xref: /llvm-project/clang/lib/Sema/SemaChecking.cpp (revision ef206446f2bbcb1bacc73d7611a96c457f59499f)
1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CheckExprLifetime.h"
15 #include "clang/AST/APValue.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/AttrIterator.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/IgnoreExpr.h"
31 #include "clang/AST/NSAPI.h"
32 #include "clang/AST/NonTrivialTypeVisitor.h"
33 #include "clang/AST/OperationKinds.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Stmt.h"
36 #include "clang/AST/TemplateBase.h"
37 #include "clang/AST/Type.h"
38 #include "clang/AST/TypeLoc.h"
39 #include "clang/AST/UnresolvedSet.h"
40 #include "clang/Basic/AddressSpaces.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetInfo.h"
53 #include "clang/Basic/TypeTraits.h"
54 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
55 #include "clang/Sema/Initialization.h"
56 #include "clang/Sema/Lookup.h"
57 #include "clang/Sema/Ownership.h"
58 #include "clang/Sema/Scope.h"
59 #include "clang/Sema/ScopeInfo.h"
60 #include "clang/Sema/Sema.h"
61 #include "clang/Sema/SemaAMDGPU.h"
62 #include "clang/Sema/SemaARM.h"
63 #include "clang/Sema/SemaBPF.h"
64 #include "clang/Sema/SemaHLSL.h"
65 #include "clang/Sema/SemaHexagon.h"
66 #include "clang/Sema/SemaLoongArch.h"
67 #include "clang/Sema/SemaMIPS.h"
68 #include "clang/Sema/SemaNVPTX.h"
69 #include "clang/Sema/SemaObjC.h"
70 #include "clang/Sema/SemaOpenCL.h"
71 #include "clang/Sema/SemaPPC.h"
72 #include "clang/Sema/SemaRISCV.h"
73 #include "clang/Sema/SemaSystemZ.h"
74 #include "clang/Sema/SemaWasm.h"
75 #include "clang/Sema/SemaX86.h"
76 #include "llvm/ADT/APFloat.h"
77 #include "llvm/ADT/APInt.h"
78 #include "llvm/ADT/APSInt.h"
79 #include "llvm/ADT/ArrayRef.h"
80 #include "llvm/ADT/DenseMap.h"
81 #include "llvm/ADT/FoldingSet.h"
82 #include "llvm/ADT/STLExtras.h"
83 #include "llvm/ADT/SmallBitVector.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallString.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/StringExtras.h"
88 #include "llvm/ADT/StringRef.h"
89 #include "llvm/ADT/StringSet.h"
90 #include "llvm/ADT/StringSwitch.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/ConvertUTF.h"
94 #include "llvm/Support/ErrorHandling.h"
95 #include "llvm/Support/Format.h"
96 #include "llvm/Support/Locale.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/SaveAndRestore.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/TargetParser/RISCVTargetParser.h"
101 #include "llvm/TargetParser/Triple.h"
102 #include <algorithm>
103 #include <cassert>
104 #include <cctype>
105 #include <cstddef>
106 #include <cstdint>
107 #include <functional>
108 #include <limits>
109 #include <optional>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace clang;
115 using namespace sema;
116 
117 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
118                                                     unsigned ByteNo) const {
119   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
120                                Context.getTargetInfo());
121 }
122 
123 static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
124                                             Sema::FormatArgumentPassingKind B) {
125   return (A << 8) | B;
126 }
127 
128 bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) {
129   unsigned ArgCount = Call->getNumArgs();
130   if (ArgCount >= MinArgCount)
131     return false;
132 
133   return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
134          << 0 /*function call*/ << MinArgCount << ArgCount
135          << /*is non object*/ 0 << Call->getSourceRange();
136 }
137 
138 bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) {
139   unsigned ArgCount = Call->getNumArgs();
140   if (ArgCount <= MaxArgCount)
141     return false;
142   return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most)
143          << 0 /*function call*/ << MaxArgCount << ArgCount
144          << /*is non object*/ 0 << Call->getSourceRange();
145 }
146 
147 bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
148                               unsigned MaxArgCount) {
149   return checkArgCountAtLeast(Call, MinArgCount) ||
150          checkArgCountAtMost(Call, MaxArgCount);
151 }
152 
153 bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) {
154   unsigned ArgCount = Call->getNumArgs();
155   if (ArgCount == DesiredArgCount)
156     return false;
157 
158   if (checkArgCountAtLeast(Call, DesiredArgCount))
159     return true;
160   assert(ArgCount > DesiredArgCount && "should have diagnosed this");
161 
162   // Highlight all the excess arguments.
163   SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
164                     Call->getArg(ArgCount - 1)->getEndLoc());
165 
166   return Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
167          << 0 /*function call*/ << DesiredArgCount << ArgCount
168          << /*is non object*/ 0 << Call->getArg(1)->getSourceRange();
169 }
170 
171 static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) {
172   bool HasError = false;
173 
174   for (unsigned I = 0; I < Call->getNumArgs(); ++I) {
175     Expr *Arg = Call->getArg(I);
176 
177     if (Arg->isValueDependent())
178       continue;
179 
180     std::optional<std::string> ArgString = Arg->tryEvaluateString(S.Context);
181     int DiagMsgKind = -1;
182     // Arguments must be pointers to constant strings and cannot use '$'.
183     if (!ArgString.has_value())
184       DiagMsgKind = 0;
185     else if (ArgString->find('$') != std::string::npos)
186       DiagMsgKind = 1;
187 
188     if (DiagMsgKind >= 0) {
189       S.Diag(Arg->getBeginLoc(), diag::err_builtin_verbose_trap_arg)
190           << DiagMsgKind << Arg->getSourceRange();
191       HasError = true;
192     }
193   }
194 
195   return !HasError;
196 }
197 
198 static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) {
199   if (Value->isTypeDependent())
200     return false;
201 
202   InitializedEntity Entity =
203       InitializedEntity::InitializeParameter(S.Context, Ty, false);
204   ExprResult Result =
205       S.PerformCopyInitialization(Entity, SourceLocation(), Value);
206   if (Result.isInvalid())
207     return true;
208   Value = Result.get();
209   return false;
210 }
211 
212 /// Check that the first argument to __builtin_annotation is an integer
213 /// and the second argument is a non-wide string literal.
214 static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) {
215   if (S.checkArgCount(TheCall, 2))
216     return true;
217 
218   // First argument should be an integer.
219   Expr *ValArg = TheCall->getArg(0);
220   QualType Ty = ValArg->getType();
221   if (!Ty->isIntegerType()) {
222     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
223         << ValArg->getSourceRange();
224     return true;
225   }
226 
227   // Second argument should be a constant string.
228   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
229   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
230   if (!Literal || !Literal->isOrdinary()) {
231     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
232         << StrArg->getSourceRange();
233     return true;
234   }
235 
236   TheCall->setType(Ty);
237   return false;
238 }
239 
240 static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
241   // We need at least one argument.
242   if (TheCall->getNumArgs() < 1) {
243     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
244         << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
245         << TheCall->getCallee()->getSourceRange();
246     return true;
247   }
248 
249   // All arguments should be wide string literals.
250   for (Expr *Arg : TheCall->arguments()) {
251     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
252     if (!Literal || !Literal->isWide()) {
253       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
254           << Arg->getSourceRange();
255       return true;
256     }
257   }
258 
259   return false;
260 }
261 
262 /// Check that the argument to __builtin_addressof is a glvalue, and set the
263 /// result type to the corresponding pointer type.
264 static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) {
265   if (S.checkArgCount(TheCall, 1))
266     return true;
267 
268   ExprResult Arg(TheCall->getArg(0));
269   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
270   if (ResultType.isNull())
271     return true;
272 
273   TheCall->setArg(0, Arg.get());
274   TheCall->setType(ResultType);
275   return false;
276 }
277 
278 /// Check that the argument to __builtin_function_start is a function.
279 static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
280   if (S.checkArgCount(TheCall, 1))
281     return true;
282 
283   ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
284   if (Arg.isInvalid())
285     return true;
286 
287   TheCall->setArg(0, Arg.get());
288   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
289       Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
290 
291   if (!FD) {
292     S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
293         << TheCall->getSourceRange();
294     return true;
295   }
296 
297   return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
298                                               TheCall->getBeginLoc());
299 }
300 
301 /// Check the number of arguments and set the result type to
302 /// the argument type.
303 static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
304   if (S.checkArgCount(TheCall, 1))
305     return true;
306 
307   TheCall->setType(TheCall->getArg(0)->getType());
308   return false;
309 }
310 
311 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
312 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
313 /// type (but not a function pointer) and that the alignment is a power-of-two.
314 static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
315   if (S.checkArgCount(TheCall, 2))
316     return true;
317 
318   clang::Expr *Source = TheCall->getArg(0);
319   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
320 
321   auto IsValidIntegerType = [](QualType Ty) {
322     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
323   };
324   QualType SrcTy = Source->getType();
325   // We should also be able to use it with arrays (but not functions!).
326   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
327     SrcTy = S.Context.getDecayedType(SrcTy);
328   }
329   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
330       SrcTy->isFunctionPointerType()) {
331     // FIXME: this is not quite the right error message since we don't allow
332     // floating point types, or member pointers.
333     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
334         << SrcTy;
335     return true;
336   }
337 
338   clang::Expr *AlignOp = TheCall->getArg(1);
339   if (!IsValidIntegerType(AlignOp->getType())) {
340     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
341         << AlignOp->getType();
342     return true;
343   }
344   Expr::EvalResult AlignResult;
345   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
346   // We can't check validity of alignment if it is value dependent.
347   if (!AlignOp->isValueDependent() &&
348       AlignOp->EvaluateAsInt(AlignResult, S.Context,
349                              Expr::SE_AllowSideEffects)) {
350     llvm::APSInt AlignValue = AlignResult.Val.getInt();
351     llvm::APSInt MaxValue(
352         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
353     if (AlignValue < 1) {
354       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
355       return true;
356     }
357     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
358       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
359           << toString(MaxValue, 10);
360       return true;
361     }
362     if (!AlignValue.isPowerOf2()) {
363       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
364       return true;
365     }
366     if (AlignValue == 1) {
367       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
368           << IsBooleanAlignBuiltin;
369     }
370   }
371 
372   ExprResult SrcArg = S.PerformCopyInitialization(
373       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
374       SourceLocation(), Source);
375   if (SrcArg.isInvalid())
376     return true;
377   TheCall->setArg(0, SrcArg.get());
378   ExprResult AlignArg =
379       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
380                                       S.Context, AlignOp->getType(), false),
381                                   SourceLocation(), AlignOp);
382   if (AlignArg.isInvalid())
383     return true;
384   TheCall->setArg(1, AlignArg.get());
385   // For align_up/align_down, the return type is the same as the (potentially
386   // decayed) argument type including qualifiers. For is_aligned(), the result
387   // is always bool.
388   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
389   return false;
390 }
391 
392 static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) {
393   if (S.checkArgCount(TheCall, 3))
394     return true;
395 
396   std::pair<unsigned, const char *> Builtins[] = {
397     { Builtin::BI__builtin_add_overflow, "ckd_add" },
398     { Builtin::BI__builtin_sub_overflow, "ckd_sub" },
399     { Builtin::BI__builtin_mul_overflow, "ckd_mul" },
400   };
401 
402   bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair<unsigned,
403     const char *> &P) {
404     return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() &&
405          Lexer::getImmediateMacroName(TheCall->getExprLoc(),
406          S.getSourceManager(), S.getLangOpts()) == P.second;
407   });
408 
409   auto ValidCkdIntType = [](QualType QT) {
410     // A valid checked integer type is an integer type other than a plain char,
411     // bool, a bit-precise type, or an enumeration type.
412     if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>())
413       return (BT->getKind() >= BuiltinType::Short &&
414            BT->getKind() <= BuiltinType::Int128) || (
415            BT->getKind() >= BuiltinType::UShort &&
416            BT->getKind() <= BuiltinType::UInt128) ||
417            BT->getKind() == BuiltinType::UChar ||
418            BT->getKind() == BuiltinType::SChar;
419     return false;
420   };
421 
422   // First two arguments should be integers.
423   for (unsigned I = 0; I < 2; ++I) {
424     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
425     if (Arg.isInvalid()) return true;
426     TheCall->setArg(I, Arg.get());
427 
428     QualType Ty = Arg.get()->getType();
429     bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType();
430     if (!IsValid) {
431       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
432           << CkdOperation << Ty << Arg.get()->getSourceRange();
433       return true;
434     }
435   }
436 
437   // Third argument should be a pointer to a non-const integer.
438   // IRGen correctly handles volatile, restrict, and address spaces, and
439   // the other qualifiers aren't possible.
440   {
441     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
442     if (Arg.isInvalid()) return true;
443     TheCall->setArg(2, Arg.get());
444 
445     QualType Ty = Arg.get()->getType();
446     const auto *PtrTy = Ty->getAs<PointerType>();
447     if (!PtrTy ||
448         !PtrTy->getPointeeType()->isIntegerType() ||
449         (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) ||
450         PtrTy->getPointeeType().isConstQualified()) {
451       S.Diag(Arg.get()->getBeginLoc(),
452              diag::err_overflow_builtin_must_be_ptr_int)
453         << CkdOperation << Ty << Arg.get()->getSourceRange();
454       return true;
455     }
456   }
457 
458   // Disallow signed bit-precise integer args larger than 128 bits to mul
459   // function until we improve backend support.
460   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
461     for (unsigned I = 0; I < 3; ++I) {
462       const auto Arg = TheCall->getArg(I);
463       // Third argument will be a pointer.
464       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
465       if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
466           S.getASTContext().getIntWidth(Ty) > 128)
467         return S.Diag(Arg->getBeginLoc(),
468                       diag::err_overflow_builtin_bit_int_max_size)
469                << 128;
470     }
471   }
472 
473   return false;
474 }
475 
476 namespace {
477 struct BuiltinDumpStructGenerator {
478   Sema &S;
479   CallExpr *TheCall;
480   SourceLocation Loc = TheCall->getBeginLoc();
481   SmallVector<Expr *, 32> Actions;
482   DiagnosticErrorTrap ErrorTracker;
483   PrintingPolicy Policy;
484 
485   BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
486       : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
487         Policy(S.Context.getPrintingPolicy()) {
488     Policy.AnonymousTagLocations = false;
489   }
490 
491   Expr *makeOpaqueValueExpr(Expr *Inner) {
492     auto *OVE = new (S.Context)
493         OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
494                         Inner->getObjectKind(), Inner);
495     Actions.push_back(OVE);
496     return OVE;
497   }
498 
499   Expr *getStringLiteral(llvm::StringRef Str) {
500     Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
501     // Wrap the literal in parentheses to attach a source location.
502     return new (S.Context) ParenExpr(Loc, Loc, Lit);
503   }
504 
505   bool callPrintFunction(llvm::StringRef Format,
506                          llvm::ArrayRef<Expr *> Exprs = {}) {
507     SmallVector<Expr *, 8> Args;
508     assert(TheCall->getNumArgs() >= 2);
509     Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
510     Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
511     Args.push_back(getStringLiteral(Format));
512     Args.insert(Args.end(), Exprs.begin(), Exprs.end());
513 
514     // Register a note to explain why we're performing the call.
515     Sema::CodeSynthesisContext Ctx;
516     Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
517     Ctx.PointOfInstantiation = Loc;
518     Ctx.CallArgs = Args.data();
519     Ctx.NumCallArgs = Args.size();
520     S.pushCodeSynthesisContext(Ctx);
521 
522     ExprResult RealCall =
523         S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
524                         TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
525 
526     S.popCodeSynthesisContext();
527     if (!RealCall.isInvalid())
528       Actions.push_back(RealCall.get());
529     // Bail out if we've hit any errors, even if we managed to build the
530     // call. We don't want to produce more than one error.
531     return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
532   }
533 
534   Expr *getIndentString(unsigned Depth) {
535     if (!Depth)
536       return nullptr;
537 
538     llvm::SmallString<32> Indent;
539     Indent.resize(Depth * Policy.Indentation, ' ');
540     return getStringLiteral(Indent);
541   }
542 
543   Expr *getTypeString(QualType T) {
544     return getStringLiteral(T.getAsString(Policy));
545   }
546 
547   bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
548     llvm::raw_svector_ostream OS(Str);
549 
550     // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
551     // than trying to print a single character.
552     if (auto *BT = T->getAs<BuiltinType>()) {
553       switch (BT->getKind()) {
554       case BuiltinType::Bool:
555         OS << "%d";
556         return true;
557       case BuiltinType::Char_U:
558       case BuiltinType::UChar:
559         OS << "%hhu";
560         return true;
561       case BuiltinType::Char_S:
562       case BuiltinType::SChar:
563         OS << "%hhd";
564         return true;
565       default:
566         break;
567       }
568     }
569 
570     analyze_printf::PrintfSpecifier Specifier;
571     if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
572       // We were able to guess how to format this.
573       if (Specifier.getConversionSpecifier().getKind() ==
574           analyze_printf::PrintfConversionSpecifier::sArg) {
575         // Wrap double-quotes around a '%s' specifier and limit its maximum
576         // length. Ideally we'd also somehow escape special characters in the
577         // contents but printf doesn't support that.
578         // FIXME: '%s' formatting is not safe in general.
579         OS << '"';
580         Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
581         Specifier.toString(OS);
582         OS << '"';
583         // FIXME: It would be nice to include a '...' if the string doesn't fit
584         // in the length limit.
585       } else {
586         Specifier.toString(OS);
587       }
588       return true;
589     }
590 
591     if (T->isPointerType()) {
592       // Format all pointers with '%p'.
593       OS << "%p";
594       return true;
595     }
596 
597     return false;
598   }
599 
600   bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
601     Expr *IndentLit = getIndentString(Depth);
602     Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
603     if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
604                   : callPrintFunction("%s", {TypeLit}))
605       return true;
606 
607     return dumpRecordValue(RD, E, IndentLit, Depth);
608   }
609 
610   // Dump a record value. E should be a pointer or lvalue referring to an RD.
611   bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
612                        unsigned Depth) {
613     // FIXME: Decide what to do if RD is a union. At least we should probably
614     // turn off printing `const char*` members with `%s`, because that is very
615     // likely to crash if that's not the active member. Whatever we decide, we
616     // should document it.
617 
618     // Build an OpaqueValueExpr so we can refer to E more than once without
619     // triggering re-evaluation.
620     Expr *RecordArg = makeOpaqueValueExpr(E);
621     bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
622 
623     if (callPrintFunction(" {\n"))
624       return true;
625 
626     // Dump each base class, regardless of whether they're aggregates.
627     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
628       for (const auto &Base : CXXRD->bases()) {
629         QualType BaseType =
630             RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
631                            : S.Context.getLValueReferenceType(Base.getType());
632         ExprResult BasePtr = S.BuildCStyleCastExpr(
633             Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
634             RecordArg);
635         if (BasePtr.isInvalid() ||
636             dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
637                               Depth + 1))
638           return true;
639       }
640     }
641 
642     Expr *FieldIndentArg = getIndentString(Depth + 1);
643 
644     // Dump each field.
645     for (auto *D : RD->decls()) {
646       auto *IFD = dyn_cast<IndirectFieldDecl>(D);
647       auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
648       if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion())
649         continue;
650 
651       llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
652       llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
653                                            getTypeString(FD->getType()),
654                                            getStringLiteral(FD->getName())};
655 
656       if (FD->isBitField()) {
657         Format += ": %zu ";
658         QualType SizeT = S.Context.getSizeType();
659         llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
660                              FD->getBitWidthValue(S.Context));
661         Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
662       }
663 
664       Format += "=";
665 
666       ExprResult Field =
667           IFD ? S.BuildAnonymousStructUnionMemberReference(
668                     CXXScopeSpec(), Loc, IFD,
669                     DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
670               : S.BuildFieldReferenceExpr(
671                     RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
672                     DeclAccessPair::make(FD, AS_public),
673                     DeclarationNameInfo(FD->getDeclName(), Loc));
674       if (Field.isInvalid())
675         return true;
676 
677       auto *InnerRD = FD->getType()->getAsRecordDecl();
678       auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
679       if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
680         // Recursively print the values of members of aggregate record type.
681         if (callPrintFunction(Format, Args) ||
682             dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
683           return true;
684       } else {
685         Format += " ";
686         if (appendFormatSpecifier(FD->getType(), Format)) {
687           // We know how to print this field.
688           Args.push_back(Field.get());
689         } else {
690           // We don't know how to print this field. Print out its address
691           // with a format specifier that a smart tool will be able to
692           // recognize and treat specially.
693           Format += "*%p";
694           ExprResult FieldAddr =
695               S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
696           if (FieldAddr.isInvalid())
697             return true;
698           Args.push_back(FieldAddr.get());
699         }
700         Format += "\n";
701         if (callPrintFunction(Format, Args))
702           return true;
703       }
704     }
705 
706     return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
707                         : callPrintFunction("}\n");
708   }
709 
710   Expr *buildWrapper() {
711     auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
712                                              PseudoObjectExpr::NoResult);
713     TheCall->setType(Wrapper->getType());
714     TheCall->setValueKind(Wrapper->getValueKind());
715     return Wrapper;
716   }
717 };
718 } // namespace
719 
720 static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
721   if (S.checkArgCountAtLeast(TheCall, 2))
722     return ExprError();
723 
724   ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
725   if (PtrArgResult.isInvalid())
726     return ExprError();
727   TheCall->setArg(0, PtrArgResult.get());
728 
729   // First argument should be a pointer to a struct.
730   QualType PtrArgType = PtrArgResult.get()->getType();
731   if (!PtrArgType->isPointerType() ||
732       !PtrArgType->getPointeeType()->isRecordType()) {
733     S.Diag(PtrArgResult.get()->getBeginLoc(),
734            diag::err_expected_struct_pointer_argument)
735         << 1 << TheCall->getDirectCallee() << PtrArgType;
736     return ExprError();
737   }
738   QualType Pointee = PtrArgType->getPointeeType();
739   const RecordDecl *RD = Pointee->getAsRecordDecl();
740   // Try to instantiate the class template as appropriate; otherwise, access to
741   // its data() may lead to a crash.
742   if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee,
743                             diag::err_incomplete_type))
744     return ExprError();
745   // Second argument is a callable, but we can't fully validate it until we try
746   // calling it.
747   QualType FnArgType = TheCall->getArg(1)->getType();
748   if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
749       !FnArgType->isBlockPointerType() &&
750       !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
751     auto *BT = FnArgType->getAs<BuiltinType>();
752     switch (BT ? BT->getKind() : BuiltinType::Void) {
753     case BuiltinType::Dependent:
754     case BuiltinType::Overload:
755     case BuiltinType::BoundMember:
756     case BuiltinType::PseudoObject:
757     case BuiltinType::UnknownAny:
758     case BuiltinType::BuiltinFn:
759       // This might be a callable.
760       break;
761 
762     default:
763       S.Diag(TheCall->getArg(1)->getBeginLoc(),
764              diag::err_expected_callable_argument)
765           << 2 << TheCall->getDirectCallee() << FnArgType;
766       return ExprError();
767     }
768   }
769 
770   BuiltinDumpStructGenerator Generator(S, TheCall);
771 
772   // Wrap parentheses around the given pointer. This is not necessary for
773   // correct code generation, but it means that when we pretty-print the call
774   // arguments in our diagnostics we will produce '(&s)->n' instead of the
775   // incorrect '&s->n'.
776   Expr *PtrArg = PtrArgResult.get();
777   PtrArg = new (S.Context)
778       ParenExpr(PtrArg->getBeginLoc(),
779                 S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
780   if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
781     return ExprError();
782 
783   return Generator.buildWrapper();
784 }
785 
786 static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
787   if (S.checkArgCount(BuiltinCall, 2))
788     return true;
789 
790   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
791   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
792   Expr *Call = BuiltinCall->getArg(0);
793   Expr *Chain = BuiltinCall->getArg(1);
794 
795   if (Call->getStmtClass() != Stmt::CallExprClass) {
796     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
797         << Call->getSourceRange();
798     return true;
799   }
800 
801   auto CE = cast<CallExpr>(Call);
802   if (CE->getCallee()->getType()->isBlockPointerType()) {
803     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
804         << Call->getSourceRange();
805     return true;
806   }
807 
808   const Decl *TargetDecl = CE->getCalleeDecl();
809   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
810     if (FD->getBuiltinID()) {
811       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
812           << Call->getSourceRange();
813       return true;
814     }
815 
816   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
817     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
818         << Call->getSourceRange();
819     return true;
820   }
821 
822   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
823   if (ChainResult.isInvalid())
824     return true;
825   if (!ChainResult.get()->getType()->isPointerType()) {
826     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
827         << Chain->getSourceRange();
828     return true;
829   }
830 
831   QualType ReturnTy = CE->getCallReturnType(S.Context);
832   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
833   QualType BuiltinTy = S.Context.getFunctionType(
834       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
835   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
836 
837   Builtin =
838       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
839 
840   BuiltinCall->setType(CE->getType());
841   BuiltinCall->setValueKind(CE->getValueKind());
842   BuiltinCall->setObjectKind(CE->getObjectKind());
843   BuiltinCall->setCallee(Builtin);
844   BuiltinCall->setArg(1, ChainResult.get());
845 
846   return false;
847 }
848 
849 namespace {
850 
851 class ScanfDiagnosticFormatHandler
852     : public analyze_format_string::FormatStringHandler {
853   // Accepts the argument index (relative to the first destination index) of the
854   // argument whose size we want.
855   using ComputeSizeFunction =
856       llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>;
857 
858   // Accepts the argument index (relative to the first destination index), the
859   // destination size, and the source size).
860   using DiagnoseFunction =
861       llvm::function_ref<void(unsigned, unsigned, unsigned)>;
862 
863   ComputeSizeFunction ComputeSizeArgument;
864   DiagnoseFunction Diagnose;
865 
866 public:
867   ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
868                                DiagnoseFunction Diagnose)
869       : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
870 
871   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
872                             const char *StartSpecifier,
873                             unsigned specifierLen) override {
874     if (!FS.consumesDataArgument())
875       return true;
876 
877     unsigned NulByte = 0;
878     switch ((FS.getConversionSpecifier().getKind())) {
879     default:
880       return true;
881     case analyze_format_string::ConversionSpecifier::sArg:
882     case analyze_format_string::ConversionSpecifier::ScanListArg:
883       NulByte = 1;
884       break;
885     case analyze_format_string::ConversionSpecifier::cArg:
886       break;
887     }
888 
889     analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
890     if (FW.getHowSpecified() !=
891         analyze_format_string::OptionalAmount::HowSpecified::Constant)
892       return true;
893 
894     unsigned SourceSize = FW.getConstantAmount() + NulByte;
895 
896     std::optional<llvm::APSInt> DestSizeAPS =
897         ComputeSizeArgument(FS.getArgIndex());
898     if (!DestSizeAPS)
899       return true;
900 
901     unsigned DestSize = DestSizeAPS->getZExtValue();
902 
903     if (DestSize < SourceSize)
904       Diagnose(FS.getArgIndex(), DestSize, SourceSize);
905 
906     return true;
907   }
908 };
909 
910 class EstimateSizeFormatHandler
911     : public analyze_format_string::FormatStringHandler {
912   size_t Size;
913   /// Whether the format string contains Linux kernel's format specifier
914   /// extension.
915   bool IsKernelCompatible = true;
916 
917 public:
918   EstimateSizeFormatHandler(StringRef Format)
919       : Size(std::min(Format.find(0), Format.size()) +
920              1 /* null byte always written by sprintf */) {}
921 
922   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
923                              const char *, unsigned SpecifierLen,
924                              const TargetInfo &) override {
925 
926     const size_t FieldWidth = computeFieldWidth(FS);
927     const size_t Precision = computePrecision(FS);
928 
929     // The actual format.
930     switch (FS.getConversionSpecifier().getKind()) {
931     // Just a char.
932     case analyze_format_string::ConversionSpecifier::cArg:
933     case analyze_format_string::ConversionSpecifier::CArg:
934       Size += std::max(FieldWidth, (size_t)1);
935       break;
936     // Just an integer.
937     case analyze_format_string::ConversionSpecifier::dArg:
938     case analyze_format_string::ConversionSpecifier::DArg:
939     case analyze_format_string::ConversionSpecifier::iArg:
940     case analyze_format_string::ConversionSpecifier::oArg:
941     case analyze_format_string::ConversionSpecifier::OArg:
942     case analyze_format_string::ConversionSpecifier::uArg:
943     case analyze_format_string::ConversionSpecifier::UArg:
944     case analyze_format_string::ConversionSpecifier::xArg:
945     case analyze_format_string::ConversionSpecifier::XArg:
946       Size += std::max(FieldWidth, Precision);
947       break;
948 
949     // %g style conversion switches between %f or %e style dynamically.
950     // %g removes trailing zeros, and does not print decimal point if there are
951     // no digits that follow it. Thus %g can print a single digit.
952     // FIXME: If it is alternative form:
953     // For g and G conversions, trailing zeros are not removed from the result.
954     case analyze_format_string::ConversionSpecifier::gArg:
955     case analyze_format_string::ConversionSpecifier::GArg:
956       Size += 1;
957       break;
958 
959     // Floating point number in the form '[+]ddd.ddd'.
960     case analyze_format_string::ConversionSpecifier::fArg:
961     case analyze_format_string::ConversionSpecifier::FArg:
962       Size += std::max(FieldWidth, 1 /* integer part */ +
963                                        (Precision ? 1 + Precision
964                                                   : 0) /* period + decimal */);
965       break;
966 
967     // Floating point number in the form '[-]d.ddde[+-]dd'.
968     case analyze_format_string::ConversionSpecifier::eArg:
969     case analyze_format_string::ConversionSpecifier::EArg:
970       Size +=
971           std::max(FieldWidth,
972                    1 /* integer part */ +
973                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
974                        1 /* e or E letter */ + 2 /* exponent */);
975       break;
976 
977     // Floating point number in the form '[-]0xh.hhhhp±dd'.
978     case analyze_format_string::ConversionSpecifier::aArg:
979     case analyze_format_string::ConversionSpecifier::AArg:
980       Size +=
981           std::max(FieldWidth,
982                    2 /* 0x */ + 1 /* integer part */ +
983                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
984                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
985       break;
986 
987     // Just a string.
988     case analyze_format_string::ConversionSpecifier::sArg:
989     case analyze_format_string::ConversionSpecifier::SArg:
990       Size += FieldWidth;
991       break;
992 
993     // Just a pointer in the form '0xddd'.
994     case analyze_format_string::ConversionSpecifier::pArg:
995       // Linux kernel has its own extesion for `%p` specifier.
996       // Kernel Document:
997       // https://docs.kernel.org/core-api/printk-formats.html#pointer-types
998       IsKernelCompatible = false;
999       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
1000       break;
1001 
1002     // A plain percent.
1003     case analyze_format_string::ConversionSpecifier::PercentArg:
1004       Size += 1;
1005       break;
1006 
1007     default:
1008       break;
1009     }
1010 
1011     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
1012 
1013     if (FS.hasAlternativeForm()) {
1014       switch (FS.getConversionSpecifier().getKind()) {
1015       // For o conversion, it increases the precision, if and only if necessary,
1016       // to force the first digit of the result to be a zero
1017       // (if the value and precision are both 0, a single 0 is printed)
1018       case analyze_format_string::ConversionSpecifier::oArg:
1019       // For b conversion, a nonzero result has 0b prefixed to it.
1020       case analyze_format_string::ConversionSpecifier::bArg:
1021       // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to
1022       // it.
1023       case analyze_format_string::ConversionSpecifier::xArg:
1024       case analyze_format_string::ConversionSpecifier::XArg:
1025         // Note: even when the prefix is added, if
1026         // (prefix_width <= FieldWidth - formatted_length) holds,
1027         // the prefix does not increase the format
1028         // size. e.g.(("%#3x", 0xf) is "0xf")
1029 
1030         // If the result is zero, o, b, x, X adds nothing.
1031         break;
1032       // For a, A, e, E, f, F, g, and G conversions,
1033       // the result of converting a floating-point number always contains a
1034       // decimal-point
1035       case analyze_format_string::ConversionSpecifier::aArg:
1036       case analyze_format_string::ConversionSpecifier::AArg:
1037       case analyze_format_string::ConversionSpecifier::eArg:
1038       case analyze_format_string::ConversionSpecifier::EArg:
1039       case analyze_format_string::ConversionSpecifier::fArg:
1040       case analyze_format_string::ConversionSpecifier::FArg:
1041       case analyze_format_string::ConversionSpecifier::gArg:
1042       case analyze_format_string::ConversionSpecifier::GArg:
1043         Size += (Precision ? 0 : 1);
1044         break;
1045       // For other conversions, the behavior is undefined.
1046       default:
1047         break;
1048       }
1049     }
1050     assert(SpecifierLen <= Size && "no underflow");
1051     Size -= SpecifierLen;
1052     return true;
1053   }
1054 
1055   size_t getSizeLowerBound() const { return Size; }
1056   bool isKernelCompatible() const { return IsKernelCompatible; }
1057 
1058 private:
1059   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
1060     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
1061     size_t FieldWidth = 0;
1062     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
1063       FieldWidth = FW.getConstantAmount();
1064     return FieldWidth;
1065   }
1066 
1067   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
1068     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
1069     size_t Precision = 0;
1070 
1071     // See man 3 printf for default precision value based on the specifier.
1072     switch (FW.getHowSpecified()) {
1073     case analyze_format_string::OptionalAmount::NotSpecified:
1074       switch (FS.getConversionSpecifier().getKind()) {
1075       default:
1076         break;
1077       case analyze_format_string::ConversionSpecifier::dArg: // %d
1078       case analyze_format_string::ConversionSpecifier::DArg: // %D
1079       case analyze_format_string::ConversionSpecifier::iArg: // %i
1080         Precision = 1;
1081         break;
1082       case analyze_format_string::ConversionSpecifier::oArg: // %d
1083       case analyze_format_string::ConversionSpecifier::OArg: // %D
1084       case analyze_format_string::ConversionSpecifier::uArg: // %d
1085       case analyze_format_string::ConversionSpecifier::UArg: // %D
1086       case analyze_format_string::ConversionSpecifier::xArg: // %d
1087       case analyze_format_string::ConversionSpecifier::XArg: // %D
1088         Precision = 1;
1089         break;
1090       case analyze_format_string::ConversionSpecifier::fArg: // %f
1091       case analyze_format_string::ConversionSpecifier::FArg: // %F
1092       case analyze_format_string::ConversionSpecifier::eArg: // %e
1093       case analyze_format_string::ConversionSpecifier::EArg: // %E
1094       case analyze_format_string::ConversionSpecifier::gArg: // %g
1095       case analyze_format_string::ConversionSpecifier::GArg: // %G
1096         Precision = 6;
1097         break;
1098       case analyze_format_string::ConversionSpecifier::pArg: // %d
1099         Precision = 1;
1100         break;
1101       }
1102       break;
1103     case analyze_format_string::OptionalAmount::Constant:
1104       Precision = FW.getConstantAmount();
1105       break;
1106     default:
1107       break;
1108     }
1109     return Precision;
1110   }
1111 };
1112 
1113 } // namespace
1114 
1115 static bool ProcessFormatStringLiteral(const Expr *FormatExpr,
1116                                        StringRef &FormatStrRef, size_t &StrLen,
1117                                        ASTContext &Context) {
1118   if (const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
1119       Format && (Format->isOrdinary() || Format->isUTF8())) {
1120     FormatStrRef = Format->getString();
1121     const ConstantArrayType *T =
1122         Context.getAsConstantArrayType(Format->getType());
1123     assert(T && "String literal not of constant array type!");
1124     size_t TypeSize = T->getZExtSize();
1125     // In case there's a null byte somewhere.
1126     StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
1133                                                CallExpr *TheCall) {
1134   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
1135       isConstantEvaluatedContext())
1136     return;
1137 
1138   bool UseDABAttr = false;
1139   const FunctionDecl *UseDecl = FD;
1140 
1141   const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
1142   if (DABAttr) {
1143     UseDecl = DABAttr->getFunction();
1144     assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
1145     UseDABAttr = true;
1146   }
1147 
1148   unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
1149 
1150   if (!BuiltinID)
1151     return;
1152 
1153   const TargetInfo &TI = getASTContext().getTargetInfo();
1154   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
1155 
1156   auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> {
1157     // If we refer to a diagnose_as_builtin attribute, we need to change the
1158     // argument index to refer to the arguments of the called function. Unless
1159     // the index is out of bounds, which presumably means it's a variadic
1160     // function.
1161     if (!UseDABAttr)
1162       return Index;
1163     unsigned DABIndices = DABAttr->argIndices_size();
1164     unsigned NewIndex = Index < DABIndices
1165                             ? DABAttr->argIndices_begin()[Index]
1166                             : Index - DABIndices + FD->getNumParams();
1167     if (NewIndex >= TheCall->getNumArgs())
1168       return std::nullopt;
1169     return NewIndex;
1170   };
1171 
1172   auto ComputeExplicitObjectSizeArgument =
1173       [&](unsigned Index) -> std::optional<llvm::APSInt> {
1174     std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1175     if (!IndexOptional)
1176       return std::nullopt;
1177     unsigned NewIndex = *IndexOptional;
1178     Expr::EvalResult Result;
1179     Expr *SizeArg = TheCall->getArg(NewIndex);
1180     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
1181       return std::nullopt;
1182     llvm::APSInt Integer = Result.Val.getInt();
1183     Integer.setIsUnsigned(true);
1184     return Integer;
1185   };
1186 
1187   auto ComputeSizeArgument =
1188       [&](unsigned Index) -> std::optional<llvm::APSInt> {
1189     // If the parameter has a pass_object_size attribute, then we should use its
1190     // (potentially) more strict checking mode. Otherwise, conservatively assume
1191     // type 0.
1192     int BOSType = 0;
1193     // This check can fail for variadic functions.
1194     if (Index < FD->getNumParams()) {
1195       if (const auto *POS =
1196               FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
1197         BOSType = POS->getType();
1198     }
1199 
1200     std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1201     if (!IndexOptional)
1202       return std::nullopt;
1203     unsigned NewIndex = *IndexOptional;
1204 
1205     if (NewIndex >= TheCall->getNumArgs())
1206       return std::nullopt;
1207 
1208     const Expr *ObjArg = TheCall->getArg(NewIndex);
1209     uint64_t Result;
1210     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
1211       return std::nullopt;
1212 
1213     // Get the object size in the target's size_t width.
1214     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
1215   };
1216 
1217   auto ComputeStrLenArgument =
1218       [&](unsigned Index) -> std::optional<llvm::APSInt> {
1219     std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1220     if (!IndexOptional)
1221       return std::nullopt;
1222     unsigned NewIndex = *IndexOptional;
1223 
1224     const Expr *ObjArg = TheCall->getArg(NewIndex);
1225     uint64_t Result;
1226     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
1227       return std::nullopt;
1228     // Add 1 for null byte.
1229     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
1230   };
1231 
1232   std::optional<llvm::APSInt> SourceSize;
1233   std::optional<llvm::APSInt> DestinationSize;
1234   unsigned DiagID = 0;
1235   bool IsChkVariant = false;
1236 
1237   auto GetFunctionName = [&]() {
1238     StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
1239     // Skim off the details of whichever builtin was called to produce a better
1240     // diagnostic, as it's unlikely that the user wrote the __builtin
1241     // explicitly.
1242     if (IsChkVariant) {
1243       FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
1244       FunctionName = FunctionName.drop_back(std::strlen("_chk"));
1245     } else {
1246       FunctionName.consume_front("__builtin_");
1247     }
1248     return FunctionName;
1249   };
1250 
1251   switch (BuiltinID) {
1252   default:
1253     return;
1254   case Builtin::BI__builtin_strcpy:
1255   case Builtin::BIstrcpy: {
1256     DiagID = diag::warn_fortify_strlen_overflow;
1257     SourceSize = ComputeStrLenArgument(1);
1258     DestinationSize = ComputeSizeArgument(0);
1259     break;
1260   }
1261 
1262   case Builtin::BI__builtin___strcpy_chk: {
1263     DiagID = diag::warn_fortify_strlen_overflow;
1264     SourceSize = ComputeStrLenArgument(1);
1265     DestinationSize = ComputeExplicitObjectSizeArgument(2);
1266     IsChkVariant = true;
1267     break;
1268   }
1269 
1270   case Builtin::BIscanf:
1271   case Builtin::BIfscanf:
1272   case Builtin::BIsscanf: {
1273     unsigned FormatIndex = 1;
1274     unsigned DataIndex = 2;
1275     if (BuiltinID == Builtin::BIscanf) {
1276       FormatIndex = 0;
1277       DataIndex = 1;
1278     }
1279 
1280     const auto *FormatExpr =
1281         TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1282 
1283     StringRef FormatStrRef;
1284     size_t StrLen;
1285     if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context))
1286       return;
1287 
1288     auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
1289                         unsigned SourceSize) {
1290       DiagID = diag::warn_fortify_scanf_overflow;
1291       unsigned Index = ArgIndex + DataIndex;
1292       StringRef FunctionName = GetFunctionName();
1293       DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
1294                           PDiag(DiagID) << FunctionName << (Index + 1)
1295                                         << DestSize << SourceSize);
1296     };
1297 
1298     auto ShiftedComputeSizeArgument = [&](unsigned Index) {
1299       return ComputeSizeArgument(Index + DataIndex);
1300     };
1301     ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
1302     const char *FormatBytes = FormatStrRef.data();
1303     analyze_format_string::ParseScanfString(H, FormatBytes,
1304                                             FormatBytes + StrLen, getLangOpts(),
1305                                             Context.getTargetInfo());
1306 
1307     // Unlike the other cases, in this one we have already issued the diagnostic
1308     // here, so no need to continue (because unlike the other cases, here the
1309     // diagnostic refers to the argument number).
1310     return;
1311   }
1312 
1313   case Builtin::BIsprintf:
1314   case Builtin::BI__builtin___sprintf_chk: {
1315     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
1316     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1317 
1318     StringRef FormatStrRef;
1319     size_t StrLen;
1320     if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1321       EstimateSizeFormatHandler H(FormatStrRef);
1322       const char *FormatBytes = FormatStrRef.data();
1323       if (!analyze_format_string::ParsePrintfString(
1324               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1325               Context.getTargetInfo(), false)) {
1326         DiagID = H.isKernelCompatible()
1327                      ? diag::warn_format_overflow
1328                      : diag::warn_format_overflow_non_kprintf;
1329         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1330                          .extOrTrunc(SizeTypeWidth);
1331         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
1332           DestinationSize = ComputeExplicitObjectSizeArgument(2);
1333           IsChkVariant = true;
1334         } else {
1335           DestinationSize = ComputeSizeArgument(0);
1336         }
1337         break;
1338       }
1339     }
1340     return;
1341   }
1342   case Builtin::BI__builtin___memcpy_chk:
1343   case Builtin::BI__builtin___memmove_chk:
1344   case Builtin::BI__builtin___memset_chk:
1345   case Builtin::BI__builtin___strlcat_chk:
1346   case Builtin::BI__builtin___strlcpy_chk:
1347   case Builtin::BI__builtin___strncat_chk:
1348   case Builtin::BI__builtin___strncpy_chk:
1349   case Builtin::BI__builtin___stpncpy_chk:
1350   case Builtin::BI__builtin___memccpy_chk:
1351   case Builtin::BI__builtin___mempcpy_chk: {
1352     DiagID = diag::warn_builtin_chk_overflow;
1353     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
1354     DestinationSize =
1355         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1356     IsChkVariant = true;
1357     break;
1358   }
1359 
1360   case Builtin::BI__builtin___snprintf_chk:
1361   case Builtin::BI__builtin___vsnprintf_chk: {
1362     DiagID = diag::warn_builtin_chk_overflow;
1363     SourceSize = ComputeExplicitObjectSizeArgument(1);
1364     DestinationSize = ComputeExplicitObjectSizeArgument(3);
1365     IsChkVariant = true;
1366     break;
1367   }
1368 
1369   case Builtin::BIstrncat:
1370   case Builtin::BI__builtin_strncat:
1371   case Builtin::BIstrncpy:
1372   case Builtin::BI__builtin_strncpy:
1373   case Builtin::BIstpncpy:
1374   case Builtin::BI__builtin_stpncpy: {
1375     // Whether these functions overflow depends on the runtime strlen of the
1376     // string, not just the buffer size, so emitting the "always overflow"
1377     // diagnostic isn't quite right. We should still diagnose passing a buffer
1378     // size larger than the destination buffer though; this is a runtime abort
1379     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
1380     DiagID = diag::warn_fortify_source_size_mismatch;
1381     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1382     DestinationSize = ComputeSizeArgument(0);
1383     break;
1384   }
1385 
1386   case Builtin::BImemcpy:
1387   case Builtin::BI__builtin_memcpy:
1388   case Builtin::BImemmove:
1389   case Builtin::BI__builtin_memmove:
1390   case Builtin::BImemset:
1391   case Builtin::BI__builtin_memset:
1392   case Builtin::BImempcpy:
1393   case Builtin::BI__builtin_mempcpy: {
1394     DiagID = diag::warn_fortify_source_overflow;
1395     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1396     DestinationSize = ComputeSizeArgument(0);
1397     break;
1398   }
1399   case Builtin::BIsnprintf:
1400   case Builtin::BI__builtin_snprintf:
1401   case Builtin::BIvsnprintf:
1402   case Builtin::BI__builtin_vsnprintf: {
1403     DiagID = diag::warn_fortify_source_size_mismatch;
1404     SourceSize = ComputeExplicitObjectSizeArgument(1);
1405     const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts();
1406     StringRef FormatStrRef;
1407     size_t StrLen;
1408     if (SourceSize &&
1409         ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1410       EstimateSizeFormatHandler H(FormatStrRef);
1411       const char *FormatBytes = FormatStrRef.data();
1412       if (!analyze_format_string::ParsePrintfString(
1413               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1414               Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) {
1415         llvm::APSInt FormatSize =
1416             llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1417                 .extOrTrunc(SizeTypeWidth);
1418         if (FormatSize > *SourceSize && *SourceSize != 0) {
1419           unsigned TruncationDiagID =
1420               H.isKernelCompatible() ? diag::warn_format_truncation
1421                                      : diag::warn_format_truncation_non_kprintf;
1422           SmallString<16> SpecifiedSizeStr;
1423           SmallString<16> FormatSizeStr;
1424           SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10);
1425           FormatSize.toString(FormatSizeStr, /*Radix=*/10);
1426           DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1427                               PDiag(TruncationDiagID)
1428                                   << GetFunctionName() << SpecifiedSizeStr
1429                                   << FormatSizeStr);
1430         }
1431       }
1432     }
1433     DestinationSize = ComputeSizeArgument(0);
1434   }
1435   }
1436 
1437   if (!SourceSize || !DestinationSize ||
1438       llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
1439     return;
1440 
1441   StringRef FunctionName = GetFunctionName();
1442 
1443   SmallString<16> DestinationStr;
1444   SmallString<16> SourceStr;
1445   DestinationSize->toString(DestinationStr, /*Radix=*/10);
1446   SourceSize->toString(SourceStr, /*Radix=*/10);
1447   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1448                       PDiag(DiagID)
1449                           << FunctionName << DestinationStr << SourceStr);
1450 }
1451 
1452 static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
1453                                  Scope::ScopeFlags NeededScopeFlags,
1454                                  unsigned DiagID) {
1455   // Scopes aren't available during instantiation. Fortunately, builtin
1456   // functions cannot be template args so they cannot be formed through template
1457   // instantiation. Therefore checking once during the parse is sufficient.
1458   if (SemaRef.inTemplateInstantiation())
1459     return false;
1460 
1461   Scope *S = SemaRef.getCurScope();
1462   while (S && !S->isSEHExceptScope())
1463     S = S->getParent();
1464   if (!S || !(S->getFlags() & NeededScopeFlags)) {
1465     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1466     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
1467         << DRE->getDecl()->getIdentifier();
1468     return true;
1469   }
1470 
1471   return false;
1472 }
1473 
1474 // In OpenCL, __builtin_alloca_* should return a pointer to address space
1475 // that corresponds to the stack address space i.e private address space.
1476 static void builtinAllocaAddrSpace(Sema &S, CallExpr *TheCall) {
1477   QualType RT = TheCall->getType();
1478   assert((RT->isPointerType() && !(RT->getPointeeType().hasAddressSpace())) &&
1479          "__builtin_alloca has invalid address space");
1480 
1481   RT = RT->getPointeeType();
1482   RT = S.Context.getAddrSpaceQualType(RT, LangAS::opencl_private);
1483   TheCall->setType(S.Context.getPointerType(RT));
1484 }
1485 
1486 namespace {
1487 enum PointerAuthOpKind {
1488   PAO_Strip,
1489   PAO_Sign,
1490   PAO_Auth,
1491   PAO_SignGeneric,
1492   PAO_Discriminator,
1493   PAO_BlendPointer,
1494   PAO_BlendInteger
1495 };
1496 }
1497 
1498 bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) {
1499   if (getLangOpts().PointerAuthIntrinsics)
1500     return false;
1501 
1502   Diag(Loc, diag::err_ptrauth_disabled) << Range;
1503   return true;
1504 }
1505 
1506 static bool checkPointerAuthEnabled(Sema &S, Expr *E) {
1507   return S.checkPointerAuthEnabled(E->getExprLoc(), E->getSourceRange());
1508 }
1509 
1510 static bool checkPointerAuthKey(Sema &S, Expr *&Arg) {
1511   // Convert it to type 'int'.
1512   if (convertArgumentToType(S, Arg, S.Context.IntTy))
1513     return true;
1514 
1515   // Value-dependent expressions are okay; wait for template instantiation.
1516   if (Arg->isValueDependent())
1517     return false;
1518 
1519   unsigned KeyValue;
1520   return S.checkConstantPointerAuthKey(Arg, KeyValue);
1521 }
1522 
1523 bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) {
1524   // Attempt to constant-evaluate the expression.
1525   std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Context);
1526   if (!KeyValue) {
1527     Diag(Arg->getExprLoc(), diag::err_expr_not_ice)
1528         << 0 << Arg->getSourceRange();
1529     return true;
1530   }
1531 
1532   // Ask the target to validate the key parameter.
1533   if (!Context.getTargetInfo().validatePointerAuthKey(*KeyValue)) {
1534     llvm::SmallString<32> Value;
1535     {
1536       llvm::raw_svector_ostream Str(Value);
1537       Str << *KeyValue;
1538     }
1539 
1540     Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key)
1541         << Value << Arg->getSourceRange();
1542     return true;
1543   }
1544 
1545   Result = KeyValue->getZExtValue();
1546   return false;
1547 }
1548 
1549 static std::pair<const ValueDecl *, CharUnits>
1550 findConstantBaseAndOffset(Sema &S, Expr *E) {
1551   // Must evaluate as a pointer.
1552   Expr::EvalResult Result;
1553   if (!E->EvaluateAsRValue(Result, S.Context) || !Result.Val.isLValue())
1554     return {nullptr, CharUnits()};
1555 
1556   const auto *BaseDecl =
1557       Result.Val.getLValueBase().dyn_cast<const ValueDecl *>();
1558   if (!BaseDecl)
1559     return {nullptr, CharUnits()};
1560 
1561   return {BaseDecl, Result.Val.getLValueOffset()};
1562 }
1563 
1564 static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind,
1565                                   bool RequireConstant = false) {
1566   if (Arg->hasPlaceholderType()) {
1567     ExprResult R = S.CheckPlaceholderExpr(Arg);
1568     if (R.isInvalid())
1569       return true;
1570     Arg = R.get();
1571   }
1572 
1573   auto AllowsPointer = [](PointerAuthOpKind OpKind) {
1574     return OpKind != PAO_BlendInteger;
1575   };
1576   auto AllowsInteger = [](PointerAuthOpKind OpKind) {
1577     return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger ||
1578            OpKind == PAO_SignGeneric;
1579   };
1580 
1581   // Require the value to have the right range of type.
1582   QualType ExpectedTy;
1583   if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) {
1584     ExpectedTy = Arg->getType().getUnqualifiedType();
1585   } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) {
1586     ExpectedTy = S.Context.VoidPtrTy;
1587   } else if (AllowsInteger(OpKind) &&
1588              Arg->getType()->isIntegralOrUnscopedEnumerationType()) {
1589     ExpectedTy = S.Context.getUIntPtrType();
1590 
1591   } else {
1592     // Diagnose the failures.
1593     S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type)
1594         << unsigned(OpKind == PAO_Discriminator  ? 1
1595                     : OpKind == PAO_BlendPointer ? 2
1596                     : OpKind == PAO_BlendInteger ? 3
1597                                                  : 0)
1598         << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0)
1599         << Arg->getType() << Arg->getSourceRange();
1600     return true;
1601   }
1602 
1603   // Convert to that type.  This should just be an lvalue-to-rvalue
1604   // conversion.
1605   if (convertArgumentToType(S, Arg, ExpectedTy))
1606     return true;
1607 
1608   if (!RequireConstant) {
1609     // Warn about null pointers for non-generic sign and auth operations.
1610     if ((OpKind == PAO_Sign || OpKind == PAO_Auth) &&
1611         Arg->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) {
1612       S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign
1613                                     ? diag::warn_ptrauth_sign_null_pointer
1614                                     : diag::warn_ptrauth_auth_null_pointer)
1615           << Arg->getSourceRange();
1616     }
1617 
1618     return false;
1619   }
1620 
1621   // Perform special checking on the arguments to ptrauth_sign_constant.
1622 
1623   // The main argument.
1624   if (OpKind == PAO_Sign) {
1625     // Require the value we're signing to have a special form.
1626     auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Arg);
1627     bool Invalid;
1628 
1629     // Must be rooted in a declaration reference.
1630     if (!BaseDecl)
1631       Invalid = true;
1632 
1633     // If it's a function declaration, we can't have an offset.
1634     else if (isa<FunctionDecl>(BaseDecl))
1635       Invalid = !Offset.isZero();
1636 
1637     // Otherwise we're fine.
1638     else
1639       Invalid = false;
1640 
1641     if (Invalid)
1642       S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_pointer);
1643     return Invalid;
1644   }
1645 
1646   // The discriminator argument.
1647   assert(OpKind == PAO_Discriminator);
1648 
1649   // Must be a pointer or integer or blend thereof.
1650   Expr *Pointer = nullptr;
1651   Expr *Integer = nullptr;
1652   if (auto *Call = dyn_cast<CallExpr>(Arg->IgnoreParens())) {
1653     if (Call->getBuiltinCallee() ==
1654         Builtin::BI__builtin_ptrauth_blend_discriminator) {
1655       Pointer = Call->getArg(0);
1656       Integer = Call->getArg(1);
1657     }
1658   }
1659   if (!Pointer && !Integer) {
1660     if (Arg->getType()->isPointerType())
1661       Pointer = Arg;
1662     else
1663       Integer = Arg;
1664   }
1665 
1666   // Check the pointer.
1667   bool Invalid = false;
1668   if (Pointer) {
1669     assert(Pointer->getType()->isPointerType());
1670 
1671     // TODO: if we're initializing a global, check that the address is
1672     // somehow related to what we're initializing.  This probably will
1673     // never really be feasible and we'll have to catch it at link-time.
1674     auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Pointer);
1675     if (!BaseDecl || !isa<VarDecl>(BaseDecl))
1676       Invalid = true;
1677   }
1678 
1679   // Check the integer.
1680   if (Integer) {
1681     assert(Integer->getType()->isIntegerType());
1682     if (!Integer->isEvaluatable(S.Context))
1683       Invalid = true;
1684   }
1685 
1686   if (Invalid)
1687     S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_discriminator);
1688   return Invalid;
1689 }
1690 
1691 static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) {
1692   if (S.checkArgCount(Call, 2))
1693     return ExprError();
1694   if (checkPointerAuthEnabled(S, Call))
1695     return ExprError();
1696   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Strip) ||
1697       checkPointerAuthKey(S, Call->getArgs()[1]))
1698     return ExprError();
1699 
1700   Call->setType(Call->getArgs()[0]->getType());
1701   return Call;
1702 }
1703 
1704 static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) {
1705   if (S.checkArgCount(Call, 2))
1706     return ExprError();
1707   if (checkPointerAuthEnabled(S, Call))
1708     return ExprError();
1709   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_BlendPointer) ||
1710       checkPointerAuthValue(S, Call->getArgs()[1], PAO_BlendInteger))
1711     return ExprError();
1712 
1713   Call->setType(S.Context.getUIntPtrType());
1714   return Call;
1715 }
1716 
1717 static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) {
1718   if (S.checkArgCount(Call, 2))
1719     return ExprError();
1720   if (checkPointerAuthEnabled(S, Call))
1721     return ExprError();
1722   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_SignGeneric) ||
1723       checkPointerAuthValue(S, Call->getArgs()[1], PAO_Discriminator))
1724     return ExprError();
1725 
1726   Call->setType(S.Context.getUIntPtrType());
1727   return Call;
1728 }
1729 
1730 static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call,
1731                                         PointerAuthOpKind OpKind,
1732                                         bool RequireConstant) {
1733   if (S.checkArgCount(Call, 3))
1734     return ExprError();
1735   if (checkPointerAuthEnabled(S, Call))
1736     return ExprError();
1737   if (checkPointerAuthValue(S, Call->getArgs()[0], OpKind, RequireConstant) ||
1738       checkPointerAuthKey(S, Call->getArgs()[1]) ||
1739       checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator,
1740                             RequireConstant))
1741     return ExprError();
1742 
1743   Call->setType(Call->getArgs()[0]->getType());
1744   return Call;
1745 }
1746 
1747 static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) {
1748   if (S.checkArgCount(Call, 5))
1749     return ExprError();
1750   if (checkPointerAuthEnabled(S, Call))
1751     return ExprError();
1752   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Auth) ||
1753       checkPointerAuthKey(S, Call->getArgs()[1]) ||
1754       checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator) ||
1755       checkPointerAuthKey(S, Call->getArgs()[3]) ||
1756       checkPointerAuthValue(S, Call->getArgs()[4], PAO_Discriminator))
1757     return ExprError();
1758 
1759   Call->setType(Call->getArgs()[0]->getType());
1760   return Call;
1761 }
1762 
1763 static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) {
1764   if (checkPointerAuthEnabled(S, Call))
1765     return ExprError();
1766 
1767   // We've already performed normal call type-checking.
1768   const Expr *Arg = Call->getArg(0)->IgnoreParenImpCasts();
1769 
1770   // Operand must be an ordinary or UTF-8 string literal.
1771   const auto *Literal = dyn_cast<StringLiteral>(Arg);
1772   if (!Literal || Literal->getCharByteWidth() != 1) {
1773     S.Diag(Arg->getExprLoc(), diag::err_ptrauth_string_not_literal)
1774         << (Literal ? 1 : 0) << Arg->getSourceRange();
1775     return ExprError();
1776   }
1777 
1778   return Call;
1779 }
1780 
1781 static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) {
1782   if (S.checkArgCount(TheCall, 1))
1783     return ExprError();
1784 
1785   // Compute __builtin_launder's parameter type from the argument.
1786   // The parameter type is:
1787   //  * The type of the argument if it's not an array or function type,
1788   //  Otherwise,
1789   //  * The decayed argument type.
1790   QualType ParamTy = [&]() {
1791     QualType ArgTy = TheCall->getArg(0)->getType();
1792     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1793       return S.Context.getPointerType(Ty->getElementType());
1794     if (ArgTy->isFunctionType()) {
1795       return S.Context.getPointerType(ArgTy);
1796     }
1797     return ArgTy;
1798   }();
1799 
1800   TheCall->setType(ParamTy);
1801 
1802   auto DiagSelect = [&]() -> std::optional<unsigned> {
1803     if (!ParamTy->isPointerType())
1804       return 0;
1805     if (ParamTy->isFunctionPointerType())
1806       return 1;
1807     if (ParamTy->isVoidPointerType())
1808       return 2;
1809     return std::optional<unsigned>{};
1810   }();
1811   if (DiagSelect) {
1812     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1813         << *DiagSelect << TheCall->getSourceRange();
1814     return ExprError();
1815   }
1816 
1817   // We either have an incomplete class type, or we have a class template
1818   // whose instantiation has not been forced. Example:
1819   //
1820   //   template <class T> struct Foo { T value; };
1821   //   Foo<int> *p = nullptr;
1822   //   auto *d = __builtin_launder(p);
1823   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1824                             diag::err_incomplete_type))
1825     return ExprError();
1826 
1827   assert(ParamTy->getPointeeType()->isObjectType() &&
1828          "Unhandled non-object pointer case");
1829 
1830   InitializedEntity Entity =
1831       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1832   ExprResult Arg =
1833       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1834   if (Arg.isInvalid())
1835     return ExprError();
1836   TheCall->setArg(0, Arg.get());
1837 
1838   return TheCall;
1839 }
1840 
1841 static ExprResult BuiltinIsWithinLifetime(Sema &S, CallExpr *TheCall) {
1842   if (S.checkArgCount(TheCall, 1))
1843     return ExprError();
1844 
1845   ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1846   if (Arg.isInvalid())
1847     return ExprError();
1848   QualType ParamTy = Arg.get()->getType();
1849   TheCall->setArg(0, Arg.get());
1850   TheCall->setType(S.Context.BoolTy);
1851 
1852   // Only accept pointers to objects as arguments, which should have object
1853   // pointer or void pointer types.
1854   if (const auto *PT = ParamTy->getAs<PointerType>()) {
1855     // LWG4138: Function pointer types not allowed
1856     if (PT->getPointeeType()->isFunctionType()) {
1857       S.Diag(TheCall->getArg(0)->getExprLoc(),
1858              diag::err_builtin_is_within_lifetime_invalid_arg)
1859           << 1;
1860       return ExprError();
1861     }
1862     // Disallow VLAs too since those shouldn't be able to
1863     // be a template parameter for `std::is_within_lifetime`
1864     if (PT->getPointeeType()->isVariableArrayType()) {
1865       S.Diag(TheCall->getArg(0)->getExprLoc(), diag::err_vla_unsupported)
1866           << 1 << "__builtin_is_within_lifetime";
1867       return ExprError();
1868     }
1869   } else {
1870     S.Diag(TheCall->getArg(0)->getExprLoc(),
1871            diag::err_builtin_is_within_lifetime_invalid_arg)
1872         << 0;
1873     return ExprError();
1874   }
1875 
1876   return TheCall;
1877 }
1878 
1879 // Emit an error and return true if the current object format type is in the
1880 // list of unsupported types.
1881 static bool CheckBuiltinTargetNotInUnsupported(
1882     Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1883     ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1884   llvm::Triple::ObjectFormatType CurObjFormat =
1885       S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1886   if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1887     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1888         << TheCall->getSourceRange();
1889     return true;
1890   }
1891   return false;
1892 }
1893 
1894 // Emit an error and return true if the current architecture is not in the list
1895 // of supported architectures.
1896 static bool
1897 CheckBuiltinTargetInSupported(Sema &S, CallExpr *TheCall,
1898                               ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1899   llvm::Triple::ArchType CurArch =
1900       S.getASTContext().getTargetInfo().getTriple().getArch();
1901   if (llvm::is_contained(SupportedArchs, CurArch))
1902     return false;
1903   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1904       << TheCall->getSourceRange();
1905   return true;
1906 }
1907 
1908 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1909                                  SourceLocation CallSiteLoc);
1910 
1911 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1912                                       CallExpr *TheCall) {
1913   switch (TI.getTriple().getArch()) {
1914   default:
1915     // Some builtins don't require additional checking, so just consider these
1916     // acceptable.
1917     return false;
1918   case llvm::Triple::arm:
1919   case llvm::Triple::armeb:
1920   case llvm::Triple::thumb:
1921   case llvm::Triple::thumbeb:
1922     return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1923   case llvm::Triple::aarch64:
1924   case llvm::Triple::aarch64_32:
1925   case llvm::Triple::aarch64_be:
1926     return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1927   case llvm::Triple::bpfeb:
1928   case llvm::Triple::bpfel:
1929     return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1930   case llvm::Triple::hexagon:
1931     return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1932   case llvm::Triple::mips:
1933   case llvm::Triple::mipsel:
1934   case llvm::Triple::mips64:
1935   case llvm::Triple::mips64el:
1936     return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1937   case llvm::Triple::systemz:
1938     return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1939   case llvm::Triple::x86:
1940   case llvm::Triple::x86_64:
1941     return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
1942   case llvm::Triple::ppc:
1943   case llvm::Triple::ppcle:
1944   case llvm::Triple::ppc64:
1945   case llvm::Triple::ppc64le:
1946     return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1947   case llvm::Triple::amdgcn:
1948     return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1949   case llvm::Triple::riscv32:
1950   case llvm::Triple::riscv64:
1951     return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
1952   case llvm::Triple::loongarch32:
1953   case llvm::Triple::loongarch64:
1954     return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID,
1955                                                          TheCall);
1956   case llvm::Triple::wasm32:
1957   case llvm::Triple::wasm64:
1958     return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall);
1959   case llvm::Triple::nvptx:
1960   case llvm::Triple::nvptx64:
1961     return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall);
1962   }
1963 }
1964 
1965 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
1966 // not a valid type, emit an error message and return true. Otherwise return
1967 // false.
1968 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
1969                                         QualType ArgTy, int ArgIndex) {
1970   if (!ArgTy->getAs<VectorType>() &&
1971       !ConstantMatrixType::isValidElementType(ArgTy)) {
1972     return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
1973            << ArgIndex << /* vector, integer or float ty*/ 0 << ArgTy;
1974   }
1975 
1976   return false;
1977 }
1978 
1979 static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc,
1980                                           QualType ArgTy, int ArgIndex) {
1981   QualType EltTy = ArgTy;
1982   if (auto *VecTy = EltTy->getAs<VectorType>())
1983     EltTy = VecTy->getElementType();
1984 
1985   if (!EltTy->isRealFloatingType()) {
1986     return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
1987            << ArgIndex << /* vector or float ty*/ 5 << ArgTy;
1988   }
1989 
1990   return false;
1991 }
1992 
1993 /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *).
1994 /// This checks that the target supports the builtin and that the string
1995 /// argument is constant and valid.
1996 static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall,
1997                        const TargetInfo *AuxTI, unsigned BuiltinID) {
1998   assert((BuiltinID == Builtin::BI__builtin_cpu_supports ||
1999           BuiltinID == Builtin::BI__builtin_cpu_is) &&
2000          "Expecting __builtin_cpu_...");
2001 
2002   bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports;
2003   const TargetInfo *TheTI = &TI;
2004   auto SupportsBI = [=](const TargetInfo *TInfo) {
2005     return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) ||
2006                      (!IsCPUSupports && TInfo->supportsCpuIs()));
2007   };
2008   if (!SupportsBI(&TI) && SupportsBI(AuxTI))
2009     TheTI = AuxTI;
2010 
2011   if ((!IsCPUSupports && !TheTI->supportsCpuIs()) ||
2012       (IsCPUSupports && !TheTI->supportsCpuSupports()))
2013     return S.Diag(TheCall->getBeginLoc(),
2014                   TI.getTriple().isOSAIX()
2015                       ? diag::err_builtin_aix_os_unsupported
2016                       : diag::err_builtin_target_unsupported)
2017            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
2018 
2019   Expr *Arg = TheCall->getArg(0)->IgnoreParenImpCasts();
2020   // Check if the argument is a string literal.
2021   if (!isa<StringLiteral>(Arg))
2022     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
2023            << Arg->getSourceRange();
2024 
2025   // Check the contents of the string.
2026   StringRef Feature = cast<StringLiteral>(Arg)->getString();
2027   if (IsCPUSupports && !TheTI->validateCpuSupports(Feature)) {
2028     S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports)
2029         << Arg->getSourceRange();
2030     return false;
2031   }
2032   if (!IsCPUSupports && !TheTI->validateCpuIs(Feature))
2033     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
2034            << Arg->getSourceRange();
2035   return false;
2036 }
2037 
2038 /// Checks that __builtin_popcountg was called with a single argument, which is
2039 /// an unsigned integer.
2040 static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) {
2041   if (S.checkArgCount(TheCall, 1))
2042     return true;
2043 
2044   ExprResult ArgRes = S.DefaultLvalueConversion(TheCall->getArg(0));
2045   if (ArgRes.isInvalid())
2046     return true;
2047 
2048   Expr *Arg = ArgRes.get();
2049   TheCall->setArg(0, Arg);
2050 
2051   QualType ArgTy = Arg->getType();
2052 
2053   if (!ArgTy->isUnsignedIntegerType()) {
2054     S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2055         << 1 << /*unsigned integer ty*/ 7 << ArgTy;
2056     return true;
2057   }
2058   return false;
2059 }
2060 
2061 /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is
2062 /// an unsigned integer, and an optional second argument, which is promoted to
2063 /// an 'int'.
2064 static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) {
2065   if (S.checkArgCountRange(TheCall, 1, 2))
2066     return true;
2067 
2068   ExprResult Arg0Res = S.DefaultLvalueConversion(TheCall->getArg(0));
2069   if (Arg0Res.isInvalid())
2070     return true;
2071 
2072   Expr *Arg0 = Arg0Res.get();
2073   TheCall->setArg(0, Arg0);
2074 
2075   QualType Arg0Ty = Arg0->getType();
2076 
2077   if (!Arg0Ty->isUnsignedIntegerType()) {
2078     S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2079         << 1 << /*unsigned integer ty*/ 7 << Arg0Ty;
2080     return true;
2081   }
2082 
2083   if (TheCall->getNumArgs() > 1) {
2084     ExprResult Arg1Res = S.UsualUnaryConversions(TheCall->getArg(1));
2085     if (Arg1Res.isInvalid())
2086       return true;
2087 
2088     Expr *Arg1 = Arg1Res.get();
2089     TheCall->setArg(1, Arg1);
2090 
2091     QualType Arg1Ty = Arg1->getType();
2092 
2093     if (!Arg1Ty->isSpecificBuiltinType(BuiltinType::Int)) {
2094       S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2095           << 2 << /*'int' ty*/ 8 << Arg1Ty;
2096       return true;
2097     }
2098   }
2099 
2100   return false;
2101 }
2102 
2103 ExprResult
2104 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
2105                                CallExpr *TheCall) {
2106   ExprResult TheCallResult(TheCall);
2107 
2108   // Find out if any arguments are required to be integer constant expressions.
2109   unsigned ICEArguments = 0;
2110   ASTContext::GetBuiltinTypeError Error;
2111   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
2112   if (Error != ASTContext::GE_None)
2113     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
2114 
2115   // If any arguments are required to be ICE's, check and diagnose.
2116   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
2117     // Skip arguments not required to be ICE's.
2118     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
2119 
2120     llvm::APSInt Result;
2121     // If we don't have enough arguments, continue so we can issue better
2122     // diagnostic in checkArgCount(...)
2123     if (ArgNo < TheCall->getNumArgs() &&
2124         BuiltinConstantArg(TheCall, ArgNo, Result))
2125       return true;
2126     ICEArguments &= ~(1 << ArgNo);
2127   }
2128 
2129   FPOptions FPO;
2130   switch (BuiltinID) {
2131   case Builtin::BI__builtin_cpu_supports:
2132   case Builtin::BI__builtin_cpu_is:
2133     if (BuiltinCpu(*this, Context.getTargetInfo(), TheCall,
2134                    Context.getAuxTargetInfo(), BuiltinID))
2135       return ExprError();
2136     break;
2137   case Builtin::BI__builtin_cpu_init:
2138     if (!Context.getTargetInfo().supportsCpuInit()) {
2139       Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
2140           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
2141       return ExprError();
2142     }
2143     break;
2144   case Builtin::BI__builtin___CFStringMakeConstantString:
2145     // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
2146     // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
2147     if (CheckBuiltinTargetNotInUnsupported(
2148             *this, BuiltinID, TheCall,
2149             {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
2150       return ExprError();
2151     assert(TheCall->getNumArgs() == 1 &&
2152            "Wrong # arguments to builtin CFStringMakeConstantString");
2153     if (ObjC().CheckObjCString(TheCall->getArg(0)))
2154       return ExprError();
2155     break;
2156   case Builtin::BI__builtin_ms_va_start:
2157   case Builtin::BI__builtin_stdarg_start:
2158   case Builtin::BI__builtin_va_start:
2159     if (BuiltinVAStart(BuiltinID, TheCall))
2160       return ExprError();
2161     break;
2162   case Builtin::BI__va_start: {
2163     switch (Context.getTargetInfo().getTriple().getArch()) {
2164     case llvm::Triple::aarch64:
2165     case llvm::Triple::arm:
2166     case llvm::Triple::thumb:
2167       if (BuiltinVAStartARMMicrosoft(TheCall))
2168         return ExprError();
2169       break;
2170     default:
2171       if (BuiltinVAStart(BuiltinID, TheCall))
2172         return ExprError();
2173       break;
2174     }
2175     break;
2176   }
2177 
2178   // The acquire, release, and no fence variants are ARM and AArch64 only.
2179   case Builtin::BI_interlockedbittestandset_acq:
2180   case Builtin::BI_interlockedbittestandset_rel:
2181   case Builtin::BI_interlockedbittestandset_nf:
2182   case Builtin::BI_interlockedbittestandreset_acq:
2183   case Builtin::BI_interlockedbittestandreset_rel:
2184   case Builtin::BI_interlockedbittestandreset_nf:
2185     if (CheckBuiltinTargetInSupported(
2186             *this, TheCall,
2187             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
2188       return ExprError();
2189     break;
2190 
2191   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
2192   case Builtin::BI_bittest64:
2193   case Builtin::BI_bittestandcomplement64:
2194   case Builtin::BI_bittestandreset64:
2195   case Builtin::BI_bittestandset64:
2196   case Builtin::BI_interlockedbittestandreset64:
2197   case Builtin::BI_interlockedbittestandset64:
2198     if (CheckBuiltinTargetInSupported(
2199             *this, TheCall,
2200             {llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb,
2201              llvm::Triple::aarch64, llvm::Triple::amdgcn}))
2202       return ExprError();
2203     break;
2204 
2205   case Builtin::BI__builtin_set_flt_rounds:
2206     if (CheckBuiltinTargetInSupported(
2207             *this, TheCall,
2208             {llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm,
2209              llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn,
2210              llvm::Triple::ppc, llvm::Triple::ppc64, llvm::Triple::ppcle,
2211              llvm::Triple::ppc64le}))
2212       return ExprError();
2213     break;
2214 
2215   case Builtin::BI__builtin_isgreater:
2216   case Builtin::BI__builtin_isgreaterequal:
2217   case Builtin::BI__builtin_isless:
2218   case Builtin::BI__builtin_islessequal:
2219   case Builtin::BI__builtin_islessgreater:
2220   case Builtin::BI__builtin_isunordered:
2221     if (BuiltinUnorderedCompare(TheCall, BuiltinID))
2222       return ExprError();
2223     break;
2224   case Builtin::BI__builtin_fpclassify:
2225     if (BuiltinFPClassification(TheCall, 6, BuiltinID))
2226       return ExprError();
2227     break;
2228   case Builtin::BI__builtin_isfpclass:
2229     if (BuiltinFPClassification(TheCall, 2, BuiltinID))
2230       return ExprError();
2231     break;
2232   case Builtin::BI__builtin_isfinite:
2233   case Builtin::BI__builtin_isinf:
2234   case Builtin::BI__builtin_isinf_sign:
2235   case Builtin::BI__builtin_isnan:
2236   case Builtin::BI__builtin_issignaling:
2237   case Builtin::BI__builtin_isnormal:
2238   case Builtin::BI__builtin_issubnormal:
2239   case Builtin::BI__builtin_iszero:
2240   case Builtin::BI__builtin_signbit:
2241   case Builtin::BI__builtin_signbitf:
2242   case Builtin::BI__builtin_signbitl:
2243     if (BuiltinFPClassification(TheCall, 1, BuiltinID))
2244       return ExprError();
2245     break;
2246   case Builtin::BI__builtin_shufflevector:
2247     return BuiltinShuffleVector(TheCall);
2248     // TheCall will be freed by the smart pointer here, but that's fine, since
2249     // BuiltinShuffleVector guts it, but then doesn't release it.
2250   case Builtin::BI__builtin_prefetch:
2251     if (BuiltinPrefetch(TheCall))
2252       return ExprError();
2253     break;
2254   case Builtin::BI__builtin_alloca_with_align:
2255   case Builtin::BI__builtin_alloca_with_align_uninitialized:
2256     if (BuiltinAllocaWithAlign(TheCall))
2257       return ExprError();
2258     [[fallthrough]];
2259   case Builtin::BI__builtin_alloca:
2260   case Builtin::BI__builtin_alloca_uninitialized:
2261     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
2262         << TheCall->getDirectCallee();
2263     if (getLangOpts().OpenCL) {
2264       builtinAllocaAddrSpace(*this, TheCall);
2265     }
2266     break;
2267   case Builtin::BI__arithmetic_fence:
2268     if (BuiltinArithmeticFence(TheCall))
2269       return ExprError();
2270     break;
2271   case Builtin::BI__assume:
2272   case Builtin::BI__builtin_assume:
2273     if (BuiltinAssume(TheCall))
2274       return ExprError();
2275     break;
2276   case Builtin::BI__builtin_assume_aligned:
2277     if (BuiltinAssumeAligned(TheCall))
2278       return ExprError();
2279     break;
2280   case Builtin::BI__builtin_dynamic_object_size:
2281   case Builtin::BI__builtin_object_size:
2282     if (BuiltinConstantArgRange(TheCall, 1, 0, 3))
2283       return ExprError();
2284     break;
2285   case Builtin::BI__builtin_longjmp:
2286     if (BuiltinLongjmp(TheCall))
2287       return ExprError();
2288     break;
2289   case Builtin::BI__builtin_setjmp:
2290     if (BuiltinSetjmp(TheCall))
2291       return ExprError();
2292     break;
2293   case Builtin::BI__builtin_classify_type:
2294     if (checkArgCount(TheCall, 1))
2295       return true;
2296     TheCall->setType(Context.IntTy);
2297     break;
2298   case Builtin::BI__builtin_complex:
2299     if (BuiltinComplex(TheCall))
2300       return ExprError();
2301     break;
2302   case Builtin::BI__builtin_constant_p: {
2303     if (checkArgCount(TheCall, 1))
2304       return true;
2305     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
2306     if (Arg.isInvalid()) return true;
2307     TheCall->setArg(0, Arg.get());
2308     TheCall->setType(Context.IntTy);
2309     break;
2310   }
2311   case Builtin::BI__builtin_launder:
2312     return BuiltinLaunder(*this, TheCall);
2313   case Builtin::BI__builtin_is_within_lifetime:
2314     return BuiltinIsWithinLifetime(*this, TheCall);
2315   case Builtin::BI__sync_fetch_and_add:
2316   case Builtin::BI__sync_fetch_and_add_1:
2317   case Builtin::BI__sync_fetch_and_add_2:
2318   case Builtin::BI__sync_fetch_and_add_4:
2319   case Builtin::BI__sync_fetch_and_add_8:
2320   case Builtin::BI__sync_fetch_and_add_16:
2321   case Builtin::BI__sync_fetch_and_sub:
2322   case Builtin::BI__sync_fetch_and_sub_1:
2323   case Builtin::BI__sync_fetch_and_sub_2:
2324   case Builtin::BI__sync_fetch_and_sub_4:
2325   case Builtin::BI__sync_fetch_and_sub_8:
2326   case Builtin::BI__sync_fetch_and_sub_16:
2327   case Builtin::BI__sync_fetch_and_or:
2328   case Builtin::BI__sync_fetch_and_or_1:
2329   case Builtin::BI__sync_fetch_and_or_2:
2330   case Builtin::BI__sync_fetch_and_or_4:
2331   case Builtin::BI__sync_fetch_and_or_8:
2332   case Builtin::BI__sync_fetch_and_or_16:
2333   case Builtin::BI__sync_fetch_and_and:
2334   case Builtin::BI__sync_fetch_and_and_1:
2335   case Builtin::BI__sync_fetch_and_and_2:
2336   case Builtin::BI__sync_fetch_and_and_4:
2337   case Builtin::BI__sync_fetch_and_and_8:
2338   case Builtin::BI__sync_fetch_and_and_16:
2339   case Builtin::BI__sync_fetch_and_xor:
2340   case Builtin::BI__sync_fetch_and_xor_1:
2341   case Builtin::BI__sync_fetch_and_xor_2:
2342   case Builtin::BI__sync_fetch_and_xor_4:
2343   case Builtin::BI__sync_fetch_and_xor_8:
2344   case Builtin::BI__sync_fetch_and_xor_16:
2345   case Builtin::BI__sync_fetch_and_nand:
2346   case Builtin::BI__sync_fetch_and_nand_1:
2347   case Builtin::BI__sync_fetch_and_nand_2:
2348   case Builtin::BI__sync_fetch_and_nand_4:
2349   case Builtin::BI__sync_fetch_and_nand_8:
2350   case Builtin::BI__sync_fetch_and_nand_16:
2351   case Builtin::BI__sync_add_and_fetch:
2352   case Builtin::BI__sync_add_and_fetch_1:
2353   case Builtin::BI__sync_add_and_fetch_2:
2354   case Builtin::BI__sync_add_and_fetch_4:
2355   case Builtin::BI__sync_add_and_fetch_8:
2356   case Builtin::BI__sync_add_and_fetch_16:
2357   case Builtin::BI__sync_sub_and_fetch:
2358   case Builtin::BI__sync_sub_and_fetch_1:
2359   case Builtin::BI__sync_sub_and_fetch_2:
2360   case Builtin::BI__sync_sub_and_fetch_4:
2361   case Builtin::BI__sync_sub_and_fetch_8:
2362   case Builtin::BI__sync_sub_and_fetch_16:
2363   case Builtin::BI__sync_and_and_fetch:
2364   case Builtin::BI__sync_and_and_fetch_1:
2365   case Builtin::BI__sync_and_and_fetch_2:
2366   case Builtin::BI__sync_and_and_fetch_4:
2367   case Builtin::BI__sync_and_and_fetch_8:
2368   case Builtin::BI__sync_and_and_fetch_16:
2369   case Builtin::BI__sync_or_and_fetch:
2370   case Builtin::BI__sync_or_and_fetch_1:
2371   case Builtin::BI__sync_or_and_fetch_2:
2372   case Builtin::BI__sync_or_and_fetch_4:
2373   case Builtin::BI__sync_or_and_fetch_8:
2374   case Builtin::BI__sync_or_and_fetch_16:
2375   case Builtin::BI__sync_xor_and_fetch:
2376   case Builtin::BI__sync_xor_and_fetch_1:
2377   case Builtin::BI__sync_xor_and_fetch_2:
2378   case Builtin::BI__sync_xor_and_fetch_4:
2379   case Builtin::BI__sync_xor_and_fetch_8:
2380   case Builtin::BI__sync_xor_and_fetch_16:
2381   case Builtin::BI__sync_nand_and_fetch:
2382   case Builtin::BI__sync_nand_and_fetch_1:
2383   case Builtin::BI__sync_nand_and_fetch_2:
2384   case Builtin::BI__sync_nand_and_fetch_4:
2385   case Builtin::BI__sync_nand_and_fetch_8:
2386   case Builtin::BI__sync_nand_and_fetch_16:
2387   case Builtin::BI__sync_val_compare_and_swap:
2388   case Builtin::BI__sync_val_compare_and_swap_1:
2389   case Builtin::BI__sync_val_compare_and_swap_2:
2390   case Builtin::BI__sync_val_compare_and_swap_4:
2391   case Builtin::BI__sync_val_compare_and_swap_8:
2392   case Builtin::BI__sync_val_compare_and_swap_16:
2393   case Builtin::BI__sync_bool_compare_and_swap:
2394   case Builtin::BI__sync_bool_compare_and_swap_1:
2395   case Builtin::BI__sync_bool_compare_and_swap_2:
2396   case Builtin::BI__sync_bool_compare_and_swap_4:
2397   case Builtin::BI__sync_bool_compare_and_swap_8:
2398   case Builtin::BI__sync_bool_compare_and_swap_16:
2399   case Builtin::BI__sync_lock_test_and_set:
2400   case Builtin::BI__sync_lock_test_and_set_1:
2401   case Builtin::BI__sync_lock_test_and_set_2:
2402   case Builtin::BI__sync_lock_test_and_set_4:
2403   case Builtin::BI__sync_lock_test_and_set_8:
2404   case Builtin::BI__sync_lock_test_and_set_16:
2405   case Builtin::BI__sync_lock_release:
2406   case Builtin::BI__sync_lock_release_1:
2407   case Builtin::BI__sync_lock_release_2:
2408   case Builtin::BI__sync_lock_release_4:
2409   case Builtin::BI__sync_lock_release_8:
2410   case Builtin::BI__sync_lock_release_16:
2411   case Builtin::BI__sync_swap:
2412   case Builtin::BI__sync_swap_1:
2413   case Builtin::BI__sync_swap_2:
2414   case Builtin::BI__sync_swap_4:
2415   case Builtin::BI__sync_swap_8:
2416   case Builtin::BI__sync_swap_16:
2417     return BuiltinAtomicOverloaded(TheCallResult);
2418   case Builtin::BI__sync_synchronize:
2419     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
2420         << TheCall->getCallee()->getSourceRange();
2421     break;
2422   case Builtin::BI__builtin_nontemporal_load:
2423   case Builtin::BI__builtin_nontemporal_store:
2424     return BuiltinNontemporalOverloaded(TheCallResult);
2425   case Builtin::BI__builtin_memcpy_inline: {
2426     clang::Expr *SizeOp = TheCall->getArg(2);
2427     // We warn about copying to or from `nullptr` pointers when `size` is
2428     // greater than 0. When `size` is value dependent we cannot evaluate its
2429     // value so we bail out.
2430     if (SizeOp->isValueDependent())
2431       break;
2432     if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
2433       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2434       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
2435     }
2436     break;
2437   }
2438   case Builtin::BI__builtin_memset_inline: {
2439     clang::Expr *SizeOp = TheCall->getArg(2);
2440     // We warn about filling to `nullptr` pointers when `size` is greater than
2441     // 0. When `size` is value dependent we cannot evaluate its value so we bail
2442     // out.
2443     if (SizeOp->isValueDependent())
2444       break;
2445     if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
2446       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2447     break;
2448   }
2449 #define BUILTIN(ID, TYPE, ATTRS)
2450 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS)                                        \
2451   case Builtin::BI##ID:                                                        \
2452     return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2453 #include "clang/Basic/Builtins.inc"
2454   case Builtin::BI__annotation:
2455     if (BuiltinMSVCAnnotation(*this, TheCall))
2456       return ExprError();
2457     break;
2458   case Builtin::BI__builtin_annotation:
2459     if (BuiltinAnnotation(*this, TheCall))
2460       return ExprError();
2461     break;
2462   case Builtin::BI__builtin_addressof:
2463     if (BuiltinAddressof(*this, TheCall))
2464       return ExprError();
2465     break;
2466   case Builtin::BI__builtin_function_start:
2467     if (BuiltinFunctionStart(*this, TheCall))
2468       return ExprError();
2469     break;
2470   case Builtin::BI__builtin_is_aligned:
2471   case Builtin::BI__builtin_align_up:
2472   case Builtin::BI__builtin_align_down:
2473     if (BuiltinAlignment(*this, TheCall, BuiltinID))
2474       return ExprError();
2475     break;
2476   case Builtin::BI__builtin_add_overflow:
2477   case Builtin::BI__builtin_sub_overflow:
2478   case Builtin::BI__builtin_mul_overflow:
2479     if (BuiltinOverflow(*this, TheCall, BuiltinID))
2480       return ExprError();
2481     break;
2482   case Builtin::BI__builtin_operator_new:
2483   case Builtin::BI__builtin_operator_delete: {
2484     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
2485     ExprResult Res =
2486         BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
2487     if (Res.isInvalid())
2488       CorrectDelayedTyposInExpr(TheCallResult.get());
2489     return Res;
2490   }
2491   case Builtin::BI__builtin_dump_struct:
2492     return BuiltinDumpStruct(*this, TheCall);
2493   case Builtin::BI__builtin_expect_with_probability: {
2494     // We first want to ensure we are called with 3 arguments
2495     if (checkArgCount(TheCall, 3))
2496       return ExprError();
2497     // then check probability is constant float in range [0.0, 1.0]
2498     const Expr *ProbArg = TheCall->getArg(2);
2499     SmallVector<PartialDiagnosticAt, 8> Notes;
2500     Expr::EvalResult Eval;
2501     Eval.Diag = &Notes;
2502     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2503         !Eval.Val.isFloat()) {
2504       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2505           << ProbArg->getSourceRange();
2506       for (const PartialDiagnosticAt &PDiag : Notes)
2507         Diag(PDiag.first, PDiag.second);
2508       return ExprError();
2509     }
2510     llvm::APFloat Probability = Eval.Val.getFloat();
2511     bool LoseInfo = false;
2512     Probability.convert(llvm::APFloat::IEEEdouble(),
2513                         llvm::RoundingMode::Dynamic, &LoseInfo);
2514     if (!(Probability >= llvm::APFloat(0.0) &&
2515           Probability <= llvm::APFloat(1.0))) {
2516       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2517           << ProbArg->getSourceRange();
2518       return ExprError();
2519     }
2520     break;
2521   }
2522   case Builtin::BI__builtin_preserve_access_index:
2523     if (BuiltinPreserveAI(*this, TheCall))
2524       return ExprError();
2525     break;
2526   case Builtin::BI__builtin_call_with_static_chain:
2527     if (BuiltinCallWithStaticChain(*this, TheCall))
2528       return ExprError();
2529     break;
2530   case Builtin::BI__exception_code:
2531   case Builtin::BI_exception_code:
2532     if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2533                              diag::err_seh___except_block))
2534       return ExprError();
2535     break;
2536   case Builtin::BI__exception_info:
2537   case Builtin::BI_exception_info:
2538     if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2539                              diag::err_seh___except_filter))
2540       return ExprError();
2541     break;
2542   case Builtin::BI__GetExceptionInfo:
2543     if (checkArgCount(TheCall, 1))
2544       return ExprError();
2545 
2546     if (CheckCXXThrowOperand(
2547             TheCall->getBeginLoc(),
2548             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2549             TheCall))
2550       return ExprError();
2551 
2552     TheCall->setType(Context.VoidPtrTy);
2553     break;
2554   case Builtin::BIaddressof:
2555   case Builtin::BI__addressof:
2556   case Builtin::BIforward:
2557   case Builtin::BIforward_like:
2558   case Builtin::BImove:
2559   case Builtin::BImove_if_noexcept:
2560   case Builtin::BIas_const: {
2561     // These are all expected to be of the form
2562     //   T &/&&/* f(U &/&&)
2563     // where T and U only differ in qualification.
2564     if (checkArgCount(TheCall, 1))
2565       return ExprError();
2566     QualType Param = FDecl->getParamDecl(0)->getType();
2567     QualType Result = FDecl->getReturnType();
2568     bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
2569                           BuiltinID == Builtin::BI__addressof;
2570     if (!(Param->isReferenceType() &&
2571           (ReturnsPointer ? Result->isAnyPointerType()
2572                           : Result->isReferenceType()) &&
2573           Context.hasSameUnqualifiedType(Param->getPointeeType(),
2574                                          Result->getPointeeType()))) {
2575       Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
2576           << FDecl;
2577       return ExprError();
2578     }
2579     break;
2580   }
2581   case Builtin::BI__builtin_ptrauth_strip:
2582     return PointerAuthStrip(*this, TheCall);
2583   case Builtin::BI__builtin_ptrauth_blend_discriminator:
2584     return PointerAuthBlendDiscriminator(*this, TheCall);
2585   case Builtin::BI__builtin_ptrauth_sign_constant:
2586     return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
2587                                  /*RequireConstant=*/true);
2588   case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
2589     return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
2590                                  /*RequireConstant=*/false);
2591   case Builtin::BI__builtin_ptrauth_auth:
2592     return PointerAuthSignOrAuth(*this, TheCall, PAO_Auth,
2593                                  /*RequireConstant=*/false);
2594   case Builtin::BI__builtin_ptrauth_sign_generic_data:
2595     return PointerAuthSignGenericData(*this, TheCall);
2596   case Builtin::BI__builtin_ptrauth_auth_and_resign:
2597     return PointerAuthAuthAndResign(*this, TheCall);
2598   case Builtin::BI__builtin_ptrauth_string_discriminator:
2599     return PointerAuthStringDiscriminator(*this, TheCall);
2600   // OpenCL v2.0, s6.13.16 - Pipe functions
2601   case Builtin::BIread_pipe:
2602   case Builtin::BIwrite_pipe:
2603     // Since those two functions are declared with var args, we need a semantic
2604     // check for the argument.
2605     if (OpenCL().checkBuiltinRWPipe(TheCall))
2606       return ExprError();
2607     break;
2608   case Builtin::BIreserve_read_pipe:
2609   case Builtin::BIreserve_write_pipe:
2610   case Builtin::BIwork_group_reserve_read_pipe:
2611   case Builtin::BIwork_group_reserve_write_pipe:
2612     if (OpenCL().checkBuiltinReserveRWPipe(TheCall))
2613       return ExprError();
2614     break;
2615   case Builtin::BIsub_group_reserve_read_pipe:
2616   case Builtin::BIsub_group_reserve_write_pipe:
2617     if (OpenCL().checkSubgroupExt(TheCall) ||
2618         OpenCL().checkBuiltinReserveRWPipe(TheCall))
2619       return ExprError();
2620     break;
2621   case Builtin::BIcommit_read_pipe:
2622   case Builtin::BIcommit_write_pipe:
2623   case Builtin::BIwork_group_commit_read_pipe:
2624   case Builtin::BIwork_group_commit_write_pipe:
2625     if (OpenCL().checkBuiltinCommitRWPipe(TheCall))
2626       return ExprError();
2627     break;
2628   case Builtin::BIsub_group_commit_read_pipe:
2629   case Builtin::BIsub_group_commit_write_pipe:
2630     if (OpenCL().checkSubgroupExt(TheCall) ||
2631         OpenCL().checkBuiltinCommitRWPipe(TheCall))
2632       return ExprError();
2633     break;
2634   case Builtin::BIget_pipe_num_packets:
2635   case Builtin::BIget_pipe_max_packets:
2636     if (OpenCL().checkBuiltinPipePackets(TheCall))
2637       return ExprError();
2638     break;
2639   case Builtin::BIto_global:
2640   case Builtin::BIto_local:
2641   case Builtin::BIto_private:
2642     if (OpenCL().checkBuiltinToAddr(BuiltinID, TheCall))
2643       return ExprError();
2644     break;
2645   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2646   case Builtin::BIenqueue_kernel:
2647     if (OpenCL().checkBuiltinEnqueueKernel(TheCall))
2648       return ExprError();
2649     break;
2650   case Builtin::BIget_kernel_work_group_size:
2651   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2652     if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall))
2653       return ExprError();
2654     break;
2655   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2656   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2657     if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall))
2658       return ExprError();
2659     break;
2660   case Builtin::BI__builtin_os_log_format:
2661     Cleanup.setExprNeedsCleanups(true);
2662     [[fallthrough]];
2663   case Builtin::BI__builtin_os_log_format_buffer_size:
2664     if (BuiltinOSLogFormat(TheCall))
2665       return ExprError();
2666     break;
2667   case Builtin::BI__builtin_frame_address:
2668   case Builtin::BI__builtin_return_address: {
2669     if (BuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2670       return ExprError();
2671 
2672     // -Wframe-address warning if non-zero passed to builtin
2673     // return/frame address.
2674     Expr::EvalResult Result;
2675     if (!TheCall->getArg(0)->isValueDependent() &&
2676         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2677         Result.Val.getInt() != 0)
2678       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2679           << ((BuiltinID == Builtin::BI__builtin_return_address)
2680                   ? "__builtin_return_address"
2681                   : "__builtin_frame_address")
2682           << TheCall->getSourceRange();
2683     break;
2684   }
2685 
2686   case Builtin::BI__builtin_nondeterministic_value: {
2687     if (BuiltinNonDeterministicValue(TheCall))
2688       return ExprError();
2689     break;
2690   }
2691 
2692   // __builtin_elementwise_abs restricts the element type to signed integers or
2693   // floating point types only.
2694   case Builtin::BI__builtin_elementwise_abs: {
2695     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2696       return ExprError();
2697 
2698     QualType ArgTy = TheCall->getArg(0)->getType();
2699     QualType EltTy = ArgTy;
2700 
2701     if (auto *VecTy = EltTy->getAs<VectorType>())
2702       EltTy = VecTy->getElementType();
2703     if (EltTy->isUnsignedIntegerType()) {
2704       Diag(TheCall->getArg(0)->getBeginLoc(),
2705            diag::err_builtin_invalid_arg_type)
2706           << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2707       return ExprError();
2708     }
2709     break;
2710   }
2711 
2712   // These builtins restrict the element type to floating point
2713   // types only.
2714   case Builtin::BI__builtin_elementwise_acos:
2715   case Builtin::BI__builtin_elementwise_asin:
2716   case Builtin::BI__builtin_elementwise_atan:
2717   case Builtin::BI__builtin_elementwise_ceil:
2718   case Builtin::BI__builtin_elementwise_cos:
2719   case Builtin::BI__builtin_elementwise_cosh:
2720   case Builtin::BI__builtin_elementwise_exp:
2721   case Builtin::BI__builtin_elementwise_exp2:
2722   case Builtin::BI__builtin_elementwise_floor:
2723   case Builtin::BI__builtin_elementwise_log:
2724   case Builtin::BI__builtin_elementwise_log2:
2725   case Builtin::BI__builtin_elementwise_log10:
2726   case Builtin::BI__builtin_elementwise_roundeven:
2727   case Builtin::BI__builtin_elementwise_round:
2728   case Builtin::BI__builtin_elementwise_rint:
2729   case Builtin::BI__builtin_elementwise_nearbyint:
2730   case Builtin::BI__builtin_elementwise_sin:
2731   case Builtin::BI__builtin_elementwise_sinh:
2732   case Builtin::BI__builtin_elementwise_sqrt:
2733   case Builtin::BI__builtin_elementwise_tan:
2734   case Builtin::BI__builtin_elementwise_tanh:
2735   case Builtin::BI__builtin_elementwise_trunc:
2736   case Builtin::BI__builtin_elementwise_canonicalize: {
2737     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2738       return ExprError();
2739 
2740     QualType ArgTy = TheCall->getArg(0)->getType();
2741     if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2742                                       ArgTy, 1))
2743       return ExprError();
2744     break;
2745   }
2746   case Builtin::BI__builtin_elementwise_fma: {
2747     if (BuiltinElementwiseTernaryMath(TheCall))
2748       return ExprError();
2749     break;
2750   }
2751 
2752   // These builtins restrict the element type to floating point
2753   // types only, and take in two arguments.
2754   case Builtin::BI__builtin_elementwise_minimum:
2755   case Builtin::BI__builtin_elementwise_maximum:
2756   case Builtin::BI__builtin_elementwise_atan2:
2757   case Builtin::BI__builtin_elementwise_fmod:
2758   case Builtin::BI__builtin_elementwise_pow: {
2759     if (BuiltinElementwiseMath(TheCall, /*FPOnly=*/true))
2760       return ExprError();
2761     break;
2762   }
2763 
2764   // These builtins restrict the element type to integer
2765   // types only.
2766   case Builtin::BI__builtin_elementwise_add_sat:
2767   case Builtin::BI__builtin_elementwise_sub_sat: {
2768     if (BuiltinElementwiseMath(TheCall))
2769       return ExprError();
2770 
2771     const Expr *Arg = TheCall->getArg(0);
2772     QualType ArgTy = Arg->getType();
2773     QualType EltTy = ArgTy;
2774 
2775     if (auto *VecTy = EltTy->getAs<VectorType>())
2776       EltTy = VecTy->getElementType();
2777 
2778     if (!EltTy->isIntegerType()) {
2779       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2780           << 1 << /* integer ty */ 6 << ArgTy;
2781       return ExprError();
2782     }
2783     break;
2784   }
2785 
2786   case Builtin::BI__builtin_elementwise_min:
2787   case Builtin::BI__builtin_elementwise_max:
2788     if (BuiltinElementwiseMath(TheCall))
2789       return ExprError();
2790     break;
2791   case Builtin::BI__builtin_elementwise_popcount:
2792   case Builtin::BI__builtin_elementwise_bitreverse: {
2793     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2794       return ExprError();
2795 
2796     const Expr *Arg = TheCall->getArg(0);
2797     QualType ArgTy = Arg->getType();
2798     QualType EltTy = ArgTy;
2799 
2800     if (auto *VecTy = EltTy->getAs<VectorType>())
2801       EltTy = VecTy->getElementType();
2802 
2803     if (!EltTy->isIntegerType()) {
2804       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2805           << 1 << /* integer ty */ 6 << ArgTy;
2806       return ExprError();
2807     }
2808     break;
2809   }
2810 
2811   case Builtin::BI__builtin_elementwise_copysign: {
2812     if (checkArgCount(TheCall, 2))
2813       return ExprError();
2814 
2815     ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0));
2816     ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1));
2817     if (Magnitude.isInvalid() || Sign.isInvalid())
2818       return ExprError();
2819 
2820     QualType MagnitudeTy = Magnitude.get()->getType();
2821     QualType SignTy = Sign.get()->getType();
2822     if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2823                                       MagnitudeTy, 1) ||
2824         checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(),
2825                                       SignTy, 2)) {
2826       return ExprError();
2827     }
2828 
2829     if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) {
2830       return Diag(Sign.get()->getBeginLoc(),
2831                   diag::err_typecheck_call_different_arg_types)
2832              << MagnitudeTy << SignTy;
2833     }
2834 
2835     TheCall->setArg(0, Magnitude.get());
2836     TheCall->setArg(1, Sign.get());
2837     TheCall->setType(Magnitude.get()->getType());
2838     break;
2839   }
2840   case Builtin::BI__builtin_reduce_max:
2841   case Builtin::BI__builtin_reduce_min: {
2842     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2843       return ExprError();
2844 
2845     const Expr *Arg = TheCall->getArg(0);
2846     const auto *TyA = Arg->getType()->getAs<VectorType>();
2847 
2848     QualType ElTy;
2849     if (TyA)
2850       ElTy = TyA->getElementType();
2851     else if (Arg->getType()->isSizelessVectorType())
2852       ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2853 
2854     if (ElTy.isNull()) {
2855       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2856           << 1 << /* vector ty*/ 4 << Arg->getType();
2857       return ExprError();
2858     }
2859 
2860     TheCall->setType(ElTy);
2861     break;
2862   }
2863   case Builtin::BI__builtin_reduce_maximum:
2864   case Builtin::BI__builtin_reduce_minimum: {
2865     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2866       return ExprError();
2867 
2868     const Expr *Arg = TheCall->getArg(0);
2869     const auto *TyA = Arg->getType()->getAs<VectorType>();
2870 
2871     QualType ElTy;
2872     if (TyA)
2873       ElTy = TyA->getElementType();
2874     else if (Arg->getType()->isSizelessVectorType())
2875       ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2876 
2877     if (ElTy.isNull() || !ElTy->isFloatingType()) {
2878       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2879           << 1 << /* vector of floating points */ 9 << Arg->getType();
2880       return ExprError();
2881     }
2882 
2883     TheCall->setType(ElTy);
2884     break;
2885   }
2886 
2887   // These builtins support vectors of integers only.
2888   // TODO: ADD/MUL should support floating-point types.
2889   case Builtin::BI__builtin_reduce_add:
2890   case Builtin::BI__builtin_reduce_mul:
2891   case Builtin::BI__builtin_reduce_xor:
2892   case Builtin::BI__builtin_reduce_or:
2893   case Builtin::BI__builtin_reduce_and: {
2894     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2895       return ExprError();
2896 
2897     const Expr *Arg = TheCall->getArg(0);
2898     const auto *TyA = Arg->getType()->getAs<VectorType>();
2899 
2900     QualType ElTy;
2901     if (TyA)
2902       ElTy = TyA->getElementType();
2903     else if (Arg->getType()->isSizelessVectorType())
2904       ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2905 
2906     if (ElTy.isNull() || !ElTy->isIntegerType()) {
2907       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2908           << 1  << /* vector of integers */ 6 << Arg->getType();
2909       return ExprError();
2910     }
2911 
2912     TheCall->setType(ElTy);
2913     break;
2914   }
2915 
2916   case Builtin::BI__builtin_matrix_transpose:
2917     return BuiltinMatrixTranspose(TheCall, TheCallResult);
2918 
2919   case Builtin::BI__builtin_matrix_column_major_load:
2920     return BuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2921 
2922   case Builtin::BI__builtin_matrix_column_major_store:
2923     return BuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2924 
2925   case Builtin::BI__builtin_verbose_trap:
2926     if (!checkBuiltinVerboseTrap(TheCall, *this))
2927       return ExprError();
2928     break;
2929 
2930   case Builtin::BI__builtin_get_device_side_mangled_name: {
2931     auto Check = [](CallExpr *TheCall) {
2932       if (TheCall->getNumArgs() != 1)
2933         return false;
2934       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2935       if (!DRE)
2936         return false;
2937       auto *D = DRE->getDecl();
2938       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2939         return false;
2940       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2941              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2942     };
2943     if (!Check(TheCall)) {
2944       Diag(TheCall->getBeginLoc(),
2945            diag::err_hip_invalid_args_builtin_mangled_name);
2946       return ExprError();
2947     }
2948     break;
2949   }
2950   case Builtin::BI__builtin_popcountg:
2951     if (BuiltinPopcountg(*this, TheCall))
2952       return ExprError();
2953     break;
2954   case Builtin::BI__builtin_clzg:
2955   case Builtin::BI__builtin_ctzg:
2956     if (BuiltinCountZeroBitsGeneric(*this, TheCall))
2957       return ExprError();
2958     break;
2959 
2960   case Builtin::BI__builtin_allow_runtime_check: {
2961     Expr *Arg = TheCall->getArg(0);
2962     // Check if the argument is a string literal.
2963     if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) {
2964       Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
2965           << Arg->getSourceRange();
2966       return ExprError();
2967     }
2968     break;
2969   }
2970   case Builtin::BI__builtin_counted_by_ref:
2971     if (BuiltinCountedByRef(TheCall))
2972       return ExprError();
2973     break;
2974   }
2975 
2976   if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall))
2977     return ExprError();
2978 
2979   // Since the target specific builtins for each arch overlap, only check those
2980   // of the arch we are compiling for.
2981   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2982     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2983       assert(Context.getAuxTargetInfo() &&
2984              "Aux Target Builtin, but not an aux target?");
2985 
2986       if (CheckTSBuiltinFunctionCall(
2987               *Context.getAuxTargetInfo(),
2988               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2989         return ExprError();
2990     } else {
2991       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2992                                      TheCall))
2993         return ExprError();
2994     }
2995   }
2996 
2997   return TheCallResult;
2998 }
2999 
3000 bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3001   llvm::APSInt Result;
3002   // We can't check the value of a dependent argument.
3003   Expr *Arg = TheCall->getArg(ArgNum);
3004   if (Arg->isTypeDependent() || Arg->isValueDependent())
3005     return false;
3006 
3007   // Check constant-ness first.
3008   if (BuiltinConstantArg(TheCall, ArgNum, Result))
3009     return true;
3010 
3011   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3012   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3013     return false;
3014 
3015   return Diag(TheCall->getBeginLoc(),
3016               diag::err_argument_not_contiguous_bit_field)
3017          << ArgNum << Arg->getSourceRange();
3018 }
3019 
3020 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
3021                                bool IsVariadic, FormatStringInfo *FSI) {
3022   if (Format->getFirstArg() == 0)
3023     FSI->ArgPassingKind = FAPK_VAList;
3024   else if (IsVariadic)
3025     FSI->ArgPassingKind = FAPK_Variadic;
3026   else
3027     FSI->ArgPassingKind = FAPK_Fixed;
3028   FSI->FormatIdx = Format->getFormatIdx() - 1;
3029   FSI->FirstDataArg =
3030       FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1;
3031 
3032   // The way the format attribute works in GCC, the implicit this argument
3033   // of member functions is counted. However, it doesn't appear in our own
3034   // lists, so decrement format_idx in that case.
3035   if (IsCXXMember) {
3036     if(FSI->FormatIdx == 0)
3037       return false;
3038     --FSI->FormatIdx;
3039     if (FSI->FirstDataArg != 0)
3040       --FSI->FirstDataArg;
3041   }
3042   return true;
3043 }
3044 
3045 /// Checks if a the given expression evaluates to null.
3046 ///
3047 /// Returns true if the value evaluates to null.
3048 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
3049   // Treat (smart) pointers constructed from nullptr as null, whether we can
3050   // const-evaluate them or not.
3051   // This must happen first: the smart pointer expr might have _Nonnull type!
3052   if (isa<CXXNullPtrLiteralExpr>(
3053           IgnoreExprNodes(Expr, IgnoreImplicitAsWrittenSingleStep,
3054                           IgnoreElidableImplicitConstructorSingleStep)))
3055     return true;
3056 
3057   // If the expression has non-null type, it doesn't evaluate to null.
3058   if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) {
3059     if (*nullability == NullabilityKind::NonNull)
3060       return false;
3061   }
3062 
3063   // As a special case, transparent unions initialized with zero are
3064   // considered null for the purposes of the nonnull attribute.
3065   if (const RecordType *UT = Expr->getType()->getAsUnionType();
3066       UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
3067     if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Expr))
3068       if (const auto *ILE = dyn_cast<InitListExpr>(CLE->getInitializer()))
3069         Expr = ILE->getInit(0);
3070   }
3071 
3072   bool Result;
3073   return (!Expr->isValueDependent() &&
3074           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
3075           !Result);
3076 }
3077 
3078 static void CheckNonNullArgument(Sema &S,
3079                                  const Expr *ArgExpr,
3080                                  SourceLocation CallSiteLoc) {
3081   if (CheckNonNullExpr(S, ArgExpr))
3082     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
3083                           S.PDiag(diag::warn_null_arg)
3084                               << ArgExpr->getSourceRange());
3085 }
3086 
3087 /// Determine whether the given type has a non-null nullability annotation.
3088 static bool isNonNullType(QualType type) {
3089   if (auto nullability = type->getNullability())
3090     return *nullability == NullabilityKind::NonNull;
3091 
3092   return false;
3093 }
3094 
3095 static void CheckNonNullArguments(Sema &S,
3096                                   const NamedDecl *FDecl,
3097                                   const FunctionProtoType *Proto,
3098                                   ArrayRef<const Expr *> Args,
3099                                   SourceLocation CallSiteLoc) {
3100   assert((FDecl || Proto) && "Need a function declaration or prototype");
3101 
3102   // Already checked by constant evaluator.
3103   if (S.isConstantEvaluatedContext())
3104     return;
3105   // Check the attributes attached to the method/function itself.
3106   llvm::SmallBitVector NonNullArgs;
3107   if (FDecl) {
3108     // Handle the nonnull attribute on the function/method declaration itself.
3109     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
3110       if (!NonNull->args_size()) {
3111         // Easy case: all pointer arguments are nonnull.
3112         for (const auto *Arg : Args)
3113           if (S.isValidPointerAttrType(Arg->getType()))
3114             CheckNonNullArgument(S, Arg, CallSiteLoc);
3115         return;
3116       }
3117 
3118       for (const ParamIdx &Idx : NonNull->args()) {
3119         unsigned IdxAST = Idx.getASTIndex();
3120         if (IdxAST >= Args.size())
3121           continue;
3122         if (NonNullArgs.empty())
3123           NonNullArgs.resize(Args.size());
3124         NonNullArgs.set(IdxAST);
3125       }
3126     }
3127   }
3128 
3129   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
3130     // Handle the nonnull attribute on the parameters of the
3131     // function/method.
3132     ArrayRef<ParmVarDecl*> parms;
3133     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
3134       parms = FD->parameters();
3135     else
3136       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
3137 
3138     unsigned ParamIndex = 0;
3139     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
3140          I != E; ++I, ++ParamIndex) {
3141       const ParmVarDecl *PVD = *I;
3142       if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) {
3143         if (NonNullArgs.empty())
3144           NonNullArgs.resize(Args.size());
3145 
3146         NonNullArgs.set(ParamIndex);
3147       }
3148     }
3149   } else {
3150     // If we have a non-function, non-method declaration but no
3151     // function prototype, try to dig out the function prototype.
3152     if (!Proto) {
3153       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
3154         QualType type = VD->getType().getNonReferenceType();
3155         if (auto pointerType = type->getAs<PointerType>())
3156           type = pointerType->getPointeeType();
3157         else if (auto blockType = type->getAs<BlockPointerType>())
3158           type = blockType->getPointeeType();
3159         // FIXME: data member pointers?
3160 
3161         // Dig out the function prototype, if there is one.
3162         Proto = type->getAs<FunctionProtoType>();
3163       }
3164     }
3165 
3166     // Fill in non-null argument information from the nullability
3167     // information on the parameter types (if we have them).
3168     if (Proto) {
3169       unsigned Index = 0;
3170       for (auto paramType : Proto->getParamTypes()) {
3171         if (isNonNullType(paramType)) {
3172           if (NonNullArgs.empty())
3173             NonNullArgs.resize(Args.size());
3174 
3175           NonNullArgs.set(Index);
3176         }
3177 
3178         ++Index;
3179       }
3180     }
3181   }
3182 
3183   // Check for non-null arguments.
3184   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
3185        ArgIndex != ArgIndexEnd; ++ArgIndex) {
3186     if (NonNullArgs[ArgIndex])
3187       CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc());
3188   }
3189 }
3190 
3191 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
3192                              StringRef ParamName, QualType ArgTy,
3193                              QualType ParamTy) {
3194 
3195   // If a function accepts a pointer or reference type
3196   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
3197     return;
3198 
3199   // If the parameter is a pointer type, get the pointee type for the
3200   // argument too. If the parameter is a reference type, don't try to get
3201   // the pointee type for the argument.
3202   if (ParamTy->isPointerType())
3203     ArgTy = ArgTy->getPointeeType();
3204 
3205   // Remove reference or pointer
3206   ParamTy = ParamTy->getPointeeType();
3207 
3208   // Find expected alignment, and the actual alignment of the passed object.
3209   // getTypeAlignInChars requires complete types
3210   if (ArgTy.isNull() || ParamTy->isDependentType() ||
3211       ParamTy->isIncompleteType() || ArgTy->isIncompleteType() ||
3212       ParamTy->isUndeducedType() || ArgTy->isUndeducedType())
3213     return;
3214 
3215   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
3216   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
3217 
3218   // If the argument is less aligned than the parameter, there is a
3219   // potential alignment issue.
3220   if (ArgAlign < ParamAlign)
3221     Diag(Loc, diag::warn_param_mismatched_alignment)
3222         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
3223         << ParamName << (FDecl != nullptr) << FDecl;
3224 }
3225 
3226 void Sema::checkLifetimeCaptureBy(FunctionDecl *FD, bool IsMemberFunction,
3227                                   const Expr *ThisArg,
3228                                   ArrayRef<const Expr *> Args) {
3229   if (!FD || Args.empty())
3230     return;
3231   auto GetArgAt = [&](int Idx) -> const Expr * {
3232     if (Idx == LifetimeCaptureByAttr::GLOBAL ||
3233         Idx == LifetimeCaptureByAttr::UNKNOWN)
3234       return nullptr;
3235     if (IsMemberFunction && Idx == 0)
3236       return ThisArg;
3237     return Args[Idx - IsMemberFunction];
3238   };
3239   auto HandleCaptureByAttr = [&](const LifetimeCaptureByAttr *Attr,
3240                                  unsigned ArgIdx) {
3241     if (!Attr)
3242       return;
3243     Expr *Captured = const_cast<Expr *>(GetArgAt(ArgIdx));
3244     for (int CapturingParamIdx : Attr->params()) {
3245       Expr *Capturing = const_cast<Expr *>(GetArgAt(CapturingParamIdx));
3246       CapturingEntity CE{Capturing};
3247       // Ensure that 'Captured' outlives the 'Capturing' entity.
3248       checkCaptureByLifetime(*this, CE, Captured);
3249     }
3250   };
3251   for (unsigned I = 0; I < FD->getNumParams(); ++I)
3252     HandleCaptureByAttr(FD->getParamDecl(I)->getAttr<LifetimeCaptureByAttr>(),
3253                         I + IsMemberFunction);
3254   // Check when the implicit object param is captured.
3255   if (IsMemberFunction) {
3256     TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3257     if (!TSI)
3258       return;
3259     AttributedTypeLoc ATL;
3260     for (TypeLoc TL = TSI->getTypeLoc();
3261          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
3262          TL = ATL.getModifiedLoc())
3263       HandleCaptureByAttr(ATL.getAttrAs<LifetimeCaptureByAttr>(), 0);
3264   }
3265 }
3266 
3267 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
3268                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
3269                      bool IsMemberFunction, SourceLocation Loc,
3270                      SourceRange Range, VariadicCallType CallType) {
3271   // FIXME: We should check as much as we can in the template definition.
3272   if (CurContext->isDependentContext())
3273     return;
3274 
3275   // Printf and scanf checking.
3276   llvm::SmallBitVector CheckedVarArgs;
3277   if (FDecl) {
3278     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
3279       // Only create vector if there are format attributes.
3280       CheckedVarArgs.resize(Args.size());
3281 
3282       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
3283                            CheckedVarArgs);
3284     }
3285   }
3286 
3287   // Refuse POD arguments that weren't caught by the format string
3288   // checks above.
3289   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
3290   if (CallType != VariadicDoesNotApply &&
3291       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
3292     unsigned NumParams = Proto ? Proto->getNumParams()
3293                          : isa_and_nonnull<FunctionDecl>(FDecl)
3294                              ? cast<FunctionDecl>(FDecl)->getNumParams()
3295                          : isa_and_nonnull<ObjCMethodDecl>(FDecl)
3296                              ? cast<ObjCMethodDecl>(FDecl)->param_size()
3297                              : 0;
3298 
3299     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
3300       // Args[ArgIdx] can be null in malformed code.
3301       if (const Expr *Arg = Args[ArgIdx]) {
3302         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
3303           checkVariadicArgument(Arg, CallType);
3304       }
3305     }
3306   }
3307   if (FD)
3308     checkLifetimeCaptureBy(FD, IsMemberFunction, ThisArg, Args);
3309   if (FDecl || Proto) {
3310     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
3311 
3312     // Type safety checking.
3313     if (FDecl) {
3314       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
3315         CheckArgumentWithTypeTag(I, Args, Loc);
3316     }
3317   }
3318 
3319   // Check that passed arguments match the alignment of original arguments.
3320   // Try to get the missing prototype from the declaration.
3321   if (!Proto && FDecl) {
3322     const auto *FT = FDecl->getFunctionType();
3323     if (isa_and_nonnull<FunctionProtoType>(FT))
3324       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
3325   }
3326   if (Proto) {
3327     // For variadic functions, we may have more args than parameters.
3328     // For some K&R functions, we may have less args than parameters.
3329     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
3330     bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType();
3331     bool IsScalableArg = false;
3332     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
3333       // Args[ArgIdx] can be null in malformed code.
3334       if (const Expr *Arg = Args[ArgIdx]) {
3335         if (Arg->containsErrors())
3336           continue;
3337 
3338         if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
3339             FDecl->hasLinkage() &&
3340             FDecl->getFormalLinkage() != Linkage::Internal &&
3341             CallType == VariadicDoesNotApply)
3342           PPC().checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
3343 
3344         QualType ParamTy = Proto->getParamType(ArgIdx);
3345         if (ParamTy->isSizelessVectorType())
3346           IsScalableArg = true;
3347         QualType ArgTy = Arg->getType();
3348         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
3349                           ArgTy, ParamTy);
3350       }
3351     }
3352 
3353     // If the callee has an AArch64 SME attribute to indicate that it is an
3354     // __arm_streaming function, then the caller requires SME to be available.
3355     FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
3356     if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) {
3357       if (auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
3358         llvm::StringMap<bool> CallerFeatureMap;
3359         Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD);
3360         if (!CallerFeatureMap.contains("sme"))
3361           Diag(Loc, diag::err_sme_call_in_non_sme_target);
3362       } else if (!Context.getTargetInfo().hasFeature("sme")) {
3363         Diag(Loc, diag::err_sme_call_in_non_sme_target);
3364       }
3365     }
3366 
3367     // If the call requires a streaming-mode change and has scalable vector
3368     // arguments or return values, then warn the user that the streaming and
3369     // non-streaming vector lengths may be different.
3370     const auto *CallerFD = dyn_cast<FunctionDecl>(CurContext);
3371     if (CallerFD && (!FD || !FD->getBuiltinID()) &&
3372         (IsScalableArg || IsScalableRet)) {
3373       bool IsCalleeStreaming =
3374           ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
3375       bool IsCalleeStreamingCompatible =
3376           ExtInfo.AArch64SMEAttributes &
3377           FunctionType::SME_PStateSMCompatibleMask;
3378       SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(CallerFD);
3379       if (!IsCalleeStreamingCompatible &&
3380           (CallerFnType == SemaARM::ArmStreamingCompatible ||
3381            ((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) {
3382         if (IsScalableArg)
3383           Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
3384               << /*IsArg=*/true;
3385         if (IsScalableRet)
3386           Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
3387               << /*IsArg=*/false;
3388       }
3389     }
3390 
3391     FunctionType::ArmStateValue CalleeArmZAState =
3392         FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes);
3393     FunctionType::ArmStateValue CalleeArmZT0State =
3394         FunctionType::getArmZT0State(ExtInfo.AArch64SMEAttributes);
3395     if (CalleeArmZAState != FunctionType::ARM_None ||
3396         CalleeArmZT0State != FunctionType::ARM_None) {
3397       bool CallerHasZAState = false;
3398       bool CallerHasZT0State = false;
3399       if (CallerFD) {
3400         auto *Attr = CallerFD->getAttr<ArmNewAttr>();
3401         if (Attr && Attr->isNewZA())
3402           CallerHasZAState = true;
3403         if (Attr && Attr->isNewZT0())
3404           CallerHasZT0State = true;
3405         if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) {
3406           CallerHasZAState |=
3407               FunctionType::getArmZAState(
3408                   FPT->getExtProtoInfo().AArch64SMEAttributes) !=
3409               FunctionType::ARM_None;
3410           CallerHasZT0State |=
3411               FunctionType::getArmZT0State(
3412                   FPT->getExtProtoInfo().AArch64SMEAttributes) !=
3413               FunctionType::ARM_None;
3414         }
3415       }
3416 
3417       if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState)
3418         Diag(Loc, diag::err_sme_za_call_no_za_state);
3419 
3420       if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State)
3421         Diag(Loc, diag::err_sme_zt0_call_no_zt0_state);
3422 
3423       if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None &&
3424           CalleeArmZT0State != FunctionType::ARM_None) {
3425         Diag(Loc, diag::err_sme_unimplemented_za_save_restore);
3426         Diag(Loc, diag::note_sme_use_preserves_za);
3427       }
3428     }
3429   }
3430 
3431   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
3432     auto *AA = FDecl->getAttr<AllocAlignAttr>();
3433     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
3434     if (!Arg->isValueDependent()) {
3435       Expr::EvalResult Align;
3436       if (Arg->EvaluateAsInt(Align, Context)) {
3437         const llvm::APSInt &I = Align.Val.getInt();
3438         if (!I.isPowerOf2())
3439           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
3440               << Arg->getSourceRange();
3441 
3442         if (I > Sema::MaximumAlignment)
3443           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
3444               << Arg->getSourceRange() << Sema::MaximumAlignment;
3445       }
3446     }
3447   }
3448 
3449   if (FD)
3450     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
3451 }
3452 
3453 void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) {
3454   if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) {
3455     DiagnoseUseOfDecl(Decl, Loc);
3456   }
3457 }
3458 
3459 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
3460                                 ArrayRef<const Expr *> Args,
3461                                 const FunctionProtoType *Proto,
3462                                 SourceLocation Loc) {
3463   VariadicCallType CallType =
3464       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3465 
3466   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
3467   CheckArgAlignment(
3468       Loc, FDecl, "'this'", Context.getPointerType(ThisType),
3469       Context.getPointerType(Ctor->getFunctionObjectParameterType()));
3470 
3471   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
3472             Loc, SourceRange(), CallType);
3473 }
3474 
3475 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
3476                              const FunctionProtoType *Proto) {
3477   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
3478                               isa<CXXMethodDecl>(FDecl);
3479   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
3480                           IsMemberOperatorCall;
3481   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
3482                                                   TheCall->getCallee());
3483   Expr** Args = TheCall->getArgs();
3484   unsigned NumArgs = TheCall->getNumArgs();
3485 
3486   Expr *ImplicitThis = nullptr;
3487   if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) {
3488     // If this is a call to a member operator, hide the first
3489     // argument from checkCall.
3490     // FIXME: Our choice of AST representation here is less than ideal.
3491     ImplicitThis = Args[0];
3492     ++Args;
3493     --NumArgs;
3494   } else if (IsMemberFunction && !FDecl->isStatic() &&
3495              !FDecl->hasCXXExplicitFunctionObjectParameter())
3496     ImplicitThis =
3497         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
3498 
3499   if (ImplicitThis) {
3500     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
3501     // used.
3502     QualType ThisType = ImplicitThis->getType();
3503     if (!ThisType->isPointerType()) {
3504       assert(!ThisType->isReferenceType());
3505       ThisType = Context.getPointerType(ThisType);
3506     }
3507 
3508     QualType ThisTypeFromDecl = Context.getPointerType(
3509         cast<CXXMethodDecl>(FDecl)->getFunctionObjectParameterType());
3510 
3511     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
3512                       ThisTypeFromDecl);
3513   }
3514 
3515   checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs),
3516             IsMemberFunction, TheCall->getRParenLoc(),
3517             TheCall->getCallee()->getSourceRange(), CallType);
3518 
3519   IdentifierInfo *FnInfo = FDecl->getIdentifier();
3520   // None of the checks below are needed for functions that don't have
3521   // simple names (e.g., C++ conversion functions).
3522   if (!FnInfo)
3523     return false;
3524 
3525   // Enforce TCB except for builtin calls, which are always allowed.
3526   if (FDecl->getBuiltinID() == 0)
3527     CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
3528 
3529   CheckAbsoluteValueFunction(TheCall, FDecl);
3530   CheckMaxUnsignedZero(TheCall, FDecl);
3531   CheckInfNaNFunction(TheCall, FDecl);
3532 
3533   if (getLangOpts().ObjC)
3534     ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs);
3535 
3536   unsigned CMId = FDecl->getMemoryFunctionKind();
3537 
3538   // Handle memory setting and copying functions.
3539   switch (CMId) {
3540   case 0:
3541     return false;
3542   case Builtin::BIstrlcpy: // fallthrough
3543   case Builtin::BIstrlcat:
3544     CheckStrlcpycatArguments(TheCall, FnInfo);
3545     break;
3546   case Builtin::BIstrncat:
3547     CheckStrncatArguments(TheCall, FnInfo);
3548     break;
3549   case Builtin::BIfree:
3550     CheckFreeArguments(TheCall);
3551     break;
3552   default:
3553     CheckMemaccessArguments(TheCall, CMId, FnInfo);
3554   }
3555 
3556   return false;
3557 }
3558 
3559 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
3560                             const FunctionProtoType *Proto) {
3561   QualType Ty;
3562   if (const auto *V = dyn_cast<VarDecl>(NDecl))
3563     Ty = V->getType().getNonReferenceType();
3564   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
3565     Ty = F->getType().getNonReferenceType();
3566   else
3567     return false;
3568 
3569   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
3570       !Ty->isFunctionProtoType())
3571     return false;
3572 
3573   VariadicCallType CallType;
3574   if (!Proto || !Proto->isVariadic()) {
3575     CallType = VariadicDoesNotApply;
3576   } else if (Ty->isBlockPointerType()) {
3577     CallType = VariadicBlock;
3578   } else { // Ty->isFunctionPointerType()
3579     CallType = VariadicFunction;
3580   }
3581 
3582   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
3583             llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
3584             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
3585             TheCall->getCallee()->getSourceRange(), CallType);
3586 
3587   return false;
3588 }
3589 
3590 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
3591   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
3592                                                   TheCall->getCallee());
3593   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
3594             llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
3595             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
3596             TheCall->getCallee()->getSourceRange(), CallType);
3597 
3598   return false;
3599 }
3600 
3601 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
3602   if (!llvm::isValidAtomicOrderingCABI(Ordering))
3603     return false;
3604 
3605   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
3606   switch (Op) {
3607   case AtomicExpr::AO__c11_atomic_init:
3608   case AtomicExpr::AO__opencl_atomic_init:
3609     llvm_unreachable("There is no ordering argument for an init");
3610 
3611   case AtomicExpr::AO__c11_atomic_load:
3612   case AtomicExpr::AO__opencl_atomic_load:
3613   case AtomicExpr::AO__hip_atomic_load:
3614   case AtomicExpr::AO__atomic_load_n:
3615   case AtomicExpr::AO__atomic_load:
3616   case AtomicExpr::AO__scoped_atomic_load_n:
3617   case AtomicExpr::AO__scoped_atomic_load:
3618     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
3619            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
3620 
3621   case AtomicExpr::AO__c11_atomic_store:
3622   case AtomicExpr::AO__opencl_atomic_store:
3623   case AtomicExpr::AO__hip_atomic_store:
3624   case AtomicExpr::AO__atomic_store:
3625   case AtomicExpr::AO__atomic_store_n:
3626   case AtomicExpr::AO__scoped_atomic_store:
3627   case AtomicExpr::AO__scoped_atomic_store_n:
3628     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
3629            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
3630            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
3631 
3632   default:
3633     return true;
3634   }
3635 }
3636 
3637 ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult,
3638                                      AtomicExpr::AtomicOp Op) {
3639   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3640   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3641   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
3642   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
3643                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
3644                          Op);
3645 }
3646 
3647 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
3648                                  SourceLocation RParenLoc, MultiExprArg Args,
3649                                  AtomicExpr::AtomicOp Op,
3650                                  AtomicArgumentOrder ArgOrder) {
3651   // All the non-OpenCL operations take one of the following forms.
3652   // The OpenCL operations take the __c11 forms with one extra argument for
3653   // synchronization scope.
3654   enum {
3655     // C    __c11_atomic_init(A *, C)
3656     Init,
3657 
3658     // C    __c11_atomic_load(A *, int)
3659     Load,
3660 
3661     // void __atomic_load(A *, CP, int)
3662     LoadCopy,
3663 
3664     // void __atomic_store(A *, CP, int)
3665     Copy,
3666 
3667     // C    __c11_atomic_add(A *, M, int)
3668     Arithmetic,
3669 
3670     // C    __atomic_exchange_n(A *, CP, int)
3671     Xchg,
3672 
3673     // void __atomic_exchange(A *, C *, CP, int)
3674     GNUXchg,
3675 
3676     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
3677     C11CmpXchg,
3678 
3679     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
3680     GNUCmpXchg
3681   } Form = Init;
3682 
3683   const unsigned NumForm = GNUCmpXchg + 1;
3684   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
3685   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
3686   // where:
3687   //   C is an appropriate type,
3688   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
3689   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
3690   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
3691   //   the int parameters are for orderings.
3692 
3693   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
3694       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
3695       "need to update code for modified forms");
3696   static_assert(AtomicExpr::AO__atomic_add_fetch == 0 &&
3697                     AtomicExpr::AO__atomic_xor_fetch + 1 ==
3698                         AtomicExpr::AO__c11_atomic_compare_exchange_strong,
3699                 "need to update code for modified C11 atomics");
3700   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong &&
3701                   Op <= AtomicExpr::AO__opencl_atomic_store;
3702   bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong &&
3703                Op <= AtomicExpr::AO__hip_atomic_store;
3704   bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch &&
3705                   Op <= AtomicExpr::AO__scoped_atomic_xor_fetch;
3706   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong &&
3707                 Op <= AtomicExpr::AO__c11_atomic_store) ||
3708                IsOpenCL;
3709   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
3710              Op == AtomicExpr::AO__atomic_store_n ||
3711              Op == AtomicExpr::AO__atomic_exchange_n ||
3712              Op == AtomicExpr::AO__atomic_compare_exchange_n ||
3713              Op == AtomicExpr::AO__scoped_atomic_load_n ||
3714              Op == AtomicExpr::AO__scoped_atomic_store_n ||
3715              Op == AtomicExpr::AO__scoped_atomic_exchange_n ||
3716              Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n;
3717   // Bit mask for extra allowed value types other than integers for atomic
3718   // arithmetic operations. Add/sub allow pointer and floating point. Min/max
3719   // allow floating point.
3720   enum ArithOpExtraValueType {
3721     AOEVT_None = 0,
3722     AOEVT_Pointer = 1,
3723     AOEVT_FP = 2,
3724   };
3725   unsigned ArithAllows = AOEVT_None;
3726 
3727   switch (Op) {
3728   case AtomicExpr::AO__c11_atomic_init:
3729   case AtomicExpr::AO__opencl_atomic_init:
3730     Form = Init;
3731     break;
3732 
3733   case AtomicExpr::AO__c11_atomic_load:
3734   case AtomicExpr::AO__opencl_atomic_load:
3735   case AtomicExpr::AO__hip_atomic_load:
3736   case AtomicExpr::AO__atomic_load_n:
3737   case AtomicExpr::AO__scoped_atomic_load_n:
3738     Form = Load;
3739     break;
3740 
3741   case AtomicExpr::AO__atomic_load:
3742   case AtomicExpr::AO__scoped_atomic_load:
3743     Form = LoadCopy;
3744     break;
3745 
3746   case AtomicExpr::AO__c11_atomic_store:
3747   case AtomicExpr::AO__opencl_atomic_store:
3748   case AtomicExpr::AO__hip_atomic_store:
3749   case AtomicExpr::AO__atomic_store:
3750   case AtomicExpr::AO__atomic_store_n:
3751   case AtomicExpr::AO__scoped_atomic_store:
3752   case AtomicExpr::AO__scoped_atomic_store_n:
3753     Form = Copy;
3754     break;
3755   case AtomicExpr::AO__atomic_fetch_add:
3756   case AtomicExpr::AO__atomic_fetch_sub:
3757   case AtomicExpr::AO__atomic_add_fetch:
3758   case AtomicExpr::AO__atomic_sub_fetch:
3759   case AtomicExpr::AO__scoped_atomic_fetch_add:
3760   case AtomicExpr::AO__scoped_atomic_fetch_sub:
3761   case AtomicExpr::AO__scoped_atomic_add_fetch:
3762   case AtomicExpr::AO__scoped_atomic_sub_fetch:
3763   case AtomicExpr::AO__c11_atomic_fetch_add:
3764   case AtomicExpr::AO__c11_atomic_fetch_sub:
3765   case AtomicExpr::AO__opencl_atomic_fetch_add:
3766   case AtomicExpr::AO__opencl_atomic_fetch_sub:
3767   case AtomicExpr::AO__hip_atomic_fetch_add:
3768   case AtomicExpr::AO__hip_atomic_fetch_sub:
3769     ArithAllows = AOEVT_Pointer | AOEVT_FP;
3770     Form = Arithmetic;
3771     break;
3772   case AtomicExpr::AO__atomic_fetch_max:
3773   case AtomicExpr::AO__atomic_fetch_min:
3774   case AtomicExpr::AO__atomic_max_fetch:
3775   case AtomicExpr::AO__atomic_min_fetch:
3776   case AtomicExpr::AO__scoped_atomic_fetch_max:
3777   case AtomicExpr::AO__scoped_atomic_fetch_min:
3778   case AtomicExpr::AO__scoped_atomic_max_fetch:
3779   case AtomicExpr::AO__scoped_atomic_min_fetch:
3780   case AtomicExpr::AO__c11_atomic_fetch_max:
3781   case AtomicExpr::AO__c11_atomic_fetch_min:
3782   case AtomicExpr::AO__opencl_atomic_fetch_max:
3783   case AtomicExpr::AO__opencl_atomic_fetch_min:
3784   case AtomicExpr::AO__hip_atomic_fetch_max:
3785   case AtomicExpr::AO__hip_atomic_fetch_min:
3786     ArithAllows = AOEVT_FP;
3787     Form = Arithmetic;
3788     break;
3789   case AtomicExpr::AO__c11_atomic_fetch_and:
3790   case AtomicExpr::AO__c11_atomic_fetch_or:
3791   case AtomicExpr::AO__c11_atomic_fetch_xor:
3792   case AtomicExpr::AO__hip_atomic_fetch_and:
3793   case AtomicExpr::AO__hip_atomic_fetch_or:
3794   case AtomicExpr::AO__hip_atomic_fetch_xor:
3795   case AtomicExpr::AO__c11_atomic_fetch_nand:
3796   case AtomicExpr::AO__opencl_atomic_fetch_and:
3797   case AtomicExpr::AO__opencl_atomic_fetch_or:
3798   case AtomicExpr::AO__opencl_atomic_fetch_xor:
3799   case AtomicExpr::AO__atomic_fetch_and:
3800   case AtomicExpr::AO__atomic_fetch_or:
3801   case AtomicExpr::AO__atomic_fetch_xor:
3802   case AtomicExpr::AO__atomic_fetch_nand:
3803   case AtomicExpr::AO__atomic_and_fetch:
3804   case AtomicExpr::AO__atomic_or_fetch:
3805   case AtomicExpr::AO__atomic_xor_fetch:
3806   case AtomicExpr::AO__atomic_nand_fetch:
3807   case AtomicExpr::AO__scoped_atomic_fetch_and:
3808   case AtomicExpr::AO__scoped_atomic_fetch_or:
3809   case AtomicExpr::AO__scoped_atomic_fetch_xor:
3810   case AtomicExpr::AO__scoped_atomic_fetch_nand:
3811   case AtomicExpr::AO__scoped_atomic_and_fetch:
3812   case AtomicExpr::AO__scoped_atomic_or_fetch:
3813   case AtomicExpr::AO__scoped_atomic_xor_fetch:
3814   case AtomicExpr::AO__scoped_atomic_nand_fetch:
3815     Form = Arithmetic;
3816     break;
3817 
3818   case AtomicExpr::AO__c11_atomic_exchange:
3819   case AtomicExpr::AO__hip_atomic_exchange:
3820   case AtomicExpr::AO__opencl_atomic_exchange:
3821   case AtomicExpr::AO__atomic_exchange_n:
3822   case AtomicExpr::AO__scoped_atomic_exchange_n:
3823     Form = Xchg;
3824     break;
3825 
3826   case AtomicExpr::AO__atomic_exchange:
3827   case AtomicExpr::AO__scoped_atomic_exchange:
3828     Form = GNUXchg;
3829     break;
3830 
3831   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3832   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3833   case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
3834   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
3835   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
3836   case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
3837     Form = C11CmpXchg;
3838     break;
3839 
3840   case AtomicExpr::AO__atomic_compare_exchange:
3841   case AtomicExpr::AO__atomic_compare_exchange_n:
3842   case AtomicExpr::AO__scoped_atomic_compare_exchange:
3843   case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
3844     Form = GNUCmpXchg;
3845     break;
3846   }
3847 
3848   unsigned AdjustedNumArgs = NumArgs[Form];
3849   if ((IsOpenCL || IsHIP || IsScoped) &&
3850       Op != AtomicExpr::AO__opencl_atomic_init)
3851     ++AdjustedNumArgs;
3852   // Check we have the right number of arguments.
3853   if (Args.size() < AdjustedNumArgs) {
3854     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
3855         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
3856         << /*is non object*/ 0 << ExprRange;
3857     return ExprError();
3858   } else if (Args.size() > AdjustedNumArgs) {
3859     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
3860          diag::err_typecheck_call_too_many_args)
3861         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
3862         << /*is non object*/ 0 << ExprRange;
3863     return ExprError();
3864   }
3865 
3866   // Inspect the first argument of the atomic operation.
3867   Expr *Ptr = Args[0];
3868   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
3869   if (ConvertedPtr.isInvalid())
3870     return ExprError();
3871 
3872   Ptr = ConvertedPtr.get();
3873   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
3874   if (!pointerType) {
3875     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
3876         << Ptr->getType() << 0 << Ptr->getSourceRange();
3877     return ExprError();
3878   }
3879 
3880   // For a __c11 builtin, this should be a pointer to an _Atomic type.
3881   QualType AtomTy = pointerType->getPointeeType(); // 'A'
3882   QualType ValType = AtomTy; // 'C'
3883   if (IsC11) {
3884     if (!AtomTy->isAtomicType()) {
3885       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
3886           << Ptr->getType() << Ptr->getSourceRange();
3887       return ExprError();
3888     }
3889     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
3890         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
3891       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
3892           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
3893           << Ptr->getSourceRange();
3894       return ExprError();
3895     }
3896     ValType = AtomTy->castAs<AtomicType>()->getValueType();
3897   } else if (Form != Load && Form != LoadCopy) {
3898     if (ValType.isConstQualified()) {
3899       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
3900           << Ptr->getType() << Ptr->getSourceRange();
3901       return ExprError();
3902     }
3903   }
3904 
3905   // Pointer to object of size zero is not allowed.
3906   if (RequireCompleteType(Ptr->getBeginLoc(), AtomTy,
3907                           diag::err_incomplete_type))
3908     return ExprError();
3909   if (Context.getTypeInfoInChars(AtomTy).Width.isZero()) {
3910     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
3911         << Ptr->getType() << 1 << Ptr->getSourceRange();
3912     return ExprError();
3913   }
3914 
3915   // For an arithmetic operation, the implied arithmetic must be well-formed.
3916   if (Form == Arithmetic) {
3917     // GCC does not enforce these rules for GNU atomics, but we do to help catch
3918     // trivial type errors.
3919     auto IsAllowedValueType = [&](QualType ValType,
3920                                   unsigned AllowedType) -> bool {
3921       if (ValType->isIntegerType())
3922         return true;
3923       if (ValType->isPointerType())
3924         return AllowedType & AOEVT_Pointer;
3925       if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP)))
3926         return false;
3927       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
3928       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
3929           &Context.getTargetInfo().getLongDoubleFormat() ==
3930               &llvm::APFloat::x87DoubleExtended())
3931         return false;
3932       return true;
3933     };
3934     if (!IsAllowedValueType(ValType, ArithAllows)) {
3935       auto DID = ArithAllows & AOEVT_FP
3936                      ? (ArithAllows & AOEVT_Pointer
3937                             ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp
3938                             : diag::err_atomic_op_needs_atomic_int_or_fp)
3939                      : diag::err_atomic_op_needs_atomic_int;
3940       Diag(ExprRange.getBegin(), DID)
3941           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3942       return ExprError();
3943     }
3944     if (IsC11 && ValType->isPointerType() &&
3945         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
3946                             diag::err_incomplete_type)) {
3947       return ExprError();
3948     }
3949   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
3950     // For __atomic_*_n operations, the value type must be a scalar integral or
3951     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
3952     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
3953         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3954     return ExprError();
3955   }
3956 
3957   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
3958       !AtomTy->isScalarType()) {
3959     // For GNU atomics, require a trivially-copyable type. This is not part of
3960     // the GNU atomics specification but we enforce it for consistency with
3961     // other atomics which generally all require a trivially-copyable type. This
3962     // is because atomics just copy bits.
3963     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
3964         << Ptr->getType() << Ptr->getSourceRange();
3965     return ExprError();
3966   }
3967 
3968   switch (ValType.getObjCLifetime()) {
3969   case Qualifiers::OCL_None:
3970   case Qualifiers::OCL_ExplicitNone:
3971     // okay
3972     break;
3973 
3974   case Qualifiers::OCL_Weak:
3975   case Qualifiers::OCL_Strong:
3976   case Qualifiers::OCL_Autoreleasing:
3977     // FIXME: Can this happen? By this point, ValType should be known
3978     // to be trivially copyable.
3979     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
3980         << ValType << Ptr->getSourceRange();
3981     return ExprError();
3982   }
3983 
3984   // All atomic operations have an overload which takes a pointer to a volatile
3985   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
3986   // into the result or the other operands. Similarly atomic_load takes a
3987   // pointer to a const 'A'.
3988   ValType.removeLocalVolatile();
3989   ValType.removeLocalConst();
3990   QualType ResultType = ValType;
3991   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
3992       Form == Init)
3993     ResultType = Context.VoidTy;
3994   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
3995     ResultType = Context.BoolTy;
3996 
3997   // The type of a parameter passed 'by value'. In the GNU atomics, such
3998   // arguments are actually passed as pointers.
3999   QualType ByValType = ValType; // 'CP'
4000   bool IsPassedByAddress = false;
4001   if (!IsC11 && !IsHIP && !IsN) {
4002     ByValType = Ptr->getType();
4003     IsPassedByAddress = true;
4004   }
4005 
4006   SmallVector<Expr *, 5> APIOrderedArgs;
4007   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4008     APIOrderedArgs.push_back(Args[0]);
4009     switch (Form) {
4010     case Init:
4011     case Load:
4012       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4013       break;
4014     case LoadCopy:
4015     case Copy:
4016     case Arithmetic:
4017     case Xchg:
4018       APIOrderedArgs.push_back(Args[2]); // Val1
4019       APIOrderedArgs.push_back(Args[1]); // Order
4020       break;
4021     case GNUXchg:
4022       APIOrderedArgs.push_back(Args[2]); // Val1
4023       APIOrderedArgs.push_back(Args[3]); // Val2
4024       APIOrderedArgs.push_back(Args[1]); // Order
4025       break;
4026     case C11CmpXchg:
4027       APIOrderedArgs.push_back(Args[2]); // Val1
4028       APIOrderedArgs.push_back(Args[4]); // Val2
4029       APIOrderedArgs.push_back(Args[1]); // Order
4030       APIOrderedArgs.push_back(Args[3]); // OrderFail
4031       break;
4032     case GNUCmpXchg:
4033       APIOrderedArgs.push_back(Args[2]); // Val1
4034       APIOrderedArgs.push_back(Args[4]); // Val2
4035       APIOrderedArgs.push_back(Args[5]); // Weak
4036       APIOrderedArgs.push_back(Args[1]); // Order
4037       APIOrderedArgs.push_back(Args[3]); // OrderFail
4038       break;
4039     }
4040   } else
4041     APIOrderedArgs.append(Args.begin(), Args.end());
4042 
4043   // The first argument's non-CV pointer type is used to deduce the type of
4044   // subsequent arguments, except for:
4045   //  - weak flag (always converted to bool)
4046   //  - memory order (always converted to int)
4047   //  - scope  (always converted to int)
4048   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
4049     QualType Ty;
4050     if (i < NumVals[Form] + 1) {
4051       switch (i) {
4052       case 0:
4053         // The first argument is always a pointer. It has a fixed type.
4054         // It is always dereferenced, a nullptr is undefined.
4055         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4056         // Nothing else to do: we already know all we want about this pointer.
4057         continue;
4058       case 1:
4059         // The second argument is the non-atomic operand. For arithmetic, this
4060         // is always passed by value, and for a compare_exchange it is always
4061         // passed by address. For the rest, GNU uses by-address and C11 uses
4062         // by-value.
4063         assert(Form != Load);
4064         if (Form == Arithmetic && ValType->isPointerType())
4065           Ty = Context.getPointerDiffType();
4066         else if (Form == Init || Form == Arithmetic)
4067           Ty = ValType;
4068         else if (Form == Copy || Form == Xchg) {
4069           if (IsPassedByAddress) {
4070             // The value pointer is always dereferenced, a nullptr is undefined.
4071             CheckNonNullArgument(*this, APIOrderedArgs[i],
4072                                  ExprRange.getBegin());
4073           }
4074           Ty = ByValType;
4075         } else {
4076           Expr *ValArg = APIOrderedArgs[i];
4077           // The value pointer is always dereferenced, a nullptr is undefined.
4078           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
4079           LangAS AS = LangAS::Default;
4080           // Keep address space of non-atomic pointer type.
4081           if (const PointerType *PtrTy =
4082                   ValArg->getType()->getAs<PointerType>()) {
4083             AS = PtrTy->getPointeeType().getAddressSpace();
4084           }
4085           Ty = Context.getPointerType(
4086               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
4087         }
4088         break;
4089       case 2:
4090         // The third argument to compare_exchange / GNU exchange is the desired
4091         // value, either by-value (for the C11 and *_n variant) or as a pointer.
4092         if (IsPassedByAddress)
4093           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4094         Ty = ByValType;
4095         break;
4096       case 3:
4097         // The fourth argument to GNU compare_exchange is a 'weak' flag.
4098         Ty = Context.BoolTy;
4099         break;
4100       }
4101     } else {
4102       // The order(s) and scope are always converted to int.
4103       Ty = Context.IntTy;
4104     }
4105 
4106     InitializedEntity Entity =
4107         InitializedEntity::InitializeParameter(Context, Ty, false);
4108     ExprResult Arg = APIOrderedArgs[i];
4109     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4110     if (Arg.isInvalid())
4111       return true;
4112     APIOrderedArgs[i] = Arg.get();
4113   }
4114 
4115   // Permute the arguments into a 'consistent' order.
4116   SmallVector<Expr*, 5> SubExprs;
4117   SubExprs.push_back(Ptr);
4118   switch (Form) {
4119   case Init:
4120     // Note, AtomicExpr::getVal1() has a special case for this atomic.
4121     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4122     break;
4123   case Load:
4124     SubExprs.push_back(APIOrderedArgs[1]); // Order
4125     break;
4126   case LoadCopy:
4127   case Copy:
4128   case Arithmetic:
4129   case Xchg:
4130     SubExprs.push_back(APIOrderedArgs[2]); // Order
4131     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4132     break;
4133   case GNUXchg:
4134     // Note, AtomicExpr::getVal2() has a special case for this atomic.
4135     SubExprs.push_back(APIOrderedArgs[3]); // Order
4136     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4137     SubExprs.push_back(APIOrderedArgs[2]); // Val2
4138     break;
4139   case C11CmpXchg:
4140     SubExprs.push_back(APIOrderedArgs[3]); // Order
4141     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4142     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
4143     SubExprs.push_back(APIOrderedArgs[2]); // Val2
4144     break;
4145   case GNUCmpXchg:
4146     SubExprs.push_back(APIOrderedArgs[4]); // Order
4147     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4148     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
4149     SubExprs.push_back(APIOrderedArgs[2]); // Val2
4150     SubExprs.push_back(APIOrderedArgs[3]); // Weak
4151     break;
4152   }
4153 
4154   // If the memory orders are constants, check they are valid.
4155   if (SubExprs.size() >= 2 && Form != Init) {
4156     std::optional<llvm::APSInt> Success =
4157         SubExprs[1]->getIntegerConstantExpr(Context);
4158     if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) {
4159       Diag(SubExprs[1]->getBeginLoc(),
4160            diag::warn_atomic_op_has_invalid_memory_order)
4161           << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg)
4162           << SubExprs[1]->getSourceRange();
4163     }
4164     if (SubExprs.size() >= 5) {
4165       if (std::optional<llvm::APSInt> Failure =
4166               SubExprs[3]->getIntegerConstantExpr(Context)) {
4167         if (!llvm::is_contained(
4168                 {llvm::AtomicOrderingCABI::relaxed,
4169                  llvm::AtomicOrderingCABI::consume,
4170                  llvm::AtomicOrderingCABI::acquire,
4171                  llvm::AtomicOrderingCABI::seq_cst},
4172                 (llvm::AtomicOrderingCABI)Failure->getSExtValue())) {
4173           Diag(SubExprs[3]->getBeginLoc(),
4174                diag::warn_atomic_op_has_invalid_memory_order)
4175               << /*failure=*/2 << SubExprs[3]->getSourceRange();
4176         }
4177       }
4178     }
4179   }
4180 
4181   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
4182     auto *Scope = Args[Args.size() - 1];
4183     if (std::optional<llvm::APSInt> Result =
4184             Scope->getIntegerConstantExpr(Context)) {
4185       if (!ScopeModel->isValid(Result->getZExtValue()))
4186         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
4187             << Scope->getSourceRange();
4188     }
4189     SubExprs.push_back(Scope);
4190   }
4191 
4192   AtomicExpr *AE = new (Context)
4193       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
4194 
4195   if ((Op == AtomicExpr::AO__c11_atomic_load ||
4196        Op == AtomicExpr::AO__c11_atomic_store ||
4197        Op == AtomicExpr::AO__opencl_atomic_load ||
4198        Op == AtomicExpr::AO__hip_atomic_load ||
4199        Op == AtomicExpr::AO__opencl_atomic_store ||
4200        Op == AtomicExpr::AO__hip_atomic_store) &&
4201       Context.AtomicUsesUnsupportedLibcall(AE))
4202     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
4203         << ((Op == AtomicExpr::AO__c11_atomic_load ||
4204              Op == AtomicExpr::AO__opencl_atomic_load ||
4205              Op == AtomicExpr::AO__hip_atomic_load)
4206                 ? 0
4207                 : 1);
4208 
4209   if (ValType->isBitIntType()) {
4210     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
4211     return ExprError();
4212   }
4213 
4214   return AE;
4215 }
4216 
4217 /// checkBuiltinArgument - Given a call to a builtin function, perform
4218 /// normal type-checking on the given argument, updating the call in
4219 /// place.  This is useful when a builtin function requires custom
4220 /// type-checking for some of its arguments but not necessarily all of
4221 /// them.
4222 ///
4223 /// Returns true on error.
4224 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
4225   FunctionDecl *Fn = E->getDirectCallee();
4226   assert(Fn && "builtin call without direct callee!");
4227 
4228   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
4229   InitializedEntity Entity =
4230     InitializedEntity::InitializeParameter(S.Context, Param);
4231 
4232   ExprResult Arg = E->getArg(ArgIndex);
4233   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
4234   if (Arg.isInvalid())
4235     return true;
4236 
4237   E->setArg(ArgIndex, Arg.get());
4238   return false;
4239 }
4240 
4241 ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) {
4242   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
4243   Expr *Callee = TheCall->getCallee();
4244   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
4245   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4246 
4247   // Ensure that we have at least one argument to do type inference from.
4248   if (TheCall->getNumArgs() < 1) {
4249     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4250         << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
4251         << Callee->getSourceRange();
4252     return ExprError();
4253   }
4254 
4255   // Inspect the first argument of the atomic builtin.  This should always be
4256   // a pointer type, whose element is an integral scalar or pointer type.
4257   // Because it is a pointer type, we don't have to worry about any implicit
4258   // casts here.
4259   // FIXME: We don't allow floating point scalars as input.
4260   Expr *FirstArg = TheCall->getArg(0);
4261   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
4262   if (FirstArgResult.isInvalid())
4263     return ExprError();
4264   FirstArg = FirstArgResult.get();
4265   TheCall->setArg(0, FirstArg);
4266 
4267   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
4268   if (!pointerType) {
4269     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4270         << FirstArg->getType() << 0 << FirstArg->getSourceRange();
4271     return ExprError();
4272   }
4273 
4274   QualType ValType = pointerType->getPointeeType();
4275   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4276       !ValType->isBlockPointerType()) {
4277     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
4278         << FirstArg->getType() << 0 << FirstArg->getSourceRange();
4279     return ExprError();
4280   }
4281 
4282   if (ValType.isConstQualified()) {
4283     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
4284         << FirstArg->getType() << FirstArg->getSourceRange();
4285     return ExprError();
4286   }
4287 
4288   switch (ValType.getObjCLifetime()) {
4289   case Qualifiers::OCL_None:
4290   case Qualifiers::OCL_ExplicitNone:
4291     // okay
4292     break;
4293 
4294   case Qualifiers::OCL_Weak:
4295   case Qualifiers::OCL_Strong:
4296   case Qualifiers::OCL_Autoreleasing:
4297     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4298         << ValType << FirstArg->getSourceRange();
4299     return ExprError();
4300   }
4301 
4302   // Strip any qualifiers off ValType.
4303   ValType = ValType.getUnqualifiedType();
4304 
4305   // The majority of builtins return a value, but a few have special return
4306   // types, so allow them to override appropriately below.
4307   QualType ResultType = ValType;
4308 
4309   // We need to figure out which concrete builtin this maps onto.  For example,
4310   // __sync_fetch_and_add with a 2 byte object turns into
4311   // __sync_fetch_and_add_2.
4312 #define BUILTIN_ROW(x) \
4313   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
4314     Builtin::BI##x##_8, Builtin::BI##x##_16 }
4315 
4316   static const unsigned BuiltinIndices[][5] = {
4317     BUILTIN_ROW(__sync_fetch_and_add),
4318     BUILTIN_ROW(__sync_fetch_and_sub),
4319     BUILTIN_ROW(__sync_fetch_and_or),
4320     BUILTIN_ROW(__sync_fetch_and_and),
4321     BUILTIN_ROW(__sync_fetch_and_xor),
4322     BUILTIN_ROW(__sync_fetch_and_nand),
4323 
4324     BUILTIN_ROW(__sync_add_and_fetch),
4325     BUILTIN_ROW(__sync_sub_and_fetch),
4326     BUILTIN_ROW(__sync_and_and_fetch),
4327     BUILTIN_ROW(__sync_or_and_fetch),
4328     BUILTIN_ROW(__sync_xor_and_fetch),
4329     BUILTIN_ROW(__sync_nand_and_fetch),
4330 
4331     BUILTIN_ROW(__sync_val_compare_and_swap),
4332     BUILTIN_ROW(__sync_bool_compare_and_swap),
4333     BUILTIN_ROW(__sync_lock_test_and_set),
4334     BUILTIN_ROW(__sync_lock_release),
4335     BUILTIN_ROW(__sync_swap)
4336   };
4337 #undef BUILTIN_ROW
4338 
4339   // Determine the index of the size.
4340   unsigned SizeIndex;
4341   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
4342   case 1: SizeIndex = 0; break;
4343   case 2: SizeIndex = 1; break;
4344   case 4: SizeIndex = 2; break;
4345   case 8: SizeIndex = 3; break;
4346   case 16: SizeIndex = 4; break;
4347   default:
4348     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
4349         << FirstArg->getType() << FirstArg->getSourceRange();
4350     return ExprError();
4351   }
4352 
4353   // Each of these builtins has one pointer argument, followed by some number of
4354   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
4355   // that we ignore.  Find out which row of BuiltinIndices to read from as well
4356   // as the number of fixed args.
4357   unsigned BuiltinID = FDecl->getBuiltinID();
4358   unsigned BuiltinIndex, NumFixed = 1;
4359   bool WarnAboutSemanticsChange = false;
4360   switch (BuiltinID) {
4361   default: llvm_unreachable("Unknown overloaded atomic builtin!");
4362   case Builtin::BI__sync_fetch_and_add:
4363   case Builtin::BI__sync_fetch_and_add_1:
4364   case Builtin::BI__sync_fetch_and_add_2:
4365   case Builtin::BI__sync_fetch_and_add_4:
4366   case Builtin::BI__sync_fetch_and_add_8:
4367   case Builtin::BI__sync_fetch_and_add_16:
4368     BuiltinIndex = 0;
4369     break;
4370 
4371   case Builtin::BI__sync_fetch_and_sub:
4372   case Builtin::BI__sync_fetch_and_sub_1:
4373   case Builtin::BI__sync_fetch_and_sub_2:
4374   case Builtin::BI__sync_fetch_and_sub_4:
4375   case Builtin::BI__sync_fetch_and_sub_8:
4376   case Builtin::BI__sync_fetch_and_sub_16:
4377     BuiltinIndex = 1;
4378     break;
4379 
4380   case Builtin::BI__sync_fetch_and_or:
4381   case Builtin::BI__sync_fetch_and_or_1:
4382   case Builtin::BI__sync_fetch_and_or_2:
4383   case Builtin::BI__sync_fetch_and_or_4:
4384   case Builtin::BI__sync_fetch_and_or_8:
4385   case Builtin::BI__sync_fetch_and_or_16:
4386     BuiltinIndex = 2;
4387     break;
4388 
4389   case Builtin::BI__sync_fetch_and_and:
4390   case Builtin::BI__sync_fetch_and_and_1:
4391   case Builtin::BI__sync_fetch_and_and_2:
4392   case Builtin::BI__sync_fetch_and_and_4:
4393   case Builtin::BI__sync_fetch_and_and_8:
4394   case Builtin::BI__sync_fetch_and_and_16:
4395     BuiltinIndex = 3;
4396     break;
4397 
4398   case Builtin::BI__sync_fetch_and_xor:
4399   case Builtin::BI__sync_fetch_and_xor_1:
4400   case Builtin::BI__sync_fetch_and_xor_2:
4401   case Builtin::BI__sync_fetch_and_xor_4:
4402   case Builtin::BI__sync_fetch_and_xor_8:
4403   case Builtin::BI__sync_fetch_and_xor_16:
4404     BuiltinIndex = 4;
4405     break;
4406 
4407   case Builtin::BI__sync_fetch_and_nand:
4408   case Builtin::BI__sync_fetch_and_nand_1:
4409   case Builtin::BI__sync_fetch_and_nand_2:
4410   case Builtin::BI__sync_fetch_and_nand_4:
4411   case Builtin::BI__sync_fetch_and_nand_8:
4412   case Builtin::BI__sync_fetch_and_nand_16:
4413     BuiltinIndex = 5;
4414     WarnAboutSemanticsChange = true;
4415     break;
4416 
4417   case Builtin::BI__sync_add_and_fetch:
4418   case Builtin::BI__sync_add_and_fetch_1:
4419   case Builtin::BI__sync_add_and_fetch_2:
4420   case Builtin::BI__sync_add_and_fetch_4:
4421   case Builtin::BI__sync_add_and_fetch_8:
4422   case Builtin::BI__sync_add_and_fetch_16:
4423     BuiltinIndex = 6;
4424     break;
4425 
4426   case Builtin::BI__sync_sub_and_fetch:
4427   case Builtin::BI__sync_sub_and_fetch_1:
4428   case Builtin::BI__sync_sub_and_fetch_2:
4429   case Builtin::BI__sync_sub_and_fetch_4:
4430   case Builtin::BI__sync_sub_and_fetch_8:
4431   case Builtin::BI__sync_sub_and_fetch_16:
4432     BuiltinIndex = 7;
4433     break;
4434 
4435   case Builtin::BI__sync_and_and_fetch:
4436   case Builtin::BI__sync_and_and_fetch_1:
4437   case Builtin::BI__sync_and_and_fetch_2:
4438   case Builtin::BI__sync_and_and_fetch_4:
4439   case Builtin::BI__sync_and_and_fetch_8:
4440   case Builtin::BI__sync_and_and_fetch_16:
4441     BuiltinIndex = 8;
4442     break;
4443 
4444   case Builtin::BI__sync_or_and_fetch:
4445   case Builtin::BI__sync_or_and_fetch_1:
4446   case Builtin::BI__sync_or_and_fetch_2:
4447   case Builtin::BI__sync_or_and_fetch_4:
4448   case Builtin::BI__sync_or_and_fetch_8:
4449   case Builtin::BI__sync_or_and_fetch_16:
4450     BuiltinIndex = 9;
4451     break;
4452 
4453   case Builtin::BI__sync_xor_and_fetch:
4454   case Builtin::BI__sync_xor_and_fetch_1:
4455   case Builtin::BI__sync_xor_and_fetch_2:
4456   case Builtin::BI__sync_xor_and_fetch_4:
4457   case Builtin::BI__sync_xor_and_fetch_8:
4458   case Builtin::BI__sync_xor_and_fetch_16:
4459     BuiltinIndex = 10;
4460     break;
4461 
4462   case Builtin::BI__sync_nand_and_fetch:
4463   case Builtin::BI__sync_nand_and_fetch_1:
4464   case Builtin::BI__sync_nand_and_fetch_2:
4465   case Builtin::BI__sync_nand_and_fetch_4:
4466   case Builtin::BI__sync_nand_and_fetch_8:
4467   case Builtin::BI__sync_nand_and_fetch_16:
4468     BuiltinIndex = 11;
4469     WarnAboutSemanticsChange = true;
4470     break;
4471 
4472   case Builtin::BI__sync_val_compare_and_swap:
4473   case Builtin::BI__sync_val_compare_and_swap_1:
4474   case Builtin::BI__sync_val_compare_and_swap_2:
4475   case Builtin::BI__sync_val_compare_and_swap_4:
4476   case Builtin::BI__sync_val_compare_and_swap_8:
4477   case Builtin::BI__sync_val_compare_and_swap_16:
4478     BuiltinIndex = 12;
4479     NumFixed = 2;
4480     break;
4481 
4482   case Builtin::BI__sync_bool_compare_and_swap:
4483   case Builtin::BI__sync_bool_compare_and_swap_1:
4484   case Builtin::BI__sync_bool_compare_and_swap_2:
4485   case Builtin::BI__sync_bool_compare_and_swap_4:
4486   case Builtin::BI__sync_bool_compare_and_swap_8:
4487   case Builtin::BI__sync_bool_compare_and_swap_16:
4488     BuiltinIndex = 13;
4489     NumFixed = 2;
4490     ResultType = Context.BoolTy;
4491     break;
4492 
4493   case Builtin::BI__sync_lock_test_and_set:
4494   case Builtin::BI__sync_lock_test_and_set_1:
4495   case Builtin::BI__sync_lock_test_and_set_2:
4496   case Builtin::BI__sync_lock_test_and_set_4:
4497   case Builtin::BI__sync_lock_test_and_set_8:
4498   case Builtin::BI__sync_lock_test_and_set_16:
4499     BuiltinIndex = 14;
4500     break;
4501 
4502   case Builtin::BI__sync_lock_release:
4503   case Builtin::BI__sync_lock_release_1:
4504   case Builtin::BI__sync_lock_release_2:
4505   case Builtin::BI__sync_lock_release_4:
4506   case Builtin::BI__sync_lock_release_8:
4507   case Builtin::BI__sync_lock_release_16:
4508     BuiltinIndex = 15;
4509     NumFixed = 0;
4510     ResultType = Context.VoidTy;
4511     break;
4512 
4513   case Builtin::BI__sync_swap:
4514   case Builtin::BI__sync_swap_1:
4515   case Builtin::BI__sync_swap_2:
4516   case Builtin::BI__sync_swap_4:
4517   case Builtin::BI__sync_swap_8:
4518   case Builtin::BI__sync_swap_16:
4519     BuiltinIndex = 16;
4520     break;
4521   }
4522 
4523   // Now that we know how many fixed arguments we expect, first check that we
4524   // have at least that many.
4525   if (TheCall->getNumArgs() < 1+NumFixed) {
4526     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4527         << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0
4528         << Callee->getSourceRange();
4529     return ExprError();
4530   }
4531 
4532   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
4533       << Callee->getSourceRange();
4534 
4535   if (WarnAboutSemanticsChange) {
4536     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
4537         << Callee->getSourceRange();
4538   }
4539 
4540   // Get the decl for the concrete builtin from this, we can tell what the
4541   // concrete integer type we should convert to is.
4542   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
4543   StringRef NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
4544   FunctionDecl *NewBuiltinDecl;
4545   if (NewBuiltinID == BuiltinID)
4546     NewBuiltinDecl = FDecl;
4547   else {
4548     // Perform builtin lookup to avoid redeclaring it.
4549     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
4550     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
4551     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
4552     assert(Res.getFoundDecl());
4553     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
4554     if (!NewBuiltinDecl)
4555       return ExprError();
4556   }
4557 
4558   // The first argument --- the pointer --- has a fixed type; we
4559   // deduce the types of the rest of the arguments accordingly.  Walk
4560   // the remaining arguments, converting them to the deduced value type.
4561   for (unsigned i = 0; i != NumFixed; ++i) {
4562     ExprResult Arg = TheCall->getArg(i+1);
4563 
4564     // GCC does an implicit conversion to the pointer or integer ValType.  This
4565     // can fail in some cases (1i -> int**), check for this error case now.
4566     // Initialize the argument.
4567     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
4568                                                    ValType, /*consume*/ false);
4569     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4570     if (Arg.isInvalid())
4571       return ExprError();
4572 
4573     // Okay, we have something that *can* be converted to the right type.  Check
4574     // to see if there is a potentially weird extension going on here.  This can
4575     // happen when you do an atomic operation on something like an char* and
4576     // pass in 42.  The 42 gets converted to char.  This is even more strange
4577     // for things like 45.123 -> char, etc.
4578     // FIXME: Do this check.
4579     TheCall->setArg(i+1, Arg.get());
4580   }
4581 
4582   // Create a new DeclRefExpr to refer to the new decl.
4583   DeclRefExpr *NewDRE = DeclRefExpr::Create(
4584       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
4585       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
4586       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
4587 
4588   // Set the callee in the CallExpr.
4589   // FIXME: This loses syntactic information.
4590   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
4591   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
4592                                               CK_BuiltinFnToFnPtr);
4593   TheCall->setCallee(PromotedCall.get());
4594 
4595   // Change the result type of the call to match the original value type. This
4596   // is arbitrary, but the codegen for these builtins ins design to handle it
4597   // gracefully.
4598   TheCall->setType(ResultType);
4599 
4600   // Prohibit problematic uses of bit-precise integer types with atomic
4601   // builtins. The arguments would have already been converted to the first
4602   // argument's type, so only need to check the first argument.
4603   const auto *BitIntValType = ValType->getAs<BitIntType>();
4604   if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
4605     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
4606     return ExprError();
4607   }
4608 
4609   return TheCallResult;
4610 }
4611 
4612 ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) {
4613   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
4614   DeclRefExpr *DRE =
4615       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4616   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4617   unsigned BuiltinID = FDecl->getBuiltinID();
4618   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
4619           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
4620          "Unexpected nontemporal load/store builtin!");
4621   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
4622   unsigned numArgs = isStore ? 2 : 1;
4623 
4624   // Ensure that we have the proper number of arguments.
4625   if (checkArgCount(TheCall, numArgs))
4626     return ExprError();
4627 
4628   // Inspect the last argument of the nontemporal builtin.  This should always
4629   // be a pointer type, from which we imply the type of the memory access.
4630   // Because it is a pointer type, we don't have to worry about any implicit
4631   // casts here.
4632   Expr *PointerArg = TheCall->getArg(numArgs - 1);
4633   ExprResult PointerArgResult =
4634       DefaultFunctionArrayLvalueConversion(PointerArg);
4635 
4636   if (PointerArgResult.isInvalid())
4637     return ExprError();
4638   PointerArg = PointerArgResult.get();
4639   TheCall->setArg(numArgs - 1, PointerArg);
4640 
4641   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
4642   if (!pointerType) {
4643     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
4644         << PointerArg->getType() << PointerArg->getSourceRange();
4645     return ExprError();
4646   }
4647 
4648   QualType ValType = pointerType->getPointeeType();
4649 
4650   // Strip any qualifiers off ValType.
4651   ValType = ValType.getUnqualifiedType();
4652   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4653       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
4654       !ValType->isVectorType()) {
4655     Diag(DRE->getBeginLoc(),
4656          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
4657         << PointerArg->getType() << PointerArg->getSourceRange();
4658     return ExprError();
4659   }
4660 
4661   if (!isStore) {
4662     TheCall->setType(ValType);
4663     return TheCallResult;
4664   }
4665 
4666   ExprResult ValArg = TheCall->getArg(0);
4667   InitializedEntity Entity = InitializedEntity::InitializeParameter(
4668       Context, ValType, /*consume*/ false);
4669   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
4670   if (ValArg.isInvalid())
4671     return ExprError();
4672 
4673   TheCall->setArg(0, ValArg.get());
4674   TheCall->setType(Context.VoidTy);
4675   return TheCallResult;
4676 }
4677 
4678 /// CheckObjCString - Checks that the format string argument to the os_log()
4679 /// and os_trace() functions is correct, and converts it to const char *.
4680 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
4681   Arg = Arg->IgnoreParenCasts();
4682   auto *Literal = dyn_cast<StringLiteral>(Arg);
4683   if (!Literal) {
4684     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
4685       Literal = ObjcLiteral->getString();
4686     }
4687   }
4688 
4689   if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
4690     return ExprError(
4691         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
4692         << Arg->getSourceRange());
4693   }
4694 
4695   ExprResult Result(Literal);
4696   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
4697   InitializedEntity Entity =
4698       InitializedEntity::InitializeParameter(Context, ResultTy, false);
4699   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
4700   return Result;
4701 }
4702 
4703 /// Check that the user is calling the appropriate va_start builtin for the
4704 /// target and calling convention.
4705 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
4706   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
4707   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
4708   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
4709                     TT.getArch() == llvm::Triple::aarch64_32);
4710   bool IsWindows = TT.isOSWindows();
4711   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
4712   if (IsX64 || IsAArch64) {
4713     CallingConv CC = CC_C;
4714     if (const FunctionDecl *FD = S.getCurFunctionDecl())
4715       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
4716     if (IsMSVAStart) {
4717       // Don't allow this in System V ABI functions.
4718       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
4719         return S.Diag(Fn->getBeginLoc(),
4720                       diag::err_ms_va_start_used_in_sysv_function);
4721     } else {
4722       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
4723       // On x64 Windows, don't allow this in System V ABI functions.
4724       // (Yes, that means there's no corresponding way to support variadic
4725       // System V ABI functions on Windows.)
4726       if ((IsWindows && CC == CC_X86_64SysV) ||
4727           (!IsWindows && CC == CC_Win64))
4728         return S.Diag(Fn->getBeginLoc(),
4729                       diag::err_va_start_used_in_wrong_abi_function)
4730                << !IsWindows;
4731     }
4732     return false;
4733   }
4734 
4735   if (IsMSVAStart)
4736     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
4737   return false;
4738 }
4739 
4740 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
4741                                              ParmVarDecl **LastParam = nullptr) {
4742   // Determine whether the current function, block, or obj-c method is variadic
4743   // and get its parameter list.
4744   bool IsVariadic = false;
4745   ArrayRef<ParmVarDecl *> Params;
4746   DeclContext *Caller = S.CurContext;
4747   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
4748     IsVariadic = Block->isVariadic();
4749     Params = Block->parameters();
4750   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
4751     IsVariadic = FD->isVariadic();
4752     Params = FD->parameters();
4753   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
4754     IsVariadic = MD->isVariadic();
4755     // FIXME: This isn't correct for methods (results in bogus warning).
4756     Params = MD->parameters();
4757   } else if (isa<CapturedDecl>(Caller)) {
4758     // We don't support va_start in a CapturedDecl.
4759     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
4760     return true;
4761   } else {
4762     // This must be some other declcontext that parses exprs.
4763     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
4764     return true;
4765   }
4766 
4767   if (!IsVariadic) {
4768     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
4769     return true;
4770   }
4771 
4772   if (LastParam)
4773     *LastParam = Params.empty() ? nullptr : Params.back();
4774 
4775   return false;
4776 }
4777 
4778 bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
4779   Expr *Fn = TheCall->getCallee();
4780 
4781   if (checkVAStartABI(*this, BuiltinID, Fn))
4782     return true;
4783 
4784   // In C23 mode, va_start only needs one argument. However, the builtin still
4785   // requires two arguments (which matches the behavior of the GCC builtin),
4786   // <stdarg.h> passes `0` as the second argument in C23 mode.
4787   if (checkArgCount(TheCall, 2))
4788     return true;
4789 
4790   // Type-check the first argument normally.
4791   if (checkBuiltinArgument(*this, TheCall, 0))
4792     return true;
4793 
4794   // Check that the current function is variadic, and get its last parameter.
4795   ParmVarDecl *LastParam;
4796   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
4797     return true;
4798 
4799   // Verify that the second argument to the builtin is the last argument of the
4800   // current function or method. In C23 mode, if the second argument is an
4801   // integer constant expression with value 0, then we don't bother with this
4802   // check.
4803   bool SecondArgIsLastNamedArgument = false;
4804   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
4805   if (std::optional<llvm::APSInt> Val =
4806           TheCall->getArg(1)->getIntegerConstantExpr(Context);
4807       Val && LangOpts.C23 && *Val == 0)
4808     return false;
4809 
4810   // These are valid if SecondArgIsLastNamedArgument is false after the next
4811   // block.
4812   QualType Type;
4813   SourceLocation ParamLoc;
4814   bool IsCRegister = false;
4815 
4816   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
4817     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
4818       SecondArgIsLastNamedArgument = PV == LastParam;
4819 
4820       Type = PV->getType();
4821       ParamLoc = PV->getLocation();
4822       IsCRegister =
4823           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
4824     }
4825   }
4826 
4827   if (!SecondArgIsLastNamedArgument)
4828     Diag(TheCall->getArg(1)->getBeginLoc(),
4829          diag::warn_second_arg_of_va_start_not_last_named_param);
4830   else if (IsCRegister || Type->isReferenceType() ||
4831            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
4832              // Promotable integers are UB, but enumerations need a bit of
4833              // extra checking to see what their promotable type actually is.
4834              if (!Context.isPromotableIntegerType(Type))
4835                return false;
4836              if (!Type->isEnumeralType())
4837                return true;
4838              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
4839              return !(ED &&
4840                       Context.typesAreCompatible(ED->getPromotionType(), Type));
4841            }()) {
4842     unsigned Reason = 0;
4843     if (Type->isReferenceType())  Reason = 1;
4844     else if (IsCRegister)         Reason = 2;
4845     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
4846     Diag(ParamLoc, diag::note_parameter_type) << Type;
4847   }
4848 
4849   return false;
4850 }
4851 
4852 bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) {
4853   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
4854     const LangOptions &LO = getLangOpts();
4855 
4856     if (LO.CPlusPlus)
4857       return Arg->getType()
4858                  .getCanonicalType()
4859                  .getTypePtr()
4860                  ->getPointeeType()
4861                  .withoutLocalFastQualifiers() == Context.CharTy;
4862 
4863     // In C, allow aliasing through `char *`, this is required for AArch64 at
4864     // least.
4865     return true;
4866   };
4867 
4868   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
4869   //                 const char *named_addr);
4870 
4871   Expr *Func = Call->getCallee();
4872 
4873   if (Call->getNumArgs() < 3)
4874     return Diag(Call->getEndLoc(),
4875                 diag::err_typecheck_call_too_few_args_at_least)
4876            << 0 /*function call*/ << 3 << Call->getNumArgs()
4877            << /*is non object*/ 0;
4878 
4879   // Type-check the first argument normally.
4880   if (checkBuiltinArgument(*this, Call, 0))
4881     return true;
4882 
4883   // Check that the current function is variadic.
4884   if (checkVAStartIsInVariadicFunction(*this, Func))
4885     return true;
4886 
4887   // __va_start on Windows does not validate the parameter qualifiers
4888 
4889   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
4890   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
4891 
4892   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
4893   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
4894 
4895   const QualType &ConstCharPtrTy =
4896       Context.getPointerType(Context.CharTy.withConst());
4897   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
4898     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
4899         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
4900         << 0                                      /* qualifier difference */
4901         << 3                                      /* parameter mismatch */
4902         << 2 << Arg1->getType() << ConstCharPtrTy;
4903 
4904   const QualType SizeTy = Context.getSizeType();
4905   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
4906     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
4907         << Arg2->getType() << SizeTy << 1 /* different class */
4908         << 0                              /* qualifier difference */
4909         << 3                              /* parameter mismatch */
4910         << 3 << Arg2->getType() << SizeTy;
4911 
4912   return false;
4913 }
4914 
4915 bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) {
4916   if (checkArgCount(TheCall, 2))
4917     return true;
4918 
4919   if (BuiltinID == Builtin::BI__builtin_isunordered &&
4920       TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs())
4921     Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4922         << 1 << 0 << TheCall->getSourceRange();
4923 
4924   ExprResult OrigArg0 = TheCall->getArg(0);
4925   ExprResult OrigArg1 = TheCall->getArg(1);
4926 
4927   // Do standard promotions between the two arguments, returning their common
4928   // type.
4929   QualType Res = UsualArithmeticConversions(
4930       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
4931   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
4932     return true;
4933 
4934   // Make sure any conversions are pushed back into the call; this is
4935   // type safe since unordered compare builtins are declared as "_Bool
4936   // foo(...)".
4937   TheCall->setArg(0, OrigArg0.get());
4938   TheCall->setArg(1, OrigArg1.get());
4939 
4940   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
4941     return false;
4942 
4943   // If the common type isn't a real floating type, then the arguments were
4944   // invalid for this operation.
4945   if (Res.isNull() || !Res->isRealFloatingType())
4946     return Diag(OrigArg0.get()->getBeginLoc(),
4947                 diag::err_typecheck_call_invalid_ordered_compare)
4948            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
4949            << SourceRange(OrigArg0.get()->getBeginLoc(),
4950                           OrigArg1.get()->getEndLoc());
4951 
4952   return false;
4953 }
4954 
4955 bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
4956                                    unsigned BuiltinID) {
4957   if (checkArgCount(TheCall, NumArgs))
4958     return true;
4959 
4960   FPOptions FPO = TheCall->getFPFeaturesInEffect(getLangOpts());
4961   if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite ||
4962                                BuiltinID == Builtin::BI__builtin_isinf ||
4963                                BuiltinID == Builtin::BI__builtin_isinf_sign))
4964     Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4965         << 0 << 0 << TheCall->getSourceRange();
4966 
4967   if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan ||
4968                                BuiltinID == Builtin::BI__builtin_isunordered))
4969     Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4970         << 1 << 0 << TheCall->getSourceRange();
4971 
4972   bool IsFPClass = NumArgs == 2;
4973 
4974   // Find out position of floating-point argument.
4975   unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1;
4976 
4977   // We can count on all parameters preceding the floating-point just being int.
4978   // Try all of those.
4979   for (unsigned i = 0; i < FPArgNo; ++i) {
4980     Expr *Arg = TheCall->getArg(i);
4981 
4982     if (Arg->isTypeDependent())
4983       return false;
4984 
4985     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy,
4986                                                AssignmentAction::Passing);
4987 
4988     if (Res.isInvalid())
4989       return true;
4990     TheCall->setArg(i, Res.get());
4991   }
4992 
4993   Expr *OrigArg = TheCall->getArg(FPArgNo);
4994 
4995   if (OrigArg->isTypeDependent())
4996     return false;
4997 
4998   // Usual Unary Conversions will convert half to float, which we want for
4999   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5000   // type how it is, but do normal L->Rvalue conversions.
5001   if (Context.getTargetInfo().useFP16ConversionIntrinsics()) {
5002     ExprResult Res = UsualUnaryConversions(OrigArg);
5003 
5004     if (!Res.isUsable())
5005       return true;
5006     OrigArg = Res.get();
5007   } else {
5008     ExprResult Res = DefaultFunctionArrayLvalueConversion(OrigArg);
5009 
5010     if (!Res.isUsable())
5011       return true;
5012     OrigArg = Res.get();
5013   }
5014   TheCall->setArg(FPArgNo, OrigArg);
5015 
5016   QualType VectorResultTy;
5017   QualType ElementTy = OrigArg->getType();
5018   // TODO: When all classification function are implemented with is_fpclass,
5019   // vector argument can be supported in all of them.
5020   if (ElementTy->isVectorType() && IsFPClass) {
5021     VectorResultTy = GetSignedVectorType(ElementTy);
5022     ElementTy = ElementTy->castAs<VectorType>()->getElementType();
5023   }
5024 
5025   // This operation requires a non-_Complex floating-point number.
5026   if (!ElementTy->isRealFloatingType())
5027     return Diag(OrigArg->getBeginLoc(),
5028                 diag::err_typecheck_call_invalid_unary_fp)
5029            << OrigArg->getType() << OrigArg->getSourceRange();
5030 
5031   // __builtin_isfpclass has integer parameter that specify test mask. It is
5032   // passed in (...), so it should be analyzed completely here.
5033   if (IsFPClass)
5034     if (BuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags))
5035       return true;
5036 
5037   // TODO: enable this code to all classification functions.
5038   if (IsFPClass) {
5039     QualType ResultTy;
5040     if (!VectorResultTy.isNull())
5041       ResultTy = VectorResultTy;
5042     else
5043       ResultTy = Context.IntTy;
5044     TheCall->setType(ResultTy);
5045   }
5046 
5047   return false;
5048 }
5049 
5050 bool Sema::BuiltinComplex(CallExpr *TheCall) {
5051   if (checkArgCount(TheCall, 2))
5052     return true;
5053 
5054   bool Dependent = false;
5055   for (unsigned I = 0; I != 2; ++I) {
5056     Expr *Arg = TheCall->getArg(I);
5057     QualType T = Arg->getType();
5058     if (T->isDependentType()) {
5059       Dependent = true;
5060       continue;
5061     }
5062 
5063     // Despite supporting _Complex int, GCC requires a real floating point type
5064     // for the operands of __builtin_complex.
5065     if (!T->isRealFloatingType()) {
5066       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5067              << Arg->getType() << Arg->getSourceRange();
5068     }
5069 
5070     ExprResult Converted = DefaultLvalueConversion(Arg);
5071     if (Converted.isInvalid())
5072       return true;
5073     TheCall->setArg(I, Converted.get());
5074   }
5075 
5076   if (Dependent) {
5077     TheCall->setType(Context.DependentTy);
5078     return false;
5079   }
5080 
5081   Expr *Real = TheCall->getArg(0);
5082   Expr *Imag = TheCall->getArg(1);
5083   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
5084     return Diag(Real->getBeginLoc(),
5085                 diag::err_typecheck_call_different_arg_types)
5086            << Real->getType() << Imag->getType()
5087            << Real->getSourceRange() << Imag->getSourceRange();
5088   }
5089 
5090   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
5091   // don't allow this builtin to form those types either.
5092   // FIXME: Should we allow these types?
5093   if (Real->getType()->isFloat16Type())
5094     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
5095            << "_Float16";
5096   if (Real->getType()->isHalfType())
5097     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
5098            << "half";
5099 
5100   TheCall->setType(Context.getComplexType(Real->getType()));
5101   return false;
5102 }
5103 
5104 /// BuiltinShuffleVector - Handle __builtin_shufflevector.
5105 // This is declared to take (...), so we have to check everything.
5106 ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) {
5107   if (TheCall->getNumArgs() < 2)
5108     return ExprError(Diag(TheCall->getEndLoc(),
5109                           diag::err_typecheck_call_too_few_args_at_least)
5110                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5111                      << /*is non object*/ 0 << TheCall->getSourceRange());
5112 
5113   // Determine which of the following types of shufflevector we're checking:
5114   // 1) unary, vector mask: (lhs, mask)
5115   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5116   QualType resType = TheCall->getArg(0)->getType();
5117   unsigned numElements = 0;
5118 
5119   if (!TheCall->getArg(0)->isTypeDependent() &&
5120       !TheCall->getArg(1)->isTypeDependent()) {
5121     QualType LHSType = TheCall->getArg(0)->getType();
5122     QualType RHSType = TheCall->getArg(1)->getType();
5123 
5124     if (!LHSType->isVectorType() || !RHSType->isVectorType())
5125       return ExprError(
5126           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
5127           << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false
5128           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5129                          TheCall->getArg(1)->getEndLoc()));
5130 
5131     numElements = LHSType->castAs<VectorType>()->getNumElements();
5132     unsigned numResElements = TheCall->getNumArgs() - 2;
5133 
5134     // Check to see if we have a call with 2 vector arguments, the unary shuffle
5135     // with mask.  If so, verify that RHS is an integer vector type with the
5136     // same number of elts as lhs.
5137     if (TheCall->getNumArgs() == 2) {
5138       if (!RHSType->hasIntegerRepresentation() ||
5139           RHSType->castAs<VectorType>()->getNumElements() != numElements)
5140         return ExprError(Diag(TheCall->getBeginLoc(),
5141                               diag::err_vec_builtin_incompatible_vector)
5142                          << TheCall->getDirectCallee()
5143                          << /*isMorethantwoArgs*/ false
5144                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
5145                                         TheCall->getArg(1)->getEndLoc()));
5146     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
5147       return ExprError(Diag(TheCall->getBeginLoc(),
5148                             diag::err_vec_builtin_incompatible_vector)
5149                        << TheCall->getDirectCallee()
5150                        << /*isMorethantwoArgs*/ false
5151                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5152                                       TheCall->getArg(1)->getEndLoc()));
5153     } else if (numElements != numResElements) {
5154       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
5155       resType =
5156           Context.getVectorType(eltType, numResElements, VectorKind::Generic);
5157     }
5158   }
5159 
5160   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
5161     if (TheCall->getArg(i)->isTypeDependent() ||
5162         TheCall->getArg(i)->isValueDependent())
5163       continue;
5164 
5165     std::optional<llvm::APSInt> Result;
5166     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
5167       return ExprError(Diag(TheCall->getBeginLoc(),
5168                             diag::err_shufflevector_nonconstant_argument)
5169                        << TheCall->getArg(i)->getSourceRange());
5170 
5171     // Allow -1 which will be translated to undef in the IR.
5172     if (Result->isSigned() && Result->isAllOnes())
5173       continue;
5174 
5175     if (Result->getActiveBits() > 64 ||
5176         Result->getZExtValue() >= numElements * 2)
5177       return ExprError(Diag(TheCall->getBeginLoc(),
5178                             diag::err_shufflevector_argument_too_large)
5179                        << TheCall->getArg(i)->getSourceRange());
5180   }
5181 
5182   SmallVector<Expr*, 32> exprs;
5183 
5184   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
5185     exprs.push_back(TheCall->getArg(i));
5186     TheCall->setArg(i, nullptr);
5187   }
5188 
5189   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
5190                                          TheCall->getCallee()->getBeginLoc(),
5191                                          TheCall->getRParenLoc());
5192 }
5193 
5194 ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
5195                                    SourceLocation BuiltinLoc,
5196                                    SourceLocation RParenLoc) {
5197   ExprValueKind VK = VK_PRValue;
5198   ExprObjectKind OK = OK_Ordinary;
5199   QualType DstTy = TInfo->getType();
5200   QualType SrcTy = E->getType();
5201 
5202   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
5203     return ExprError(Diag(BuiltinLoc,
5204                           diag::err_convertvector_non_vector)
5205                      << E->getSourceRange());
5206   if (!DstTy->isVectorType() && !DstTy->isDependentType())
5207     return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type)
5208                      << "second"
5209                      << "__builtin_convertvector");
5210 
5211   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
5212     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
5213     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
5214     if (SrcElts != DstElts)
5215       return ExprError(Diag(BuiltinLoc,
5216                             diag::err_convertvector_incompatible_vector)
5217                        << E->getSourceRange());
5218   }
5219 
5220   return new (Context) class ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
5221                                                BuiltinLoc, RParenLoc);
5222 }
5223 
5224 bool Sema::BuiltinPrefetch(CallExpr *TheCall) {
5225   unsigned NumArgs = TheCall->getNumArgs();
5226 
5227   if (NumArgs > 3)
5228     return Diag(TheCall->getEndLoc(),
5229                 diag::err_typecheck_call_too_many_args_at_most)
5230            << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0
5231            << TheCall->getSourceRange();
5232 
5233   // Argument 0 is checked for us and the remaining arguments must be
5234   // constant integers.
5235   for (unsigned i = 1; i != NumArgs; ++i)
5236     if (BuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
5237       return true;
5238 
5239   return false;
5240 }
5241 
5242 bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) {
5243   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
5244     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
5245            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5246   if (checkArgCount(TheCall, 1))
5247     return true;
5248   Expr *Arg = TheCall->getArg(0);
5249   if (Arg->isInstantiationDependent())
5250     return false;
5251 
5252   QualType ArgTy = Arg->getType();
5253   if (!ArgTy->hasFloatingRepresentation())
5254     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
5255            << ArgTy;
5256   if (Arg->isLValue()) {
5257     ExprResult FirstArg = DefaultLvalueConversion(Arg);
5258     TheCall->setArg(0, FirstArg.get());
5259   }
5260   TheCall->setType(TheCall->getArg(0)->getType());
5261   return false;
5262 }
5263 
5264 bool Sema::BuiltinAssume(CallExpr *TheCall) {
5265   Expr *Arg = TheCall->getArg(0);
5266   if (Arg->isInstantiationDependent()) return false;
5267 
5268   if (Arg->HasSideEffects(Context))
5269     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
5270         << Arg->getSourceRange()
5271         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
5272 
5273   return false;
5274 }
5275 
5276 bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) {
5277   // The alignment must be a constant integer.
5278   Expr *Arg = TheCall->getArg(1);
5279 
5280   // We can't check the value of a dependent argument.
5281   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5282     if (const auto *UE =
5283             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
5284       if (UE->getKind() == UETT_AlignOf ||
5285           UE->getKind() == UETT_PreferredAlignOf)
5286         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
5287             << Arg->getSourceRange();
5288 
5289     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
5290 
5291     if (!Result.isPowerOf2())
5292       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5293              << Arg->getSourceRange();
5294 
5295     if (Result < Context.getCharWidth())
5296       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
5297              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
5298 
5299     if (Result > std::numeric_limits<int32_t>::max())
5300       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
5301              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
5302   }
5303 
5304   return false;
5305 }
5306 
5307 bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) {
5308   if (checkArgCountRange(TheCall, 2, 3))
5309     return true;
5310 
5311   unsigned NumArgs = TheCall->getNumArgs();
5312   Expr *FirstArg = TheCall->getArg(0);
5313 
5314   {
5315     ExprResult FirstArgResult =
5316         DefaultFunctionArrayLvalueConversion(FirstArg);
5317     if (checkBuiltinArgument(*this, TheCall, 0))
5318       return true;
5319     /// In-place updation of FirstArg by checkBuiltinArgument is ignored.
5320     TheCall->setArg(0, FirstArgResult.get());
5321   }
5322 
5323   // The alignment must be a constant integer.
5324   Expr *SecondArg = TheCall->getArg(1);
5325 
5326   // We can't check the value of a dependent argument.
5327   if (!SecondArg->isValueDependent()) {
5328     llvm::APSInt Result;
5329     if (BuiltinConstantArg(TheCall, 1, Result))
5330       return true;
5331 
5332     if (!Result.isPowerOf2())
5333       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5334              << SecondArg->getSourceRange();
5335 
5336     if (Result > Sema::MaximumAlignment)
5337       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
5338           << SecondArg->getSourceRange() << Sema::MaximumAlignment;
5339   }
5340 
5341   if (NumArgs > 2) {
5342     Expr *ThirdArg = TheCall->getArg(2);
5343     if (convertArgumentToType(*this, ThirdArg, Context.getSizeType()))
5344       return true;
5345     TheCall->setArg(2, ThirdArg);
5346   }
5347 
5348   return false;
5349 }
5350 
5351 bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) {
5352   unsigned BuiltinID =
5353       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
5354   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
5355 
5356   unsigned NumArgs = TheCall->getNumArgs();
5357   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
5358   if (NumArgs < NumRequiredArgs) {
5359     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5360            << 0 /* function call */ << NumRequiredArgs << NumArgs
5361            << /*is non object*/ 0 << TheCall->getSourceRange();
5362   }
5363   if (NumArgs >= NumRequiredArgs + 0x100) {
5364     return Diag(TheCall->getEndLoc(),
5365                 diag::err_typecheck_call_too_many_args_at_most)
5366            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
5367            << /*is non object*/ 0 << TheCall->getSourceRange();
5368   }
5369   unsigned i = 0;
5370 
5371   // For formatting call, check buffer arg.
5372   if (!IsSizeCall) {
5373     ExprResult Arg(TheCall->getArg(i));
5374     InitializedEntity Entity = InitializedEntity::InitializeParameter(
5375         Context, Context.VoidPtrTy, false);
5376     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5377     if (Arg.isInvalid())
5378       return true;
5379     TheCall->setArg(i, Arg.get());
5380     i++;
5381   }
5382 
5383   // Check string literal arg.
5384   unsigned FormatIdx = i;
5385   {
5386     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
5387     if (Arg.isInvalid())
5388       return true;
5389     TheCall->setArg(i, Arg.get());
5390     i++;
5391   }
5392 
5393   // Make sure variadic args are scalar.
5394   unsigned FirstDataArg = i;
5395   while (i < NumArgs) {
5396     ExprResult Arg = DefaultVariadicArgumentPromotion(
5397         TheCall->getArg(i), VariadicFunction, nullptr);
5398     if (Arg.isInvalid())
5399       return true;
5400     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
5401     if (ArgSize.getQuantity() >= 0x100) {
5402       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
5403              << i << (int)ArgSize.getQuantity() << 0xff
5404              << TheCall->getSourceRange();
5405     }
5406     TheCall->setArg(i, Arg.get());
5407     i++;
5408   }
5409 
5410   // Check formatting specifiers. NOTE: We're only doing this for the non-size
5411   // call to avoid duplicate diagnostics.
5412   if (!IsSizeCall) {
5413     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
5414     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
5415     bool Success = CheckFormatArguments(
5416         Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog,
5417         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
5418         CheckedVarArgs);
5419     if (!Success)
5420       return true;
5421   }
5422 
5423   if (IsSizeCall) {
5424     TheCall->setType(Context.getSizeType());
5425   } else {
5426     TheCall->setType(Context.VoidPtrTy);
5427   }
5428   return false;
5429 }
5430 
5431 bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum,
5432                               llvm::APSInt &Result) {
5433   Expr *Arg = TheCall->getArg(ArgNum);
5434   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5435   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5436 
5437   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
5438 
5439   std::optional<llvm::APSInt> R;
5440   if (!(R = Arg->getIntegerConstantExpr(Context)))
5441     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
5442            << FDecl->getDeclName() << Arg->getSourceRange();
5443   Result = *R;
5444   return false;
5445 }
5446 
5447 bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
5448                                    int High, bool RangeIsError) {
5449   if (isConstantEvaluatedContext())
5450     return false;
5451   llvm::APSInt Result;
5452 
5453   // We can't check the value of a dependent argument.
5454   Expr *Arg = TheCall->getArg(ArgNum);
5455   if (Arg->isTypeDependent() || Arg->isValueDependent())
5456     return false;
5457 
5458   // Check constant-ness first.
5459   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5460     return true;
5461 
5462   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
5463     if (RangeIsError)
5464       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
5465              << toString(Result, 10) << Low << High << Arg->getSourceRange();
5466     else
5467       // Defer the warning until we know if the code will be emitted so that
5468       // dead code can ignore this.
5469       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
5470                           PDiag(diag::warn_argument_invalid_range)
5471                               << toString(Result, 10) << Low << High
5472                               << Arg->getSourceRange());
5473   }
5474 
5475   return false;
5476 }
5477 
5478 bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
5479                                       unsigned Num) {
5480   llvm::APSInt Result;
5481 
5482   // We can't check the value of a dependent argument.
5483   Expr *Arg = TheCall->getArg(ArgNum);
5484   if (Arg->isTypeDependent() || Arg->isValueDependent())
5485     return false;
5486 
5487   // Check constant-ness first.
5488   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5489     return true;
5490 
5491   if (Result.getSExtValue() % Num != 0)
5492     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
5493            << Num << Arg->getSourceRange();
5494 
5495   return false;
5496 }
5497 
5498 bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
5499   llvm::APSInt Result;
5500 
5501   // We can't check the value of a dependent argument.
5502   Expr *Arg = TheCall->getArg(ArgNum);
5503   if (Arg->isTypeDependent() || Arg->isValueDependent())
5504     return false;
5505 
5506   // Check constant-ness first.
5507   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5508     return true;
5509 
5510   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
5511   // and only if x is a power of 2.
5512   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
5513     return false;
5514 
5515   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
5516          << Arg->getSourceRange();
5517 }
5518 
5519 static bool IsShiftedByte(llvm::APSInt Value) {
5520   if (Value.isNegative())
5521     return false;
5522 
5523   // Check if it's a shifted byte, by shifting it down
5524   while (true) {
5525     // If the value fits in the bottom byte, the check passes.
5526     if (Value < 0x100)
5527       return true;
5528 
5529     // Otherwise, if the value has _any_ bits in the bottom byte, the check
5530     // fails.
5531     if ((Value & 0xFF) != 0)
5532       return false;
5533 
5534     // If the bottom 8 bits are all 0, but something above that is nonzero,
5535     // then shifting the value right by 8 bits won't affect whether it's a
5536     // shifted byte or not. So do that, and go round again.
5537     Value >>= 8;
5538   }
5539 }
5540 
5541 bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
5542                                          unsigned ArgBits) {
5543   llvm::APSInt Result;
5544 
5545   // We can't check the value of a dependent argument.
5546   Expr *Arg = TheCall->getArg(ArgNum);
5547   if (Arg->isTypeDependent() || Arg->isValueDependent())
5548     return false;
5549 
5550   // Check constant-ness first.
5551   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5552     return true;
5553 
5554   // Truncate to the given size.
5555   Result = Result.getLoBits(ArgBits);
5556   Result.setIsUnsigned(true);
5557 
5558   if (IsShiftedByte(Result))
5559     return false;
5560 
5561   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
5562          << Arg->getSourceRange();
5563 }
5564 
5565 bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
5566                                                unsigned ArgBits) {
5567   llvm::APSInt Result;
5568 
5569   // We can't check the value of a dependent argument.
5570   Expr *Arg = TheCall->getArg(ArgNum);
5571   if (Arg->isTypeDependent() || Arg->isValueDependent())
5572     return false;
5573 
5574   // Check constant-ness first.
5575   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5576     return true;
5577 
5578   // Truncate to the given size.
5579   Result = Result.getLoBits(ArgBits);
5580   Result.setIsUnsigned(true);
5581 
5582   // Check to see if it's in either of the required forms.
5583   if (IsShiftedByte(Result) ||
5584       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
5585     return false;
5586 
5587   return Diag(TheCall->getBeginLoc(),
5588               diag::err_argument_not_shifted_byte_or_xxff)
5589          << Arg->getSourceRange();
5590 }
5591 
5592 bool Sema::BuiltinLongjmp(CallExpr *TheCall) {
5593   if (!Context.getTargetInfo().hasSjLjLowering())
5594     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
5595            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5596 
5597   Expr *Arg = TheCall->getArg(1);
5598   llvm::APSInt Result;
5599 
5600   // TODO: This is less than ideal. Overload this to take a value.
5601   if (BuiltinConstantArg(TheCall, 1, Result))
5602     return true;
5603 
5604   if (Result != 1)
5605     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
5606            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
5607 
5608   return false;
5609 }
5610 
5611 bool Sema::BuiltinSetjmp(CallExpr *TheCall) {
5612   if (!Context.getTargetInfo().hasSjLjLowering())
5613     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
5614            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5615   return false;
5616 }
5617 
5618 bool Sema::BuiltinCountedByRef(CallExpr *TheCall) {
5619   if (checkArgCount(TheCall, 1))
5620     return true;
5621 
5622   ExprResult ArgRes = UsualUnaryConversions(TheCall->getArg(0));
5623   if (ArgRes.isInvalid())
5624     return true;
5625 
5626   // For simplicity, we support only limited expressions for the argument.
5627   // Specifically a pointer to a flexible array member:'ptr->array'. This
5628   // allows us to reject arguments with complex casting, which really shouldn't
5629   // be a huge problem.
5630   const Expr *Arg = ArgRes.get()->IgnoreParenImpCasts();
5631   if (!isa<PointerType>(Arg->getType()) && !Arg->getType()->isArrayType())
5632     return Diag(Arg->getBeginLoc(),
5633                 diag::err_builtin_counted_by_ref_must_be_flex_array_member)
5634            << Arg->getSourceRange();
5635 
5636   if (Arg->HasSideEffects(Context))
5637     return Diag(Arg->getBeginLoc(),
5638                 diag::err_builtin_counted_by_ref_has_side_effects)
5639            << Arg->getSourceRange();
5640 
5641   if (const auto *ME = dyn_cast<MemberExpr>(Arg)) {
5642     if (!ME->isFlexibleArrayMemberLike(
5643             Context, getLangOpts().getStrictFlexArraysLevel()))
5644       return Diag(Arg->getBeginLoc(),
5645                   diag::err_builtin_counted_by_ref_must_be_flex_array_member)
5646              << Arg->getSourceRange();
5647 
5648     if (auto *CATy =
5649             ME->getMemberDecl()->getType()->getAs<CountAttributedType>();
5650         CATy && CATy->getKind() == CountAttributedType::CountedBy) {
5651       const auto *FAMDecl = cast<FieldDecl>(ME->getMemberDecl());
5652       if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) {
5653         TheCall->setType(Context.getPointerType(CountFD->getType()));
5654         return false;
5655       }
5656     }
5657   } else {
5658     return Diag(Arg->getBeginLoc(),
5659                 diag::err_builtin_counted_by_ref_must_be_flex_array_member)
5660            << Arg->getSourceRange();
5661   }
5662 
5663   TheCall->setType(Context.getPointerType(Context.VoidTy));
5664   return false;
5665 }
5666 
5667 namespace {
5668 
5669 class UncoveredArgHandler {
5670   enum { Unknown = -1, AllCovered = -2 };
5671 
5672   signed FirstUncoveredArg = Unknown;
5673   SmallVector<const Expr *, 4> DiagnosticExprs;
5674 
5675 public:
5676   UncoveredArgHandler() = default;
5677 
5678   bool hasUncoveredArg() const {
5679     return (FirstUncoveredArg >= 0);
5680   }
5681 
5682   unsigned getUncoveredArg() const {
5683     assert(hasUncoveredArg() && "no uncovered argument");
5684     return FirstUncoveredArg;
5685   }
5686 
5687   void setAllCovered() {
5688     // A string has been found with all arguments covered, so clear out
5689     // the diagnostics.
5690     DiagnosticExprs.clear();
5691     FirstUncoveredArg = AllCovered;
5692   }
5693 
5694   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
5695     assert(NewFirstUncoveredArg >= 0 && "Outside range");
5696 
5697     // Don't update if a previous string covers all arguments.
5698     if (FirstUncoveredArg == AllCovered)
5699       return;
5700 
5701     // UncoveredArgHandler tracks the highest uncovered argument index
5702     // and with it all the strings that match this index.
5703     if (NewFirstUncoveredArg == FirstUncoveredArg)
5704       DiagnosticExprs.push_back(StrExpr);
5705     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
5706       DiagnosticExprs.clear();
5707       DiagnosticExprs.push_back(StrExpr);
5708       FirstUncoveredArg = NewFirstUncoveredArg;
5709     }
5710   }
5711 
5712   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
5713 };
5714 
5715 enum StringLiteralCheckType {
5716   SLCT_NotALiteral,
5717   SLCT_UncheckedLiteral,
5718   SLCT_CheckedLiteral
5719 };
5720 
5721 } // namespace
5722 
5723 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
5724                                      BinaryOperatorKind BinOpKind,
5725                                      bool AddendIsRight) {
5726   unsigned BitWidth = Offset.getBitWidth();
5727   unsigned AddendBitWidth = Addend.getBitWidth();
5728   // There might be negative interim results.
5729   if (Addend.isUnsigned()) {
5730     Addend = Addend.zext(++AddendBitWidth);
5731     Addend.setIsSigned(true);
5732   }
5733   // Adjust the bit width of the APSInts.
5734   if (AddendBitWidth > BitWidth) {
5735     Offset = Offset.sext(AddendBitWidth);
5736     BitWidth = AddendBitWidth;
5737   } else if (BitWidth > AddendBitWidth) {
5738     Addend = Addend.sext(BitWidth);
5739   }
5740 
5741   bool Ov = false;
5742   llvm::APSInt ResOffset = Offset;
5743   if (BinOpKind == BO_Add)
5744     ResOffset = Offset.sadd_ov(Addend, Ov);
5745   else {
5746     assert(AddendIsRight && BinOpKind == BO_Sub &&
5747            "operator must be add or sub with addend on the right");
5748     ResOffset = Offset.ssub_ov(Addend, Ov);
5749   }
5750 
5751   // We add an offset to a pointer here so we should support an offset as big as
5752   // possible.
5753   if (Ov) {
5754     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
5755            "index (intermediate) result too big");
5756     Offset = Offset.sext(2 * BitWidth);
5757     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
5758     return;
5759   }
5760 
5761   Offset = ResOffset;
5762 }
5763 
5764 namespace {
5765 
5766 // This is a wrapper class around StringLiteral to support offsetted string
5767 // literals as format strings. It takes the offset into account when returning
5768 // the string and its length or the source locations to display notes correctly.
5769 class FormatStringLiteral {
5770   const StringLiteral *FExpr;
5771   int64_t Offset;
5772 
5773  public:
5774   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
5775       : FExpr(fexpr), Offset(Offset) {}
5776 
5777   StringRef getString() const {
5778     return FExpr->getString().drop_front(Offset);
5779   }
5780 
5781   unsigned getByteLength() const {
5782     return FExpr->getByteLength() - getCharByteWidth() * Offset;
5783   }
5784 
5785   unsigned getLength() const { return FExpr->getLength() - Offset; }
5786   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
5787 
5788   StringLiteralKind getKind() const { return FExpr->getKind(); }
5789 
5790   QualType getType() const { return FExpr->getType(); }
5791 
5792   bool isAscii() const { return FExpr->isOrdinary(); }
5793   bool isWide() const { return FExpr->isWide(); }
5794   bool isUTF8() const { return FExpr->isUTF8(); }
5795   bool isUTF16() const { return FExpr->isUTF16(); }
5796   bool isUTF32() const { return FExpr->isUTF32(); }
5797   bool isPascal() const { return FExpr->isPascal(); }
5798 
5799   SourceLocation getLocationOfByte(
5800       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
5801       const TargetInfo &Target, unsigned *StartToken = nullptr,
5802       unsigned *StartTokenByteOffset = nullptr) const {
5803     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
5804                                     StartToken, StartTokenByteOffset);
5805   }
5806 
5807   SourceLocation getBeginLoc() const LLVM_READONLY {
5808     return FExpr->getBeginLoc().getLocWithOffset(Offset);
5809   }
5810 
5811   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
5812 };
5813 
5814 } // namespace
5815 
5816 static void CheckFormatString(
5817     Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
5818     ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
5819     unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
5820     bool inFunctionCall, Sema::VariadicCallType CallType,
5821     llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
5822     bool IgnoreStringsWithoutSpecifiers);
5823 
5824 static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
5825                                                const Expr *E);
5826 
5827 // Determine if an expression is a string literal or constant string.
5828 // If this function returns false on the arguments to a function expecting a
5829 // format string, we will usually need to emit a warning.
5830 // True string literals are then checked by CheckFormatString.
5831 static StringLiteralCheckType
5832 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
5833                       Sema::FormatArgumentPassingKind APK, unsigned format_idx,
5834                       unsigned firstDataArg, Sema::FormatStringType Type,
5835                       Sema::VariadicCallType CallType, bool InFunctionCall,
5836                       llvm::SmallBitVector &CheckedVarArgs,
5837                       UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset,
5838                       bool IgnoreStringsWithoutSpecifiers = false) {
5839   if (S.isConstantEvaluatedContext())
5840     return SLCT_NotALiteral;
5841 tryAgain:
5842   assert(Offset.isSigned() && "invalid offset");
5843 
5844   if (E->isTypeDependent() || E->isValueDependent())
5845     return SLCT_NotALiteral;
5846 
5847   E = E->IgnoreParenCasts();
5848 
5849   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
5850     // Technically -Wformat-nonliteral does not warn about this case.
5851     // The behavior of printf and friends in this case is implementation
5852     // dependent.  Ideally if the format string cannot be null then
5853     // it should have a 'nonnull' attribute in the function prototype.
5854     return SLCT_UncheckedLiteral;
5855 
5856   switch (E->getStmtClass()) {
5857   case Stmt::InitListExprClass:
5858     // Handle expressions like {"foobar"}.
5859     if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) {
5860       return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
5861                                    Type, CallType, /*InFunctionCall*/ false,
5862                                    CheckedVarArgs, UncoveredArg, Offset,
5863                                    IgnoreStringsWithoutSpecifiers);
5864     }
5865     return SLCT_NotALiteral;
5866   case Stmt::BinaryConditionalOperatorClass:
5867   case Stmt::ConditionalOperatorClass: {
5868     // The expression is a literal if both sub-expressions were, and it was
5869     // completely checked only if both sub-expressions were checked.
5870     const AbstractConditionalOperator *C =
5871         cast<AbstractConditionalOperator>(E);
5872 
5873     // Determine whether it is necessary to check both sub-expressions, for
5874     // example, because the condition expression is a constant that can be
5875     // evaluated at compile time.
5876     bool CheckLeft = true, CheckRight = true;
5877 
5878     bool Cond;
5879     if (C->getCond()->EvaluateAsBooleanCondition(
5880             Cond, S.getASTContext(), S.isConstantEvaluatedContext())) {
5881       if (Cond)
5882         CheckRight = false;
5883       else
5884         CheckLeft = false;
5885     }
5886 
5887     // We need to maintain the offsets for the right and the left hand side
5888     // separately to check if every possible indexed expression is a valid
5889     // string literal. They might have different offsets for different string
5890     // literals in the end.
5891     StringLiteralCheckType Left;
5892     if (!CheckLeft)
5893       Left = SLCT_UncheckedLiteral;
5894     else {
5895       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx,
5896                                    firstDataArg, Type, CallType, InFunctionCall,
5897                                    CheckedVarArgs, UncoveredArg, Offset,
5898                                    IgnoreStringsWithoutSpecifiers);
5899       if (Left == SLCT_NotALiteral || !CheckRight) {
5900         return Left;
5901       }
5902     }
5903 
5904     StringLiteralCheckType Right = checkFormatStringExpr(
5905         S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type,
5906         CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
5907         IgnoreStringsWithoutSpecifiers);
5908 
5909     return (CheckLeft && Left < Right) ? Left : Right;
5910   }
5911 
5912   case Stmt::ImplicitCastExprClass:
5913     E = cast<ImplicitCastExpr>(E)->getSubExpr();
5914     goto tryAgain;
5915 
5916   case Stmt::OpaqueValueExprClass:
5917     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
5918       E = src;
5919       goto tryAgain;
5920     }
5921     return SLCT_NotALiteral;
5922 
5923   case Stmt::PredefinedExprClass:
5924     // While __func__, etc., are technically not string literals, they
5925     // cannot contain format specifiers and thus are not a security
5926     // liability.
5927     return SLCT_UncheckedLiteral;
5928 
5929   case Stmt::DeclRefExprClass: {
5930     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
5931 
5932     // As an exception, do not flag errors for variables binding to
5933     // const string literals.
5934     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
5935       bool isConstant = false;
5936       QualType T = DR->getType();
5937 
5938       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
5939         isConstant = AT->getElementType().isConstant(S.Context);
5940       } else if (const PointerType *PT = T->getAs<PointerType>()) {
5941         isConstant = T.isConstant(S.Context) &&
5942                      PT->getPointeeType().isConstant(S.Context);
5943       } else if (T->isObjCObjectPointerType()) {
5944         // In ObjC, there is usually no "const ObjectPointer" type,
5945         // so don't check if the pointee type is constant.
5946         isConstant = T.isConstant(S.Context);
5947       }
5948 
5949       if (isConstant) {
5950         if (const Expr *Init = VD->getAnyInitializer()) {
5951           // Look through initializers like const char c[] = { "foo" }
5952           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
5953             if (InitList->isStringLiteralInit())
5954               Init = InitList->getInit(0)->IgnoreParenImpCasts();
5955           }
5956           return checkFormatStringExpr(
5957               S, Init, Args, APK, format_idx, firstDataArg, Type, CallType,
5958               /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
5959         }
5960       }
5961 
5962       // When the format argument is an argument of this function, and this
5963       // function also has the format attribute, there are several interactions
5964       // for which there shouldn't be a warning. For instance, when calling
5965       // v*printf from a function that has the printf format attribute, we
5966       // should not emit a warning about using `fmt`, even though it's not
5967       // constant, because the arguments have already been checked for the
5968       // caller of `logmessage`:
5969       //
5970       //  __attribute__((format(printf, 1, 2)))
5971       //  void logmessage(char const *fmt, ...) {
5972       //    va_list ap;
5973       //    va_start(ap, fmt);
5974       //    vprintf(fmt, ap);  /* do not emit a warning about "fmt" */
5975       //    ...
5976       // }
5977       //
5978       // Another interaction that we need to support is calling a variadic
5979       // format function from a format function that has fixed arguments. For
5980       // instance:
5981       //
5982       //  __attribute__((format(printf, 1, 2)))
5983       //  void logstring(char const *fmt, char const *str) {
5984       //    printf(fmt, str);  /* do not emit a warning about "fmt" */
5985       //  }
5986       //
5987       // Same (and perhaps more relatably) for the variadic template case:
5988       //
5989       //  template<typename... Args>
5990       //  __attribute__((format(printf, 1, 2)))
5991       //  void log(const char *fmt, Args&&... args) {
5992       //    printf(fmt, forward<Args>(args)...);
5993       //           /* do not emit a warning about "fmt" */
5994       //  }
5995       //
5996       // Due to implementation difficulty, we only check the format, not the
5997       // format arguments, in all cases.
5998       //
5999       if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
6000         if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
6001           for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
6002             bool IsCXXMember = false;
6003             if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
6004               IsCXXMember = MD->isInstance();
6005 
6006             bool IsVariadic = false;
6007             if (const FunctionType *FnTy = D->getFunctionType())
6008               IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
6009             else if (const auto *BD = dyn_cast<BlockDecl>(D))
6010               IsVariadic = BD->isVariadic();
6011             else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
6012               IsVariadic = OMD->isVariadic();
6013 
6014             Sema::FormatStringInfo CallerFSI;
6015             if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic,
6016                                           &CallerFSI)) {
6017               // We also check if the formats are compatible.
6018               // We can't pass a 'scanf' string to a 'printf' function.
6019               if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx &&
6020                   Type == S.GetFormatStringType(PVFormat)) {
6021                 // Lastly, check that argument passing kinds transition in a
6022                 // way that makes sense:
6023                 // from a caller with FAPK_VAList, allow FAPK_VAList
6024                 // from a caller with FAPK_Fixed, allow FAPK_Fixed
6025                 // from a caller with FAPK_Fixed, allow FAPK_Variadic
6026                 // from a caller with FAPK_Variadic, allow FAPK_VAList
6027                 switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
6028                 case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
6029                 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
6030                 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
6031                 case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
6032                   return SLCT_UncheckedLiteral;
6033                 }
6034               }
6035             }
6036           }
6037         }
6038       }
6039     }
6040 
6041     return SLCT_NotALiteral;
6042   }
6043 
6044   case Stmt::CallExprClass:
6045   case Stmt::CXXMemberCallExprClass: {
6046     const CallExpr *CE = cast<CallExpr>(E);
6047     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
6048       bool IsFirst = true;
6049       StringLiteralCheckType CommonResult;
6050       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
6051         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
6052         StringLiteralCheckType Result = checkFormatStringExpr(
6053             S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
6054             InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6055             IgnoreStringsWithoutSpecifiers);
6056         if (IsFirst) {
6057           CommonResult = Result;
6058           IsFirst = false;
6059         }
6060       }
6061       if (!IsFirst)
6062         return CommonResult;
6063 
6064       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
6065         unsigned BuiltinID = FD->getBuiltinID();
6066         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
6067             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
6068           const Expr *Arg = CE->getArg(0);
6069           return checkFormatStringExpr(
6070               S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
6071               InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6072               IgnoreStringsWithoutSpecifiers);
6073         }
6074       }
6075     }
6076     if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E))
6077       return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
6078                                    Type, CallType, /*InFunctionCall*/ false,
6079                                    CheckedVarArgs, UncoveredArg, Offset,
6080                                    IgnoreStringsWithoutSpecifiers);
6081     return SLCT_NotALiteral;
6082   }
6083   case Stmt::ObjCMessageExprClass: {
6084     const auto *ME = cast<ObjCMessageExpr>(E);
6085     if (const auto *MD = ME->getMethodDecl()) {
6086       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
6087         // As a special case heuristic, if we're using the method -[NSBundle
6088         // localizedStringForKey:value:table:], ignore any key strings that lack
6089         // format specifiers. The idea is that if the key doesn't have any
6090         // format specifiers then its probably just a key to map to the
6091         // localized strings. If it does have format specifiers though, then its
6092         // likely that the text of the key is the format string in the
6093         // programmer's language, and should be checked.
6094         const ObjCInterfaceDecl *IFace;
6095         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
6096             IFace->getIdentifier()->isStr("NSBundle") &&
6097             MD->getSelector().isKeywordSelector(
6098                 {"localizedStringForKey", "value", "table"})) {
6099           IgnoreStringsWithoutSpecifiers = true;
6100         }
6101 
6102         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
6103         return checkFormatStringExpr(
6104             S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
6105             InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6106             IgnoreStringsWithoutSpecifiers);
6107       }
6108     }
6109 
6110     return SLCT_NotALiteral;
6111   }
6112   case Stmt::ObjCStringLiteralClass:
6113   case Stmt::StringLiteralClass: {
6114     const StringLiteral *StrE = nullptr;
6115 
6116     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
6117       StrE = ObjCFExpr->getString();
6118     else
6119       StrE = cast<StringLiteral>(E);
6120 
6121     if (StrE) {
6122       if (Offset.isNegative() || Offset > StrE->getLength()) {
6123         // TODO: It would be better to have an explicit warning for out of
6124         // bounds literals.
6125         return SLCT_NotALiteral;
6126       }
6127       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
6128       CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type,
6129                         InFunctionCall, CallType, CheckedVarArgs, UncoveredArg,
6130                         IgnoreStringsWithoutSpecifiers);
6131       return SLCT_CheckedLiteral;
6132     }
6133 
6134     return SLCT_NotALiteral;
6135   }
6136   case Stmt::BinaryOperatorClass: {
6137     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
6138 
6139     // A string literal + an int offset is still a string literal.
6140     if (BinOp->isAdditiveOp()) {
6141       Expr::EvalResult LResult, RResult;
6142 
6143       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
6144           LResult, S.Context, Expr::SE_NoSideEffects,
6145           S.isConstantEvaluatedContext());
6146       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
6147           RResult, S.Context, Expr::SE_NoSideEffects,
6148           S.isConstantEvaluatedContext());
6149 
6150       if (LIsInt != RIsInt) {
6151         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
6152 
6153         if (LIsInt) {
6154           if (BinOpKind == BO_Add) {
6155             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
6156             E = BinOp->getRHS();
6157             goto tryAgain;
6158           }
6159         } else {
6160           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
6161           E = BinOp->getLHS();
6162           goto tryAgain;
6163         }
6164       }
6165     }
6166 
6167     return SLCT_NotALiteral;
6168   }
6169   case Stmt::UnaryOperatorClass: {
6170     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
6171     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
6172     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
6173       Expr::EvalResult IndexResult;
6174       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
6175                                        Expr::SE_NoSideEffects,
6176                                        S.isConstantEvaluatedContext())) {
6177         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
6178                    /*RHS is int*/ true);
6179         E = ASE->getBase();
6180         goto tryAgain;
6181       }
6182     }
6183 
6184     return SLCT_NotALiteral;
6185   }
6186 
6187   default:
6188     return SLCT_NotALiteral;
6189   }
6190 }
6191 
6192 // If this expression can be evaluated at compile-time,
6193 // check if the result is a StringLiteral and return it
6194 // otherwise return nullptr
6195 static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
6196                                                const Expr *E) {
6197   Expr::EvalResult Result;
6198   if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) {
6199     const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>();
6200     if (isa_and_nonnull<StringLiteral>(LVE))
6201       return LVE;
6202   }
6203   return nullptr;
6204 }
6205 
6206 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
6207   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
6208       .Case("scanf", FST_Scanf)
6209       .Cases("printf", "printf0", "syslog", FST_Printf)
6210       .Cases("NSString", "CFString", FST_NSString)
6211       .Case("strftime", FST_Strftime)
6212       .Case("strfmon", FST_Strfmon)
6213       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
6214       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
6215       .Case("os_trace", FST_OSLog)
6216       .Case("os_log", FST_OSLog)
6217       .Default(FST_Unknown);
6218 }
6219 
6220 bool Sema::CheckFormatArguments(const FormatAttr *Format,
6221                                 ArrayRef<const Expr *> Args, bool IsCXXMember,
6222                                 VariadicCallType CallType, SourceLocation Loc,
6223                                 SourceRange Range,
6224                                 llvm::SmallBitVector &CheckedVarArgs) {
6225   FormatStringInfo FSI;
6226   if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply,
6227                           &FSI))
6228     return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx,
6229                                 FSI.FirstDataArg, GetFormatStringType(Format),
6230                                 CallType, Loc, Range, CheckedVarArgs);
6231   return false;
6232 }
6233 
6234 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
6235                                 Sema::FormatArgumentPassingKind APK,
6236                                 unsigned format_idx, unsigned firstDataArg,
6237                                 FormatStringType Type,
6238                                 VariadicCallType CallType, SourceLocation Loc,
6239                                 SourceRange Range,
6240                                 llvm::SmallBitVector &CheckedVarArgs) {
6241   // CHECK: printf/scanf-like function is called with no format string.
6242   if (format_idx >= Args.size()) {
6243     Diag(Loc, diag::warn_missing_format_string) << Range;
6244     return false;
6245   }
6246 
6247   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
6248 
6249   // CHECK: format string is not a string literal.
6250   //
6251   // Dynamically generated format strings are difficult to
6252   // automatically vet at compile time.  Requiring that format strings
6253   // are string literals: (1) permits the checking of format strings by
6254   // the compiler and thereby (2) can practically remove the source of
6255   // many format string exploits.
6256 
6257   // Format string can be either ObjC string (e.g. @"%d") or
6258   // C string (e.g. "%d")
6259   // ObjC string uses the same format specifiers as C string, so we can use
6260   // the same format string checking logic for both ObjC and C strings.
6261   UncoveredArgHandler UncoveredArg;
6262   StringLiteralCheckType CT = checkFormatStringExpr(
6263       *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type,
6264       CallType,
6265       /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
6266       /*no string offset*/ llvm::APSInt(64, false) = 0);
6267 
6268   // Generate a diagnostic where an uncovered argument is detected.
6269   if (UncoveredArg.hasUncoveredArg()) {
6270     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
6271     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
6272     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
6273   }
6274 
6275   if (CT != SLCT_NotALiteral)
6276     // Literal format string found, check done!
6277     return CT == SLCT_CheckedLiteral;
6278 
6279   // Strftime is particular as it always uses a single 'time' argument,
6280   // so it is safe to pass a non-literal string.
6281   if (Type == FST_Strftime)
6282     return false;
6283 
6284   // Do not emit diag when the string param is a macro expansion and the
6285   // format is either NSString or CFString. This is a hack to prevent
6286   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
6287   // which are usually used in place of NS and CF string literals.
6288   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
6289   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
6290     return false;
6291 
6292   // If there are no arguments specified, warn with -Wformat-security, otherwise
6293   // warn only with -Wformat-nonliteral.
6294   if (Args.size() == firstDataArg) {
6295     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
6296       << OrigFormatExpr->getSourceRange();
6297     switch (Type) {
6298     default:
6299       break;
6300     case FST_Kprintf:
6301     case FST_FreeBSDKPrintf:
6302     case FST_Printf:
6303     case FST_Syslog:
6304       Diag(FormatLoc, diag::note_format_security_fixit)
6305         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
6306       break;
6307     case FST_NSString:
6308       Diag(FormatLoc, diag::note_format_security_fixit)
6309         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
6310       break;
6311     }
6312   } else {
6313     Diag(FormatLoc, diag::warn_format_nonliteral)
6314       << OrigFormatExpr->getSourceRange();
6315   }
6316   return false;
6317 }
6318 
6319 namespace {
6320 
6321 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
6322 protected:
6323   Sema &S;
6324   const FormatStringLiteral *FExpr;
6325   const Expr *OrigFormatExpr;
6326   const Sema::FormatStringType FSType;
6327   const unsigned FirstDataArg;
6328   const unsigned NumDataArgs;
6329   const char *Beg; // Start of format string.
6330   const Sema::FormatArgumentPassingKind ArgPassingKind;
6331   ArrayRef<const Expr *> Args;
6332   unsigned FormatIdx;
6333   llvm::SmallBitVector CoveredArgs;
6334   bool usesPositionalArgs = false;
6335   bool atFirstArg = true;
6336   bool inFunctionCall;
6337   Sema::VariadicCallType CallType;
6338   llvm::SmallBitVector &CheckedVarArgs;
6339   UncoveredArgHandler &UncoveredArg;
6340 
6341 public:
6342   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
6343                      const Expr *origFormatExpr,
6344                      const Sema::FormatStringType type, unsigned firstDataArg,
6345                      unsigned numDataArgs, const char *beg,
6346                      Sema::FormatArgumentPassingKind APK,
6347                      ArrayRef<const Expr *> Args, unsigned formatIdx,
6348                      bool inFunctionCall, Sema::VariadicCallType callType,
6349                      llvm::SmallBitVector &CheckedVarArgs,
6350                      UncoveredArgHandler &UncoveredArg)
6351       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
6352         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
6353         ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
6354         inFunctionCall(inFunctionCall), CallType(callType),
6355         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
6356     CoveredArgs.resize(numDataArgs);
6357     CoveredArgs.reset();
6358   }
6359 
6360   void DoneProcessing();
6361 
6362   void HandleIncompleteSpecifier(const char *startSpecifier,
6363                                  unsigned specifierLen) override;
6364 
6365   void HandleInvalidLengthModifier(
6366                            const analyze_format_string::FormatSpecifier &FS,
6367                            const analyze_format_string::ConversionSpecifier &CS,
6368                            const char *startSpecifier, unsigned specifierLen,
6369                            unsigned DiagID);
6370 
6371   void HandleNonStandardLengthModifier(
6372                     const analyze_format_string::FormatSpecifier &FS,
6373                     const char *startSpecifier, unsigned specifierLen);
6374 
6375   void HandleNonStandardConversionSpecifier(
6376                     const analyze_format_string::ConversionSpecifier &CS,
6377                     const char *startSpecifier, unsigned specifierLen);
6378 
6379   void HandlePosition(const char *startPos, unsigned posLen) override;
6380 
6381   void HandleInvalidPosition(const char *startSpecifier,
6382                              unsigned specifierLen,
6383                              analyze_format_string::PositionContext p) override;
6384 
6385   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
6386 
6387   void HandleNullChar(const char *nullCharacter) override;
6388 
6389   template <typename Range>
6390   static void
6391   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
6392                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
6393                        bool IsStringLocation, Range StringRange,
6394                        ArrayRef<FixItHint> Fixit = {});
6395 
6396 protected:
6397   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
6398                                         const char *startSpec,
6399                                         unsigned specifierLen,
6400                                         const char *csStart, unsigned csLen);
6401 
6402   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
6403                                          const char *startSpec,
6404                                          unsigned specifierLen);
6405 
6406   SourceRange getFormatStringRange();
6407   CharSourceRange getSpecifierRange(const char *startSpecifier,
6408                                     unsigned specifierLen);
6409   SourceLocation getLocationOfByte(const char *x);
6410 
6411   const Expr *getDataArg(unsigned i) const;
6412 
6413   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
6414                     const analyze_format_string::ConversionSpecifier &CS,
6415                     const char *startSpecifier, unsigned specifierLen,
6416                     unsigned argIndex);
6417 
6418   template <typename Range>
6419   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
6420                             bool IsStringLocation, Range StringRange,
6421                             ArrayRef<FixItHint> Fixit = {});
6422 };
6423 
6424 } // namespace
6425 
6426 SourceRange CheckFormatHandler::getFormatStringRange() {
6427   return OrigFormatExpr->getSourceRange();
6428 }
6429 
6430 CharSourceRange CheckFormatHandler::
6431 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
6432   SourceLocation Start = getLocationOfByte(startSpecifier);
6433   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
6434 
6435   // Advance the end SourceLocation by one due to half-open ranges.
6436   End = End.getLocWithOffset(1);
6437 
6438   return CharSourceRange::getCharRange(Start, End);
6439 }
6440 
6441 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
6442   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
6443                                   S.getLangOpts(), S.Context.getTargetInfo());
6444 }
6445 
6446 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
6447                                                    unsigned specifierLen){
6448   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
6449                        getLocationOfByte(startSpecifier),
6450                        /*IsStringLocation*/true,
6451                        getSpecifierRange(startSpecifier, specifierLen));
6452 }
6453 
6454 void CheckFormatHandler::HandleInvalidLengthModifier(
6455     const analyze_format_string::FormatSpecifier &FS,
6456     const analyze_format_string::ConversionSpecifier &CS,
6457     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
6458   using namespace analyze_format_string;
6459 
6460   const LengthModifier &LM = FS.getLengthModifier();
6461   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6462 
6463   // See if we know how to fix this length modifier.
6464   std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6465   if (FixedLM) {
6466     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6467                          getLocationOfByte(LM.getStart()),
6468                          /*IsStringLocation*/true,
6469                          getSpecifierRange(startSpecifier, specifierLen));
6470 
6471     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6472       << FixedLM->toString()
6473       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6474 
6475   } else {
6476     FixItHint Hint;
6477     if (DiagID == diag::warn_format_nonsensical_length)
6478       Hint = FixItHint::CreateRemoval(LMRange);
6479 
6480     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6481                          getLocationOfByte(LM.getStart()),
6482                          /*IsStringLocation*/true,
6483                          getSpecifierRange(startSpecifier, specifierLen),
6484                          Hint);
6485   }
6486 }
6487 
6488 void CheckFormatHandler::HandleNonStandardLengthModifier(
6489     const analyze_format_string::FormatSpecifier &FS,
6490     const char *startSpecifier, unsigned specifierLen) {
6491   using namespace analyze_format_string;
6492 
6493   const LengthModifier &LM = FS.getLengthModifier();
6494   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6495 
6496   // See if we know how to fix this length modifier.
6497   std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6498   if (FixedLM) {
6499     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6500                            << LM.toString() << 0,
6501                          getLocationOfByte(LM.getStart()),
6502                          /*IsStringLocation*/true,
6503                          getSpecifierRange(startSpecifier, specifierLen));
6504 
6505     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6506       << FixedLM->toString()
6507       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6508 
6509   } else {
6510     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6511                            << LM.toString() << 0,
6512                          getLocationOfByte(LM.getStart()),
6513                          /*IsStringLocation*/true,
6514                          getSpecifierRange(startSpecifier, specifierLen));
6515   }
6516 }
6517 
6518 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
6519     const analyze_format_string::ConversionSpecifier &CS,
6520     const char *startSpecifier, unsigned specifierLen) {
6521   using namespace analyze_format_string;
6522 
6523   // See if we know how to fix this conversion specifier.
6524   std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
6525   if (FixedCS) {
6526     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6527                           << CS.toString() << /*conversion specifier*/1,
6528                          getLocationOfByte(CS.getStart()),
6529                          /*IsStringLocation*/true,
6530                          getSpecifierRange(startSpecifier, specifierLen));
6531 
6532     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
6533     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
6534       << FixedCS->toString()
6535       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
6536   } else {
6537     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6538                           << CS.toString() << /*conversion specifier*/1,
6539                          getLocationOfByte(CS.getStart()),
6540                          /*IsStringLocation*/true,
6541                          getSpecifierRange(startSpecifier, specifierLen));
6542   }
6543 }
6544 
6545 void CheckFormatHandler::HandlePosition(const char *startPos,
6546                                         unsigned posLen) {
6547   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
6548                                getLocationOfByte(startPos),
6549                                /*IsStringLocation*/true,
6550                                getSpecifierRange(startPos, posLen));
6551 }
6552 
6553 void CheckFormatHandler::HandleInvalidPosition(
6554     const char *startSpecifier, unsigned specifierLen,
6555     analyze_format_string::PositionContext p) {
6556   EmitFormatDiagnostic(
6557       S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p,
6558       getLocationOfByte(startSpecifier), /*IsStringLocation*/ true,
6559       getSpecifierRange(startSpecifier, specifierLen));
6560 }
6561 
6562 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
6563                                             unsigned posLen) {
6564   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
6565                                getLocationOfByte(startPos),
6566                                /*IsStringLocation*/true,
6567                                getSpecifierRange(startPos, posLen));
6568 }
6569 
6570 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
6571   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
6572     // The presence of a null character is likely an error.
6573     EmitFormatDiagnostic(
6574       S.PDiag(diag::warn_printf_format_string_contains_null_char),
6575       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
6576       getFormatStringRange());
6577   }
6578 }
6579 
6580 // Note that this may return NULL if there was an error parsing or building
6581 // one of the argument expressions.
6582 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
6583   return Args[FirstDataArg + i];
6584 }
6585 
6586 void CheckFormatHandler::DoneProcessing() {
6587   // Does the number of data arguments exceed the number of
6588   // format conversions in the format string?
6589   if (ArgPassingKind != Sema::FAPK_VAList) {
6590     // Find any arguments that weren't covered.
6591     CoveredArgs.flip();
6592     signed notCoveredArg = CoveredArgs.find_first();
6593     if (notCoveredArg >= 0) {
6594       assert((unsigned)notCoveredArg < NumDataArgs);
6595       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
6596     } else {
6597       UncoveredArg.setAllCovered();
6598     }
6599   }
6600 }
6601 
6602 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
6603                                    const Expr *ArgExpr) {
6604   assert(hasUncoveredArg() && !DiagnosticExprs.empty() &&
6605          "Invalid state");
6606 
6607   if (!ArgExpr)
6608     return;
6609 
6610   SourceLocation Loc = ArgExpr->getBeginLoc();
6611 
6612   if (S.getSourceManager().isInSystemMacro(Loc))
6613     return;
6614 
6615   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
6616   for (auto E : DiagnosticExprs)
6617     PDiag << E->getSourceRange();
6618 
6619   CheckFormatHandler::EmitFormatDiagnostic(
6620                                   S, IsFunctionCall, DiagnosticExprs[0],
6621                                   PDiag, Loc, /*IsStringLocation*/false,
6622                                   DiagnosticExprs[0]->getSourceRange());
6623 }
6624 
6625 bool
6626 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
6627                                                      SourceLocation Loc,
6628                                                      const char *startSpec,
6629                                                      unsigned specifierLen,
6630                                                      const char *csStart,
6631                                                      unsigned csLen) {
6632   bool keepGoing = true;
6633   if (argIndex < NumDataArgs) {
6634     // Consider the argument coverered, even though the specifier doesn't
6635     // make sense.
6636     CoveredArgs.set(argIndex);
6637   }
6638   else {
6639     // If argIndex exceeds the number of data arguments we
6640     // don't issue a warning because that is just a cascade of warnings (and
6641     // they may have intended '%%' anyway). We don't want to continue processing
6642     // the format string after this point, however, as we will like just get
6643     // gibberish when trying to match arguments.
6644     keepGoing = false;
6645   }
6646 
6647   StringRef Specifier(csStart, csLen);
6648 
6649   // If the specifier in non-printable, it could be the first byte of a UTF-8
6650   // sequence. In that case, print the UTF-8 code point. If not, print the byte
6651   // hex value.
6652   std::string CodePointStr;
6653   if (!llvm::sys::locale::isPrint(*csStart)) {
6654     llvm::UTF32 CodePoint;
6655     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
6656     const llvm::UTF8 *E =
6657         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
6658     llvm::ConversionResult Result =
6659         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
6660 
6661     if (Result != llvm::conversionOK) {
6662       unsigned char FirstChar = *csStart;
6663       CodePoint = (llvm::UTF32)FirstChar;
6664     }
6665 
6666     llvm::raw_string_ostream OS(CodePointStr);
6667     if (CodePoint < 256)
6668       OS << "\\x" << llvm::format("%02x", CodePoint);
6669     else if (CodePoint <= 0xFFFF)
6670       OS << "\\u" << llvm::format("%04x", CodePoint);
6671     else
6672       OS << "\\U" << llvm::format("%08x", CodePoint);
6673     Specifier = CodePointStr;
6674   }
6675 
6676   EmitFormatDiagnostic(
6677       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
6678       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
6679 
6680   return keepGoing;
6681 }
6682 
6683 void
6684 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
6685                                                       const char *startSpec,
6686                                                       unsigned specifierLen) {
6687   EmitFormatDiagnostic(
6688     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
6689     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
6690 }
6691 
6692 bool
6693 CheckFormatHandler::CheckNumArgs(
6694   const analyze_format_string::FormatSpecifier &FS,
6695   const analyze_format_string::ConversionSpecifier &CS,
6696   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
6697 
6698   if (argIndex >= NumDataArgs) {
6699     PartialDiagnostic PDiag = FS.usesPositionalArg()
6700       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
6701            << (argIndex+1) << NumDataArgs)
6702       : S.PDiag(diag::warn_printf_insufficient_data_args);
6703     EmitFormatDiagnostic(
6704       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
6705       getSpecifierRange(startSpecifier, specifierLen));
6706 
6707     // Since more arguments than conversion tokens are given, by extension
6708     // all arguments are covered, so mark this as so.
6709     UncoveredArg.setAllCovered();
6710     return false;
6711   }
6712   return true;
6713 }
6714 
6715 template<typename Range>
6716 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
6717                                               SourceLocation Loc,
6718                                               bool IsStringLocation,
6719                                               Range StringRange,
6720                                               ArrayRef<FixItHint> FixIt) {
6721   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
6722                        Loc, IsStringLocation, StringRange, FixIt);
6723 }
6724 
6725 /// If the format string is not within the function call, emit a note
6726 /// so that the function call and string are in diagnostic messages.
6727 ///
6728 /// \param InFunctionCall if true, the format string is within the function
6729 /// call and only one diagnostic message will be produced.  Otherwise, an
6730 /// extra note will be emitted pointing to location of the format string.
6731 ///
6732 /// \param ArgumentExpr the expression that is passed as the format string
6733 /// argument in the function call.  Used for getting locations when two
6734 /// diagnostics are emitted.
6735 ///
6736 /// \param PDiag the callee should already have provided any strings for the
6737 /// diagnostic message.  This function only adds locations and fixits
6738 /// to diagnostics.
6739 ///
6740 /// \param Loc primary location for diagnostic.  If two diagnostics are
6741 /// required, one will be at Loc and a new SourceLocation will be created for
6742 /// the other one.
6743 ///
6744 /// \param IsStringLocation if true, Loc points to the format string should be
6745 /// used for the note.  Otherwise, Loc points to the argument list and will
6746 /// be used with PDiag.
6747 ///
6748 /// \param StringRange some or all of the string to highlight.  This is
6749 /// templated so it can accept either a CharSourceRange or a SourceRange.
6750 ///
6751 /// \param FixIt optional fix it hint for the format string.
6752 template <typename Range>
6753 void CheckFormatHandler::EmitFormatDiagnostic(
6754     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
6755     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
6756     Range StringRange, ArrayRef<FixItHint> FixIt) {
6757   if (InFunctionCall) {
6758     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
6759     D << StringRange;
6760     D << FixIt;
6761   } else {
6762     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
6763       << ArgumentExpr->getSourceRange();
6764 
6765     const Sema::SemaDiagnosticBuilder &Note =
6766       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
6767              diag::note_format_string_defined);
6768 
6769     Note << StringRange;
6770     Note << FixIt;
6771   }
6772 }
6773 
6774 //===--- CHECK: Printf format string checking -----------------------------===//
6775 
6776 namespace {
6777 
6778 class CheckPrintfHandler : public CheckFormatHandler {
6779 public:
6780   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
6781                      const Expr *origFormatExpr,
6782                      const Sema::FormatStringType type, unsigned firstDataArg,
6783                      unsigned numDataArgs, bool isObjC, const char *beg,
6784                      Sema::FormatArgumentPassingKind APK,
6785                      ArrayRef<const Expr *> Args, unsigned formatIdx,
6786                      bool inFunctionCall, Sema::VariadicCallType CallType,
6787                      llvm::SmallBitVector &CheckedVarArgs,
6788                      UncoveredArgHandler &UncoveredArg)
6789       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
6790                            numDataArgs, beg, APK, Args, formatIdx,
6791                            inFunctionCall, CallType, CheckedVarArgs,
6792                            UncoveredArg) {}
6793 
6794   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
6795 
6796   /// Returns true if '%@' specifiers are allowed in the format string.
6797   bool allowsObjCArg() const {
6798     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
6799            FSType == Sema::FST_OSTrace;
6800   }
6801 
6802   bool HandleInvalidPrintfConversionSpecifier(
6803                                       const analyze_printf::PrintfSpecifier &FS,
6804                                       const char *startSpecifier,
6805                                       unsigned specifierLen) override;
6806 
6807   void handleInvalidMaskType(StringRef MaskType) override;
6808 
6809   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
6810                              const char *startSpecifier, unsigned specifierLen,
6811                              const TargetInfo &Target) override;
6812   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
6813                        const char *StartSpecifier,
6814                        unsigned SpecifierLen,
6815                        const Expr *E);
6816 
6817   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
6818                     const char *startSpecifier, unsigned specifierLen);
6819   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
6820                            const analyze_printf::OptionalAmount &Amt,
6821                            unsigned type,
6822                            const char *startSpecifier, unsigned specifierLen);
6823   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
6824                   const analyze_printf::OptionalFlag &flag,
6825                   const char *startSpecifier, unsigned specifierLen);
6826   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
6827                          const analyze_printf::OptionalFlag &ignoredFlag,
6828                          const analyze_printf::OptionalFlag &flag,
6829                          const char *startSpecifier, unsigned specifierLen);
6830   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
6831                            const Expr *E);
6832 
6833   void HandleEmptyObjCModifierFlag(const char *startFlag,
6834                                    unsigned flagLen) override;
6835 
6836   void HandleInvalidObjCModifierFlag(const char *startFlag,
6837                                             unsigned flagLen) override;
6838 
6839   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
6840                                            const char *flagsEnd,
6841                                            const char *conversionPosition)
6842                                              override;
6843 };
6844 
6845 } // namespace
6846 
6847 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
6848                                       const analyze_printf::PrintfSpecifier &FS,
6849                                       const char *startSpecifier,
6850                                       unsigned specifierLen) {
6851   const analyze_printf::PrintfConversionSpecifier &CS =
6852     FS.getConversionSpecifier();
6853 
6854   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
6855                                           getLocationOfByte(CS.getStart()),
6856                                           startSpecifier, specifierLen,
6857                                           CS.getStart(), CS.getLength());
6858 }
6859 
6860 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
6861   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
6862 }
6863 
6864 bool CheckPrintfHandler::HandleAmount(
6865     const analyze_format_string::OptionalAmount &Amt, unsigned k,
6866     const char *startSpecifier, unsigned specifierLen) {
6867   if (Amt.hasDataArgument()) {
6868     if (ArgPassingKind != Sema::FAPK_VAList) {
6869       unsigned argIndex = Amt.getArgIndex();
6870       if (argIndex >= NumDataArgs) {
6871         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
6872                                  << k,
6873                              getLocationOfByte(Amt.getStart()),
6874                              /*IsStringLocation*/ true,
6875                              getSpecifierRange(startSpecifier, specifierLen));
6876         // Don't do any more checking.  We will just emit
6877         // spurious errors.
6878         return false;
6879       }
6880 
6881       // Type check the data argument.  It should be an 'int'.
6882       // Although not in conformance with C99, we also allow the argument to be
6883       // an 'unsigned int' as that is a reasonably safe case.  GCC also
6884       // doesn't emit a warning for that case.
6885       CoveredArgs.set(argIndex);
6886       const Expr *Arg = getDataArg(argIndex);
6887       if (!Arg)
6888         return false;
6889 
6890       QualType T = Arg->getType();
6891 
6892       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
6893       assert(AT.isValid());
6894 
6895       if (!AT.matchesType(S.Context, T)) {
6896         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
6897                                << k << AT.getRepresentativeTypeName(S.Context)
6898                                << T << Arg->getSourceRange(),
6899                              getLocationOfByte(Amt.getStart()),
6900                              /*IsStringLocation*/true,
6901                              getSpecifierRange(startSpecifier, specifierLen));
6902         // Don't do any more checking.  We will just emit
6903         // spurious errors.
6904         return false;
6905       }
6906     }
6907   }
6908   return true;
6909 }
6910 
6911 void CheckPrintfHandler::HandleInvalidAmount(
6912                                       const analyze_printf::PrintfSpecifier &FS,
6913                                       const analyze_printf::OptionalAmount &Amt,
6914                                       unsigned type,
6915                                       const char *startSpecifier,
6916                                       unsigned specifierLen) {
6917   const analyze_printf::PrintfConversionSpecifier &CS =
6918     FS.getConversionSpecifier();
6919 
6920   FixItHint fixit =
6921     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
6922       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
6923                                  Amt.getConstantLength()))
6924       : FixItHint();
6925 
6926   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
6927                          << type << CS.toString(),
6928                        getLocationOfByte(Amt.getStart()),
6929                        /*IsStringLocation*/true,
6930                        getSpecifierRange(startSpecifier, specifierLen),
6931                        fixit);
6932 }
6933 
6934 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
6935                                     const analyze_printf::OptionalFlag &flag,
6936                                     const char *startSpecifier,
6937                                     unsigned specifierLen) {
6938   // Warn about pointless flag with a fixit removal.
6939   const analyze_printf::PrintfConversionSpecifier &CS =
6940     FS.getConversionSpecifier();
6941   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
6942                          << flag.toString() << CS.toString(),
6943                        getLocationOfByte(flag.getPosition()),
6944                        /*IsStringLocation*/true,
6945                        getSpecifierRange(startSpecifier, specifierLen),
6946                        FixItHint::CreateRemoval(
6947                          getSpecifierRange(flag.getPosition(), 1)));
6948 }
6949 
6950 void CheckPrintfHandler::HandleIgnoredFlag(
6951                                 const analyze_printf::PrintfSpecifier &FS,
6952                                 const analyze_printf::OptionalFlag &ignoredFlag,
6953                                 const analyze_printf::OptionalFlag &flag,
6954                                 const char *startSpecifier,
6955                                 unsigned specifierLen) {
6956   // Warn about ignored flag with a fixit removal.
6957   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
6958                          << ignoredFlag.toString() << flag.toString(),
6959                        getLocationOfByte(ignoredFlag.getPosition()),
6960                        /*IsStringLocation*/true,
6961                        getSpecifierRange(startSpecifier, specifierLen),
6962                        FixItHint::CreateRemoval(
6963                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
6964 }
6965 
6966 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
6967                                                      unsigned flagLen) {
6968   // Warn about an empty flag.
6969   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
6970                        getLocationOfByte(startFlag),
6971                        /*IsStringLocation*/true,
6972                        getSpecifierRange(startFlag, flagLen));
6973 }
6974 
6975 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
6976                                                        unsigned flagLen) {
6977   // Warn about an invalid flag.
6978   auto Range = getSpecifierRange(startFlag, flagLen);
6979   StringRef flag(startFlag, flagLen);
6980   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
6981                       getLocationOfByte(startFlag),
6982                       /*IsStringLocation*/true,
6983                       Range, FixItHint::CreateRemoval(Range));
6984 }
6985 
6986 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
6987     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
6988     // Warn about using '[...]' without a '@' conversion.
6989     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
6990     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
6991     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
6992                          getLocationOfByte(conversionPosition),
6993                          /*IsStringLocation*/true,
6994                          Range, FixItHint::CreateRemoval(Range));
6995 }
6996 
6997 // Determines if the specified is a C++ class or struct containing
6998 // a member with the specified name and kind (e.g. a CXXMethodDecl named
6999 // "c_str()").
7000 template<typename MemberKind>
7001 static llvm::SmallPtrSet<MemberKind*, 1>
7002 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
7003   const RecordType *RT = Ty->getAs<RecordType>();
7004   llvm::SmallPtrSet<MemberKind*, 1> Results;
7005 
7006   if (!RT)
7007     return Results;
7008   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
7009   if (!RD || !RD->getDefinition())
7010     return Results;
7011 
7012   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
7013                  Sema::LookupMemberName);
7014   R.suppressDiagnostics();
7015 
7016   // We just need to include all members of the right kind turned up by the
7017   // filter, at this point.
7018   if (S.LookupQualifiedName(R, RT->getDecl()))
7019     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7020       NamedDecl *decl = (*I)->getUnderlyingDecl();
7021       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
7022         Results.insert(FK);
7023     }
7024   return Results;
7025 }
7026 
7027 /// Check if we could call '.c_str()' on an object.
7028 ///
7029 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
7030 /// allow the call, or if it would be ambiguous).
7031 bool Sema::hasCStrMethod(const Expr *E) {
7032   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7033 
7034   MethodSet Results =
7035       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
7036   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7037        MI != ME; ++MI)
7038     if ((*MI)->getMinRequiredArguments() == 0)
7039       return true;
7040   return false;
7041 }
7042 
7043 // Check if a (w)string was passed when a (w)char* was needed, and offer a
7044 // better diagnostic if so. AT is assumed to be valid.
7045 // Returns true when a c_str() conversion method is found.
7046 bool CheckPrintfHandler::checkForCStrMembers(
7047     const analyze_printf::ArgType &AT, const Expr *E) {
7048   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7049 
7050   MethodSet Results =
7051       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
7052 
7053   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7054        MI != ME; ++MI) {
7055     const CXXMethodDecl *Method = *MI;
7056     if (Method->getMinRequiredArguments() == 0 &&
7057         AT.matchesType(S.Context, Method->getReturnType())) {
7058       // FIXME: Suggest parens if the expression needs them.
7059       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
7060       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
7061           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
7062       return true;
7063     }
7064   }
7065 
7066   return false;
7067 }
7068 
7069 bool CheckPrintfHandler::HandlePrintfSpecifier(
7070     const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
7071     unsigned specifierLen, const TargetInfo &Target) {
7072   using namespace analyze_format_string;
7073   using namespace analyze_printf;
7074 
7075   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
7076 
7077   if (FS.consumesDataArgument()) {
7078     if (atFirstArg) {
7079         atFirstArg = false;
7080         usesPositionalArgs = FS.usesPositionalArg();
7081     }
7082     else if (usesPositionalArgs != FS.usesPositionalArg()) {
7083       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7084                                         startSpecifier, specifierLen);
7085       return false;
7086     }
7087   }
7088 
7089   // First check if the field width, precision, and conversion specifier
7090   // have matching data arguments.
7091   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
7092                     startSpecifier, specifierLen)) {
7093     return false;
7094   }
7095 
7096   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
7097                     startSpecifier, specifierLen)) {
7098     return false;
7099   }
7100 
7101   if (!CS.consumesDataArgument()) {
7102     // FIXME: Technically specifying a precision or field width here
7103     // makes no sense.  Worth issuing a warning at some point.
7104     return true;
7105   }
7106 
7107   // Consume the argument.
7108   unsigned argIndex = FS.getArgIndex();
7109   if (argIndex < NumDataArgs) {
7110     // The check to see if the argIndex is valid will come later.
7111     // We set the bit here because we may exit early from this
7112     // function if we encounter some other error.
7113     CoveredArgs.set(argIndex);
7114   }
7115 
7116   // FreeBSD kernel extensions.
7117   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
7118       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
7119     // We need at least two arguments.
7120     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
7121       return false;
7122 
7123     // Claim the second argument.
7124     CoveredArgs.set(argIndex + 1);
7125 
7126     // Type check the first argument (int for %b, pointer for %D)
7127     const Expr *Ex = getDataArg(argIndex);
7128     const analyze_printf::ArgType &AT =
7129       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
7130         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
7131     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
7132       EmitFormatDiagnostic(
7133           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7134               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
7135               << false << Ex->getSourceRange(),
7136           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7137           getSpecifierRange(startSpecifier, specifierLen));
7138 
7139     // Type check the second argument (char * for both %b and %D)
7140     Ex = getDataArg(argIndex + 1);
7141     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
7142     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
7143       EmitFormatDiagnostic(
7144           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7145               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
7146               << false << Ex->getSourceRange(),
7147           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7148           getSpecifierRange(startSpecifier, specifierLen));
7149 
7150      return true;
7151   }
7152 
7153   // Check for using an Objective-C specific conversion specifier
7154   // in a non-ObjC literal.
7155   if (!allowsObjCArg() && CS.isObjCArg()) {
7156     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7157                                                   specifierLen);
7158   }
7159 
7160   // %P can only be used with os_log.
7161   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
7162     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7163                                                   specifierLen);
7164   }
7165 
7166   // %n is not allowed with os_log.
7167   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
7168     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
7169                          getLocationOfByte(CS.getStart()),
7170                          /*IsStringLocation*/ false,
7171                          getSpecifierRange(startSpecifier, specifierLen));
7172 
7173     return true;
7174   }
7175 
7176   // Only scalars are allowed for os_trace.
7177   if (FSType == Sema::FST_OSTrace &&
7178       (CS.getKind() == ConversionSpecifier::PArg ||
7179        CS.getKind() == ConversionSpecifier::sArg ||
7180        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
7181     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7182                                                   specifierLen);
7183   }
7184 
7185   // Check for use of public/private annotation outside of os_log().
7186   if (FSType != Sema::FST_OSLog) {
7187     if (FS.isPublic().isSet()) {
7188       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7189                                << "public",
7190                            getLocationOfByte(FS.isPublic().getPosition()),
7191                            /*IsStringLocation*/ false,
7192                            getSpecifierRange(startSpecifier, specifierLen));
7193     }
7194     if (FS.isPrivate().isSet()) {
7195       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7196                                << "private",
7197                            getLocationOfByte(FS.isPrivate().getPosition()),
7198                            /*IsStringLocation*/ false,
7199                            getSpecifierRange(startSpecifier, specifierLen));
7200     }
7201   }
7202 
7203   const llvm::Triple &Triple = Target.getTriple();
7204   if (CS.getKind() == ConversionSpecifier::nArg &&
7205       (Triple.isAndroid() || Triple.isOSFuchsia())) {
7206     EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
7207                          getLocationOfByte(CS.getStart()),
7208                          /*IsStringLocation*/ false,
7209                          getSpecifierRange(startSpecifier, specifierLen));
7210   }
7211 
7212   // Check for invalid use of field width
7213   if (!FS.hasValidFieldWidth()) {
7214     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
7215         startSpecifier, specifierLen);
7216   }
7217 
7218   // Check for invalid use of precision
7219   if (!FS.hasValidPrecision()) {
7220     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
7221         startSpecifier, specifierLen);
7222   }
7223 
7224   // Precision is mandatory for %P specifier.
7225   if (CS.getKind() == ConversionSpecifier::PArg &&
7226       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
7227     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
7228                          getLocationOfByte(startSpecifier),
7229                          /*IsStringLocation*/ false,
7230                          getSpecifierRange(startSpecifier, specifierLen));
7231   }
7232 
7233   // Check each flag does not conflict with any other component.
7234   if (!FS.hasValidThousandsGroupingPrefix())
7235     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
7236   if (!FS.hasValidLeadingZeros())
7237     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
7238   if (!FS.hasValidPlusPrefix())
7239     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
7240   if (!FS.hasValidSpacePrefix())
7241     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
7242   if (!FS.hasValidAlternativeForm())
7243     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
7244   if (!FS.hasValidLeftJustified())
7245     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
7246 
7247   // Check that flags are not ignored by another flag
7248   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
7249     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
7250         startSpecifier, specifierLen);
7251   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
7252     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
7253             startSpecifier, specifierLen);
7254 
7255   // Check the length modifier is valid with the given conversion specifier.
7256   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7257                                  S.getLangOpts()))
7258     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7259                                 diag::warn_format_nonsensical_length);
7260   else if (!FS.hasStandardLengthModifier())
7261     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7262   else if (!FS.hasStandardLengthConversionCombination())
7263     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7264                                 diag::warn_format_non_standard_conversion_spec);
7265 
7266   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7267     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7268 
7269   // The remaining checks depend on the data arguments.
7270   if (ArgPassingKind == Sema::FAPK_VAList)
7271     return true;
7272 
7273   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7274     return false;
7275 
7276   const Expr *Arg = getDataArg(argIndex);
7277   if (!Arg)
7278     return true;
7279 
7280   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
7281 }
7282 
7283 static bool requiresParensToAddCast(const Expr *E) {
7284   // FIXME: We should have a general way to reason about operator
7285   // precedence and whether parens are actually needed here.
7286   // Take care of a few common cases where they aren't.
7287   const Expr *Inside = E->IgnoreImpCasts();
7288   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
7289     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
7290 
7291   switch (Inside->getStmtClass()) {
7292   case Stmt::ArraySubscriptExprClass:
7293   case Stmt::CallExprClass:
7294   case Stmt::CharacterLiteralClass:
7295   case Stmt::CXXBoolLiteralExprClass:
7296   case Stmt::DeclRefExprClass:
7297   case Stmt::FloatingLiteralClass:
7298   case Stmt::IntegerLiteralClass:
7299   case Stmt::MemberExprClass:
7300   case Stmt::ObjCArrayLiteralClass:
7301   case Stmt::ObjCBoolLiteralExprClass:
7302   case Stmt::ObjCBoxedExprClass:
7303   case Stmt::ObjCDictionaryLiteralClass:
7304   case Stmt::ObjCEncodeExprClass:
7305   case Stmt::ObjCIvarRefExprClass:
7306   case Stmt::ObjCMessageExprClass:
7307   case Stmt::ObjCPropertyRefExprClass:
7308   case Stmt::ObjCStringLiteralClass:
7309   case Stmt::ObjCSubscriptRefExprClass:
7310   case Stmt::ParenExprClass:
7311   case Stmt::StringLiteralClass:
7312   case Stmt::UnaryOperatorClass:
7313     return false;
7314   default:
7315     return true;
7316   }
7317 }
7318 
7319 static std::pair<QualType, StringRef>
7320 shouldNotPrintDirectly(const ASTContext &Context,
7321                        QualType IntendedTy,
7322                        const Expr *E) {
7323   // Use a 'while' to peel off layers of typedefs.
7324   QualType TyTy = IntendedTy;
7325   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
7326     StringRef Name = UserTy->getDecl()->getName();
7327     QualType CastTy = llvm::StringSwitch<QualType>(Name)
7328       .Case("CFIndex", Context.getNSIntegerType())
7329       .Case("NSInteger", Context.getNSIntegerType())
7330       .Case("NSUInteger", Context.getNSUIntegerType())
7331       .Case("SInt32", Context.IntTy)
7332       .Case("UInt32", Context.UnsignedIntTy)
7333       .Default(QualType());
7334 
7335     if (!CastTy.isNull())
7336       return std::make_pair(CastTy, Name);
7337 
7338     TyTy = UserTy->desugar();
7339   }
7340 
7341   // Strip parens if necessary.
7342   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
7343     return shouldNotPrintDirectly(Context,
7344                                   PE->getSubExpr()->getType(),
7345                                   PE->getSubExpr());
7346 
7347   // If this is a conditional expression, then its result type is constructed
7348   // via usual arithmetic conversions and thus there might be no necessary
7349   // typedef sugar there.  Recurse to operands to check for NSInteger &
7350   // Co. usage condition.
7351   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7352     QualType TrueTy, FalseTy;
7353     StringRef TrueName, FalseName;
7354 
7355     std::tie(TrueTy, TrueName) =
7356       shouldNotPrintDirectly(Context,
7357                              CO->getTrueExpr()->getType(),
7358                              CO->getTrueExpr());
7359     std::tie(FalseTy, FalseName) =
7360       shouldNotPrintDirectly(Context,
7361                              CO->getFalseExpr()->getType(),
7362                              CO->getFalseExpr());
7363 
7364     if (TrueTy == FalseTy)
7365       return std::make_pair(TrueTy, TrueName);
7366     else if (TrueTy.isNull())
7367       return std::make_pair(FalseTy, FalseName);
7368     else if (FalseTy.isNull())
7369       return std::make_pair(TrueTy, TrueName);
7370   }
7371 
7372   return std::make_pair(QualType(), StringRef());
7373 }
7374 
7375 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
7376 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
7377 /// type do not count.
7378 static bool
7379 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
7380   QualType From = ICE->getSubExpr()->getType();
7381   QualType To = ICE->getType();
7382   // It's an integer promotion if the destination type is the promoted
7383   // source type.
7384   if (ICE->getCastKind() == CK_IntegralCast &&
7385       S.Context.isPromotableIntegerType(From) &&
7386       S.Context.getPromotedIntegerType(From) == To)
7387     return true;
7388   // Look through vector types, since we do default argument promotion for
7389   // those in OpenCL.
7390   if (const auto *VecTy = From->getAs<ExtVectorType>())
7391     From = VecTy->getElementType();
7392   if (const auto *VecTy = To->getAs<ExtVectorType>())
7393     To = VecTy->getElementType();
7394   // It's a floating promotion if the source type is a lower rank.
7395   return ICE->getCastKind() == CK_FloatingCast &&
7396          S.Context.getFloatingTypeOrder(From, To) < 0;
7397 }
7398 
7399 static analyze_format_string::ArgType::MatchKind
7400 handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match,
7401                        DiagnosticsEngine &Diags, SourceLocation Loc) {
7402   if (Match == analyze_format_string::ArgType::NoMatchSignedness) {
7403     Match =
7404         Diags.isIgnored(
7405             diag::warn_format_conversion_argument_type_mismatch_signedness, Loc)
7406             ? analyze_format_string::ArgType::Match
7407             : analyze_format_string::ArgType::NoMatch;
7408   }
7409   return Match;
7410 }
7411 
7412 bool
7413 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7414                                     const char *StartSpecifier,
7415                                     unsigned SpecifierLen,
7416                                     const Expr *E) {
7417   using namespace analyze_format_string;
7418   using namespace analyze_printf;
7419 
7420   // Now type check the data expression that matches the
7421   // format specifier.
7422   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
7423   if (!AT.isValid())
7424     return true;
7425 
7426   QualType ExprTy = E->getType();
7427   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
7428     ExprTy = TET->getUnderlyingExpr()->getType();
7429   }
7430 
7431   // When using the format attribute in C++, you can receive a function or an
7432   // array that will necessarily decay to a pointer when passed to the final
7433   // format consumer. Apply decay before type comparison.
7434   if (ExprTy->canDecayToPointerType())
7435     ExprTy = S.Context.getDecayedType(ExprTy);
7436 
7437   // Diagnose attempts to print a boolean value as a character. Unlike other
7438   // -Wformat diagnostics, this is fine from a type perspective, but it still
7439   // doesn't make sense.
7440   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
7441       E->isKnownToHaveBooleanValue()) {
7442     const CharSourceRange &CSR =
7443         getSpecifierRange(StartSpecifier, SpecifierLen);
7444     SmallString<4> FSString;
7445     llvm::raw_svector_ostream os(FSString);
7446     FS.toString(os);
7447     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
7448                              << FSString,
7449                          E->getExprLoc(), false, CSR);
7450     return true;
7451   }
7452 
7453   // Diagnose attempts to use '%P' with ObjC object types, which will result in
7454   // dumping raw class data (like is-a pointer), not actual data.
7455   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg &&
7456       ExprTy->isObjCObjectPointerType()) {
7457     const CharSourceRange &CSR =
7458         getSpecifierRange(StartSpecifier, SpecifierLen);
7459     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_with_objc_pointer),
7460                          E->getExprLoc(), false, CSR);
7461     return true;
7462   }
7463 
7464   ArgType::MatchKind ImplicitMatch = ArgType::NoMatch;
7465   ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
7466   ArgType::MatchKind OrigMatch = Match;
7467 
7468   Match = handleFormatSignedness(Match, S.getDiagnostics(), E->getExprLoc());
7469   if (Match == ArgType::Match)
7470     return true;
7471 
7472   // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr
7473   assert(Match != ArgType::NoMatchPromotionTypeConfusion);
7474 
7475   // Look through argument promotions for our error message's reported type.
7476   // This includes the integral and floating promotions, but excludes array
7477   // and function pointer decay (seeing that an argument intended to be a
7478   // string has type 'char [6]' is probably more confusing than 'char *') and
7479   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
7480   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7481     if (isArithmeticArgumentPromotion(S, ICE)) {
7482       E = ICE->getSubExpr();
7483       ExprTy = E->getType();
7484 
7485       // Check if we didn't match because of an implicit cast from a 'char'
7486       // or 'short' to an 'int'.  This is done because printf is a varargs
7487       // function.
7488       if (ICE->getType() == S.Context.IntTy ||
7489           ICE->getType() == S.Context.UnsignedIntTy) {
7490         // All further checking is done on the subexpression
7491         ImplicitMatch = AT.matchesType(S.Context, ExprTy);
7492         if (OrigMatch == ArgType::NoMatchSignedness &&
7493             ImplicitMatch != ArgType::NoMatchSignedness)
7494           // If the original match was a signedness match this match on the
7495           // implicit cast type also need to be signedness match otherwise we
7496           // might introduce new unexpected warnings from -Wformat-signedness.
7497           return true;
7498         ImplicitMatch = handleFormatSignedness(
7499             ImplicitMatch, S.getDiagnostics(), E->getExprLoc());
7500         if (ImplicitMatch == ArgType::Match)
7501           return true;
7502       }
7503     }
7504   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
7505     // Special case for 'a', which has type 'int' in C.
7506     // Note, however, that we do /not/ want to treat multibyte constants like
7507     // 'MooV' as characters! This form is deprecated but still exists. In
7508     // addition, don't treat expressions as of type 'char' if one byte length
7509     // modifier is provided.
7510     if (ExprTy == S.Context.IntTy &&
7511         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
7512       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) {
7513         ExprTy = S.Context.CharTy;
7514         // To improve check results, we consider a character literal in C
7515         // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is
7516         // more likely a type confusion situation, so we will suggest to
7517         // use '%hhd' instead by discarding the MatchPromotion.
7518         if (Match == ArgType::MatchPromotion)
7519           Match = ArgType::NoMatch;
7520       }
7521   }
7522   if (Match == ArgType::MatchPromotion) {
7523     // WG14 N2562 only clarified promotions in *printf
7524     // For NSLog in ObjC, just preserve -Wformat behavior
7525     if (!S.getLangOpts().ObjC &&
7526         ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion &&
7527         ImplicitMatch != ArgType::NoMatchTypeConfusion)
7528       return true;
7529     Match = ArgType::NoMatch;
7530   }
7531   if (ImplicitMatch == ArgType::NoMatchPedantic ||
7532       ImplicitMatch == ArgType::NoMatchTypeConfusion)
7533     Match = ImplicitMatch;
7534   assert(Match != ArgType::MatchPromotion);
7535 
7536   // Look through unscoped enums to their underlying type.
7537   bool IsEnum = false;
7538   bool IsScopedEnum = false;
7539   QualType IntendedTy = ExprTy;
7540   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
7541     IntendedTy = EnumTy->getDecl()->getIntegerType();
7542     if (EnumTy->isUnscopedEnumerationType()) {
7543       ExprTy = IntendedTy;
7544       // This controls whether we're talking about the underlying type or not,
7545       // which we only want to do when it's an unscoped enum.
7546       IsEnum = true;
7547     } else {
7548       IsScopedEnum = true;
7549     }
7550   }
7551 
7552   // %C in an Objective-C context prints a unichar, not a wchar_t.
7553   // If the argument is an integer of some kind, believe the %C and suggest
7554   // a cast instead of changing the conversion specifier.
7555   if (isObjCContext() &&
7556       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
7557     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
7558         !ExprTy->isCharType()) {
7559       // 'unichar' is defined as a typedef of unsigned short, but we should
7560       // prefer using the typedef if it is visible.
7561       IntendedTy = S.Context.UnsignedShortTy;
7562 
7563       // While we are here, check if the value is an IntegerLiteral that happens
7564       // to be within the valid range.
7565       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
7566         const llvm::APInt &V = IL->getValue();
7567         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
7568           return true;
7569       }
7570 
7571       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
7572                           Sema::LookupOrdinaryName);
7573       if (S.LookupName(Result, S.getCurScope())) {
7574         NamedDecl *ND = Result.getFoundDecl();
7575         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
7576           if (TD->getUnderlyingType() == IntendedTy)
7577             IntendedTy = S.Context.getTypedefType(TD);
7578       }
7579     }
7580   }
7581 
7582   // Special-case some of Darwin's platform-independence types by suggesting
7583   // casts to primitive types that are known to be large enough.
7584   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
7585   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
7586     QualType CastTy;
7587     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
7588     if (!CastTy.isNull()) {
7589       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
7590       // (long in ASTContext). Only complain to pedants or when they're the
7591       // underlying type of a scoped enum (which always needs a cast).
7592       if (!IsScopedEnum &&
7593           (CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
7594           (AT.isSizeT() || AT.isPtrdiffT()) &&
7595           AT.matchesType(S.Context, CastTy))
7596         Match = ArgType::NoMatchPedantic;
7597       IntendedTy = CastTy;
7598       ShouldNotPrintDirectly = true;
7599     }
7600   }
7601 
7602   // We may be able to offer a FixItHint if it is a supported type.
7603   PrintfSpecifier fixedFS = FS;
7604   bool Success =
7605       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
7606 
7607   if (Success) {
7608     // Get the fix string from the fixed format specifier
7609     SmallString<16> buf;
7610     llvm::raw_svector_ostream os(buf);
7611     fixedFS.toString(os);
7612 
7613     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
7614 
7615     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) {
7616       unsigned Diag;
7617       switch (Match) {
7618       case ArgType::Match:
7619       case ArgType::MatchPromotion:
7620       case ArgType::NoMatchPromotionTypeConfusion:
7621       case ArgType::NoMatchSignedness:
7622         llvm_unreachable("expected non-matching");
7623       case ArgType::NoMatchPedantic:
7624         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
7625         break;
7626       case ArgType::NoMatchTypeConfusion:
7627         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
7628         break;
7629       case ArgType::NoMatch:
7630         Diag = diag::warn_format_conversion_argument_type_mismatch;
7631         break;
7632       }
7633 
7634       // In this case, the specifier is wrong and should be changed to match
7635       // the argument.
7636       EmitFormatDiagnostic(S.PDiag(Diag)
7637                                << AT.getRepresentativeTypeName(S.Context)
7638                                << IntendedTy << IsEnum << E->getSourceRange(),
7639                            E->getBeginLoc(),
7640                            /*IsStringLocation*/ false, SpecRange,
7641                            FixItHint::CreateReplacement(SpecRange, os.str()));
7642     } else {
7643       // The canonical type for formatting this value is different from the
7644       // actual type of the expression. (This occurs, for example, with Darwin's
7645       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
7646       // should be printed as 'long' for 64-bit compatibility.)
7647       // Rather than emitting a normal format/argument mismatch, we want to
7648       // add a cast to the recommended type (and correct the format string
7649       // if necessary). We should also do so for scoped enumerations.
7650       SmallString<16> CastBuf;
7651       llvm::raw_svector_ostream CastFix(CastBuf);
7652       CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(");
7653       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
7654       CastFix << (S.LangOpts.CPlusPlus ? ">" : ")");
7655 
7656       SmallVector<FixItHint,4> Hints;
7657       ArgType::MatchKind IntendedMatch = AT.matchesType(S.Context, IntendedTy);
7658       IntendedMatch = handleFormatSignedness(IntendedMatch, S.getDiagnostics(),
7659                                              E->getExprLoc());
7660       if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly)
7661         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
7662 
7663       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
7664         // If there's already a cast present, just replace it.
7665         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
7666         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
7667 
7668       } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) {
7669         // If the expression has high enough precedence,
7670         // just write the C-style cast.
7671         Hints.push_back(
7672             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
7673       } else {
7674         // Otherwise, add parens around the expression as well as the cast.
7675         CastFix << "(";
7676         Hints.push_back(
7677             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
7678 
7679         // We don't use getLocForEndOfToken because it returns invalid source
7680         // locations for macro expansions (by design).
7681         SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc());
7682         SourceLocation After = EndLoc.getLocWithOffset(
7683             Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts));
7684         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
7685       }
7686 
7687       if (ShouldNotPrintDirectly && !IsScopedEnum) {
7688         // The expression has a type that should not be printed directly.
7689         // We extract the name from the typedef because we don't want to show
7690         // the underlying type in the diagnostic.
7691         StringRef Name;
7692         if (const auto *TypedefTy = ExprTy->getAs<TypedefType>())
7693           Name = TypedefTy->getDecl()->getName();
7694         else
7695           Name = CastTyName;
7696         unsigned Diag = Match == ArgType::NoMatchPedantic
7697                             ? diag::warn_format_argument_needs_cast_pedantic
7698                             : diag::warn_format_argument_needs_cast;
7699         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
7700                                            << E->getSourceRange(),
7701                              E->getBeginLoc(), /*IsStringLocation=*/false,
7702                              SpecRange, Hints);
7703       } else {
7704         // In this case, the expression could be printed using a different
7705         // specifier, but we've decided that the specifier is probably correct
7706         // and we should cast instead. Just use the normal warning message.
7707 
7708         unsigned Diag =
7709             IsScopedEnum
7710                 ? diag::warn_format_conversion_argument_type_mismatch_pedantic
7711                 : diag::warn_format_conversion_argument_type_mismatch;
7712 
7713         EmitFormatDiagnostic(
7714             S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
7715                           << IsEnum << E->getSourceRange(),
7716             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
7717       }
7718     }
7719   } else {
7720     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
7721                                                    SpecifierLen);
7722     // Since the warning for passing non-POD types to variadic functions
7723     // was deferred until now, we emit a warning for non-POD
7724     // arguments here.
7725     bool EmitTypeMismatch = false;
7726     switch (S.isValidVarArgType(ExprTy)) {
7727     case Sema::VAK_Valid:
7728     case Sema::VAK_ValidInCXX11: {
7729       unsigned Diag;
7730       switch (Match) {
7731       case ArgType::Match:
7732       case ArgType::MatchPromotion:
7733       case ArgType::NoMatchPromotionTypeConfusion:
7734       case ArgType::NoMatchSignedness:
7735         llvm_unreachable("expected non-matching");
7736       case ArgType::NoMatchPedantic:
7737         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
7738         break;
7739       case ArgType::NoMatchTypeConfusion:
7740         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
7741         break;
7742       case ArgType::NoMatch:
7743         Diag = diag::warn_format_conversion_argument_type_mismatch;
7744         break;
7745       }
7746 
7747       EmitFormatDiagnostic(
7748           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
7749                         << IsEnum << CSR << E->getSourceRange(),
7750           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7751       break;
7752     }
7753     case Sema::VAK_Undefined:
7754     case Sema::VAK_MSVCUndefined:
7755       if (CallType == Sema::VariadicDoesNotApply) {
7756         EmitTypeMismatch = true;
7757       } else {
7758         EmitFormatDiagnostic(
7759             S.PDiag(diag::warn_non_pod_vararg_with_format_string)
7760                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
7761                 << AT.getRepresentativeTypeName(S.Context) << CSR
7762                 << E->getSourceRange(),
7763             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7764         checkForCStrMembers(AT, E);
7765       }
7766       break;
7767 
7768     case Sema::VAK_Invalid:
7769       if (CallType == Sema::VariadicDoesNotApply)
7770         EmitTypeMismatch = true;
7771       else if (ExprTy->isObjCObjectType())
7772         EmitFormatDiagnostic(
7773             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
7774                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
7775                 << AT.getRepresentativeTypeName(S.Context) << CSR
7776                 << E->getSourceRange(),
7777             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7778       else
7779         // FIXME: If this is an initializer list, suggest removing the braces
7780         // or inserting a cast to the target type.
7781         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
7782             << isa<InitListExpr>(E) << ExprTy << CallType
7783             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
7784       break;
7785     }
7786 
7787     if (EmitTypeMismatch) {
7788       // The function is not variadic, so we do not generate warnings about
7789       // being allowed to pass that object as a variadic argument. Instead,
7790       // since there are inherently no printf specifiers for types which cannot
7791       // be passed as variadic arguments, emit a plain old specifier mismatch
7792       // argument.
7793       EmitFormatDiagnostic(
7794           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7795               << AT.getRepresentativeTypeName(S.Context) << ExprTy << false
7796               << E->getSourceRange(),
7797           E->getBeginLoc(), false, CSR);
7798     }
7799 
7800     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
7801            "format string specifier index out of range");
7802     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
7803   }
7804 
7805   return true;
7806 }
7807 
7808 //===--- CHECK: Scanf format string checking ------------------------------===//
7809 
7810 namespace {
7811 
7812 class CheckScanfHandler : public CheckFormatHandler {
7813 public:
7814   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
7815                     const Expr *origFormatExpr, Sema::FormatStringType type,
7816                     unsigned firstDataArg, unsigned numDataArgs,
7817                     const char *beg, Sema::FormatArgumentPassingKind APK,
7818                     ArrayRef<const Expr *> Args, unsigned formatIdx,
7819                     bool inFunctionCall, Sema::VariadicCallType CallType,
7820                     llvm::SmallBitVector &CheckedVarArgs,
7821                     UncoveredArgHandler &UncoveredArg)
7822       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7823                            numDataArgs, beg, APK, Args, formatIdx,
7824                            inFunctionCall, CallType, CheckedVarArgs,
7825                            UncoveredArg) {}
7826 
7827   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
7828                             const char *startSpecifier,
7829                             unsigned specifierLen) override;
7830 
7831   bool HandleInvalidScanfConversionSpecifier(
7832           const analyze_scanf::ScanfSpecifier &FS,
7833           const char *startSpecifier,
7834           unsigned specifierLen) override;
7835 
7836   void HandleIncompleteScanList(const char *start, const char *end) override;
7837 };
7838 
7839 } // namespace
7840 
7841 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
7842                                                  const char *end) {
7843   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
7844                        getLocationOfByte(end), /*IsStringLocation*/true,
7845                        getSpecifierRange(start, end - start));
7846 }
7847 
7848 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
7849                                         const analyze_scanf::ScanfSpecifier &FS,
7850                                         const char *startSpecifier,
7851                                         unsigned specifierLen) {
7852   const analyze_scanf::ScanfConversionSpecifier &CS =
7853     FS.getConversionSpecifier();
7854 
7855   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7856                                           getLocationOfByte(CS.getStart()),
7857                                           startSpecifier, specifierLen,
7858                                           CS.getStart(), CS.getLength());
7859 }
7860 
7861 bool CheckScanfHandler::HandleScanfSpecifier(
7862                                        const analyze_scanf::ScanfSpecifier &FS,
7863                                        const char *startSpecifier,
7864                                        unsigned specifierLen) {
7865   using namespace analyze_scanf;
7866   using namespace analyze_format_string;
7867 
7868   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
7869 
7870   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
7871   // be used to decide if we are using positional arguments consistently.
7872   if (FS.consumesDataArgument()) {
7873     if (atFirstArg) {
7874       atFirstArg = false;
7875       usesPositionalArgs = FS.usesPositionalArg();
7876     }
7877     else if (usesPositionalArgs != FS.usesPositionalArg()) {
7878       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7879                                         startSpecifier, specifierLen);
7880       return false;
7881     }
7882   }
7883 
7884   // Check if the field with is non-zero.
7885   const OptionalAmount &Amt = FS.getFieldWidth();
7886   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
7887     if (Amt.getConstantAmount() == 0) {
7888       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
7889                                                    Amt.getConstantLength());
7890       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
7891                            getLocationOfByte(Amt.getStart()),
7892                            /*IsStringLocation*/true, R,
7893                            FixItHint::CreateRemoval(R));
7894     }
7895   }
7896 
7897   if (!FS.consumesDataArgument()) {
7898     // FIXME: Technically specifying a precision or field width here
7899     // makes no sense.  Worth issuing a warning at some point.
7900     return true;
7901   }
7902 
7903   // Consume the argument.
7904   unsigned argIndex = FS.getArgIndex();
7905   if (argIndex < NumDataArgs) {
7906       // The check to see if the argIndex is valid will come later.
7907       // We set the bit here because we may exit early from this
7908       // function if we encounter some other error.
7909     CoveredArgs.set(argIndex);
7910   }
7911 
7912   // Check the length modifier is valid with the given conversion specifier.
7913   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7914                                  S.getLangOpts()))
7915     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7916                                 diag::warn_format_nonsensical_length);
7917   else if (!FS.hasStandardLengthModifier())
7918     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7919   else if (!FS.hasStandardLengthConversionCombination())
7920     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7921                                 diag::warn_format_non_standard_conversion_spec);
7922 
7923   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7924     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7925 
7926   // The remaining checks depend on the data arguments.
7927   if (ArgPassingKind == Sema::FAPK_VAList)
7928     return true;
7929 
7930   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7931     return false;
7932 
7933   // Check that the argument type matches the format specifier.
7934   const Expr *Ex = getDataArg(argIndex);
7935   if (!Ex)
7936     return true;
7937 
7938   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
7939 
7940   if (!AT.isValid()) {
7941     return true;
7942   }
7943 
7944   analyze_format_string::ArgType::MatchKind Match =
7945       AT.matchesType(S.Context, Ex->getType());
7946   Match = handleFormatSignedness(Match, S.getDiagnostics(), Ex->getExprLoc());
7947   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
7948   if (Match == analyze_format_string::ArgType::Match)
7949     return true;
7950 
7951   ScanfSpecifier fixedFS = FS;
7952   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
7953                                  S.getLangOpts(), S.Context);
7954 
7955   unsigned Diag =
7956       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
7957                : diag::warn_format_conversion_argument_type_mismatch;
7958 
7959   if (Success) {
7960     // Get the fix string from the fixed format specifier.
7961     SmallString<128> buf;
7962     llvm::raw_svector_ostream os(buf);
7963     fixedFS.toString(os);
7964 
7965     EmitFormatDiagnostic(
7966         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
7967                       << Ex->getType() << false << Ex->getSourceRange(),
7968         Ex->getBeginLoc(),
7969         /*IsStringLocation*/ false,
7970         getSpecifierRange(startSpecifier, specifierLen),
7971         FixItHint::CreateReplacement(
7972             getSpecifierRange(startSpecifier, specifierLen), os.str()));
7973   } else {
7974     EmitFormatDiagnostic(S.PDiag(Diag)
7975                              << AT.getRepresentativeTypeName(S.Context)
7976                              << Ex->getType() << false << Ex->getSourceRange(),
7977                          Ex->getBeginLoc(),
7978                          /*IsStringLocation*/ false,
7979                          getSpecifierRange(startSpecifier, specifierLen));
7980   }
7981 
7982   return true;
7983 }
7984 
7985 static void CheckFormatString(
7986     Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
7987     ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
7988     unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
7989     bool inFunctionCall, Sema::VariadicCallType CallType,
7990     llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
7991     bool IgnoreStringsWithoutSpecifiers) {
7992   // CHECK: is the format string a wide literal?
7993   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
7994     CheckFormatHandler::EmitFormatDiagnostic(
7995         S, inFunctionCall, Args[format_idx],
7996         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
7997         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
7998     return;
7999   }
8000 
8001   // Str - The format string.  NOTE: this is NOT null-terminated!
8002   StringRef StrRef = FExpr->getString();
8003   const char *Str = StrRef.data();
8004   // Account for cases where the string literal is truncated in a declaration.
8005   const ConstantArrayType *T =
8006     S.Context.getAsConstantArrayType(FExpr->getType());
8007   assert(T && "String literal not of constant array type!");
8008   size_t TypeSize = T->getZExtSize();
8009   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8010   const unsigned numDataArgs = Args.size() - firstDataArg;
8011 
8012   if (IgnoreStringsWithoutSpecifiers &&
8013       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
8014           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8015     return;
8016 
8017   // Emit a warning if the string literal is truncated and does not contain an
8018   // embedded null character.
8019   if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
8020     CheckFormatHandler::EmitFormatDiagnostic(
8021         S, inFunctionCall, Args[format_idx],
8022         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8023         FExpr->getBeginLoc(),
8024         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8025     return;
8026   }
8027 
8028   // CHECK: empty format string?
8029   if (StrLen == 0 && numDataArgs > 0) {
8030     CheckFormatHandler::EmitFormatDiagnostic(
8031         S, inFunctionCall, Args[format_idx],
8032         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8033         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8034     return;
8035   }
8036 
8037   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8038       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
8039       Type == Sema::FST_OSTrace || Type == Sema::FST_Syslog) {
8040     CheckPrintfHandler H(
8041         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8042         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK,
8043         Args, format_idx, inFunctionCall, CallType, CheckedVarArgs,
8044         UncoveredArg);
8045 
8046     if (!analyze_format_string::ParsePrintfString(
8047             H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
8048             Type == Sema::FST_FreeBSDKPrintf))
8049       H.DoneProcessing();
8050   } else if (Type == Sema::FST_Scanf) {
8051     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8052                         numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
8053                         CallType, CheckedVarArgs, UncoveredArg);
8054 
8055     if (!analyze_format_string::ParseScanfString(
8056             H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8057       H.DoneProcessing();
8058   } // TODO: handle other formats
8059 }
8060 
8061 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8062   // Str - The format string.  NOTE: this is NOT null-terminated!
8063   StringRef StrRef = FExpr->getString();
8064   const char *Str = StrRef.data();
8065   // Account for cases where the string literal is truncated in a declaration.
8066   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8067   assert(T && "String literal not of constant array type!");
8068   size_t TypeSize = T->getZExtSize();
8069   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8070   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8071                                                          getLangOpts(),
8072                                                          Context.getTargetInfo());
8073 }
8074 
8075 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8076 
8077 // Returns the related absolute value function that is larger, of 0 if one
8078 // does not exist.
8079 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8080   switch (AbsFunction) {
8081   default:
8082     return 0;
8083 
8084   case Builtin::BI__builtin_abs:
8085     return Builtin::BI__builtin_labs;
8086   case Builtin::BI__builtin_labs:
8087     return Builtin::BI__builtin_llabs;
8088   case Builtin::BI__builtin_llabs:
8089     return 0;
8090 
8091   case Builtin::BI__builtin_fabsf:
8092     return Builtin::BI__builtin_fabs;
8093   case Builtin::BI__builtin_fabs:
8094     return Builtin::BI__builtin_fabsl;
8095   case Builtin::BI__builtin_fabsl:
8096     return 0;
8097 
8098   case Builtin::BI__builtin_cabsf:
8099     return Builtin::BI__builtin_cabs;
8100   case Builtin::BI__builtin_cabs:
8101     return Builtin::BI__builtin_cabsl;
8102   case Builtin::BI__builtin_cabsl:
8103     return 0;
8104 
8105   case Builtin::BIabs:
8106     return Builtin::BIlabs;
8107   case Builtin::BIlabs:
8108     return Builtin::BIllabs;
8109   case Builtin::BIllabs:
8110     return 0;
8111 
8112   case Builtin::BIfabsf:
8113     return Builtin::BIfabs;
8114   case Builtin::BIfabs:
8115     return Builtin::BIfabsl;
8116   case Builtin::BIfabsl:
8117     return 0;
8118 
8119   case Builtin::BIcabsf:
8120    return Builtin::BIcabs;
8121   case Builtin::BIcabs:
8122     return Builtin::BIcabsl;
8123   case Builtin::BIcabsl:
8124     return 0;
8125   }
8126 }
8127 
8128 // Returns the argument type of the absolute value function.
8129 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
8130                                              unsigned AbsType) {
8131   if (AbsType == 0)
8132     return QualType();
8133 
8134   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
8135   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
8136   if (Error != ASTContext::GE_None)
8137     return QualType();
8138 
8139   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
8140   if (!FT)
8141     return QualType();
8142 
8143   if (FT->getNumParams() != 1)
8144     return QualType();
8145 
8146   return FT->getParamType(0);
8147 }
8148 
8149 // Returns the best absolute value function, or zero, based on type and
8150 // current absolute value function.
8151 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
8152                                    unsigned AbsFunctionKind) {
8153   unsigned BestKind = 0;
8154   uint64_t ArgSize = Context.getTypeSize(ArgType);
8155   for (unsigned Kind = AbsFunctionKind; Kind != 0;
8156        Kind = getLargerAbsoluteValueFunction(Kind)) {
8157     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
8158     if (Context.getTypeSize(ParamType) >= ArgSize) {
8159       if (BestKind == 0)
8160         BestKind = Kind;
8161       else if (Context.hasSameType(ParamType, ArgType)) {
8162         BestKind = Kind;
8163         break;
8164       }
8165     }
8166   }
8167   return BestKind;
8168 }
8169 
8170 enum AbsoluteValueKind {
8171   AVK_Integer,
8172   AVK_Floating,
8173   AVK_Complex
8174 };
8175 
8176 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
8177   if (T->isIntegralOrEnumerationType())
8178     return AVK_Integer;
8179   if (T->isRealFloatingType())
8180     return AVK_Floating;
8181   if (T->isAnyComplexType())
8182     return AVK_Complex;
8183 
8184   llvm_unreachable("Type not integer, floating, or complex");
8185 }
8186 
8187 // Changes the absolute value function to a different type.  Preserves whether
8188 // the function is a builtin.
8189 static unsigned changeAbsFunction(unsigned AbsKind,
8190                                   AbsoluteValueKind ValueKind) {
8191   switch (ValueKind) {
8192   case AVK_Integer:
8193     switch (AbsKind) {
8194     default:
8195       return 0;
8196     case Builtin::BI__builtin_fabsf:
8197     case Builtin::BI__builtin_fabs:
8198     case Builtin::BI__builtin_fabsl:
8199     case Builtin::BI__builtin_cabsf:
8200     case Builtin::BI__builtin_cabs:
8201     case Builtin::BI__builtin_cabsl:
8202       return Builtin::BI__builtin_abs;
8203     case Builtin::BIfabsf:
8204     case Builtin::BIfabs:
8205     case Builtin::BIfabsl:
8206     case Builtin::BIcabsf:
8207     case Builtin::BIcabs:
8208     case Builtin::BIcabsl:
8209       return Builtin::BIabs;
8210     }
8211   case AVK_Floating:
8212     switch (AbsKind) {
8213     default:
8214       return 0;
8215     case Builtin::BI__builtin_abs:
8216     case Builtin::BI__builtin_labs:
8217     case Builtin::BI__builtin_llabs:
8218     case Builtin::BI__builtin_cabsf:
8219     case Builtin::BI__builtin_cabs:
8220     case Builtin::BI__builtin_cabsl:
8221       return Builtin::BI__builtin_fabsf;
8222     case Builtin::BIabs:
8223     case Builtin::BIlabs:
8224     case Builtin::BIllabs:
8225     case Builtin::BIcabsf:
8226     case Builtin::BIcabs:
8227     case Builtin::BIcabsl:
8228       return Builtin::BIfabsf;
8229     }
8230   case AVK_Complex:
8231     switch (AbsKind) {
8232     default:
8233       return 0;
8234     case Builtin::BI__builtin_abs:
8235     case Builtin::BI__builtin_labs:
8236     case Builtin::BI__builtin_llabs:
8237     case Builtin::BI__builtin_fabsf:
8238     case Builtin::BI__builtin_fabs:
8239     case Builtin::BI__builtin_fabsl:
8240       return Builtin::BI__builtin_cabsf;
8241     case Builtin::BIabs:
8242     case Builtin::BIlabs:
8243     case Builtin::BIllabs:
8244     case Builtin::BIfabsf:
8245     case Builtin::BIfabs:
8246     case Builtin::BIfabsl:
8247       return Builtin::BIcabsf;
8248     }
8249   }
8250   llvm_unreachable("Unable to convert function");
8251 }
8252 
8253 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
8254   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
8255   if (!FnInfo)
8256     return 0;
8257 
8258   switch (FDecl->getBuiltinID()) {
8259   default:
8260     return 0;
8261   case Builtin::BI__builtin_abs:
8262   case Builtin::BI__builtin_fabs:
8263   case Builtin::BI__builtin_fabsf:
8264   case Builtin::BI__builtin_fabsl:
8265   case Builtin::BI__builtin_labs:
8266   case Builtin::BI__builtin_llabs:
8267   case Builtin::BI__builtin_cabs:
8268   case Builtin::BI__builtin_cabsf:
8269   case Builtin::BI__builtin_cabsl:
8270   case Builtin::BIabs:
8271   case Builtin::BIlabs:
8272   case Builtin::BIllabs:
8273   case Builtin::BIfabs:
8274   case Builtin::BIfabsf:
8275   case Builtin::BIfabsl:
8276   case Builtin::BIcabs:
8277   case Builtin::BIcabsf:
8278   case Builtin::BIcabsl:
8279     return FDecl->getBuiltinID();
8280   }
8281   llvm_unreachable("Unknown Builtin type");
8282 }
8283 
8284 // If the replacement is valid, emit a note with replacement function.
8285 // Additionally, suggest including the proper header if not already included.
8286 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
8287                             unsigned AbsKind, QualType ArgType) {
8288   bool EmitHeaderHint = true;
8289   const char *HeaderName = nullptr;
8290   StringRef FunctionName;
8291   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
8292     FunctionName = "std::abs";
8293     if (ArgType->isIntegralOrEnumerationType()) {
8294       HeaderName = "cstdlib";
8295     } else if (ArgType->isRealFloatingType()) {
8296       HeaderName = "cmath";
8297     } else {
8298       llvm_unreachable("Invalid Type");
8299     }
8300 
8301     // Lookup all std::abs
8302     if (NamespaceDecl *Std = S.getStdNamespace()) {
8303       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
8304       R.suppressDiagnostics();
8305       S.LookupQualifiedName(R, Std);
8306 
8307       for (const auto *I : R) {
8308         const FunctionDecl *FDecl = nullptr;
8309         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
8310           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
8311         } else {
8312           FDecl = dyn_cast<FunctionDecl>(I);
8313         }
8314         if (!FDecl)
8315           continue;
8316 
8317         // Found std::abs(), check that they are the right ones.
8318         if (FDecl->getNumParams() != 1)
8319           continue;
8320 
8321         // Check that the parameter type can handle the argument.
8322         QualType ParamType = FDecl->getParamDecl(0)->getType();
8323         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
8324             S.Context.getTypeSize(ArgType) <=
8325                 S.Context.getTypeSize(ParamType)) {
8326           // Found a function, don't need the header hint.
8327           EmitHeaderHint = false;
8328           break;
8329         }
8330       }
8331     }
8332   } else {
8333     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
8334     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
8335 
8336     if (HeaderName) {
8337       DeclarationName DN(&S.Context.Idents.get(FunctionName));
8338       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
8339       R.suppressDiagnostics();
8340       S.LookupName(R, S.getCurScope());
8341 
8342       if (R.isSingleResult()) {
8343         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
8344         if (FD && FD->getBuiltinID() == AbsKind) {
8345           EmitHeaderHint = false;
8346         } else {
8347           return;
8348         }
8349       } else if (!R.empty()) {
8350         return;
8351       }
8352     }
8353   }
8354 
8355   S.Diag(Loc, diag::note_replace_abs_function)
8356       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
8357 
8358   if (!HeaderName)
8359     return;
8360 
8361   if (!EmitHeaderHint)
8362     return;
8363 
8364   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
8365                                                     << FunctionName;
8366 }
8367 
8368 template <std::size_t StrLen>
8369 static bool IsStdFunction(const FunctionDecl *FDecl,
8370                           const char (&Str)[StrLen]) {
8371   if (!FDecl)
8372     return false;
8373   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
8374     return false;
8375   if (!FDecl->isInStdNamespace())
8376     return false;
8377 
8378   return true;
8379 }
8380 
8381 enum class MathCheck { NaN, Inf };
8382 static bool IsInfOrNanFunction(StringRef calleeName, MathCheck Check) {
8383   auto MatchesAny = [&](std::initializer_list<llvm::StringRef> names) {
8384     return std::any_of(names.begin(), names.end(), [&](llvm::StringRef name) {
8385       return calleeName == name;
8386     });
8387   };
8388 
8389   switch (Check) {
8390   case MathCheck::NaN:
8391     return MatchesAny({"__builtin_nan", "__builtin_nanf", "__builtin_nanl",
8392                        "__builtin_nanf16", "__builtin_nanf128"});
8393   case MathCheck::Inf:
8394     return MatchesAny({"__builtin_inf", "__builtin_inff", "__builtin_infl",
8395                        "__builtin_inff16", "__builtin_inff128"});
8396   }
8397   llvm_unreachable("unknown MathCheck");
8398 }
8399 
8400 void Sema::CheckInfNaNFunction(const CallExpr *Call,
8401                                const FunctionDecl *FDecl) {
8402   FPOptions FPO = Call->getFPFeaturesInEffect(getLangOpts());
8403   bool HasIdentifier = FDecl->getIdentifier() != nullptr;
8404   bool IsNaNOrIsUnordered =
8405       IsStdFunction(FDecl, "isnan") || IsStdFunction(FDecl, "isunordered");
8406   bool IsSpecialNaN =
8407       HasIdentifier && IsInfOrNanFunction(FDecl->getName(), MathCheck::NaN);
8408   if ((IsNaNOrIsUnordered || IsSpecialNaN) && FPO.getNoHonorNaNs()) {
8409     Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
8410         << 1 << 0 << Call->getSourceRange();
8411   } else {
8412     bool IsInfOrIsFinite =
8413         IsStdFunction(FDecl, "isinf") || IsStdFunction(FDecl, "isfinite");
8414     bool IsInfinityOrIsSpecialInf =
8415         HasIdentifier && ((FDecl->getName() == "infinity") ||
8416                           IsInfOrNanFunction(FDecl->getName(), MathCheck::Inf));
8417     if ((IsInfOrIsFinite || IsInfinityOrIsSpecialInf) && FPO.getNoHonorInfs())
8418       Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
8419           << 0 << 0 << Call->getSourceRange();
8420   }
8421 }
8422 
8423 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
8424                                       const FunctionDecl *FDecl) {
8425   if (Call->getNumArgs() != 1)
8426     return;
8427 
8428   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
8429   bool IsStdAbs = IsStdFunction(FDecl, "abs");
8430   if (AbsKind == 0 && !IsStdAbs)
8431     return;
8432 
8433   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8434   QualType ParamType = Call->getArg(0)->getType();
8435 
8436   // Unsigned types cannot be negative.  Suggest removing the absolute value
8437   // function call.
8438   if (ArgType->isUnsignedIntegerType()) {
8439     StringRef FunctionName =
8440         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
8441     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
8442     Diag(Call->getExprLoc(), diag::note_remove_abs)
8443         << FunctionName
8444         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
8445     return;
8446   }
8447 
8448   // Taking the absolute value of a pointer is very suspicious, they probably
8449   // wanted to index into an array, dereference a pointer, call a function, etc.
8450   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
8451     unsigned DiagType = 0;
8452     if (ArgType->isFunctionType())
8453       DiagType = 1;
8454     else if (ArgType->isArrayType())
8455       DiagType = 2;
8456 
8457     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
8458     return;
8459   }
8460 
8461   // std::abs has overloads which prevent most of the absolute value problems
8462   // from occurring.
8463   if (IsStdAbs)
8464     return;
8465 
8466   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
8467   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
8468 
8469   // The argument and parameter are the same kind.  Check if they are the right
8470   // size.
8471   if (ArgValueKind == ParamValueKind) {
8472     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
8473       return;
8474 
8475     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
8476     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
8477         << FDecl << ArgType << ParamType;
8478 
8479     if (NewAbsKind == 0)
8480       return;
8481 
8482     emitReplacement(*this, Call->getExprLoc(),
8483                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8484     return;
8485   }
8486 
8487   // ArgValueKind != ParamValueKind
8488   // The wrong type of absolute value function was used.  Attempt to find the
8489   // proper one.
8490   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
8491   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
8492   if (NewAbsKind == 0)
8493     return;
8494 
8495   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
8496       << FDecl << ParamValueKind << ArgValueKind;
8497 
8498   emitReplacement(*this, Call->getExprLoc(),
8499                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8500 }
8501 
8502 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
8503 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
8504                                 const FunctionDecl *FDecl) {
8505   if (!Call || !FDecl) return;
8506 
8507   // Ignore template specializations and macros.
8508   if (inTemplateInstantiation()) return;
8509   if (Call->getExprLoc().isMacroID()) return;
8510 
8511   // Only care about the one template argument, two function parameter std::max
8512   if (Call->getNumArgs() != 2) return;
8513   if (!IsStdFunction(FDecl, "max")) return;
8514   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
8515   if (!ArgList) return;
8516   if (ArgList->size() != 1) return;
8517 
8518   // Check that template type argument is unsigned integer.
8519   const auto& TA = ArgList->get(0);
8520   if (TA.getKind() != TemplateArgument::Type) return;
8521   QualType ArgType = TA.getAsType();
8522   if (!ArgType->isUnsignedIntegerType()) return;
8523 
8524   // See if either argument is a literal zero.
8525   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
8526     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
8527     if (!MTE) return false;
8528     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
8529     if (!Num) return false;
8530     if (Num->getValue() != 0) return false;
8531     return true;
8532   };
8533 
8534   const Expr *FirstArg = Call->getArg(0);
8535   const Expr *SecondArg = Call->getArg(1);
8536   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
8537   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
8538 
8539   // Only warn when exactly one argument is zero.
8540   if (IsFirstArgZero == IsSecondArgZero) return;
8541 
8542   SourceRange FirstRange = FirstArg->getSourceRange();
8543   SourceRange SecondRange = SecondArg->getSourceRange();
8544 
8545   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
8546 
8547   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
8548       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
8549 
8550   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
8551   SourceRange RemovalRange;
8552   if (IsFirstArgZero) {
8553     RemovalRange = SourceRange(FirstRange.getBegin(),
8554                                SecondRange.getBegin().getLocWithOffset(-1));
8555   } else {
8556     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
8557                                SecondRange.getEnd());
8558   }
8559 
8560   Diag(Call->getExprLoc(), diag::note_remove_max_call)
8561         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
8562         << FixItHint::CreateRemoval(RemovalRange);
8563 }
8564 
8565 //===--- CHECK: Standard memory functions ---------------------------------===//
8566 
8567 /// Takes the expression passed to the size_t parameter of functions
8568 /// such as memcmp, strncat, etc and warns if it's a comparison.
8569 ///
8570 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
8571 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
8572                                            IdentifierInfo *FnName,
8573                                            SourceLocation FnLoc,
8574                                            SourceLocation RParenLoc) {
8575   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
8576   if (!Size)
8577     return false;
8578 
8579   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
8580   if (!Size->isComparisonOp() && !Size->isLogicalOp())
8581     return false;
8582 
8583   SourceRange SizeRange = Size->getSourceRange();
8584   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
8585       << SizeRange << FnName;
8586   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
8587       << FnName
8588       << FixItHint::CreateInsertion(
8589              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
8590       << FixItHint::CreateRemoval(RParenLoc);
8591   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
8592       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
8593       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
8594                                     ")");
8595 
8596   return true;
8597 }
8598 
8599 /// Determine whether the given type is or contains a dynamic class type
8600 /// (e.g., whether it has a vtable).
8601 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
8602                                                      bool &IsContained) {
8603   // Look through array types while ignoring qualifiers.
8604   const Type *Ty = T->getBaseElementTypeUnsafe();
8605   IsContained = false;
8606 
8607   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
8608   RD = RD ? RD->getDefinition() : nullptr;
8609   if (!RD || RD->isInvalidDecl())
8610     return nullptr;
8611 
8612   if (RD->isDynamicClass())
8613     return RD;
8614 
8615   // Check all the fields.  If any bases were dynamic, the class is dynamic.
8616   // It's impossible for a class to transitively contain itself by value, so
8617   // infinite recursion is impossible.
8618   for (auto *FD : RD->fields()) {
8619     bool SubContained;
8620     if (const CXXRecordDecl *ContainedRD =
8621             getContainedDynamicClass(FD->getType(), SubContained)) {
8622       IsContained = true;
8623       return ContainedRD;
8624     }
8625   }
8626 
8627   return nullptr;
8628 }
8629 
8630 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
8631   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
8632     if (Unary->getKind() == UETT_SizeOf)
8633       return Unary;
8634   return nullptr;
8635 }
8636 
8637 /// If E is a sizeof expression, returns its argument expression,
8638 /// otherwise returns NULL.
8639 static const Expr *getSizeOfExprArg(const Expr *E) {
8640   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8641     if (!SizeOf->isArgumentType())
8642       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
8643   return nullptr;
8644 }
8645 
8646 /// If E is a sizeof expression, returns its argument type.
8647 static QualType getSizeOfArgType(const Expr *E) {
8648   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8649     return SizeOf->getTypeOfArgument();
8650   return QualType();
8651 }
8652 
8653 namespace {
8654 
8655 struct SearchNonTrivialToInitializeField
8656     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
8657   using Super =
8658       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
8659 
8660   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
8661 
8662   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
8663                      SourceLocation SL) {
8664     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8665       asDerived().visitArray(PDIK, AT, SL);
8666       return;
8667     }
8668 
8669     Super::visitWithKind(PDIK, FT, SL);
8670   }
8671 
8672   void visitARCStrong(QualType FT, SourceLocation SL) {
8673     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8674   }
8675   void visitARCWeak(QualType FT, SourceLocation SL) {
8676     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8677   }
8678   void visitStruct(QualType FT, SourceLocation SL) {
8679     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8680       visit(FD->getType(), FD->getLocation());
8681   }
8682   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
8683                   const ArrayType *AT, SourceLocation SL) {
8684     visit(getContext().getBaseElementType(AT), SL);
8685   }
8686   void visitTrivial(QualType FT, SourceLocation SL) {}
8687 
8688   static void diag(QualType RT, const Expr *E, Sema &S) {
8689     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
8690   }
8691 
8692   ASTContext &getContext() { return S.getASTContext(); }
8693 
8694   const Expr *E;
8695   Sema &S;
8696 };
8697 
8698 struct SearchNonTrivialToCopyField
8699     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
8700   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
8701 
8702   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
8703 
8704   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
8705                      SourceLocation SL) {
8706     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8707       asDerived().visitArray(PCK, AT, SL);
8708       return;
8709     }
8710 
8711     Super::visitWithKind(PCK, FT, SL);
8712   }
8713 
8714   void visitARCStrong(QualType FT, SourceLocation SL) {
8715     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8716   }
8717   void visitARCWeak(QualType FT, SourceLocation SL) {
8718     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8719   }
8720   void visitStruct(QualType FT, SourceLocation SL) {
8721     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8722       visit(FD->getType(), FD->getLocation());
8723   }
8724   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
8725                   SourceLocation SL) {
8726     visit(getContext().getBaseElementType(AT), SL);
8727   }
8728   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
8729                 SourceLocation SL) {}
8730   void visitTrivial(QualType FT, SourceLocation SL) {}
8731   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
8732 
8733   static void diag(QualType RT, const Expr *E, Sema &S) {
8734     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
8735   }
8736 
8737   ASTContext &getContext() { return S.getASTContext(); }
8738 
8739   const Expr *E;
8740   Sema &S;
8741 };
8742 
8743 }
8744 
8745 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
8746 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
8747   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
8748 
8749   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
8750     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
8751       return false;
8752 
8753     return doesExprLikelyComputeSize(BO->getLHS()) ||
8754            doesExprLikelyComputeSize(BO->getRHS());
8755   }
8756 
8757   return getAsSizeOfExpr(SizeofExpr) != nullptr;
8758 }
8759 
8760 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
8761 ///
8762 /// \code
8763 ///   #define MACRO 0
8764 ///   foo(MACRO);
8765 ///   foo(0);
8766 /// \endcode
8767 ///
8768 /// This should return true for the first call to foo, but not for the second
8769 /// (regardless of whether foo is a macro or function).
8770 static bool isArgumentExpandedFromMacro(SourceManager &SM,
8771                                         SourceLocation CallLoc,
8772                                         SourceLocation ArgLoc) {
8773   if (!CallLoc.isMacroID())
8774     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
8775 
8776   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
8777          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
8778 }
8779 
8780 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
8781 /// last two arguments transposed.
8782 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
8783   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
8784     return;
8785 
8786   const Expr *SizeArg =
8787     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
8788 
8789   auto isLiteralZero = [](const Expr *E) {
8790     return (isa<IntegerLiteral>(E) &&
8791             cast<IntegerLiteral>(E)->getValue() == 0) ||
8792            (isa<CharacterLiteral>(E) &&
8793             cast<CharacterLiteral>(E)->getValue() == 0);
8794   };
8795 
8796   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
8797   SourceLocation CallLoc = Call->getRParenLoc();
8798   SourceManager &SM = S.getSourceManager();
8799   if (isLiteralZero(SizeArg) &&
8800       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
8801 
8802     SourceLocation DiagLoc = SizeArg->getExprLoc();
8803 
8804     // Some platforms #define bzero to __builtin_memset. See if this is the
8805     // case, and if so, emit a better diagnostic.
8806     if (BId == Builtin::BIbzero ||
8807         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
8808                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
8809       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
8810       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
8811     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
8812       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
8813       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
8814     }
8815     return;
8816   }
8817 
8818   // If the second argument to a memset is a sizeof expression and the third
8819   // isn't, this is also likely an error. This should catch
8820   // 'memset(buf, sizeof(buf), 0xff)'.
8821   if (BId == Builtin::BImemset &&
8822       doesExprLikelyComputeSize(Call->getArg(1)) &&
8823       !doesExprLikelyComputeSize(Call->getArg(2))) {
8824     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
8825     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
8826     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
8827     return;
8828   }
8829 }
8830 
8831 void Sema::CheckMemaccessArguments(const CallExpr *Call,
8832                                    unsigned BId,
8833                                    IdentifierInfo *FnName) {
8834   assert(BId != 0);
8835 
8836   // It is possible to have a non-standard definition of memset.  Validate
8837   // we have enough arguments, and if not, abort further checking.
8838   unsigned ExpectedNumArgs =
8839       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
8840   if (Call->getNumArgs() < ExpectedNumArgs)
8841     return;
8842 
8843   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
8844                       BId == Builtin::BIstrndup ? 1 : 2);
8845   unsigned LenArg =
8846       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
8847   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
8848 
8849   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
8850                                      Call->getBeginLoc(), Call->getRParenLoc()))
8851     return;
8852 
8853   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
8854   CheckMemaccessSize(*this, BId, Call);
8855 
8856   // We have special checking when the length is a sizeof expression.
8857   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
8858   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
8859   llvm::FoldingSetNodeID SizeOfArgID;
8860 
8861   // Although widely used, 'bzero' is not a standard function. Be more strict
8862   // with the argument types before allowing diagnostics and only allow the
8863   // form bzero(ptr, sizeof(...)).
8864   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8865   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
8866     return;
8867 
8868   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
8869     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
8870     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
8871 
8872     QualType DestTy = Dest->getType();
8873     QualType PointeeTy;
8874     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
8875       PointeeTy = DestPtrTy->getPointeeType();
8876 
8877       // Never warn about void type pointers. This can be used to suppress
8878       // false positives.
8879       if (PointeeTy->isVoidType())
8880         continue;
8881 
8882       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
8883       // actually comparing the expressions for equality. Because computing the
8884       // expression IDs can be expensive, we only do this if the diagnostic is
8885       // enabled.
8886       if (SizeOfArg &&
8887           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
8888                            SizeOfArg->getExprLoc())) {
8889         // We only compute IDs for expressions if the warning is enabled, and
8890         // cache the sizeof arg's ID.
8891         if (SizeOfArgID == llvm::FoldingSetNodeID())
8892           SizeOfArg->Profile(SizeOfArgID, Context, true);
8893         llvm::FoldingSetNodeID DestID;
8894         Dest->Profile(DestID, Context, true);
8895         if (DestID == SizeOfArgID) {
8896           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
8897           //       over sizeof(src) as well.
8898           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
8899           StringRef ReadableName = FnName->getName();
8900 
8901           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
8902             if (UnaryOp->getOpcode() == UO_AddrOf)
8903               ActionIdx = 1; // If its an address-of operator, just remove it.
8904           if (!PointeeTy->isIncompleteType() &&
8905               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
8906             ActionIdx = 2; // If the pointee's size is sizeof(char),
8907                            // suggest an explicit length.
8908 
8909           // If the function is defined as a builtin macro, do not show macro
8910           // expansion.
8911           SourceLocation SL = SizeOfArg->getExprLoc();
8912           SourceRange DSR = Dest->getSourceRange();
8913           SourceRange SSR = SizeOfArg->getSourceRange();
8914           SourceManager &SM = getSourceManager();
8915 
8916           if (SM.isMacroArgExpansion(SL)) {
8917             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
8918             SL = SM.getSpellingLoc(SL);
8919             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
8920                              SM.getSpellingLoc(DSR.getEnd()));
8921             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
8922                              SM.getSpellingLoc(SSR.getEnd()));
8923           }
8924 
8925           DiagRuntimeBehavior(SL, SizeOfArg,
8926                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
8927                                 << ReadableName
8928                                 << PointeeTy
8929                                 << DestTy
8930                                 << DSR
8931                                 << SSR);
8932           DiagRuntimeBehavior(SL, SizeOfArg,
8933                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
8934                                 << ActionIdx
8935                                 << SSR);
8936 
8937           break;
8938         }
8939       }
8940 
8941       // Also check for cases where the sizeof argument is the exact same
8942       // type as the memory argument, and where it points to a user-defined
8943       // record type.
8944       if (SizeOfArgTy != QualType()) {
8945         if (PointeeTy->isRecordType() &&
8946             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
8947           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
8948                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
8949                                 << FnName << SizeOfArgTy << ArgIdx
8950                                 << PointeeTy << Dest->getSourceRange()
8951                                 << LenExpr->getSourceRange());
8952           break;
8953         }
8954       }
8955     } else if (DestTy->isArrayType()) {
8956       PointeeTy = DestTy;
8957     }
8958 
8959     if (PointeeTy == QualType())
8960       continue;
8961 
8962     // Always complain about dynamic classes.
8963     bool IsContained;
8964     if (const CXXRecordDecl *ContainedRD =
8965             getContainedDynamicClass(PointeeTy, IsContained)) {
8966 
8967       unsigned OperationType = 0;
8968       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
8969       // "overwritten" if we're warning about the destination for any call
8970       // but memcmp; otherwise a verb appropriate to the call.
8971       if (ArgIdx != 0 || IsCmp) {
8972         if (BId == Builtin::BImemcpy)
8973           OperationType = 1;
8974         else if(BId == Builtin::BImemmove)
8975           OperationType = 2;
8976         else if (IsCmp)
8977           OperationType = 3;
8978       }
8979 
8980       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
8981                           PDiag(diag::warn_dyn_class_memaccess)
8982                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
8983                               << IsContained << ContainedRD << OperationType
8984                               << Call->getCallee()->getSourceRange());
8985     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
8986              BId != Builtin::BImemset)
8987       DiagRuntimeBehavior(
8988         Dest->getExprLoc(), Dest,
8989         PDiag(diag::warn_arc_object_memaccess)
8990           << ArgIdx << FnName << PointeeTy
8991           << Call->getCallee()->getSourceRange());
8992     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
8993 
8994       // FIXME: Do not consider incomplete types even though they may be
8995       // completed later. GCC does not diagnose such code, but we may want to
8996       // consider diagnosing it in the future, perhaps under a different, but
8997       // related, diagnostic group.
8998       bool MayBeTriviallyCopyableCXXRecord =
8999           RT->isIncompleteType() ||
9000           RT->desugar().isTriviallyCopyableType(Context);
9001 
9002       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9003           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9004         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9005                             PDiag(diag::warn_cstruct_memaccess)
9006                                 << ArgIdx << FnName << PointeeTy << 0);
9007         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9008       } else if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9009                  !MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
9010         // FIXME: Limiting this warning to dest argument until we decide
9011         // whether it's valid for source argument too.
9012         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9013                             PDiag(diag::warn_cxxstruct_memaccess)
9014                                 << FnName << PointeeTy);
9015       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9016                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9017         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9018                             PDiag(diag::warn_cstruct_memaccess)
9019                                 << ArgIdx << FnName << PointeeTy << 1);
9020         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9021       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9022                  !MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
9023         // FIXME: Limiting this warning to dest argument until we decide
9024         // whether it's valid for source argument too.
9025         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9026                             PDiag(diag::warn_cxxstruct_memaccess)
9027                                 << FnName << PointeeTy);
9028       } else {
9029         continue;
9030       }
9031     } else
9032       continue;
9033 
9034     DiagRuntimeBehavior(
9035       Dest->getExprLoc(), Dest,
9036       PDiag(diag::note_bad_memaccess_silence)
9037         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9038     break;
9039   }
9040 }
9041 
9042 // A little helper routine: ignore addition and subtraction of integer literals.
9043 // This intentionally does not ignore all integer constant expressions because
9044 // we don't want to remove sizeof().
9045 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9046   Ex = Ex->IgnoreParenCasts();
9047 
9048   while (true) {
9049     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9050     if (!BO || !BO->isAdditiveOp())
9051       break;
9052 
9053     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9054     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9055 
9056     if (isa<IntegerLiteral>(RHS))
9057       Ex = LHS;
9058     else if (isa<IntegerLiteral>(LHS))
9059       Ex = RHS;
9060     else
9061       break;
9062   }
9063 
9064   return Ex;
9065 }
9066 
9067 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9068                                                       ASTContext &Context) {
9069   // Only handle constant-sized or VLAs, but not flexible members.
9070   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9071     // Only issue the FIXIT for arrays of size > 1.
9072     if (CAT->getZExtSize() <= 1)
9073       return false;
9074   } else if (!Ty->isVariableArrayType()) {
9075     return false;
9076   }
9077   return true;
9078 }
9079 
9080 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9081                                     IdentifierInfo *FnName) {
9082 
9083   // Don't crash if the user has the wrong number of arguments
9084   unsigned NumArgs = Call->getNumArgs();
9085   if ((NumArgs != 3) && (NumArgs != 4))
9086     return;
9087 
9088   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9089   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9090   const Expr *CompareWithSrc = nullptr;
9091 
9092   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9093                                      Call->getBeginLoc(), Call->getRParenLoc()))
9094     return;
9095 
9096   // Look for 'strlcpy(dst, x, sizeof(x))'
9097   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9098     CompareWithSrc = Ex;
9099   else {
9100     // Look for 'strlcpy(dst, x, strlen(x))'
9101     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9102       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9103           SizeCall->getNumArgs() == 1)
9104         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9105     }
9106   }
9107 
9108   if (!CompareWithSrc)
9109     return;
9110 
9111   // Determine if the argument to sizeof/strlen is equal to the source
9112   // argument.  In principle there's all kinds of things you could do
9113   // here, for instance creating an == expression and evaluating it with
9114   // EvaluateAsBooleanCondition, but this uses a more direct technique:
9115   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9116   if (!SrcArgDRE)
9117     return;
9118 
9119   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9120   if (!CompareWithSrcDRE ||
9121       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9122     return;
9123 
9124   const Expr *OriginalSizeArg = Call->getArg(2);
9125   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9126       << OriginalSizeArg->getSourceRange() << FnName;
9127 
9128   // Output a FIXIT hint if the destination is an array (rather than a
9129   // pointer to an array).  This could be enhanced to handle some
9130   // pointers if we know the actual size, like if DstArg is 'array+2'
9131   // we could say 'sizeof(array)-2'.
9132   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9133   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9134     return;
9135 
9136   SmallString<128> sizeString;
9137   llvm::raw_svector_ostream OS(sizeString);
9138   OS << "sizeof(";
9139   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9140   OS << ")";
9141 
9142   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9143       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9144                                       OS.str());
9145 }
9146 
9147 /// Check if two expressions refer to the same declaration.
9148 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9149   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9150     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9151       return D1->getDecl() == D2->getDecl();
9152   return false;
9153 }
9154 
9155 static const Expr *getStrlenExprArg(const Expr *E) {
9156   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9157     const FunctionDecl *FD = CE->getDirectCallee();
9158     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
9159       return nullptr;
9160     return CE->getArg(0)->IgnoreParenCasts();
9161   }
9162   return nullptr;
9163 }
9164 
9165 void Sema::CheckStrncatArguments(const CallExpr *CE,
9166                                  IdentifierInfo *FnName) {
9167   // Don't crash if the user has the wrong number of arguments.
9168   if (CE->getNumArgs() < 3)
9169     return;
9170   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
9171   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
9172   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
9173 
9174   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
9175                                      CE->getRParenLoc()))
9176     return;
9177 
9178   // Identify common expressions, which are wrongly used as the size argument
9179   // to strncat and may lead to buffer overflows.
9180   unsigned PatternType = 0;
9181   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
9182     // - sizeof(dst)
9183     if (referToTheSameDecl(SizeOfArg, DstArg))
9184       PatternType = 1;
9185     // - sizeof(src)
9186     else if (referToTheSameDecl(SizeOfArg, SrcArg))
9187       PatternType = 2;
9188   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
9189     if (BE->getOpcode() == BO_Sub) {
9190       const Expr *L = BE->getLHS()->IgnoreParenCasts();
9191       const Expr *R = BE->getRHS()->IgnoreParenCasts();
9192       // - sizeof(dst) - strlen(dst)
9193       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
9194           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
9195         PatternType = 1;
9196       // - sizeof(src) - (anything)
9197       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
9198         PatternType = 2;
9199     }
9200   }
9201 
9202   if (PatternType == 0)
9203     return;
9204 
9205   // Generate the diagnostic.
9206   SourceLocation SL = LenArg->getBeginLoc();
9207   SourceRange SR = LenArg->getSourceRange();
9208   SourceManager &SM = getSourceManager();
9209 
9210   // If the function is defined as a builtin macro, do not show macro expansion.
9211   if (SM.isMacroArgExpansion(SL)) {
9212     SL = SM.getSpellingLoc(SL);
9213     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
9214                      SM.getSpellingLoc(SR.getEnd()));
9215   }
9216 
9217   // Check if the destination is an array (rather than a pointer to an array).
9218   QualType DstTy = DstArg->getType();
9219   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
9220                                                                     Context);
9221   if (!isKnownSizeArray) {
9222     if (PatternType == 1)
9223       Diag(SL, diag::warn_strncat_wrong_size) << SR;
9224     else
9225       Diag(SL, diag::warn_strncat_src_size) << SR;
9226     return;
9227   }
9228 
9229   if (PatternType == 1)
9230     Diag(SL, diag::warn_strncat_large_size) << SR;
9231   else
9232     Diag(SL, diag::warn_strncat_src_size) << SR;
9233 
9234   SmallString<128> sizeString;
9235   llvm::raw_svector_ostream OS(sizeString);
9236   OS << "sizeof(";
9237   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9238   OS << ") - ";
9239   OS << "strlen(";
9240   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9241   OS << ") - 1";
9242 
9243   Diag(SL, diag::note_strncat_wrong_size)
9244     << FixItHint::CreateReplacement(SR, OS.str());
9245 }
9246 
9247 namespace {
9248 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
9249                                 const UnaryOperator *UnaryExpr, const Decl *D) {
9250   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
9251     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
9252         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
9253     return;
9254   }
9255 }
9256 
9257 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
9258                                  const UnaryOperator *UnaryExpr) {
9259   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
9260     const Decl *D = Lvalue->getDecl();
9261     if (isa<DeclaratorDecl>(D))
9262       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
9263         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
9264   }
9265 
9266   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
9267     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
9268                                       Lvalue->getMemberDecl());
9269 }
9270 
9271 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
9272                             const UnaryOperator *UnaryExpr) {
9273   const auto *Lambda = dyn_cast<LambdaExpr>(
9274       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
9275   if (!Lambda)
9276     return;
9277 
9278   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
9279       << CalleeName << 2 /*object: lambda expression*/;
9280 }
9281 
9282 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
9283                                   const DeclRefExpr *Lvalue) {
9284   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
9285   if (Var == nullptr)
9286     return;
9287 
9288   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
9289       << CalleeName << 0 /*object: */ << Var;
9290 }
9291 
9292 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
9293                             const CastExpr *Cast) {
9294   SmallString<128> SizeString;
9295   llvm::raw_svector_ostream OS(SizeString);
9296 
9297   clang::CastKind Kind = Cast->getCastKind();
9298   if (Kind == clang::CK_BitCast &&
9299       !Cast->getSubExpr()->getType()->isFunctionPointerType())
9300     return;
9301   if (Kind == clang::CK_IntegralToPointer &&
9302       !isa<IntegerLiteral>(
9303           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
9304     return;
9305 
9306   switch (Cast->getCastKind()) {
9307   case clang::CK_BitCast:
9308   case clang::CK_IntegralToPointer:
9309   case clang::CK_FunctionToPointerDecay:
9310     OS << '\'';
9311     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
9312     OS << '\'';
9313     break;
9314   default:
9315     return;
9316   }
9317 
9318   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
9319       << CalleeName << 0 /*object: */ << OS.str();
9320 }
9321 } // namespace
9322 
9323 void Sema::CheckFreeArguments(const CallExpr *E) {
9324   const std::string CalleeName =
9325       cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
9326 
9327   { // Prefer something that doesn't involve a cast to make things simpler.
9328     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
9329     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
9330       switch (UnaryExpr->getOpcode()) {
9331       case UnaryOperator::Opcode::UO_AddrOf:
9332         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
9333       case UnaryOperator::Opcode::UO_Plus:
9334         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
9335       default:
9336         break;
9337       }
9338 
9339     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
9340       if (Lvalue->getType()->isArrayType())
9341         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
9342 
9343     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
9344       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
9345           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
9346       return;
9347     }
9348 
9349     if (isa<BlockExpr>(Arg)) {
9350       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
9351           << CalleeName << 1 /*object: block*/;
9352       return;
9353     }
9354   }
9355   // Maybe the cast was important, check after the other cases.
9356   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
9357     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
9358 }
9359 
9360 void
9361 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
9362                          SourceLocation ReturnLoc,
9363                          bool isObjCMethod,
9364                          const AttrVec *Attrs,
9365                          const FunctionDecl *FD) {
9366   // Check if the return value is null but should not be.
9367   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
9368        (!isObjCMethod && isNonNullType(lhsType))) &&
9369       CheckNonNullExpr(*this, RetValExp))
9370     Diag(ReturnLoc, diag::warn_null_ret)
9371       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
9372 
9373   // C++11 [basic.stc.dynamic.allocation]p4:
9374   //   If an allocation function declared with a non-throwing
9375   //   exception-specification fails to allocate storage, it shall return
9376   //   a null pointer. Any other allocation function that fails to allocate
9377   //   storage shall indicate failure only by throwing an exception [...]
9378   if (FD) {
9379     OverloadedOperatorKind Op = FD->getOverloadedOperator();
9380     if (Op == OO_New || Op == OO_Array_New) {
9381       const FunctionProtoType *Proto
9382         = FD->getType()->castAs<FunctionProtoType>();
9383       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
9384           CheckNonNullExpr(*this, RetValExp))
9385         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
9386           << FD << getLangOpts().CPlusPlus11;
9387     }
9388   }
9389 
9390   if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) {
9391     Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
9392   }
9393 
9394   // PPC MMA non-pointer types are not allowed as return type. Checking the type
9395   // here prevent the user from using a PPC MMA type as trailing return type.
9396   if (Context.getTargetInfo().getTriple().isPPC64())
9397     PPC().CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
9398 }
9399 
9400 void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
9401                                 BinaryOperatorKind Opcode) {
9402   if (!BinaryOperator::isEqualityOp(Opcode))
9403     return;
9404 
9405   // Match and capture subexpressions such as "(float) X == 0.1".
9406   FloatingLiteral *FPLiteral;
9407   CastExpr *FPCast;
9408   auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
9409     FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
9410     FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
9411     return FPLiteral && FPCast;
9412   };
9413 
9414   if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
9415     auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
9416     auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
9417     if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
9418         TargetTy->isFloatingPoint()) {
9419       bool Lossy;
9420       llvm::APFloat TargetC = FPLiteral->getValue();
9421       TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
9422                       llvm::APFloat::rmNearestTiesToEven, &Lossy);
9423       if (Lossy) {
9424         // If the literal cannot be represented in the source type, then a
9425         // check for == is always false and check for != is always true.
9426         Diag(Loc, diag::warn_float_compare_literal)
9427             << (Opcode == BO_EQ) << QualType(SourceTy, 0)
9428             << LHS->getSourceRange() << RHS->getSourceRange();
9429         return;
9430       }
9431     }
9432   }
9433 
9434   // Match a more general floating-point equality comparison (-Wfloat-equal).
9435   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
9436   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
9437 
9438   // Special case: check for x == x (which is OK).
9439   // Do not emit warnings for such cases.
9440   if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
9441     if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
9442       if (DRL->getDecl() == DRR->getDecl())
9443         return;
9444 
9445   // Special case: check for comparisons against literals that can be exactly
9446   //  represented by APFloat.  In such cases, do not emit a warning.  This
9447   //  is a heuristic: often comparison against such literals are used to
9448   //  detect if a value in a variable has not changed.  This clearly can
9449   //  lead to false negatives.
9450   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
9451     if (FLL->isExact())
9452       return;
9453   } else
9454     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
9455       if (FLR->isExact())
9456         return;
9457 
9458   // Check for comparisons with builtin types.
9459   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
9460     if (CL->getBuiltinCallee())
9461       return;
9462 
9463   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
9464     if (CR->getBuiltinCallee())
9465       return;
9466 
9467   // Emit the diagnostic.
9468   Diag(Loc, diag::warn_floatingpoint_eq)
9469     << LHS->getSourceRange() << RHS->getSourceRange();
9470 }
9471 
9472 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
9473 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
9474 
9475 namespace {
9476 
9477 /// Structure recording the 'active' range of an integer-valued
9478 /// expression.
9479 struct IntRange {
9480   /// The number of bits active in the int. Note that this includes exactly one
9481   /// sign bit if !NonNegative.
9482   unsigned Width;
9483 
9484   /// True if the int is known not to have negative values. If so, all leading
9485   /// bits before Width are known zero, otherwise they are known to be the
9486   /// same as the MSB within Width.
9487   bool NonNegative;
9488 
9489   IntRange(unsigned Width, bool NonNegative)
9490       : Width(Width), NonNegative(NonNegative) {}
9491 
9492   /// Number of bits excluding the sign bit.
9493   unsigned valueBits() const {
9494     return NonNegative ? Width : Width - 1;
9495   }
9496 
9497   /// Returns the range of the bool type.
9498   static IntRange forBoolType() {
9499     return IntRange(1, true);
9500   }
9501 
9502   /// Returns the range of an opaque value of the given integral type.
9503   static IntRange forValueOfType(ASTContext &C, QualType T) {
9504     return forValueOfCanonicalType(C,
9505                           T->getCanonicalTypeInternal().getTypePtr());
9506   }
9507 
9508   /// Returns the range of an opaque value of a canonical integral type.
9509   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
9510     assert(T->isCanonicalUnqualified());
9511 
9512     if (const VectorType *VT = dyn_cast<VectorType>(T))
9513       T = VT->getElementType().getTypePtr();
9514     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9515       T = CT->getElementType().getTypePtr();
9516     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9517       T = AT->getValueType().getTypePtr();
9518 
9519     if (!C.getLangOpts().CPlusPlus) {
9520       // For enum types in C code, use the underlying datatype.
9521       if (const EnumType *ET = dyn_cast<EnumType>(T))
9522         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
9523     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
9524       // For enum types in C++, use the known bit width of the enumerators.
9525       EnumDecl *Enum = ET->getDecl();
9526       // In C++11, enums can have a fixed underlying type. Use this type to
9527       // compute the range.
9528       if (Enum->isFixed()) {
9529         return IntRange(C.getIntWidth(QualType(T, 0)),
9530                         !ET->isSignedIntegerOrEnumerationType());
9531       }
9532 
9533       unsigned NumPositive = Enum->getNumPositiveBits();
9534       unsigned NumNegative = Enum->getNumNegativeBits();
9535 
9536       if (NumNegative == 0)
9537         return IntRange(NumPositive, true/*NonNegative*/);
9538       else
9539         return IntRange(std::max(NumPositive + 1, NumNegative),
9540                         false/*NonNegative*/);
9541     }
9542 
9543     if (const auto *EIT = dyn_cast<BitIntType>(T))
9544       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
9545 
9546     const BuiltinType *BT = cast<BuiltinType>(T);
9547     assert(BT->isInteger());
9548 
9549     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9550   }
9551 
9552   /// Returns the "target" range of a canonical integral type, i.e.
9553   /// the range of values expressible in the type.
9554   ///
9555   /// This matches forValueOfCanonicalType except that enums have the
9556   /// full range of their type, not the range of their enumerators.
9557   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
9558     assert(T->isCanonicalUnqualified());
9559 
9560     if (const VectorType *VT = dyn_cast<VectorType>(T))
9561       T = VT->getElementType().getTypePtr();
9562     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9563       T = CT->getElementType().getTypePtr();
9564     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9565       T = AT->getValueType().getTypePtr();
9566     if (const EnumType *ET = dyn_cast<EnumType>(T))
9567       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
9568 
9569     if (const auto *EIT = dyn_cast<BitIntType>(T))
9570       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
9571 
9572     const BuiltinType *BT = cast<BuiltinType>(T);
9573     assert(BT->isInteger());
9574 
9575     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9576   }
9577 
9578   /// Returns the supremum of two ranges: i.e. their conservative merge.
9579   static IntRange join(IntRange L, IntRange R) {
9580     bool Unsigned = L.NonNegative && R.NonNegative;
9581     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
9582                     L.NonNegative && R.NonNegative);
9583   }
9584 
9585   /// Return the range of a bitwise-AND of the two ranges.
9586   static IntRange bit_and(IntRange L, IntRange R) {
9587     unsigned Bits = std::max(L.Width, R.Width);
9588     bool NonNegative = false;
9589     if (L.NonNegative) {
9590       Bits = std::min(Bits, L.Width);
9591       NonNegative = true;
9592     }
9593     if (R.NonNegative) {
9594       Bits = std::min(Bits, R.Width);
9595       NonNegative = true;
9596     }
9597     return IntRange(Bits, NonNegative);
9598   }
9599 
9600   /// Return the range of a sum of the two ranges.
9601   static IntRange sum(IntRange L, IntRange R) {
9602     bool Unsigned = L.NonNegative && R.NonNegative;
9603     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
9604                     Unsigned);
9605   }
9606 
9607   /// Return the range of a difference of the two ranges.
9608   static IntRange difference(IntRange L, IntRange R) {
9609     // We need a 1-bit-wider range if:
9610     //   1) LHS can be negative: least value can be reduced.
9611     //   2) RHS can be negative: greatest value can be increased.
9612     bool CanWiden = !L.NonNegative || !R.NonNegative;
9613     bool Unsigned = L.NonNegative && R.Width == 0;
9614     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
9615                         !Unsigned,
9616                     Unsigned);
9617   }
9618 
9619   /// Return the range of a product of the two ranges.
9620   static IntRange product(IntRange L, IntRange R) {
9621     // If both LHS and RHS can be negative, we can form
9622     //   -2^L * -2^R = 2^(L + R)
9623     // which requires L + R + 1 value bits to represent.
9624     bool CanWiden = !L.NonNegative && !R.NonNegative;
9625     bool Unsigned = L.NonNegative && R.NonNegative;
9626     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
9627                     Unsigned);
9628   }
9629 
9630   /// Return the range of a remainder operation between the two ranges.
9631   static IntRange rem(IntRange L, IntRange R) {
9632     // The result of a remainder can't be larger than the result of
9633     // either side. The sign of the result is the sign of the LHS.
9634     bool Unsigned = L.NonNegative;
9635     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
9636                     Unsigned);
9637   }
9638 };
9639 
9640 } // namespace
9641 
9642 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
9643                               unsigned MaxWidth) {
9644   if (value.isSigned() && value.isNegative())
9645     return IntRange(value.getSignificantBits(), false);
9646 
9647   if (value.getBitWidth() > MaxWidth)
9648     value = value.trunc(MaxWidth);
9649 
9650   // isNonNegative() just checks the sign bit without considering
9651   // signedness.
9652   return IntRange(value.getActiveBits(), true);
9653 }
9654 
9655 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
9656                               unsigned MaxWidth) {
9657   if (result.isInt())
9658     return GetValueRange(C, result.getInt(), MaxWidth);
9659 
9660   if (result.isVector()) {
9661     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
9662     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
9663       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
9664       R = IntRange::join(R, El);
9665     }
9666     return R;
9667   }
9668 
9669   if (result.isComplexInt()) {
9670     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
9671     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
9672     return IntRange::join(R, I);
9673   }
9674 
9675   // This can happen with lossless casts to intptr_t of "based" lvalues.
9676   // Assume it might use arbitrary bits.
9677   // FIXME: The only reason we need to pass the type in here is to get
9678   // the sign right on this one case.  It would be nice if APValue
9679   // preserved this.
9680   assert(result.isLValue() || result.isAddrLabelDiff());
9681   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
9682 }
9683 
9684 static QualType GetExprType(const Expr *E) {
9685   QualType Ty = E->getType();
9686   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
9687     Ty = AtomicRHS->getValueType();
9688   return Ty;
9689 }
9690 
9691 /// Attempts to estimate an approximate range for the given integer expression.
9692 /// Returns a range if successful, otherwise it returns \c std::nullopt if a
9693 /// reliable estimation cannot be determined.
9694 ///
9695 /// \param MaxWidth The width to which the value will be truncated.
9696 /// \param InConstantContext If \c true, interpret the expression within a
9697 ///        constant context.
9698 /// \param Approximate If \c true, provide a likely range of values by assuming
9699 ///        that arithmetic on narrower types remains within those types.
9700 ///        If \c false, return a range that includes all possible values
9701 ///        resulting from the expression.
9702 /// \returns A range of values that the expression might take, or
9703 ///          std::nullopt if a reliable estimation cannot be determined.
9704 static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
9705                                                unsigned MaxWidth,
9706                                                bool InConstantContext,
9707                                                bool Approximate) {
9708   E = E->IgnoreParens();
9709 
9710   // Try a full evaluation first.
9711   Expr::EvalResult result;
9712   if (E->EvaluateAsRValue(result, C, InConstantContext))
9713     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
9714 
9715   // I think we only want to look through implicit casts here; if the
9716   // user has an explicit widening cast, we should treat the value as
9717   // being of the new, wider type.
9718   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
9719     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
9720       return TryGetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
9721                              Approximate);
9722 
9723     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
9724 
9725     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
9726                          CE->getCastKind() == CK_BooleanToSignedIntegral;
9727 
9728     // Assume that non-integer casts can span the full range of the type.
9729     if (!isIntegerCast)
9730       return OutputTypeRange;
9731 
9732     std::optional<IntRange> SubRange = TryGetExprRange(
9733         C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width),
9734         InConstantContext, Approximate);
9735     if (!SubRange)
9736       return std::nullopt;
9737 
9738     // Bail out if the subexpr's range is as wide as the cast type.
9739     if (SubRange->Width >= OutputTypeRange.Width)
9740       return OutputTypeRange;
9741 
9742     // Otherwise, we take the smaller width, and we're non-negative if
9743     // either the output type or the subexpr is.
9744     return IntRange(SubRange->Width,
9745                     SubRange->NonNegative || OutputTypeRange.NonNegative);
9746   }
9747 
9748   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
9749     // If we can fold the condition, just take that operand.
9750     bool CondResult;
9751     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
9752       return TryGetExprRange(
9753           C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth,
9754           InConstantContext, Approximate);
9755 
9756     // Otherwise, conservatively merge.
9757     // TryGetExprRange requires an integer expression, but a throw expression
9758     // results in a void type.
9759     Expr *TrueExpr = CO->getTrueExpr();
9760     if (TrueExpr->getType()->isVoidType())
9761       return std::nullopt;
9762 
9763     std::optional<IntRange> L =
9764         TryGetExprRange(C, TrueExpr, MaxWidth, InConstantContext, Approximate);
9765     if (!L)
9766       return std::nullopt;
9767 
9768     Expr *FalseExpr = CO->getFalseExpr();
9769     if (FalseExpr->getType()->isVoidType())
9770       return std::nullopt;
9771 
9772     std::optional<IntRange> R =
9773         TryGetExprRange(C, FalseExpr, MaxWidth, InConstantContext, Approximate);
9774     if (!R)
9775       return std::nullopt;
9776 
9777     return IntRange::join(*L, *R);
9778   }
9779 
9780   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
9781     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
9782 
9783     switch (BO->getOpcode()) {
9784     case BO_Cmp:
9785       llvm_unreachable("builtin <=> should have class type");
9786 
9787     // Boolean-valued operations are single-bit and positive.
9788     case BO_LAnd:
9789     case BO_LOr:
9790     case BO_LT:
9791     case BO_GT:
9792     case BO_LE:
9793     case BO_GE:
9794     case BO_EQ:
9795     case BO_NE:
9796       return IntRange::forBoolType();
9797 
9798     // The type of the assignments is the type of the LHS, so the RHS
9799     // is not necessarily the same type.
9800     case BO_MulAssign:
9801     case BO_DivAssign:
9802     case BO_RemAssign:
9803     case BO_AddAssign:
9804     case BO_SubAssign:
9805     case BO_XorAssign:
9806     case BO_OrAssign:
9807       // TODO: bitfields?
9808       return IntRange::forValueOfType(C, GetExprType(E));
9809 
9810     // Simple assignments just pass through the RHS, which will have
9811     // been coerced to the LHS type.
9812     case BO_Assign:
9813       // TODO: bitfields?
9814       return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
9815                              Approximate);
9816 
9817     // Operations with opaque sources are black-listed.
9818     case BO_PtrMemD:
9819     case BO_PtrMemI:
9820       return IntRange::forValueOfType(C, GetExprType(E));
9821 
9822     // Bitwise-and uses the *infinum* of the two source ranges.
9823     case BO_And:
9824     case BO_AndAssign:
9825       Combine = IntRange::bit_and;
9826       break;
9827 
9828     // Left shift gets black-listed based on a judgement call.
9829     case BO_Shl:
9830       // ...except that we want to treat '1 << (blah)' as logically
9831       // positive.  It's an important idiom.
9832       if (IntegerLiteral *I
9833             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
9834         if (I->getValue() == 1) {
9835           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
9836           return IntRange(R.Width, /*NonNegative*/ true);
9837         }
9838       }
9839       [[fallthrough]];
9840 
9841     case BO_ShlAssign:
9842       return IntRange::forValueOfType(C, GetExprType(E));
9843 
9844     // Right shift by a constant can narrow its left argument.
9845     case BO_Shr:
9846     case BO_ShrAssign: {
9847       std::optional<IntRange> L = TryGetExprRange(
9848           C, BO->getLHS(), MaxWidth, InConstantContext, Approximate);
9849       if (!L)
9850         return std::nullopt;
9851 
9852       // If the shift amount is a positive constant, drop the width by
9853       // that much.
9854       if (std::optional<llvm::APSInt> shift =
9855               BO->getRHS()->getIntegerConstantExpr(C)) {
9856         if (shift->isNonNegative()) {
9857           if (shift->uge(L->Width))
9858             L->Width = (L->NonNegative ? 0 : 1);
9859           else
9860             L->Width -= shift->getZExtValue();
9861         }
9862       }
9863 
9864       return L;
9865     }
9866 
9867     // Comma acts as its right operand.
9868     case BO_Comma:
9869       return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
9870                              Approximate);
9871 
9872     case BO_Add:
9873       if (!Approximate)
9874         Combine = IntRange::sum;
9875       break;
9876 
9877     case BO_Sub:
9878       if (BO->getLHS()->getType()->isPointerType())
9879         return IntRange::forValueOfType(C, GetExprType(E));
9880       if (!Approximate)
9881         Combine = IntRange::difference;
9882       break;
9883 
9884     case BO_Mul:
9885       if (!Approximate)
9886         Combine = IntRange::product;
9887       break;
9888 
9889     // The width of a division result is mostly determined by the size
9890     // of the LHS.
9891     case BO_Div: {
9892       // Don't 'pre-truncate' the operands.
9893       unsigned opWidth = C.getIntWidth(GetExprType(E));
9894       std::optional<IntRange> L = TryGetExprRange(
9895           C, BO->getLHS(), opWidth, InConstantContext, Approximate);
9896       if (!L)
9897         return std::nullopt;
9898 
9899       // If the divisor is constant, use that.
9900       if (std::optional<llvm::APSInt> divisor =
9901               BO->getRHS()->getIntegerConstantExpr(C)) {
9902         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
9903         if (log2 >= L->Width)
9904           L->Width = (L->NonNegative ? 0 : 1);
9905         else
9906           L->Width = std::min(L->Width - log2, MaxWidth);
9907         return L;
9908       }
9909 
9910       // Otherwise, just use the LHS's width.
9911       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
9912       // could be -1.
9913       std::optional<IntRange> R = TryGetExprRange(
9914           C, BO->getRHS(), opWidth, InConstantContext, Approximate);
9915       if (!R)
9916         return std::nullopt;
9917 
9918       return IntRange(L->Width, L->NonNegative && R->NonNegative);
9919     }
9920 
9921     case BO_Rem:
9922       Combine = IntRange::rem;
9923       break;
9924 
9925     // The default behavior is okay for these.
9926     case BO_Xor:
9927     case BO_Or:
9928       break;
9929     }
9930 
9931     // Combine the two ranges, but limit the result to the type in which we
9932     // performed the computation.
9933     QualType T = GetExprType(E);
9934     unsigned opWidth = C.getIntWidth(T);
9935     std::optional<IntRange> L = TryGetExprRange(C, BO->getLHS(), opWidth,
9936                                                 InConstantContext, Approximate);
9937     if (!L)
9938       return std::nullopt;
9939 
9940     std::optional<IntRange> R = TryGetExprRange(C, BO->getRHS(), opWidth,
9941                                                 InConstantContext, Approximate);
9942     if (!R)
9943       return std::nullopt;
9944 
9945     IntRange C = Combine(*L, *R);
9946     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
9947     C.Width = std::min(C.Width, MaxWidth);
9948     return C;
9949   }
9950 
9951   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
9952     switch (UO->getOpcode()) {
9953     // Boolean-valued operations are white-listed.
9954     case UO_LNot:
9955       return IntRange::forBoolType();
9956 
9957     // Operations with opaque sources are black-listed.
9958     case UO_Deref:
9959     case UO_AddrOf: // should be impossible
9960       return IntRange::forValueOfType(C, GetExprType(E));
9961 
9962     default:
9963       return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
9964                              Approximate);
9965     }
9966   }
9967 
9968   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
9969     return TryGetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
9970                            Approximate);
9971 
9972   if (const auto *BitField = E->getSourceBitField())
9973     return IntRange(BitField->getBitWidthValue(C),
9974                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
9975 
9976   if (GetExprType(E)->isVoidType())
9977     return std::nullopt;
9978 
9979   return IntRange::forValueOfType(C, GetExprType(E));
9980 }
9981 
9982 static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
9983                                                bool InConstantContext,
9984                                                bool Approximate) {
9985   return TryGetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
9986                          Approximate);
9987 }
9988 
9989 /// Checks whether the given value, which currently has the given
9990 /// source semantics, has the same value when coerced through the
9991 /// target semantics.
9992 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
9993                                  const llvm::fltSemantics &Src,
9994                                  const llvm::fltSemantics &Tgt) {
9995   llvm::APFloat truncated = value;
9996 
9997   bool ignored;
9998   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
9999   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10000 
10001   return truncated.bitwiseIsEqual(value);
10002 }
10003 
10004 /// Checks whether the given value, which currently has the given
10005 /// source semantics, has the same value when coerced through the
10006 /// target semantics.
10007 ///
10008 /// The value might be a vector of floats (or a complex number).
10009 static bool IsSameFloatAfterCast(const APValue &value,
10010                                  const llvm::fltSemantics &Src,
10011                                  const llvm::fltSemantics &Tgt) {
10012   if (value.isFloat())
10013     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10014 
10015   if (value.isVector()) {
10016     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10017       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10018         return false;
10019     return true;
10020   }
10021 
10022   assert(value.isComplexFloat());
10023   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10024           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10025 }
10026 
10027 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10028                                        bool IsListInit = false);
10029 
10030 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10031   // Suppress cases where we are comparing against an enum constant.
10032   if (const DeclRefExpr *DR =
10033       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10034     if (isa<EnumConstantDecl>(DR->getDecl()))
10035       return true;
10036 
10037   // Suppress cases where the value is expanded from a macro, unless that macro
10038   // is how a language represents a boolean literal. This is the case in both C
10039   // and Objective-C.
10040   SourceLocation BeginLoc = E->getBeginLoc();
10041   if (BeginLoc.isMacroID()) {
10042     StringRef MacroName = Lexer::getImmediateMacroName(
10043         BeginLoc, S.getSourceManager(), S.getLangOpts());
10044     return MacroName != "YES" && MacroName != "NO" &&
10045            MacroName != "true" && MacroName != "false";
10046   }
10047 
10048   return false;
10049 }
10050 
10051 static bool isKnownToHaveUnsignedValue(Expr *E) {
10052   return E->getType()->isIntegerType() &&
10053          (!E->getType()->isSignedIntegerType() ||
10054           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10055 }
10056 
10057 namespace {
10058 /// The promoted range of values of a type. In general this has the
10059 /// following structure:
10060 ///
10061 ///     |-----------| . . . |-----------|
10062 ///     ^           ^       ^           ^
10063 ///    Min       HoleMin  HoleMax      Max
10064 ///
10065 /// ... where there is only a hole if a signed type is promoted to unsigned
10066 /// (in which case Min and Max are the smallest and largest representable
10067 /// values).
10068 struct PromotedRange {
10069   // Min, or HoleMax if there is a hole.
10070   llvm::APSInt PromotedMin;
10071   // Max, or HoleMin if there is a hole.
10072   llvm::APSInt PromotedMax;
10073 
10074   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10075     if (R.Width == 0)
10076       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10077     else if (R.Width >= BitWidth && !Unsigned) {
10078       // Promotion made the type *narrower*. This happens when promoting
10079       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10080       // Treat all values of 'signed int' as being in range for now.
10081       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10082       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10083     } else {
10084       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10085                         .extOrTrunc(BitWidth);
10086       PromotedMin.setIsUnsigned(Unsigned);
10087 
10088       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10089                         .extOrTrunc(BitWidth);
10090       PromotedMax.setIsUnsigned(Unsigned);
10091     }
10092   }
10093 
10094   // Determine whether this range is contiguous (has no hole).
10095   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10096 
10097   // Where a constant value is within the range.
10098   enum ComparisonResult {
10099     LT = 0x1,
10100     LE = 0x2,
10101     GT = 0x4,
10102     GE = 0x8,
10103     EQ = 0x10,
10104     NE = 0x20,
10105     InRangeFlag = 0x40,
10106 
10107     Less = LE | LT | NE,
10108     Min = LE | InRangeFlag,
10109     InRange = InRangeFlag,
10110     Max = GE | InRangeFlag,
10111     Greater = GE | GT | NE,
10112 
10113     OnlyValue = LE | GE | EQ | InRangeFlag,
10114     InHole = NE
10115   };
10116 
10117   ComparisonResult compare(const llvm::APSInt &Value) const {
10118     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10119            Value.isUnsigned() == PromotedMin.isUnsigned());
10120     if (!isContiguous()) {
10121       assert(Value.isUnsigned() && "discontiguous range for signed compare");
10122       if (Value.isMinValue()) return Min;
10123       if (Value.isMaxValue()) return Max;
10124       if (Value >= PromotedMin) return InRange;
10125       if (Value <= PromotedMax) return InRange;
10126       return InHole;
10127     }
10128 
10129     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10130     case -1: return Less;
10131     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10132     case 1:
10133       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10134       case -1: return InRange;
10135       case 0: return Max;
10136       case 1: return Greater;
10137       }
10138     }
10139 
10140     llvm_unreachable("impossible compare result");
10141   }
10142 
10143   static std::optional<StringRef>
10144   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10145     if (Op == BO_Cmp) {
10146       ComparisonResult LTFlag = LT, GTFlag = GT;
10147       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10148 
10149       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10150       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10151       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10152       return std::nullopt;
10153     }
10154 
10155     ComparisonResult TrueFlag, FalseFlag;
10156     if (Op == BO_EQ) {
10157       TrueFlag = EQ;
10158       FalseFlag = NE;
10159     } else if (Op == BO_NE) {
10160       TrueFlag = NE;
10161       FalseFlag = EQ;
10162     } else {
10163       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10164         TrueFlag = LT;
10165         FalseFlag = GE;
10166       } else {
10167         TrueFlag = GT;
10168         FalseFlag = LE;
10169       }
10170       if (Op == BO_GE || Op == BO_LE)
10171         std::swap(TrueFlag, FalseFlag);
10172     }
10173     if (R & TrueFlag)
10174       return StringRef("true");
10175     if (R & FalseFlag)
10176       return StringRef("false");
10177     return std::nullopt;
10178   }
10179 };
10180 }
10181 
10182 static bool HasEnumType(Expr *E) {
10183   // Strip off implicit integral promotions.
10184   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10185     if (ICE->getCastKind() != CK_IntegralCast &&
10186         ICE->getCastKind() != CK_NoOp)
10187       break;
10188     E = ICE->getSubExpr();
10189   }
10190 
10191   return E->getType()->isEnumeralType();
10192 }
10193 
10194 static int classifyConstantValue(Expr *Constant) {
10195   // The values of this enumeration are used in the diagnostics
10196   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10197   enum ConstantValueKind {
10198     Miscellaneous = 0,
10199     LiteralTrue,
10200     LiteralFalse
10201   };
10202   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10203     return BL->getValue() ? ConstantValueKind::LiteralTrue
10204                           : ConstantValueKind::LiteralFalse;
10205   return ConstantValueKind::Miscellaneous;
10206 }
10207 
10208 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10209                                         Expr *Constant, Expr *Other,
10210                                         const llvm::APSInt &Value,
10211                                         bool RhsConstant) {
10212   if (S.inTemplateInstantiation())
10213     return false;
10214 
10215   Expr *OriginalOther = Other;
10216 
10217   Constant = Constant->IgnoreParenImpCasts();
10218   Other = Other->IgnoreParenImpCasts();
10219 
10220   // Suppress warnings on tautological comparisons between values of the same
10221   // enumeration type. There are only two ways we could warn on this:
10222   //  - If the constant is outside the range of representable values of
10223   //    the enumeration. In such a case, we should warn about the cast
10224   //    to enumeration type, not about the comparison.
10225   //  - If the constant is the maximum / minimum in-range value. For an
10226   //    enumeratin type, such comparisons can be meaningful and useful.
10227   if (Constant->getType()->isEnumeralType() &&
10228       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10229     return false;
10230 
10231   std::optional<IntRange> OtherValueRange = TryGetExprRange(
10232       S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false);
10233   if (!OtherValueRange)
10234     return false;
10235 
10236   QualType OtherT = Other->getType();
10237   if (const auto *AT = OtherT->getAs<AtomicType>())
10238     OtherT = AT->getValueType();
10239   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
10240 
10241   // Special case for ObjC BOOL on targets where its a typedef for a signed char
10242   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
10243   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
10244                               S.ObjC().NSAPIObj->isObjCBOOLType(OtherT) &&
10245                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
10246 
10247   // Whether we're treating Other as being a bool because of the form of
10248   // expression despite it having another type (typically 'int' in C).
10249   bool OtherIsBooleanDespiteType =
10250       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10251   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
10252     OtherTypeRange = *OtherValueRange = IntRange::forBoolType();
10253 
10254   // Check if all values in the range of possible values of this expression
10255   // lead to the same comparison outcome.
10256   PromotedRange OtherPromotedValueRange(*OtherValueRange, Value.getBitWidth(),
10257                                         Value.isUnsigned());
10258   auto Cmp = OtherPromotedValueRange.compare(Value);
10259   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10260   if (!Result)
10261     return false;
10262 
10263   // Also consider the range determined by the type alone. This allows us to
10264   // classify the warning under the proper diagnostic group.
10265   bool TautologicalTypeCompare = false;
10266   {
10267     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
10268                                          Value.isUnsigned());
10269     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
10270     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
10271                                                        RhsConstant)) {
10272       TautologicalTypeCompare = true;
10273       Cmp = TypeCmp;
10274       Result = TypeResult;
10275     }
10276   }
10277 
10278   // Don't warn if the non-constant operand actually always evaluates to the
10279   // same value.
10280   if (!TautologicalTypeCompare && OtherValueRange->Width == 0)
10281     return false;
10282 
10283   // Suppress the diagnostic for an in-range comparison if the constant comes
10284   // from a macro or enumerator. We don't want to diagnose
10285   //
10286   //   some_long_value <= INT_MAX
10287   //
10288   // when sizeof(int) == sizeof(long).
10289   bool InRange = Cmp & PromotedRange::InRangeFlag;
10290   if (InRange && IsEnumConstOrFromMacro(S, Constant))
10291     return false;
10292 
10293   // A comparison of an unsigned bit-field against 0 is really a type problem,
10294   // even though at the type level the bit-field might promote to 'signed int'.
10295   if (Other->refersToBitField() && InRange && Value == 0 &&
10296       Other->getType()->isUnsignedIntegerOrEnumerationType())
10297     TautologicalTypeCompare = true;
10298 
10299   // If this is a comparison to an enum constant, include that
10300   // constant in the diagnostic.
10301   const EnumConstantDecl *ED = nullptr;
10302   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10303     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10304 
10305   // Should be enough for uint128 (39 decimal digits)
10306   SmallString<64> PrettySourceValue;
10307   llvm::raw_svector_ostream OS(PrettySourceValue);
10308   if (ED) {
10309     OS << '\'' << *ED << "' (" << Value << ")";
10310   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
10311                Constant->IgnoreParenImpCasts())) {
10312     OS << (BL->getValue() ? "YES" : "NO");
10313   } else {
10314     OS << Value;
10315   }
10316 
10317   if (!TautologicalTypeCompare) {
10318     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
10319         << RhsConstant << OtherValueRange->Width << OtherValueRange->NonNegative
10320         << E->getOpcodeStr() << OS.str() << *Result
10321         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10322     return true;
10323   }
10324 
10325   if (IsObjCSignedCharBool) {
10326     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10327                           S.PDiag(diag::warn_tautological_compare_objc_bool)
10328                               << OS.str() << *Result);
10329     return true;
10330   }
10331 
10332   // FIXME: We use a somewhat different formatting for the in-range cases and
10333   // cases involving boolean values for historical reasons. We should pick a
10334   // consistent way of presenting these diagnostics.
10335   if (!InRange || Other->isKnownToHaveBooleanValue()) {
10336 
10337     S.DiagRuntimeBehavior(
10338         E->getOperatorLoc(), E,
10339         S.PDiag(!InRange ? diag::warn_out_of_range_compare
10340                          : diag::warn_tautological_bool_compare)
10341             << OS.str() << classifyConstantValue(Constant) << OtherT
10342             << OtherIsBooleanDespiteType << *Result
10343             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10344   } else {
10345     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
10346     unsigned Diag =
10347         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10348             ? (HasEnumType(OriginalOther)
10349                    ? diag::warn_unsigned_enum_always_true_comparison
10350                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
10351                               : diag::warn_unsigned_always_true_comparison)
10352             : diag::warn_tautological_constant_compare;
10353 
10354     S.Diag(E->getOperatorLoc(), Diag)
10355         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10356         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10357   }
10358 
10359   return true;
10360 }
10361 
10362 /// Analyze the operands of the given comparison.  Implements the
10363 /// fallback case from AnalyzeComparison.
10364 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10365   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10366   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10367 }
10368 
10369 /// Implements -Wsign-compare.
10370 ///
10371 /// \param E the binary operator to check for warnings
10372 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10373   // The type the comparison is being performed in.
10374   QualType T = E->getLHS()->getType();
10375 
10376   // Only analyze comparison operators where both sides have been converted to
10377   // the same type.
10378   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10379     return AnalyzeImpConvsInComparison(S, E);
10380 
10381   // Don't analyze value-dependent comparisons directly.
10382   if (E->isValueDependent())
10383     return AnalyzeImpConvsInComparison(S, E);
10384 
10385   Expr *LHS = E->getLHS();
10386   Expr *RHS = E->getRHS();
10387 
10388   if (T->isIntegralType(S.Context)) {
10389     std::optional<llvm::APSInt> RHSValue =
10390         RHS->getIntegerConstantExpr(S.Context);
10391     std::optional<llvm::APSInt> LHSValue =
10392         LHS->getIntegerConstantExpr(S.Context);
10393 
10394     // We don't care about expressions whose result is a constant.
10395     if (RHSValue && LHSValue)
10396       return AnalyzeImpConvsInComparison(S, E);
10397 
10398     // We only care about expressions where just one side is literal
10399     if ((bool)RHSValue ^ (bool)LHSValue) {
10400       // Is the constant on the RHS or LHS?
10401       const bool RhsConstant = (bool)RHSValue;
10402       Expr *Const = RhsConstant ? RHS : LHS;
10403       Expr *Other = RhsConstant ? LHS : RHS;
10404       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
10405 
10406       // Check whether an integer constant comparison results in a value
10407       // of 'true' or 'false'.
10408       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10409         return AnalyzeImpConvsInComparison(S, E);
10410     }
10411   }
10412 
10413   if (!T->hasUnsignedIntegerRepresentation()) {
10414     // We don't do anything special if this isn't an unsigned integral
10415     // comparison:  we're only interested in integral comparisons, and
10416     // signed comparisons only happen in cases we don't care to warn about.
10417     return AnalyzeImpConvsInComparison(S, E);
10418   }
10419 
10420   LHS = LHS->IgnoreParenImpCasts();
10421   RHS = RHS->IgnoreParenImpCasts();
10422 
10423   if (!S.getLangOpts().CPlusPlus) {
10424     // Avoid warning about comparison of integers with different signs when
10425     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10426     // the type of `E`.
10427     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10428       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10429     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10430       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10431   }
10432 
10433   // Check to see if one of the (unmodified) operands is of different
10434   // signedness.
10435   Expr *signedOperand, *unsignedOperand;
10436   if (LHS->getType()->hasSignedIntegerRepresentation()) {
10437     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10438            "unsigned comparison between two signed integer expressions?");
10439     signedOperand = LHS;
10440     unsignedOperand = RHS;
10441   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10442     signedOperand = RHS;
10443     unsignedOperand = LHS;
10444   } else {
10445     return AnalyzeImpConvsInComparison(S, E);
10446   }
10447 
10448   // Otherwise, calculate the effective range of the signed operand.
10449   std::optional<IntRange> signedRange =
10450       TryGetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(),
10451                       /*Approximate=*/true);
10452   if (!signedRange)
10453     return;
10454 
10455   // Go ahead and analyze implicit conversions in the operands.  Note
10456   // that we skip the implicit conversions on both sides.
10457   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10458   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10459 
10460   // If the signed range is non-negative, -Wsign-compare won't fire.
10461   if (signedRange->NonNegative)
10462     return;
10463 
10464   // For (in)equality comparisons, if the unsigned operand is a
10465   // constant which cannot collide with a overflowed signed operand,
10466   // then reinterpreting the signed operand as unsigned will not
10467   // change the result of the comparison.
10468   if (E->isEqualityOp()) {
10469     unsigned comparisonWidth = S.Context.getIntWidth(T);
10470     std::optional<IntRange> unsignedRange = TryGetExprRange(
10471         S.Context, unsignedOperand, S.isConstantEvaluatedContext(),
10472         /*Approximate=*/true);
10473     if (!unsignedRange)
10474       return;
10475 
10476     // We should never be unable to prove that the unsigned operand is
10477     // non-negative.
10478     assert(unsignedRange->NonNegative && "unsigned range includes negative?");
10479 
10480     if (unsignedRange->Width < comparisonWidth)
10481       return;
10482   }
10483 
10484   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10485                         S.PDiag(diag::warn_mixed_sign_comparison)
10486                             << LHS->getType() << RHS->getType()
10487                             << LHS->getSourceRange() << RHS->getSourceRange());
10488 }
10489 
10490 /// Analyzes an attempt to assign the given value to a bitfield.
10491 ///
10492 /// Returns true if there was something fishy about the attempt.
10493 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
10494                                       SourceLocation InitLoc) {
10495   assert(Bitfield->isBitField());
10496   if (Bitfield->isInvalidDecl())
10497     return false;
10498 
10499   // White-list bool bitfields.
10500   QualType BitfieldType = Bitfield->getType();
10501   if (BitfieldType->isBooleanType())
10502      return false;
10503 
10504   if (BitfieldType->isEnumeralType()) {
10505     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
10506     // If the underlying enum type was not explicitly specified as an unsigned
10507     // type and the enum contain only positive values, MSVC++ will cause an
10508     // inconsistency by storing this as a signed type.
10509     if (S.getLangOpts().CPlusPlus11 &&
10510         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
10511         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
10512         BitfieldEnumDecl->getNumNegativeBits() == 0) {
10513       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
10514           << BitfieldEnumDecl;
10515     }
10516   }
10517 
10518   // Ignore value- or type-dependent expressions.
10519   if (Bitfield->getBitWidth()->isValueDependent() ||
10520       Bitfield->getBitWidth()->isTypeDependent() ||
10521       Init->isValueDependent() ||
10522       Init->isTypeDependent())
10523     return false;
10524 
10525   Expr *OriginalInit = Init->IgnoreParenImpCasts();
10526   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
10527 
10528   Expr::EvalResult Result;
10529   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
10530                                    Expr::SE_AllowSideEffects)) {
10531     // The RHS is not constant.  If the RHS has an enum type, make sure the
10532     // bitfield is wide enough to hold all the values of the enum without
10533     // truncation.
10534     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
10535       EnumDecl *ED = EnumTy->getDecl();
10536       bool SignedBitfield = BitfieldType->isSignedIntegerType();
10537 
10538       // Enum types are implicitly signed on Windows, so check if there are any
10539       // negative enumerators to see if the enum was intended to be signed or
10540       // not.
10541       bool SignedEnum = ED->getNumNegativeBits() > 0;
10542 
10543       // Check for surprising sign changes when assigning enum values to a
10544       // bitfield of different signedness.  If the bitfield is signed and we
10545       // have exactly the right number of bits to store this unsigned enum,
10546       // suggest changing the enum to an unsigned type. This typically happens
10547       // on Windows where unfixed enums always use an underlying type of 'int'.
10548       unsigned DiagID = 0;
10549       if (SignedEnum && !SignedBitfield) {
10550         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
10551       } else if (SignedBitfield && !SignedEnum &&
10552                  ED->getNumPositiveBits() == FieldWidth) {
10553         DiagID = diag::warn_signed_bitfield_enum_conversion;
10554       }
10555 
10556       if (DiagID) {
10557         S.Diag(InitLoc, DiagID) << Bitfield << ED;
10558         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
10559         SourceRange TypeRange =
10560             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
10561         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
10562             << SignedEnum << TypeRange;
10563       }
10564 
10565       // Compute the required bitwidth. If the enum has negative values, we need
10566       // one more bit than the normal number of positive bits to represent the
10567       // sign bit.
10568       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
10569                                                   ED->getNumNegativeBits())
10570                                        : ED->getNumPositiveBits();
10571 
10572       // Check the bitwidth.
10573       if (BitsNeeded > FieldWidth) {
10574         Expr *WidthExpr = Bitfield->getBitWidth();
10575         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
10576             << Bitfield << ED;
10577         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
10578             << BitsNeeded << ED << WidthExpr->getSourceRange();
10579       }
10580     }
10581 
10582     return false;
10583   }
10584 
10585   llvm::APSInt Value = Result.Val.getInt();
10586 
10587   unsigned OriginalWidth = Value.getBitWidth();
10588 
10589   // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce
10590   // false positives where the user is demonstrating they intend to use the
10591   // bit-field as a Boolean, check to see if the value is 1 and we're assigning
10592   // to a one-bit bit-field to see if the value came from a macro named 'true'.
10593   bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1;
10594   if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) {
10595     SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc();
10596     if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
10597         S.findMacroSpelling(MaybeMacroLoc, "true"))
10598       return false;
10599   }
10600 
10601   if (!Value.isSigned() || Value.isNegative())
10602     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
10603       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
10604         OriginalWidth = Value.getSignificantBits();
10605 
10606   if (OriginalWidth <= FieldWidth)
10607     return false;
10608 
10609   // Compute the value which the bitfield will contain.
10610   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
10611   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
10612 
10613   // Check whether the stored value is equal to the original value.
10614   TruncatedValue = TruncatedValue.extend(OriginalWidth);
10615   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
10616     return false;
10617 
10618   std::string PrettyValue = toString(Value, 10);
10619   std::string PrettyTrunc = toString(TruncatedValue, 10);
10620 
10621   S.Diag(InitLoc, OneAssignedToOneBitBitfield
10622                       ? diag::warn_impcast_single_bit_bitield_precision_constant
10623                       : diag::warn_impcast_bitfield_precision_constant)
10624       << PrettyValue << PrettyTrunc << OriginalInit->getType()
10625       << Init->getSourceRange();
10626 
10627   return true;
10628 }
10629 
10630 /// Analyze the given simple or compound assignment for warning-worthy
10631 /// operations.
10632 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
10633   // Just recurse on the LHS.
10634   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10635 
10636   // We want to recurse on the RHS as normal unless we're assigning to
10637   // a bitfield.
10638   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
10639     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
10640                                   E->getOperatorLoc())) {
10641       // Recurse, ignoring any implicit conversions on the RHS.
10642       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
10643                                         E->getOperatorLoc());
10644     }
10645   }
10646 
10647   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10648 
10649   // Diagnose implicitly sequentially-consistent atomic assignment.
10650   if (E->getLHS()->getType()->isAtomicType())
10651     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
10652 }
10653 
10654 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10655 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
10656                             SourceLocation CContext, unsigned diag,
10657                             bool pruneControlFlow = false) {
10658   if (pruneControlFlow) {
10659     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10660                           S.PDiag(diag)
10661                               << SourceType << T << E->getSourceRange()
10662                               << SourceRange(CContext));
10663     return;
10664   }
10665   S.Diag(E->getExprLoc(), diag)
10666     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
10667 }
10668 
10669 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10670 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
10671                             SourceLocation CContext,
10672                             unsigned diag, bool pruneControlFlow = false) {
10673   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
10674 }
10675 
10676 /// Diagnose an implicit cast from a floating point value to an integer value.
10677 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
10678                                     SourceLocation CContext) {
10679   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
10680   const bool PruneWarnings = S.inTemplateInstantiation();
10681 
10682   Expr *InnerE = E->IgnoreParenImpCasts();
10683   // We also want to warn on, e.g., "int i = -1.234"
10684   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
10685     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
10686       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
10687 
10688   const bool IsLiteral =
10689       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
10690 
10691   llvm::APFloat Value(0.0);
10692   bool IsConstant =
10693     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
10694   if (!IsConstant) {
10695     if (S.ObjC().isSignedCharBool(T)) {
10696       return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
10697           E, S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
10698                  << E->getType());
10699     }
10700 
10701     return DiagnoseImpCast(S, E, T, CContext,
10702                            diag::warn_impcast_float_integer, PruneWarnings);
10703   }
10704 
10705   bool isExact = false;
10706 
10707   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
10708                             T->hasUnsignedIntegerRepresentation());
10709   llvm::APFloat::opStatus Result = Value.convertToInteger(
10710       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
10711 
10712   // FIXME: Force the precision of the source value down so we don't print
10713   // digits which are usually useless (we don't really care here if we
10714   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
10715   // would automatically print the shortest representation, but it's a bit
10716   // tricky to implement.
10717   SmallString<16> PrettySourceValue;
10718   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
10719   precision = (precision * 59 + 195) / 196;
10720   Value.toString(PrettySourceValue, precision);
10721 
10722   if (S.ObjC().isSignedCharBool(T) && IntegerValue != 0 && IntegerValue != 1) {
10723     return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
10724         E, S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
10725                << PrettySourceValue);
10726   }
10727 
10728   if (Result == llvm::APFloat::opOK && isExact) {
10729     if (IsLiteral) return;
10730     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
10731                            PruneWarnings);
10732   }
10733 
10734   // Conversion of a floating-point value to a non-bool integer where the
10735   // integral part cannot be represented by the integer type is undefined.
10736   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
10737     return DiagnoseImpCast(
10738         S, E, T, CContext,
10739         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
10740                   : diag::warn_impcast_float_to_integer_out_of_range,
10741         PruneWarnings);
10742 
10743   unsigned DiagID = 0;
10744   if (IsLiteral) {
10745     // Warn on floating point literal to integer.
10746     DiagID = diag::warn_impcast_literal_float_to_integer;
10747   } else if (IntegerValue == 0) {
10748     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
10749       return DiagnoseImpCast(S, E, T, CContext,
10750                              diag::warn_impcast_float_integer, PruneWarnings);
10751     }
10752     // Warn on non-zero to zero conversion.
10753     DiagID = diag::warn_impcast_float_to_integer_zero;
10754   } else {
10755     if (IntegerValue.isUnsigned()) {
10756       if (!IntegerValue.isMaxValue()) {
10757         return DiagnoseImpCast(S, E, T, CContext,
10758                                diag::warn_impcast_float_integer, PruneWarnings);
10759       }
10760     } else {  // IntegerValue.isSigned()
10761       if (!IntegerValue.isMaxSignedValue() &&
10762           !IntegerValue.isMinSignedValue()) {
10763         return DiagnoseImpCast(S, E, T, CContext,
10764                                diag::warn_impcast_float_integer, PruneWarnings);
10765       }
10766     }
10767     // Warn on evaluatable floating point expression to integer conversion.
10768     DiagID = diag::warn_impcast_float_to_integer;
10769   }
10770 
10771   SmallString<16> PrettyTargetValue;
10772   if (IsBool)
10773     PrettyTargetValue = Value.isZero() ? "false" : "true";
10774   else
10775     IntegerValue.toString(PrettyTargetValue);
10776 
10777   if (PruneWarnings) {
10778     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10779                           S.PDiag(DiagID)
10780                               << E->getType() << T.getUnqualifiedType()
10781                               << PrettySourceValue << PrettyTargetValue
10782                               << E->getSourceRange() << SourceRange(CContext));
10783   } else {
10784     S.Diag(E->getExprLoc(), DiagID)
10785         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
10786         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
10787   }
10788 }
10789 
10790 /// Analyze the given compound assignment for the possible losing of
10791 /// floating-point precision.
10792 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
10793   assert(isa<CompoundAssignOperator>(E) &&
10794          "Must be compound assignment operation");
10795   // Recurse on the LHS and RHS in here
10796   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10797   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10798 
10799   if (E->getLHS()->getType()->isAtomicType())
10800     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
10801 
10802   // Now check the outermost expression
10803   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
10804   const auto *RBT = cast<CompoundAssignOperator>(E)
10805                         ->getComputationResultType()
10806                         ->getAs<BuiltinType>();
10807 
10808   // The below checks assume source is floating point.
10809   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
10810 
10811   // If source is floating point but target is an integer.
10812   if (ResultBT->isInteger())
10813     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
10814                            E->getExprLoc(), diag::warn_impcast_float_integer);
10815 
10816   if (!ResultBT->isFloatingPoint())
10817     return;
10818 
10819   // If both source and target are floating points, warn about losing precision.
10820   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
10821       QualType(ResultBT, 0), QualType(RBT, 0));
10822   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
10823     // warn about dropping FP rank.
10824     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
10825                     diag::warn_impcast_float_result_precision);
10826 }
10827 
10828 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
10829                                       IntRange Range) {
10830   if (!Range.Width) return "0";
10831 
10832   llvm::APSInt ValueInRange = Value;
10833   ValueInRange.setIsSigned(!Range.NonNegative);
10834   ValueInRange = ValueInRange.trunc(Range.Width);
10835   return toString(ValueInRange, 10);
10836 }
10837 
10838 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
10839   if (!isa<ImplicitCastExpr>(Ex))
10840     return false;
10841 
10842   Expr *InnerE = Ex->IgnoreParenImpCasts();
10843   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
10844   const Type *Source =
10845     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
10846   if (Target->isDependentType())
10847     return false;
10848 
10849   const BuiltinType *FloatCandidateBT =
10850     dyn_cast<BuiltinType>(ToBool ? Source : Target);
10851   const Type *BoolCandidateType = ToBool ? Target : Source;
10852 
10853   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
10854           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
10855 }
10856 
10857 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
10858                                              SourceLocation CC) {
10859   unsigned NumArgs = TheCall->getNumArgs();
10860   for (unsigned i = 0; i < NumArgs; ++i) {
10861     Expr *CurrA = TheCall->getArg(i);
10862     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
10863       continue;
10864 
10865     bool IsSwapped = ((i > 0) &&
10866         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
10867     IsSwapped |= ((i < (NumArgs - 1)) &&
10868         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
10869     if (IsSwapped) {
10870       // Warn on this floating-point to bool conversion.
10871       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
10872                       CurrA->getType(), CC,
10873                       diag::warn_impcast_floating_point_to_bool);
10874     }
10875   }
10876 }
10877 
10878 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
10879                                    SourceLocation CC) {
10880   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
10881                         E->getExprLoc()))
10882     return;
10883 
10884   // Don't warn on functions which have return type nullptr_t.
10885   if (isa<CallExpr>(E))
10886     return;
10887 
10888   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
10889   const Expr *NewE = E->IgnoreParenImpCasts();
10890   bool IsGNUNullExpr = isa<GNUNullExpr>(NewE);
10891   bool HasNullPtrType = NewE->getType()->isNullPtrType();
10892   if (!IsGNUNullExpr && !HasNullPtrType)
10893     return;
10894 
10895   // Return if target type is a safe conversion.
10896   if (T->isAnyPointerType() || T->isBlockPointerType() ||
10897       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
10898     return;
10899 
10900   SourceLocation Loc = E->getSourceRange().getBegin();
10901 
10902   // Venture through the macro stacks to get to the source of macro arguments.
10903   // The new location is a better location than the complete location that was
10904   // passed in.
10905   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
10906   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
10907 
10908   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
10909   if (IsGNUNullExpr && Loc.isMacroID()) {
10910     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
10911         Loc, S.SourceMgr, S.getLangOpts());
10912     if (MacroName == "NULL")
10913       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
10914   }
10915 
10916   // Only warn if the null and context location are in the same macro expansion.
10917   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
10918     return;
10919 
10920   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
10921       << HasNullPtrType << T << SourceRange(CC)
10922       << FixItHint::CreateReplacement(Loc,
10923                                       S.getFixItZeroLiteralForType(T, Loc));
10924 }
10925 
10926 // Helper function to filter out cases for constant width constant conversion.
10927 // Don't warn on char array initialization or for non-decimal values.
10928 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
10929                                           SourceLocation CC) {
10930   // If initializing from a constant, and the constant starts with '0',
10931   // then it is a binary, octal, or hexadecimal.  Allow these constants
10932   // to fill all the bits, even if there is a sign change.
10933   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
10934     const char FirstLiteralCharacter =
10935         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
10936     if (FirstLiteralCharacter == '0')
10937       return false;
10938   }
10939 
10940   // If the CC location points to a '{', and the type is char, then assume
10941   // assume it is an array initialization.
10942   if (CC.isValid() && T->isCharType()) {
10943     const char FirstContextCharacter =
10944         S.getSourceManager().getCharacterData(CC)[0];
10945     if (FirstContextCharacter == '{')
10946       return false;
10947   }
10948 
10949   return true;
10950 }
10951 
10952 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
10953   const auto *IL = dyn_cast<IntegerLiteral>(E);
10954   if (!IL) {
10955     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
10956       if (UO->getOpcode() == UO_Minus)
10957         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
10958     }
10959   }
10960 
10961   return IL;
10962 }
10963 
10964 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
10965   E = E->IgnoreParenImpCasts();
10966   SourceLocation ExprLoc = E->getExprLoc();
10967 
10968   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10969     BinaryOperator::Opcode Opc = BO->getOpcode();
10970     Expr::EvalResult Result;
10971     // Do not diagnose unsigned shifts.
10972     if (Opc == BO_Shl) {
10973       const auto *LHS = getIntegerLiteral(BO->getLHS());
10974       const auto *RHS = getIntegerLiteral(BO->getRHS());
10975       if (LHS && LHS->getValue() == 0)
10976         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
10977       else if (!E->isValueDependent() && LHS && RHS &&
10978                RHS->getValue().isNonNegative() &&
10979                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
10980         S.Diag(ExprLoc, diag::warn_left_shift_always)
10981             << (Result.Val.getInt() != 0);
10982       else if (E->getType()->isSignedIntegerType())
10983         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
10984     }
10985   }
10986 
10987   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10988     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
10989     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
10990     if (!LHS || !RHS)
10991       return;
10992     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
10993         (RHS->getValue() == 0 || RHS->getValue() == 1))
10994       // Do not diagnose common idioms.
10995       return;
10996     if (LHS->getValue() != 0 && RHS->getValue() != 0)
10997       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
10998   }
10999 }
11000 
11001 void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
11002                                    bool *ICContext, bool IsListInit) {
11003   if (E->isTypeDependent() || E->isValueDependent()) return;
11004 
11005   const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
11006   const Type *Target = Context.getCanonicalType(T).getTypePtr();
11007   if (Source == Target) return;
11008   if (Target->isDependentType()) return;
11009 
11010   // If the conversion context location is invalid don't complain. We also
11011   // don't want to emit a warning if the issue occurs from the expansion of
11012   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11013   // delay this check as long as possible. Once we detect we are in that
11014   // scenario, we just return.
11015   if (CC.isInvalid())
11016     return;
11017 
11018   if (Source->isAtomicType())
11019     Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
11020 
11021   // Diagnose implicit casts to bool.
11022   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
11023     if (isa<StringLiteral>(E))
11024       // Warn on string literal to bool.  Checks for string literals in logical
11025       // and expressions, for instance, assert(0 && "error here"), are
11026       // prevented by a check in AnalyzeImplicitConversions().
11027       return DiagnoseImpCast(*this, E, T, CC,
11028                              diag::warn_impcast_string_literal_to_bool);
11029     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
11030         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
11031       // This covers the literal expressions that evaluate to Objective-C
11032       // objects.
11033       return DiagnoseImpCast(*this, E, T, CC,
11034                              diag::warn_impcast_objective_c_literal_to_bool);
11035     }
11036     if (Source->isPointerType() || Source->canDecayToPointerType()) {
11037       // Warn on pointer to bool conversion that is always true.
11038       DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
11039                                    SourceRange(CC));
11040     }
11041   }
11042 
11043   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
11044   // is a typedef for signed char (macOS), then that constant value has to be 1
11045   // or 0.
11046   if (ObjC().isSignedCharBool(T) && Source->isIntegralType(Context)) {
11047     Expr::EvalResult Result;
11048     if (E->EvaluateAsInt(Result, getASTContext(), Expr::SE_AllowSideEffects)) {
11049       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
11050         ObjC().adornBoolConversionDiagWithTernaryFixit(
11051             E, Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
11052                    << toString(Result.Val.getInt(), 10));
11053       }
11054       return;
11055     }
11056   }
11057 
11058   // Check implicit casts from Objective-C collection literals to specialized
11059   // collection types, e.g., NSArray<NSString *> *.
11060   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
11061     ObjC().checkArrayLiteral(QualType(Target, 0), ArrayLiteral);
11062   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
11063     ObjC().checkDictionaryLiteral(QualType(Target, 0), DictionaryLiteral);
11064 
11065   // Strip vector types.
11066   if (isa<VectorType>(Source)) {
11067     if (Target->isSveVLSBuiltinType() &&
11068         (Context.areCompatibleSveTypes(QualType(Target, 0),
11069                                        QualType(Source, 0)) ||
11070          Context.areLaxCompatibleSveTypes(QualType(Target, 0),
11071                                           QualType(Source, 0))))
11072       return;
11073 
11074     if (Target->isRVVVLSBuiltinType() &&
11075         (Context.areCompatibleRVVTypes(QualType(Target, 0),
11076                                        QualType(Source, 0)) ||
11077          Context.areLaxCompatibleRVVTypes(QualType(Target, 0),
11078                                           QualType(Source, 0))))
11079       return;
11080 
11081     if (!isa<VectorType>(Target)) {
11082       if (SourceMgr.isInSystemMacro(CC))
11083         return;
11084       return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_vector_scalar);
11085     } else if (getLangOpts().HLSL &&
11086                Target->castAs<VectorType>()->getNumElements() <
11087                    Source->castAs<VectorType>()->getNumElements()) {
11088       // Diagnose vector truncation but don't return. We may also want to
11089       // diagnose an element conversion.
11090       DiagnoseImpCast(*this, E, T, CC,
11091                       diag::warn_hlsl_impcast_vector_truncation);
11092     }
11093 
11094     // If the vector cast is cast between two vectors of the same size, it is
11095     // a bitcast, not a conversion, except under HLSL where it is a conversion.
11096     if (!getLangOpts().HLSL &&
11097         Context.getTypeSize(Source) == Context.getTypeSize(Target))
11098       return;
11099 
11100     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11101     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11102   }
11103   if (auto VecTy = dyn_cast<VectorType>(Target))
11104     Target = VecTy->getElementType().getTypePtr();
11105 
11106   // Strip complex types.
11107   if (isa<ComplexType>(Source)) {
11108     if (!isa<ComplexType>(Target)) {
11109       if (SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11110         return;
11111 
11112       return DiagnoseImpCast(*this, E, T, CC,
11113                              getLangOpts().CPlusPlus
11114                                  ? diag::err_impcast_complex_scalar
11115                                  : diag::warn_impcast_complex_scalar);
11116     }
11117 
11118     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11119     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11120   }
11121 
11122   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11123   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11124 
11125   // Strip SVE vector types
11126   if (SourceBT && SourceBT->isSveVLSBuiltinType()) {
11127     // Need the original target type for vector type checks
11128     const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr();
11129     // Handle conversion from scalable to fixed when msve-vector-bits is
11130     // specified
11131     if (Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
11132                                       QualType(Source, 0)) ||
11133         Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
11134                                          QualType(Source, 0)))
11135       return;
11136 
11137     // If the vector cast is cast between two vectors of the same size, it is
11138     // a bitcast, not a conversion.
11139     if (Context.getTypeSize(Source) == Context.getTypeSize(Target))
11140       return;
11141 
11142     Source = SourceBT->getSveEltType(Context).getTypePtr();
11143   }
11144 
11145   if (TargetBT && TargetBT->isSveVLSBuiltinType())
11146     Target = TargetBT->getSveEltType(Context).getTypePtr();
11147 
11148   // If the source is floating point...
11149   if (SourceBT && SourceBT->isFloatingPoint()) {
11150     // ...and the target is floating point...
11151     if (TargetBT && TargetBT->isFloatingPoint()) {
11152       // ...then warn if we're dropping FP rank.
11153 
11154       int Order = getASTContext().getFloatingTypeSemanticOrder(
11155           QualType(SourceBT, 0), QualType(TargetBT, 0));
11156       if (Order > 0) {
11157         // Don't warn about float constants that are precisely
11158         // representable in the target type.
11159         Expr::EvalResult result;
11160         if (E->EvaluateAsRValue(result, Context)) {
11161           // Value might be a float, a float vector, or a float complex.
11162           if (IsSameFloatAfterCast(
11163                   result.Val,
11164                   Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11165                   Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11166             return;
11167         }
11168 
11169         if (SourceMgr.isInSystemMacro(CC))
11170           return;
11171 
11172         DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_float_precision);
11173       }
11174       // ... or possibly if we're increasing rank, too
11175       else if (Order < 0) {
11176         if (SourceMgr.isInSystemMacro(CC))
11177           return;
11178 
11179         DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_double_promotion);
11180       }
11181       return;
11182     }
11183 
11184     // If the target is integral, always warn.
11185     if (TargetBT && TargetBT->isInteger()) {
11186       if (SourceMgr.isInSystemMacro(CC))
11187         return;
11188 
11189       DiagnoseFloatingImpCast(*this, E, T, CC);
11190     }
11191 
11192     // Detect the case where a call result is converted from floating-point to
11193     // to bool, and the final argument to the call is converted from bool, to
11194     // discover this typo:
11195     //
11196     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11197     //
11198     // FIXME: This is an incredibly special case; is there some more general
11199     // way to detect this class of misplaced-parentheses bug?
11200     if (Target->isBooleanType() && isa<CallExpr>(E)) {
11201       // Check last argument of function call to see if it is an
11202       // implicit cast from a type matching the type the result
11203       // is being cast to.
11204       CallExpr *CEx = cast<CallExpr>(E);
11205       if (unsigned NumArgs = CEx->getNumArgs()) {
11206         Expr *LastA = CEx->getArg(NumArgs - 1);
11207         Expr *InnerE = LastA->IgnoreParenImpCasts();
11208         if (isa<ImplicitCastExpr>(LastA) &&
11209             InnerE->getType()->isBooleanType()) {
11210           // Warn on this floating-point to bool conversion
11211           DiagnoseImpCast(*this, E, T, CC,
11212                           diag::warn_impcast_floating_point_to_bool);
11213         }
11214       }
11215     }
11216     return;
11217   }
11218 
11219   // Valid casts involving fixed point types should be accounted for here.
11220   if (Source->isFixedPointType()) {
11221     if (Target->isUnsaturatedFixedPointType()) {
11222       Expr::EvalResult Result;
11223       if (E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects,
11224                                   isConstantEvaluatedContext())) {
11225         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
11226         llvm::APFixedPoint MaxVal = Context.getFixedPointMax(T);
11227         llvm::APFixedPoint MinVal = Context.getFixedPointMin(T);
11228         if (Value > MaxVal || Value < MinVal) {
11229           DiagRuntimeBehavior(E->getExprLoc(), E,
11230                               PDiag(diag::warn_impcast_fixed_point_range)
11231                                   << Value.toString() << T
11232                                   << E->getSourceRange()
11233                                   << clang::SourceRange(CC));
11234           return;
11235         }
11236       }
11237     } else if (Target->isIntegerType()) {
11238       Expr::EvalResult Result;
11239       if (!isConstantEvaluatedContext() &&
11240           E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects)) {
11241         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
11242 
11243         bool Overflowed;
11244         llvm::APSInt IntResult = FXResult.convertToInt(
11245             Context.getIntWidth(T), Target->isSignedIntegerOrEnumerationType(),
11246             &Overflowed);
11247 
11248         if (Overflowed) {
11249           DiagRuntimeBehavior(E->getExprLoc(), E,
11250                               PDiag(diag::warn_impcast_fixed_point_range)
11251                                   << FXResult.toString() << T
11252                                   << E->getSourceRange()
11253                                   << clang::SourceRange(CC));
11254           return;
11255         }
11256       }
11257     }
11258   } else if (Target->isUnsaturatedFixedPointType()) {
11259     if (Source->isIntegerType()) {
11260       Expr::EvalResult Result;
11261       if (!isConstantEvaluatedContext() &&
11262           E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) {
11263         llvm::APSInt Value = Result.Val.getInt();
11264 
11265         bool Overflowed;
11266         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
11267             Value, Context.getFixedPointSemantics(T), &Overflowed);
11268 
11269         if (Overflowed) {
11270           DiagRuntimeBehavior(E->getExprLoc(), E,
11271                               PDiag(diag::warn_impcast_fixed_point_range)
11272                                   << toString(Value, /*Radix=*/10) << T
11273                                   << E->getSourceRange()
11274                                   << clang::SourceRange(CC));
11275           return;
11276         }
11277       }
11278     }
11279   }
11280 
11281   // If we are casting an integer type to a floating point type without
11282   // initialization-list syntax, we might lose accuracy if the floating
11283   // point type has a narrower significand than the integer type.
11284   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
11285       TargetBT->isFloatingType() && !IsListInit) {
11286     // Determine the number of precision bits in the source integer type.
11287     std::optional<IntRange> SourceRange =
11288         TryGetExprRange(Context, E, isConstantEvaluatedContext(),
11289                         /*Approximate=*/true);
11290     if (!SourceRange)
11291       return;
11292     unsigned int SourcePrecision = SourceRange->Width;
11293 
11294     // Determine the number of precision bits in the
11295     // target floating point type.
11296     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
11297         Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11298 
11299     if (SourcePrecision > 0 && TargetPrecision > 0 &&
11300         SourcePrecision > TargetPrecision) {
11301 
11302       if (std::optional<llvm::APSInt> SourceInt =
11303               E->getIntegerConstantExpr(Context)) {
11304         // If the source integer is a constant, convert it to the target
11305         // floating point type. Issue a warning if the value changes
11306         // during the whole conversion.
11307         llvm::APFloat TargetFloatValue(
11308             Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11309         llvm::APFloat::opStatus ConversionStatus =
11310             TargetFloatValue.convertFromAPInt(
11311                 *SourceInt, SourceBT->isSignedInteger(),
11312                 llvm::APFloat::rmNearestTiesToEven);
11313 
11314         if (ConversionStatus != llvm::APFloat::opOK) {
11315           SmallString<32> PrettySourceValue;
11316           SourceInt->toString(PrettySourceValue, 10);
11317           SmallString<32> PrettyTargetValue;
11318           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
11319 
11320           DiagRuntimeBehavior(
11321               E->getExprLoc(), E,
11322               PDiag(diag::warn_impcast_integer_float_precision_constant)
11323                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
11324                   << E->getSourceRange() << clang::SourceRange(CC));
11325         }
11326       } else {
11327         // Otherwise, the implicit conversion may lose precision.
11328         DiagnoseImpCast(*this, E, T, CC,
11329                         diag::warn_impcast_integer_float_precision);
11330       }
11331     }
11332   }
11333 
11334   DiagnoseNullConversion(*this, E, T, CC);
11335 
11336   DiscardMisalignedMemberAddress(Target, E);
11337 
11338   if (Target->isBooleanType())
11339     DiagnoseIntInBoolContext(*this, E);
11340 
11341   if (!Source->isIntegerType() || !Target->isIntegerType())
11342     return;
11343 
11344   // TODO: remove this early return once the false positives for constant->bool
11345   // in templates, macros, etc, are reduced or removed.
11346   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11347     return;
11348 
11349   if (ObjC().isSignedCharBool(T) && !Source->isCharType() &&
11350       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
11351     return ObjC().adornBoolConversionDiagWithTernaryFixit(
11352         E, Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
11353                << E->getType());
11354   }
11355   std::optional<IntRange> LikelySourceRange = TryGetExprRange(
11356       Context, E, isConstantEvaluatedContext(), /*Approximate=*/true);
11357   if (!LikelySourceRange)
11358     return;
11359 
11360   IntRange SourceTypeRange =
11361       IntRange::forTargetOfCanonicalType(Context, Source);
11362   IntRange TargetRange = IntRange::forTargetOfCanonicalType(Context, Target);
11363 
11364   if (LikelySourceRange->Width > TargetRange.Width) {
11365     // If the source is a constant, use a default-on diagnostic.
11366     // TODO: this should happen for bitfield stores, too.
11367     Expr::EvalResult Result;
11368     if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects,
11369                          isConstantEvaluatedContext())) {
11370       llvm::APSInt Value(32);
11371       Value = Result.Val.getInt();
11372 
11373       if (SourceMgr.isInSystemMacro(CC))
11374         return;
11375 
11376       std::string PrettySourceValue = toString(Value, 10);
11377       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11378 
11379       DiagRuntimeBehavior(E->getExprLoc(), E,
11380                           PDiag(diag::warn_impcast_integer_precision_constant)
11381                               << PrettySourceValue << PrettyTargetValue
11382                               << E->getType() << T << E->getSourceRange()
11383                               << SourceRange(CC));
11384       return;
11385     }
11386 
11387     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11388     if (SourceMgr.isInSystemMacro(CC))
11389       return;
11390 
11391     if (TargetRange.Width == 32 && Context.getIntWidth(E->getType()) == 64)
11392       return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_64_32,
11393                              /* pruneControlFlow */ true);
11394     return DiagnoseImpCast(*this, E, T, CC,
11395                            diag::warn_impcast_integer_precision);
11396   }
11397 
11398   if (TargetRange.Width > SourceTypeRange.Width) {
11399     if (auto *UO = dyn_cast<UnaryOperator>(E))
11400       if (UO->getOpcode() == UO_Minus)
11401         if (Source->isUnsignedIntegerType()) {
11402           if (Target->isUnsignedIntegerType())
11403             return DiagnoseImpCast(*this, E, T, CC,
11404                                    diag::warn_impcast_high_order_zero_bits);
11405           if (Target->isSignedIntegerType())
11406             return DiagnoseImpCast(*this, E, T, CC,
11407                                    diag::warn_impcast_nonnegative_result);
11408         }
11409   }
11410 
11411   if (TargetRange.Width == LikelySourceRange->Width &&
11412       !TargetRange.NonNegative && LikelySourceRange->NonNegative &&
11413       Source->isSignedIntegerType()) {
11414     // Warn when doing a signed to signed conversion, warn if the positive
11415     // source value is exactly the width of the target type, which will
11416     // cause a negative value to be stored.
11417 
11418     Expr::EvalResult Result;
11419     if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects) &&
11420         !SourceMgr.isInSystemMacro(CC)) {
11421       llvm::APSInt Value = Result.Val.getInt();
11422       if (isSameWidthConstantConversion(*this, E, T, CC)) {
11423         std::string PrettySourceValue = toString(Value, 10);
11424         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11425 
11426         Diag(E->getExprLoc(),
11427              PDiag(diag::warn_impcast_integer_precision_constant)
11428                  << PrettySourceValue << PrettyTargetValue << E->getType() << T
11429                  << E->getSourceRange() << SourceRange(CC));
11430         return;
11431       }
11432     }
11433 
11434     // Fall through for non-constants to give a sign conversion warning.
11435   }
11436 
11437   if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
11438       ((TargetRange.NonNegative && !LikelySourceRange->NonNegative) ||
11439        (!TargetRange.NonNegative && LikelySourceRange->NonNegative &&
11440         LikelySourceRange->Width == TargetRange.Width))) {
11441     if (SourceMgr.isInSystemMacro(CC))
11442       return;
11443 
11444     if (SourceBT && SourceBT->isInteger() && TargetBT &&
11445         TargetBT->isInteger() &&
11446         Source->isSignedIntegerType() == Target->isSignedIntegerType()) {
11447       return;
11448     }
11449 
11450     unsigned DiagID = diag::warn_impcast_integer_sign;
11451 
11452     // Traditionally, gcc has warned about this under -Wsign-compare.
11453     // We also want to warn about it in -Wconversion.
11454     // So if -Wconversion is off, use a completely identical diagnostic
11455     // in the sign-compare group.
11456     // The conditional-checking code will
11457     if (ICContext) {
11458       DiagID = diag::warn_impcast_integer_sign_conditional;
11459       *ICContext = true;
11460     }
11461 
11462     return DiagnoseImpCast(*this, E, T, CC, DiagID);
11463   }
11464 
11465   // Diagnose conversions between different enumeration types.
11466   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
11467   // type, to give us better diagnostics.
11468   QualType SourceType = E->getEnumCoercedType(Context);
11469   Source = Context.getCanonicalType(SourceType).getTypePtr();
11470 
11471   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
11472     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
11473       if (SourceEnum->getDecl()->hasNameForLinkage() &&
11474           TargetEnum->getDecl()->hasNameForLinkage() &&
11475           SourceEnum != TargetEnum) {
11476         if (SourceMgr.isInSystemMacro(CC))
11477           return;
11478 
11479         return DiagnoseImpCast(*this, E, SourceType, T, CC,
11480                                diag::warn_impcast_different_enum_types);
11481       }
11482 }
11483 
11484 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
11485                                      SourceLocation CC, QualType T);
11486 
11487 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
11488                                     SourceLocation CC, bool &ICContext) {
11489   E = E->IgnoreParenImpCasts();
11490   // Diagnose incomplete type for second or third operand in C.
11491   if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType())
11492     S.RequireCompleteExprType(E, diag::err_incomplete_type);
11493 
11494   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
11495     return CheckConditionalOperator(S, CO, CC, T);
11496 
11497   AnalyzeImplicitConversions(S, E, CC);
11498   if (E->getType() != T)
11499     return S.CheckImplicitConversion(E, T, CC, &ICContext);
11500 }
11501 
11502 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
11503                                      SourceLocation CC, QualType T) {
11504   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
11505 
11506   Expr *TrueExpr = E->getTrueExpr();
11507   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
11508     TrueExpr = BCO->getCommon();
11509 
11510   bool Suspicious = false;
11511   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
11512   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
11513 
11514   if (T->isBooleanType())
11515     DiagnoseIntInBoolContext(S, E);
11516 
11517   // If -Wconversion would have warned about either of the candidates
11518   // for a signedness conversion to the context type...
11519   if (!Suspicious) return;
11520 
11521   // ...but it's currently ignored...
11522   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
11523     return;
11524 
11525   // ...then check whether it would have warned about either of the
11526   // candidates for a signedness conversion to the condition type.
11527   if (E->getType() == T) return;
11528 
11529   Suspicious = false;
11530   S.CheckImplicitConversion(TrueExpr->IgnoreParenImpCasts(), E->getType(), CC,
11531                             &Suspicious);
11532   if (!Suspicious)
11533     S.CheckImplicitConversion(E->getFalseExpr()->IgnoreParenImpCasts(),
11534                               E->getType(), CC, &Suspicious);
11535 }
11536 
11537 /// Check conversion of given expression to boolean.
11538 /// Input argument E is a logical expression.
11539 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
11540   // Run the bool-like conversion checks only for C since there bools are
11541   // still not used as the return type from "boolean" operators or as the input
11542   // type for conditional operators.
11543   if (S.getLangOpts().CPlusPlus)
11544     return;
11545   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
11546     return;
11547   S.CheckImplicitConversion(E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
11548 }
11549 
11550 namespace {
11551 struct AnalyzeImplicitConversionsWorkItem {
11552   Expr *E;
11553   SourceLocation CC;
11554   bool IsListInit;
11555 };
11556 }
11557 
11558 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
11559 /// that should be visited are added to WorkList.
11560 static void AnalyzeImplicitConversions(
11561     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
11562     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
11563   Expr *OrigE = Item.E;
11564   SourceLocation CC = Item.CC;
11565 
11566   QualType T = OrigE->getType();
11567   Expr *E = OrigE->IgnoreParenImpCasts();
11568 
11569   // Propagate whether we are in a C++ list initialization expression.
11570   // If so, we do not issue warnings for implicit int-float conversion
11571   // precision loss, because C++11 narrowing already handles it.
11572   bool IsListInit = Item.IsListInit ||
11573                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
11574 
11575   if (E->isTypeDependent() || E->isValueDependent())
11576     return;
11577 
11578   Expr *SourceExpr = E;
11579   // Examine, but don't traverse into the source expression of an
11580   // OpaqueValueExpr, since it may have multiple parents and we don't want to
11581   // emit duplicate diagnostics. Its fine to examine the form or attempt to
11582   // evaluate it in the context of checking the specific conversion to T though.
11583   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11584     if (auto *Src = OVE->getSourceExpr())
11585       SourceExpr = Src;
11586 
11587   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
11588     if (UO->getOpcode() == UO_Not &&
11589         UO->getSubExpr()->isKnownToHaveBooleanValue())
11590       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
11591           << OrigE->getSourceRange() << T->isBooleanType()
11592           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
11593 
11594   if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
11595     if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
11596         BO->getLHS()->isKnownToHaveBooleanValue() &&
11597         BO->getRHS()->isKnownToHaveBooleanValue() &&
11598         BO->getLHS()->HasSideEffects(S.Context) &&
11599         BO->getRHS()->HasSideEffects(S.Context)) {
11600       SourceManager &SM = S.getSourceManager();
11601       const LangOptions &LO = S.getLangOpts();
11602       SourceLocation BLoc = BO->getOperatorLoc();
11603       SourceLocation ELoc = Lexer::getLocForEndOfToken(BLoc, 0, SM, LO);
11604       StringRef SR = clang::Lexer::getSourceText(
11605           clang::CharSourceRange::getTokenRange(BLoc, ELoc), SM, LO);
11606       // To reduce false positives, only issue the diagnostic if the operator
11607       // is explicitly spelled as a punctuator. This suppresses the diagnostic
11608       // when using 'bitand' or 'bitor' either as keywords in C++ or as macros
11609       // in C, along with other macro spellings the user might invent.
11610       if (SR.str() == "&" || SR.str() == "|") {
11611 
11612         S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
11613             << (BO->getOpcode() == BO_And ? "&" : "|")
11614             << OrigE->getSourceRange()
11615             << FixItHint::CreateReplacement(
11616                    BO->getOperatorLoc(),
11617                    (BO->getOpcode() == BO_And ? "&&" : "||"));
11618         S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
11619       }
11620     }
11621 
11622   // For conditional operators, we analyze the arguments as if they
11623   // were being fed directly into the output.
11624   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
11625     CheckConditionalOperator(S, CO, CC, T);
11626     return;
11627   }
11628 
11629   // Check implicit argument conversions for function calls.
11630   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
11631     CheckImplicitArgumentConversions(S, Call, CC);
11632 
11633   // Go ahead and check any implicit conversions we might have skipped.
11634   // The non-canonical typecheck is just an optimization;
11635   // CheckImplicitConversion will filter out dead implicit conversions.
11636   if (SourceExpr->getType() != T)
11637     S.CheckImplicitConversion(SourceExpr, T, CC, nullptr, IsListInit);
11638 
11639   // Now continue drilling into this expression.
11640 
11641   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
11642     // The bound subexpressions in a PseudoObjectExpr are not reachable
11643     // as transitive children.
11644     // FIXME: Use a more uniform representation for this.
11645     for (auto *SE : POE->semantics())
11646       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
11647         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
11648   }
11649 
11650   // Skip past explicit casts.
11651   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
11652     E = CE->getSubExpr()->IgnoreParenImpCasts();
11653     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
11654       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11655     WorkList.push_back({E, CC, IsListInit});
11656     return;
11657   }
11658 
11659   if (auto *OutArgE = dyn_cast<HLSLOutArgExpr>(E)) {
11660     WorkList.push_back({OutArgE->getArgLValue(), CC, IsListInit});
11661     // The base expression is only used to initialize the parameter for
11662     // arguments to `inout` parameters, so we only traverse down the base
11663     // expression for `inout` cases.
11664     if (OutArgE->isInOut())
11665       WorkList.push_back(
11666           {OutArgE->getCastedTemporary()->getSourceExpr(), CC, IsListInit});
11667     WorkList.push_back({OutArgE->getWritebackCast(), CC, IsListInit});
11668     return;
11669   }
11670 
11671   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11672     // Do a somewhat different check with comparison operators.
11673     if (BO->isComparisonOp())
11674       return AnalyzeComparison(S, BO);
11675 
11676     // And with simple assignments.
11677     if (BO->getOpcode() == BO_Assign)
11678       return AnalyzeAssignment(S, BO);
11679     // And with compound assignments.
11680     if (BO->isAssignmentOp())
11681       return AnalyzeCompoundAssignment(S, BO);
11682   }
11683 
11684   // These break the otherwise-useful invariant below.  Fortunately,
11685   // we don't really need to recurse into them, because any internal
11686   // expressions should have been analyzed already when they were
11687   // built into statements.
11688   if (isa<StmtExpr>(E)) return;
11689 
11690   // Don't descend into unevaluated contexts.
11691   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
11692 
11693   // Now just recurse over the expression's children.
11694   CC = E->getExprLoc();
11695   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
11696   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
11697   for (Stmt *SubStmt : E->children()) {
11698     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
11699     if (!ChildExpr)
11700       continue;
11701 
11702     if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
11703       if (ChildExpr == CSE->getOperand())
11704         // Do not recurse over a CoroutineSuspendExpr's operand.
11705         // The operand is also a subexpression of getCommonExpr(), and
11706         // recursing into it directly would produce duplicate diagnostics.
11707         continue;
11708 
11709     if (IsLogicalAndOperator &&
11710         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
11711       // Ignore checking string literals that are in logical and operators.
11712       // This is a common pattern for asserts.
11713       continue;
11714     WorkList.push_back({ChildExpr, CC, IsListInit});
11715   }
11716 
11717   if (BO && BO->isLogicalOp()) {
11718     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
11719     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11720       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11721 
11722     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
11723     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11724       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11725   }
11726 
11727   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
11728     if (U->getOpcode() == UO_LNot) {
11729       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
11730     } else if (U->getOpcode() != UO_AddrOf) {
11731       if (U->getSubExpr()->getType()->isAtomicType())
11732         S.Diag(U->getSubExpr()->getBeginLoc(),
11733                diag::warn_atomic_implicit_seq_cst);
11734     }
11735   }
11736 }
11737 
11738 /// AnalyzeImplicitConversions - Find and report any interesting
11739 /// implicit conversions in the given expression.  There are a couple
11740 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
11741 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
11742                                        bool IsListInit/*= false*/) {
11743   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
11744   WorkList.push_back({OrigE, CC, IsListInit});
11745   while (!WorkList.empty())
11746     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
11747 }
11748 
11749 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
11750 // Returns true when emitting a warning about taking the address of a reference.
11751 static bool CheckForReference(Sema &SemaRef, const Expr *E,
11752                               const PartialDiagnostic &PD) {
11753   E = E->IgnoreParenImpCasts();
11754 
11755   const FunctionDecl *FD = nullptr;
11756 
11757   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11758     if (!DRE->getDecl()->getType()->isReferenceType())
11759       return false;
11760   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11761     if (!M->getMemberDecl()->getType()->isReferenceType())
11762       return false;
11763   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
11764     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
11765       return false;
11766     FD = Call->getDirectCallee();
11767   } else {
11768     return false;
11769   }
11770 
11771   SemaRef.Diag(E->getExprLoc(), PD);
11772 
11773   // If possible, point to location of function.
11774   if (FD) {
11775     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
11776   }
11777 
11778   return true;
11779 }
11780 
11781 // Returns true if the SourceLocation is expanded from any macro body.
11782 // Returns false if the SourceLocation is invalid, is from not in a macro
11783 // expansion, or is from expanded from a top-level macro argument.
11784 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
11785   if (Loc.isInvalid())
11786     return false;
11787 
11788   while (Loc.isMacroID()) {
11789     if (SM.isMacroBodyExpansion(Loc))
11790       return true;
11791     Loc = SM.getImmediateMacroCallerLoc(Loc);
11792   }
11793 
11794   return false;
11795 }
11796 
11797 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
11798                                         Expr::NullPointerConstantKind NullKind,
11799                                         bool IsEqual, SourceRange Range) {
11800   if (!E)
11801     return;
11802 
11803   // Don't warn inside macros.
11804   if (E->getExprLoc().isMacroID()) {
11805     const SourceManager &SM = getSourceManager();
11806     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
11807         IsInAnyMacroBody(SM, Range.getBegin()))
11808       return;
11809   }
11810   E = E->IgnoreImpCasts();
11811 
11812   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
11813 
11814   if (isa<CXXThisExpr>(E)) {
11815     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
11816                                 : diag::warn_this_bool_conversion;
11817     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
11818     return;
11819   }
11820 
11821   bool IsAddressOf = false;
11822 
11823   if (auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
11824     if (UO->getOpcode() != UO_AddrOf)
11825       return;
11826     IsAddressOf = true;
11827     E = UO->getSubExpr();
11828   }
11829 
11830   if (IsAddressOf) {
11831     unsigned DiagID = IsCompare
11832                           ? diag::warn_address_of_reference_null_compare
11833                           : diag::warn_address_of_reference_bool_conversion;
11834     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
11835                                          << IsEqual;
11836     if (CheckForReference(*this, E, PD)) {
11837       return;
11838     }
11839   }
11840 
11841   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
11842     bool IsParam = isa<NonNullAttr>(NonnullAttr);
11843     std::string Str;
11844     llvm::raw_string_ostream S(Str);
11845     E->printPretty(S, nullptr, getPrintingPolicy());
11846     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
11847                                 : diag::warn_cast_nonnull_to_bool;
11848     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
11849       << E->getSourceRange() << Range << IsEqual;
11850     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
11851   };
11852 
11853   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
11854   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
11855     if (auto *Callee = Call->getDirectCallee()) {
11856       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
11857         ComplainAboutNonnullParamOrCall(A);
11858         return;
11859       }
11860     }
11861   }
11862 
11863   // Complain if we are converting a lambda expression to a boolean value
11864   // outside of instantiation.
11865   if (!inTemplateInstantiation()) {
11866     if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(E)) {
11867       if (const auto *MRecordDecl = MCallExpr->getRecordDecl();
11868           MRecordDecl && MRecordDecl->isLambda()) {
11869         Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool)
11870             << /*LambdaPointerConversionOperatorType=*/3
11871             << MRecordDecl->getSourceRange() << Range << IsEqual;
11872         return;
11873       }
11874     }
11875   }
11876 
11877   // Expect to find a single Decl.  Skip anything more complicated.
11878   ValueDecl *D = nullptr;
11879   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
11880     D = R->getDecl();
11881   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11882     D = M->getMemberDecl();
11883   }
11884 
11885   // Weak Decls can be null.
11886   if (!D || D->isWeak())
11887     return;
11888 
11889   // Check for parameter decl with nonnull attribute
11890   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
11891     if (getCurFunction() &&
11892         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
11893       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
11894         ComplainAboutNonnullParamOrCall(A);
11895         return;
11896       }
11897 
11898       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
11899         // Skip function template not specialized yet.
11900         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11901           return;
11902         auto ParamIter = llvm::find(FD->parameters(), PV);
11903         assert(ParamIter != FD->param_end());
11904         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
11905 
11906         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
11907           if (!NonNull->args_size()) {
11908               ComplainAboutNonnullParamOrCall(NonNull);
11909               return;
11910           }
11911 
11912           for (const ParamIdx &ArgNo : NonNull->args()) {
11913             if (ArgNo.getASTIndex() == ParamNo) {
11914               ComplainAboutNonnullParamOrCall(NonNull);
11915               return;
11916             }
11917           }
11918         }
11919       }
11920     }
11921   }
11922 
11923   QualType T = D->getType();
11924   const bool IsArray = T->isArrayType();
11925   const bool IsFunction = T->isFunctionType();
11926 
11927   // Address of function is used to silence the function warning.
11928   if (IsAddressOf && IsFunction) {
11929     return;
11930   }
11931 
11932   // Found nothing.
11933   if (!IsAddressOf && !IsFunction && !IsArray)
11934     return;
11935 
11936   // Pretty print the expression for the diagnostic.
11937   std::string Str;
11938   llvm::raw_string_ostream S(Str);
11939   E->printPretty(S, nullptr, getPrintingPolicy());
11940 
11941   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
11942                               : diag::warn_impcast_pointer_to_bool;
11943   enum {
11944     AddressOf,
11945     FunctionPointer,
11946     ArrayPointer
11947   } DiagType;
11948   if (IsAddressOf)
11949     DiagType = AddressOf;
11950   else if (IsFunction)
11951     DiagType = FunctionPointer;
11952   else if (IsArray)
11953     DiagType = ArrayPointer;
11954   else
11955     llvm_unreachable("Could not determine diagnostic.");
11956   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
11957                                 << Range << IsEqual;
11958 
11959   if (!IsFunction)
11960     return;
11961 
11962   // Suggest '&' to silence the function warning.
11963   Diag(E->getExprLoc(), diag::note_function_warning_silence)
11964       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
11965 
11966   // Check to see if '()' fixit should be emitted.
11967   QualType ReturnType;
11968   UnresolvedSet<4> NonTemplateOverloads;
11969   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
11970   if (ReturnType.isNull())
11971     return;
11972 
11973   if (IsCompare) {
11974     // There are two cases here.  If there is null constant, the only suggest
11975     // for a pointer return type.  If the null is 0, then suggest if the return
11976     // type is a pointer or an integer type.
11977     if (!ReturnType->isPointerType()) {
11978       if (NullKind == Expr::NPCK_ZeroExpression ||
11979           NullKind == Expr::NPCK_ZeroLiteral) {
11980         if (!ReturnType->isIntegerType())
11981           return;
11982       } else {
11983         return;
11984       }
11985     }
11986   } else { // !IsCompare
11987     // For function to bool, only suggest if the function pointer has bool
11988     // return type.
11989     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
11990       return;
11991   }
11992   Diag(E->getExprLoc(), diag::note_function_to_function_call)
11993       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
11994 }
11995 
11996 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
11997   // Don't diagnose in unevaluated contexts.
11998   if (isUnevaluatedContext())
11999     return;
12000 
12001   // Don't diagnose for value- or type-dependent expressions.
12002   if (E->isTypeDependent() || E->isValueDependent())
12003     return;
12004 
12005   // Check for array bounds violations in cases where the check isn't triggered
12006   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12007   // ArraySubscriptExpr is on the RHS of a variable initialization.
12008   CheckArrayAccess(E);
12009 
12010   // This is not the right CC for (e.g.) a variable initialization.
12011   AnalyzeImplicitConversions(*this, E, CC);
12012 }
12013 
12014 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12015   ::CheckBoolLikeConversion(*this, E, CC);
12016 }
12017 
12018 void Sema::CheckForIntOverflow (const Expr *E) {
12019   // Use a work list to deal with nested struct initializers.
12020   SmallVector<const Expr *, 2> Exprs(1, E);
12021 
12022   do {
12023     const Expr *OriginalE = Exprs.pop_back_val();
12024     const Expr *E = OriginalE->IgnoreParenCasts();
12025 
12026     if (isa<BinaryOperator, UnaryOperator>(E)) {
12027       E->EvaluateForOverflow(Context);
12028       continue;
12029     }
12030 
12031     if (const auto *InitList = dyn_cast<InitListExpr>(OriginalE))
12032       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12033     else if (isa<ObjCBoxedExpr>(OriginalE))
12034       E->EvaluateForOverflow(Context);
12035     else if (const auto *Call = dyn_cast<CallExpr>(E))
12036       Exprs.append(Call->arg_begin(), Call->arg_end());
12037     else if (const auto *Message = dyn_cast<ObjCMessageExpr>(E))
12038       Exprs.append(Message->arg_begin(), Message->arg_end());
12039     else if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
12040       Exprs.append(Construct->arg_begin(), Construct->arg_end());
12041     else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(E))
12042       Exprs.push_back(Temporary->getSubExpr());
12043     else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(E))
12044       Exprs.push_back(Array->getIdx());
12045     else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(E))
12046       Exprs.push_back(Compound->getInitializer());
12047     else if (const auto *New = dyn_cast<CXXNewExpr>(E);
12048              New && New->isArray()) {
12049       if (auto ArraySize = New->getArraySize())
12050         Exprs.push_back(*ArraySize);
12051     } else if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(OriginalE))
12052       Exprs.push_back(MTE->getSubExpr());
12053   } while (!Exprs.empty());
12054 }
12055 
12056 namespace {
12057 
12058 /// Visitor for expressions which looks for unsequenced operations on the
12059 /// same object.
12060 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12061   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12062 
12063   /// A tree of sequenced regions within an expression. Two regions are
12064   /// unsequenced if one is an ancestor or a descendent of the other. When we
12065   /// finish processing an expression with sequencing, such as a comma
12066   /// expression, we fold its tree nodes into its parent, since they are
12067   /// unsequenced with respect to nodes we will visit later.
12068   class SequenceTree {
12069     struct Value {
12070       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12071       unsigned Parent : 31;
12072       LLVM_PREFERRED_TYPE(bool)
12073       unsigned Merged : 1;
12074     };
12075     SmallVector<Value, 8> Values;
12076 
12077   public:
12078     /// A region within an expression which may be sequenced with respect
12079     /// to some other region.
12080     class Seq {
12081       friend class SequenceTree;
12082 
12083       unsigned Index;
12084 
12085       explicit Seq(unsigned N) : Index(N) {}
12086 
12087     public:
12088       Seq() : Index(0) {}
12089     };
12090 
12091     SequenceTree() { Values.push_back(Value(0)); }
12092     Seq root() const { return Seq(0); }
12093 
12094     /// Create a new sequence of operations, which is an unsequenced
12095     /// subset of \p Parent. This sequence of operations is sequenced with
12096     /// respect to other children of \p Parent.
12097     Seq allocate(Seq Parent) {
12098       Values.push_back(Value(Parent.Index));
12099       return Seq(Values.size() - 1);
12100     }
12101 
12102     /// Merge a sequence of operations into its parent.
12103     void merge(Seq S) {
12104       Values[S.Index].Merged = true;
12105     }
12106 
12107     /// Determine whether two operations are unsequenced. This operation
12108     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12109     /// should have been merged into its parent as appropriate.
12110     bool isUnsequenced(Seq Cur, Seq Old) {
12111       unsigned C = representative(Cur.Index);
12112       unsigned Target = representative(Old.Index);
12113       while (C >= Target) {
12114         if (C == Target)
12115           return true;
12116         C = Values[C].Parent;
12117       }
12118       return false;
12119     }
12120 
12121   private:
12122     /// Pick a representative for a sequence.
12123     unsigned representative(unsigned K) {
12124       if (Values[K].Merged)
12125         // Perform path compression as we go.
12126         return Values[K].Parent = representative(Values[K].Parent);
12127       return K;
12128     }
12129   };
12130 
12131   /// An object for which we can track unsequenced uses.
12132   using Object = const NamedDecl *;
12133 
12134   /// Different flavors of object usage which we track. We only track the
12135   /// least-sequenced usage of each kind.
12136   enum UsageKind {
12137     /// A read of an object. Multiple unsequenced reads are OK.
12138     UK_Use,
12139 
12140     /// A modification of an object which is sequenced before the value
12141     /// computation of the expression, such as ++n in C++.
12142     UK_ModAsValue,
12143 
12144     /// A modification of an object which is not sequenced before the value
12145     /// computation of the expression, such as n++.
12146     UK_ModAsSideEffect,
12147 
12148     UK_Count = UK_ModAsSideEffect + 1
12149   };
12150 
12151   /// Bundle together a sequencing region and the expression corresponding
12152   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
12153   struct Usage {
12154     const Expr *UsageExpr = nullptr;
12155     SequenceTree::Seq Seq;
12156 
12157     Usage() = default;
12158   };
12159 
12160   struct UsageInfo {
12161     Usage Uses[UK_Count];
12162 
12163     /// Have we issued a diagnostic for this object already?
12164     bool Diagnosed = false;
12165 
12166     UsageInfo();
12167   };
12168   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
12169 
12170   Sema &SemaRef;
12171 
12172   /// Sequenced regions within the expression.
12173   SequenceTree Tree;
12174 
12175   /// Declaration modifications and references which we have seen.
12176   UsageInfoMap UsageMap;
12177 
12178   /// The region we are currently within.
12179   SequenceTree::Seq Region;
12180 
12181   /// Filled in with declarations which were modified as a side-effect
12182   /// (that is, post-increment operations).
12183   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
12184 
12185   /// Expressions to check later. We defer checking these to reduce
12186   /// stack usage.
12187   SmallVectorImpl<const Expr *> &WorkList;
12188 
12189   /// RAII object wrapping the visitation of a sequenced subexpression of an
12190   /// expression. At the end of this process, the side-effects of the evaluation
12191   /// become sequenced with respect to the value computation of the result, so
12192   /// we downgrade any UK_ModAsSideEffect within the evaluation to
12193   /// UK_ModAsValue.
12194   struct SequencedSubexpression {
12195     SequencedSubexpression(SequenceChecker &Self)
12196       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
12197       Self.ModAsSideEffect = &ModAsSideEffect;
12198     }
12199 
12200     ~SequencedSubexpression() {
12201       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
12202         // Add a new usage with usage kind UK_ModAsValue, and then restore
12203         // the previous usage with UK_ModAsSideEffect (thus clearing it if
12204         // the previous one was empty).
12205         UsageInfo &UI = Self.UsageMap[M.first];
12206         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
12207         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
12208         SideEffectUsage = M.second;
12209       }
12210       Self.ModAsSideEffect = OldModAsSideEffect;
12211     }
12212 
12213     SequenceChecker &Self;
12214     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
12215     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
12216   };
12217 
12218   /// RAII object wrapping the visitation of a subexpression which we might
12219   /// choose to evaluate as a constant. If any subexpression is evaluated and
12220   /// found to be non-constant, this allows us to suppress the evaluation of
12221   /// the outer expression.
12222   class EvaluationTracker {
12223   public:
12224     EvaluationTracker(SequenceChecker &Self)
12225         : Self(Self), Prev(Self.EvalTracker) {
12226       Self.EvalTracker = this;
12227     }
12228 
12229     ~EvaluationTracker() {
12230       Self.EvalTracker = Prev;
12231       if (Prev)
12232         Prev->EvalOK &= EvalOK;
12233     }
12234 
12235     bool evaluate(const Expr *E, bool &Result) {
12236       if (!EvalOK || E->isValueDependent())
12237         return false;
12238       EvalOK = E->EvaluateAsBooleanCondition(
12239           Result, Self.SemaRef.Context,
12240           Self.SemaRef.isConstantEvaluatedContext());
12241       return EvalOK;
12242     }
12243 
12244   private:
12245     SequenceChecker &Self;
12246     EvaluationTracker *Prev;
12247     bool EvalOK = true;
12248   } *EvalTracker = nullptr;
12249 
12250   /// Find the object which is produced by the specified expression,
12251   /// if any.
12252   Object getObject(const Expr *E, bool Mod) const {
12253     E = E->IgnoreParenCasts();
12254     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12255       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
12256         return getObject(UO->getSubExpr(), Mod);
12257     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12258       if (BO->getOpcode() == BO_Comma)
12259         return getObject(BO->getRHS(), Mod);
12260       if (Mod && BO->isAssignmentOp())
12261         return getObject(BO->getLHS(), Mod);
12262     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12263       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
12264       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
12265         return ME->getMemberDecl();
12266     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12267       // FIXME: If this is a reference, map through to its value.
12268       return DRE->getDecl();
12269     return nullptr;
12270   }
12271 
12272   /// Note that an object \p O was modified or used by an expression
12273   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
12274   /// the object \p O as obtained via the \p UsageMap.
12275   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
12276     // Get the old usage for the given object and usage kind.
12277     Usage &U = UI.Uses[UK];
12278     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
12279       // If we have a modification as side effect and are in a sequenced
12280       // subexpression, save the old Usage so that we can restore it later
12281       // in SequencedSubexpression::~SequencedSubexpression.
12282       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
12283         ModAsSideEffect->push_back(std::make_pair(O, U));
12284       // Then record the new usage with the current sequencing region.
12285       U.UsageExpr = UsageExpr;
12286       U.Seq = Region;
12287     }
12288   }
12289 
12290   /// Check whether a modification or use of an object \p O in an expression
12291   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
12292   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
12293   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
12294   /// usage and false we are checking for a mod-use unsequenced usage.
12295   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
12296                   UsageKind OtherKind, bool IsModMod) {
12297     if (UI.Diagnosed)
12298       return;
12299 
12300     const Usage &U = UI.Uses[OtherKind];
12301     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
12302       return;
12303 
12304     const Expr *Mod = U.UsageExpr;
12305     const Expr *ModOrUse = UsageExpr;
12306     if (OtherKind == UK_Use)
12307       std::swap(Mod, ModOrUse);
12308 
12309     SemaRef.DiagRuntimeBehavior(
12310         Mod->getExprLoc(), {Mod, ModOrUse},
12311         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12312                                : diag::warn_unsequenced_mod_use)
12313             << O << SourceRange(ModOrUse->getExprLoc()));
12314     UI.Diagnosed = true;
12315   }
12316 
12317   // A note on note{Pre, Post}{Use, Mod}:
12318   //
12319   // (It helps to follow the algorithm with an expression such as
12320   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
12321   //  operations before C++17 and both are well-defined in C++17).
12322   //
12323   // When visiting a node which uses/modify an object we first call notePreUse
12324   // or notePreMod before visiting its sub-expression(s). At this point the
12325   // children of the current node have not yet been visited and so the eventual
12326   // uses/modifications resulting from the children of the current node have not
12327   // been recorded yet.
12328   //
12329   // We then visit the children of the current node. After that notePostUse or
12330   // notePostMod is called. These will 1) detect an unsequenced modification
12331   // as side effect (as in "k++ + k") and 2) add a new usage with the
12332   // appropriate usage kind.
12333   //
12334   // We also have to be careful that some operation sequences modification as
12335   // side effect as well (for example: || or ,). To account for this we wrap
12336   // the visitation of such a sub-expression (for example: the LHS of || or ,)
12337   // with SequencedSubexpression. SequencedSubexpression is an RAII object
12338   // which record usages which are modifications as side effect, and then
12339   // downgrade them (or more accurately restore the previous usage which was a
12340   // modification as side effect) when exiting the scope of the sequenced
12341   // subexpression.
12342 
12343   void notePreUse(Object O, const Expr *UseExpr) {
12344     UsageInfo &UI = UsageMap[O];
12345     // Uses conflict with other modifications.
12346     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
12347   }
12348 
12349   void notePostUse(Object O, const Expr *UseExpr) {
12350     UsageInfo &UI = UsageMap[O];
12351     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
12352                /*IsModMod=*/false);
12353     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
12354   }
12355 
12356   void notePreMod(Object O, const Expr *ModExpr) {
12357     UsageInfo &UI = UsageMap[O];
12358     // Modifications conflict with other modifications and with uses.
12359     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
12360     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
12361   }
12362 
12363   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
12364     UsageInfo &UI = UsageMap[O];
12365     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
12366                /*IsModMod=*/true);
12367     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
12368   }
12369 
12370 public:
12371   SequenceChecker(Sema &S, const Expr *E,
12372                   SmallVectorImpl<const Expr *> &WorkList)
12373       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12374     Visit(E);
12375     // Silence a -Wunused-private-field since WorkList is now unused.
12376     // TODO: Evaluate if it can be used, and if not remove it.
12377     (void)this->WorkList;
12378   }
12379 
12380   void VisitStmt(const Stmt *S) {
12381     // Skip all statements which aren't expressions for now.
12382   }
12383 
12384   void VisitExpr(const Expr *E) {
12385     // By default, just recurse to evaluated subexpressions.
12386     Base::VisitStmt(E);
12387   }
12388 
12389   void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) {
12390     for (auto *Sub : CSE->children()) {
12391       const Expr *ChildExpr = dyn_cast_or_null<Expr>(Sub);
12392       if (!ChildExpr)
12393         continue;
12394 
12395       if (ChildExpr == CSE->getOperand())
12396         // Do not recurse over a CoroutineSuspendExpr's operand.
12397         // The operand is also a subexpression of getCommonExpr(), and
12398         // recursing into it directly could confuse object management
12399         // for the sake of sequence tracking.
12400         continue;
12401 
12402       Visit(Sub);
12403     }
12404   }
12405 
12406   void VisitCastExpr(const CastExpr *E) {
12407     Object O = Object();
12408     if (E->getCastKind() == CK_LValueToRValue)
12409       O = getObject(E->getSubExpr(), false);
12410 
12411     if (O)
12412       notePreUse(O, E);
12413     VisitExpr(E);
12414     if (O)
12415       notePostUse(O, E);
12416   }
12417 
12418   void VisitSequencedExpressions(const Expr *SequencedBefore,
12419                                  const Expr *SequencedAfter) {
12420     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12421     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12422     SequenceTree::Seq OldRegion = Region;
12423 
12424     {
12425       SequencedSubexpression SeqBefore(*this);
12426       Region = BeforeRegion;
12427       Visit(SequencedBefore);
12428     }
12429 
12430     Region = AfterRegion;
12431     Visit(SequencedAfter);
12432 
12433     Region = OldRegion;
12434 
12435     Tree.merge(BeforeRegion);
12436     Tree.merge(AfterRegion);
12437   }
12438 
12439   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
12440     // C++17 [expr.sub]p1:
12441     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12442     //   expression E1 is sequenced before the expression E2.
12443     if (SemaRef.getLangOpts().CPlusPlus17)
12444       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12445     else {
12446       Visit(ASE->getLHS());
12447       Visit(ASE->getRHS());
12448     }
12449   }
12450 
12451   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12452   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12453   void VisitBinPtrMem(const BinaryOperator *BO) {
12454     // C++17 [expr.mptr.oper]p4:
12455     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
12456     //  the expression E1 is sequenced before the expression E2.
12457     if (SemaRef.getLangOpts().CPlusPlus17)
12458       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12459     else {
12460       Visit(BO->getLHS());
12461       Visit(BO->getRHS());
12462     }
12463   }
12464 
12465   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12466   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12467   void VisitBinShlShr(const BinaryOperator *BO) {
12468     // C++17 [expr.shift]p4:
12469     //  The expression E1 is sequenced before the expression E2.
12470     if (SemaRef.getLangOpts().CPlusPlus17)
12471       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12472     else {
12473       Visit(BO->getLHS());
12474       Visit(BO->getRHS());
12475     }
12476   }
12477 
12478   void VisitBinComma(const BinaryOperator *BO) {
12479     // C++11 [expr.comma]p1:
12480     //   Every value computation and side effect associated with the left
12481     //   expression is sequenced before every value computation and side
12482     //   effect associated with the right expression.
12483     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12484   }
12485 
12486   void VisitBinAssign(const BinaryOperator *BO) {
12487     SequenceTree::Seq RHSRegion;
12488     SequenceTree::Seq LHSRegion;
12489     if (SemaRef.getLangOpts().CPlusPlus17) {
12490       RHSRegion = Tree.allocate(Region);
12491       LHSRegion = Tree.allocate(Region);
12492     } else {
12493       RHSRegion = Region;
12494       LHSRegion = Region;
12495     }
12496     SequenceTree::Seq OldRegion = Region;
12497 
12498     // C++11 [expr.ass]p1:
12499     //  [...] the assignment is sequenced after the value computation
12500     //  of the right and left operands, [...]
12501     //
12502     // so check it before inspecting the operands and update the
12503     // map afterwards.
12504     Object O = getObject(BO->getLHS(), /*Mod=*/true);
12505     if (O)
12506       notePreMod(O, BO);
12507 
12508     if (SemaRef.getLangOpts().CPlusPlus17) {
12509       // C++17 [expr.ass]p1:
12510       //  [...] The right operand is sequenced before the left operand. [...]
12511       {
12512         SequencedSubexpression SeqBefore(*this);
12513         Region = RHSRegion;
12514         Visit(BO->getRHS());
12515       }
12516 
12517       Region = LHSRegion;
12518       Visit(BO->getLHS());
12519 
12520       if (O && isa<CompoundAssignOperator>(BO))
12521         notePostUse(O, BO);
12522 
12523     } else {
12524       // C++11 does not specify any sequencing between the LHS and RHS.
12525       Region = LHSRegion;
12526       Visit(BO->getLHS());
12527 
12528       if (O && isa<CompoundAssignOperator>(BO))
12529         notePostUse(O, BO);
12530 
12531       Region = RHSRegion;
12532       Visit(BO->getRHS());
12533     }
12534 
12535     // C++11 [expr.ass]p1:
12536     //  the assignment is sequenced [...] before the value computation of the
12537     //  assignment expression.
12538     // C11 6.5.16/3 has no such rule.
12539     Region = OldRegion;
12540     if (O)
12541       notePostMod(O, BO,
12542                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12543                                                   : UK_ModAsSideEffect);
12544     if (SemaRef.getLangOpts().CPlusPlus17) {
12545       Tree.merge(RHSRegion);
12546       Tree.merge(LHSRegion);
12547     }
12548   }
12549 
12550   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
12551     VisitBinAssign(CAO);
12552   }
12553 
12554   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12555   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12556   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
12557     Object O = getObject(UO->getSubExpr(), true);
12558     if (!O)
12559       return VisitExpr(UO);
12560 
12561     notePreMod(O, UO);
12562     Visit(UO->getSubExpr());
12563     // C++11 [expr.pre.incr]p1:
12564     //   the expression ++x is equivalent to x+=1
12565     notePostMod(O, UO,
12566                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12567                                                 : UK_ModAsSideEffect);
12568   }
12569 
12570   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12571   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12572   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
12573     Object O = getObject(UO->getSubExpr(), true);
12574     if (!O)
12575       return VisitExpr(UO);
12576 
12577     notePreMod(O, UO);
12578     Visit(UO->getSubExpr());
12579     notePostMod(O, UO, UK_ModAsSideEffect);
12580   }
12581 
12582   void VisitBinLOr(const BinaryOperator *BO) {
12583     // C++11 [expr.log.or]p2:
12584     //  If the second expression is evaluated, every value computation and
12585     //  side effect associated with the first expression is sequenced before
12586     //  every value computation and side effect associated with the
12587     //  second expression.
12588     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
12589     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
12590     SequenceTree::Seq OldRegion = Region;
12591 
12592     EvaluationTracker Eval(*this);
12593     {
12594       SequencedSubexpression Sequenced(*this);
12595       Region = LHSRegion;
12596       Visit(BO->getLHS());
12597     }
12598 
12599     // C++11 [expr.log.or]p1:
12600     //  [...] the second operand is not evaluated if the first operand
12601     //  evaluates to true.
12602     bool EvalResult = false;
12603     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
12604     bool ShouldVisitRHS = !EvalOK || !EvalResult;
12605     if (ShouldVisitRHS) {
12606       Region = RHSRegion;
12607       Visit(BO->getRHS());
12608     }
12609 
12610     Region = OldRegion;
12611     Tree.merge(LHSRegion);
12612     Tree.merge(RHSRegion);
12613   }
12614 
12615   void VisitBinLAnd(const BinaryOperator *BO) {
12616     // C++11 [expr.log.and]p2:
12617     //  If the second expression is evaluated, every value computation and
12618     //  side effect associated with the first expression is sequenced before
12619     //  every value computation and side effect associated with the
12620     //  second expression.
12621     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
12622     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
12623     SequenceTree::Seq OldRegion = Region;
12624 
12625     EvaluationTracker Eval(*this);
12626     {
12627       SequencedSubexpression Sequenced(*this);
12628       Region = LHSRegion;
12629       Visit(BO->getLHS());
12630     }
12631 
12632     // C++11 [expr.log.and]p1:
12633     //  [...] the second operand is not evaluated if the first operand is false.
12634     bool EvalResult = false;
12635     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
12636     bool ShouldVisitRHS = !EvalOK || EvalResult;
12637     if (ShouldVisitRHS) {
12638       Region = RHSRegion;
12639       Visit(BO->getRHS());
12640     }
12641 
12642     Region = OldRegion;
12643     Tree.merge(LHSRegion);
12644     Tree.merge(RHSRegion);
12645   }
12646 
12647   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
12648     // C++11 [expr.cond]p1:
12649     //  [...] Every value computation and side effect associated with the first
12650     //  expression is sequenced before every value computation and side effect
12651     //  associated with the second or third expression.
12652     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
12653 
12654     // No sequencing is specified between the true and false expression.
12655     // However since exactly one of both is going to be evaluated we can
12656     // consider them to be sequenced. This is needed to avoid warning on
12657     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
12658     // both the true and false expressions because we can't evaluate x.
12659     // This will still allow us to detect an expression like (pre C++17)
12660     // "(x ? y += 1 : y += 2) = y".
12661     //
12662     // We don't wrap the visitation of the true and false expression with
12663     // SequencedSubexpression because we don't want to downgrade modifications
12664     // as side effect in the true and false expressions after the visition
12665     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
12666     // not warn between the two "y++", but we should warn between the "y++"
12667     // and the "y".
12668     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
12669     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
12670     SequenceTree::Seq OldRegion = Region;
12671 
12672     EvaluationTracker Eval(*this);
12673     {
12674       SequencedSubexpression Sequenced(*this);
12675       Region = ConditionRegion;
12676       Visit(CO->getCond());
12677     }
12678 
12679     // C++11 [expr.cond]p1:
12680     // [...] The first expression is contextually converted to bool (Clause 4).
12681     // It is evaluated and if it is true, the result of the conditional
12682     // expression is the value of the second expression, otherwise that of the
12683     // third expression. Only one of the second and third expressions is
12684     // evaluated. [...]
12685     bool EvalResult = false;
12686     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
12687     bool ShouldVisitTrueExpr = !EvalOK || EvalResult;
12688     bool ShouldVisitFalseExpr = !EvalOK || !EvalResult;
12689     if (ShouldVisitTrueExpr) {
12690       Region = TrueRegion;
12691       Visit(CO->getTrueExpr());
12692     }
12693     if (ShouldVisitFalseExpr) {
12694       Region = FalseRegion;
12695       Visit(CO->getFalseExpr());
12696     }
12697 
12698     Region = OldRegion;
12699     Tree.merge(ConditionRegion);
12700     Tree.merge(TrueRegion);
12701     Tree.merge(FalseRegion);
12702   }
12703 
12704   void VisitCallExpr(const CallExpr *CE) {
12705     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
12706 
12707     if (CE->isUnevaluatedBuiltinCall(Context))
12708       return;
12709 
12710     // C++11 [intro.execution]p15:
12711     //   When calling a function [...], every value computation and side effect
12712     //   associated with any argument expression, or with the postfix expression
12713     //   designating the called function, is sequenced before execution of every
12714     //   expression or statement in the body of the function [and thus before
12715     //   the value computation of its result].
12716     SequencedSubexpression Sequenced(*this);
12717     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
12718       // C++17 [expr.call]p5
12719       //   The postfix-expression is sequenced before each expression in the
12720       //   expression-list and any default argument. [...]
12721       SequenceTree::Seq CalleeRegion;
12722       SequenceTree::Seq OtherRegion;
12723       if (SemaRef.getLangOpts().CPlusPlus17) {
12724         CalleeRegion = Tree.allocate(Region);
12725         OtherRegion = Tree.allocate(Region);
12726       } else {
12727         CalleeRegion = Region;
12728         OtherRegion = Region;
12729       }
12730       SequenceTree::Seq OldRegion = Region;
12731 
12732       // Visit the callee expression first.
12733       Region = CalleeRegion;
12734       if (SemaRef.getLangOpts().CPlusPlus17) {
12735         SequencedSubexpression Sequenced(*this);
12736         Visit(CE->getCallee());
12737       } else {
12738         Visit(CE->getCallee());
12739       }
12740 
12741       // Then visit the argument expressions.
12742       Region = OtherRegion;
12743       for (const Expr *Argument : CE->arguments())
12744         Visit(Argument);
12745 
12746       Region = OldRegion;
12747       if (SemaRef.getLangOpts().CPlusPlus17) {
12748         Tree.merge(CalleeRegion);
12749         Tree.merge(OtherRegion);
12750       }
12751     });
12752   }
12753 
12754   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
12755     // C++17 [over.match.oper]p2:
12756     //   [...] the operator notation is first transformed to the equivalent
12757     //   function-call notation as summarized in Table 12 (where @ denotes one
12758     //   of the operators covered in the specified subclause). However, the
12759     //   operands are sequenced in the order prescribed for the built-in
12760     //   operator (Clause 8).
12761     //
12762     // From the above only overloaded binary operators and overloaded call
12763     // operators have sequencing rules in C++17 that we need to handle
12764     // separately.
12765     if (!SemaRef.getLangOpts().CPlusPlus17 ||
12766         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
12767       return VisitCallExpr(CXXOCE);
12768 
12769     enum {
12770       NoSequencing,
12771       LHSBeforeRHS,
12772       RHSBeforeLHS,
12773       LHSBeforeRest
12774     } SequencingKind;
12775     switch (CXXOCE->getOperator()) {
12776     case OO_Equal:
12777     case OO_PlusEqual:
12778     case OO_MinusEqual:
12779     case OO_StarEqual:
12780     case OO_SlashEqual:
12781     case OO_PercentEqual:
12782     case OO_CaretEqual:
12783     case OO_AmpEqual:
12784     case OO_PipeEqual:
12785     case OO_LessLessEqual:
12786     case OO_GreaterGreaterEqual:
12787       SequencingKind = RHSBeforeLHS;
12788       break;
12789 
12790     case OO_LessLess:
12791     case OO_GreaterGreater:
12792     case OO_AmpAmp:
12793     case OO_PipePipe:
12794     case OO_Comma:
12795     case OO_ArrowStar:
12796     case OO_Subscript:
12797       SequencingKind = LHSBeforeRHS;
12798       break;
12799 
12800     case OO_Call:
12801       SequencingKind = LHSBeforeRest;
12802       break;
12803 
12804     default:
12805       SequencingKind = NoSequencing;
12806       break;
12807     }
12808 
12809     if (SequencingKind == NoSequencing)
12810       return VisitCallExpr(CXXOCE);
12811 
12812     // This is a call, so all subexpressions are sequenced before the result.
12813     SequencedSubexpression Sequenced(*this);
12814 
12815     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
12816       assert(SemaRef.getLangOpts().CPlusPlus17 &&
12817              "Should only get there with C++17 and above!");
12818       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
12819              "Should only get there with an overloaded binary operator"
12820              " or an overloaded call operator!");
12821 
12822       if (SequencingKind == LHSBeforeRest) {
12823         assert(CXXOCE->getOperator() == OO_Call &&
12824                "We should only have an overloaded call operator here!");
12825 
12826         // This is very similar to VisitCallExpr, except that we only have the
12827         // C++17 case. The postfix-expression is the first argument of the
12828         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
12829         // are in the following arguments.
12830         //
12831         // Note that we intentionally do not visit the callee expression since
12832         // it is just a decayed reference to a function.
12833         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
12834         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
12835         SequenceTree::Seq OldRegion = Region;
12836 
12837         assert(CXXOCE->getNumArgs() >= 1 &&
12838                "An overloaded call operator must have at least one argument"
12839                " for the postfix-expression!");
12840         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
12841         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
12842                                           CXXOCE->getNumArgs() - 1);
12843 
12844         // Visit the postfix-expression first.
12845         {
12846           Region = PostfixExprRegion;
12847           SequencedSubexpression Sequenced(*this);
12848           Visit(PostfixExpr);
12849         }
12850 
12851         // Then visit the argument expressions.
12852         Region = ArgsRegion;
12853         for (const Expr *Arg : Args)
12854           Visit(Arg);
12855 
12856         Region = OldRegion;
12857         Tree.merge(PostfixExprRegion);
12858         Tree.merge(ArgsRegion);
12859       } else {
12860         assert(CXXOCE->getNumArgs() == 2 &&
12861                "Should only have two arguments here!");
12862         assert((SequencingKind == LHSBeforeRHS ||
12863                 SequencingKind == RHSBeforeLHS) &&
12864                "Unexpected sequencing kind!");
12865 
12866         // We do not visit the callee expression since it is just a decayed
12867         // reference to a function.
12868         const Expr *E1 = CXXOCE->getArg(0);
12869         const Expr *E2 = CXXOCE->getArg(1);
12870         if (SequencingKind == RHSBeforeLHS)
12871           std::swap(E1, E2);
12872 
12873         return VisitSequencedExpressions(E1, E2);
12874       }
12875     });
12876   }
12877 
12878   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
12879     // This is a call, so all subexpressions are sequenced before the result.
12880     SequencedSubexpression Sequenced(*this);
12881 
12882     if (!CCE->isListInitialization())
12883       return VisitExpr(CCE);
12884 
12885     // In C++11, list initializations are sequenced.
12886     SequenceExpressionsInOrder(
12887         llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()));
12888   }
12889 
12890   void VisitInitListExpr(const InitListExpr *ILE) {
12891     if (!SemaRef.getLangOpts().CPlusPlus11)
12892       return VisitExpr(ILE);
12893 
12894     // In C++11, list initializations are sequenced.
12895     SequenceExpressionsInOrder(ILE->inits());
12896   }
12897 
12898   void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) {
12899     // C++20 parenthesized list initializations are sequenced. See C++20
12900     // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2.
12901     SequenceExpressionsInOrder(PLIE->getInitExprs());
12902   }
12903 
12904 private:
12905   void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) {
12906     SmallVector<SequenceTree::Seq, 32> Elts;
12907     SequenceTree::Seq Parent = Region;
12908     for (const Expr *E : ExpressionList) {
12909       if (!E)
12910         continue;
12911       Region = Tree.allocate(Parent);
12912       Elts.push_back(Region);
12913       Visit(E);
12914     }
12915 
12916     // Forget that the initializers are sequenced.
12917     Region = Parent;
12918     for (unsigned I = 0; I < Elts.size(); ++I)
12919       Tree.merge(Elts[I]);
12920   }
12921 };
12922 
12923 SequenceChecker::UsageInfo::UsageInfo() = default;
12924 
12925 } // namespace
12926 
12927 void Sema::CheckUnsequencedOperations(const Expr *E) {
12928   SmallVector<const Expr *, 8> WorkList;
12929   WorkList.push_back(E);
12930   while (!WorkList.empty()) {
12931     const Expr *Item = WorkList.pop_back_val();
12932     SequenceChecker(*this, Item, WorkList);
12933   }
12934 }
12935 
12936 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
12937                               bool IsConstexpr) {
12938   llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride,
12939                                        IsConstexpr || isa<ConstantExpr>(E));
12940   CheckImplicitConversions(E, CheckLoc);
12941   if (!E->isInstantiationDependent())
12942     CheckUnsequencedOperations(E);
12943   if (!IsConstexpr && !E->isValueDependent())
12944     CheckForIntOverflow(E);
12945   DiagnoseMisalignedMembers();
12946 }
12947 
12948 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
12949                                        FieldDecl *BitField,
12950                                        Expr *Init) {
12951   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
12952 }
12953 
12954 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
12955                                          SourceLocation Loc) {
12956   if (!PType->isVariablyModifiedType())
12957     return;
12958   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
12959     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
12960     return;
12961   }
12962   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
12963     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
12964     return;
12965   }
12966   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
12967     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
12968     return;
12969   }
12970 
12971   const ArrayType *AT = S.Context.getAsArrayType(PType);
12972   if (!AT)
12973     return;
12974 
12975   if (AT->getSizeModifier() != ArraySizeModifier::Star) {
12976     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
12977     return;
12978   }
12979 
12980   S.Diag(Loc, diag::err_array_star_in_function_definition);
12981 }
12982 
12983 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
12984                                     bool CheckParameterNames) {
12985   bool HasInvalidParm = false;
12986   for (ParmVarDecl *Param : Parameters) {
12987     assert(Param && "null in a parameter list");
12988     // C99 6.7.5.3p4: the parameters in a parameter type list in a
12989     // function declarator that is part of a function definition of
12990     // that function shall not have incomplete type.
12991     //
12992     // C++23 [dcl.fct.def.general]/p2
12993     // The type of a parameter [...] for a function definition
12994     // shall not be a (possibly cv-qualified) class type that is incomplete
12995     // or abstract within the function body unless the function is deleted.
12996     if (!Param->isInvalidDecl() &&
12997         (RequireCompleteType(Param->getLocation(), Param->getType(),
12998                              diag::err_typecheck_decl_incomplete_type) ||
12999          RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(),
13000                                 diag::err_abstract_type_in_decl,
13001                                 AbstractParamType))) {
13002       Param->setInvalidDecl();
13003       HasInvalidParm = true;
13004     }
13005 
13006     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13007     // declaration of each parameter shall include an identifier.
13008     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13009         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13010       // Diagnose this as an extension in C17 and earlier.
13011       if (!getLangOpts().C23)
13012         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
13013     }
13014 
13015     // C99 6.7.5.3p12:
13016     //   If the function declarator is not part of a definition of that
13017     //   function, parameters may have incomplete type and may use the [*]
13018     //   notation in their sequences of declarator specifiers to specify
13019     //   variable length array types.
13020     QualType PType = Param->getOriginalType();
13021     // FIXME: This diagnostic should point the '[*]' if source-location
13022     // information is added for it.
13023     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13024 
13025     // If the parameter is a c++ class type and it has to be destructed in the
13026     // callee function, declare the destructor so that it can be called by the
13027     // callee function. Do not perform any direct access check on the dtor here.
13028     if (!Param->isInvalidDecl()) {
13029       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13030         if (!ClassDecl->isInvalidDecl() &&
13031             !ClassDecl->hasIrrelevantDestructor() &&
13032             !ClassDecl->isDependentContext() &&
13033             ClassDecl->isParamDestroyedInCallee()) {
13034           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13035           MarkFunctionReferenced(Param->getLocation(), Destructor);
13036           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13037         }
13038       }
13039     }
13040 
13041     // Parameters with the pass_object_size attribute only need to be marked
13042     // constant at function definitions. Because we lack information about
13043     // whether we're on a declaration or definition when we're instantiating the
13044     // attribute, we need to check for constness here.
13045     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13046       if (!Param->getType().isConstQualified())
13047         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13048             << Attr->getSpelling() << 1;
13049 
13050     // Check for parameter names shadowing fields from the class.
13051     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13052       // The owning context for the parameter should be the function, but we
13053       // want to see if this function's declaration context is a record.
13054       DeclContext *DC = Param->getDeclContext();
13055       if (DC && DC->isFunctionOrMethod()) {
13056         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13057           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13058                                      RD, /*DeclIsField*/ false);
13059       }
13060     }
13061 
13062     if (!Param->isInvalidDecl() &&
13063         Param->getOriginalType()->isWebAssemblyTableType()) {
13064       Param->setInvalidDecl();
13065       HasInvalidParm = true;
13066       Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter);
13067     }
13068   }
13069 
13070   return HasInvalidParm;
13071 }
13072 
13073 std::optional<std::pair<
13074     CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
13075                                                                        *E,
13076                                                                    ASTContext
13077                                                                        &Ctx);
13078 
13079 /// Compute the alignment and offset of the base class object given the
13080 /// derived-to-base cast expression and the alignment and offset of the derived
13081 /// class object.
13082 static std::pair<CharUnits, CharUnits>
13083 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13084                                    CharUnits BaseAlignment, CharUnits Offset,
13085                                    ASTContext &Ctx) {
13086   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13087        ++PathI) {
13088     const CXXBaseSpecifier *Base = *PathI;
13089     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13090     if (Base->isVirtual()) {
13091       // The complete object may have a lower alignment than the non-virtual
13092       // alignment of the base, in which case the base may be misaligned. Choose
13093       // the smaller of the non-virtual alignment and BaseAlignment, which is a
13094       // conservative lower bound of the complete object alignment.
13095       CharUnits NonVirtualAlignment =
13096           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13097       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13098       Offset = CharUnits::Zero();
13099     } else {
13100       const ASTRecordLayout &RL =
13101           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13102       Offset += RL.getBaseClassOffset(BaseDecl);
13103     }
13104     DerivedType = Base->getType();
13105   }
13106 
13107   return std::make_pair(BaseAlignment, Offset);
13108 }
13109 
13110 /// Compute the alignment and offset of a binary additive operator.
13111 static std::optional<std::pair<CharUnits, CharUnits>>
13112 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13113                                      bool IsSub, ASTContext &Ctx) {
13114   QualType PointeeType = PtrE->getType()->getPointeeType();
13115 
13116   if (!PointeeType->isConstantSizeType())
13117     return std::nullopt;
13118 
13119   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13120 
13121   if (!P)
13122     return std::nullopt;
13123 
13124   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13125   if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13126     CharUnits Offset = EltSize * IdxRes->getExtValue();
13127     if (IsSub)
13128       Offset = -Offset;
13129     return std::make_pair(P->first, P->second + Offset);
13130   }
13131 
13132   // If the integer expression isn't a constant expression, compute the lower
13133   // bound of the alignment using the alignment and offset of the pointer
13134   // expression and the element size.
13135   return std::make_pair(
13136       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13137       CharUnits::Zero());
13138 }
13139 
13140 /// This helper function takes an lvalue expression and returns the alignment of
13141 /// a VarDecl and a constant offset from the VarDecl.
13142 std::optional<std::pair<
13143     CharUnits,
13144     CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E,
13145                                                            ASTContext &Ctx) {
13146   E = E->IgnoreParens();
13147   switch (E->getStmtClass()) {
13148   default:
13149     break;
13150   case Stmt::CStyleCastExprClass:
13151   case Stmt::CXXStaticCastExprClass:
13152   case Stmt::ImplicitCastExprClass: {
13153     auto *CE = cast<CastExpr>(E);
13154     const Expr *From = CE->getSubExpr();
13155     switch (CE->getCastKind()) {
13156     default:
13157       break;
13158     case CK_NoOp:
13159       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13160     case CK_UncheckedDerivedToBase:
13161     case CK_DerivedToBase: {
13162       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13163       if (!P)
13164         break;
13165       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
13166                                                 P->second, Ctx);
13167     }
13168     }
13169     break;
13170   }
13171   case Stmt::ArraySubscriptExprClass: {
13172     auto *ASE = cast<ArraySubscriptExpr>(E);
13173     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
13174                                                 false, Ctx);
13175   }
13176   case Stmt::DeclRefExprClass: {
13177     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
13178       // FIXME: If VD is captured by copy or is an escaping __block variable,
13179       // use the alignment of VD's type.
13180       if (!VD->getType()->isReferenceType()) {
13181         // Dependent alignment cannot be resolved -> bail out.
13182         if (VD->hasDependentAlignment())
13183           break;
13184         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
13185       }
13186       if (VD->hasInit())
13187         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
13188     }
13189     break;
13190   }
13191   case Stmt::MemberExprClass: {
13192     auto *ME = cast<MemberExpr>(E);
13193     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
13194     if (!FD || FD->getType()->isReferenceType() ||
13195         FD->getParent()->isInvalidDecl())
13196       break;
13197     std::optional<std::pair<CharUnits, CharUnits>> P;
13198     if (ME->isArrow())
13199       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
13200     else
13201       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
13202     if (!P)
13203       break;
13204     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
13205     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
13206     return std::make_pair(P->first,
13207                           P->second + CharUnits::fromQuantity(Offset));
13208   }
13209   case Stmt::UnaryOperatorClass: {
13210     auto *UO = cast<UnaryOperator>(E);
13211     switch (UO->getOpcode()) {
13212     default:
13213       break;
13214     case UO_Deref:
13215       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
13216     }
13217     break;
13218   }
13219   case Stmt::BinaryOperatorClass: {
13220     auto *BO = cast<BinaryOperator>(E);
13221     auto Opcode = BO->getOpcode();
13222     switch (Opcode) {
13223     default:
13224       break;
13225     case BO_Comma:
13226       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
13227     }
13228     break;
13229   }
13230   }
13231   return std::nullopt;
13232 }
13233 
13234 /// This helper function takes a pointer expression and returns the alignment of
13235 /// a VarDecl and a constant offset from the VarDecl.
13236 std::optional<std::pair<
13237     CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
13238                                                                        *E,
13239                                                                    ASTContext
13240                                                                        &Ctx) {
13241   E = E->IgnoreParens();
13242   switch (E->getStmtClass()) {
13243   default:
13244     break;
13245   case Stmt::CStyleCastExprClass:
13246   case Stmt::CXXStaticCastExprClass:
13247   case Stmt::ImplicitCastExprClass: {
13248     auto *CE = cast<CastExpr>(E);
13249     const Expr *From = CE->getSubExpr();
13250     switch (CE->getCastKind()) {
13251     default:
13252       break;
13253     case CK_NoOp:
13254       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
13255     case CK_ArrayToPointerDecay:
13256       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13257     case CK_UncheckedDerivedToBase:
13258     case CK_DerivedToBase: {
13259       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
13260       if (!P)
13261         break;
13262       return getDerivedToBaseAlignmentAndOffset(
13263           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
13264     }
13265     }
13266     break;
13267   }
13268   case Stmt::CXXThisExprClass: {
13269     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
13270     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
13271     return std::make_pair(Alignment, CharUnits::Zero());
13272   }
13273   case Stmt::UnaryOperatorClass: {
13274     auto *UO = cast<UnaryOperator>(E);
13275     if (UO->getOpcode() == UO_AddrOf)
13276       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
13277     break;
13278   }
13279   case Stmt::BinaryOperatorClass: {
13280     auto *BO = cast<BinaryOperator>(E);
13281     auto Opcode = BO->getOpcode();
13282     switch (Opcode) {
13283     default:
13284       break;
13285     case BO_Add:
13286     case BO_Sub: {
13287       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
13288       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
13289         std::swap(LHS, RHS);
13290       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
13291                                                   Ctx);
13292     }
13293     case BO_Comma:
13294       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
13295     }
13296     break;
13297   }
13298   }
13299   return std::nullopt;
13300 }
13301 
13302 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
13303   // See if we can compute the alignment of a VarDecl and an offset from it.
13304   std::optional<std::pair<CharUnits, CharUnits>> P =
13305       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
13306 
13307   if (P)
13308     return P->first.alignmentAtOffset(P->second);
13309 
13310   // If that failed, return the type's alignment.
13311   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
13312 }
13313 
13314 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
13315   // This is actually a lot of work to potentially be doing on every
13316   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
13317   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
13318     return;
13319 
13320   // Ignore dependent types.
13321   if (T->isDependentType() || Op->getType()->isDependentType())
13322     return;
13323 
13324   // Require that the destination be a pointer type.
13325   const PointerType *DestPtr = T->getAs<PointerType>();
13326   if (!DestPtr) return;
13327 
13328   // If the destination has alignment 1, we're done.
13329   QualType DestPointee = DestPtr->getPointeeType();
13330   if (DestPointee->isIncompleteType()) return;
13331   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
13332   if (DestAlign.isOne()) return;
13333 
13334   // Require that the source be a pointer type.
13335   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
13336   if (!SrcPtr) return;
13337   QualType SrcPointee = SrcPtr->getPointeeType();
13338 
13339   // Explicitly allow casts from cv void*.  We already implicitly
13340   // allowed casts to cv void*, since they have alignment 1.
13341   // Also allow casts involving incomplete types, which implicitly
13342   // includes 'void'.
13343   if (SrcPointee->isIncompleteType()) return;
13344 
13345   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
13346 
13347   if (SrcAlign >= DestAlign) return;
13348 
13349   Diag(TRange.getBegin(), diag::warn_cast_align)
13350     << Op->getType() << T
13351     << static_cast<unsigned>(SrcAlign.getQuantity())
13352     << static_cast<unsigned>(DestAlign.getQuantity())
13353     << TRange << Op->getSourceRange();
13354 }
13355 
13356 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
13357                             const ArraySubscriptExpr *ASE,
13358                             bool AllowOnePastEnd, bool IndexNegated) {
13359   // Already diagnosed by the constant evaluator.
13360   if (isConstantEvaluatedContext())
13361     return;
13362 
13363   IndexExpr = IndexExpr->IgnoreParenImpCasts();
13364   if (IndexExpr->isValueDependent())
13365     return;
13366 
13367   const Type *EffectiveType =
13368       BaseExpr->getType()->getPointeeOrArrayElementType();
13369   BaseExpr = BaseExpr->IgnoreParenCasts();
13370   const ConstantArrayType *ArrayTy =
13371       Context.getAsConstantArrayType(BaseExpr->getType());
13372 
13373   LangOptions::StrictFlexArraysLevelKind
13374     StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel();
13375 
13376   const Type *BaseType =
13377       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
13378   bool IsUnboundedArray =
13379       BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike(
13380                                  Context, StrictFlexArraysLevel,
13381                                  /*IgnoreTemplateOrMacroSubstitution=*/true);
13382   if (EffectiveType->isDependentType() ||
13383       (!IsUnboundedArray && BaseType->isDependentType()))
13384     return;
13385 
13386   Expr::EvalResult Result;
13387   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
13388     return;
13389 
13390   llvm::APSInt index = Result.Val.getInt();
13391   if (IndexNegated) {
13392     index.setIsUnsigned(false);
13393     index = -index;
13394   }
13395 
13396   if (IsUnboundedArray) {
13397     if (EffectiveType->isFunctionType())
13398       return;
13399     if (index.isUnsigned() || !index.isNegative()) {
13400       const auto &ASTC = getASTContext();
13401       unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth(
13402           EffectiveType->getCanonicalTypeInternal().getAddressSpace());
13403       if (index.getBitWidth() < AddrBits)
13404         index = index.zext(AddrBits);
13405       std::optional<CharUnits> ElemCharUnits =
13406           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
13407       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
13408       // pointer) bounds-checking isn't meaningful.
13409       if (!ElemCharUnits || ElemCharUnits->isZero())
13410         return;
13411       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
13412       // If index has more active bits than address space, we already know
13413       // we have a bounds violation to warn about.  Otherwise, compute
13414       // address of (index + 1)th element, and warn about bounds violation
13415       // only if that address exceeds address space.
13416       if (index.getActiveBits() <= AddrBits) {
13417         bool Overflow;
13418         llvm::APInt Product(index);
13419         Product += 1;
13420         Product = Product.umul_ov(ElemBytes, Overflow);
13421         if (!Overflow && Product.getActiveBits() <= AddrBits)
13422           return;
13423       }
13424 
13425       // Need to compute max possible elements in address space, since that
13426       // is included in diag message.
13427       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
13428       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
13429       MaxElems += 1;
13430       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
13431       MaxElems = MaxElems.udiv(ElemBytes);
13432 
13433       unsigned DiagID =
13434           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
13435               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
13436 
13437       // Diag message shows element size in bits and in "bytes" (platform-
13438       // dependent CharUnits)
13439       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13440                           PDiag(DiagID)
13441                               << toString(index, 10, true) << AddrBits
13442                               << (unsigned)ASTC.toBits(*ElemCharUnits)
13443                               << toString(ElemBytes, 10, false)
13444                               << toString(MaxElems, 10, false)
13445                               << (unsigned)MaxElems.getLimitedValue(~0U)
13446                               << IndexExpr->getSourceRange());
13447 
13448       const NamedDecl *ND = nullptr;
13449       // Try harder to find a NamedDecl to point at in the note.
13450       while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
13451         BaseExpr = ASE->getBase()->IgnoreParenCasts();
13452       if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13453         ND = DRE->getDecl();
13454       if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
13455         ND = ME->getMemberDecl();
13456 
13457       if (ND)
13458         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13459                             PDiag(diag::note_array_declared_here) << ND);
13460     }
13461     return;
13462   }
13463 
13464   if (index.isUnsigned() || !index.isNegative()) {
13465     // It is possible that the type of the base expression after
13466     // IgnoreParenCasts is incomplete, even though the type of the base
13467     // expression before IgnoreParenCasts is complete (see PR39746 for an
13468     // example). In this case we have no information about whether the array
13469     // access exceeds the array bounds. However we can still diagnose an array
13470     // access which precedes the array bounds.
13471     if (BaseType->isIncompleteType())
13472       return;
13473 
13474     llvm::APInt size = ArrayTy->getSize();
13475 
13476     if (BaseType != EffectiveType) {
13477       // Make sure we're comparing apples to apples when comparing index to
13478       // size.
13479       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
13480       uint64_t array_typesize = Context.getTypeSize(BaseType);
13481 
13482       // Handle ptrarith_typesize being zero, such as when casting to void*.
13483       // Use the size in bits (what "getTypeSize()" returns) rather than bytes.
13484       if (!ptrarith_typesize)
13485         ptrarith_typesize = Context.getCharWidth();
13486 
13487       if (ptrarith_typesize != array_typesize) {
13488         // There's a cast to a different size type involved.
13489         uint64_t ratio = array_typesize / ptrarith_typesize;
13490 
13491         // TODO: Be smarter about handling cases where array_typesize is not a
13492         // multiple of ptrarith_typesize.
13493         if (ptrarith_typesize * ratio == array_typesize)
13494           size *= llvm::APInt(size.getBitWidth(), ratio);
13495       }
13496     }
13497 
13498     if (size.getBitWidth() > index.getBitWidth())
13499       index = index.zext(size.getBitWidth());
13500     else if (size.getBitWidth() < index.getBitWidth())
13501       size = size.zext(index.getBitWidth());
13502 
13503     // For array subscripting the index must be less than size, but for pointer
13504     // arithmetic also allow the index (offset) to be equal to size since
13505     // computing the next address after the end of the array is legal and
13506     // commonly done e.g. in C++ iterators and range-based for loops.
13507     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
13508       return;
13509 
13510     // Suppress the warning if the subscript expression (as identified by the
13511     // ']' location) and the index expression are both from macro expansions
13512     // within a system header.
13513     if (ASE) {
13514       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
13515           ASE->getRBracketLoc());
13516       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
13517         SourceLocation IndexLoc =
13518             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
13519         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
13520           return;
13521       }
13522     }
13523 
13524     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
13525                           : diag::warn_ptr_arith_exceeds_bounds;
13526     unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1;
13527     QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType();
13528 
13529     DiagRuntimeBehavior(
13530         BaseExpr->getBeginLoc(), BaseExpr,
13531         PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar()
13532                       << CastMsg << CastMsgTy << IndexExpr->getSourceRange());
13533   } else {
13534     unsigned DiagID = diag::warn_array_index_precedes_bounds;
13535     if (!ASE) {
13536       DiagID = diag::warn_ptr_arith_precedes_bounds;
13537       if (index.isNegative()) index = -index;
13538     }
13539 
13540     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13541                         PDiag(DiagID) << toString(index, 10, true)
13542                                       << IndexExpr->getSourceRange());
13543   }
13544 
13545   const NamedDecl *ND = nullptr;
13546   // Try harder to find a NamedDecl to point at in the note.
13547   while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
13548     BaseExpr = ASE->getBase()->IgnoreParenCasts();
13549   if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13550     ND = DRE->getDecl();
13551   if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
13552     ND = ME->getMemberDecl();
13553 
13554   if (ND)
13555     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13556                         PDiag(diag::note_array_declared_here) << ND);
13557 }
13558 
13559 void Sema::CheckArrayAccess(const Expr *expr) {
13560   int AllowOnePastEnd = 0;
13561   while (expr) {
13562     expr = expr->IgnoreParenImpCasts();
13563     switch (expr->getStmtClass()) {
13564       case Stmt::ArraySubscriptExprClass: {
13565         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
13566         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
13567                          AllowOnePastEnd > 0);
13568         expr = ASE->getBase();
13569         break;
13570       }
13571       case Stmt::MemberExprClass: {
13572         expr = cast<MemberExpr>(expr)->getBase();
13573         break;
13574       }
13575       case Stmt::ArraySectionExprClass: {
13576         const ArraySectionExpr *ASE = cast<ArraySectionExpr>(expr);
13577         // FIXME: We should probably be checking all of the elements to the
13578         // 'length' here as well.
13579         if (ASE->getLowerBound())
13580           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
13581                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
13582         return;
13583       }
13584       case Stmt::UnaryOperatorClass: {
13585         // Only unwrap the * and & unary operators
13586         const UnaryOperator *UO = cast<UnaryOperator>(expr);
13587         expr = UO->getSubExpr();
13588         switch (UO->getOpcode()) {
13589           case UO_AddrOf:
13590             AllowOnePastEnd++;
13591             break;
13592           case UO_Deref:
13593             AllowOnePastEnd--;
13594             break;
13595           default:
13596             return;
13597         }
13598         break;
13599       }
13600       case Stmt::ConditionalOperatorClass: {
13601         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
13602         if (const Expr *lhs = cond->getLHS())
13603           CheckArrayAccess(lhs);
13604         if (const Expr *rhs = cond->getRHS())
13605           CheckArrayAccess(rhs);
13606         return;
13607       }
13608       case Stmt::CXXOperatorCallExprClass: {
13609         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
13610         for (const auto *Arg : OCE->arguments())
13611           CheckArrayAccess(Arg);
13612         return;
13613       }
13614       default:
13615         return;
13616     }
13617   }
13618 }
13619 
13620 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
13621                                      Expr *RHS, bool isProperty) {
13622   // Check if RHS is an Objective-C object literal, which also can get
13623   // immediately zapped in a weak reference.  Note that we explicitly
13624   // allow ObjCStringLiterals, since those are designed to never really die.
13625   RHS = RHS->IgnoreParenImpCasts();
13626 
13627   // This enum needs to match with the 'select' in
13628   // warn_objc_arc_literal_assign (off-by-1).
13629   SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(RHS);
13630   if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None)
13631     return false;
13632 
13633   S.Diag(Loc, diag::warn_arc_literal_assign)
13634     << (unsigned) Kind
13635     << (isProperty ? 0 : 1)
13636     << RHS->getSourceRange();
13637 
13638   return true;
13639 }
13640 
13641 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
13642                                     Qualifiers::ObjCLifetime LT,
13643                                     Expr *RHS, bool isProperty) {
13644   // Strip off any implicit cast added to get to the one ARC-specific.
13645   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13646     if (cast->getCastKind() == CK_ARCConsumeObject) {
13647       S.Diag(Loc, diag::warn_arc_retained_assign)
13648         << (LT == Qualifiers::OCL_ExplicitNone)
13649         << (isProperty ? 0 : 1)
13650         << RHS->getSourceRange();
13651       return true;
13652     }
13653     RHS = cast->getSubExpr();
13654   }
13655 
13656   if (LT == Qualifiers::OCL_Weak &&
13657       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
13658     return true;
13659 
13660   return false;
13661 }
13662 
13663 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
13664                               QualType LHS, Expr *RHS) {
13665   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
13666 
13667   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
13668     return false;
13669 
13670   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
13671     return true;
13672 
13673   return false;
13674 }
13675 
13676 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
13677                               Expr *LHS, Expr *RHS) {
13678   QualType LHSType;
13679   // PropertyRef on LHS type need be directly obtained from
13680   // its declaration as it has a PseudoType.
13681   ObjCPropertyRefExpr *PRE
13682     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
13683   if (PRE && !PRE->isImplicitProperty()) {
13684     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13685     if (PD)
13686       LHSType = PD->getType();
13687   }
13688 
13689   if (LHSType.isNull())
13690     LHSType = LHS->getType();
13691 
13692   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
13693 
13694   if (LT == Qualifiers::OCL_Weak) {
13695     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
13696       getCurFunction()->markSafeWeakUse(LHS);
13697   }
13698 
13699   if (checkUnsafeAssigns(Loc, LHSType, RHS))
13700     return;
13701 
13702   // FIXME. Check for other life times.
13703   if (LT != Qualifiers::OCL_None)
13704     return;
13705 
13706   if (PRE) {
13707     if (PRE->isImplicitProperty())
13708       return;
13709     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13710     if (!PD)
13711       return;
13712 
13713     unsigned Attributes = PD->getPropertyAttributes();
13714     if (Attributes & ObjCPropertyAttribute::kind_assign) {
13715       // when 'assign' attribute was not explicitly specified
13716       // by user, ignore it and rely on property type itself
13717       // for lifetime info.
13718       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
13719       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
13720           LHSType->isObjCRetainableType())
13721         return;
13722 
13723       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13724         if (cast->getCastKind() == CK_ARCConsumeObject) {
13725           Diag(Loc, diag::warn_arc_retained_property_assign)
13726           << RHS->getSourceRange();
13727           return;
13728         }
13729         RHS = cast->getSubExpr();
13730       }
13731     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
13732       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
13733         return;
13734     }
13735   }
13736 }
13737 
13738 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
13739 
13740 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
13741                                         SourceLocation StmtLoc,
13742                                         const NullStmt *Body) {
13743   // Do not warn if the body is a macro that expands to nothing, e.g:
13744   //
13745   // #define CALL(x)
13746   // if (condition)
13747   //   CALL(0);
13748   if (Body->hasLeadingEmptyMacro())
13749     return false;
13750 
13751   // Get line numbers of statement and body.
13752   bool StmtLineInvalid;
13753   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
13754                                                       &StmtLineInvalid);
13755   if (StmtLineInvalid)
13756     return false;
13757 
13758   bool BodyLineInvalid;
13759   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
13760                                                       &BodyLineInvalid);
13761   if (BodyLineInvalid)
13762     return false;
13763 
13764   // Warn if null statement and body are on the same line.
13765   if (StmtLine != BodyLine)
13766     return false;
13767 
13768   return true;
13769 }
13770 
13771 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
13772                                  const Stmt *Body,
13773                                  unsigned DiagID) {
13774   // Since this is a syntactic check, don't emit diagnostic for template
13775   // instantiations, this just adds noise.
13776   if (CurrentInstantiationScope)
13777     return;
13778 
13779   // The body should be a null statement.
13780   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13781   if (!NBody)
13782     return;
13783 
13784   // Do the usual checks.
13785   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13786     return;
13787 
13788   Diag(NBody->getSemiLoc(), DiagID);
13789   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13790 }
13791 
13792 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
13793                                  const Stmt *PossibleBody) {
13794   assert(!CurrentInstantiationScope); // Ensured by caller
13795 
13796   SourceLocation StmtLoc;
13797   const Stmt *Body;
13798   unsigned DiagID;
13799   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
13800     StmtLoc = FS->getRParenLoc();
13801     Body = FS->getBody();
13802     DiagID = diag::warn_empty_for_body;
13803   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
13804     StmtLoc = WS->getRParenLoc();
13805     Body = WS->getBody();
13806     DiagID = diag::warn_empty_while_body;
13807   } else
13808     return; // Neither `for' nor `while'.
13809 
13810   // The body should be a null statement.
13811   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13812   if (!NBody)
13813     return;
13814 
13815   // Skip expensive checks if diagnostic is disabled.
13816   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
13817     return;
13818 
13819   // Do the usual checks.
13820   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13821     return;
13822 
13823   // `for(...);' and `while(...);' are popular idioms, so in order to keep
13824   // noise level low, emit diagnostics only if for/while is followed by a
13825   // CompoundStmt, e.g.:
13826   //    for (int i = 0; i < n; i++);
13827   //    {
13828   //      a(i);
13829   //    }
13830   // or if for/while is followed by a statement with more indentation
13831   // than for/while itself:
13832   //    for (int i = 0; i < n; i++);
13833   //      a(i);
13834   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
13835   if (!ProbableTypo) {
13836     bool BodyColInvalid;
13837     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
13838         PossibleBody->getBeginLoc(), &BodyColInvalid);
13839     if (BodyColInvalid)
13840       return;
13841 
13842     bool StmtColInvalid;
13843     unsigned StmtCol =
13844         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
13845     if (StmtColInvalid)
13846       return;
13847 
13848     if (BodyCol > StmtCol)
13849       ProbableTypo = true;
13850   }
13851 
13852   if (ProbableTypo) {
13853     Diag(NBody->getSemiLoc(), DiagID);
13854     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13855   }
13856 }
13857 
13858 //===--- CHECK: Warn on self move with std::move. -------------------------===//
13859 
13860 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
13861                              SourceLocation OpLoc) {
13862   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
13863     return;
13864 
13865   if (inTemplateInstantiation())
13866     return;
13867 
13868   // Strip parens and casts away.
13869   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13870   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13871 
13872   // Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue
13873   // which we can treat as an inlined std::move
13874   if (const auto *CE = dyn_cast<CallExpr>(RHSExpr);
13875       CE && CE->getNumArgs() == 1 && CE->isCallToStdMove())
13876     RHSExpr = CE->getArg(0);
13877   else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(RHSExpr);
13878            CXXSCE && CXXSCE->isXValue())
13879     RHSExpr = CXXSCE->getSubExpr();
13880   else
13881     return;
13882 
13883   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13884   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13885 
13886   // Two DeclRefExpr's, check that the decls are the same.
13887   if (LHSDeclRef && RHSDeclRef) {
13888     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13889       return;
13890     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13891         RHSDeclRef->getDecl()->getCanonicalDecl())
13892       return;
13893 
13894     auto D = Diag(OpLoc, diag::warn_self_move)
13895              << LHSExpr->getType() << LHSExpr->getSourceRange()
13896              << RHSExpr->getSourceRange();
13897     if (const FieldDecl *F =
13898             getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
13899       D << 1 << F
13900         << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
13901     else
13902       D << 0;
13903     return;
13904   }
13905 
13906   // Member variables require a different approach to check for self moves.
13907   // MemberExpr's are the same if every nested MemberExpr refers to the same
13908   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
13909   // the base Expr's are CXXThisExpr's.
13910   const Expr *LHSBase = LHSExpr;
13911   const Expr *RHSBase = RHSExpr;
13912   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
13913   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
13914   if (!LHSME || !RHSME)
13915     return;
13916 
13917   while (LHSME && RHSME) {
13918     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
13919         RHSME->getMemberDecl()->getCanonicalDecl())
13920       return;
13921 
13922     LHSBase = LHSME->getBase();
13923     RHSBase = RHSME->getBase();
13924     LHSME = dyn_cast<MemberExpr>(LHSBase);
13925     RHSME = dyn_cast<MemberExpr>(RHSBase);
13926   }
13927 
13928   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
13929   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
13930   if (LHSDeclRef && RHSDeclRef) {
13931     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13932       return;
13933     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13934         RHSDeclRef->getDecl()->getCanonicalDecl())
13935       return;
13936 
13937     Diag(OpLoc, diag::warn_self_move)
13938         << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
13939         << RHSExpr->getSourceRange();
13940     return;
13941   }
13942 
13943   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
13944     Diag(OpLoc, diag::warn_self_move)
13945         << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
13946         << RHSExpr->getSourceRange();
13947 }
13948 
13949 //===--- Layout compatibility ----------------------------------------------//
13950 
13951 static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2);
13952 
13953 /// Check if two enumeration types are layout-compatible.
13954 static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1,
13955                                const EnumDecl *ED2) {
13956   // C++11 [dcl.enum] p8:
13957   // Two enumeration types are layout-compatible if they have the same
13958   // underlying type.
13959   return ED1->isComplete() && ED2->isComplete() &&
13960          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
13961 }
13962 
13963 /// Check if two fields are layout-compatible.
13964 /// Can be used on union members, which are exempt from alignment requirement
13965 /// of common initial sequence.
13966 static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1,
13967                                const FieldDecl *Field2,
13968                                bool AreUnionMembers = false) {
13969   [[maybe_unused]] const Type *Field1Parent =
13970       Field1->getParent()->getTypeForDecl();
13971   [[maybe_unused]] const Type *Field2Parent =
13972       Field2->getParent()->getTypeForDecl();
13973   assert(((Field1Parent->isStructureOrClassType() &&
13974            Field2Parent->isStructureOrClassType()) ||
13975           (Field1Parent->isUnionType() && Field2Parent->isUnionType())) &&
13976          "Can't evaluate layout compatibility between a struct field and a "
13977          "union field.");
13978   assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) ||
13979           (AreUnionMembers && Field1Parent->isUnionType())) &&
13980          "AreUnionMembers should be 'true' for union fields (only).");
13981 
13982   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
13983     return false;
13984 
13985   if (Field1->isBitField() != Field2->isBitField())
13986     return false;
13987 
13988   if (Field1->isBitField()) {
13989     // Make sure that the bit-fields are the same length.
13990     unsigned Bits1 = Field1->getBitWidthValue(C);
13991     unsigned Bits2 = Field2->getBitWidthValue(C);
13992 
13993     if (Bits1 != Bits2)
13994       return false;
13995   }
13996 
13997   if (Field1->hasAttr<clang::NoUniqueAddressAttr>() ||
13998       Field2->hasAttr<clang::NoUniqueAddressAttr>())
13999     return false;
14000 
14001   if (!AreUnionMembers &&
14002       Field1->getMaxAlignment() != Field2->getMaxAlignment())
14003     return false;
14004 
14005   return true;
14006 }
14007 
14008 /// Check if two standard-layout structs are layout-compatible.
14009 /// (C++11 [class.mem] p17)
14010 static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1,
14011                                      const RecordDecl *RD2) {
14012   // Get to the class where the fields are declared
14013   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1))
14014     RD1 = D1CXX->getStandardLayoutBaseWithFields();
14015 
14016   if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2))
14017     RD2 = D2CXX->getStandardLayoutBaseWithFields();
14018 
14019   // Check the fields.
14020   return llvm::equal(RD1->fields(), RD2->fields(),
14021                      [&C](const FieldDecl *F1, const FieldDecl *F2) -> bool {
14022                        return isLayoutCompatible(C, F1, F2);
14023                      });
14024 }
14025 
14026 /// Check if two standard-layout unions are layout-compatible.
14027 /// (C++11 [class.mem] p18)
14028 static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1,
14029                                     const RecordDecl *RD2) {
14030   llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields;
14031   for (auto *Field2 : RD2->fields())
14032     UnmatchedFields.insert(Field2);
14033 
14034   for (auto *Field1 : RD1->fields()) {
14035     auto I = UnmatchedFields.begin();
14036     auto E = UnmatchedFields.end();
14037 
14038     for ( ; I != E; ++I) {
14039       if (isLayoutCompatible(C, Field1, *I, /*IsUnionMember=*/true)) {
14040         bool Result = UnmatchedFields.erase(*I);
14041         (void) Result;
14042         assert(Result);
14043         break;
14044       }
14045     }
14046     if (I == E)
14047       return false;
14048   }
14049 
14050   return UnmatchedFields.empty();
14051 }
14052 
14053 static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1,
14054                                const RecordDecl *RD2) {
14055   if (RD1->isUnion() != RD2->isUnion())
14056     return false;
14057 
14058   if (RD1->isUnion())
14059     return isLayoutCompatibleUnion(C, RD1, RD2);
14060   else
14061     return isLayoutCompatibleStruct(C, RD1, RD2);
14062 }
14063 
14064 /// Check if two types are layout-compatible in C++11 sense.
14065 static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) {
14066   if (T1.isNull() || T2.isNull())
14067     return false;
14068 
14069   // C++20 [basic.types] p11:
14070   // Two types cv1 T1 and cv2 T2 are layout-compatible types
14071   // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1),
14072   // or layout-compatible standard-layout class types (11.4).
14073   T1 = T1.getCanonicalType().getUnqualifiedType();
14074   T2 = T2.getCanonicalType().getUnqualifiedType();
14075 
14076   if (C.hasSameType(T1, T2))
14077     return true;
14078 
14079   const Type::TypeClass TC1 = T1->getTypeClass();
14080   const Type::TypeClass TC2 = T2->getTypeClass();
14081 
14082   if (TC1 != TC2)
14083     return false;
14084 
14085   if (TC1 == Type::Enum) {
14086     return isLayoutCompatible(C,
14087                               cast<EnumType>(T1)->getDecl(),
14088                               cast<EnumType>(T2)->getDecl());
14089   } else if (TC1 == Type::Record) {
14090     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
14091       return false;
14092 
14093     return isLayoutCompatible(C,
14094                               cast<RecordType>(T1)->getDecl(),
14095                               cast<RecordType>(T2)->getDecl());
14096   }
14097 
14098   return false;
14099 }
14100 
14101 bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const {
14102   return isLayoutCompatible(getASTContext(), T1, T2);
14103 }
14104 
14105 //===-------------- Pointer interconvertibility ----------------------------//
14106 
14107 bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
14108                                            const TypeSourceInfo *Derived) {
14109   QualType BaseT = Base->getType()->getCanonicalTypeUnqualified();
14110   QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified();
14111 
14112   if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() &&
14113       getASTContext().hasSameType(BaseT, DerivedT))
14114     return true;
14115 
14116   if (!IsDerivedFrom(Derived->getTypeLoc().getBeginLoc(), DerivedT, BaseT))
14117     return false;
14118 
14119   // Per [basic.compound]/4.3, containing object has to be standard-layout.
14120   if (DerivedT->getAsCXXRecordDecl()->isStandardLayout())
14121     return true;
14122 
14123   return false;
14124 }
14125 
14126 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
14127 
14128 /// Given a type tag expression find the type tag itself.
14129 ///
14130 /// \param TypeExpr Type tag expression, as it appears in user's code.
14131 ///
14132 /// \param VD Declaration of an identifier that appears in a type tag.
14133 ///
14134 /// \param MagicValue Type tag magic value.
14135 ///
14136 /// \param isConstantEvaluated whether the evalaution should be performed in
14137 
14138 /// constant context.
14139 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
14140                             const ValueDecl **VD, uint64_t *MagicValue,
14141                             bool isConstantEvaluated) {
14142   while(true) {
14143     if (!TypeExpr)
14144       return false;
14145 
14146     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
14147 
14148     switch (TypeExpr->getStmtClass()) {
14149     case Stmt::UnaryOperatorClass: {
14150       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
14151       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
14152         TypeExpr = UO->getSubExpr();
14153         continue;
14154       }
14155       return false;
14156     }
14157 
14158     case Stmt::DeclRefExprClass: {
14159       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
14160       *VD = DRE->getDecl();
14161       return true;
14162     }
14163 
14164     case Stmt::IntegerLiteralClass: {
14165       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
14166       llvm::APInt MagicValueAPInt = IL->getValue();
14167       if (MagicValueAPInt.getActiveBits() <= 64) {
14168         *MagicValue = MagicValueAPInt.getZExtValue();
14169         return true;
14170       } else
14171         return false;
14172     }
14173 
14174     case Stmt::BinaryConditionalOperatorClass:
14175     case Stmt::ConditionalOperatorClass: {
14176       const AbstractConditionalOperator *ACO =
14177           cast<AbstractConditionalOperator>(TypeExpr);
14178       bool Result;
14179       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
14180                                                      isConstantEvaluated)) {
14181         if (Result)
14182           TypeExpr = ACO->getTrueExpr();
14183         else
14184           TypeExpr = ACO->getFalseExpr();
14185         continue;
14186       }
14187       return false;
14188     }
14189 
14190     case Stmt::BinaryOperatorClass: {
14191       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
14192       if (BO->getOpcode() == BO_Comma) {
14193         TypeExpr = BO->getRHS();
14194         continue;
14195       }
14196       return false;
14197     }
14198 
14199     default:
14200       return false;
14201     }
14202   }
14203 }
14204 
14205 /// Retrieve the C type corresponding to type tag TypeExpr.
14206 ///
14207 /// \param TypeExpr Expression that specifies a type tag.
14208 ///
14209 /// \param MagicValues Registered magic values.
14210 ///
14211 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
14212 ///        kind.
14213 ///
14214 /// \param TypeInfo Information about the corresponding C type.
14215 ///
14216 /// \param isConstantEvaluated whether the evalaution should be performed in
14217 /// constant context.
14218 ///
14219 /// \returns true if the corresponding C type was found.
14220 static bool GetMatchingCType(
14221     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
14222     const ASTContext &Ctx,
14223     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
14224         *MagicValues,
14225     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
14226     bool isConstantEvaluated) {
14227   FoundWrongKind = false;
14228 
14229   // Variable declaration that has type_tag_for_datatype attribute.
14230   const ValueDecl *VD = nullptr;
14231 
14232   uint64_t MagicValue;
14233 
14234   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
14235     return false;
14236 
14237   if (VD) {
14238     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
14239       if (I->getArgumentKind() != ArgumentKind) {
14240         FoundWrongKind = true;
14241         return false;
14242       }
14243       TypeInfo.Type = I->getMatchingCType();
14244       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
14245       TypeInfo.MustBeNull = I->getMustBeNull();
14246       return true;
14247     }
14248     return false;
14249   }
14250 
14251   if (!MagicValues)
14252     return false;
14253 
14254   llvm::DenseMap<Sema::TypeTagMagicValue,
14255                  Sema::TypeTagData>::const_iterator I =
14256       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
14257   if (I == MagicValues->end())
14258     return false;
14259 
14260   TypeInfo = I->second;
14261   return true;
14262 }
14263 
14264 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
14265                                       uint64_t MagicValue, QualType Type,
14266                                       bool LayoutCompatible,
14267                                       bool MustBeNull) {
14268   if (!TypeTagForDatatypeMagicValues)
14269     TypeTagForDatatypeMagicValues.reset(
14270         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
14271 
14272   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
14273   (*TypeTagForDatatypeMagicValues)[Magic] =
14274       TypeTagData(Type, LayoutCompatible, MustBeNull);
14275 }
14276 
14277 static bool IsSameCharType(QualType T1, QualType T2) {
14278   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
14279   if (!BT1)
14280     return false;
14281 
14282   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
14283   if (!BT2)
14284     return false;
14285 
14286   BuiltinType::Kind T1Kind = BT1->getKind();
14287   BuiltinType::Kind T2Kind = BT2->getKind();
14288 
14289   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
14290          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
14291          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
14292          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
14293 }
14294 
14295 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
14296                                     const ArrayRef<const Expr *> ExprArgs,
14297                                     SourceLocation CallSiteLoc) {
14298   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
14299   bool IsPointerAttr = Attr->getIsPointer();
14300 
14301   // Retrieve the argument representing the 'type_tag'.
14302   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
14303   if (TypeTagIdxAST >= ExprArgs.size()) {
14304     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14305         << 0 << Attr->getTypeTagIdx().getSourceIndex();
14306     return;
14307   }
14308   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
14309   bool FoundWrongKind;
14310   TypeTagData TypeInfo;
14311   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
14312                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
14313                         TypeInfo, isConstantEvaluatedContext())) {
14314     if (FoundWrongKind)
14315       Diag(TypeTagExpr->getExprLoc(),
14316            diag::warn_type_tag_for_datatype_wrong_kind)
14317         << TypeTagExpr->getSourceRange();
14318     return;
14319   }
14320 
14321   // Retrieve the argument representing the 'arg_idx'.
14322   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
14323   if (ArgumentIdxAST >= ExprArgs.size()) {
14324     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14325         << 1 << Attr->getArgumentIdx().getSourceIndex();
14326     return;
14327   }
14328   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
14329   if (IsPointerAttr) {
14330     // Skip implicit cast of pointer to `void *' (as a function argument).
14331     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
14332       if (ICE->getType()->isVoidPointerType() &&
14333           ICE->getCastKind() == CK_BitCast)
14334         ArgumentExpr = ICE->getSubExpr();
14335   }
14336   QualType ArgumentType = ArgumentExpr->getType();
14337 
14338   // Passing a `void*' pointer shouldn't trigger a warning.
14339   if (IsPointerAttr && ArgumentType->isVoidPointerType())
14340     return;
14341 
14342   if (TypeInfo.MustBeNull) {
14343     // Type tag with matching void type requires a null pointer.
14344     if (!ArgumentExpr->isNullPointerConstant(Context,
14345                                              Expr::NPC_ValueDependentIsNotNull)) {
14346       Diag(ArgumentExpr->getExprLoc(),
14347            diag::warn_type_safety_null_pointer_required)
14348           << ArgumentKind->getName()
14349           << ArgumentExpr->getSourceRange()
14350           << TypeTagExpr->getSourceRange();
14351     }
14352     return;
14353   }
14354 
14355   QualType RequiredType = TypeInfo.Type;
14356   if (IsPointerAttr)
14357     RequiredType = Context.getPointerType(RequiredType);
14358 
14359   bool mismatch = false;
14360   if (!TypeInfo.LayoutCompatible) {
14361     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
14362 
14363     // C++11 [basic.fundamental] p1:
14364     // Plain char, signed char, and unsigned char are three distinct types.
14365     //
14366     // But we treat plain `char' as equivalent to `signed char' or `unsigned
14367     // char' depending on the current char signedness mode.
14368     if (mismatch)
14369       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
14370                                            RequiredType->getPointeeType())) ||
14371           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
14372         mismatch = false;
14373   } else
14374     if (IsPointerAttr)
14375       mismatch = !isLayoutCompatible(Context,
14376                                      ArgumentType->getPointeeType(),
14377                                      RequiredType->getPointeeType());
14378     else
14379       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
14380 
14381   if (mismatch)
14382     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
14383         << ArgumentType << ArgumentKind
14384         << TypeInfo.LayoutCompatible << RequiredType
14385         << ArgumentExpr->getSourceRange()
14386         << TypeTagExpr->getSourceRange();
14387 }
14388 
14389 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
14390                                          CharUnits Alignment) {
14391   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
14392 }
14393 
14394 void Sema::DiagnoseMisalignedMembers() {
14395   for (MisalignedMember &m : MisalignedMembers) {
14396     const NamedDecl *ND = m.RD;
14397     if (ND->getName().empty()) {
14398       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
14399         ND = TD;
14400     }
14401     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
14402         << m.MD << ND << m.E->getSourceRange();
14403   }
14404   MisalignedMembers.clear();
14405 }
14406 
14407 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
14408   E = E->IgnoreParens();
14409   if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType())
14410     return;
14411   if (isa<UnaryOperator>(E) &&
14412       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
14413     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
14414     if (isa<MemberExpr>(Op)) {
14415       auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
14416       if (MA != MisalignedMembers.end() &&
14417           (T->isDependentType() || T->isIntegerType() ||
14418            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
14419                                    Context.getTypeAlignInChars(
14420                                        T->getPointeeType()) <= MA->Alignment))))
14421         MisalignedMembers.erase(MA);
14422     }
14423   }
14424 }
14425 
14426 void Sema::RefersToMemberWithReducedAlignment(
14427     Expr *E,
14428     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
14429         Action) {
14430   const auto *ME = dyn_cast<MemberExpr>(E);
14431   if (!ME)
14432     return;
14433 
14434   // No need to check expressions with an __unaligned-qualified type.
14435   if (E->getType().getQualifiers().hasUnaligned())
14436     return;
14437 
14438   // For a chain of MemberExpr like "a.b.c.d" this list
14439   // will keep FieldDecl's like [d, c, b].
14440   SmallVector<FieldDecl *, 4> ReverseMemberChain;
14441   const MemberExpr *TopME = nullptr;
14442   bool AnyIsPacked = false;
14443   do {
14444     QualType BaseType = ME->getBase()->getType();
14445     if (BaseType->isDependentType())
14446       return;
14447     if (ME->isArrow())
14448       BaseType = BaseType->getPointeeType();
14449     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
14450     if (RD->isInvalidDecl())
14451       return;
14452 
14453     ValueDecl *MD = ME->getMemberDecl();
14454     auto *FD = dyn_cast<FieldDecl>(MD);
14455     // We do not care about non-data members.
14456     if (!FD || FD->isInvalidDecl())
14457       return;
14458 
14459     AnyIsPacked =
14460         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
14461     ReverseMemberChain.push_back(FD);
14462 
14463     TopME = ME;
14464     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
14465   } while (ME);
14466   assert(TopME && "We did not compute a topmost MemberExpr!");
14467 
14468   // Not the scope of this diagnostic.
14469   if (!AnyIsPacked)
14470     return;
14471 
14472   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
14473   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
14474   // TODO: The innermost base of the member expression may be too complicated.
14475   // For now, just disregard these cases. This is left for future
14476   // improvement.
14477   if (!DRE && !isa<CXXThisExpr>(TopBase))
14478       return;
14479 
14480   // Alignment expected by the whole expression.
14481   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
14482 
14483   // No need to do anything else with this case.
14484   if (ExpectedAlignment.isOne())
14485     return;
14486 
14487   // Synthesize offset of the whole access.
14488   CharUnits Offset;
14489   for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
14490     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
14491 
14492   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14493   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
14494       ReverseMemberChain.back()->getParent()->getTypeForDecl());
14495 
14496   // The base expression of the innermost MemberExpr may give
14497   // stronger guarantees than the class containing the member.
14498   if (DRE && !TopME->isArrow()) {
14499     const ValueDecl *VD = DRE->getDecl();
14500     if (!VD->getType()->isReferenceType())
14501       CompleteObjectAlignment =
14502           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
14503   }
14504 
14505   // Check if the synthesized offset fulfills the alignment.
14506   if (Offset % ExpectedAlignment != 0 ||
14507       // It may fulfill the offset it but the effective alignment may still be
14508       // lower than the expected expression alignment.
14509       CompleteObjectAlignment < ExpectedAlignment) {
14510     // If this happens, we want to determine a sensible culprit of this.
14511     // Intuitively, watching the chain of member expressions from right to
14512     // left, we start with the required alignment (as required by the field
14513     // type) but some packed attribute in that chain has reduced the alignment.
14514     // It may happen that another packed structure increases it again. But if
14515     // we are here such increase has not been enough. So pointing the first
14516     // FieldDecl that either is packed or else its RecordDecl is,
14517     // seems reasonable.
14518     FieldDecl *FD = nullptr;
14519     CharUnits Alignment;
14520     for (FieldDecl *FDI : ReverseMemberChain) {
14521       if (FDI->hasAttr<PackedAttr>() ||
14522           FDI->getParent()->hasAttr<PackedAttr>()) {
14523         FD = FDI;
14524         Alignment = std::min(
14525             Context.getTypeAlignInChars(FD->getType()),
14526             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
14527         break;
14528       }
14529     }
14530     assert(FD && "We did not find a packed FieldDecl!");
14531     Action(E, FD->getParent(), FD, Alignment);
14532   }
14533 }
14534 
14535 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
14536   using namespace std::placeholders;
14537 
14538   RefersToMemberWithReducedAlignment(
14539       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
14540                      _2, _3, _4));
14541 }
14542 
14543 bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
14544   if (checkArgCount(TheCall, 1))
14545     return true;
14546 
14547   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
14548   if (A.isInvalid())
14549     return true;
14550 
14551   TheCall->setArg(0, A.get());
14552   QualType TyA = A.get()->getType();
14553 
14554   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14555     return true;
14556 
14557   TheCall->setType(TyA);
14558   return false;
14559 }
14560 
14561 bool Sema::BuiltinElementwiseMath(CallExpr *TheCall, bool FPOnly) {
14562   QualType Res;
14563   if (BuiltinVectorMath(TheCall, Res, FPOnly))
14564     return true;
14565   TheCall->setType(Res);
14566   return false;
14567 }
14568 
14569 bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) {
14570   QualType Res;
14571   if (BuiltinVectorMath(TheCall, Res))
14572     return true;
14573 
14574   if (auto *VecTy0 = Res->getAs<VectorType>())
14575     TheCall->setType(VecTy0->getElementType());
14576   else
14577     TheCall->setType(Res);
14578 
14579   return false;
14580 }
14581 
14582 bool Sema::BuiltinVectorMath(CallExpr *TheCall, QualType &Res, bool FPOnly) {
14583   if (checkArgCount(TheCall, 2))
14584     return true;
14585 
14586   ExprResult A = TheCall->getArg(0);
14587   ExprResult B = TheCall->getArg(1);
14588   // Do standard promotions between the two arguments, returning their common
14589   // type.
14590   Res = UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
14591   if (A.isInvalid() || B.isInvalid())
14592     return true;
14593 
14594   QualType TyA = A.get()->getType();
14595   QualType TyB = B.get()->getType();
14596 
14597   if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
14598     return Diag(A.get()->getBeginLoc(),
14599                 diag::err_typecheck_call_different_arg_types)
14600            << TyA << TyB;
14601 
14602   if (FPOnly) {
14603     if (checkFPMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14604       return true;
14605   } else {
14606     if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14607       return true;
14608   }
14609 
14610   TheCall->setArg(0, A.get());
14611   TheCall->setArg(1, B.get());
14612   return false;
14613 }
14614 
14615 bool Sema::BuiltinElementwiseTernaryMath(CallExpr *TheCall,
14616                                          bool CheckForFloatArgs) {
14617   if (checkArgCount(TheCall, 3))
14618     return true;
14619 
14620   Expr *Args[3];
14621   for (int I = 0; I < 3; ++I) {
14622     ExprResult Converted = UsualUnaryConversions(TheCall->getArg(I));
14623     if (Converted.isInvalid())
14624       return true;
14625     Args[I] = Converted.get();
14626   }
14627 
14628   if (CheckForFloatArgs) {
14629     int ArgOrdinal = 1;
14630     for (Expr *Arg : Args) {
14631       if (checkFPMathBuiltinElementType(*this, Arg->getBeginLoc(),
14632                                         Arg->getType(), ArgOrdinal++))
14633         return true;
14634     }
14635   } else {
14636     int ArgOrdinal = 1;
14637     for (Expr *Arg : Args) {
14638       if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(),
14639                                       ArgOrdinal++))
14640         return true;
14641     }
14642   }
14643 
14644   for (int I = 1; I < 3; ++I) {
14645     if (Args[0]->getType().getCanonicalType() !=
14646         Args[I]->getType().getCanonicalType()) {
14647       return Diag(Args[0]->getBeginLoc(),
14648                   diag::err_typecheck_call_different_arg_types)
14649              << Args[0]->getType() << Args[I]->getType();
14650     }
14651 
14652     TheCall->setArg(I, Args[I]);
14653   }
14654 
14655   TheCall->setType(Args[0]->getType());
14656   return false;
14657 }
14658 
14659 bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
14660   if (checkArgCount(TheCall, 1))
14661     return true;
14662 
14663   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
14664   if (A.isInvalid())
14665     return true;
14666 
14667   TheCall->setArg(0, A.get());
14668   return false;
14669 }
14670 
14671 bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) {
14672   if (checkArgCount(TheCall, 1))
14673     return true;
14674 
14675   ExprResult Arg = TheCall->getArg(0);
14676   QualType TyArg = Arg.get()->getType();
14677 
14678   if (!TyArg->isBuiltinType() && !TyArg->isVectorType())
14679     return Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14680            << 1 << /*vector, integer or floating point ty*/ 0 << TyArg;
14681 
14682   TheCall->setType(TyArg);
14683   return false;
14684 }
14685 
14686 ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall,
14687                                         ExprResult CallResult) {
14688   if (checkArgCount(TheCall, 1))
14689     return ExprError();
14690 
14691   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
14692   if (MatrixArg.isInvalid())
14693     return MatrixArg;
14694   Expr *Matrix = MatrixArg.get();
14695 
14696   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
14697   if (!MType) {
14698     Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14699         << 1 << /* matrix ty*/ 1 << Matrix->getType();
14700     return ExprError();
14701   }
14702 
14703   // Create returned matrix type by swapping rows and columns of the argument
14704   // matrix type.
14705   QualType ResultType = Context.getConstantMatrixType(
14706       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
14707 
14708   // Change the return type to the type of the returned matrix.
14709   TheCall->setType(ResultType);
14710 
14711   // Update call argument to use the possibly converted matrix argument.
14712   TheCall->setArg(0, Matrix);
14713   return CallResult;
14714 }
14715 
14716 // Get and verify the matrix dimensions.
14717 static std::optional<unsigned>
14718 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
14719   SourceLocation ErrorPos;
14720   std::optional<llvm::APSInt> Value =
14721       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
14722   if (!Value) {
14723     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
14724         << Name;
14725     return {};
14726   }
14727   uint64_t Dim = Value->getZExtValue();
14728   if (!ConstantMatrixType::isDimensionValid(Dim)) {
14729     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
14730         << Name << ConstantMatrixType::getMaxElementsPerDimension();
14731     return {};
14732   }
14733   return Dim;
14734 }
14735 
14736 ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
14737                                               ExprResult CallResult) {
14738   if (!getLangOpts().MatrixTypes) {
14739     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
14740     return ExprError();
14741   }
14742 
14743   if (checkArgCount(TheCall, 4))
14744     return ExprError();
14745 
14746   unsigned PtrArgIdx = 0;
14747   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
14748   Expr *RowsExpr = TheCall->getArg(1);
14749   Expr *ColumnsExpr = TheCall->getArg(2);
14750   Expr *StrideExpr = TheCall->getArg(3);
14751 
14752   bool ArgError = false;
14753 
14754   // Check pointer argument.
14755   {
14756     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
14757     if (PtrConv.isInvalid())
14758       return PtrConv;
14759     PtrExpr = PtrConv.get();
14760     TheCall->setArg(0, PtrExpr);
14761     if (PtrExpr->isTypeDependent()) {
14762       TheCall->setType(Context.DependentTy);
14763       return TheCall;
14764     }
14765   }
14766 
14767   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
14768   QualType ElementTy;
14769   if (!PtrTy) {
14770     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14771         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
14772     ArgError = true;
14773   } else {
14774     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
14775 
14776     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
14777       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14778           << PtrArgIdx + 1 << /* pointer to element ty*/ 2
14779           << PtrExpr->getType();
14780       ArgError = true;
14781     }
14782   }
14783 
14784   // Apply default Lvalue conversions and convert the expression to size_t.
14785   auto ApplyArgumentConversions = [this](Expr *E) {
14786     ExprResult Conv = DefaultLvalueConversion(E);
14787     if (Conv.isInvalid())
14788       return Conv;
14789 
14790     return tryConvertExprToType(Conv.get(), Context.getSizeType());
14791   };
14792 
14793   // Apply conversion to row and column expressions.
14794   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
14795   if (!RowsConv.isInvalid()) {
14796     RowsExpr = RowsConv.get();
14797     TheCall->setArg(1, RowsExpr);
14798   } else
14799     RowsExpr = nullptr;
14800 
14801   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
14802   if (!ColumnsConv.isInvalid()) {
14803     ColumnsExpr = ColumnsConv.get();
14804     TheCall->setArg(2, ColumnsExpr);
14805   } else
14806     ColumnsExpr = nullptr;
14807 
14808   // If any part of the result matrix type is still pending, just use
14809   // Context.DependentTy, until all parts are resolved.
14810   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
14811       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
14812     TheCall->setType(Context.DependentTy);
14813     return CallResult;
14814   }
14815 
14816   // Check row and column dimensions.
14817   std::optional<unsigned> MaybeRows;
14818   if (RowsExpr)
14819     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
14820 
14821   std::optional<unsigned> MaybeColumns;
14822   if (ColumnsExpr)
14823     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
14824 
14825   // Check stride argument.
14826   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
14827   if (StrideConv.isInvalid())
14828     return ExprError();
14829   StrideExpr = StrideConv.get();
14830   TheCall->setArg(3, StrideExpr);
14831 
14832   if (MaybeRows) {
14833     if (std::optional<llvm::APSInt> Value =
14834             StrideExpr->getIntegerConstantExpr(Context)) {
14835       uint64_t Stride = Value->getZExtValue();
14836       if (Stride < *MaybeRows) {
14837         Diag(StrideExpr->getBeginLoc(),
14838              diag::err_builtin_matrix_stride_too_small);
14839         ArgError = true;
14840       }
14841     }
14842   }
14843 
14844   if (ArgError || !MaybeRows || !MaybeColumns)
14845     return ExprError();
14846 
14847   TheCall->setType(
14848       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
14849   return CallResult;
14850 }
14851 
14852 ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
14853                                                ExprResult CallResult) {
14854   if (checkArgCount(TheCall, 3))
14855     return ExprError();
14856 
14857   unsigned PtrArgIdx = 1;
14858   Expr *MatrixExpr = TheCall->getArg(0);
14859   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
14860   Expr *StrideExpr = TheCall->getArg(2);
14861 
14862   bool ArgError = false;
14863 
14864   {
14865     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
14866     if (MatrixConv.isInvalid())
14867       return MatrixConv;
14868     MatrixExpr = MatrixConv.get();
14869     TheCall->setArg(0, MatrixExpr);
14870   }
14871   if (MatrixExpr->isTypeDependent()) {
14872     TheCall->setType(Context.DependentTy);
14873     return TheCall;
14874   }
14875 
14876   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
14877   if (!MatrixTy) {
14878     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14879         << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
14880     ArgError = true;
14881   }
14882 
14883   {
14884     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
14885     if (PtrConv.isInvalid())
14886       return PtrConv;
14887     PtrExpr = PtrConv.get();
14888     TheCall->setArg(1, PtrExpr);
14889     if (PtrExpr->isTypeDependent()) {
14890       TheCall->setType(Context.DependentTy);
14891       return TheCall;
14892     }
14893   }
14894 
14895   // Check pointer argument.
14896   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
14897   if (!PtrTy) {
14898     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14899         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
14900     ArgError = true;
14901   } else {
14902     QualType ElementTy = PtrTy->getPointeeType();
14903     if (ElementTy.isConstQualified()) {
14904       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
14905       ArgError = true;
14906     }
14907     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
14908     if (MatrixTy &&
14909         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
14910       Diag(PtrExpr->getBeginLoc(),
14911            diag::err_builtin_matrix_pointer_arg_mismatch)
14912           << ElementTy << MatrixTy->getElementType();
14913       ArgError = true;
14914     }
14915   }
14916 
14917   // Apply default Lvalue conversions and convert the stride expression to
14918   // size_t.
14919   {
14920     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
14921     if (StrideConv.isInvalid())
14922       return StrideConv;
14923 
14924     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
14925     if (StrideConv.isInvalid())
14926       return StrideConv;
14927     StrideExpr = StrideConv.get();
14928     TheCall->setArg(2, StrideExpr);
14929   }
14930 
14931   // Check stride argument.
14932   if (MatrixTy) {
14933     if (std::optional<llvm::APSInt> Value =
14934             StrideExpr->getIntegerConstantExpr(Context)) {
14935       uint64_t Stride = Value->getZExtValue();
14936       if (Stride < MatrixTy->getNumRows()) {
14937         Diag(StrideExpr->getBeginLoc(),
14938              diag::err_builtin_matrix_stride_too_small);
14939         ArgError = true;
14940       }
14941     }
14942   }
14943 
14944   if (ArgError)
14945     return ExprError();
14946 
14947   return CallResult;
14948 }
14949 
14950 void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
14951                                const NamedDecl *Callee) {
14952   // This warning does not make sense in code that has no runtime behavior.
14953   if (isUnevaluatedContext())
14954     return;
14955 
14956   const NamedDecl *Caller = getCurFunctionOrMethodDecl();
14957 
14958   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
14959     return;
14960 
14961   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
14962   // all TCBs the callee is a part of.
14963   llvm::StringSet<> CalleeTCBs;
14964   for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
14965     CalleeTCBs.insert(A->getTCBName());
14966   for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
14967     CalleeTCBs.insert(A->getTCBName());
14968 
14969   // Go through the TCBs the caller is a part of and emit warnings if Caller
14970   // is in a TCB that the Callee is not.
14971   for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
14972     StringRef CallerTCB = A->getTCBName();
14973     if (CalleeTCBs.count(CallerTCB) == 0) {
14974       this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
14975           << Callee << CallerTCB;
14976     }
14977   }
14978 }
14979