResult Result; 7177 7178 // Since we have an interface or protocol, we can end it. 7179 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "end"))); 7180 7181 if (LangOpts.ObjC) { 7182 // @property 7183 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "property"))); 7184 7185 // @required 7186 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "required"))); 7187 7188 // @optional 7189 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "optional"))); 7190 } 7191 } 7192 7193 static void AddObjCTopLevelResults(ResultBuilder &Results, bool NeedAt) { 7194 typedef CodeCompletionResult Result; 7195 CodeCompletionBuilder Builder(Results.getAllocator(), 7196 Results.getCodeCompletionTUInfo()); 7197 7198 // @class name ; 7199 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "class")); 7200 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7201 Builder.AddPlaceholderChunk("name"); 7202 Results.AddResult(Result(Builder.TakeString())); 7203 7204 if (Results.includeCodePatterns()) { 7205 // @interface name 7206 // FIXME: Could introduce the whole pattern, including superclasses and 7207 // such. 7208 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "interface")); 7209 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7210 Builder.AddPlaceholderChunk("class"); 7211 Results.AddResult(Result(Builder.TakeString())); 7212 7213 // @protocol name 7214 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "protocol")); 7215 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7216 Builder.AddPlaceholderChunk("protocol"); 7217 Results.AddResult(Result(Builder.TakeString())); 7218 7219 // @implementation name 7220 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "implementation")); 7221 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7222 Builder.AddPlaceholderChunk("class"); 7223 Results.AddResult(Result(Builder.TakeString())); 7224 } 7225 7226 // @compatibility_alias name 7227 Builder.AddTypedTextChunk( 7228 OBJC_AT_KEYWORD_NAME(NeedAt, "compatibility_alias")); 7229 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7230 Builder.AddPlaceholderChunk("alias"); 7231 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7232 Builder.AddPlaceholderChunk("class"); 7233 Results.AddResult(Result(Builder.TakeString())); 7234 7235 if (Results.getSema().getLangOpts().Modules) { 7236 // @import name 7237 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "import")); 7238 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7239 Builder.AddPlaceholderChunk("module"); 7240 Results.AddResult(Result(Builder.TakeString())); 7241 } 7242 } 7243 7244 void Sema::CodeCompleteObjCAtDirective(Scope *S) { 7245 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7246 CodeCompleter->getCodeCompletionTUInfo(), 7247 CodeCompletionContext::CCC_Other); 7248 Results.EnterNewScope(); 7249 if (isa<ObjCImplDecl>(CurContext)) 7250 AddObjCImplementationResults(getLangOpts(), Results, false); 7251 else if (CurContext->isObjCContainer()) 7252 AddObjCInterfaceResults(getLangOpts(), Results, false); 7253 else 7254 AddObjCTopLevelResults(Results, false); 7255 Results.ExitScope(); 7256 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7257 Results.data(), Results.size()); 7258 } 7259 7260 static void AddObjCExpressionResults(ResultBuilder &Results, bool NeedAt) { 7261 typedef CodeCompletionResult Result; 7262 CodeCompletionBuilder Builder(Results.getAllocator(), 7263 Results.getCodeCompletionTUInfo()); 7264 7265 // @encode ( type-name ) 7266 const char *EncodeType = "char[]"; 7267 if (Results.getSema().getLangOpts().CPlusPlus || 7268 Results.getSema().getLangOpts().ConstStrings) 7269 EncodeType = "const char[]"; 7270 Builder.AddResultTypeChunk(EncodeType); 7271 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "encode")); 7272 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 7273 Builder.AddPlaceholderChunk("type-name"); 7274 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7275 Results.AddResult(Result(Builder.TakeString())); 7276 7277 // @protocol ( protocol-name ) 7278 Builder.AddResultTypeChunk("Protocol *"); 7279 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "protocol")); 7280 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 7281 Builder.AddPlaceholderChunk("protocol-name"); 7282 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7283 Results.AddResult(Result(Builder.TakeString())); 7284 7285 // @selector ( selector ) 7286 Builder.AddResultTypeChunk("SEL"); 7287 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "selector")); 7288 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 7289 Builder.AddPlaceholderChunk("selector"); 7290 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7291 Results.AddResult(Result(Builder.TakeString())); 7292 7293 // @"string" 7294 Builder.AddResultTypeChunk("NSString *"); 7295 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "\"")); 7296 Builder.AddPlaceholderChunk("string"); 7297 Builder.AddTextChunk("\""); 7298 Results.AddResult(Result(Builder.TakeString())); 7299 7300 // @[objects, ...] 7301 Builder.AddResultTypeChunk("NSArray *"); 7302 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "[")); 7303 Builder.AddPlaceholderChunk("objects, ..."); 7304 Builder.AddChunk(CodeCompletionString::CK_RightBracket); 7305 Results.AddResult(Result(Builder.TakeString())); 7306 7307 // @{key : object, ...} 7308 Builder.AddResultTypeChunk("NSDictionary *"); 7309 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "{")); 7310 Builder.AddPlaceholderChunk("key"); 7311 Builder.AddChunk(CodeCompletionString::CK_Colon); 7312 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7313 Builder.AddPlaceholderChunk("object, ..."); 7314 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 7315 Results.AddResult(Result(Builder.TakeString())); 7316 7317 // @(expression) 7318 Builder.AddResultTypeChunk("id"); 7319 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "(")); 7320 Builder.AddPlaceholderChunk("expression"); 7321 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7322 Results.AddResult(Result(Builder.TakeString())); 7323 } 7324 7325 static void AddObjCStatementResults(ResultBuilder &Results, bool NeedAt) { 7326 typedef CodeCompletionResult Result; 7327 CodeCompletionBuilder Builder(Results.getAllocator(), 7328 Results.getCodeCompletionTUInfo()); 7329 7330 if (Results.includeCodePatterns()) { 7331 // @try { statements } @catch ( declaration ) { statements } @finally 7332 // { statements } 7333 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "try")); 7334 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 7335 Builder.AddPlaceholderChunk("statements"); 7336 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 7337 Builder.AddTextChunk("@catch"); 7338 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 7339 Builder.AddPlaceholderChunk("parameter"); 7340 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7341 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 7342 Builder.AddPlaceholderChunk("statements"); 7343 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 7344 Builder.AddTextChunk("@finally"); 7345 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 7346 Builder.AddPlaceholderChunk("statements"); 7347 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 7348 Results.AddResult(Result(Builder.TakeString())); 7349 } 7350 7351 // @throw 7352 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "throw")); 7353 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7354 Builder.AddPlaceholderChunk("expression"); 7355 Results.AddResult(Result(Builder.TakeString())); 7356 7357 if (Results.includeCodePatterns()) { 7358 // @synchronized ( expression ) { statements } 7359 Builder.AddTypedTextChunk(OBJC_AT_KEYWORD_NAME(NeedAt, "synchronized")); 7360 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7361 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 7362 Builder.AddPlaceholderChunk("expression"); 7363 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7364 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 7365 Builder.AddPlaceholderChunk("statements"); 7366 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 7367 Results.AddResult(Result(Builder.TakeString())); 7368 } 7369 } 7370 7371 static void AddObjCVisibilityResults(const LangOptions &LangOpts, 7372 ResultBuilder &Results, bool NeedAt) { 7373 typedef CodeCompletionResult Result; 7374 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "private"))); 7375 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "protected"))); 7376 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "public"))); 7377 if (LangOpts.ObjC) 7378 Results.AddResult(Result(OBJC_AT_KEYWORD_NAME(NeedAt, "package"))); 7379 } 7380 7381 void Sema::CodeCompleteObjCAtVisibility(Scope *S) { 7382 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7383 CodeCompleter->getCodeCompletionTUInfo(), 7384 CodeCompletionContext::CCC_Other); 7385 Results.EnterNewScope(); 7386 AddObjCVisibilityResults(getLangOpts(), Results, false); 7387 Results.ExitScope(); 7388 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7389 Results.data(), Results.size()); 7390 } 7391 7392 void Sema::CodeCompleteObjCAtStatement(Scope *S) { 7393 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7394 CodeCompleter->getCodeCompletionTUInfo(), 7395 CodeCompletionContext::CCC_Other); 7396 Results.EnterNewScope(); 7397 AddObjCStatementResults(Results, false); 7398 AddObjCExpressionResults(Results, false); 7399 Results.ExitScope(); 7400 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7401 Results.data(), Results.size()); 7402 } 7403 7404 void Sema::CodeCompleteObjCAtExpression(Scope *S) { 7405 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7406 CodeCompleter->getCodeCompletionTUInfo(), 7407 CodeCompletionContext::CCC_Other); 7408 Results.EnterNewScope(); 7409 AddObjCExpressionResults(Results, false); 7410 Results.ExitScope(); 7411 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7412 Results.data(), Results.size()); 7413 } 7414 7415 /// Determine whether the addition of the given flag to an Objective-C 7416 /// property's attributes will cause a conflict. 7417 static bool ObjCPropertyFlagConflicts(unsigned Attributes, unsigned NewFlag) { 7418 // Check if we've already added this flag. 7419 if (Attributes & NewFlag) 7420 return true; 7421 7422 Attributes |= NewFlag; 7423 7424 // Check for collisions with "readonly". 7425 if ((Attributes & ObjCPropertyAttribute::kind_readonly) && 7426 (Attributes & ObjCPropertyAttribute::kind_readwrite)) 7427 return true; 7428 7429 // Check for more than one of { assign, copy, retain, strong, weak }. 7430 unsigned AssignCopyRetMask = 7431 Attributes & 7432 (ObjCPropertyAttribute::kind_assign | 7433 ObjCPropertyAttribute::kind_unsafe_unretained | 7434 ObjCPropertyAttribute::kind_copy | ObjCPropertyAttribute::kind_retain | 7435 ObjCPropertyAttribute::kind_strong | ObjCPropertyAttribute::kind_weak); 7436 if (AssignCopyRetMask && 7437 AssignCopyRetMask != ObjCPropertyAttribute::kind_assign && 7438 AssignCopyRetMask != ObjCPropertyAttribute::kind_unsafe_unretained && 7439 AssignCopyRetMask != ObjCPropertyAttribute::kind_copy && 7440 AssignCopyRetMask != ObjCPropertyAttribute::kind_retain && 7441 AssignCopyRetMask != ObjCPropertyAttribute::kind_strong && 7442 AssignCopyRetMask != ObjCPropertyAttribute::kind_weak) 7443 return true; 7444 7445 return false; 7446 } 7447 7448 void Sema::CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS) { 7449 if (!CodeCompleter) 7450 return; 7451 7452 unsigned Attributes = ODS.getPropertyAttributes(); 7453 7454 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7455 CodeCompleter->getCodeCompletionTUInfo(), 7456 CodeCompletionContext::CCC_Other); 7457 Results.EnterNewScope(); 7458 if (!ObjCPropertyFlagConflicts(Attributes, 7459 ObjCPropertyAttribute::kind_readonly)) 7460 Results.AddResult(CodeCompletionResult("readonly")); 7461 if (!ObjCPropertyFlagConflicts(Attributes, 7462 ObjCPropertyAttribute::kind_assign)) 7463 Results.AddResult(CodeCompletionResult("assign")); 7464 if (!ObjCPropertyFlagConflicts(Attributes, 7465 ObjCPropertyAttribute::kind_unsafe_unretained)) 7466 Results.AddResult(CodeCompletionResult("unsafe_unretained")); 7467 if (!ObjCPropertyFlagConflicts(Attributes, 7468 ObjCPropertyAttribute::kind_readwrite)) 7469 Results.AddResult(CodeCompletionResult("readwrite")); 7470 if (!ObjCPropertyFlagConflicts(Attributes, 7471 ObjCPropertyAttribute::kind_retain)) 7472 Results.AddResult(CodeCompletionResult("retain")); 7473 if (!ObjCPropertyFlagConflicts(Attributes, 7474 ObjCPropertyAttribute::kind_strong)) 7475 Results.AddResult(CodeCompletionResult("strong")); 7476 if (!ObjCPropertyFlagConflicts(Attributes, ObjCPropertyAttribute::kind_copy)) 7477 Results.AddResult(CodeCompletionResult("copy")); 7478 if (!ObjCPropertyFlagConflicts(Attributes, 7479 ObjCPropertyAttribute::kind_nonatomic)) 7480 Results.AddResult(CodeCompletionResult("nonatomic")); 7481 if (!ObjCPropertyFlagConflicts(Attributes, 7482 ObjCPropertyAttribute::kind_atomic)) 7483 Results.AddResult(CodeCompletionResult("atomic")); 7484 7485 // Only suggest "weak" if we're compiling for ARC-with-weak-references or GC. 7486 if (getLangOpts().ObjCWeak || getLangOpts().getGC() != LangOptions::NonGC) 7487 if (!ObjCPropertyFlagConflicts(Attributes, 7488 ObjCPropertyAttribute::kind_weak)) 7489 Results.AddResult(CodeCompletionResult("weak")); 7490 7491 if (!ObjCPropertyFlagConflicts(Attributes, 7492 ObjCPropertyAttribute::kind_setter)) { 7493 CodeCompletionBuilder Setter(Results.getAllocator(), 7494 Results.getCodeCompletionTUInfo()); 7495 Setter.AddTypedTextChunk("setter"); 7496 Setter.AddTextChunk("="); 7497 Setter.AddPlaceholderChunk("method"); 7498 Results.AddResult(CodeCompletionResult(Setter.TakeString())); 7499 } 7500 if (!ObjCPropertyFlagConflicts(Attributes, 7501 ObjCPropertyAttribute::kind_getter)) { 7502 CodeCompletionBuilder Getter(Results.getAllocator(), 7503 Results.getCodeCompletionTUInfo()); 7504 Getter.AddTypedTextChunk("getter"); 7505 Getter.AddTextChunk("="); 7506 Getter.AddPlaceholderChunk("method"); 7507 Results.AddResult(CodeCompletionResult(Getter.TakeString())); 7508 } 7509 if (!ObjCPropertyFlagConflicts(Attributes, 7510 ObjCPropertyAttribute::kind_nullability)) { 7511 Results.AddResult(CodeCompletionResult("nonnull")); 7512 Results.AddResult(CodeCompletionResult("nullable")); 7513 Results.AddResult(CodeCompletionResult("null_unspecified")); 7514 Results.AddResult(CodeCompletionResult("null_resettable")); 7515 } 7516 Results.ExitScope(); 7517 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7518 Results.data(), Results.size()); 7519 } 7520 7521 /// Describes the kind of Objective-C method that we want to find 7522 /// via code completion. 7523 enum ObjCMethodKind { 7524 MK_Any, ///< Any kind of method, provided it means other specified criteria. 7525 MK_ZeroArgSelector, ///< Zero-argument (unary) selector. 7526 MK_OneArgSelector ///< One-argument selector. 7527 }; 7528 7529 static bool isAcceptableObjCSelector(Selector Sel, ObjCMethodKind WantKind, 7530 ArrayRef<IdentifierInfo *> SelIdents, 7531 bool AllowSameLength = true) { 7532 unsigned NumSelIdents = SelIdents.size(); 7533 if (NumSelIdents > Sel.getNumArgs()) 7534 return false; 7535 7536 switch (WantKind) { 7537 case MK_Any: 7538 break; 7539 case MK_ZeroArgSelector: 7540 return Sel.isUnarySelector(); 7541 case MK_OneArgSelector: 7542 return Sel.getNumArgs() == 1; 7543 } 7544 7545 if (!AllowSameLength && NumSelIdents && NumSelIdents == Sel.getNumArgs()) 7546 return false; 7547 7548 for (unsigned I = 0; I != NumSelIdents; ++I) 7549 if (SelIdents[I] != Sel.getIdentifierInfoForSlot(I)) 7550 return false; 7551 7552 return true; 7553 } 7554 7555 static bool isAcceptableObjCMethod(ObjCMethodDecl *Method, 7556 ObjCMethodKind WantKind, 7557 ArrayRef<IdentifierInfo *> SelIdents, 7558 bool AllowSameLength = true) { 7559 return isAcceptableObjCSelector(Method->getSelector(), WantKind, SelIdents, 7560 AllowSameLength); 7561 } 7562 7563 /// A set of selectors, which is used to avoid introducing multiple 7564 /// completions with the same selector into the result set. 7565 typedef llvm::SmallPtrSet<Selector, 16> VisitedSelectorSet; 7566 7567 /// Add all of the Objective-C methods in the given Objective-C 7568 /// container to the set of results. 7569 /// 7570 /// The container will be a class, protocol, category, or implementation of 7571 /// any of the above. This mether will recurse to include methods from 7572 /// the superclasses of classes along with their categories, protocols, and 7573 /// implementations. 7574 /// 7575 /// \param Container the container in which we'll look to find methods. 7576 /// 7577 /// \param WantInstanceMethods Whether to add instance methods (only); if 7578 /// false, this routine will add factory methods (only). 7579 /// 7580 /// \param CurContext the context in which we're performing the lookup that 7581 /// finds methods. 7582 /// 7583 /// \param AllowSameLength Whether we allow a method to be added to the list 7584 /// when it has the same number of parameters as we have selector identifiers. 7585 /// 7586 /// \param Results the structure into which we'll add results. 7587 static void AddObjCMethods(ObjCContainerDecl *Container, 7588 bool WantInstanceMethods, ObjCMethodKind WantKind, 7589 ArrayRef<IdentifierInfo *> SelIdents, 7590 DeclContext *CurContext, 7591 VisitedSelectorSet &Selectors, bool AllowSameLength, 7592 ResultBuilder &Results, bool InOriginalClass = true, 7593 bool IsRootClass = false) { 7594 typedef CodeCompletionResult Result; 7595 Container = getContainerDef(Container); 7596 ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container); 7597 IsRootClass = IsRootClass || (IFace && !IFace->getSuperClass()); 7598 for (ObjCMethodDecl *M : Container->methods()) { 7599 // The instance methods on the root class can be messaged via the 7600 // metaclass. 7601 if (M->isInstanceMethod() == WantInstanceMethods || 7602 (IsRootClass && !WantInstanceMethods)) { 7603 // Check whether the selector identifiers we've been given are a 7604 // subset of the identifiers for this particular method. 7605 if (!isAcceptableObjCMethod(M, WantKind, SelIdents, AllowSameLength)) 7606 continue; 7607 7608 if (!Selectors.insert(M->getSelector()).second) 7609 continue; 7610 7611 Result R = Result(M, Results.getBasePriority(M), nullptr); 7612 R.StartParameter = SelIdents.size(); 7613 R.AllParametersAreInformative = (WantKind != MK_Any); 7614 if (!InOriginalClass) 7615 setInBaseClass(R); 7616 Results.MaybeAddResult(R, CurContext); 7617 } 7618 } 7619 7620 // Visit the protocols of protocols. 7621 if (const auto *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) { 7622 if (Protocol->hasDefinition()) { 7623 const ObjCList<ObjCProtocolDecl> &Protocols = 7624 Protocol->getReferencedProtocols(); 7625 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(), 7626 E = Protocols.end(); 7627 I != E; ++I) 7628 AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents, CurContext, 7629 Selectors, AllowSameLength, Results, false, IsRootClass); 7630 } 7631 } 7632 7633 if (!IFace || !IFace->hasDefinition()) 7634 return; 7635 7636 // Add methods in protocols. 7637 for (ObjCProtocolDecl *I : IFace->protocols()) 7638 AddObjCMethods(I, WantInstanceMethods, WantKind, SelIdents, CurContext, 7639 Selectors, AllowSameLength, Results, false, IsRootClass); 7640 7641 // Add methods in categories. 7642 for (ObjCCategoryDecl *CatDecl : IFace->known_categories()) { 7643 AddObjCMethods(CatDecl, WantInstanceMethods, WantKind, SelIdents, 7644 CurContext, Selectors, AllowSameLength, Results, 7645 InOriginalClass, IsRootClass); 7646 7647 // Add a categories protocol methods. 7648 const ObjCList<ObjCProtocolDecl> &Protocols = 7649 CatDecl->getReferencedProtocols(); 7650 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(), 7651 E = Protocols.end(); 7652 I != E; ++I) 7653 AddObjCMethods(*I, WantInstanceMethods, WantKind, SelIdents, CurContext, 7654 Selectors, AllowSameLength, Results, false, IsRootClass); 7655 7656 // Add methods in category implementations. 7657 if (ObjCCategoryImplDecl *Impl = CatDecl->getImplementation()) 7658 AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents, CurContext, 7659 Selectors, AllowSameLength, Results, InOriginalClass, 7660 IsRootClass); 7661 } 7662 7663 // Add methods in superclass. 7664 // Avoid passing in IsRootClass since root classes won't have super classes. 7665 if (IFace->getSuperClass()) 7666 AddObjCMethods(IFace->getSuperClass(), WantInstanceMethods, WantKind, 7667 SelIdents, CurContext, Selectors, AllowSameLength, Results, 7668 /*IsRootClass=*/false); 7669 7670 // Add methods in our implementation, if any. 7671 if (ObjCImplementationDecl *Impl = IFace->getImplementation()) 7672 AddObjCMethods(Impl, WantInstanceMethods, WantKind, SelIdents, CurContext, 7673 Selectors, AllowSameLength, Results, InOriginalClass, 7674 IsRootClass); 7675 } 7676 7677 void Sema::CodeCompleteObjCPropertyGetter(Scope *S) { 7678 // Try to find the interface where getters might live. 7679 ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurContext); 7680 if (!Class) { 7681 if (ObjCCategoryDecl *Category = 7682 dyn_cast_or_null<ObjCCategoryDecl>(CurContext)) 7683 Class = Category->getClassInterface(); 7684 7685 if (!Class) 7686 return; 7687 } 7688 7689 // Find all of the potential getters. 7690 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7691 CodeCompleter->getCodeCompletionTUInfo(), 7692 CodeCompletionContext::CCC_Other); 7693 Results.EnterNewScope(); 7694 7695 VisitedSelectorSet Selectors; 7696 AddObjCMethods(Class, true, MK_ZeroArgSelector, std::nullopt, CurContext, 7697 Selectors, 7698 /*AllowSameLength=*/true, Results); 7699 Results.ExitScope(); 7700 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7701 Results.data(), Results.size()); 7702 } 7703 7704 void Sema::CodeCompleteObjCPropertySetter(Scope *S) { 7705 // Try to find the interface where setters might live. 7706 ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurContext); 7707 if (!Class) { 7708 if (ObjCCategoryDecl *Category = 7709 dyn_cast_or_null<ObjCCategoryDecl>(CurContext)) 7710 Class = Category->getClassInterface(); 7711 7712 if (!Class) 7713 return; 7714 } 7715 7716 // Find all of the potential getters. 7717 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7718 CodeCompleter->getCodeCompletionTUInfo(), 7719 CodeCompletionContext::CCC_Other); 7720 Results.EnterNewScope(); 7721 7722 VisitedSelectorSet Selectors; 7723 AddObjCMethods(Class, true, MK_OneArgSelector, std::nullopt, CurContext, 7724 Selectors, 7725 /*AllowSameLength=*/true, Results); 7726 7727 Results.ExitScope(); 7728 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7729 Results.data(), Results.size()); 7730 } 7731 7732 void Sema::CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS, 7733 bool IsParameter) { 7734 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 7735 CodeCompleter->getCodeCompletionTUInfo(), 7736 CodeCompletionContext::CCC_Type); 7737 Results.EnterNewScope(); 7738 7739 // Add context-sensitive, Objective-C parameter-passing keywords. 7740 bool AddedInOut = false; 7741 if ((DS.getObjCDeclQualifier() & 7742 (ObjCDeclSpec::DQ_In | ObjCDeclSpec::DQ_Inout)) == 0) { 7743 Results.AddResult("in"); 7744 Results.AddResult("inout"); 7745 AddedInOut = true; 7746 } 7747 if ((DS.getObjCDeclQualifier() & 7748 (ObjCDeclSpec::DQ_Out | ObjCDeclSpec::DQ_Inout)) == 0) { 7749 Results.AddResult("out"); 7750 if (!AddedInOut) 7751 Results.AddResult("inout"); 7752 } 7753 if ((DS.getObjCDeclQualifier() & 7754 (ObjCDeclSpec::DQ_Bycopy | ObjCDeclSpec::DQ_Byref | 7755 ObjCDeclSpec::DQ_Oneway)) == 0) { 7756 Results.AddResult("bycopy"); 7757 Results.AddResult("byref"); 7758 Results.AddResult("oneway"); 7759 } 7760 if ((DS.getObjCDeclQualifier() & ObjCDeclSpec::DQ_CSNullability) == 0) { 7761 Results.AddResult("nonnull"); 7762 Results.AddResult("nullable"); 7763 Results.AddResult("null_unspecified"); 7764 } 7765 7766 // If we're completing the return type of an Objective-C method and the 7767 // identifier IBAction refers to a macro, provide a completion item for 7768 // an action, e.g., 7769 // IBAction)<#selector#>:(id)sender 7770 if (DS.getObjCDeclQualifier() == 0 && !IsParameter && 7771 PP.isMacroDefined("IBAction")) { 7772 CodeCompletionBuilder Builder(Results.getAllocator(), 7773 Results.getCodeCompletionTUInfo(), 7774 CCP_CodePattern, CXAvailability_Available); 7775 Builder.AddTypedTextChunk("IBAction"); 7776 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7777 Builder.AddPlaceholderChunk("selector"); 7778 Builder.AddChunk(CodeCompletionString::CK_Colon); 7779 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 7780 Builder.AddTextChunk("id"); 7781 Builder.AddChunk(CodeCompletionString::CK_RightParen); 7782 Builder.AddTextChunk("sender"); 7783 Results.AddResult(CodeCompletionResult(Builder.TakeString())); 7784 } 7785 7786 // If we're completing the return type, provide 'instancetype'. 7787 if (!IsParameter) { 7788 Results.AddResult(CodeCompletionResult("instancetype")); 7789 } 7790 7791 // Add various builtin type names and specifiers. 7792 AddOrdinaryNameResults(PCC_Type, S, *this, Results); 7793 Results.ExitScope(); 7794 7795 // Add the various type names 7796 Results.setFilter(&ResultBuilder::IsOrdinaryNonValueName); 7797 CodeCompletionDeclConsumer Consumer(Results, CurContext); 7798 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 7799 CodeCompleter->includeGlobals(), 7800 CodeCompleter->loadExternal()); 7801 7802 if (CodeCompleter->includeMacros()) 7803 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), false); 7804 7805 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 7806 Results.data(), Results.size()); 7807 } 7808 7809 /// When we have an expression with type "id", we may assume 7810 /// that it has some more-specific class type based on knowledge of 7811 /// common uses of Objective-C. This routine returns that class type, 7812 /// or NULL if no better result could be determined. 7813 static ObjCInterfaceDecl *GetAssumedMessageSendExprType(Expr *E) { 7814 auto *Msg = dyn_cast_or_null<ObjCMessageExpr>(E); 7815 if (!Msg) 7816 return nullptr; 7817 7818 Selector Sel = Msg->getSelector(); 7819 if (Sel.isNull()) 7820 return nullptr; 7821 7822 IdentifierInfo *Id = Sel.getIdentifierInfoForSlot(0); 7823 if (!Id) 7824 return nullptr; 7825 7826 ObjCMethodDecl *Method = Msg->getMethodDecl(); 7827 if (!Method) 7828 return nullptr; 7829 7830 // Determine the class that we're sending the message to. 7831 ObjCInterfaceDecl *IFace = nullptr; 7832 switch (Msg->getReceiverKind()) { 7833 case ObjCMessageExpr::Class: 7834 if (const ObjCObjectType *ObjType = 7835 Msg->getClassReceiver()->getAs<ObjCObjectType>()) 7836 IFace = ObjType->getInterface(); 7837 break; 7838 7839 case ObjCMessageExpr::Instance: { 7840 QualType T = Msg->getInstanceReceiver()->getType(); 7841 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>()) 7842 IFace = Ptr->getInterfaceDecl(); 7843 break; 7844 } 7845 7846 case ObjCMessageExpr::SuperInstance: 7847 case ObjCMessageExpr::SuperClass: 7848 break; 7849 } 7850 7851 if (!IFace) 7852 return nullptr; 7853 7854 ObjCInterfaceDecl *Super = IFace->getSuperClass(); 7855 if (Method->isInstanceMethod()) 7856 return llvm::StringSwitch<ObjCInterfaceDecl *>(Id->getName()) 7857 .Case("retain", IFace) 7858 .Case("strong", IFace) 7859 .Case("autorelease", IFace) 7860 .Case("copy", IFace) 7861 .Case("copyWithZone", IFace) 7862 .Case("mutableCopy", IFace) 7863 .Case("mutableCopyWithZone", IFace) 7864 .Case("awakeFromCoder", IFace) 7865 .Case("replacementObjectFromCoder", IFace) 7866 .Case("class", IFace) 7867 .Case("classForCoder", IFace) 7868 .Case("superclass", Super) 7869 .Default(nullptr); 7870 7871 return llvm::StringSwitch<ObjCInterfaceDecl *>(Id->getName()) 7872 .Case("new", IFace) 7873 .Case("alloc", IFace) 7874 .Case("allocWithZone", IFace) 7875 .Case("class", IFace) 7876 .Case("superclass", Super) 7877 .Default(nullptr); 7878 } 7879 7880 // Add a special completion for a message send to "super", which fills in the 7881 // most likely case of forwarding all of our arguments to the superclass 7882 // function. 7883 /// 7884 /// \param S The semantic analysis object. 7885 /// 7886 /// \param NeedSuperKeyword Whether we need to prefix this completion with 7887 /// the "super" keyword. Otherwise, we just need to provide the arguments. 7888 /// 7889 /// \param SelIdents The identifiers in the selector that have already been 7890 /// provided as arguments for a send to "super". 7891 /// 7892 /// \param Results The set of results to augment. 7893 /// 7894 /// \returns the Objective-C method declaration that would be invoked by 7895 /// this "super" completion. If NULL, no completion was added. 7896 static ObjCMethodDecl * 7897 AddSuperSendCompletion(Sema &S, bool NeedSuperKeyword, 7898 ArrayRef<IdentifierInfo *> SelIdents, 7899 ResultBuilder &Results) { 7900 ObjCMethodDecl *CurMethod = S.getCurMethodDecl(); 7901 if (!CurMethod) 7902 return nullptr; 7903 7904 ObjCInterfaceDecl *Class = CurMethod->getClassInterface(); 7905 if (!Class) 7906 return nullptr; 7907 7908 // Try to find a superclass method with the same selector. 7909 ObjCMethodDecl *SuperMethod = nullptr; 7910 while ((Class = Class->getSuperClass()) && !SuperMethod) { 7911 // Check in the class 7912 SuperMethod = Class->getMethod(CurMethod->getSelector(), 7913 CurMethod->isInstanceMethod()); 7914 7915 // Check in categories or class extensions. 7916 if (!SuperMethod) { 7917 for (const auto *Cat : Class->known_categories()) { 7918 if ((SuperMethod = Cat->getMethod(CurMethod->getSelector(), 7919 CurMethod->isInstanceMethod()))) 7920 break; 7921 } 7922 } 7923 } 7924 7925 if (!SuperMethod) 7926 return nullptr; 7927 7928 // Check whether the superclass method has the same signature. 7929 if (CurMethod->param_size() != SuperMethod->param_size() || 7930 CurMethod->isVariadic() != SuperMethod->isVariadic()) 7931 return nullptr; 7932 7933 for (ObjCMethodDecl::param_iterator CurP = CurMethod->param_begin(), 7934 CurPEnd = CurMethod->param_end(), 7935 SuperP = SuperMethod->param_begin(); 7936 CurP != CurPEnd; ++CurP, ++SuperP) { 7937 // Make sure the parameter types are compatible. 7938 if (!S.Context.hasSameUnqualifiedType((*CurP)->getType(), 7939 (*SuperP)->getType())) 7940 return nullptr; 7941 7942 // Make sure we have a parameter name to forward! 7943 if (!(*CurP)->getIdentifier()) 7944 return nullptr; 7945 } 7946 7947 // We have a superclass method. Now, form the send-to-super completion. 7948 CodeCompletionBuilder Builder(Results.getAllocator(), 7949 Results.getCodeCompletionTUInfo()); 7950 7951 // Give this completion a return type. 7952 AddResultTypeChunk(S.Context, getCompletionPrintingPolicy(S), SuperMethod, 7953 Results.getCompletionContext().getBaseType(), Builder); 7954 7955 // If we need the "super" keyword, add it (plus some spacing). 7956 if (NeedSuperKeyword) { 7957 Builder.AddTypedTextChunk("super"); 7958 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7959 } 7960 7961 Selector Sel = CurMethod->getSelector(); 7962 if (Sel.isUnarySelector()) { 7963 if (NeedSuperKeyword) 7964 Builder.AddTextChunk( 7965 Builder.getAllocator().CopyString(Sel.getNameForSlot(0))); 7966 else 7967 Builder.AddTypedTextChunk( 7968 Builder.getAllocator().CopyString(Sel.getNameForSlot(0))); 7969 } else { 7970 ObjCMethodDecl::param_iterator CurP = CurMethod->param_begin(); 7971 for (unsigned I = 0, N = Sel.getNumArgs(); I != N; ++I, ++CurP) { 7972 if (I > SelIdents.size()) 7973 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 7974 7975 if (I < SelIdents.size()) 7976 Builder.AddInformativeChunk( 7977 Builder.getAllocator().CopyString(Sel.getNameForSlot(I) + ":")); 7978 else if (NeedSuperKeyword || I > SelIdents.size()) { 7979 Builder.AddTextChunk( 7980 Builder.getAllocator().CopyString(Sel.getNameForSlot(I) + ":")); 7981 Builder.AddPlaceholderChunk(Builder.getAllocator().CopyString( 7982 (*CurP)->getIdentifier()->getName())); 7983 } else { 7984 Builder.AddTypedTextChunk( 7985 Builder.getAllocator().CopyString(Sel.getNameForSlot(I) + ":")); 7986 Builder.AddPlaceholderChunk(Builder.getAllocator().CopyString( 7987 (*CurP)->getIdentifier()->getName())); 7988 } 7989 } 7990 } 7991 7992 Results.AddResult(CodeCompletionResult(Builder.TakeString(), SuperMethod, 7993 CCP_SuperCompletion)); 7994 return SuperMethod; 7995 } 7996 7997 void Sema::CodeCompleteObjCMessageReceiver(Scope *S) { 7998 typedef CodeCompletionResult Result; 7999 ResultBuilder Results( 8000 *this, CodeCompleter->getAllocator(), 8001 CodeCompleter->getCodeCompletionTUInfo(), 8002 CodeCompletionContext::CCC_ObjCMessageReceiver, 8003 getLangOpts().CPlusPlus11 8004 ? &ResultBuilder::IsObjCMessageReceiverOrLambdaCapture 8005 : &ResultBuilder::IsObjCMessageReceiver); 8006 8007 CodeCompletionDeclConsumer Consumer(Results, CurContext); 8008 Results.EnterNewScope(); 8009 LookupVisibleDecls(S, LookupOrdinaryName, Consumer, 8010 CodeCompleter->includeGlobals(), 8011 CodeCompleter->loadExternal()); 8012 8013 // If we are in an Objective-C method inside a class that has a superclass, 8014 // add "super" as an option. 8015 if (ObjCMethodDecl *Method = getCurMethodDecl()) 8016 if (ObjCInterfaceDecl *Iface = Method->getClassInterface()) 8017 if (Iface->getSuperClass()) { 8018 Results.AddResult(Result("super")); 8019 8020 AddSuperSendCompletion(*this, /*NeedSuperKeyword=*/true, std::nullopt, 8021 Results); 8022 } 8023 8024 if (getLangOpts().CPlusPlus11) 8025 addThisCompletion(*this, Results); 8026 8027 Results.ExitScope(); 8028 8029 if (CodeCompleter->includeMacros()) 8030 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), false); 8031 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8032 Results.data(), Results.size()); 8033 } 8034 8035 void Sema::CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc, 8036 ArrayRef<IdentifierInfo *> SelIdents, 8037 bool AtArgumentExpression) { 8038 ObjCInterfaceDecl *CDecl = nullptr; 8039 if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) { 8040 // Figure out which interface we're in. 8041 CDecl = CurMethod->getClassInterface(); 8042 if (!CDecl) 8043 return; 8044 8045 // Find the superclass of this class. 8046 CDecl = CDecl->getSuperClass(); 8047 if (!CDecl) 8048 return; 8049 8050 if (CurMethod->isInstanceMethod()) { 8051 // We are inside an instance method, which means that the message 8052 // send [super ...] is actually calling an instance method on the 8053 // current object. 8054 return CodeCompleteObjCInstanceMessage(S, nullptr, SelIdents, 8055 AtArgumentExpression, CDecl); 8056 } 8057 8058 // Fall through to send to the superclass in CDecl. 8059 } else { 8060 // "super" may be the name of a type or variable. Figure out which 8061 // it is. 8062 IdentifierInfo *Super = getSuperIdentifier(); 8063 NamedDecl *ND = LookupSingleName(S, Super, SuperLoc, LookupOrdinaryName); 8064 if ((CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(ND))) { 8065 // "super" names an interface. Use it. 8066 } else if (TypeDecl *TD = dyn_cast_or_null<TypeDecl>(ND)) { 8067 if (const ObjCObjectType *Iface = 8068 Context.getTypeDeclType(TD)->getAs<ObjCObjectType>()) 8069 CDecl = Iface->getInterface(); 8070 } else if (ND && isa<UnresolvedUsingTypenameDecl>(ND)) { 8071 // "super" names an unresolved type; we can't be more specific. 8072 } else { 8073 // Assume that "super" names some kind of value and parse that way. 8074 CXXScopeSpec SS; 8075 SourceLocation TemplateKWLoc; 8076 UnqualifiedId id; 8077 id.setIdentifier(Super, SuperLoc); 8078 ExprResult SuperExpr = ActOnIdExpression(S, SS, TemplateKWLoc, id, 8079 /*HasTrailingLParen=*/false, 8080 /*IsAddressOfOperand=*/false); 8081 return CodeCompleteObjCInstanceMessage(S, (Expr *)SuperExpr.get(), 8082 SelIdents, AtArgumentExpression); 8083 } 8084 8085 // Fall through 8086 } 8087 8088 ParsedType Receiver; 8089 if (CDecl) 8090 Receiver = ParsedType::make(Context.getObjCInterfaceType(CDecl)); 8091 return CodeCompleteObjCClassMessage(S, Receiver, SelIdents, 8092 AtArgumentExpression, 8093 /*IsSuper=*/true); 8094 } 8095 8096 /// Given a set of code-completion results for the argument of a message 8097 /// send, determine the preferred type (if any) for that argument expression. 8098 static QualType getPreferredArgumentTypeForMessageSend(ResultBuilder &Results, 8099 unsigned NumSelIdents) { 8100 typedef CodeCompletionResult Result; 8101 ASTContext &Context = Results.getSema().Context; 8102 8103 QualType PreferredType; 8104 unsigned BestPriority = CCP_Unlikely * 2; 8105 Result *ResultsData = Results.data(); 8106 for (unsigned I = 0, N = Results.size(); I != N; ++I) { 8107 Result &R = ResultsData[I]; 8108 if (R.Kind == Result::RK_Declaration && 8109 isa<ObjCMethodDecl>(R.Declaration)) { 8110 if (R.Priority <= BestPriority) { 8111 const ObjCMethodDecl *Method = cast<ObjCMethodDecl>(R.Declaration); 8112 if (NumSelIdents <= Method->param_size()) { 8113 QualType MyPreferredType = 8114 Method->parameters()[NumSelIdents - 1]->getType(); 8115 if (R.Priority < BestPriority || PreferredType.isNull()) { 8116 BestPriority = R.Priority; 8117 PreferredType = MyPreferredType; 8118 } else if (!Context.hasSameUnqualifiedType(PreferredType, 8119 MyPreferredType)) { 8120 PreferredType = QualType(); 8121 } 8122 } 8123 } 8124 } 8125 } 8126 8127 return PreferredType; 8128 } 8129 8130 static void AddClassMessageCompletions(Sema &SemaRef, Scope *S, 8131 ParsedType Receiver, 8132 ArrayRef<IdentifierInfo *> SelIdents, 8133 bool AtArgumentExpression, bool IsSuper, 8134 ResultBuilder &Results) { 8135 typedef CodeCompletionResult Result; 8136 ObjCInterfaceDecl *CDecl = nullptr; 8137 8138 // If the given name refers to an interface type, retrieve the 8139 // corresponding declaration. 8140 if (Receiver) { 8141 QualType T = SemaRef.GetTypeFromParser(Receiver, nullptr); 8142 if (!T.isNull()) 8143 if (const ObjCObjectType *Interface = T->getAs<ObjCObjectType>()) 8144 CDecl = Interface->getInterface(); 8145 } 8146 8147 // Add all of the factory methods in this Objective-C class, its protocols, 8148 // superclasses, categories, implementation, etc. 8149 Results.EnterNewScope(); 8150 8151 // If this is a send-to-super, try to add the special "super" send 8152 // completion. 8153 if (IsSuper) { 8154 if (ObjCMethodDecl *SuperMethod = 8155 AddSuperSendCompletion(SemaRef, false, SelIdents, Results)) 8156 Results.Ignore(SuperMethod); 8157 } 8158 8159 // If we're inside an Objective-C method definition, prefer its selector to 8160 // others. 8161 if (ObjCMethodDecl *CurMethod = SemaRef.getCurMethodDecl()) 8162 Results.setPreferredSelector(CurMethod->getSelector()); 8163 8164 VisitedSelectorSet Selectors; 8165 if (CDecl) 8166 AddObjCMethods(CDecl, false, MK_Any, SelIdents, SemaRef.CurContext, 8167 Selectors, AtArgumentExpression, Results); 8168 else { 8169 // We're messaging "id" as a type; provide all class/factory methods. 8170 8171 // If we have an external source, load the entire class method 8172 // pool from the AST file. 8173 if (SemaRef.getExternalSource()) { 8174 for (uint32_t I = 0, 8175 N = SemaRef.getExternalSource()->GetNumExternalSelectors(); 8176 I != N; ++I) { 8177 Selector Sel = SemaRef.getExternalSource()->GetExternalSelector(I); 8178 if (Sel.isNull() || SemaRef.MethodPool.count(Sel)) 8179 continue; 8180 8181 SemaRef.ReadMethodPool(Sel); 8182 } 8183 } 8184 8185 for (Sema::GlobalMethodPool::iterator M = SemaRef.MethodPool.begin(), 8186 MEnd = SemaRef.MethodPool.end(); 8187 M != MEnd; ++M) { 8188 for (ObjCMethodList *MethList = &M->second.second; 8189 MethList && MethList->getMethod(); MethList = MethList->getNext()) { 8190 if (!isAcceptableObjCMethod(MethList->getMethod(), MK_Any, SelIdents)) 8191 continue; 8192 8193 Result R(MethList->getMethod(), 8194 Results.getBasePriority(MethList->getMethod()), nullptr); 8195 R.StartParameter = SelIdents.size(); 8196 R.AllParametersAreInformative = false; 8197 Results.MaybeAddResult(R, SemaRef.CurContext); 8198 } 8199 } 8200 } 8201 8202 Results.ExitScope(); 8203 } 8204 8205 void Sema::CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver, 8206 ArrayRef<IdentifierInfo *> SelIdents, 8207 bool AtArgumentExpression, 8208 bool IsSuper) { 8209 8210 QualType T = this->GetTypeFromParser(Receiver); 8211 8212 ResultBuilder Results( 8213 *this, CodeCompleter->getAllocator(), 8214 CodeCompleter->getCodeCompletionTUInfo(), 8215 CodeCompletionContext(CodeCompletionContext::CCC_ObjCClassMessage, T, 8216 SelIdents)); 8217 8218 AddClassMessageCompletions(*this, S, Receiver, SelIdents, 8219 AtArgumentExpression, IsSuper, Results); 8220 8221 // If we're actually at the argument expression (rather than prior to the 8222 // selector), we're actually performing code completion for an expression. 8223 // Determine whether we have a single, best method. If so, we can 8224 // code-complete the expression using the corresponding parameter type as 8225 // our preferred type, improving completion results. 8226 if (AtArgumentExpression) { 8227 QualType PreferredType = 8228 getPreferredArgumentTypeForMessageSend(Results, SelIdents.size()); 8229 if (PreferredType.isNull()) 8230 CodeCompleteOrdinaryName(S, PCC_Expression); 8231 else 8232 CodeCompleteExpression(S, PreferredType); 8233 return; 8234 } 8235 8236 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8237 Results.data(), Results.size()); 8238 } 8239 8240 void Sema::CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver, 8241 ArrayRef<IdentifierInfo *> SelIdents, 8242 bool AtArgumentExpression, 8243 ObjCInterfaceDecl *Super) { 8244 typedef CodeCompletionResult Result; 8245 8246 Expr *RecExpr = static_cast<Expr *>(Receiver); 8247 8248 // If necessary, apply function/array conversion to the receiver. 8249 // C99 6.7.5.3p[7,8]. 8250 if (RecExpr) { 8251 ExprResult Conv = DefaultFunctionArrayLvalueConversion(RecExpr); 8252 if (Conv.isInvalid()) // conversion failed. bail. 8253 return; 8254 RecExpr = Conv.get(); 8255 } 8256 QualType ReceiverType = RecExpr 8257 ? RecExpr->getType() 8258 : Super ? Context.getObjCObjectPointerType( 8259 Context.getObjCInterfaceType(Super)) 8260 : Context.getObjCIdType(); 8261 8262 // If we're messaging an expression with type "id" or "Class", check 8263 // whether we know something special about the receiver that allows 8264 // us to assume a more-specific receiver type. 8265 if (ReceiverType->isObjCIdType() || ReceiverType->isObjCClassType()) { 8266 if (ObjCInterfaceDecl *IFace = GetAssumedMessageSendExprType(RecExpr)) { 8267 if (ReceiverType->isObjCClassType()) 8268 return CodeCompleteObjCClassMessage( 8269 S, ParsedType::make(Context.getObjCInterfaceType(IFace)), SelIdents, 8270 AtArgumentExpression, Super); 8271 8272 ReceiverType = 8273 Context.getObjCObjectPointerType(Context.getObjCInterfaceType(IFace)); 8274 } 8275 } else if (RecExpr && getLangOpts().CPlusPlus) { 8276 ExprResult Conv = PerformContextuallyConvertToObjCPointer(RecExpr); 8277 if (Conv.isUsable()) { 8278 RecExpr = Conv.get(); 8279 ReceiverType = RecExpr->getType(); 8280 } 8281 } 8282 8283 // Build the set of methods we can see. 8284 ResultBuilder Results( 8285 *this, CodeCompleter->getAllocator(), 8286 CodeCompleter->getCodeCompletionTUInfo(), 8287 CodeCompletionContext(CodeCompletionContext::CCC_ObjCInstanceMessage, 8288 ReceiverType, SelIdents)); 8289 8290 Results.EnterNewScope(); 8291 8292 // If this is a send-to-super, try to add the special "super" send 8293 // completion. 8294 if (Super) { 8295 if (ObjCMethodDecl *SuperMethod = 8296 AddSuperSendCompletion(*this, false, SelIdents, Results)) 8297 Results.Ignore(SuperMethod); 8298 } 8299 8300 // If we're inside an Objective-C method definition, prefer its selector to 8301 // others. 8302 if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) 8303 Results.setPreferredSelector(CurMethod->getSelector()); 8304 8305 // Keep track of the selectors we've already added. 8306 VisitedSelectorSet Selectors; 8307 8308 // Handle messages to Class. This really isn't a message to an instance 8309 // method, so we treat it the same way we would treat a message send to a 8310 // class method. 8311 if (ReceiverType->isObjCClassType() || 8312 ReceiverType->isObjCQualifiedClassType()) { 8313 if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) { 8314 if (ObjCInterfaceDecl *ClassDecl = CurMethod->getClassInterface()) 8315 AddObjCMethods(ClassDecl, false, MK_Any, SelIdents, CurContext, 8316 Selectors, AtArgumentExpression, Results); 8317 } 8318 } 8319 // Handle messages to a qualified ID ("id<foo>"). 8320 else if (const ObjCObjectPointerType *QualID = 8321 ReceiverType->getAsObjCQualifiedIdType()) { 8322 // Search protocols for instance methods. 8323 for (auto *I : QualID->quals()) 8324 AddObjCMethods(I, true, MK_Any, SelIdents, CurContext, Selectors, 8325 AtArgumentExpression, Results); 8326 } 8327 // Handle messages to a pointer to interface type. 8328 else if (const ObjCObjectPointerType *IFacePtr = 8329 ReceiverType->getAsObjCInterfacePointerType()) { 8330 // Search the class, its superclasses, etc., for instance methods. 8331 AddObjCMethods(IFacePtr->getInterfaceDecl(), true, MK_Any, SelIdents, 8332 CurContext, Selectors, AtArgumentExpression, Results); 8333 8334 // Search protocols for instance methods. 8335 for (auto *I : IFacePtr->quals()) 8336 AddObjCMethods(I, true, MK_Any, SelIdents, CurContext, Selectors, 8337 AtArgumentExpression, Results); 8338 } 8339 // Handle messages to "id". 8340 else if (ReceiverType->isObjCIdType()) { 8341 // We're messaging "id", so provide all instance methods we know 8342 // about as code-completion results. 8343 8344 // If we have an external source, load the entire class method 8345 // pool from the AST file. 8346 if (ExternalSource) { 8347 for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); 8348 I != N; ++I) { 8349 Selector Sel = ExternalSource->GetExternalSelector(I); 8350 if (Sel.isNull() || MethodPool.count(Sel)) 8351 continue; 8352 8353 ReadMethodPool(Sel); 8354 } 8355 } 8356 8357 for (GlobalMethodPool::iterator M = MethodPool.begin(), 8358 MEnd = MethodPool.end(); 8359 M != MEnd; ++M) { 8360 for (ObjCMethodList *MethList = &M->second.first; 8361 MethList && MethList->getMethod(); MethList = MethList->getNext()) { 8362 if (!isAcceptableObjCMethod(MethList->getMethod(), MK_Any, SelIdents)) 8363 continue; 8364 8365 if (!Selectors.insert(MethList->getMethod()->getSelector()).second) 8366 continue; 8367 8368 Result R(MethList->getMethod(), 8369 Results.getBasePriority(MethList->getMethod()), nullptr); 8370 R.StartParameter = SelIdents.size(); 8371 R.AllParametersAreInformative = false; 8372 Results.MaybeAddResult(R, CurContext); 8373 } 8374 } 8375 } 8376 Results.ExitScope(); 8377 8378 // If we're actually at the argument expression (rather than prior to the 8379 // selector), we're actually performing code completion for an expression. 8380 // Determine whether we have a single, best method. If so, we can 8381 // code-complete the expression using the corresponding parameter type as 8382 // our preferred type, improving completion results. 8383 if (AtArgumentExpression) { 8384 QualType PreferredType = 8385 getPreferredArgumentTypeForMessageSend(Results, SelIdents.size()); 8386 if (PreferredType.isNull()) 8387 CodeCompleteOrdinaryName(S, PCC_Expression); 8388 else 8389 CodeCompleteExpression(S, PreferredType); 8390 return; 8391 } 8392 8393 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8394 Results.data(), Results.size()); 8395 } 8396 8397 void Sema::CodeCompleteObjCForCollection(Scope *S, 8398 DeclGroupPtrTy IterationVar) { 8399 CodeCompleteExpressionData Data; 8400 Data.ObjCCollection = true; 8401 8402 if (IterationVar.getAsOpaquePtr()) { 8403 DeclGroupRef DG = IterationVar.get(); 8404 for (DeclGroupRef::iterator I = DG.begin(), End = DG.end(); I != End; ++I) { 8405 if (*I) 8406 Data.IgnoreDecls.push_back(*I); 8407 } 8408 } 8409 8410 CodeCompleteExpression(S, Data); 8411 } 8412 8413 void Sema::CodeCompleteObjCSelector(Scope *S, 8414 ArrayRef<IdentifierInfo *> SelIdents) { 8415 // If we have an external source, load the entire class method 8416 // pool from the AST file. 8417 if (ExternalSource) { 8418 for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); I != N; 8419 ++I) { 8420 Selector Sel = ExternalSource->GetExternalSelector(I); 8421 if (Sel.isNull() || MethodPool.count(Sel)) 8422 continue; 8423 8424 ReadMethodPool(Sel); 8425 } 8426 } 8427 8428 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8429 CodeCompleter->getCodeCompletionTUInfo(), 8430 CodeCompletionContext::CCC_SelectorName); 8431 Results.EnterNewScope(); 8432 for (GlobalMethodPool::iterator M = MethodPool.begin(), 8433 MEnd = MethodPool.end(); 8434 M != MEnd; ++M) { 8435 8436 Selector Sel = M->first; 8437 if (!isAcceptableObjCSelector(Sel, MK_Any, SelIdents)) 8438 continue; 8439 8440 CodeCompletionBuilder Builder(Results.getAllocator(), 8441 Results.getCodeCompletionTUInfo()); 8442 if (Sel.isUnarySelector()) { 8443 Builder.AddTypedTextChunk( 8444 Builder.getAllocator().CopyString(Sel.getNameForSlot(0))); 8445 Results.AddResult(Builder.TakeString()); 8446 continue; 8447 } 8448 8449 std::string Accumulator; 8450 for (unsigned I = 0, N = Sel.getNumArgs(); I != N; ++I) { 8451 if (I == SelIdents.size()) { 8452 if (!Accumulator.empty()) { 8453 Builder.AddInformativeChunk( 8454 Builder.getAllocator().CopyString(Accumulator)); 8455 Accumulator.clear(); 8456 } 8457 } 8458 8459 Accumulator += Sel.getNameForSlot(I); 8460 Accumulator += ':'; 8461 } 8462 Builder.AddTypedTextChunk(Builder.getAllocator().CopyString(Accumulator)); 8463 Results.AddResult(Builder.TakeString()); 8464 } 8465 Results.ExitScope(); 8466 8467 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8468 Results.data(), Results.size()); 8469 } 8470 8471 /// Add all of the protocol declarations that we find in the given 8472 /// (translation unit) context. 8473 static void AddProtocolResults(DeclContext *Ctx, DeclContext *CurContext, 8474 bool OnlyForwardDeclarations, 8475 ResultBuilder &Results) { 8476 typedef CodeCompletionResult Result; 8477 8478 for (const auto *D : Ctx->decls()) { 8479 // Record any protocols we find. 8480 if (const auto *Proto = dyn_cast<ObjCProtocolDecl>(D)) 8481 if (!OnlyForwardDeclarations || !Proto->hasDefinition()) 8482 Results.AddResult( 8483 Result(Proto, Results.getBasePriority(Proto), nullptr), CurContext, 8484 nullptr, false); 8485 } 8486 } 8487 8488 void Sema::CodeCompleteObjCProtocolReferences( 8489 ArrayRef<IdentifierLocPair> Protocols) { 8490 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8491 CodeCompleter->getCodeCompletionTUInfo(), 8492 CodeCompletionContext::CCC_ObjCProtocolName); 8493 8494 if (CodeCompleter->includeGlobals()) { 8495 Results.EnterNewScope(); 8496 8497 // Tell the result set to ignore all of the protocols we have 8498 // already seen. 8499 // FIXME: This doesn't work when caching code-completion results. 8500 for (const IdentifierLocPair &Pair : Protocols) 8501 if (ObjCProtocolDecl *Protocol = LookupProtocol(Pair.first, Pair.second)) 8502 Results.Ignore(Protocol); 8503 8504 // Add all protocols. 8505 AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, false, 8506 Results); 8507 8508 Results.ExitScope(); 8509 } 8510 8511 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8512 Results.data(), Results.size()); 8513 } 8514 8515 void Sema::CodeCompleteObjCProtocolDecl(Scope *) { 8516 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8517 CodeCompleter->getCodeCompletionTUInfo(), 8518 CodeCompletionContext::CCC_ObjCProtocolName); 8519 8520 if (CodeCompleter->includeGlobals()) { 8521 Results.EnterNewScope(); 8522 8523 // Add all protocols. 8524 AddProtocolResults(Context.getTranslationUnitDecl(), CurContext, true, 8525 Results); 8526 8527 Results.ExitScope(); 8528 } 8529 8530 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8531 Results.data(), Results.size()); 8532 } 8533 8534 /// Add all of the Objective-C interface declarations that we find in 8535 /// the given (translation unit) context. 8536 static void AddInterfaceResults(DeclContext *Ctx, DeclContext *CurContext, 8537 bool OnlyForwardDeclarations, 8538 bool OnlyUnimplemented, 8539 ResultBuilder &Results) { 8540 typedef CodeCompletionResult Result; 8541 8542 for (const auto *D : Ctx->decls()) { 8543 // Record any interfaces we find. 8544 if (const auto *Class = dyn_cast<ObjCInterfaceDecl>(D)) 8545 if ((!OnlyForwardDeclarations || !Class->hasDefinition()) && 8546 (!OnlyUnimplemented || !Class->getImplementation())) 8547 Results.AddResult( 8548 Result(Class, Results.getBasePriority(Class), nullptr), CurContext, 8549 nullptr, false); 8550 } 8551 } 8552 8553 void Sema::CodeCompleteObjCInterfaceDecl(Scope *S) { 8554 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8555 CodeCompleter->getCodeCompletionTUInfo(), 8556 CodeCompletionContext::CCC_ObjCInterfaceName); 8557 Results.EnterNewScope(); 8558 8559 if (CodeCompleter->includeGlobals()) { 8560 // Add all classes. 8561 AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false, 8562 false, Results); 8563 } 8564 8565 Results.ExitScope(); 8566 8567 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8568 Results.data(), Results.size()); 8569 } 8570 8571 void Sema::CodeCompleteObjCClassForwardDecl(Scope *S) { 8572 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8573 CodeCompleter->getCodeCompletionTUInfo(), 8574 CodeCompletionContext::CCC_ObjCClassForwardDecl); 8575 Results.EnterNewScope(); 8576 8577 if (CodeCompleter->includeGlobals()) { 8578 // Add all classes. 8579 AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false, 8580 false, Results); 8581 } 8582 8583 Results.ExitScope(); 8584 8585 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8586 Results.data(), Results.size()); 8587 } 8588 8589 void Sema::CodeCompleteObjCSuperclass(Scope *S, IdentifierInfo *ClassName, 8590 SourceLocation ClassNameLoc) { 8591 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8592 CodeCompleter->getCodeCompletionTUInfo(), 8593 CodeCompletionContext::CCC_ObjCInterfaceName); 8594 Results.EnterNewScope(); 8595 8596 // Make sure that we ignore the class we're currently defining. 8597 NamedDecl *CurClass = 8598 LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName); 8599 if (CurClass && isa<ObjCInterfaceDecl>(CurClass)) 8600 Results.Ignore(CurClass); 8601 8602 if (CodeCompleter->includeGlobals()) { 8603 // Add all classes. 8604 AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false, 8605 false, Results); 8606 } 8607 8608 Results.ExitScope(); 8609 8610 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8611 Results.data(), Results.size()); 8612 } 8613 8614 void Sema::CodeCompleteObjCImplementationDecl(Scope *S) { 8615 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8616 CodeCompleter->getCodeCompletionTUInfo(), 8617 CodeCompletionContext::CCC_ObjCImplementation); 8618 Results.EnterNewScope(); 8619 8620 if (CodeCompleter->includeGlobals()) { 8621 // Add all unimplemented classes. 8622 AddInterfaceResults(Context.getTranslationUnitDecl(), CurContext, false, 8623 true, Results); 8624 } 8625 8626 Results.ExitScope(); 8627 8628 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8629 Results.data(), Results.size()); 8630 } 8631 8632 void Sema::CodeCompleteObjCInterfaceCategory(Scope *S, 8633 IdentifierInfo *ClassName, 8634 SourceLocation ClassNameLoc) { 8635 typedef CodeCompletionResult Result; 8636 8637 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8638 CodeCompleter->getCodeCompletionTUInfo(), 8639 CodeCompletionContext::CCC_ObjCCategoryName); 8640 8641 // Ignore any categories we find that have already been implemented by this 8642 // interface. 8643 llvm::SmallPtrSet<IdentifierInfo *, 16> CategoryNames; 8644 NamedDecl *CurClass = 8645 LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName); 8646 if (ObjCInterfaceDecl *Class = 8647 dyn_cast_or_null<ObjCInterfaceDecl>(CurClass)) { 8648 for (const auto *Cat : Class->visible_categories()) 8649 CategoryNames.insert(Cat->getIdentifier()); 8650 } 8651 8652 // Add all of the categories we know about. 8653 Results.EnterNewScope(); 8654 TranslationUnitDecl *TU = Context.getTranslationUnitDecl(); 8655 for (const auto *D : TU->decls()) 8656 if (const auto *Category = dyn_cast<ObjCCategoryDecl>(D)) 8657 if (CategoryNames.insert(Category->getIdentifier()).second) 8658 Results.AddResult( 8659 Result(Category, Results.getBasePriority(Category), nullptr), 8660 CurContext, nullptr, false); 8661 Results.ExitScope(); 8662 8663 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8664 Results.data(), Results.size()); 8665 } 8666 8667 void Sema::CodeCompleteObjCImplementationCategory(Scope *S, 8668 IdentifierInfo *ClassName, 8669 SourceLocation ClassNameLoc) { 8670 typedef CodeCompletionResult Result; 8671 8672 // Find the corresponding interface. If we couldn't find the interface, the 8673 // program itself is ill-formed. However, we'll try to be helpful still by 8674 // providing the list of all of the categories we know about. 8675 NamedDecl *CurClass = 8676 LookupSingleName(TUScope, ClassName, ClassNameLoc, LookupOrdinaryName); 8677 ObjCInterfaceDecl *Class = dyn_cast_or_null<ObjCInterfaceDecl>(CurClass); 8678 if (!Class) 8679 return CodeCompleteObjCInterfaceCategory(S, ClassName, ClassNameLoc); 8680 8681 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8682 CodeCompleter->getCodeCompletionTUInfo(), 8683 CodeCompletionContext::CCC_ObjCCategoryName); 8684 8685 // Add all of the categories that have corresponding interface 8686 // declarations in this class and any of its superclasses, except for 8687 // already-implemented categories in the class itself. 8688 llvm::SmallPtrSet<IdentifierInfo *, 16> CategoryNames; 8689 Results.EnterNewScope(); 8690 bool IgnoreImplemented = true; 8691 while (Class) { 8692 for (const auto *Cat : Class->visible_categories()) { 8693 if ((!IgnoreImplemented || !Cat->getImplementation()) && 8694 CategoryNames.insert(Cat->getIdentifier()).second) 8695 Results.AddResult(Result(Cat, Results.getBasePriority(Cat), nullptr), 8696 CurContext, nullptr, false); 8697 } 8698 8699 Class = Class->getSuperClass(); 8700 IgnoreImplemented = false; 8701 } 8702 Results.ExitScope(); 8703 8704 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8705 Results.data(), Results.size()); 8706 } 8707 8708 void Sema::CodeCompleteObjCPropertyDefinition(Scope *S) { 8709 CodeCompletionContext CCContext(CodeCompletionContext::CCC_Other); 8710 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8711 CodeCompleter->getCodeCompletionTUInfo(), CCContext); 8712 8713 // Figure out where this @synthesize lives. 8714 ObjCContainerDecl *Container = 8715 dyn_cast_or_null<ObjCContainerDecl>(CurContext); 8716 if (!Container || (!isa<ObjCImplementationDecl>(Container) && 8717 !isa<ObjCCategoryImplDecl>(Container))) 8718 return; 8719 8720 // Ignore any properties that have already been implemented. 8721 Container = getContainerDef(Container); 8722 for (const auto *D : Container->decls()) 8723 if (const auto *PropertyImpl = dyn_cast<ObjCPropertyImplDecl>(D)) 8724 Results.Ignore(PropertyImpl->getPropertyDecl()); 8725 8726 // Add any properties that we find. 8727 AddedPropertiesSet AddedProperties; 8728 Results.EnterNewScope(); 8729 if (ObjCImplementationDecl *ClassImpl = 8730 dyn_cast<ObjCImplementationDecl>(Container)) 8731 AddObjCProperties(CCContext, ClassImpl->getClassInterface(), false, 8732 /*AllowNullaryMethods=*/false, CurContext, 8733 AddedProperties, Results); 8734 else 8735 AddObjCProperties(CCContext, 8736 cast<ObjCCategoryImplDecl>(Container)->getCategoryDecl(), 8737 false, /*AllowNullaryMethods=*/false, CurContext, 8738 AddedProperties, Results); 8739 Results.ExitScope(); 8740 8741 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8742 Results.data(), Results.size()); 8743 } 8744 8745 void Sema::CodeCompleteObjCPropertySynthesizeIvar( 8746 Scope *S, IdentifierInfo *PropertyName) { 8747 typedef CodeCompletionResult Result; 8748 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 8749 CodeCompleter->getCodeCompletionTUInfo(), 8750 CodeCompletionContext::CCC_Other); 8751 8752 // Figure out where this @synthesize lives. 8753 ObjCContainerDecl *Container = 8754 dyn_cast_or_null<ObjCContainerDecl>(CurContext); 8755 if (!Container || (!isa<ObjCImplementationDecl>(Container) && 8756 !isa<ObjCCategoryImplDecl>(Container))) 8757 return; 8758 8759 // Figure out which interface we're looking into. 8760 ObjCInterfaceDecl *Class = nullptr; 8761 if (ObjCImplementationDecl *ClassImpl = 8762 dyn_cast<ObjCImplementationDecl>(Container)) 8763 Class = ClassImpl->getClassInterface(); 8764 else 8765 Class = cast<ObjCCategoryImplDecl>(Container) 8766 ->getCategoryDecl() 8767 ->getClassInterface(); 8768 8769 // Determine the type of the property we're synthesizing. 8770 QualType PropertyType = Context.getObjCIdType(); 8771 if (Class) { 8772 if (ObjCPropertyDecl *Property = Class->FindPropertyDeclaration( 8773 PropertyName, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { 8774 PropertyType = 8775 Property->getType().getNonReferenceType().getUnqualifiedType(); 8776 8777 // Give preference to ivars 8778 Results.setPreferredType(PropertyType); 8779 } 8780 } 8781 8782 // Add all of the instance variables in this class and its superclasses. 8783 Results.EnterNewScope(); 8784 bool SawSimilarlyNamedIvar = false; 8785 std::string NameWithPrefix; 8786 NameWithPrefix += '_'; 8787 NameWithPrefix += PropertyName->getName(); 8788 std::string NameWithSuffix = PropertyName->getName().str(); 8789 NameWithSuffix += '_'; 8790 for (; Class; Class = Class->getSuperClass()) { 8791 for (ObjCIvarDecl *Ivar = Class->all_declared_ivar_begin(); Ivar; 8792 Ivar = Ivar->getNextIvar()) { 8793 Results.AddResult(Result(Ivar, Results.getBasePriority(Ivar), nullptr), 8794 CurContext, nullptr, false); 8795 8796 // Determine whether we've seen an ivar with a name similar to the 8797 // property. 8798 if ((PropertyName == Ivar->getIdentifier() || 8799 NameWithPrefix == Ivar->getName() || 8800 NameWithSuffix == Ivar->getName())) { 8801 SawSimilarlyNamedIvar = true; 8802 8803 // Reduce the priority of this result by one, to give it a slight 8804 // advantage over other results whose names don't match so closely. 8805 if (Results.size() && 8806 Results.data()[Results.size() - 1].Kind == 8807 CodeCompletionResult::RK_Declaration && 8808 Results.data()[Results.size() - 1].Declaration == Ivar) 8809 Results.data()[Results.size() - 1].Priority--; 8810 } 8811 } 8812 } 8813 8814 if (!SawSimilarlyNamedIvar) { 8815 // Create ivar result _propName, that the user can use to synthesize 8816 // an ivar of the appropriate type. 8817 unsigned Priority = CCP_MemberDeclaration + 1; 8818 typedef CodeCompletionResult Result; 8819 CodeCompletionAllocator &Allocator = Results.getAllocator(); 8820 CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo(), 8821 Priority, CXAvailability_Available); 8822 8823 PrintingPolicy Policy = getCompletionPrintingPolicy(*this); 8824 Builder.AddResultTypeChunk( 8825 GetCompletionTypeString(PropertyType, Context, Policy, Allocator)); 8826 Builder.AddTypedTextChunk(Allocator.CopyString(NameWithPrefix)); 8827 Results.AddResult( 8828 Result(Builder.TakeString(), Priority, CXCursor_ObjCIvarDecl)); 8829 } 8830 8831 Results.ExitScope(); 8832 8833 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 8834 Results.data(), Results.size()); 8835 } 8836 8837 // Mapping from selectors to the methods that implement that selector, along 8838 // with the "in original class" flag. 8839 typedef llvm::DenseMap<Selector, 8840 llvm::PointerIntPair<ObjCMethodDecl *, 1, bool>> 8841 KnownMethodsMap; 8842 8843 /// Find all of the methods that reside in the given container 8844 /// (and its superclasses, protocols, etc.) that meet the given 8845 /// criteria. Insert those methods into the map of known methods, 8846 /// indexed by selector so they can be easily found. 8847 static void FindImplementableMethods(ASTContext &Context, 8848 ObjCContainerDecl *Container, 8849 std::optional<bool> WantInstanceMethods, 8850 QualType ReturnType, 8851 KnownMethodsMap &KnownMethods, 8852 bool InOriginalClass = true) { 8853 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Container)) { 8854 // Make sure we have a definition; that's what we'll walk. 8855 if (!IFace->hasDefinition()) 8856 return; 8857 8858 IFace = IFace->getDefinition(); 8859 Container = IFace; 8860 8861 const ObjCList<ObjCProtocolDecl> &Protocols = 8862 IFace->getReferencedProtocols(); 8863 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(), 8864 E = Protocols.end(); 8865 I != E; ++I) 8866 FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType, 8867 KnownMethods, InOriginalClass); 8868 8869 // Add methods from any class extensions and categories. 8870 for (auto *Cat : IFace->visible_categories()) { 8871 FindImplementableMethods(Context, Cat, WantInstanceMethods, ReturnType, 8872 KnownMethods, false); 8873 } 8874 8875 // Visit the superclass. 8876 if (IFace->getSuperClass()) 8877 FindImplementableMethods(Context, IFace->getSuperClass(), 8878 WantInstanceMethods, ReturnType, KnownMethods, 8879 false); 8880 } 8881 8882 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Container)) { 8883 // Recurse into protocols. 8884 const ObjCList<ObjCProtocolDecl> &Protocols = 8885 Category->getReferencedProtocols(); 8886 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(), 8887 E = Protocols.end(); 8888 I != E; ++I) 8889 FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType, 8890 KnownMethods, InOriginalClass); 8891 8892 // If this category is the original class, jump to the interface. 8893 if (InOriginalClass && Category->getClassInterface()) 8894 FindImplementableMethods(Context, Category->getClassInterface(), 8895 WantInstanceMethods, ReturnType, KnownMethods, 8896 false); 8897 } 8898 8899 if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Container)) { 8900 // Make sure we have a definition; that's what we'll walk. 8901 if (!Protocol->hasDefinition()) 8902 return; 8903 Protocol = Protocol->getDefinition(); 8904 Container = Protocol; 8905 8906 // Recurse into protocols. 8907 const ObjCList<ObjCProtocolDecl> &Protocols = 8908 Protocol->getReferencedProtocols(); 8909 for (ObjCList<ObjCProtocolDecl>::iterator I = Protocols.begin(), 8910 E = Protocols.end(); 8911 I != E; ++I) 8912 FindImplementableMethods(Context, *I, WantInstanceMethods, ReturnType, 8913 KnownMethods, false); 8914 } 8915 8916 // Add methods in this container. This operation occurs last because 8917 // we want the methods from this container to override any methods 8918 // we've previously seen with the same selector. 8919 for (auto *M : Container->methods()) { 8920 if (!WantInstanceMethods || M->isInstanceMethod() == *WantInstanceMethods) { 8921 if (!ReturnType.isNull() && 8922 !Context.hasSameUnqualifiedType(ReturnType, M->getReturnType())) 8923 continue; 8924 8925 KnownMethods[M->getSelector()] = 8926 KnownMethodsMap::mapped_type(M, InOriginalClass); 8927 } 8928 } 8929 } 8930 8931 /// Add the parenthesized return or parameter type chunk to a code 8932 /// completion string. 8933 static void AddObjCPassingTypeChunk(QualType Type, unsigned ObjCDeclQuals, 8934 ASTContext &Context, 8935 const PrintingPolicy &Policy, 8936 CodeCompletionBuilder &Builder) { 8937 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 8938 std::string Quals = formatObjCParamQualifiers(ObjCDeclQuals, Type); 8939 if (!Quals.empty()) 8940 Builder.AddTextChunk(Builder.getAllocator().CopyString(Quals)); 8941 Builder.AddTextChunk( 8942 GetCompletionTypeString(Type, Context, Policy, Builder.getAllocator())); 8943 Builder.AddChunk(CodeCompletionString::CK_RightParen); 8944 } 8945 8946 /// Determine whether the given class is or inherits from a class by 8947 /// the given name. 8948 static bool InheritsFromClassNamed(ObjCInterfaceDecl *Class, StringRef Name) { 8949 if (!Class) 8950 return false; 8951 8952 if (Class->getIdentifier() && Class->getIdentifier()->getName() == Name) 8953 return true; 8954 8955 return InheritsFromClassNamed(Class->getSuperClass(), Name); 8956 } 8957 8958 /// Add code completions for Objective-C Key-Value Coding (KVC) and 8959 /// Key-Value Observing (KVO). 8960 static void AddObjCKeyValueCompletions(ObjCPropertyDecl *Property, 8961 bool IsInstanceMethod, 8962 QualType ReturnType, ASTContext &Context, 8963 VisitedSelectorSet &KnownSelectors, 8964 ResultBuilder &Results) { 8965 IdentifierInfo *PropName = Property->getIdentifier(); 8966 if (!PropName || PropName->getLength() == 0) 8967 return; 8968 8969 PrintingPolicy Policy = getCompletionPrintingPolicy(Results.getSema()); 8970 8971 // Builder that will create each code completion. 8972 typedef CodeCompletionResult Result; 8973 CodeCompletionAllocator &Allocator = Results.getAllocator(); 8974 CodeCompletionBuilder Builder(Allocator, Results.getCodeCompletionTUInfo()); 8975 8976 // The selector table. 8977 SelectorTable &Selectors = Context.Selectors; 8978 8979 // The property name, copied into the code completion allocation region 8980 // on demand. 8981 struct KeyHolder { 8982 CodeCompletionAllocator &Allocator; 8983 StringRef Key; 8984 const char *CopiedKey; 8985 8986 KeyHolder(CodeCompletionAllocator &Allocator, StringRef Key) 8987 : Allocator(Allocator), Key(Key), CopiedKey(nullptr) {} 8988 8989 operator const char *() { 8990 if (CopiedKey) 8991 return CopiedKey; 8992 8993 return CopiedKey = Allocator.CopyString(Key); 8994 } 8995 } Key(Allocator, PropName->getName()); 8996 8997 // The uppercased name of the property name. 8998 std::string UpperKey = std::string(PropName->getName()); 8999 if (!UpperKey.empty()) 9000 UpperKey[0] = toUppercase(UpperKey[0]); 9001 9002 bool ReturnTypeMatchesProperty = 9003 ReturnType.isNull() || 9004 Context.hasSameUnqualifiedType(ReturnType.getNonReferenceType(), 9005 Property->getType()); 9006 bool ReturnTypeMatchesVoid = ReturnType.isNull() || ReturnType->isVoidType(); 9007 9008 // Add the normal accessor -(type)key. 9009 if (IsInstanceMethod && 9010 KnownSelectors.insert(Selectors.getNullarySelector(PropName)).second && 9011 ReturnTypeMatchesProperty && !Property->getGetterMethodDecl()) { 9012 if (ReturnType.isNull()) 9013 AddObjCPassingTypeChunk(Property->getType(), /*Quals=*/0, Context, Policy, 9014 Builder); 9015 9016 Builder.AddTypedTextChunk(Key); 9017 Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern, 9018 CXCursor_ObjCInstanceMethodDecl)); 9019 } 9020 9021 // If we have an integral or boolean property (or the user has provided 9022 // an integral or boolean return type), add the accessor -(type)isKey. 9023 if (IsInstanceMethod && 9024 ((!ReturnType.isNull() && 9025 (ReturnType->isIntegerType() || ReturnType->isBooleanType())) || 9026 (ReturnType.isNull() && (Property->getType()->isIntegerType() || 9027 Property->getType()->isBooleanType())))) { 9028 std::string SelectorName = (Twine("is") + UpperKey).str(); 9029 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9030 if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId)) 9031 .second) { 9032 if (ReturnType.isNull()) { 9033 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9034 Builder.AddTextChunk("BOOL"); 9035 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9036 } 9037 9038 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorId->getName())); 9039 Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern, 9040 CXCursor_ObjCInstanceMethodDecl)); 9041 } 9042 } 9043 9044 // Add the normal mutator. 9045 if (IsInstanceMethod && ReturnTypeMatchesVoid && 9046 !Property->getSetterMethodDecl()) { 9047 std::string SelectorName = (Twine("set") + UpperKey).str(); 9048 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9049 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9050 if (ReturnType.isNull()) { 9051 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9052 Builder.AddTextChunk("void"); 9053 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9054 } 9055 9056 Builder.AddTypedTextChunk( 9057 Allocator.CopyString(SelectorId->getName() + ":")); 9058 AddObjCPassingTypeChunk(Property->getType(), /*Quals=*/0, Context, Policy, 9059 Builder); 9060 Builder.AddTextChunk(Key); 9061 Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern, 9062 CXCursor_ObjCInstanceMethodDecl)); 9063 } 9064 } 9065 9066 // Indexed and unordered accessors 9067 unsigned IndexedGetterPriority = CCP_CodePattern; 9068 unsigned IndexedSetterPriority = CCP_CodePattern; 9069 unsigned UnorderedGetterPriority = CCP_CodePattern; 9070 unsigned UnorderedSetterPriority = CCP_CodePattern; 9071 if (const auto *ObjCPointer = 9072 Property->getType()->getAs<ObjCObjectPointerType>()) { 9073 if (ObjCInterfaceDecl *IFace = ObjCPointer->getInterfaceDecl()) { 9074 // If this interface type is not provably derived from a known 9075 // collection, penalize the corresponding completions. 9076 if (!InheritsFromClassNamed(IFace, "NSMutableArray")) { 9077 IndexedSetterPriority += CCD_ProbablyNotObjCCollection; 9078 if (!InheritsFromClassNamed(IFace, "NSArray")) 9079 IndexedGetterPriority += CCD_ProbablyNotObjCCollection; 9080 } 9081 9082 if (!InheritsFromClassNamed(IFace, "NSMutableSet")) { 9083 UnorderedSetterPriority += CCD_ProbablyNotObjCCollection; 9084 if (!InheritsFromClassNamed(IFace, "NSSet")) 9085 UnorderedGetterPriority += CCD_ProbablyNotObjCCollection; 9086 } 9087 } 9088 } else { 9089 IndexedGetterPriority += CCD_ProbablyNotObjCCollection; 9090 IndexedSetterPriority += CCD_ProbablyNotObjCCollection; 9091 UnorderedGetterPriority += CCD_ProbablyNotObjCCollection; 9092 UnorderedSetterPriority += CCD_ProbablyNotObjCCollection; 9093 } 9094 9095 // Add -(NSUInteger)countOf<key> 9096 if (IsInstanceMethod && 9097 (ReturnType.isNull() || ReturnType->isIntegerType())) { 9098 std::string SelectorName = (Twine("countOf") + UpperKey).str(); 9099 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9100 if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId)) 9101 .second) { 9102 if (ReturnType.isNull()) { 9103 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9104 Builder.AddTextChunk("NSUInteger"); 9105 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9106 } 9107 9108 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorId->getName())); 9109 Results.AddResult( 9110 Result(Builder.TakeString(), 9111 std::min(IndexedGetterPriority, UnorderedGetterPriority), 9112 CXCursor_ObjCInstanceMethodDecl)); 9113 } 9114 } 9115 9116 // Indexed getters 9117 // Add -(id)objectInKeyAtIndex:(NSUInteger)index 9118 if (IsInstanceMethod && 9119 (ReturnType.isNull() || ReturnType->isObjCObjectPointerType())) { 9120 std::string SelectorName = (Twine("objectIn") + UpperKey + "AtIndex").str(); 9121 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9122 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9123 if (ReturnType.isNull()) { 9124 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9125 Builder.AddTextChunk("id"); 9126 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9127 } 9128 9129 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9130 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9131 Builder.AddTextChunk("NSUInteger"); 9132 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9133 Builder.AddTextChunk("index"); 9134 Results.AddResult(Result(Builder.TakeString(), IndexedGetterPriority, 9135 CXCursor_ObjCInstanceMethodDecl)); 9136 } 9137 } 9138 9139 // Add -(NSArray *)keyAtIndexes:(NSIndexSet *)indexes 9140 if (IsInstanceMethod && 9141 (ReturnType.isNull() || 9142 (ReturnType->isObjCObjectPointerType() && 9143 ReturnType->castAs<ObjCObjectPointerType>()->getInterfaceDecl() && 9144 ReturnType->castAs<ObjCObjectPointerType>() 9145 ->getInterfaceDecl() 9146 ->getName() == "NSArray"))) { 9147 std::string SelectorName = (Twine(Property->getName()) + "AtIndexes").str(); 9148 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9149 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9150 if (ReturnType.isNull()) { 9151 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9152 Builder.AddTextChunk("NSArray *"); 9153 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9154 } 9155 9156 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9157 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9158 Builder.AddTextChunk("NSIndexSet *"); 9159 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9160 Builder.AddTextChunk("indexes"); 9161 Results.AddResult(Result(Builder.TakeString(), IndexedGetterPriority, 9162 CXCursor_ObjCInstanceMethodDecl)); 9163 } 9164 } 9165 9166 // Add -(void)getKey:(type **)buffer range:(NSRange)inRange 9167 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9168 std::string SelectorName = (Twine("get") + UpperKey).str(); 9169 IdentifierInfo *SelectorIds[2] = {&Context.Idents.get(SelectorName), 9170 &Context.Idents.get("range")}; 9171 9172 if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) { 9173 if (ReturnType.isNull()) { 9174 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9175 Builder.AddTextChunk("void"); 9176 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9177 } 9178 9179 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9180 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9181 Builder.AddPlaceholderChunk("object-type"); 9182 Builder.AddTextChunk(" **"); 9183 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9184 Builder.AddTextChunk("buffer"); 9185 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9186 Builder.AddTypedTextChunk("range:"); 9187 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9188 Builder.AddTextChunk("NSRange"); 9189 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9190 Builder.AddTextChunk("inRange"); 9191 Results.AddResult(Result(Builder.TakeString(), IndexedGetterPriority, 9192 CXCursor_ObjCInstanceMethodDecl)); 9193 } 9194 } 9195 9196 // Mutable indexed accessors 9197 9198 // - (void)insertObject:(type *)object inKeyAtIndex:(NSUInteger)index 9199 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9200 std::string SelectorName = (Twine("in") + UpperKey + "AtIndex").str(); 9201 IdentifierInfo *SelectorIds[2] = {&Context.Idents.get("insertObject"), 9202 &Context.Idents.get(SelectorName)}; 9203 9204 if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) { 9205 if (ReturnType.isNull()) { 9206 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9207 Builder.AddTextChunk("void"); 9208 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9209 } 9210 9211 Builder.AddTypedTextChunk("insertObject:"); 9212 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9213 Builder.AddPlaceholderChunk("object-type"); 9214 Builder.AddTextChunk(" *"); 9215 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9216 Builder.AddTextChunk("object"); 9217 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9218 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9219 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9220 Builder.AddPlaceholderChunk("NSUInteger"); 9221 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9222 Builder.AddTextChunk("index"); 9223 Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority, 9224 CXCursor_ObjCInstanceMethodDecl)); 9225 } 9226 } 9227 9228 // - (void)insertKey:(NSArray *)array atIndexes:(NSIndexSet *)indexes 9229 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9230 std::string SelectorName = (Twine("insert") + UpperKey).str(); 9231 IdentifierInfo *SelectorIds[2] = {&Context.Idents.get(SelectorName), 9232 &Context.Idents.get("atIndexes")}; 9233 9234 if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) { 9235 if (ReturnType.isNull()) { 9236 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9237 Builder.AddTextChunk("void"); 9238 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9239 } 9240 9241 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9242 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9243 Builder.AddTextChunk("NSArray *"); 9244 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9245 Builder.AddTextChunk("array"); 9246 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9247 Builder.AddTypedTextChunk("atIndexes:"); 9248 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9249 Builder.AddPlaceholderChunk("NSIndexSet *"); 9250 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9251 Builder.AddTextChunk("indexes"); 9252 Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority, 9253 CXCursor_ObjCInstanceMethodDecl)); 9254 } 9255 } 9256 9257 // -(void)removeObjectFromKeyAtIndex:(NSUInteger)index 9258 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9259 std::string SelectorName = 9260 (Twine("removeObjectFrom") + UpperKey + "AtIndex").str(); 9261 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9262 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9263 if (ReturnType.isNull()) { 9264 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9265 Builder.AddTextChunk("void"); 9266 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9267 } 9268 9269 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9270 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9271 Builder.AddTextChunk("NSUInteger"); 9272 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9273 Builder.AddTextChunk("index"); 9274 Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority, 9275 CXCursor_ObjCInstanceMethodDecl)); 9276 } 9277 } 9278 9279 // -(void)removeKeyAtIndexes:(NSIndexSet *)indexes 9280 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9281 std::string SelectorName = (Twine("remove") + UpperKey + "AtIndexes").str(); 9282 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9283 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9284 if (ReturnType.isNull()) { 9285 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9286 Builder.AddTextChunk("void"); 9287 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9288 } 9289 9290 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9291 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9292 Builder.AddTextChunk("NSIndexSet *"); 9293 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9294 Builder.AddTextChunk("indexes"); 9295 Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority, 9296 CXCursor_ObjCInstanceMethodDecl)); 9297 } 9298 } 9299 9300 // - (void)replaceObjectInKeyAtIndex:(NSUInteger)index withObject:(id)object 9301 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9302 std::string SelectorName = 9303 (Twine("replaceObjectIn") + UpperKey + "AtIndex").str(); 9304 IdentifierInfo *SelectorIds[2] = {&Context.Idents.get(SelectorName), 9305 &Context.Idents.get("withObject")}; 9306 9307 if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) { 9308 if (ReturnType.isNull()) { 9309 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9310 Builder.AddTextChunk("void"); 9311 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9312 } 9313 9314 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9315 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9316 Builder.AddPlaceholderChunk("NSUInteger"); 9317 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9318 Builder.AddTextChunk("index"); 9319 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9320 Builder.AddTypedTextChunk("withObject:"); 9321 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9322 Builder.AddTextChunk("id"); 9323 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9324 Builder.AddTextChunk("object"); 9325 Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority, 9326 CXCursor_ObjCInstanceMethodDecl)); 9327 } 9328 } 9329 9330 // - (void)replaceKeyAtIndexes:(NSIndexSet *)indexes withKey:(NSArray *)array 9331 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9332 std::string SelectorName1 = 9333 (Twine("replace") + UpperKey + "AtIndexes").str(); 9334 std::string SelectorName2 = (Twine("with") + UpperKey).str(); 9335 IdentifierInfo *SelectorIds[2] = {&Context.Idents.get(SelectorName1), 9336 &Context.Idents.get(SelectorName2)}; 9337 9338 if (KnownSelectors.insert(Selectors.getSelector(2, SelectorIds)).second) { 9339 if (ReturnType.isNull()) { 9340 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9341 Builder.AddTextChunk("void"); 9342 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9343 } 9344 9345 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName1 + ":")); 9346 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9347 Builder.AddPlaceholderChunk("NSIndexSet *"); 9348 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9349 Builder.AddTextChunk("indexes"); 9350 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9351 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName2 + ":")); 9352 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9353 Builder.AddTextChunk("NSArray *"); 9354 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9355 Builder.AddTextChunk("array"); 9356 Results.AddResult(Result(Builder.TakeString(), IndexedSetterPriority, 9357 CXCursor_ObjCInstanceMethodDecl)); 9358 } 9359 } 9360 9361 // Unordered getters 9362 // - (NSEnumerator *)enumeratorOfKey 9363 if (IsInstanceMethod && 9364 (ReturnType.isNull() || 9365 (ReturnType->isObjCObjectPointerType() && 9366 ReturnType->castAs<ObjCObjectPointerType>()->getInterfaceDecl() && 9367 ReturnType->castAs<ObjCObjectPointerType>() 9368 ->getInterfaceDecl() 9369 ->getName() == "NSEnumerator"))) { 9370 std::string SelectorName = (Twine("enumeratorOf") + UpperKey).str(); 9371 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9372 if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId)) 9373 .second) { 9374 if (ReturnType.isNull()) { 9375 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9376 Builder.AddTextChunk("NSEnumerator *"); 9377 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9378 } 9379 9380 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName)); 9381 Results.AddResult(Result(Builder.TakeString(), UnorderedGetterPriority, 9382 CXCursor_ObjCInstanceMethodDecl)); 9383 } 9384 } 9385 9386 // - (type *)memberOfKey:(type *)object 9387 if (IsInstanceMethod && 9388 (ReturnType.isNull() || ReturnType->isObjCObjectPointerType())) { 9389 std::string SelectorName = (Twine("memberOf") + UpperKey).str(); 9390 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9391 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9392 if (ReturnType.isNull()) { 9393 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9394 Builder.AddPlaceholderChunk("object-type"); 9395 Builder.AddTextChunk(" *"); 9396 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9397 } 9398 9399 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9400 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9401 if (ReturnType.isNull()) { 9402 Builder.AddPlaceholderChunk("object-type"); 9403 Builder.AddTextChunk(" *"); 9404 } else { 9405 Builder.AddTextChunk(GetCompletionTypeString( 9406 ReturnType, Context, Policy, Builder.getAllocator())); 9407 } 9408 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9409 Builder.AddTextChunk("object"); 9410 Results.AddResult(Result(Builder.TakeString(), UnorderedGetterPriority, 9411 CXCursor_ObjCInstanceMethodDecl)); 9412 } 9413 } 9414 9415 // Mutable unordered accessors 9416 // - (void)addKeyObject:(type *)object 9417 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9418 std::string SelectorName = 9419 (Twine("add") + UpperKey + Twine("Object")).str(); 9420 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9421 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9422 if (ReturnType.isNull()) { 9423 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9424 Builder.AddTextChunk("void"); 9425 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9426 } 9427 9428 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9429 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9430 Builder.AddPlaceholderChunk("object-type"); 9431 Builder.AddTextChunk(" *"); 9432 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9433 Builder.AddTextChunk("object"); 9434 Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority, 9435 CXCursor_ObjCInstanceMethodDecl)); 9436 } 9437 } 9438 9439 // - (void)addKey:(NSSet *)objects 9440 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9441 std::string SelectorName = (Twine("add") + UpperKey).str(); 9442 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9443 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9444 if (ReturnType.isNull()) { 9445 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9446 Builder.AddTextChunk("void"); 9447 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9448 } 9449 9450 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9451 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9452 Builder.AddTextChunk("NSSet *"); 9453 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9454 Builder.AddTextChunk("objects"); 9455 Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority, 9456 CXCursor_ObjCInstanceMethodDecl)); 9457 } 9458 } 9459 9460 // - (void)removeKeyObject:(type *)object 9461 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9462 std::string SelectorName = 9463 (Twine("remove") + UpperKey + Twine("Object")).str(); 9464 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9465 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9466 if (ReturnType.isNull()) { 9467 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9468 Builder.AddTextChunk("void"); 9469 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9470 } 9471 9472 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9473 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9474 Builder.AddPlaceholderChunk("object-type"); 9475 Builder.AddTextChunk(" *"); 9476 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9477 Builder.AddTextChunk("object"); 9478 Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority, 9479 CXCursor_ObjCInstanceMethodDecl)); 9480 } 9481 } 9482 9483 // - (void)removeKey:(NSSet *)objects 9484 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9485 std::string SelectorName = (Twine("remove") + UpperKey).str(); 9486 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9487 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9488 if (ReturnType.isNull()) { 9489 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9490 Builder.AddTextChunk("void"); 9491 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9492 } 9493 9494 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9495 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9496 Builder.AddTextChunk("NSSet *"); 9497 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9498 Builder.AddTextChunk("objects"); 9499 Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority, 9500 CXCursor_ObjCInstanceMethodDecl)); 9501 } 9502 } 9503 9504 // - (void)intersectKey:(NSSet *)objects 9505 if (IsInstanceMethod && ReturnTypeMatchesVoid) { 9506 std::string SelectorName = (Twine("intersect") + UpperKey).str(); 9507 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9508 if (KnownSelectors.insert(Selectors.getUnarySelector(SelectorId)).second) { 9509 if (ReturnType.isNull()) { 9510 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9511 Builder.AddTextChunk("void"); 9512 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9513 } 9514 9515 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName + ":")); 9516 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9517 Builder.AddTextChunk("NSSet *"); 9518 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9519 Builder.AddTextChunk("objects"); 9520 Results.AddResult(Result(Builder.TakeString(), UnorderedSetterPriority, 9521 CXCursor_ObjCInstanceMethodDecl)); 9522 } 9523 } 9524 9525 // Key-Value Observing 9526 // + (NSSet *)keyPathsForValuesAffectingKey 9527 if (!IsInstanceMethod && 9528 (ReturnType.isNull() || 9529 (ReturnType->isObjCObjectPointerType() && 9530 ReturnType->castAs<ObjCObjectPointerType>()->getInterfaceDecl() && 9531 ReturnType->castAs<ObjCObjectPointerType>() 9532 ->getInterfaceDecl() 9533 ->getName() == "NSSet"))) { 9534 std::string SelectorName = 9535 (Twine("keyPathsForValuesAffecting") + UpperKey).str(); 9536 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9537 if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId)) 9538 .second) { 9539 if (ReturnType.isNull()) { 9540 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9541 Builder.AddTextChunk("NSSet<NSString *> *"); 9542 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9543 } 9544 9545 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName)); 9546 Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern, 9547 CXCursor_ObjCClassMethodDecl)); 9548 } 9549 } 9550 9551 // + (BOOL)automaticallyNotifiesObserversForKey 9552 if (!IsInstanceMethod && 9553 (ReturnType.isNull() || ReturnType->isIntegerType() || 9554 ReturnType->isBooleanType())) { 9555 std::string SelectorName = 9556 (Twine("automaticallyNotifiesObserversOf") + UpperKey).str(); 9557 IdentifierInfo *SelectorId = &Context.Idents.get(SelectorName); 9558 if (KnownSelectors.insert(Selectors.getNullarySelector(SelectorId)) 9559 .second) { 9560 if (ReturnType.isNull()) { 9561 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9562 Builder.AddTextChunk("BOOL"); 9563 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9564 } 9565 9566 Builder.AddTypedTextChunk(Allocator.CopyString(SelectorName)); 9567 Results.AddResult(Result(Builder.TakeString(), CCP_CodePattern, 9568 CXCursor_ObjCClassMethodDecl)); 9569 } 9570 } 9571 } 9572 9573 void Sema::CodeCompleteObjCMethodDecl(Scope *S, 9574 std::optional<bool> IsInstanceMethod, 9575 ParsedType ReturnTy) { 9576 // Determine the return type of the method we're declaring, if 9577 // provided. 9578 QualType ReturnType = GetTypeFromParser(ReturnTy); 9579 Decl *IDecl = nullptr; 9580 if (CurContext->isObjCContainer()) { 9581 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext); 9582 IDecl = OCD; 9583 } 9584 // Determine where we should start searching for methods. 9585 ObjCContainerDecl *SearchDecl = nullptr; 9586 bool IsInImplementation = false; 9587 if (Decl *D = IDecl) { 9588 if (ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(D)) { 9589 SearchDecl = Impl->getClassInterface(); 9590 IsInImplementation = true; 9591 } else if (ObjCCategoryImplDecl *CatImpl = 9592 dyn_cast<ObjCCategoryImplDecl>(D)) { 9593 SearchDecl = CatImpl->getCategoryDecl(); 9594 IsInImplementation = true; 9595 } else 9596 SearchDecl = dyn_cast<ObjCContainerDecl>(D); 9597 } 9598 9599 if (!SearchDecl && S) { 9600 if (DeclContext *DC = S->getEntity()) 9601 SearchDecl = dyn_cast<ObjCContainerDecl>(DC); 9602 } 9603 9604 if (!SearchDecl) { 9605 HandleCodeCompleteResults(this, CodeCompleter, 9606 CodeCompletionContext::CCC_Other, nullptr, 0); 9607 return; 9608 } 9609 9610 // Find all of the methods that we could declare/implement here. 9611 KnownMethodsMap KnownMethods; 9612 FindImplementableMethods(Context, SearchDecl, IsInstanceMethod, ReturnType, 9613 KnownMethods); 9614 9615 // Add declarations or definitions for each of the known methods. 9616 typedef CodeCompletionResult Result; 9617 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 9618 CodeCompleter->getCodeCompletionTUInfo(), 9619 CodeCompletionContext::CCC_Other); 9620 Results.EnterNewScope(); 9621 PrintingPolicy Policy = getCompletionPrintingPolicy(*this); 9622 for (KnownMethodsMap::iterator M = KnownMethods.begin(), 9623 MEnd = KnownMethods.end(); 9624 M != MEnd; ++M) { 9625 ObjCMethodDecl *Method = M->second.getPointer(); 9626 CodeCompletionBuilder Builder(Results.getAllocator(), 9627 Results.getCodeCompletionTUInfo()); 9628 9629 // Add the '-'/'+' prefix if it wasn't provided yet. 9630 if (!IsInstanceMethod) { 9631 Builder.AddTextChunk(Method->isInstanceMethod() ? "-" : "+"); 9632 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9633 } 9634 9635 // If the result type was not already provided, add it to the 9636 // pattern as (type). 9637 if (ReturnType.isNull()) { 9638 QualType ResTy = Method->getSendResultType().stripObjCKindOfType(Context); 9639 AttributedType::stripOuterNullability(ResTy); 9640 AddObjCPassingTypeChunk(ResTy, Method->getObjCDeclQualifier(), Context, 9641 Policy, Builder); 9642 } 9643 9644 Selector Sel = Method->getSelector(); 9645 9646 if (Sel.isUnarySelector()) { 9647 // Unary selectors have no arguments. 9648 Builder.AddTypedTextChunk( 9649 Builder.getAllocator().CopyString(Sel.getNameForSlot(0))); 9650 } else { 9651 // Add all parameters to the pattern. 9652 unsigned I = 0; 9653 for (ObjCMethodDecl::param_iterator P = Method->param_begin(), 9654 PEnd = Method->param_end(); 9655 P != PEnd; (void)++P, ++I) { 9656 // Add the part of the selector name. 9657 if (I == 0) 9658 Builder.AddTypedTextChunk( 9659 Builder.getAllocator().CopyString(Sel.getNameForSlot(I) + ":")); 9660 else if (I < Sel.getNumArgs()) { 9661 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9662 Builder.AddTypedTextChunk( 9663 Builder.getAllocator().CopyString(Sel.getNameForSlot(I) + ":")); 9664 } else 9665 break; 9666 9667 // Add the parameter type. 9668 QualType ParamType; 9669 if ((*P)->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 9670 ParamType = (*P)->getType(); 9671 else 9672 ParamType = (*P)->getOriginalType(); 9673 ParamType = ParamType.substObjCTypeArgs( 9674 Context, {}, ObjCSubstitutionContext::Parameter); 9675 AttributedType::stripOuterNullability(ParamType); 9676 AddObjCPassingTypeChunk(ParamType, (*P)->getObjCDeclQualifier(), 9677 Context, Policy, Builder); 9678 9679 if (IdentifierInfo *Id = (*P)->getIdentifier()) 9680 Builder.AddTextChunk( 9681 Builder.getAllocator().CopyString(Id->getName())); 9682 } 9683 } 9684 9685 if (Method->isVariadic()) { 9686 if (Method->param_size() > 0) 9687 Builder.AddChunk(CodeCompletionString::CK_Comma); 9688 Builder.AddTextChunk("..."); 9689 } 9690 9691 if (IsInImplementation && Results.includeCodePatterns()) { 9692 // We will be defining the method here, so add a compound statement. 9693 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9694 Builder.AddChunk(CodeCompletionString::CK_LeftBrace); 9695 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 9696 if (!Method->getReturnType()->isVoidType()) { 9697 // If the result type is not void, add a return clause. 9698 Builder.AddTextChunk("return"); 9699 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9700 Builder.AddPlaceholderChunk("expression"); 9701 Builder.AddChunk(CodeCompletionString::CK_SemiColon); 9702 } else 9703 Builder.AddPlaceholderChunk("statements"); 9704 9705 Builder.AddChunk(CodeCompletionString::CK_VerticalSpace); 9706 Builder.AddChunk(CodeCompletionString::CK_RightBrace); 9707 } 9708 9709 unsigned Priority = CCP_CodePattern; 9710 auto R = Result(Builder.TakeString(), Method, Priority); 9711 if (!M->second.getInt()) 9712 setInBaseClass(R); 9713 Results.AddResult(std::move(R)); 9714 } 9715 9716 // Add Key-Value-Coding and Key-Value-Observing accessor methods for all of 9717 // the properties in this class and its categories. 9718 if (Context.getLangOpts().ObjC) { 9719 SmallVector<ObjCContainerDecl *, 4> Containers; 9720 Containers.push_back(SearchDecl); 9721 9722 VisitedSelectorSet KnownSelectors; 9723 for (KnownMethodsMap::iterator M = KnownMethods.begin(), 9724 MEnd = KnownMethods.end(); 9725 M != MEnd; ++M) 9726 KnownSelectors.insert(M->first); 9727 9728 ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(SearchDecl); 9729 if (!IFace) 9730 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(SearchDecl)) 9731 IFace = Category->getClassInterface(); 9732 9733 if (IFace) 9734 llvm::append_range(Containers, IFace->visible_categories()); 9735 9736 if (IsInstanceMethod) { 9737 for (unsigned I = 0, N = Containers.size(); I != N; ++I) 9738 for (auto *P : Containers[I]->instance_properties()) 9739 AddObjCKeyValueCompletions(P, *IsInstanceMethod, ReturnType, Context, 9740 KnownSelectors, Results); 9741 } 9742 } 9743 9744 Results.ExitScope(); 9745 9746 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 9747 Results.data(), Results.size()); 9748 } 9749 9750 void Sema::CodeCompleteObjCMethodDeclSelector( 9751 Scope *S, bool IsInstanceMethod, bool AtParameterName, ParsedType ReturnTy, 9752 ArrayRef<IdentifierInfo *> SelIdents) { 9753 // If we have an external source, load the entire class method 9754 // pool from the AST file. 9755 if (ExternalSource) { 9756 for (uint32_t I = 0, N = ExternalSource->GetNumExternalSelectors(); I != N; 9757 ++I) { 9758 Selector Sel = ExternalSource->GetExternalSelector(I); 9759 if (Sel.isNull() || MethodPool.count(Sel)) 9760 continue; 9761 9762 ReadMethodPool(Sel); 9763 } 9764 } 9765 9766 // Build the set of methods we can see. 9767 typedef CodeCompletionResult Result; 9768 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 9769 CodeCompleter->getCodeCompletionTUInfo(), 9770 CodeCompletionContext::CCC_Other); 9771 9772 if (ReturnTy) 9773 Results.setPreferredType(GetTypeFromParser(ReturnTy).getNonReferenceType()); 9774 9775 Results.EnterNewScope(); 9776 for (GlobalMethodPool::iterator M = MethodPool.begin(), 9777 MEnd = MethodPool.end(); 9778 M != MEnd; ++M) { 9779 for (ObjCMethodList *MethList = IsInstanceMethod ? &M->second.first 9780 : &M->second.second; 9781 MethList && MethList->getMethod(); MethList = MethList->getNext()) { 9782 if (!isAcceptableObjCMethod(MethList->getMethod(), MK_Any, SelIdents)) 9783 continue; 9784 9785 if (AtParameterName) { 9786 // Suggest parameter names we've seen before. 9787 unsigned NumSelIdents = SelIdents.size(); 9788 if (NumSelIdents && 9789 NumSelIdents <= MethList->getMethod()->param_size()) { 9790 ParmVarDecl *Param = 9791 MethList->getMethod()->parameters()[NumSelIdents - 1]; 9792 if (Param->getIdentifier()) { 9793 CodeCompletionBuilder Builder(Results.getAllocator(), 9794 Results.getCodeCompletionTUInfo()); 9795 Builder.AddTypedTextChunk(Builder.getAllocator().CopyString( 9796 Param->getIdentifier()->getName())); 9797 Results.AddResult(Builder.TakeString()); 9798 } 9799 } 9800 9801 continue; 9802 } 9803 9804 Result R(MethList->getMethod(), 9805 Results.getBasePriority(MethList->getMethod()), nullptr); 9806 R.StartParameter = SelIdents.size(); 9807 R.AllParametersAreInformative = false; 9808 R.DeclaringEntity = true; 9809 Results.MaybeAddResult(R, CurContext); 9810 } 9811 } 9812 9813 Results.ExitScope(); 9814 9815 if (!AtParameterName && !SelIdents.empty() && 9816 SelIdents.front()->getName().starts_with("init")) { 9817 for (const auto &M : PP.macros()) { 9818 if (M.first->getName() != "NS_DESIGNATED_INITIALIZER") 9819 continue; 9820 Results.EnterNewScope(); 9821 CodeCompletionBuilder Builder(Results.getAllocator(), 9822 Results.getCodeCompletionTUInfo()); 9823 Builder.AddTypedTextChunk( 9824 Builder.getAllocator().CopyString(M.first->getName())); 9825 Results.AddResult(CodeCompletionResult(Builder.TakeString(), CCP_Macro, 9826 CXCursor_MacroDefinition)); 9827 Results.ExitScope(); 9828 } 9829 } 9830 9831 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 9832 Results.data(), Results.size()); 9833 } 9834 9835 void Sema::CodeCompletePreprocessorDirective(bool InConditional) { 9836 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 9837 CodeCompleter->getCodeCompletionTUInfo(), 9838 CodeCompletionContext::CCC_PreprocessorDirective); 9839 Results.EnterNewScope(); 9840 9841 // #if <condition> 9842 CodeCompletionBuilder Builder(Results.getAllocator(), 9843 Results.getCodeCompletionTUInfo()); 9844 Builder.AddTypedTextChunk("if"); 9845 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9846 Builder.AddPlaceholderChunk("condition"); 9847 Results.AddResult(Builder.TakeString()); 9848 9849 // #ifdef <macro> 9850 Builder.AddTypedTextChunk("ifdef"); 9851 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9852 Builder.AddPlaceholderChunk("macro"); 9853 Results.AddResult(Builder.TakeString()); 9854 9855 // #ifndef <macro> 9856 Builder.AddTypedTextChunk("ifndef"); 9857 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9858 Builder.AddPlaceholderChunk("macro"); 9859 Results.AddResult(Builder.TakeString()); 9860 9861 if (InConditional) { 9862 // #elif <condition> 9863 Builder.AddTypedTextChunk("elif"); 9864 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9865 Builder.AddPlaceholderChunk("condition"); 9866 Results.AddResult(Builder.TakeString()); 9867 9868 // #elifdef <macro> 9869 Builder.AddTypedTextChunk("elifdef"); 9870 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9871 Builder.AddPlaceholderChunk("macro"); 9872 Results.AddResult(Builder.TakeString()); 9873 9874 // #elifndef <macro> 9875 Builder.AddTypedTextChunk("elifndef"); 9876 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9877 Builder.AddPlaceholderChunk("macro"); 9878 Results.AddResult(Builder.TakeString()); 9879 9880 // #else 9881 Builder.AddTypedTextChunk("else"); 9882 Results.AddResult(Builder.TakeString()); 9883 9884 // #endif 9885 Builder.AddTypedTextChunk("endif"); 9886 Results.AddResult(Builder.TakeString()); 9887 } 9888 9889 // #include "header" 9890 Builder.AddTypedTextChunk("include"); 9891 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9892 Builder.AddTextChunk("\""); 9893 Builder.AddPlaceholderChunk("header"); 9894 Builder.AddTextChunk("\""); 9895 Results.AddResult(Builder.TakeString()); 9896 9897 // #include <header> 9898 Builder.AddTypedTextChunk("include"); 9899 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9900 Builder.AddTextChunk("<"); 9901 Builder.AddPlaceholderChunk("header"); 9902 Builder.AddTextChunk(">"); 9903 Results.AddResult(Builder.TakeString()); 9904 9905 // #define <macro> 9906 Builder.AddTypedTextChunk("define"); 9907 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9908 Builder.AddPlaceholderChunk("macro"); 9909 Results.AddResult(Builder.TakeString()); 9910 9911 // #define <macro>(<args>) 9912 Builder.AddTypedTextChunk("define"); 9913 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9914 Builder.AddPlaceholderChunk("macro"); 9915 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 9916 Builder.AddPlaceholderChunk("args"); 9917 Builder.AddChunk(CodeCompletionString::CK_RightParen); 9918 Results.AddResult(Builder.TakeString()); 9919 9920 // #undef <macro> 9921 Builder.AddTypedTextChunk("undef"); 9922 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9923 Builder.AddPlaceholderChunk("macro"); 9924 Results.AddResult(Builder.TakeString()); 9925 9926 // #line <number> 9927 Builder.AddTypedTextChunk("line"); 9928 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9929 Builder.AddPlaceholderChunk("number"); 9930 Results.AddResult(Builder.TakeString()); 9931 9932 // #line <number> "filename" 9933 Builder.AddTypedTextChunk("line"); 9934 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9935 Builder.AddPlaceholderChunk("number"); 9936 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9937 Builder.AddTextChunk("\""); 9938 Builder.AddPlaceholderChunk("filename"); 9939 Builder.AddTextChunk("\""); 9940 Results.AddResult(Builder.TakeString()); 9941 9942 // #error <message> 9943 Builder.AddTypedTextChunk("error"); 9944 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9945 Builder.AddPlaceholderChunk("message"); 9946 Results.AddResult(Builder.TakeString()); 9947 9948 // #pragma <arguments> 9949 Builder.AddTypedTextChunk("pragma"); 9950 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9951 Builder.AddPlaceholderChunk("arguments"); 9952 Results.AddResult(Builder.TakeString()); 9953 9954 if (getLangOpts().ObjC) { 9955 // #import "header" 9956 Builder.AddTypedTextChunk("import"); 9957 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9958 Builder.AddTextChunk("\""); 9959 Builder.AddPlaceholderChunk("header"); 9960 Builder.AddTextChunk("\""); 9961 Results.AddResult(Builder.TakeString()); 9962 9963 // #import <header> 9964 Builder.AddTypedTextChunk("import"); 9965 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9966 Builder.AddTextChunk("<"); 9967 Builder.AddPlaceholderChunk("header"); 9968 Builder.AddTextChunk(">"); 9969 Results.AddResult(Builder.TakeString()); 9970 } 9971 9972 // #include_next "header" 9973 Builder.AddTypedTextChunk("include_next"); 9974 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9975 Builder.AddTextChunk("\""); 9976 Builder.AddPlaceholderChunk("header"); 9977 Builder.AddTextChunk("\""); 9978 Results.AddResult(Builder.TakeString()); 9979 9980 // #include_next <header> 9981 Builder.AddTypedTextChunk("include_next"); 9982 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9983 Builder.AddTextChunk("<"); 9984 Builder.AddPlaceholderChunk("header"); 9985 Builder.AddTextChunk(">"); 9986 Results.AddResult(Builder.TakeString()); 9987 9988 // #warning <message> 9989 Builder.AddTypedTextChunk("warning"); 9990 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 9991 Builder.AddPlaceholderChunk("message"); 9992 Results.AddResult(Builder.TakeString()); 9993 9994 // Note: #ident and #sccs are such crazy anachronisms that we don't provide 9995 // completions for them. And __include_macros is a Clang-internal extension 9996 // that we don't want to encourage anyone to use. 9997 9998 // FIXME: we don't support #assert or #unassert, so don't suggest them. 9999 Results.ExitScope(); 10000 10001 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 10002 Results.data(), Results.size()); 10003 } 10004 10005 void Sema::CodeCompleteInPreprocessorConditionalExclusion(Scope *S) { 10006 CodeCompleteOrdinaryName(S, S->getFnParent() ? Sema::PCC_RecoveryInFunction 10007 : Sema::PCC_Namespace); 10008 } 10009 10010 void Sema::CodeCompletePreprocessorMacroName(bool IsDefinition) { 10011 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 10012 CodeCompleter->getCodeCompletionTUInfo(), 10013 IsDefinition ? CodeCompletionContext::CCC_MacroName 10014 : CodeCompletionContext::CCC_MacroNameUse); 10015 if (!IsDefinition && CodeCompleter->includeMacros()) { 10016 // Add just the names of macros, not their arguments. 10017 CodeCompletionBuilder Builder(Results.getAllocator(), 10018 Results.getCodeCompletionTUInfo()); 10019 Results.EnterNewScope(); 10020 for (Preprocessor::macro_iterator M = PP.macro_begin(), 10021 MEnd = PP.macro_end(); 10022 M != MEnd; ++M) { 10023 Builder.AddTypedTextChunk( 10024 Builder.getAllocator().CopyString(M->first->getName())); 10025 Results.AddResult(CodeCompletionResult( 10026 Builder.TakeString(), CCP_CodePattern, CXCursor_MacroDefinition)); 10027 } 10028 Results.ExitScope(); 10029 } else if (IsDefinition) { 10030 // FIXME: Can we detect when the user just wrote an include guard above? 10031 } 10032 10033 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 10034 Results.data(), Results.size()); 10035 } 10036 10037 void Sema::CodeCompletePreprocessorExpression() { 10038 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 10039 CodeCompleter->getCodeCompletionTUInfo(), 10040 CodeCompletionContext::CCC_PreprocessorExpression); 10041 10042 if (CodeCompleter->includeMacros()) 10043 AddMacroResults(PP, Results, CodeCompleter->loadExternal(), true); 10044 10045 // defined (<macro>) 10046 Results.EnterNewScope(); 10047 CodeCompletionBuilder Builder(Results.getAllocator(), 10048 Results.getCodeCompletionTUInfo()); 10049 Builder.AddTypedTextChunk("defined"); 10050 Builder.AddChunk(CodeCompletionString::CK_HorizontalSpace); 10051 Builder.AddChunk(CodeCompletionString::CK_LeftParen); 10052 Builder.AddPlaceholderChunk("macro"); 10053 Builder.AddChunk(CodeCompletionString::CK_RightParen); 10054 Results.AddResult(Builder.TakeString()); 10055 Results.ExitScope(); 10056 10057 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 10058 Results.data(), Results.size()); 10059 } 10060 10061 void Sema::CodeCompletePreprocessorMacroArgument(Scope *S, 10062 IdentifierInfo *Macro, 10063 MacroInfo *MacroInfo, 10064 unsigned Argument) { 10065 // FIXME: In the future, we could provide "overload" results, much like we 10066 // do for function calls. 10067 10068 // Now just ignore this. There will be another code-completion callback 10069 // for the expanded tokens. 10070 } 10071 10072 // This handles completion inside an #include filename, e.g. #include <foo/ba 10073 // We look for the directory "foo" under each directory on the include path, 10074 // list its files, and reassemble the appropriate #include. 10075 void Sema::CodeCompleteIncludedFile(llvm::StringRef Dir, bool Angled) { 10076 // RelDir should use /, but unescaped \ is possible on windows! 10077 // Our completions will normalize to / for simplicity, this case is rare. 10078 std::string RelDir = llvm::sys::path::convert_to_slash(Dir); 10079 // We need the native slashes for the actual file system interactions. 10080 SmallString<128> NativeRelDir = StringRef(RelDir); 10081 llvm::sys::path::native(NativeRelDir); 10082 llvm::vfs::FileSystem &FS = 10083 getSourceManager().getFileManager().getVirtualFileSystem(); 10084 10085 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 10086 CodeCompleter->getCodeCompletionTUInfo(), 10087 CodeCompletionContext::CCC_IncludedFile); 10088 llvm::DenseSet<StringRef> SeenResults; // To deduplicate results. 10089 10090 // Helper: adds one file or directory completion result. 10091 auto AddCompletion = [&](StringRef Filename, bool IsDirectory) { 10092 SmallString<64> TypedChunk = Filename; 10093 // Directory completion is up to the slash, e.g. <sys/ 10094 TypedChunk.push_back(IsDirectory ? '/' : Angled ? '>' : '"'); 10095 auto R = SeenResults.insert(TypedChunk); 10096 if (R.second) { // New completion 10097 const char *InternedTyped = Results.getAllocator().CopyString(TypedChunk); 10098 *R.first = InternedTyped; // Avoid dangling StringRef. 10099 CodeCompletionBuilder Builder(CodeCompleter->getAllocator(), 10100 CodeCompleter->getCodeCompletionTUInfo()); 10101 Builder.AddTypedTextChunk(InternedTyped); 10102 // The result is a "Pattern", which is pretty opaque. 10103 // We may want to include the real filename to allow smart ranking. 10104 Results.AddResult(CodeCompletionResult(Builder.TakeString())); 10105 } 10106 }; 10107 10108 // Helper: scans IncludeDir for nice files, and adds results for each. 10109 auto AddFilesFromIncludeDir = [&](StringRef IncludeDir, 10110 bool IsSystem, 10111 DirectoryLookup::LookupType_t LookupType) { 10112 llvm::SmallString<128> Dir = IncludeDir; 10113 if (!NativeRelDir.empty()) { 10114 if (LookupType == DirectoryLookup::LT_Framework) { 10115 // For a framework dir, #include <Foo/Bar/> actually maps to 10116 // a path of Foo.framework/Headers/Bar/. 10117 auto Begin = llvm::sys::path::begin(NativeRelDir); 10118 auto End = llvm::sys::path::end(NativeRelDir); 10119 10120 llvm::sys::path::append(Dir, *Begin + ".framework", "Headers"); 10121 llvm::sys::path::append(Dir, ++Begin, End); 10122 } else { 10123 llvm::sys::path::append(Dir, NativeRelDir); 10124 } 10125 } 10126 10127 const StringRef &Dirname = llvm::sys::path::filename(Dir); 10128 const bool isQt = Dirname.starts_with("Qt") || Dirname == "ActiveQt"; 10129 const bool ExtensionlessHeaders = 10130 IsSystem || isQt || Dir.ends_with(".framework/Headers"); 10131 std::error_code EC; 10132 unsigned Count = 0; 10133 for (auto It = FS.dir_begin(Dir, EC); 10134 !EC && It != llvm::vfs::directory_iterator(); It.increment(EC)) { 10135 if (++Count == 2500) // If we happen to hit a huge directory, 10136 break; // bail out early so we're not too slow. 10137 StringRef Filename = llvm::sys::path::filename(It->path()); 10138 10139 // To know whether a symlink should be treated as file or a directory, we 10140 // have to stat it. This should be cheap enough as there shouldn't be many 10141 // symlinks. 10142 llvm::sys::fs::file_type Type = It->type(); 10143 if (Type == llvm::sys::fs::file_type::symlink_file) { 10144 if (auto FileStatus = FS.status(It->path())) 10145 Type = FileStatus->getType(); 10146 } 10147 switch (Type) { 10148 case llvm::sys::fs::file_type::directory_file: 10149 // All entries in a framework directory must have a ".framework" suffix, 10150 // but the suffix does not appear in the source code's include/import. 10151 if (LookupType == DirectoryLookup::LT_Framework && 10152 NativeRelDir.empty() && !Filename.consume_back(".framework")) 10153 break; 10154 10155 AddCompletion(Filename, /*IsDirectory=*/true); 10156 break; 10157 case llvm::sys::fs::file_type::regular_file: { 10158 // Only files that really look like headers. (Except in special dirs). 10159 const bool IsHeader = Filename.ends_with_insensitive(".h") || 10160 Filename.ends_with_insensitive(".hh") || 10161 Filename.ends_with_insensitive(".hpp") || 10162 Filename.ends_with_insensitive(".hxx") || 10163 Filename.ends_with_insensitive(".inc") || 10164 (ExtensionlessHeaders && !Filename.contains('.')); 10165 if (!IsHeader) 10166 break; 10167 AddCompletion(Filename, /*IsDirectory=*/false); 10168 break; 10169 } 10170 default: 10171 break; 10172 } 10173 } 10174 }; 10175 10176 // Helper: adds results relative to IncludeDir, if possible. 10177 auto AddFilesFromDirLookup = [&](const DirectoryLookup &IncludeDir, 10178 bool IsSystem) { 10179 switch (IncludeDir.getLookupType()) { 10180 case DirectoryLookup::LT_HeaderMap: 10181 // header maps are not (currently) enumerable. 10182 break; 10183 case DirectoryLookup::LT_NormalDir: 10184 AddFilesFromIncludeDir(IncludeDir.getDirRef()->getName(), IsSystem, 10185 DirectoryLookup::LT_NormalDir); 10186 break; 10187 case DirectoryLookup::LT_Framework: 10188 AddFilesFromIncludeDir(IncludeDir.getFrameworkDirRef()->getName(), 10189 IsSystem, DirectoryLookup::LT_Framework); 10190 break; 10191 } 10192 }; 10193 10194 // Finally with all our helpers, we can scan the include path. 10195 // Do this in standard order so deduplication keeps the right file. 10196 // (In case we decide to add more details to the results later). 10197 const auto &S = PP.getHeaderSearchInfo(); 10198 using llvm::make_range; 10199 if (!Angled) { 10200 // The current directory is on the include path for "quoted" includes. 10201 if (auto CurFile = PP.getCurrentFileLexer()->getFileEntry()) 10202 AddFilesFromIncludeDir(CurFile->getDir().getName(), false, 10203 DirectoryLookup::LT_NormalDir); 10204 for (const auto &D : make_range(S.quoted_dir_begin(), S.quoted_dir_end())) 10205 AddFilesFromDirLookup(D, false); 10206 } 10207 for (const auto &D : make_range(S.angled_dir_begin(), S.angled_dir_end())) 10208 AddFilesFromDirLookup(D, false); 10209 for (const auto &D : make_range(S.system_dir_begin(), S.system_dir_end())) 10210 AddFilesFromDirLookup(D, true); 10211 10212 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 10213 Results.data(), Results.size()); 10214 } 10215 10216 void Sema::CodeCompleteNaturalLanguage() { 10217 HandleCodeCompleteResults(this, CodeCompleter, 10218 CodeCompletionContext::CCC_NaturalLanguage, nullptr, 10219 0); 10220 } 10221 10222 void Sema::CodeCompleteAvailabilityPlatformName() { 10223 ResultBuilder Results(*this, CodeCompleter->getAllocator(), 10224 CodeCompleter->getCodeCompletionTUInfo(), 10225 CodeCompletionContext::CCC_Other); 10226 Results.EnterNewScope(); 10227 static const char *Platforms[] = {"macOS", "iOS", "watchOS", "tvOS"}; 10228 for (const char *Platform : llvm::ArrayRef(Platforms)) { 10229 Results.AddResult(CodeCompletionResult(Platform)); 10230 Results.AddResult(CodeCompletionResult(Results.getAllocator().CopyString( 10231 Twine(Platform) + "ApplicationExtension"))); 10232 } 10233 Results.ExitScope(); 10234 HandleCodeCompleteResults(this, CodeCompleter, Results.getCompletionContext(), 10235 Results.data(), Results.size()); 10236 } 10237 10238 void Sema::GatherGlobalCodeCompletions( 10239 CodeCompletionAllocator &Allocator, CodeCompletionTUInfo &CCTUInfo, 10240 SmallVectorImpl<CodeCompletionResult> &Results) { 10241 ResultBuilder Builder(*this, Allocator, CCTUInfo, 10242 CodeCompletionContext::CCC_Recovery); 10243 if (!CodeCompleter || CodeCompleter->includeGlobals()) { 10244 CodeCompletionDeclConsumer Consumer(Builder, 10245 Context.getTranslationUnitDecl()); 10246 LookupVisibleDecls(Context.getTranslationUnitDecl(), LookupAnyName, 10247 Consumer, 10248 !CodeCompleter || CodeCompleter->loadExternal()); 10249 } 10250 10251 if (!CodeCompleter || CodeCompleter->includeMacros()) 10252 AddMacroResults(PP, Builder, 10253 !CodeCompleter || CodeCompleter->loadExternal(), true); 10254 10255 Results.clear(); 10256 Results.insert(Results.end(), Builder.data(), 10257 Builder.data() + Builder.size()); 10258 } 10259