xref: /llvm-project/clang/lib/Sema/SemaChecking.cpp (revision 21edac25f09faee23015c6a69d95fcbda287efe2)
1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CheckExprLifetime.h"
15 #include "clang/AST/APValue.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/AttrIterator.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/IgnoreExpr.h"
31 #include "clang/AST/NSAPI.h"
32 #include "clang/AST/NonTrivialTypeVisitor.h"
33 #include "clang/AST/OperationKinds.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Stmt.h"
36 #include "clang/AST/TemplateBase.h"
37 #include "clang/AST/Type.h"
38 #include "clang/AST/TypeLoc.h"
39 #include "clang/AST/UnresolvedSet.h"
40 #include "clang/Basic/AddressSpaces.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetInfo.h"
53 #include "clang/Basic/TypeTraits.h"
54 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
55 #include "clang/Sema/Initialization.h"
56 #include "clang/Sema/Lookup.h"
57 #include "clang/Sema/Ownership.h"
58 #include "clang/Sema/Scope.h"
59 #include "clang/Sema/ScopeInfo.h"
60 #include "clang/Sema/Sema.h"
61 #include "clang/Sema/SemaAMDGPU.h"
62 #include "clang/Sema/SemaARM.h"
63 #include "clang/Sema/SemaBPF.h"
64 #include "clang/Sema/SemaHLSL.h"
65 #include "clang/Sema/SemaHexagon.h"
66 #include "clang/Sema/SemaLoongArch.h"
67 #include "clang/Sema/SemaMIPS.h"
68 #include "clang/Sema/SemaNVPTX.h"
69 #include "clang/Sema/SemaObjC.h"
70 #include "clang/Sema/SemaOpenCL.h"
71 #include "clang/Sema/SemaPPC.h"
72 #include "clang/Sema/SemaRISCV.h"
73 #include "clang/Sema/SemaSPIRV.h"
74 #include "clang/Sema/SemaSystemZ.h"
75 #include "clang/Sema/SemaWasm.h"
76 #include "clang/Sema/SemaX86.h"
77 #include "llvm/ADT/APFloat.h"
78 #include "llvm/ADT/APInt.h"
79 #include "llvm/ADT/APSInt.h"
80 #include "llvm/ADT/ArrayRef.h"
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/FoldingSet.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallBitVector.h"
85 #include "llvm/ADT/SmallPtrSet.h"
86 #include "llvm/ADT/SmallString.h"
87 #include "llvm/ADT/SmallVector.h"
88 #include "llvm/ADT/StringExtras.h"
89 #include "llvm/ADT/StringRef.h"
90 #include "llvm/ADT/StringSet.h"
91 #include "llvm/ADT/StringSwitch.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/ConvertUTF.h"
95 #include "llvm/Support/ErrorHandling.h"
96 #include "llvm/Support/Format.h"
97 #include "llvm/Support/Locale.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/SaveAndRestore.h"
100 #include "llvm/Support/raw_ostream.h"
101 #include "llvm/TargetParser/RISCVTargetParser.h"
102 #include "llvm/TargetParser/Triple.h"
103 #include <algorithm>
104 #include <cassert>
105 #include <cctype>
106 #include <cstddef>
107 #include <cstdint>
108 #include <functional>
109 #include <limits>
110 #include <optional>
111 #include <string>
112 #include <tuple>
113 #include <utility>
114 
115 using namespace clang;
116 using namespace sema;
117 
118 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
119                                                     unsigned ByteNo) const {
120   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
121                                Context.getTargetInfo());
122 }
123 
124 static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
125                                             Sema::FormatArgumentPassingKind B) {
126   return (A << 8) | B;
127 }
128 
129 bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) {
130   unsigned ArgCount = Call->getNumArgs();
131   if (ArgCount >= MinArgCount)
132     return false;
133 
134   return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
135          << 0 /*function call*/ << MinArgCount << ArgCount
136          << /*is non object*/ 0 << Call->getSourceRange();
137 }
138 
139 bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) {
140   unsigned ArgCount = Call->getNumArgs();
141   if (ArgCount <= MaxArgCount)
142     return false;
143   return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most)
144          << 0 /*function call*/ << MaxArgCount << ArgCount
145          << /*is non object*/ 0 << Call->getSourceRange();
146 }
147 
148 bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
149                               unsigned MaxArgCount) {
150   return checkArgCountAtLeast(Call, MinArgCount) ||
151          checkArgCountAtMost(Call, MaxArgCount);
152 }
153 
154 bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) {
155   unsigned ArgCount = Call->getNumArgs();
156   if (ArgCount == DesiredArgCount)
157     return false;
158 
159   if (checkArgCountAtLeast(Call, DesiredArgCount))
160     return true;
161   assert(ArgCount > DesiredArgCount && "should have diagnosed this");
162 
163   // Highlight all the excess arguments.
164   SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
165                     Call->getArg(ArgCount - 1)->getEndLoc());
166 
167   return Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
168          << 0 /*function call*/ << DesiredArgCount << ArgCount
169          << /*is non object*/ 0 << Call->getArg(1)->getSourceRange();
170 }
171 
172 static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) {
173   bool HasError = false;
174 
175   for (unsigned I = 0; I < Call->getNumArgs(); ++I) {
176     Expr *Arg = Call->getArg(I);
177 
178     if (Arg->isValueDependent())
179       continue;
180 
181     std::optional<std::string> ArgString = Arg->tryEvaluateString(S.Context);
182     int DiagMsgKind = -1;
183     // Arguments must be pointers to constant strings and cannot use '$'.
184     if (!ArgString.has_value())
185       DiagMsgKind = 0;
186     else if (ArgString->find('$') != std::string::npos)
187       DiagMsgKind = 1;
188 
189     if (DiagMsgKind >= 0) {
190       S.Diag(Arg->getBeginLoc(), diag::err_builtin_verbose_trap_arg)
191           << DiagMsgKind << Arg->getSourceRange();
192       HasError = true;
193     }
194   }
195 
196   return !HasError;
197 }
198 
199 static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) {
200   if (Value->isTypeDependent())
201     return false;
202 
203   InitializedEntity Entity =
204       InitializedEntity::InitializeParameter(S.Context, Ty, false);
205   ExprResult Result =
206       S.PerformCopyInitialization(Entity, SourceLocation(), Value);
207   if (Result.isInvalid())
208     return true;
209   Value = Result.get();
210   return false;
211 }
212 
213 /// Check that the first argument to __builtin_annotation is an integer
214 /// and the second argument is a non-wide string literal.
215 static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) {
216   if (S.checkArgCount(TheCall, 2))
217     return true;
218 
219   // First argument should be an integer.
220   Expr *ValArg = TheCall->getArg(0);
221   QualType Ty = ValArg->getType();
222   if (!Ty->isIntegerType()) {
223     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
224         << ValArg->getSourceRange();
225     return true;
226   }
227 
228   // Second argument should be a constant string.
229   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
230   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
231   if (!Literal || !Literal->isOrdinary()) {
232     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
233         << StrArg->getSourceRange();
234     return true;
235   }
236 
237   TheCall->setType(Ty);
238   return false;
239 }
240 
241 static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
242   // We need at least one argument.
243   if (TheCall->getNumArgs() < 1) {
244     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
245         << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
246         << TheCall->getCallee()->getSourceRange();
247     return true;
248   }
249 
250   // All arguments should be wide string literals.
251   for (Expr *Arg : TheCall->arguments()) {
252     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
253     if (!Literal || !Literal->isWide()) {
254       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
255           << Arg->getSourceRange();
256       return true;
257     }
258   }
259 
260   return false;
261 }
262 
263 /// Check that the argument to __builtin_addressof is a glvalue, and set the
264 /// result type to the corresponding pointer type.
265 static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) {
266   if (S.checkArgCount(TheCall, 1))
267     return true;
268 
269   ExprResult Arg(TheCall->getArg(0));
270   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
271   if (ResultType.isNull())
272     return true;
273 
274   TheCall->setArg(0, Arg.get());
275   TheCall->setType(ResultType);
276   return false;
277 }
278 
279 /// Check that the argument to __builtin_function_start is a function.
280 static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
281   if (S.checkArgCount(TheCall, 1))
282     return true;
283 
284   ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
285   if (Arg.isInvalid())
286     return true;
287 
288   TheCall->setArg(0, Arg.get());
289   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
290       Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
291 
292   if (!FD) {
293     S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
294         << TheCall->getSourceRange();
295     return true;
296   }
297 
298   return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
299                                               TheCall->getBeginLoc());
300 }
301 
302 /// Check the number of arguments and set the result type to
303 /// the argument type.
304 static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
305   if (S.checkArgCount(TheCall, 1))
306     return true;
307 
308   TheCall->setType(TheCall->getArg(0)->getType());
309   return false;
310 }
311 
312 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
313 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
314 /// type (but not a function pointer) and that the alignment is a power-of-two.
315 static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
316   if (S.checkArgCount(TheCall, 2))
317     return true;
318 
319   clang::Expr *Source = TheCall->getArg(0);
320   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
321 
322   auto IsValidIntegerType = [](QualType Ty) {
323     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
324   };
325   QualType SrcTy = Source->getType();
326   // We should also be able to use it with arrays (but not functions!).
327   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
328     SrcTy = S.Context.getDecayedType(SrcTy);
329   }
330   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
331       SrcTy->isFunctionPointerType()) {
332     // FIXME: this is not quite the right error message since we don't allow
333     // floating point types, or member pointers.
334     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
335         << SrcTy;
336     return true;
337   }
338 
339   clang::Expr *AlignOp = TheCall->getArg(1);
340   if (!IsValidIntegerType(AlignOp->getType())) {
341     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
342         << AlignOp->getType();
343     return true;
344   }
345   Expr::EvalResult AlignResult;
346   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
347   // We can't check validity of alignment if it is value dependent.
348   if (!AlignOp->isValueDependent() &&
349       AlignOp->EvaluateAsInt(AlignResult, S.Context,
350                              Expr::SE_AllowSideEffects)) {
351     llvm::APSInt AlignValue = AlignResult.Val.getInt();
352     llvm::APSInt MaxValue(
353         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
354     if (AlignValue < 1) {
355       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
356       return true;
357     }
358     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
359       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
360           << toString(MaxValue, 10);
361       return true;
362     }
363     if (!AlignValue.isPowerOf2()) {
364       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
365       return true;
366     }
367     if (AlignValue == 1) {
368       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
369           << IsBooleanAlignBuiltin;
370     }
371   }
372 
373   ExprResult SrcArg = S.PerformCopyInitialization(
374       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
375       SourceLocation(), Source);
376   if (SrcArg.isInvalid())
377     return true;
378   TheCall->setArg(0, SrcArg.get());
379   ExprResult AlignArg =
380       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
381                                       S.Context, AlignOp->getType(), false),
382                                   SourceLocation(), AlignOp);
383   if (AlignArg.isInvalid())
384     return true;
385   TheCall->setArg(1, AlignArg.get());
386   // For align_up/align_down, the return type is the same as the (potentially
387   // decayed) argument type including qualifiers. For is_aligned(), the result
388   // is always bool.
389   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
390   return false;
391 }
392 
393 static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) {
394   if (S.checkArgCount(TheCall, 3))
395     return true;
396 
397   std::pair<unsigned, const char *> Builtins[] = {
398     { Builtin::BI__builtin_add_overflow, "ckd_add" },
399     { Builtin::BI__builtin_sub_overflow, "ckd_sub" },
400     { Builtin::BI__builtin_mul_overflow, "ckd_mul" },
401   };
402 
403   bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair<unsigned,
404     const char *> &P) {
405     return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() &&
406          Lexer::getImmediateMacroName(TheCall->getExprLoc(),
407          S.getSourceManager(), S.getLangOpts()) == P.second;
408   });
409 
410   auto ValidCkdIntType = [](QualType QT) {
411     // A valid checked integer type is an integer type other than a plain char,
412     // bool, a bit-precise type, or an enumeration type.
413     if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>())
414       return (BT->getKind() >= BuiltinType::Short &&
415            BT->getKind() <= BuiltinType::Int128) || (
416            BT->getKind() >= BuiltinType::UShort &&
417            BT->getKind() <= BuiltinType::UInt128) ||
418            BT->getKind() == BuiltinType::UChar ||
419            BT->getKind() == BuiltinType::SChar;
420     return false;
421   };
422 
423   // First two arguments should be integers.
424   for (unsigned I = 0; I < 2; ++I) {
425     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
426     if (Arg.isInvalid()) return true;
427     TheCall->setArg(I, Arg.get());
428 
429     QualType Ty = Arg.get()->getType();
430     bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType();
431     if (!IsValid) {
432       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
433           << CkdOperation << Ty << Arg.get()->getSourceRange();
434       return true;
435     }
436   }
437 
438   // Third argument should be a pointer to a non-const integer.
439   // IRGen correctly handles volatile, restrict, and address spaces, and
440   // the other qualifiers aren't possible.
441   {
442     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
443     if (Arg.isInvalid()) return true;
444     TheCall->setArg(2, Arg.get());
445 
446     QualType Ty = Arg.get()->getType();
447     const auto *PtrTy = Ty->getAs<PointerType>();
448     if (!PtrTy ||
449         !PtrTy->getPointeeType()->isIntegerType() ||
450         (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) ||
451         PtrTy->getPointeeType().isConstQualified()) {
452       S.Diag(Arg.get()->getBeginLoc(),
453              diag::err_overflow_builtin_must_be_ptr_int)
454         << CkdOperation << Ty << Arg.get()->getSourceRange();
455       return true;
456     }
457   }
458 
459   // Disallow signed bit-precise integer args larger than 128 bits to mul
460   // function until we improve backend support.
461   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
462     for (unsigned I = 0; I < 3; ++I) {
463       const auto Arg = TheCall->getArg(I);
464       // Third argument will be a pointer.
465       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
466       if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
467           S.getASTContext().getIntWidth(Ty) > 128)
468         return S.Diag(Arg->getBeginLoc(),
469                       diag::err_overflow_builtin_bit_int_max_size)
470                << 128;
471     }
472   }
473 
474   return false;
475 }
476 
477 namespace {
478 struct BuiltinDumpStructGenerator {
479   Sema &S;
480   CallExpr *TheCall;
481   SourceLocation Loc = TheCall->getBeginLoc();
482   SmallVector<Expr *, 32> Actions;
483   DiagnosticErrorTrap ErrorTracker;
484   PrintingPolicy Policy;
485 
486   BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
487       : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
488         Policy(S.Context.getPrintingPolicy()) {
489     Policy.AnonymousTagLocations = false;
490   }
491 
492   Expr *makeOpaqueValueExpr(Expr *Inner) {
493     auto *OVE = new (S.Context)
494         OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
495                         Inner->getObjectKind(), Inner);
496     Actions.push_back(OVE);
497     return OVE;
498   }
499 
500   Expr *getStringLiteral(llvm::StringRef Str) {
501     Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
502     // Wrap the literal in parentheses to attach a source location.
503     return new (S.Context) ParenExpr(Loc, Loc, Lit);
504   }
505 
506   bool callPrintFunction(llvm::StringRef Format,
507                          llvm::ArrayRef<Expr *> Exprs = {}) {
508     SmallVector<Expr *, 8> Args;
509     assert(TheCall->getNumArgs() >= 2);
510     Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
511     Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
512     Args.push_back(getStringLiteral(Format));
513     Args.insert(Args.end(), Exprs.begin(), Exprs.end());
514 
515     // Register a note to explain why we're performing the call.
516     Sema::CodeSynthesisContext Ctx;
517     Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
518     Ctx.PointOfInstantiation = Loc;
519     Ctx.CallArgs = Args.data();
520     Ctx.NumCallArgs = Args.size();
521     S.pushCodeSynthesisContext(Ctx);
522 
523     ExprResult RealCall =
524         S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
525                         TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
526 
527     S.popCodeSynthesisContext();
528     if (!RealCall.isInvalid())
529       Actions.push_back(RealCall.get());
530     // Bail out if we've hit any errors, even if we managed to build the
531     // call. We don't want to produce more than one error.
532     return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
533   }
534 
535   Expr *getIndentString(unsigned Depth) {
536     if (!Depth)
537       return nullptr;
538 
539     llvm::SmallString<32> Indent;
540     Indent.resize(Depth * Policy.Indentation, ' ');
541     return getStringLiteral(Indent);
542   }
543 
544   Expr *getTypeString(QualType T) {
545     return getStringLiteral(T.getAsString(Policy));
546   }
547 
548   bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
549     llvm::raw_svector_ostream OS(Str);
550 
551     // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
552     // than trying to print a single character.
553     if (auto *BT = T->getAs<BuiltinType>()) {
554       switch (BT->getKind()) {
555       case BuiltinType::Bool:
556         OS << "%d";
557         return true;
558       case BuiltinType::Char_U:
559       case BuiltinType::UChar:
560         OS << "%hhu";
561         return true;
562       case BuiltinType::Char_S:
563       case BuiltinType::SChar:
564         OS << "%hhd";
565         return true;
566       default:
567         break;
568       }
569     }
570 
571     analyze_printf::PrintfSpecifier Specifier;
572     if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
573       // We were able to guess how to format this.
574       if (Specifier.getConversionSpecifier().getKind() ==
575           analyze_printf::PrintfConversionSpecifier::sArg) {
576         // Wrap double-quotes around a '%s' specifier and limit its maximum
577         // length. Ideally we'd also somehow escape special characters in the
578         // contents but printf doesn't support that.
579         // FIXME: '%s' formatting is not safe in general.
580         OS << '"';
581         Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
582         Specifier.toString(OS);
583         OS << '"';
584         // FIXME: It would be nice to include a '...' if the string doesn't fit
585         // in the length limit.
586       } else {
587         Specifier.toString(OS);
588       }
589       return true;
590     }
591 
592     if (T->isPointerType()) {
593       // Format all pointers with '%p'.
594       OS << "%p";
595       return true;
596     }
597 
598     return false;
599   }
600 
601   bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
602     Expr *IndentLit = getIndentString(Depth);
603     Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
604     if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
605                   : callPrintFunction("%s", {TypeLit}))
606       return true;
607 
608     return dumpRecordValue(RD, E, IndentLit, Depth);
609   }
610 
611   // Dump a record value. E should be a pointer or lvalue referring to an RD.
612   bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
613                        unsigned Depth) {
614     // FIXME: Decide what to do if RD is a union. At least we should probably
615     // turn off printing `const char*` members with `%s`, because that is very
616     // likely to crash if that's not the active member. Whatever we decide, we
617     // should document it.
618 
619     // Build an OpaqueValueExpr so we can refer to E more than once without
620     // triggering re-evaluation.
621     Expr *RecordArg = makeOpaqueValueExpr(E);
622     bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
623 
624     if (callPrintFunction(" {\n"))
625       return true;
626 
627     // Dump each base class, regardless of whether they're aggregates.
628     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
629       for (const auto &Base : CXXRD->bases()) {
630         QualType BaseType =
631             RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
632                            : S.Context.getLValueReferenceType(Base.getType());
633         ExprResult BasePtr = S.BuildCStyleCastExpr(
634             Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
635             RecordArg);
636         if (BasePtr.isInvalid() ||
637             dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
638                               Depth + 1))
639           return true;
640       }
641     }
642 
643     Expr *FieldIndentArg = getIndentString(Depth + 1);
644 
645     // Dump each field.
646     for (auto *D : RD->decls()) {
647       auto *IFD = dyn_cast<IndirectFieldDecl>(D);
648       auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
649       if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion())
650         continue;
651 
652       llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
653       llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
654                                            getTypeString(FD->getType()),
655                                            getStringLiteral(FD->getName())};
656 
657       if (FD->isBitField()) {
658         Format += ": %zu ";
659         QualType SizeT = S.Context.getSizeType();
660         llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
661                              FD->getBitWidthValue(S.Context));
662         Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
663       }
664 
665       Format += "=";
666 
667       ExprResult Field =
668           IFD ? S.BuildAnonymousStructUnionMemberReference(
669                     CXXScopeSpec(), Loc, IFD,
670                     DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
671               : S.BuildFieldReferenceExpr(
672                     RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
673                     DeclAccessPair::make(FD, AS_public),
674                     DeclarationNameInfo(FD->getDeclName(), Loc));
675       if (Field.isInvalid())
676         return true;
677 
678       auto *InnerRD = FD->getType()->getAsRecordDecl();
679       auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
680       if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
681         // Recursively print the values of members of aggregate record type.
682         if (callPrintFunction(Format, Args) ||
683             dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
684           return true;
685       } else {
686         Format += " ";
687         if (appendFormatSpecifier(FD->getType(), Format)) {
688           // We know how to print this field.
689           Args.push_back(Field.get());
690         } else {
691           // We don't know how to print this field. Print out its address
692           // with a format specifier that a smart tool will be able to
693           // recognize and treat specially.
694           Format += "*%p";
695           ExprResult FieldAddr =
696               S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
697           if (FieldAddr.isInvalid())
698             return true;
699           Args.push_back(FieldAddr.get());
700         }
701         Format += "\n";
702         if (callPrintFunction(Format, Args))
703           return true;
704       }
705     }
706 
707     return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
708                         : callPrintFunction("}\n");
709   }
710 
711   Expr *buildWrapper() {
712     auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
713                                              PseudoObjectExpr::NoResult);
714     TheCall->setType(Wrapper->getType());
715     TheCall->setValueKind(Wrapper->getValueKind());
716     return Wrapper;
717   }
718 };
719 } // namespace
720 
721 static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
722   if (S.checkArgCountAtLeast(TheCall, 2))
723     return ExprError();
724 
725   ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
726   if (PtrArgResult.isInvalid())
727     return ExprError();
728   TheCall->setArg(0, PtrArgResult.get());
729 
730   // First argument should be a pointer to a struct.
731   QualType PtrArgType = PtrArgResult.get()->getType();
732   if (!PtrArgType->isPointerType() ||
733       !PtrArgType->getPointeeType()->isRecordType()) {
734     S.Diag(PtrArgResult.get()->getBeginLoc(),
735            diag::err_expected_struct_pointer_argument)
736         << 1 << TheCall->getDirectCallee() << PtrArgType;
737     return ExprError();
738   }
739   QualType Pointee = PtrArgType->getPointeeType();
740   const RecordDecl *RD = Pointee->getAsRecordDecl();
741   // Try to instantiate the class template as appropriate; otherwise, access to
742   // its data() may lead to a crash.
743   if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee,
744                             diag::err_incomplete_type))
745     return ExprError();
746   // Second argument is a callable, but we can't fully validate it until we try
747   // calling it.
748   QualType FnArgType = TheCall->getArg(1)->getType();
749   if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
750       !FnArgType->isBlockPointerType() &&
751       !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
752     auto *BT = FnArgType->getAs<BuiltinType>();
753     switch (BT ? BT->getKind() : BuiltinType::Void) {
754     case BuiltinType::Dependent:
755     case BuiltinType::Overload:
756     case BuiltinType::BoundMember:
757     case BuiltinType::PseudoObject:
758     case BuiltinType::UnknownAny:
759     case BuiltinType::BuiltinFn:
760       // This might be a callable.
761       break;
762 
763     default:
764       S.Diag(TheCall->getArg(1)->getBeginLoc(),
765              diag::err_expected_callable_argument)
766           << 2 << TheCall->getDirectCallee() << FnArgType;
767       return ExprError();
768     }
769   }
770 
771   BuiltinDumpStructGenerator Generator(S, TheCall);
772 
773   // Wrap parentheses around the given pointer. This is not necessary for
774   // correct code generation, but it means that when we pretty-print the call
775   // arguments in our diagnostics we will produce '(&s)->n' instead of the
776   // incorrect '&s->n'.
777   Expr *PtrArg = PtrArgResult.get();
778   PtrArg = new (S.Context)
779       ParenExpr(PtrArg->getBeginLoc(),
780                 S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
781   if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
782     return ExprError();
783 
784   return Generator.buildWrapper();
785 }
786 
787 static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
788   if (S.checkArgCount(BuiltinCall, 2))
789     return true;
790 
791   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
792   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
793   Expr *Call = BuiltinCall->getArg(0);
794   Expr *Chain = BuiltinCall->getArg(1);
795 
796   if (Call->getStmtClass() != Stmt::CallExprClass) {
797     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
798         << Call->getSourceRange();
799     return true;
800   }
801 
802   auto CE = cast<CallExpr>(Call);
803   if (CE->getCallee()->getType()->isBlockPointerType()) {
804     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
805         << Call->getSourceRange();
806     return true;
807   }
808 
809   const Decl *TargetDecl = CE->getCalleeDecl();
810   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
811     if (FD->getBuiltinID()) {
812       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
813           << Call->getSourceRange();
814       return true;
815     }
816 
817   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
818     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
819         << Call->getSourceRange();
820     return true;
821   }
822 
823   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
824   if (ChainResult.isInvalid())
825     return true;
826   if (!ChainResult.get()->getType()->isPointerType()) {
827     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
828         << Chain->getSourceRange();
829     return true;
830   }
831 
832   QualType ReturnTy = CE->getCallReturnType(S.Context);
833   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
834   QualType BuiltinTy = S.Context.getFunctionType(
835       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
836   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
837 
838   Builtin =
839       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
840 
841   BuiltinCall->setType(CE->getType());
842   BuiltinCall->setValueKind(CE->getValueKind());
843   BuiltinCall->setObjectKind(CE->getObjectKind());
844   BuiltinCall->setCallee(Builtin);
845   BuiltinCall->setArg(1, ChainResult.get());
846 
847   return false;
848 }
849 
850 namespace {
851 
852 class ScanfDiagnosticFormatHandler
853     : public analyze_format_string::FormatStringHandler {
854   // Accepts the argument index (relative to the first destination index) of the
855   // argument whose size we want.
856   using ComputeSizeFunction =
857       llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>;
858 
859   // Accepts the argument index (relative to the first destination index), the
860   // destination size, and the source size).
861   using DiagnoseFunction =
862       llvm::function_ref<void(unsigned, unsigned, unsigned)>;
863 
864   ComputeSizeFunction ComputeSizeArgument;
865   DiagnoseFunction Diagnose;
866 
867 public:
868   ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
869                                DiagnoseFunction Diagnose)
870       : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
871 
872   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
873                             const char *StartSpecifier,
874                             unsigned specifierLen) override {
875     if (!FS.consumesDataArgument())
876       return true;
877 
878     unsigned NulByte = 0;
879     switch ((FS.getConversionSpecifier().getKind())) {
880     default:
881       return true;
882     case analyze_format_string::ConversionSpecifier::sArg:
883     case analyze_format_string::ConversionSpecifier::ScanListArg:
884       NulByte = 1;
885       break;
886     case analyze_format_string::ConversionSpecifier::cArg:
887       break;
888     }
889 
890     analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
891     if (FW.getHowSpecified() !=
892         analyze_format_string::OptionalAmount::HowSpecified::Constant)
893       return true;
894 
895     unsigned SourceSize = FW.getConstantAmount() + NulByte;
896 
897     std::optional<llvm::APSInt> DestSizeAPS =
898         ComputeSizeArgument(FS.getArgIndex());
899     if (!DestSizeAPS)
900       return true;
901 
902     unsigned DestSize = DestSizeAPS->getZExtValue();
903 
904     if (DestSize < SourceSize)
905       Diagnose(FS.getArgIndex(), DestSize, SourceSize);
906 
907     return true;
908   }
909 };
910 
911 class EstimateSizeFormatHandler
912     : public analyze_format_string::FormatStringHandler {
913   size_t Size;
914   /// Whether the format string contains Linux kernel's format specifier
915   /// extension.
916   bool IsKernelCompatible = true;
917 
918 public:
919   EstimateSizeFormatHandler(StringRef Format)
920       : Size(std::min(Format.find(0), Format.size()) +
921              1 /* null byte always written by sprintf */) {}
922 
923   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
924                              const char *, unsigned SpecifierLen,
925                              const TargetInfo &) override {
926 
927     const size_t FieldWidth = computeFieldWidth(FS);
928     const size_t Precision = computePrecision(FS);
929 
930     // The actual format.
931     switch (FS.getConversionSpecifier().getKind()) {
932     // Just a char.
933     case analyze_format_string::ConversionSpecifier::cArg:
934     case analyze_format_string::ConversionSpecifier::CArg:
935       Size += std::max(FieldWidth, (size_t)1);
936       break;
937     // Just an integer.
938     case analyze_format_string::ConversionSpecifier::dArg:
939     case analyze_format_string::ConversionSpecifier::DArg:
940     case analyze_format_string::ConversionSpecifier::iArg:
941     case analyze_format_string::ConversionSpecifier::oArg:
942     case analyze_format_string::ConversionSpecifier::OArg:
943     case analyze_format_string::ConversionSpecifier::uArg:
944     case analyze_format_string::ConversionSpecifier::UArg:
945     case analyze_format_string::ConversionSpecifier::xArg:
946     case analyze_format_string::ConversionSpecifier::XArg:
947       Size += std::max(FieldWidth, Precision);
948       break;
949 
950     // %g style conversion switches between %f or %e style dynamically.
951     // %g removes trailing zeros, and does not print decimal point if there are
952     // no digits that follow it. Thus %g can print a single digit.
953     // FIXME: If it is alternative form:
954     // For g and G conversions, trailing zeros are not removed from the result.
955     case analyze_format_string::ConversionSpecifier::gArg:
956     case analyze_format_string::ConversionSpecifier::GArg:
957       Size += 1;
958       break;
959 
960     // Floating point number in the form '[+]ddd.ddd'.
961     case analyze_format_string::ConversionSpecifier::fArg:
962     case analyze_format_string::ConversionSpecifier::FArg:
963       Size += std::max(FieldWidth, 1 /* integer part */ +
964                                        (Precision ? 1 + Precision
965                                                   : 0) /* period + decimal */);
966       break;
967 
968     // Floating point number in the form '[-]d.ddde[+-]dd'.
969     case analyze_format_string::ConversionSpecifier::eArg:
970     case analyze_format_string::ConversionSpecifier::EArg:
971       Size +=
972           std::max(FieldWidth,
973                    1 /* integer part */ +
974                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
975                        1 /* e or E letter */ + 2 /* exponent */);
976       break;
977 
978     // Floating point number in the form '[-]0xh.hhhhp±dd'.
979     case analyze_format_string::ConversionSpecifier::aArg:
980     case analyze_format_string::ConversionSpecifier::AArg:
981       Size +=
982           std::max(FieldWidth,
983                    2 /* 0x */ + 1 /* integer part */ +
984                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
985                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
986       break;
987 
988     // Just a string.
989     case analyze_format_string::ConversionSpecifier::sArg:
990     case analyze_format_string::ConversionSpecifier::SArg:
991       Size += FieldWidth;
992       break;
993 
994     // Just a pointer in the form '0xddd'.
995     case analyze_format_string::ConversionSpecifier::pArg:
996       // Linux kernel has its own extesion for `%p` specifier.
997       // Kernel Document:
998       // https://docs.kernel.org/core-api/printk-formats.html#pointer-types
999       IsKernelCompatible = false;
1000       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
1001       break;
1002 
1003     // A plain percent.
1004     case analyze_format_string::ConversionSpecifier::PercentArg:
1005       Size += 1;
1006       break;
1007 
1008     default:
1009       break;
1010     }
1011 
1012     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
1013 
1014     if (FS.hasAlternativeForm()) {
1015       switch (FS.getConversionSpecifier().getKind()) {
1016       // For o conversion, it increases the precision, if and only if necessary,
1017       // to force the first digit of the result to be a zero
1018       // (if the value and precision are both 0, a single 0 is printed)
1019       case analyze_format_string::ConversionSpecifier::oArg:
1020       // For b conversion, a nonzero result has 0b prefixed to it.
1021       case analyze_format_string::ConversionSpecifier::bArg:
1022       // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to
1023       // it.
1024       case analyze_format_string::ConversionSpecifier::xArg:
1025       case analyze_format_string::ConversionSpecifier::XArg:
1026         // Note: even when the prefix is added, if
1027         // (prefix_width <= FieldWidth - formatted_length) holds,
1028         // the prefix does not increase the format
1029         // size. e.g.(("%#3x", 0xf) is "0xf")
1030 
1031         // If the result is zero, o, b, x, X adds nothing.
1032         break;
1033       // For a, A, e, E, f, F, g, and G conversions,
1034       // the result of converting a floating-point number always contains a
1035       // decimal-point
1036       case analyze_format_string::ConversionSpecifier::aArg:
1037       case analyze_format_string::ConversionSpecifier::AArg:
1038       case analyze_format_string::ConversionSpecifier::eArg:
1039       case analyze_format_string::ConversionSpecifier::EArg:
1040       case analyze_format_string::ConversionSpecifier::fArg:
1041       case analyze_format_string::ConversionSpecifier::FArg:
1042       case analyze_format_string::ConversionSpecifier::gArg:
1043       case analyze_format_string::ConversionSpecifier::GArg:
1044         Size += (Precision ? 0 : 1);
1045         break;
1046       // For other conversions, the behavior is undefined.
1047       default:
1048         break;
1049       }
1050     }
1051     assert(SpecifierLen <= Size && "no underflow");
1052     Size -= SpecifierLen;
1053     return true;
1054   }
1055 
1056   size_t getSizeLowerBound() const { return Size; }
1057   bool isKernelCompatible() const { return IsKernelCompatible; }
1058 
1059 private:
1060   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
1061     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
1062     size_t FieldWidth = 0;
1063     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
1064       FieldWidth = FW.getConstantAmount();
1065     return FieldWidth;
1066   }
1067 
1068   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
1069     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
1070     size_t Precision = 0;
1071 
1072     // See man 3 printf for default precision value based on the specifier.
1073     switch (FW.getHowSpecified()) {
1074     case analyze_format_string::OptionalAmount::NotSpecified:
1075       switch (FS.getConversionSpecifier().getKind()) {
1076       default:
1077         break;
1078       case analyze_format_string::ConversionSpecifier::dArg: // %d
1079       case analyze_format_string::ConversionSpecifier::DArg: // %D
1080       case analyze_format_string::ConversionSpecifier::iArg: // %i
1081         Precision = 1;
1082         break;
1083       case analyze_format_string::ConversionSpecifier::oArg: // %d
1084       case analyze_format_string::ConversionSpecifier::OArg: // %D
1085       case analyze_format_string::ConversionSpecifier::uArg: // %d
1086       case analyze_format_string::ConversionSpecifier::UArg: // %D
1087       case analyze_format_string::ConversionSpecifier::xArg: // %d
1088       case analyze_format_string::ConversionSpecifier::XArg: // %D
1089         Precision = 1;
1090         break;
1091       case analyze_format_string::ConversionSpecifier::fArg: // %f
1092       case analyze_format_string::ConversionSpecifier::FArg: // %F
1093       case analyze_format_string::ConversionSpecifier::eArg: // %e
1094       case analyze_format_string::ConversionSpecifier::EArg: // %E
1095       case analyze_format_string::ConversionSpecifier::gArg: // %g
1096       case analyze_format_string::ConversionSpecifier::GArg: // %G
1097         Precision = 6;
1098         break;
1099       case analyze_format_string::ConversionSpecifier::pArg: // %d
1100         Precision = 1;
1101         break;
1102       }
1103       break;
1104     case analyze_format_string::OptionalAmount::Constant:
1105       Precision = FW.getConstantAmount();
1106       break;
1107     default:
1108       break;
1109     }
1110     return Precision;
1111   }
1112 };
1113 
1114 } // namespace
1115 
1116 static bool ProcessFormatStringLiteral(const Expr *FormatExpr,
1117                                        StringRef &FormatStrRef, size_t &StrLen,
1118                                        ASTContext &Context) {
1119   if (const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
1120       Format && (Format->isOrdinary() || Format->isUTF8())) {
1121     FormatStrRef = Format->getString();
1122     const ConstantArrayType *T =
1123         Context.getAsConstantArrayType(Format->getType());
1124     assert(T && "String literal not of constant array type!");
1125     size_t TypeSize = T->getZExtSize();
1126     // In case there's a null byte somewhere.
1127     StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1128     return true;
1129   }
1130   return false;
1131 }
1132 
1133 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
1134                                                CallExpr *TheCall) {
1135   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
1136       isConstantEvaluatedContext())
1137     return;
1138 
1139   bool UseDABAttr = false;
1140   const FunctionDecl *UseDecl = FD;
1141 
1142   const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
1143   if (DABAttr) {
1144     UseDecl = DABAttr->getFunction();
1145     assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
1146     UseDABAttr = true;
1147   }
1148 
1149   unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
1150 
1151   if (!BuiltinID)
1152     return;
1153 
1154   const TargetInfo &TI = getASTContext().getTargetInfo();
1155   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
1156 
1157   auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> {
1158     // If we refer to a diagnose_as_builtin attribute, we need to change the
1159     // argument index to refer to the arguments of the called function. Unless
1160     // the index is out of bounds, which presumably means it's a variadic
1161     // function.
1162     if (!UseDABAttr)
1163       return Index;
1164     unsigned DABIndices = DABAttr->argIndices_size();
1165     unsigned NewIndex = Index < DABIndices
1166                             ? DABAttr->argIndices_begin()[Index]
1167                             : Index - DABIndices + FD->getNumParams();
1168     if (NewIndex >= TheCall->getNumArgs())
1169       return std::nullopt;
1170     return NewIndex;
1171   };
1172 
1173   auto ComputeExplicitObjectSizeArgument =
1174       [&](unsigned Index) -> std::optional<llvm::APSInt> {
1175     std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1176     if (!IndexOptional)
1177       return std::nullopt;
1178     unsigned NewIndex = *IndexOptional;
1179     Expr::EvalResult Result;
1180     Expr *SizeArg = TheCall->getArg(NewIndex);
1181     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
1182       return std::nullopt;
1183     llvm::APSInt Integer = Result.Val.getInt();
1184     Integer.setIsUnsigned(true);
1185     return Integer;
1186   };
1187 
1188   auto ComputeSizeArgument =
1189       [&](unsigned Index) -> std::optional<llvm::APSInt> {
1190     // If the parameter has a pass_object_size attribute, then we should use its
1191     // (potentially) more strict checking mode. Otherwise, conservatively assume
1192     // type 0.
1193     int BOSType = 0;
1194     // This check can fail for variadic functions.
1195     if (Index < FD->getNumParams()) {
1196       if (const auto *POS =
1197               FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
1198         BOSType = POS->getType();
1199     }
1200 
1201     std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1202     if (!IndexOptional)
1203       return std::nullopt;
1204     unsigned NewIndex = *IndexOptional;
1205 
1206     if (NewIndex >= TheCall->getNumArgs())
1207       return std::nullopt;
1208 
1209     const Expr *ObjArg = TheCall->getArg(NewIndex);
1210     uint64_t Result;
1211     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
1212       return std::nullopt;
1213 
1214     // Get the object size in the target's size_t width.
1215     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
1216   };
1217 
1218   auto ComputeStrLenArgument =
1219       [&](unsigned Index) -> std::optional<llvm::APSInt> {
1220     std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1221     if (!IndexOptional)
1222       return std::nullopt;
1223     unsigned NewIndex = *IndexOptional;
1224 
1225     const Expr *ObjArg = TheCall->getArg(NewIndex);
1226     uint64_t Result;
1227     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
1228       return std::nullopt;
1229     // Add 1 for null byte.
1230     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
1231   };
1232 
1233   std::optional<llvm::APSInt> SourceSize;
1234   std::optional<llvm::APSInt> DestinationSize;
1235   unsigned DiagID = 0;
1236   bool IsChkVariant = false;
1237 
1238   auto GetFunctionName = [&]() {
1239     StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
1240     // Skim off the details of whichever builtin was called to produce a better
1241     // diagnostic, as it's unlikely that the user wrote the __builtin
1242     // explicitly.
1243     if (IsChkVariant) {
1244       FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
1245       FunctionName = FunctionName.drop_back(std::strlen("_chk"));
1246     } else {
1247       FunctionName.consume_front("__builtin_");
1248     }
1249     return FunctionName;
1250   };
1251 
1252   switch (BuiltinID) {
1253   default:
1254     return;
1255   case Builtin::BI__builtin_strcpy:
1256   case Builtin::BIstrcpy: {
1257     DiagID = diag::warn_fortify_strlen_overflow;
1258     SourceSize = ComputeStrLenArgument(1);
1259     DestinationSize = ComputeSizeArgument(0);
1260     break;
1261   }
1262 
1263   case Builtin::BI__builtin___strcpy_chk: {
1264     DiagID = diag::warn_fortify_strlen_overflow;
1265     SourceSize = ComputeStrLenArgument(1);
1266     DestinationSize = ComputeExplicitObjectSizeArgument(2);
1267     IsChkVariant = true;
1268     break;
1269   }
1270 
1271   case Builtin::BIscanf:
1272   case Builtin::BIfscanf:
1273   case Builtin::BIsscanf: {
1274     unsigned FormatIndex = 1;
1275     unsigned DataIndex = 2;
1276     if (BuiltinID == Builtin::BIscanf) {
1277       FormatIndex = 0;
1278       DataIndex = 1;
1279     }
1280 
1281     const auto *FormatExpr =
1282         TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1283 
1284     StringRef FormatStrRef;
1285     size_t StrLen;
1286     if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context))
1287       return;
1288 
1289     auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
1290                         unsigned SourceSize) {
1291       DiagID = diag::warn_fortify_scanf_overflow;
1292       unsigned Index = ArgIndex + DataIndex;
1293       StringRef FunctionName = GetFunctionName();
1294       DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
1295                           PDiag(DiagID) << FunctionName << (Index + 1)
1296                                         << DestSize << SourceSize);
1297     };
1298 
1299     auto ShiftedComputeSizeArgument = [&](unsigned Index) {
1300       return ComputeSizeArgument(Index + DataIndex);
1301     };
1302     ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
1303     const char *FormatBytes = FormatStrRef.data();
1304     analyze_format_string::ParseScanfString(H, FormatBytes,
1305                                             FormatBytes + StrLen, getLangOpts(),
1306                                             Context.getTargetInfo());
1307 
1308     // Unlike the other cases, in this one we have already issued the diagnostic
1309     // here, so no need to continue (because unlike the other cases, here the
1310     // diagnostic refers to the argument number).
1311     return;
1312   }
1313 
1314   case Builtin::BIsprintf:
1315   case Builtin::BI__builtin___sprintf_chk: {
1316     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
1317     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1318 
1319     StringRef FormatStrRef;
1320     size_t StrLen;
1321     if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1322       EstimateSizeFormatHandler H(FormatStrRef);
1323       const char *FormatBytes = FormatStrRef.data();
1324       if (!analyze_format_string::ParsePrintfString(
1325               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1326               Context.getTargetInfo(), false)) {
1327         DiagID = H.isKernelCompatible()
1328                      ? diag::warn_format_overflow
1329                      : diag::warn_format_overflow_non_kprintf;
1330         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1331                          .extOrTrunc(SizeTypeWidth);
1332         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
1333           DestinationSize = ComputeExplicitObjectSizeArgument(2);
1334           IsChkVariant = true;
1335         } else {
1336           DestinationSize = ComputeSizeArgument(0);
1337         }
1338         break;
1339       }
1340     }
1341     return;
1342   }
1343   case Builtin::BI__builtin___memcpy_chk:
1344   case Builtin::BI__builtin___memmove_chk:
1345   case Builtin::BI__builtin___memset_chk:
1346   case Builtin::BI__builtin___strlcat_chk:
1347   case Builtin::BI__builtin___strlcpy_chk:
1348   case Builtin::BI__builtin___strncat_chk:
1349   case Builtin::BI__builtin___strncpy_chk:
1350   case Builtin::BI__builtin___stpncpy_chk:
1351   case Builtin::BI__builtin___memccpy_chk:
1352   case Builtin::BI__builtin___mempcpy_chk: {
1353     DiagID = diag::warn_builtin_chk_overflow;
1354     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
1355     DestinationSize =
1356         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1357     IsChkVariant = true;
1358     break;
1359   }
1360 
1361   case Builtin::BI__builtin___snprintf_chk:
1362   case Builtin::BI__builtin___vsnprintf_chk: {
1363     DiagID = diag::warn_builtin_chk_overflow;
1364     SourceSize = ComputeExplicitObjectSizeArgument(1);
1365     DestinationSize = ComputeExplicitObjectSizeArgument(3);
1366     IsChkVariant = true;
1367     break;
1368   }
1369 
1370   case Builtin::BIstrncat:
1371   case Builtin::BI__builtin_strncat:
1372   case Builtin::BIstrncpy:
1373   case Builtin::BI__builtin_strncpy:
1374   case Builtin::BIstpncpy:
1375   case Builtin::BI__builtin_stpncpy: {
1376     // Whether these functions overflow depends on the runtime strlen of the
1377     // string, not just the buffer size, so emitting the "always overflow"
1378     // diagnostic isn't quite right. We should still diagnose passing a buffer
1379     // size larger than the destination buffer though; this is a runtime abort
1380     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
1381     DiagID = diag::warn_fortify_source_size_mismatch;
1382     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1383     DestinationSize = ComputeSizeArgument(0);
1384     break;
1385   }
1386 
1387   case Builtin::BImemcpy:
1388   case Builtin::BI__builtin_memcpy:
1389   case Builtin::BImemmove:
1390   case Builtin::BI__builtin_memmove:
1391   case Builtin::BImemset:
1392   case Builtin::BI__builtin_memset:
1393   case Builtin::BImempcpy:
1394   case Builtin::BI__builtin_mempcpy: {
1395     DiagID = diag::warn_fortify_source_overflow;
1396     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1397     DestinationSize = ComputeSizeArgument(0);
1398     break;
1399   }
1400   case Builtin::BIsnprintf:
1401   case Builtin::BI__builtin_snprintf:
1402   case Builtin::BIvsnprintf:
1403   case Builtin::BI__builtin_vsnprintf: {
1404     DiagID = diag::warn_fortify_source_size_mismatch;
1405     SourceSize = ComputeExplicitObjectSizeArgument(1);
1406     const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts();
1407     StringRef FormatStrRef;
1408     size_t StrLen;
1409     if (SourceSize &&
1410         ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1411       EstimateSizeFormatHandler H(FormatStrRef);
1412       const char *FormatBytes = FormatStrRef.data();
1413       if (!analyze_format_string::ParsePrintfString(
1414               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1415               Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) {
1416         llvm::APSInt FormatSize =
1417             llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1418                 .extOrTrunc(SizeTypeWidth);
1419         if (FormatSize > *SourceSize && *SourceSize != 0) {
1420           unsigned TruncationDiagID =
1421               H.isKernelCompatible() ? diag::warn_format_truncation
1422                                      : diag::warn_format_truncation_non_kprintf;
1423           SmallString<16> SpecifiedSizeStr;
1424           SmallString<16> FormatSizeStr;
1425           SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10);
1426           FormatSize.toString(FormatSizeStr, /*Radix=*/10);
1427           DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1428                               PDiag(TruncationDiagID)
1429                                   << GetFunctionName() << SpecifiedSizeStr
1430                                   << FormatSizeStr);
1431         }
1432       }
1433     }
1434     DestinationSize = ComputeSizeArgument(0);
1435   }
1436   }
1437 
1438   if (!SourceSize || !DestinationSize ||
1439       llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
1440     return;
1441 
1442   StringRef FunctionName = GetFunctionName();
1443 
1444   SmallString<16> DestinationStr;
1445   SmallString<16> SourceStr;
1446   DestinationSize->toString(DestinationStr, /*Radix=*/10);
1447   SourceSize->toString(SourceStr, /*Radix=*/10);
1448   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1449                       PDiag(DiagID)
1450                           << FunctionName << DestinationStr << SourceStr);
1451 }
1452 
1453 static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
1454                                  Scope::ScopeFlags NeededScopeFlags,
1455                                  unsigned DiagID) {
1456   // Scopes aren't available during instantiation. Fortunately, builtin
1457   // functions cannot be template args so they cannot be formed through template
1458   // instantiation. Therefore checking once during the parse is sufficient.
1459   if (SemaRef.inTemplateInstantiation())
1460     return false;
1461 
1462   Scope *S = SemaRef.getCurScope();
1463   while (S && !S->isSEHExceptScope())
1464     S = S->getParent();
1465   if (!S || !(S->getFlags() & NeededScopeFlags)) {
1466     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1467     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
1468         << DRE->getDecl()->getIdentifier();
1469     return true;
1470   }
1471 
1472   return false;
1473 }
1474 
1475 // In OpenCL, __builtin_alloca_* should return a pointer to address space
1476 // that corresponds to the stack address space i.e private address space.
1477 static void builtinAllocaAddrSpace(Sema &S, CallExpr *TheCall) {
1478   QualType RT = TheCall->getType();
1479   assert((RT->isPointerType() && !(RT->getPointeeType().hasAddressSpace())) &&
1480          "__builtin_alloca has invalid address space");
1481 
1482   RT = RT->getPointeeType();
1483   RT = S.Context.getAddrSpaceQualType(RT, LangAS::opencl_private);
1484   TheCall->setType(S.Context.getPointerType(RT));
1485 }
1486 
1487 namespace {
1488 enum PointerAuthOpKind {
1489   PAO_Strip,
1490   PAO_Sign,
1491   PAO_Auth,
1492   PAO_SignGeneric,
1493   PAO_Discriminator,
1494   PAO_BlendPointer,
1495   PAO_BlendInteger
1496 };
1497 }
1498 
1499 bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) {
1500   if (getLangOpts().PointerAuthIntrinsics)
1501     return false;
1502 
1503   Diag(Loc, diag::err_ptrauth_disabled) << Range;
1504   return true;
1505 }
1506 
1507 static bool checkPointerAuthEnabled(Sema &S, Expr *E) {
1508   return S.checkPointerAuthEnabled(E->getExprLoc(), E->getSourceRange());
1509 }
1510 
1511 static bool checkPointerAuthKey(Sema &S, Expr *&Arg) {
1512   // Convert it to type 'int'.
1513   if (convertArgumentToType(S, Arg, S.Context.IntTy))
1514     return true;
1515 
1516   // Value-dependent expressions are okay; wait for template instantiation.
1517   if (Arg->isValueDependent())
1518     return false;
1519 
1520   unsigned KeyValue;
1521   return S.checkConstantPointerAuthKey(Arg, KeyValue);
1522 }
1523 
1524 bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) {
1525   // Attempt to constant-evaluate the expression.
1526   std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Context);
1527   if (!KeyValue) {
1528     Diag(Arg->getExprLoc(), diag::err_expr_not_ice)
1529         << 0 << Arg->getSourceRange();
1530     return true;
1531   }
1532 
1533   // Ask the target to validate the key parameter.
1534   if (!Context.getTargetInfo().validatePointerAuthKey(*KeyValue)) {
1535     llvm::SmallString<32> Value;
1536     {
1537       llvm::raw_svector_ostream Str(Value);
1538       Str << *KeyValue;
1539     }
1540 
1541     Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key)
1542         << Value << Arg->getSourceRange();
1543     return true;
1544   }
1545 
1546   Result = KeyValue->getZExtValue();
1547   return false;
1548 }
1549 
1550 static std::pair<const ValueDecl *, CharUnits>
1551 findConstantBaseAndOffset(Sema &S, Expr *E) {
1552   // Must evaluate as a pointer.
1553   Expr::EvalResult Result;
1554   if (!E->EvaluateAsRValue(Result, S.Context) || !Result.Val.isLValue())
1555     return {nullptr, CharUnits()};
1556 
1557   const auto *BaseDecl =
1558       Result.Val.getLValueBase().dyn_cast<const ValueDecl *>();
1559   if (!BaseDecl)
1560     return {nullptr, CharUnits()};
1561 
1562   return {BaseDecl, Result.Val.getLValueOffset()};
1563 }
1564 
1565 static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind,
1566                                   bool RequireConstant = false) {
1567   if (Arg->hasPlaceholderType()) {
1568     ExprResult R = S.CheckPlaceholderExpr(Arg);
1569     if (R.isInvalid())
1570       return true;
1571     Arg = R.get();
1572   }
1573 
1574   auto AllowsPointer = [](PointerAuthOpKind OpKind) {
1575     return OpKind != PAO_BlendInteger;
1576   };
1577   auto AllowsInteger = [](PointerAuthOpKind OpKind) {
1578     return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger ||
1579            OpKind == PAO_SignGeneric;
1580   };
1581 
1582   // Require the value to have the right range of type.
1583   QualType ExpectedTy;
1584   if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) {
1585     ExpectedTy = Arg->getType().getUnqualifiedType();
1586   } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) {
1587     ExpectedTy = S.Context.VoidPtrTy;
1588   } else if (AllowsInteger(OpKind) &&
1589              Arg->getType()->isIntegralOrUnscopedEnumerationType()) {
1590     ExpectedTy = S.Context.getUIntPtrType();
1591 
1592   } else {
1593     // Diagnose the failures.
1594     S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type)
1595         << unsigned(OpKind == PAO_Discriminator  ? 1
1596                     : OpKind == PAO_BlendPointer ? 2
1597                     : OpKind == PAO_BlendInteger ? 3
1598                                                  : 0)
1599         << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0)
1600         << Arg->getType() << Arg->getSourceRange();
1601     return true;
1602   }
1603 
1604   // Convert to that type.  This should just be an lvalue-to-rvalue
1605   // conversion.
1606   if (convertArgumentToType(S, Arg, ExpectedTy))
1607     return true;
1608 
1609   if (!RequireConstant) {
1610     // Warn about null pointers for non-generic sign and auth operations.
1611     if ((OpKind == PAO_Sign || OpKind == PAO_Auth) &&
1612         Arg->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) {
1613       S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign
1614                                     ? diag::warn_ptrauth_sign_null_pointer
1615                                     : diag::warn_ptrauth_auth_null_pointer)
1616           << Arg->getSourceRange();
1617     }
1618 
1619     return false;
1620   }
1621 
1622   // Perform special checking on the arguments to ptrauth_sign_constant.
1623 
1624   // The main argument.
1625   if (OpKind == PAO_Sign) {
1626     // Require the value we're signing to have a special form.
1627     auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Arg);
1628     bool Invalid;
1629 
1630     // Must be rooted in a declaration reference.
1631     if (!BaseDecl)
1632       Invalid = true;
1633 
1634     // If it's a function declaration, we can't have an offset.
1635     else if (isa<FunctionDecl>(BaseDecl))
1636       Invalid = !Offset.isZero();
1637 
1638     // Otherwise we're fine.
1639     else
1640       Invalid = false;
1641 
1642     if (Invalid)
1643       S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_pointer);
1644     return Invalid;
1645   }
1646 
1647   // The discriminator argument.
1648   assert(OpKind == PAO_Discriminator);
1649 
1650   // Must be a pointer or integer or blend thereof.
1651   Expr *Pointer = nullptr;
1652   Expr *Integer = nullptr;
1653   if (auto *Call = dyn_cast<CallExpr>(Arg->IgnoreParens())) {
1654     if (Call->getBuiltinCallee() ==
1655         Builtin::BI__builtin_ptrauth_blend_discriminator) {
1656       Pointer = Call->getArg(0);
1657       Integer = Call->getArg(1);
1658     }
1659   }
1660   if (!Pointer && !Integer) {
1661     if (Arg->getType()->isPointerType())
1662       Pointer = Arg;
1663     else
1664       Integer = Arg;
1665   }
1666 
1667   // Check the pointer.
1668   bool Invalid = false;
1669   if (Pointer) {
1670     assert(Pointer->getType()->isPointerType());
1671 
1672     // TODO: if we're initializing a global, check that the address is
1673     // somehow related to what we're initializing.  This probably will
1674     // never really be feasible and we'll have to catch it at link-time.
1675     auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Pointer);
1676     if (!BaseDecl || !isa<VarDecl>(BaseDecl))
1677       Invalid = true;
1678   }
1679 
1680   // Check the integer.
1681   if (Integer) {
1682     assert(Integer->getType()->isIntegerType());
1683     if (!Integer->isEvaluatable(S.Context))
1684       Invalid = true;
1685   }
1686 
1687   if (Invalid)
1688     S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_discriminator);
1689   return Invalid;
1690 }
1691 
1692 static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) {
1693   if (S.checkArgCount(Call, 2))
1694     return ExprError();
1695   if (checkPointerAuthEnabled(S, Call))
1696     return ExprError();
1697   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Strip) ||
1698       checkPointerAuthKey(S, Call->getArgs()[1]))
1699     return ExprError();
1700 
1701   Call->setType(Call->getArgs()[0]->getType());
1702   return Call;
1703 }
1704 
1705 static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) {
1706   if (S.checkArgCount(Call, 2))
1707     return ExprError();
1708   if (checkPointerAuthEnabled(S, Call))
1709     return ExprError();
1710   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_BlendPointer) ||
1711       checkPointerAuthValue(S, Call->getArgs()[1], PAO_BlendInteger))
1712     return ExprError();
1713 
1714   Call->setType(S.Context.getUIntPtrType());
1715   return Call;
1716 }
1717 
1718 static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) {
1719   if (S.checkArgCount(Call, 2))
1720     return ExprError();
1721   if (checkPointerAuthEnabled(S, Call))
1722     return ExprError();
1723   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_SignGeneric) ||
1724       checkPointerAuthValue(S, Call->getArgs()[1], PAO_Discriminator))
1725     return ExprError();
1726 
1727   Call->setType(S.Context.getUIntPtrType());
1728   return Call;
1729 }
1730 
1731 static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call,
1732                                         PointerAuthOpKind OpKind,
1733                                         bool RequireConstant) {
1734   if (S.checkArgCount(Call, 3))
1735     return ExprError();
1736   if (checkPointerAuthEnabled(S, Call))
1737     return ExprError();
1738   if (checkPointerAuthValue(S, Call->getArgs()[0], OpKind, RequireConstant) ||
1739       checkPointerAuthKey(S, Call->getArgs()[1]) ||
1740       checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator,
1741                             RequireConstant))
1742     return ExprError();
1743 
1744   Call->setType(Call->getArgs()[0]->getType());
1745   return Call;
1746 }
1747 
1748 static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) {
1749   if (S.checkArgCount(Call, 5))
1750     return ExprError();
1751   if (checkPointerAuthEnabled(S, Call))
1752     return ExprError();
1753   if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Auth) ||
1754       checkPointerAuthKey(S, Call->getArgs()[1]) ||
1755       checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator) ||
1756       checkPointerAuthKey(S, Call->getArgs()[3]) ||
1757       checkPointerAuthValue(S, Call->getArgs()[4], PAO_Discriminator))
1758     return ExprError();
1759 
1760   Call->setType(Call->getArgs()[0]->getType());
1761   return Call;
1762 }
1763 
1764 static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) {
1765   if (checkPointerAuthEnabled(S, Call))
1766     return ExprError();
1767 
1768   // We've already performed normal call type-checking.
1769   const Expr *Arg = Call->getArg(0)->IgnoreParenImpCasts();
1770 
1771   // Operand must be an ordinary or UTF-8 string literal.
1772   const auto *Literal = dyn_cast<StringLiteral>(Arg);
1773   if (!Literal || Literal->getCharByteWidth() != 1) {
1774     S.Diag(Arg->getExprLoc(), diag::err_ptrauth_string_not_literal)
1775         << (Literal ? 1 : 0) << Arg->getSourceRange();
1776     return ExprError();
1777   }
1778 
1779   return Call;
1780 }
1781 
1782 static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) {
1783   if (S.checkArgCount(TheCall, 1))
1784     return ExprError();
1785 
1786   // Compute __builtin_launder's parameter type from the argument.
1787   // The parameter type is:
1788   //  * The type of the argument if it's not an array or function type,
1789   //  Otherwise,
1790   //  * The decayed argument type.
1791   QualType ParamTy = [&]() {
1792     QualType ArgTy = TheCall->getArg(0)->getType();
1793     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1794       return S.Context.getPointerType(Ty->getElementType());
1795     if (ArgTy->isFunctionType()) {
1796       return S.Context.getPointerType(ArgTy);
1797     }
1798     return ArgTy;
1799   }();
1800 
1801   TheCall->setType(ParamTy);
1802 
1803   auto DiagSelect = [&]() -> std::optional<unsigned> {
1804     if (!ParamTy->isPointerType())
1805       return 0;
1806     if (ParamTy->isFunctionPointerType())
1807       return 1;
1808     if (ParamTy->isVoidPointerType())
1809       return 2;
1810     return std::optional<unsigned>{};
1811   }();
1812   if (DiagSelect) {
1813     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1814         << *DiagSelect << TheCall->getSourceRange();
1815     return ExprError();
1816   }
1817 
1818   // We either have an incomplete class type, or we have a class template
1819   // whose instantiation has not been forced. Example:
1820   //
1821   //   template <class T> struct Foo { T value; };
1822   //   Foo<int> *p = nullptr;
1823   //   auto *d = __builtin_launder(p);
1824   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1825                             diag::err_incomplete_type))
1826     return ExprError();
1827 
1828   assert(ParamTy->getPointeeType()->isObjectType() &&
1829          "Unhandled non-object pointer case");
1830 
1831   InitializedEntity Entity =
1832       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1833   ExprResult Arg =
1834       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1835   if (Arg.isInvalid())
1836     return ExprError();
1837   TheCall->setArg(0, Arg.get());
1838 
1839   return TheCall;
1840 }
1841 
1842 static ExprResult BuiltinIsWithinLifetime(Sema &S, CallExpr *TheCall) {
1843   if (S.checkArgCount(TheCall, 1))
1844     return ExprError();
1845 
1846   ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1847   if (Arg.isInvalid())
1848     return ExprError();
1849   QualType ParamTy = Arg.get()->getType();
1850   TheCall->setArg(0, Arg.get());
1851   TheCall->setType(S.Context.BoolTy);
1852 
1853   // Only accept pointers to objects as arguments, which should have object
1854   // pointer or void pointer types.
1855   if (const auto *PT = ParamTy->getAs<PointerType>()) {
1856     // LWG4138: Function pointer types not allowed
1857     if (PT->getPointeeType()->isFunctionType()) {
1858       S.Diag(TheCall->getArg(0)->getExprLoc(),
1859              diag::err_builtin_is_within_lifetime_invalid_arg)
1860           << 1;
1861       return ExprError();
1862     }
1863     // Disallow VLAs too since those shouldn't be able to
1864     // be a template parameter for `std::is_within_lifetime`
1865     if (PT->getPointeeType()->isVariableArrayType()) {
1866       S.Diag(TheCall->getArg(0)->getExprLoc(), diag::err_vla_unsupported)
1867           << 1 << "__builtin_is_within_lifetime";
1868       return ExprError();
1869     }
1870   } else {
1871     S.Diag(TheCall->getArg(0)->getExprLoc(),
1872            diag::err_builtin_is_within_lifetime_invalid_arg)
1873         << 0;
1874     return ExprError();
1875   }
1876 
1877   return TheCall;
1878 }
1879 
1880 // Emit an error and return true if the current object format type is in the
1881 // list of unsupported types.
1882 static bool CheckBuiltinTargetNotInUnsupported(
1883     Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1884     ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1885   llvm::Triple::ObjectFormatType CurObjFormat =
1886       S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1887   if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1888     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1889         << TheCall->getSourceRange();
1890     return true;
1891   }
1892   return false;
1893 }
1894 
1895 // Emit an error and return true if the current architecture is not in the list
1896 // of supported architectures.
1897 static bool
1898 CheckBuiltinTargetInSupported(Sema &S, CallExpr *TheCall,
1899                               ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1900   llvm::Triple::ArchType CurArch =
1901       S.getASTContext().getTargetInfo().getTriple().getArch();
1902   if (llvm::is_contained(SupportedArchs, CurArch))
1903     return false;
1904   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1905       << TheCall->getSourceRange();
1906   return true;
1907 }
1908 
1909 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1910                                  SourceLocation CallSiteLoc);
1911 
1912 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1913                                       CallExpr *TheCall) {
1914   switch (TI.getTriple().getArch()) {
1915   default:
1916     // Some builtins don't require additional checking, so just consider these
1917     // acceptable.
1918     return false;
1919   case llvm::Triple::arm:
1920   case llvm::Triple::armeb:
1921   case llvm::Triple::thumb:
1922   case llvm::Triple::thumbeb:
1923     return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1924   case llvm::Triple::aarch64:
1925   case llvm::Triple::aarch64_32:
1926   case llvm::Triple::aarch64_be:
1927     return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1928   case llvm::Triple::bpfeb:
1929   case llvm::Triple::bpfel:
1930     return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1931   case llvm::Triple::hexagon:
1932     return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1933   case llvm::Triple::mips:
1934   case llvm::Triple::mipsel:
1935   case llvm::Triple::mips64:
1936   case llvm::Triple::mips64el:
1937     return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1938   case llvm::Triple::spirv:
1939     return SPIRV().CheckSPIRVBuiltinFunctionCall(BuiltinID, TheCall);
1940   case llvm::Triple::systemz:
1941     return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1942   case llvm::Triple::x86:
1943   case llvm::Triple::x86_64:
1944     return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
1945   case llvm::Triple::ppc:
1946   case llvm::Triple::ppcle:
1947   case llvm::Triple::ppc64:
1948   case llvm::Triple::ppc64le:
1949     return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1950   case llvm::Triple::amdgcn:
1951     return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1952   case llvm::Triple::riscv32:
1953   case llvm::Triple::riscv64:
1954     return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
1955   case llvm::Triple::loongarch32:
1956   case llvm::Triple::loongarch64:
1957     return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID,
1958                                                          TheCall);
1959   case llvm::Triple::wasm32:
1960   case llvm::Triple::wasm64:
1961     return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall);
1962   case llvm::Triple::nvptx:
1963   case llvm::Triple::nvptx64:
1964     return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall);
1965   }
1966 }
1967 
1968 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
1969 // not a valid type, emit an error message and return true. Otherwise return
1970 // false.
1971 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
1972                                         QualType ArgTy, int ArgIndex) {
1973   if (!ArgTy->getAs<VectorType>() &&
1974       !ConstantMatrixType::isValidElementType(ArgTy)) {
1975     return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
1976            << ArgIndex << /* vector, integer or float ty*/ 0 << ArgTy;
1977   }
1978 
1979   return false;
1980 }
1981 
1982 static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc,
1983                                           QualType ArgTy, int ArgIndex) {
1984   QualType EltTy = ArgTy;
1985   if (auto *VecTy = EltTy->getAs<VectorType>())
1986     EltTy = VecTy->getElementType();
1987 
1988   if (!EltTy->isRealFloatingType()) {
1989     return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
1990            << ArgIndex << /* vector or float ty*/ 5 << ArgTy;
1991   }
1992 
1993   return false;
1994 }
1995 
1996 /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *).
1997 /// This checks that the target supports the builtin and that the string
1998 /// argument is constant and valid.
1999 static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall,
2000                        const TargetInfo *AuxTI, unsigned BuiltinID) {
2001   assert((BuiltinID == Builtin::BI__builtin_cpu_supports ||
2002           BuiltinID == Builtin::BI__builtin_cpu_is) &&
2003          "Expecting __builtin_cpu_...");
2004 
2005   bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports;
2006   const TargetInfo *TheTI = &TI;
2007   auto SupportsBI = [=](const TargetInfo *TInfo) {
2008     return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) ||
2009                      (!IsCPUSupports && TInfo->supportsCpuIs()));
2010   };
2011   if (!SupportsBI(&TI) && SupportsBI(AuxTI))
2012     TheTI = AuxTI;
2013 
2014   if ((!IsCPUSupports && !TheTI->supportsCpuIs()) ||
2015       (IsCPUSupports && !TheTI->supportsCpuSupports()))
2016     return S.Diag(TheCall->getBeginLoc(),
2017                   TI.getTriple().isOSAIX()
2018                       ? diag::err_builtin_aix_os_unsupported
2019                       : diag::err_builtin_target_unsupported)
2020            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
2021 
2022   Expr *Arg = TheCall->getArg(0)->IgnoreParenImpCasts();
2023   // Check if the argument is a string literal.
2024   if (!isa<StringLiteral>(Arg))
2025     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
2026            << Arg->getSourceRange();
2027 
2028   // Check the contents of the string.
2029   StringRef Feature = cast<StringLiteral>(Arg)->getString();
2030   if (IsCPUSupports && !TheTI->validateCpuSupports(Feature)) {
2031     S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports)
2032         << Arg->getSourceRange();
2033     return false;
2034   }
2035   if (!IsCPUSupports && !TheTI->validateCpuIs(Feature))
2036     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
2037            << Arg->getSourceRange();
2038   return false;
2039 }
2040 
2041 /// Checks that __builtin_popcountg was called with a single argument, which is
2042 /// an unsigned integer.
2043 static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) {
2044   if (S.checkArgCount(TheCall, 1))
2045     return true;
2046 
2047   ExprResult ArgRes = S.DefaultLvalueConversion(TheCall->getArg(0));
2048   if (ArgRes.isInvalid())
2049     return true;
2050 
2051   Expr *Arg = ArgRes.get();
2052   TheCall->setArg(0, Arg);
2053 
2054   QualType ArgTy = Arg->getType();
2055 
2056   if (!ArgTy->isUnsignedIntegerType()) {
2057     S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2058         << 1 << /*unsigned integer ty*/ 7 << ArgTy;
2059     return true;
2060   }
2061   return false;
2062 }
2063 
2064 /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is
2065 /// an unsigned integer, and an optional second argument, which is promoted to
2066 /// an 'int'.
2067 static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) {
2068   if (S.checkArgCountRange(TheCall, 1, 2))
2069     return true;
2070 
2071   ExprResult Arg0Res = S.DefaultLvalueConversion(TheCall->getArg(0));
2072   if (Arg0Res.isInvalid())
2073     return true;
2074 
2075   Expr *Arg0 = Arg0Res.get();
2076   TheCall->setArg(0, Arg0);
2077 
2078   QualType Arg0Ty = Arg0->getType();
2079 
2080   if (!Arg0Ty->isUnsignedIntegerType()) {
2081     S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2082         << 1 << /*unsigned integer ty*/ 7 << Arg0Ty;
2083     return true;
2084   }
2085 
2086   if (TheCall->getNumArgs() > 1) {
2087     ExprResult Arg1Res = S.UsualUnaryConversions(TheCall->getArg(1));
2088     if (Arg1Res.isInvalid())
2089       return true;
2090 
2091     Expr *Arg1 = Arg1Res.get();
2092     TheCall->setArg(1, Arg1);
2093 
2094     QualType Arg1Ty = Arg1->getType();
2095 
2096     if (!Arg1Ty->isSpecificBuiltinType(BuiltinType::Int)) {
2097       S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2098           << 2 << /*'int' ty*/ 8 << Arg1Ty;
2099       return true;
2100     }
2101   }
2102 
2103   return false;
2104 }
2105 
2106 ExprResult
2107 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
2108                                CallExpr *TheCall) {
2109   ExprResult TheCallResult(TheCall);
2110 
2111   // Find out if any arguments are required to be integer constant expressions.
2112   unsigned ICEArguments = 0;
2113   ASTContext::GetBuiltinTypeError Error;
2114   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
2115   if (Error != ASTContext::GE_None)
2116     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
2117 
2118   // If any arguments are required to be ICE's, check and diagnose.
2119   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
2120     // Skip arguments not required to be ICE's.
2121     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
2122 
2123     llvm::APSInt Result;
2124     // If we don't have enough arguments, continue so we can issue better
2125     // diagnostic in checkArgCount(...)
2126     if (ArgNo < TheCall->getNumArgs() &&
2127         BuiltinConstantArg(TheCall, ArgNo, Result))
2128       return true;
2129     ICEArguments &= ~(1 << ArgNo);
2130   }
2131 
2132   FPOptions FPO;
2133   switch (BuiltinID) {
2134   case Builtin::BI__builtin_cpu_supports:
2135   case Builtin::BI__builtin_cpu_is:
2136     if (BuiltinCpu(*this, Context.getTargetInfo(), TheCall,
2137                    Context.getAuxTargetInfo(), BuiltinID))
2138       return ExprError();
2139     break;
2140   case Builtin::BI__builtin_cpu_init:
2141     if (!Context.getTargetInfo().supportsCpuInit()) {
2142       Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
2143           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
2144       return ExprError();
2145     }
2146     break;
2147   case Builtin::BI__builtin___CFStringMakeConstantString:
2148     // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
2149     // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
2150     if (CheckBuiltinTargetNotInUnsupported(
2151             *this, BuiltinID, TheCall,
2152             {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
2153       return ExprError();
2154     assert(TheCall->getNumArgs() == 1 &&
2155            "Wrong # arguments to builtin CFStringMakeConstantString");
2156     if (ObjC().CheckObjCString(TheCall->getArg(0)))
2157       return ExprError();
2158     break;
2159   case Builtin::BI__builtin_ms_va_start:
2160   case Builtin::BI__builtin_stdarg_start:
2161   case Builtin::BI__builtin_va_start:
2162     if (BuiltinVAStart(BuiltinID, TheCall))
2163       return ExprError();
2164     break;
2165   case Builtin::BI__va_start: {
2166     switch (Context.getTargetInfo().getTriple().getArch()) {
2167     case llvm::Triple::aarch64:
2168     case llvm::Triple::arm:
2169     case llvm::Triple::thumb:
2170       if (BuiltinVAStartARMMicrosoft(TheCall))
2171         return ExprError();
2172       break;
2173     default:
2174       if (BuiltinVAStart(BuiltinID, TheCall))
2175         return ExprError();
2176       break;
2177     }
2178     break;
2179   }
2180 
2181   // The acquire, release, and no fence variants are ARM and AArch64 only.
2182   case Builtin::BI_interlockedbittestandset_acq:
2183   case Builtin::BI_interlockedbittestandset_rel:
2184   case Builtin::BI_interlockedbittestandset_nf:
2185   case Builtin::BI_interlockedbittestandreset_acq:
2186   case Builtin::BI_interlockedbittestandreset_rel:
2187   case Builtin::BI_interlockedbittestandreset_nf:
2188     if (CheckBuiltinTargetInSupported(
2189             *this, TheCall,
2190             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
2191       return ExprError();
2192     break;
2193 
2194   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
2195   case Builtin::BI_bittest64:
2196   case Builtin::BI_bittestandcomplement64:
2197   case Builtin::BI_bittestandreset64:
2198   case Builtin::BI_bittestandset64:
2199   case Builtin::BI_interlockedbittestandreset64:
2200   case Builtin::BI_interlockedbittestandset64:
2201     if (CheckBuiltinTargetInSupported(
2202             *this, TheCall,
2203             {llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb,
2204              llvm::Triple::aarch64, llvm::Triple::amdgcn}))
2205       return ExprError();
2206     break;
2207 
2208   case Builtin::BI__builtin_set_flt_rounds:
2209     if (CheckBuiltinTargetInSupported(
2210             *this, TheCall,
2211             {llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm,
2212              llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn,
2213              llvm::Triple::ppc, llvm::Triple::ppc64, llvm::Triple::ppcle,
2214              llvm::Triple::ppc64le}))
2215       return ExprError();
2216     break;
2217 
2218   case Builtin::BI__builtin_isgreater:
2219   case Builtin::BI__builtin_isgreaterequal:
2220   case Builtin::BI__builtin_isless:
2221   case Builtin::BI__builtin_islessequal:
2222   case Builtin::BI__builtin_islessgreater:
2223   case Builtin::BI__builtin_isunordered:
2224     if (BuiltinUnorderedCompare(TheCall, BuiltinID))
2225       return ExprError();
2226     break;
2227   case Builtin::BI__builtin_fpclassify:
2228     if (BuiltinFPClassification(TheCall, 6, BuiltinID))
2229       return ExprError();
2230     break;
2231   case Builtin::BI__builtin_isfpclass:
2232     if (BuiltinFPClassification(TheCall, 2, BuiltinID))
2233       return ExprError();
2234     break;
2235   case Builtin::BI__builtin_isfinite:
2236   case Builtin::BI__builtin_isinf:
2237   case Builtin::BI__builtin_isinf_sign:
2238   case Builtin::BI__builtin_isnan:
2239   case Builtin::BI__builtin_issignaling:
2240   case Builtin::BI__builtin_isnormal:
2241   case Builtin::BI__builtin_issubnormal:
2242   case Builtin::BI__builtin_iszero:
2243   case Builtin::BI__builtin_signbit:
2244   case Builtin::BI__builtin_signbitf:
2245   case Builtin::BI__builtin_signbitl:
2246     if (BuiltinFPClassification(TheCall, 1, BuiltinID))
2247       return ExprError();
2248     break;
2249   case Builtin::BI__builtin_shufflevector:
2250     return BuiltinShuffleVector(TheCall);
2251     // TheCall will be freed by the smart pointer here, but that's fine, since
2252     // BuiltinShuffleVector guts it, but then doesn't release it.
2253   case Builtin::BI__builtin_prefetch:
2254     if (BuiltinPrefetch(TheCall))
2255       return ExprError();
2256     break;
2257   case Builtin::BI__builtin_alloca_with_align:
2258   case Builtin::BI__builtin_alloca_with_align_uninitialized:
2259     if (BuiltinAllocaWithAlign(TheCall))
2260       return ExprError();
2261     [[fallthrough]];
2262   case Builtin::BI__builtin_alloca:
2263   case Builtin::BI__builtin_alloca_uninitialized:
2264     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
2265         << TheCall->getDirectCallee();
2266     if (getLangOpts().OpenCL) {
2267       builtinAllocaAddrSpace(*this, TheCall);
2268     }
2269     break;
2270   case Builtin::BI__arithmetic_fence:
2271     if (BuiltinArithmeticFence(TheCall))
2272       return ExprError();
2273     break;
2274   case Builtin::BI__assume:
2275   case Builtin::BI__builtin_assume:
2276     if (BuiltinAssume(TheCall))
2277       return ExprError();
2278     break;
2279   case Builtin::BI__builtin_assume_aligned:
2280     if (BuiltinAssumeAligned(TheCall))
2281       return ExprError();
2282     break;
2283   case Builtin::BI__builtin_dynamic_object_size:
2284   case Builtin::BI__builtin_object_size:
2285     if (BuiltinConstantArgRange(TheCall, 1, 0, 3))
2286       return ExprError();
2287     break;
2288   case Builtin::BI__builtin_longjmp:
2289     if (BuiltinLongjmp(TheCall))
2290       return ExprError();
2291     break;
2292   case Builtin::BI__builtin_setjmp:
2293     if (BuiltinSetjmp(TheCall))
2294       return ExprError();
2295     break;
2296   case Builtin::BI__builtin_classify_type:
2297     if (checkArgCount(TheCall, 1))
2298       return true;
2299     TheCall->setType(Context.IntTy);
2300     break;
2301   case Builtin::BI__builtin_complex:
2302     if (BuiltinComplex(TheCall))
2303       return ExprError();
2304     break;
2305   case Builtin::BI__builtin_constant_p: {
2306     if (checkArgCount(TheCall, 1))
2307       return true;
2308     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
2309     if (Arg.isInvalid()) return true;
2310     TheCall->setArg(0, Arg.get());
2311     TheCall->setType(Context.IntTy);
2312     break;
2313   }
2314   case Builtin::BI__builtin_launder:
2315     return BuiltinLaunder(*this, TheCall);
2316   case Builtin::BI__builtin_is_within_lifetime:
2317     return BuiltinIsWithinLifetime(*this, TheCall);
2318   case Builtin::BI__sync_fetch_and_add:
2319   case Builtin::BI__sync_fetch_and_add_1:
2320   case Builtin::BI__sync_fetch_and_add_2:
2321   case Builtin::BI__sync_fetch_and_add_4:
2322   case Builtin::BI__sync_fetch_and_add_8:
2323   case Builtin::BI__sync_fetch_and_add_16:
2324   case Builtin::BI__sync_fetch_and_sub:
2325   case Builtin::BI__sync_fetch_and_sub_1:
2326   case Builtin::BI__sync_fetch_and_sub_2:
2327   case Builtin::BI__sync_fetch_and_sub_4:
2328   case Builtin::BI__sync_fetch_and_sub_8:
2329   case Builtin::BI__sync_fetch_and_sub_16:
2330   case Builtin::BI__sync_fetch_and_or:
2331   case Builtin::BI__sync_fetch_and_or_1:
2332   case Builtin::BI__sync_fetch_and_or_2:
2333   case Builtin::BI__sync_fetch_and_or_4:
2334   case Builtin::BI__sync_fetch_and_or_8:
2335   case Builtin::BI__sync_fetch_and_or_16:
2336   case Builtin::BI__sync_fetch_and_and:
2337   case Builtin::BI__sync_fetch_and_and_1:
2338   case Builtin::BI__sync_fetch_and_and_2:
2339   case Builtin::BI__sync_fetch_and_and_4:
2340   case Builtin::BI__sync_fetch_and_and_8:
2341   case Builtin::BI__sync_fetch_and_and_16:
2342   case Builtin::BI__sync_fetch_and_xor:
2343   case Builtin::BI__sync_fetch_and_xor_1:
2344   case Builtin::BI__sync_fetch_and_xor_2:
2345   case Builtin::BI__sync_fetch_and_xor_4:
2346   case Builtin::BI__sync_fetch_and_xor_8:
2347   case Builtin::BI__sync_fetch_and_xor_16:
2348   case Builtin::BI__sync_fetch_and_nand:
2349   case Builtin::BI__sync_fetch_and_nand_1:
2350   case Builtin::BI__sync_fetch_and_nand_2:
2351   case Builtin::BI__sync_fetch_and_nand_4:
2352   case Builtin::BI__sync_fetch_and_nand_8:
2353   case Builtin::BI__sync_fetch_and_nand_16:
2354   case Builtin::BI__sync_add_and_fetch:
2355   case Builtin::BI__sync_add_and_fetch_1:
2356   case Builtin::BI__sync_add_and_fetch_2:
2357   case Builtin::BI__sync_add_and_fetch_4:
2358   case Builtin::BI__sync_add_and_fetch_8:
2359   case Builtin::BI__sync_add_and_fetch_16:
2360   case Builtin::BI__sync_sub_and_fetch:
2361   case Builtin::BI__sync_sub_and_fetch_1:
2362   case Builtin::BI__sync_sub_and_fetch_2:
2363   case Builtin::BI__sync_sub_and_fetch_4:
2364   case Builtin::BI__sync_sub_and_fetch_8:
2365   case Builtin::BI__sync_sub_and_fetch_16:
2366   case Builtin::BI__sync_and_and_fetch:
2367   case Builtin::BI__sync_and_and_fetch_1:
2368   case Builtin::BI__sync_and_and_fetch_2:
2369   case Builtin::BI__sync_and_and_fetch_4:
2370   case Builtin::BI__sync_and_and_fetch_8:
2371   case Builtin::BI__sync_and_and_fetch_16:
2372   case Builtin::BI__sync_or_and_fetch:
2373   case Builtin::BI__sync_or_and_fetch_1:
2374   case Builtin::BI__sync_or_and_fetch_2:
2375   case Builtin::BI__sync_or_and_fetch_4:
2376   case Builtin::BI__sync_or_and_fetch_8:
2377   case Builtin::BI__sync_or_and_fetch_16:
2378   case Builtin::BI__sync_xor_and_fetch:
2379   case Builtin::BI__sync_xor_and_fetch_1:
2380   case Builtin::BI__sync_xor_and_fetch_2:
2381   case Builtin::BI__sync_xor_and_fetch_4:
2382   case Builtin::BI__sync_xor_and_fetch_8:
2383   case Builtin::BI__sync_xor_and_fetch_16:
2384   case Builtin::BI__sync_nand_and_fetch:
2385   case Builtin::BI__sync_nand_and_fetch_1:
2386   case Builtin::BI__sync_nand_and_fetch_2:
2387   case Builtin::BI__sync_nand_and_fetch_4:
2388   case Builtin::BI__sync_nand_and_fetch_8:
2389   case Builtin::BI__sync_nand_and_fetch_16:
2390   case Builtin::BI__sync_val_compare_and_swap:
2391   case Builtin::BI__sync_val_compare_and_swap_1:
2392   case Builtin::BI__sync_val_compare_and_swap_2:
2393   case Builtin::BI__sync_val_compare_and_swap_4:
2394   case Builtin::BI__sync_val_compare_and_swap_8:
2395   case Builtin::BI__sync_val_compare_and_swap_16:
2396   case Builtin::BI__sync_bool_compare_and_swap:
2397   case Builtin::BI__sync_bool_compare_and_swap_1:
2398   case Builtin::BI__sync_bool_compare_and_swap_2:
2399   case Builtin::BI__sync_bool_compare_and_swap_4:
2400   case Builtin::BI__sync_bool_compare_and_swap_8:
2401   case Builtin::BI__sync_bool_compare_and_swap_16:
2402   case Builtin::BI__sync_lock_test_and_set:
2403   case Builtin::BI__sync_lock_test_and_set_1:
2404   case Builtin::BI__sync_lock_test_and_set_2:
2405   case Builtin::BI__sync_lock_test_and_set_4:
2406   case Builtin::BI__sync_lock_test_and_set_8:
2407   case Builtin::BI__sync_lock_test_and_set_16:
2408   case Builtin::BI__sync_lock_release:
2409   case Builtin::BI__sync_lock_release_1:
2410   case Builtin::BI__sync_lock_release_2:
2411   case Builtin::BI__sync_lock_release_4:
2412   case Builtin::BI__sync_lock_release_8:
2413   case Builtin::BI__sync_lock_release_16:
2414   case Builtin::BI__sync_swap:
2415   case Builtin::BI__sync_swap_1:
2416   case Builtin::BI__sync_swap_2:
2417   case Builtin::BI__sync_swap_4:
2418   case Builtin::BI__sync_swap_8:
2419   case Builtin::BI__sync_swap_16:
2420     return BuiltinAtomicOverloaded(TheCallResult);
2421   case Builtin::BI__sync_synchronize:
2422     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
2423         << TheCall->getCallee()->getSourceRange();
2424     break;
2425   case Builtin::BI__builtin_nontemporal_load:
2426   case Builtin::BI__builtin_nontemporal_store:
2427     return BuiltinNontemporalOverloaded(TheCallResult);
2428   case Builtin::BI__builtin_memcpy_inline: {
2429     clang::Expr *SizeOp = TheCall->getArg(2);
2430     // We warn about copying to or from `nullptr` pointers when `size` is
2431     // greater than 0. When `size` is value dependent we cannot evaluate its
2432     // value so we bail out.
2433     if (SizeOp->isValueDependent())
2434       break;
2435     if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
2436       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2437       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
2438     }
2439     break;
2440   }
2441   case Builtin::BI__builtin_memset_inline: {
2442     clang::Expr *SizeOp = TheCall->getArg(2);
2443     // We warn about filling to `nullptr` pointers when `size` is greater than
2444     // 0. When `size` is value dependent we cannot evaluate its value so we bail
2445     // out.
2446     if (SizeOp->isValueDependent())
2447       break;
2448     if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
2449       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2450     break;
2451   }
2452 #define BUILTIN(ID, TYPE, ATTRS)
2453 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS)                                        \
2454   case Builtin::BI##ID:                                                        \
2455     return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2456 #include "clang/Basic/Builtins.inc"
2457   case Builtin::BI__annotation:
2458     if (BuiltinMSVCAnnotation(*this, TheCall))
2459       return ExprError();
2460     break;
2461   case Builtin::BI__builtin_annotation:
2462     if (BuiltinAnnotation(*this, TheCall))
2463       return ExprError();
2464     break;
2465   case Builtin::BI__builtin_addressof:
2466     if (BuiltinAddressof(*this, TheCall))
2467       return ExprError();
2468     break;
2469   case Builtin::BI__builtin_function_start:
2470     if (BuiltinFunctionStart(*this, TheCall))
2471       return ExprError();
2472     break;
2473   case Builtin::BI__builtin_is_aligned:
2474   case Builtin::BI__builtin_align_up:
2475   case Builtin::BI__builtin_align_down:
2476     if (BuiltinAlignment(*this, TheCall, BuiltinID))
2477       return ExprError();
2478     break;
2479   case Builtin::BI__builtin_add_overflow:
2480   case Builtin::BI__builtin_sub_overflow:
2481   case Builtin::BI__builtin_mul_overflow:
2482     if (BuiltinOverflow(*this, TheCall, BuiltinID))
2483       return ExprError();
2484     break;
2485   case Builtin::BI__builtin_operator_new:
2486   case Builtin::BI__builtin_operator_delete: {
2487     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
2488     ExprResult Res =
2489         BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
2490     if (Res.isInvalid())
2491       CorrectDelayedTyposInExpr(TheCallResult.get());
2492     return Res;
2493   }
2494   case Builtin::BI__builtin_dump_struct:
2495     return BuiltinDumpStruct(*this, TheCall);
2496   case Builtin::BI__builtin_expect_with_probability: {
2497     // We first want to ensure we are called with 3 arguments
2498     if (checkArgCount(TheCall, 3))
2499       return ExprError();
2500     // then check probability is constant float in range [0.0, 1.0]
2501     const Expr *ProbArg = TheCall->getArg(2);
2502     SmallVector<PartialDiagnosticAt, 8> Notes;
2503     Expr::EvalResult Eval;
2504     Eval.Diag = &Notes;
2505     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2506         !Eval.Val.isFloat()) {
2507       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2508           << ProbArg->getSourceRange();
2509       for (const PartialDiagnosticAt &PDiag : Notes)
2510         Diag(PDiag.first, PDiag.second);
2511       return ExprError();
2512     }
2513     llvm::APFloat Probability = Eval.Val.getFloat();
2514     bool LoseInfo = false;
2515     Probability.convert(llvm::APFloat::IEEEdouble(),
2516                         llvm::RoundingMode::Dynamic, &LoseInfo);
2517     if (!(Probability >= llvm::APFloat(0.0) &&
2518           Probability <= llvm::APFloat(1.0))) {
2519       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2520           << ProbArg->getSourceRange();
2521       return ExprError();
2522     }
2523     break;
2524   }
2525   case Builtin::BI__builtin_preserve_access_index:
2526     if (BuiltinPreserveAI(*this, TheCall))
2527       return ExprError();
2528     break;
2529   case Builtin::BI__builtin_call_with_static_chain:
2530     if (BuiltinCallWithStaticChain(*this, TheCall))
2531       return ExprError();
2532     break;
2533   case Builtin::BI__exception_code:
2534   case Builtin::BI_exception_code:
2535     if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2536                              diag::err_seh___except_block))
2537       return ExprError();
2538     break;
2539   case Builtin::BI__exception_info:
2540   case Builtin::BI_exception_info:
2541     if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2542                              diag::err_seh___except_filter))
2543       return ExprError();
2544     break;
2545   case Builtin::BI__GetExceptionInfo:
2546     if (checkArgCount(TheCall, 1))
2547       return ExprError();
2548 
2549     if (CheckCXXThrowOperand(
2550             TheCall->getBeginLoc(),
2551             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2552             TheCall))
2553       return ExprError();
2554 
2555     TheCall->setType(Context.VoidPtrTy);
2556     break;
2557   case Builtin::BIaddressof:
2558   case Builtin::BI__addressof:
2559   case Builtin::BIforward:
2560   case Builtin::BIforward_like:
2561   case Builtin::BImove:
2562   case Builtin::BImove_if_noexcept:
2563   case Builtin::BIas_const: {
2564     // These are all expected to be of the form
2565     //   T &/&&/* f(U &/&&)
2566     // where T and U only differ in qualification.
2567     if (checkArgCount(TheCall, 1))
2568       return ExprError();
2569     QualType Param = FDecl->getParamDecl(0)->getType();
2570     QualType Result = FDecl->getReturnType();
2571     bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
2572                           BuiltinID == Builtin::BI__addressof;
2573     if (!(Param->isReferenceType() &&
2574           (ReturnsPointer ? Result->isAnyPointerType()
2575                           : Result->isReferenceType()) &&
2576           Context.hasSameUnqualifiedType(Param->getPointeeType(),
2577                                          Result->getPointeeType()))) {
2578       Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
2579           << FDecl;
2580       return ExprError();
2581     }
2582     break;
2583   }
2584   case Builtin::BI__builtin_ptrauth_strip:
2585     return PointerAuthStrip(*this, TheCall);
2586   case Builtin::BI__builtin_ptrauth_blend_discriminator:
2587     return PointerAuthBlendDiscriminator(*this, TheCall);
2588   case Builtin::BI__builtin_ptrauth_sign_constant:
2589     return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
2590                                  /*RequireConstant=*/true);
2591   case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
2592     return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
2593                                  /*RequireConstant=*/false);
2594   case Builtin::BI__builtin_ptrauth_auth:
2595     return PointerAuthSignOrAuth(*this, TheCall, PAO_Auth,
2596                                  /*RequireConstant=*/false);
2597   case Builtin::BI__builtin_ptrauth_sign_generic_data:
2598     return PointerAuthSignGenericData(*this, TheCall);
2599   case Builtin::BI__builtin_ptrauth_auth_and_resign:
2600     return PointerAuthAuthAndResign(*this, TheCall);
2601   case Builtin::BI__builtin_ptrauth_string_discriminator:
2602     return PointerAuthStringDiscriminator(*this, TheCall);
2603   // OpenCL v2.0, s6.13.16 - Pipe functions
2604   case Builtin::BIread_pipe:
2605   case Builtin::BIwrite_pipe:
2606     // Since those two functions are declared with var args, we need a semantic
2607     // check for the argument.
2608     if (OpenCL().checkBuiltinRWPipe(TheCall))
2609       return ExprError();
2610     break;
2611   case Builtin::BIreserve_read_pipe:
2612   case Builtin::BIreserve_write_pipe:
2613   case Builtin::BIwork_group_reserve_read_pipe:
2614   case Builtin::BIwork_group_reserve_write_pipe:
2615     if (OpenCL().checkBuiltinReserveRWPipe(TheCall))
2616       return ExprError();
2617     break;
2618   case Builtin::BIsub_group_reserve_read_pipe:
2619   case Builtin::BIsub_group_reserve_write_pipe:
2620     if (OpenCL().checkSubgroupExt(TheCall) ||
2621         OpenCL().checkBuiltinReserveRWPipe(TheCall))
2622       return ExprError();
2623     break;
2624   case Builtin::BIcommit_read_pipe:
2625   case Builtin::BIcommit_write_pipe:
2626   case Builtin::BIwork_group_commit_read_pipe:
2627   case Builtin::BIwork_group_commit_write_pipe:
2628     if (OpenCL().checkBuiltinCommitRWPipe(TheCall))
2629       return ExprError();
2630     break;
2631   case Builtin::BIsub_group_commit_read_pipe:
2632   case Builtin::BIsub_group_commit_write_pipe:
2633     if (OpenCL().checkSubgroupExt(TheCall) ||
2634         OpenCL().checkBuiltinCommitRWPipe(TheCall))
2635       return ExprError();
2636     break;
2637   case Builtin::BIget_pipe_num_packets:
2638   case Builtin::BIget_pipe_max_packets:
2639     if (OpenCL().checkBuiltinPipePackets(TheCall))
2640       return ExprError();
2641     break;
2642   case Builtin::BIto_global:
2643   case Builtin::BIto_local:
2644   case Builtin::BIto_private:
2645     if (OpenCL().checkBuiltinToAddr(BuiltinID, TheCall))
2646       return ExprError();
2647     break;
2648   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2649   case Builtin::BIenqueue_kernel:
2650     if (OpenCL().checkBuiltinEnqueueKernel(TheCall))
2651       return ExprError();
2652     break;
2653   case Builtin::BIget_kernel_work_group_size:
2654   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2655     if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall))
2656       return ExprError();
2657     break;
2658   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2659   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2660     if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall))
2661       return ExprError();
2662     break;
2663   case Builtin::BI__builtin_os_log_format:
2664     Cleanup.setExprNeedsCleanups(true);
2665     [[fallthrough]];
2666   case Builtin::BI__builtin_os_log_format_buffer_size:
2667     if (BuiltinOSLogFormat(TheCall))
2668       return ExprError();
2669     break;
2670   case Builtin::BI__builtin_frame_address:
2671   case Builtin::BI__builtin_return_address: {
2672     if (BuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2673       return ExprError();
2674 
2675     // -Wframe-address warning if non-zero passed to builtin
2676     // return/frame address.
2677     Expr::EvalResult Result;
2678     if (!TheCall->getArg(0)->isValueDependent() &&
2679         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2680         Result.Val.getInt() != 0)
2681       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2682           << ((BuiltinID == Builtin::BI__builtin_return_address)
2683                   ? "__builtin_return_address"
2684                   : "__builtin_frame_address")
2685           << TheCall->getSourceRange();
2686     break;
2687   }
2688 
2689   case Builtin::BI__builtin_nondeterministic_value: {
2690     if (BuiltinNonDeterministicValue(TheCall))
2691       return ExprError();
2692     break;
2693   }
2694 
2695   // __builtin_elementwise_abs restricts the element type to signed integers or
2696   // floating point types only.
2697   case Builtin::BI__builtin_elementwise_abs: {
2698     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2699       return ExprError();
2700 
2701     QualType ArgTy = TheCall->getArg(0)->getType();
2702     QualType EltTy = ArgTy;
2703 
2704     if (auto *VecTy = EltTy->getAs<VectorType>())
2705       EltTy = VecTy->getElementType();
2706     if (EltTy->isUnsignedIntegerType()) {
2707       Diag(TheCall->getArg(0)->getBeginLoc(),
2708            diag::err_builtin_invalid_arg_type)
2709           << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2710       return ExprError();
2711     }
2712     break;
2713   }
2714 
2715   // These builtins restrict the element type to floating point
2716   // types only.
2717   case Builtin::BI__builtin_elementwise_acos:
2718   case Builtin::BI__builtin_elementwise_asin:
2719   case Builtin::BI__builtin_elementwise_atan:
2720   case Builtin::BI__builtin_elementwise_ceil:
2721   case Builtin::BI__builtin_elementwise_cos:
2722   case Builtin::BI__builtin_elementwise_cosh:
2723   case Builtin::BI__builtin_elementwise_exp:
2724   case Builtin::BI__builtin_elementwise_exp2:
2725   case Builtin::BI__builtin_elementwise_floor:
2726   case Builtin::BI__builtin_elementwise_log:
2727   case Builtin::BI__builtin_elementwise_log2:
2728   case Builtin::BI__builtin_elementwise_log10:
2729   case Builtin::BI__builtin_elementwise_roundeven:
2730   case Builtin::BI__builtin_elementwise_round:
2731   case Builtin::BI__builtin_elementwise_rint:
2732   case Builtin::BI__builtin_elementwise_nearbyint:
2733   case Builtin::BI__builtin_elementwise_sin:
2734   case Builtin::BI__builtin_elementwise_sinh:
2735   case Builtin::BI__builtin_elementwise_sqrt:
2736   case Builtin::BI__builtin_elementwise_tan:
2737   case Builtin::BI__builtin_elementwise_tanh:
2738   case Builtin::BI__builtin_elementwise_trunc:
2739   case Builtin::BI__builtin_elementwise_canonicalize: {
2740     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2741       return ExprError();
2742 
2743     QualType ArgTy = TheCall->getArg(0)->getType();
2744     if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2745                                       ArgTy, 1))
2746       return ExprError();
2747     break;
2748   }
2749   case Builtin::BI__builtin_elementwise_fma: {
2750     if (BuiltinElementwiseTernaryMath(TheCall))
2751       return ExprError();
2752     break;
2753   }
2754 
2755   // These builtins restrict the element type to floating point
2756   // types only, and take in two arguments.
2757   case Builtin::BI__builtin_elementwise_minimum:
2758   case Builtin::BI__builtin_elementwise_maximum:
2759   case Builtin::BI__builtin_elementwise_atan2:
2760   case Builtin::BI__builtin_elementwise_fmod:
2761   case Builtin::BI__builtin_elementwise_pow: {
2762     if (BuiltinElementwiseMath(TheCall, /*FPOnly=*/true))
2763       return ExprError();
2764     break;
2765   }
2766 
2767   // These builtins restrict the element type to integer
2768   // types only.
2769   case Builtin::BI__builtin_elementwise_add_sat:
2770   case Builtin::BI__builtin_elementwise_sub_sat: {
2771     if (BuiltinElementwiseMath(TheCall))
2772       return ExprError();
2773 
2774     const Expr *Arg = TheCall->getArg(0);
2775     QualType ArgTy = Arg->getType();
2776     QualType EltTy = ArgTy;
2777 
2778     if (auto *VecTy = EltTy->getAs<VectorType>())
2779       EltTy = VecTy->getElementType();
2780 
2781     if (!EltTy->isIntegerType()) {
2782       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2783           << 1 << /* integer ty */ 6 << ArgTy;
2784       return ExprError();
2785     }
2786     break;
2787   }
2788 
2789   case Builtin::BI__builtin_elementwise_min:
2790   case Builtin::BI__builtin_elementwise_max:
2791     if (BuiltinElementwiseMath(TheCall))
2792       return ExprError();
2793     break;
2794   case Builtin::BI__builtin_elementwise_popcount:
2795   case Builtin::BI__builtin_elementwise_bitreverse: {
2796     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2797       return ExprError();
2798 
2799     const Expr *Arg = TheCall->getArg(0);
2800     QualType ArgTy = Arg->getType();
2801     QualType EltTy = ArgTy;
2802 
2803     if (auto *VecTy = EltTy->getAs<VectorType>())
2804       EltTy = VecTy->getElementType();
2805 
2806     if (!EltTy->isIntegerType()) {
2807       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2808           << 1 << /* integer ty */ 6 << ArgTy;
2809       return ExprError();
2810     }
2811     break;
2812   }
2813 
2814   case Builtin::BI__builtin_elementwise_copysign: {
2815     if (checkArgCount(TheCall, 2))
2816       return ExprError();
2817 
2818     ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0));
2819     ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1));
2820     if (Magnitude.isInvalid() || Sign.isInvalid())
2821       return ExprError();
2822 
2823     QualType MagnitudeTy = Magnitude.get()->getType();
2824     QualType SignTy = Sign.get()->getType();
2825     if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2826                                       MagnitudeTy, 1) ||
2827         checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(),
2828                                       SignTy, 2)) {
2829       return ExprError();
2830     }
2831 
2832     if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) {
2833       return Diag(Sign.get()->getBeginLoc(),
2834                   diag::err_typecheck_call_different_arg_types)
2835              << MagnitudeTy << SignTy;
2836     }
2837 
2838     TheCall->setArg(0, Magnitude.get());
2839     TheCall->setArg(1, Sign.get());
2840     TheCall->setType(Magnitude.get()->getType());
2841     break;
2842   }
2843   case Builtin::BI__builtin_reduce_max:
2844   case Builtin::BI__builtin_reduce_min: {
2845     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2846       return ExprError();
2847 
2848     const Expr *Arg = TheCall->getArg(0);
2849     const auto *TyA = Arg->getType()->getAs<VectorType>();
2850 
2851     QualType ElTy;
2852     if (TyA)
2853       ElTy = TyA->getElementType();
2854     else if (Arg->getType()->isSizelessVectorType())
2855       ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2856 
2857     if (ElTy.isNull()) {
2858       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2859           << 1 << /* vector ty*/ 4 << Arg->getType();
2860       return ExprError();
2861     }
2862 
2863     TheCall->setType(ElTy);
2864     break;
2865   }
2866   case Builtin::BI__builtin_reduce_maximum:
2867   case Builtin::BI__builtin_reduce_minimum: {
2868     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2869       return ExprError();
2870 
2871     const Expr *Arg = TheCall->getArg(0);
2872     const auto *TyA = Arg->getType()->getAs<VectorType>();
2873 
2874     QualType ElTy;
2875     if (TyA)
2876       ElTy = TyA->getElementType();
2877     else if (Arg->getType()->isSizelessVectorType())
2878       ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2879 
2880     if (ElTy.isNull() || !ElTy->isFloatingType()) {
2881       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2882           << 1 << /* vector of floating points */ 9 << Arg->getType();
2883       return ExprError();
2884     }
2885 
2886     TheCall->setType(ElTy);
2887     break;
2888   }
2889 
2890   // These builtins support vectors of integers only.
2891   // TODO: ADD/MUL should support floating-point types.
2892   case Builtin::BI__builtin_reduce_add:
2893   case Builtin::BI__builtin_reduce_mul:
2894   case Builtin::BI__builtin_reduce_xor:
2895   case Builtin::BI__builtin_reduce_or:
2896   case Builtin::BI__builtin_reduce_and: {
2897     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2898       return ExprError();
2899 
2900     const Expr *Arg = TheCall->getArg(0);
2901     const auto *TyA = Arg->getType()->getAs<VectorType>();
2902 
2903     QualType ElTy;
2904     if (TyA)
2905       ElTy = TyA->getElementType();
2906     else if (Arg->getType()->isSizelessVectorType())
2907       ElTy = Arg->getType()->getSizelessVectorEltType(Context);
2908 
2909     if (ElTy.isNull() || !ElTy->isIntegerType()) {
2910       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2911           << 1  << /* vector of integers */ 6 << Arg->getType();
2912       return ExprError();
2913     }
2914 
2915     TheCall->setType(ElTy);
2916     break;
2917   }
2918 
2919   case Builtin::BI__builtin_matrix_transpose:
2920     return BuiltinMatrixTranspose(TheCall, TheCallResult);
2921 
2922   case Builtin::BI__builtin_matrix_column_major_load:
2923     return BuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2924 
2925   case Builtin::BI__builtin_matrix_column_major_store:
2926     return BuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2927 
2928   case Builtin::BI__builtin_verbose_trap:
2929     if (!checkBuiltinVerboseTrap(TheCall, *this))
2930       return ExprError();
2931     break;
2932 
2933   case Builtin::BI__builtin_get_device_side_mangled_name: {
2934     auto Check = [](CallExpr *TheCall) {
2935       if (TheCall->getNumArgs() != 1)
2936         return false;
2937       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2938       if (!DRE)
2939         return false;
2940       auto *D = DRE->getDecl();
2941       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2942         return false;
2943       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2944              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2945     };
2946     if (!Check(TheCall)) {
2947       Diag(TheCall->getBeginLoc(),
2948            diag::err_hip_invalid_args_builtin_mangled_name);
2949       return ExprError();
2950     }
2951     break;
2952   }
2953   case Builtin::BI__builtin_popcountg:
2954     if (BuiltinPopcountg(*this, TheCall))
2955       return ExprError();
2956     break;
2957   case Builtin::BI__builtin_clzg:
2958   case Builtin::BI__builtin_ctzg:
2959     if (BuiltinCountZeroBitsGeneric(*this, TheCall))
2960       return ExprError();
2961     break;
2962 
2963   case Builtin::BI__builtin_allow_runtime_check: {
2964     Expr *Arg = TheCall->getArg(0);
2965     // Check if the argument is a string literal.
2966     if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) {
2967       Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
2968           << Arg->getSourceRange();
2969       return ExprError();
2970     }
2971     break;
2972   }
2973   case Builtin::BI__builtin_counted_by_ref:
2974     if (BuiltinCountedByRef(TheCall))
2975       return ExprError();
2976     break;
2977   }
2978 
2979   if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall))
2980     return ExprError();
2981 
2982   // Since the target specific builtins for each arch overlap, only check those
2983   // of the arch we are compiling for.
2984   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2985     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2986       assert(Context.getAuxTargetInfo() &&
2987              "Aux Target Builtin, but not an aux target?");
2988 
2989       if (CheckTSBuiltinFunctionCall(
2990               *Context.getAuxTargetInfo(),
2991               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2992         return ExprError();
2993     } else {
2994       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2995                                      TheCall))
2996         return ExprError();
2997     }
2998   }
2999 
3000   return TheCallResult;
3001 }
3002 
3003 bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3004   llvm::APSInt Result;
3005   // We can't check the value of a dependent argument.
3006   Expr *Arg = TheCall->getArg(ArgNum);
3007   if (Arg->isTypeDependent() || Arg->isValueDependent())
3008     return false;
3009 
3010   // Check constant-ness first.
3011   if (BuiltinConstantArg(TheCall, ArgNum, Result))
3012     return true;
3013 
3014   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3015   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3016     return false;
3017 
3018   return Diag(TheCall->getBeginLoc(),
3019               diag::err_argument_not_contiguous_bit_field)
3020          << ArgNum << Arg->getSourceRange();
3021 }
3022 
3023 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
3024                                bool IsVariadic, FormatStringInfo *FSI) {
3025   if (Format->getFirstArg() == 0)
3026     FSI->ArgPassingKind = FAPK_VAList;
3027   else if (IsVariadic)
3028     FSI->ArgPassingKind = FAPK_Variadic;
3029   else
3030     FSI->ArgPassingKind = FAPK_Fixed;
3031   FSI->FormatIdx = Format->getFormatIdx() - 1;
3032   FSI->FirstDataArg =
3033       FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1;
3034 
3035   // The way the format attribute works in GCC, the implicit this argument
3036   // of member functions is counted. However, it doesn't appear in our own
3037   // lists, so decrement format_idx in that case.
3038   if (IsCXXMember) {
3039     if(FSI->FormatIdx == 0)
3040       return false;
3041     --FSI->FormatIdx;
3042     if (FSI->FirstDataArg != 0)
3043       --FSI->FirstDataArg;
3044   }
3045   return true;
3046 }
3047 
3048 /// Checks if a the given expression evaluates to null.
3049 ///
3050 /// Returns true if the value evaluates to null.
3051 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
3052   // Treat (smart) pointers constructed from nullptr as null, whether we can
3053   // const-evaluate them or not.
3054   // This must happen first: the smart pointer expr might have _Nonnull type!
3055   if (isa<CXXNullPtrLiteralExpr>(
3056           IgnoreExprNodes(Expr, IgnoreImplicitAsWrittenSingleStep,
3057                           IgnoreElidableImplicitConstructorSingleStep)))
3058     return true;
3059 
3060   // If the expression has non-null type, it doesn't evaluate to null.
3061   if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) {
3062     if (*nullability == NullabilityKind::NonNull)
3063       return false;
3064   }
3065 
3066   // As a special case, transparent unions initialized with zero are
3067   // considered null for the purposes of the nonnull attribute.
3068   if (const RecordType *UT = Expr->getType()->getAsUnionType();
3069       UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
3070     if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Expr))
3071       if (const auto *ILE = dyn_cast<InitListExpr>(CLE->getInitializer()))
3072         Expr = ILE->getInit(0);
3073   }
3074 
3075   bool Result;
3076   return (!Expr->isValueDependent() &&
3077           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
3078           !Result);
3079 }
3080 
3081 static void CheckNonNullArgument(Sema &S,
3082                                  const Expr *ArgExpr,
3083                                  SourceLocation CallSiteLoc) {
3084   if (CheckNonNullExpr(S, ArgExpr))
3085     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
3086                           S.PDiag(diag::warn_null_arg)
3087                               << ArgExpr->getSourceRange());
3088 }
3089 
3090 /// Determine whether the given type has a non-null nullability annotation.
3091 static bool isNonNullType(QualType type) {
3092   if (auto nullability = type->getNullability())
3093     return *nullability == NullabilityKind::NonNull;
3094 
3095   return false;
3096 }
3097 
3098 static void CheckNonNullArguments(Sema &S,
3099                                   const NamedDecl *FDecl,
3100                                   const FunctionProtoType *Proto,
3101                                   ArrayRef<const Expr *> Args,
3102                                   SourceLocation CallSiteLoc) {
3103   assert((FDecl || Proto) && "Need a function declaration or prototype");
3104 
3105   // Already checked by constant evaluator.
3106   if (S.isConstantEvaluatedContext())
3107     return;
3108   // Check the attributes attached to the method/function itself.
3109   llvm::SmallBitVector NonNullArgs;
3110   if (FDecl) {
3111     // Handle the nonnull attribute on the function/method declaration itself.
3112     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
3113       if (!NonNull->args_size()) {
3114         // Easy case: all pointer arguments are nonnull.
3115         for (const auto *Arg : Args)
3116           if (S.isValidPointerAttrType(Arg->getType()))
3117             CheckNonNullArgument(S, Arg, CallSiteLoc);
3118         return;
3119       }
3120 
3121       for (const ParamIdx &Idx : NonNull->args()) {
3122         unsigned IdxAST = Idx.getASTIndex();
3123         if (IdxAST >= Args.size())
3124           continue;
3125         if (NonNullArgs.empty())
3126           NonNullArgs.resize(Args.size());
3127         NonNullArgs.set(IdxAST);
3128       }
3129     }
3130   }
3131 
3132   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
3133     // Handle the nonnull attribute on the parameters of the
3134     // function/method.
3135     ArrayRef<ParmVarDecl*> parms;
3136     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
3137       parms = FD->parameters();
3138     else
3139       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
3140 
3141     unsigned ParamIndex = 0;
3142     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
3143          I != E; ++I, ++ParamIndex) {
3144       const ParmVarDecl *PVD = *I;
3145       if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) {
3146         if (NonNullArgs.empty())
3147           NonNullArgs.resize(Args.size());
3148 
3149         NonNullArgs.set(ParamIndex);
3150       }
3151     }
3152   } else {
3153     // If we have a non-function, non-method declaration but no
3154     // function prototype, try to dig out the function prototype.
3155     if (!Proto) {
3156       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
3157         QualType type = VD->getType().getNonReferenceType();
3158         if (auto pointerType = type->getAs<PointerType>())
3159           type = pointerType->getPointeeType();
3160         else if (auto blockType = type->getAs<BlockPointerType>())
3161           type = blockType->getPointeeType();
3162         // FIXME: data member pointers?
3163 
3164         // Dig out the function prototype, if there is one.
3165         Proto = type->getAs<FunctionProtoType>();
3166       }
3167     }
3168 
3169     // Fill in non-null argument information from the nullability
3170     // information on the parameter types (if we have them).
3171     if (Proto) {
3172       unsigned Index = 0;
3173       for (auto paramType : Proto->getParamTypes()) {
3174         if (isNonNullType(paramType)) {
3175           if (NonNullArgs.empty())
3176             NonNullArgs.resize(Args.size());
3177 
3178           NonNullArgs.set(Index);
3179         }
3180 
3181         ++Index;
3182       }
3183     }
3184   }
3185 
3186   // Check for non-null arguments.
3187   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
3188        ArgIndex != ArgIndexEnd; ++ArgIndex) {
3189     if (NonNullArgs[ArgIndex])
3190       CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc());
3191   }
3192 }
3193 
3194 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
3195                              StringRef ParamName, QualType ArgTy,
3196                              QualType ParamTy) {
3197 
3198   // If a function accepts a pointer or reference type
3199   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
3200     return;
3201 
3202   // If the parameter is a pointer type, get the pointee type for the
3203   // argument too. If the parameter is a reference type, don't try to get
3204   // the pointee type for the argument.
3205   if (ParamTy->isPointerType())
3206     ArgTy = ArgTy->getPointeeType();
3207 
3208   // Remove reference or pointer
3209   ParamTy = ParamTy->getPointeeType();
3210 
3211   // Find expected alignment, and the actual alignment of the passed object.
3212   // getTypeAlignInChars requires complete types
3213   if (ArgTy.isNull() || ParamTy->isDependentType() ||
3214       ParamTy->isIncompleteType() || ArgTy->isIncompleteType() ||
3215       ParamTy->isUndeducedType() || ArgTy->isUndeducedType())
3216     return;
3217 
3218   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
3219   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
3220 
3221   // If the argument is less aligned than the parameter, there is a
3222   // potential alignment issue.
3223   if (ArgAlign < ParamAlign)
3224     Diag(Loc, diag::warn_param_mismatched_alignment)
3225         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
3226         << ParamName << (FDecl != nullptr) << FDecl;
3227 }
3228 
3229 void Sema::checkLifetimeCaptureBy(FunctionDecl *FD, bool IsMemberFunction,
3230                                   const Expr *ThisArg,
3231                                   ArrayRef<const Expr *> Args) {
3232   if (!FD || Args.empty())
3233     return;
3234   auto GetArgAt = [&](int Idx) -> const Expr * {
3235     if (Idx == LifetimeCaptureByAttr::GLOBAL ||
3236         Idx == LifetimeCaptureByAttr::UNKNOWN)
3237       return nullptr;
3238     if (IsMemberFunction && Idx == 0)
3239       return ThisArg;
3240     return Args[Idx - IsMemberFunction];
3241   };
3242   auto HandleCaptureByAttr = [&](const LifetimeCaptureByAttr *Attr,
3243                                  unsigned ArgIdx) {
3244     if (!Attr)
3245       return;
3246 
3247     Expr *Captured = const_cast<Expr *>(GetArgAt(ArgIdx));
3248     for (int CapturingParamIdx : Attr->params()) {
3249       // lifetime_capture_by(this) case is handled in the lifetimebound expr
3250       // initialization codepath.
3251       if (CapturingParamIdx == LifetimeCaptureByAttr::THIS &&
3252           isa<CXXConstructorDecl>(FD))
3253         continue;
3254       Expr *Capturing = const_cast<Expr *>(GetArgAt(CapturingParamIdx));
3255       CapturingEntity CE{Capturing};
3256       // Ensure that 'Captured' outlives the 'Capturing' entity.
3257       checkCaptureByLifetime(*this, CE, Captured);
3258     }
3259   };
3260   for (unsigned I = 0; I < FD->getNumParams(); ++I)
3261     HandleCaptureByAttr(FD->getParamDecl(I)->getAttr<LifetimeCaptureByAttr>(),
3262                         I + IsMemberFunction);
3263   // Check when the implicit object param is captured.
3264   if (IsMemberFunction) {
3265     TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3266     if (!TSI)
3267       return;
3268     AttributedTypeLoc ATL;
3269     for (TypeLoc TL = TSI->getTypeLoc();
3270          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
3271          TL = ATL.getModifiedLoc())
3272       HandleCaptureByAttr(ATL.getAttrAs<LifetimeCaptureByAttr>(), 0);
3273   }
3274 }
3275 
3276 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
3277                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
3278                      bool IsMemberFunction, SourceLocation Loc,
3279                      SourceRange Range, VariadicCallType CallType) {
3280   // FIXME: We should check as much as we can in the template definition.
3281   if (CurContext->isDependentContext())
3282     return;
3283 
3284   // Printf and scanf checking.
3285   llvm::SmallBitVector CheckedVarArgs;
3286   if (FDecl) {
3287     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
3288       // Only create vector if there are format attributes.
3289       CheckedVarArgs.resize(Args.size());
3290 
3291       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
3292                            CheckedVarArgs);
3293     }
3294   }
3295 
3296   // Refuse POD arguments that weren't caught by the format string
3297   // checks above.
3298   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
3299   if (CallType != VariadicDoesNotApply &&
3300       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
3301     unsigned NumParams = Proto ? Proto->getNumParams()
3302                          : isa_and_nonnull<FunctionDecl>(FDecl)
3303                              ? cast<FunctionDecl>(FDecl)->getNumParams()
3304                          : isa_and_nonnull<ObjCMethodDecl>(FDecl)
3305                              ? cast<ObjCMethodDecl>(FDecl)->param_size()
3306                              : 0;
3307 
3308     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
3309       // Args[ArgIdx] can be null in malformed code.
3310       if (const Expr *Arg = Args[ArgIdx]) {
3311         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
3312           checkVariadicArgument(Arg, CallType);
3313       }
3314     }
3315   }
3316   if (FD)
3317     checkLifetimeCaptureBy(FD, IsMemberFunction, ThisArg, Args);
3318   if (FDecl || Proto) {
3319     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
3320 
3321     // Type safety checking.
3322     if (FDecl) {
3323       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
3324         CheckArgumentWithTypeTag(I, Args, Loc);
3325     }
3326   }
3327 
3328   // Check that passed arguments match the alignment of original arguments.
3329   // Try to get the missing prototype from the declaration.
3330   if (!Proto && FDecl) {
3331     const auto *FT = FDecl->getFunctionType();
3332     if (isa_and_nonnull<FunctionProtoType>(FT))
3333       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
3334   }
3335   if (Proto) {
3336     // For variadic functions, we may have more args than parameters.
3337     // For some K&R functions, we may have less args than parameters.
3338     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
3339     bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType();
3340     bool IsScalableArg = false;
3341     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
3342       // Args[ArgIdx] can be null in malformed code.
3343       if (const Expr *Arg = Args[ArgIdx]) {
3344         if (Arg->containsErrors())
3345           continue;
3346 
3347         if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
3348             FDecl->hasLinkage() &&
3349             FDecl->getFormalLinkage() != Linkage::Internal &&
3350             CallType == VariadicDoesNotApply)
3351           PPC().checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
3352 
3353         QualType ParamTy = Proto->getParamType(ArgIdx);
3354         if (ParamTy->isSizelessVectorType())
3355           IsScalableArg = true;
3356         QualType ArgTy = Arg->getType();
3357         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
3358                           ArgTy, ParamTy);
3359       }
3360     }
3361 
3362     // If the callee has an AArch64 SME attribute to indicate that it is an
3363     // __arm_streaming function, then the caller requires SME to be available.
3364     FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
3365     if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) {
3366       if (auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
3367         llvm::StringMap<bool> CallerFeatureMap;
3368         Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD);
3369         if (!CallerFeatureMap.contains("sme"))
3370           Diag(Loc, diag::err_sme_call_in_non_sme_target);
3371       } else if (!Context.getTargetInfo().hasFeature("sme")) {
3372         Diag(Loc, diag::err_sme_call_in_non_sme_target);
3373       }
3374     }
3375 
3376     // If the call requires a streaming-mode change and has scalable vector
3377     // arguments or return values, then warn the user that the streaming and
3378     // non-streaming vector lengths may be different.
3379     const auto *CallerFD = dyn_cast<FunctionDecl>(CurContext);
3380     if (CallerFD && (!FD || !FD->getBuiltinID()) &&
3381         (IsScalableArg || IsScalableRet)) {
3382       bool IsCalleeStreaming =
3383           ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
3384       bool IsCalleeStreamingCompatible =
3385           ExtInfo.AArch64SMEAttributes &
3386           FunctionType::SME_PStateSMCompatibleMask;
3387       SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(CallerFD);
3388       if (!IsCalleeStreamingCompatible &&
3389           (CallerFnType == SemaARM::ArmStreamingCompatible ||
3390            ((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) {
3391         if (IsScalableArg)
3392           Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
3393               << /*IsArg=*/true;
3394         if (IsScalableRet)
3395           Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
3396               << /*IsArg=*/false;
3397       }
3398     }
3399 
3400     FunctionType::ArmStateValue CalleeArmZAState =
3401         FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes);
3402     FunctionType::ArmStateValue CalleeArmZT0State =
3403         FunctionType::getArmZT0State(ExtInfo.AArch64SMEAttributes);
3404     if (CalleeArmZAState != FunctionType::ARM_None ||
3405         CalleeArmZT0State != FunctionType::ARM_None) {
3406       bool CallerHasZAState = false;
3407       bool CallerHasZT0State = false;
3408       if (CallerFD) {
3409         auto *Attr = CallerFD->getAttr<ArmNewAttr>();
3410         if (Attr && Attr->isNewZA())
3411           CallerHasZAState = true;
3412         if (Attr && Attr->isNewZT0())
3413           CallerHasZT0State = true;
3414         if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) {
3415           CallerHasZAState |=
3416               FunctionType::getArmZAState(
3417                   FPT->getExtProtoInfo().AArch64SMEAttributes) !=
3418               FunctionType::ARM_None;
3419           CallerHasZT0State |=
3420               FunctionType::getArmZT0State(
3421                   FPT->getExtProtoInfo().AArch64SMEAttributes) !=
3422               FunctionType::ARM_None;
3423         }
3424       }
3425 
3426       if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState)
3427         Diag(Loc, diag::err_sme_za_call_no_za_state);
3428 
3429       if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State)
3430         Diag(Loc, diag::err_sme_zt0_call_no_zt0_state);
3431 
3432       if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None &&
3433           CalleeArmZT0State != FunctionType::ARM_None) {
3434         Diag(Loc, diag::err_sme_unimplemented_za_save_restore);
3435         Diag(Loc, diag::note_sme_use_preserves_za);
3436       }
3437     }
3438   }
3439 
3440   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
3441     auto *AA = FDecl->getAttr<AllocAlignAttr>();
3442     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
3443     if (!Arg->isValueDependent()) {
3444       Expr::EvalResult Align;
3445       if (Arg->EvaluateAsInt(Align, Context)) {
3446         const llvm::APSInt &I = Align.Val.getInt();
3447         if (!I.isPowerOf2())
3448           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
3449               << Arg->getSourceRange();
3450 
3451         if (I > Sema::MaximumAlignment)
3452           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
3453               << Arg->getSourceRange() << Sema::MaximumAlignment;
3454       }
3455     }
3456   }
3457 
3458   if (FD)
3459     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
3460 }
3461 
3462 void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) {
3463   if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) {
3464     DiagnoseUseOfDecl(Decl, Loc);
3465   }
3466 }
3467 
3468 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
3469                                 ArrayRef<const Expr *> Args,
3470                                 const FunctionProtoType *Proto,
3471                                 SourceLocation Loc) {
3472   VariadicCallType CallType =
3473       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3474 
3475   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
3476   CheckArgAlignment(
3477       Loc, FDecl, "'this'", Context.getPointerType(ThisType),
3478       Context.getPointerType(Ctor->getFunctionObjectParameterType()));
3479 
3480   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
3481             Loc, SourceRange(), CallType);
3482 }
3483 
3484 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
3485                              const FunctionProtoType *Proto) {
3486   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
3487                               isa<CXXMethodDecl>(FDecl);
3488   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
3489                           IsMemberOperatorCall;
3490   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
3491                                                   TheCall->getCallee());
3492   Expr** Args = TheCall->getArgs();
3493   unsigned NumArgs = TheCall->getNumArgs();
3494 
3495   Expr *ImplicitThis = nullptr;
3496   if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) {
3497     // If this is a call to a member operator, hide the first
3498     // argument from checkCall.
3499     // FIXME: Our choice of AST representation here is less than ideal.
3500     ImplicitThis = Args[0];
3501     ++Args;
3502     --NumArgs;
3503   } else if (IsMemberFunction && !FDecl->isStatic() &&
3504              !FDecl->hasCXXExplicitFunctionObjectParameter())
3505     ImplicitThis =
3506         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
3507 
3508   if (ImplicitThis) {
3509     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
3510     // used.
3511     QualType ThisType = ImplicitThis->getType();
3512     if (!ThisType->isPointerType()) {
3513       assert(!ThisType->isReferenceType());
3514       ThisType = Context.getPointerType(ThisType);
3515     }
3516 
3517     QualType ThisTypeFromDecl = Context.getPointerType(
3518         cast<CXXMethodDecl>(FDecl)->getFunctionObjectParameterType());
3519 
3520     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
3521                       ThisTypeFromDecl);
3522   }
3523 
3524   checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs),
3525             IsMemberFunction, TheCall->getRParenLoc(),
3526             TheCall->getCallee()->getSourceRange(), CallType);
3527 
3528   IdentifierInfo *FnInfo = FDecl->getIdentifier();
3529   // None of the checks below are needed for functions that don't have
3530   // simple names (e.g., C++ conversion functions).
3531   if (!FnInfo)
3532     return false;
3533 
3534   // Enforce TCB except for builtin calls, which are always allowed.
3535   if (FDecl->getBuiltinID() == 0)
3536     CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
3537 
3538   CheckAbsoluteValueFunction(TheCall, FDecl);
3539   CheckMaxUnsignedZero(TheCall, FDecl);
3540   CheckInfNaNFunction(TheCall, FDecl);
3541 
3542   if (getLangOpts().ObjC)
3543     ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs);
3544 
3545   unsigned CMId = FDecl->getMemoryFunctionKind();
3546 
3547   // Handle memory setting and copying functions.
3548   switch (CMId) {
3549   case 0:
3550     return false;
3551   case Builtin::BIstrlcpy: // fallthrough
3552   case Builtin::BIstrlcat:
3553     CheckStrlcpycatArguments(TheCall, FnInfo);
3554     break;
3555   case Builtin::BIstrncat:
3556     CheckStrncatArguments(TheCall, FnInfo);
3557     break;
3558   case Builtin::BIfree:
3559     CheckFreeArguments(TheCall);
3560     break;
3561   default:
3562     CheckMemaccessArguments(TheCall, CMId, FnInfo);
3563   }
3564 
3565   return false;
3566 }
3567 
3568 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
3569                             const FunctionProtoType *Proto) {
3570   QualType Ty;
3571   if (const auto *V = dyn_cast<VarDecl>(NDecl))
3572     Ty = V->getType().getNonReferenceType();
3573   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
3574     Ty = F->getType().getNonReferenceType();
3575   else
3576     return false;
3577 
3578   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
3579       !Ty->isFunctionProtoType())
3580     return false;
3581 
3582   VariadicCallType CallType;
3583   if (!Proto || !Proto->isVariadic()) {
3584     CallType = VariadicDoesNotApply;
3585   } else if (Ty->isBlockPointerType()) {
3586     CallType = VariadicBlock;
3587   } else { // Ty->isFunctionPointerType()
3588     CallType = VariadicFunction;
3589   }
3590 
3591   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
3592             llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
3593             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
3594             TheCall->getCallee()->getSourceRange(), CallType);
3595 
3596   return false;
3597 }
3598 
3599 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
3600   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
3601                                                   TheCall->getCallee());
3602   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
3603             llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
3604             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
3605             TheCall->getCallee()->getSourceRange(), CallType);
3606 
3607   return false;
3608 }
3609 
3610 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
3611   if (!llvm::isValidAtomicOrderingCABI(Ordering))
3612     return false;
3613 
3614   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
3615   switch (Op) {
3616   case AtomicExpr::AO__c11_atomic_init:
3617   case AtomicExpr::AO__opencl_atomic_init:
3618     llvm_unreachable("There is no ordering argument for an init");
3619 
3620   case AtomicExpr::AO__c11_atomic_load:
3621   case AtomicExpr::AO__opencl_atomic_load:
3622   case AtomicExpr::AO__hip_atomic_load:
3623   case AtomicExpr::AO__atomic_load_n:
3624   case AtomicExpr::AO__atomic_load:
3625   case AtomicExpr::AO__scoped_atomic_load_n:
3626   case AtomicExpr::AO__scoped_atomic_load:
3627     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
3628            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
3629 
3630   case AtomicExpr::AO__c11_atomic_store:
3631   case AtomicExpr::AO__opencl_atomic_store:
3632   case AtomicExpr::AO__hip_atomic_store:
3633   case AtomicExpr::AO__atomic_store:
3634   case AtomicExpr::AO__atomic_store_n:
3635   case AtomicExpr::AO__scoped_atomic_store:
3636   case AtomicExpr::AO__scoped_atomic_store_n:
3637     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
3638            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
3639            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
3640 
3641   default:
3642     return true;
3643   }
3644 }
3645 
3646 ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult,
3647                                      AtomicExpr::AtomicOp Op) {
3648   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3649   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3650   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
3651   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
3652                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
3653                          Op);
3654 }
3655 
3656 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
3657                                  SourceLocation RParenLoc, MultiExprArg Args,
3658                                  AtomicExpr::AtomicOp Op,
3659                                  AtomicArgumentOrder ArgOrder) {
3660   // All the non-OpenCL operations take one of the following forms.
3661   // The OpenCL operations take the __c11 forms with one extra argument for
3662   // synchronization scope.
3663   enum {
3664     // C    __c11_atomic_init(A *, C)
3665     Init,
3666 
3667     // C    __c11_atomic_load(A *, int)
3668     Load,
3669 
3670     // void __atomic_load(A *, CP, int)
3671     LoadCopy,
3672 
3673     // void __atomic_store(A *, CP, int)
3674     Copy,
3675 
3676     // C    __c11_atomic_add(A *, M, int)
3677     Arithmetic,
3678 
3679     // C    __atomic_exchange_n(A *, CP, int)
3680     Xchg,
3681 
3682     // void __atomic_exchange(A *, C *, CP, int)
3683     GNUXchg,
3684 
3685     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
3686     C11CmpXchg,
3687 
3688     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
3689     GNUCmpXchg
3690   } Form = Init;
3691 
3692   const unsigned NumForm = GNUCmpXchg + 1;
3693   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
3694   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
3695   // where:
3696   //   C is an appropriate type,
3697   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
3698   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
3699   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
3700   //   the int parameters are for orderings.
3701 
3702   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
3703       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
3704       "need to update code for modified forms");
3705   static_assert(AtomicExpr::AO__atomic_add_fetch == 0 &&
3706                     AtomicExpr::AO__atomic_xor_fetch + 1 ==
3707                         AtomicExpr::AO__c11_atomic_compare_exchange_strong,
3708                 "need to update code for modified C11 atomics");
3709   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong &&
3710                   Op <= AtomicExpr::AO__opencl_atomic_store;
3711   bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong &&
3712                Op <= AtomicExpr::AO__hip_atomic_store;
3713   bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch &&
3714                   Op <= AtomicExpr::AO__scoped_atomic_xor_fetch;
3715   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong &&
3716                 Op <= AtomicExpr::AO__c11_atomic_store) ||
3717                IsOpenCL;
3718   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
3719              Op == AtomicExpr::AO__atomic_store_n ||
3720              Op == AtomicExpr::AO__atomic_exchange_n ||
3721              Op == AtomicExpr::AO__atomic_compare_exchange_n ||
3722              Op == AtomicExpr::AO__scoped_atomic_load_n ||
3723              Op == AtomicExpr::AO__scoped_atomic_store_n ||
3724              Op == AtomicExpr::AO__scoped_atomic_exchange_n ||
3725              Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n;
3726   // Bit mask for extra allowed value types other than integers for atomic
3727   // arithmetic operations. Add/sub allow pointer and floating point. Min/max
3728   // allow floating point.
3729   enum ArithOpExtraValueType {
3730     AOEVT_None = 0,
3731     AOEVT_Pointer = 1,
3732     AOEVT_FP = 2,
3733   };
3734   unsigned ArithAllows = AOEVT_None;
3735 
3736   switch (Op) {
3737   case AtomicExpr::AO__c11_atomic_init:
3738   case AtomicExpr::AO__opencl_atomic_init:
3739     Form = Init;
3740     break;
3741 
3742   case AtomicExpr::AO__c11_atomic_load:
3743   case AtomicExpr::AO__opencl_atomic_load:
3744   case AtomicExpr::AO__hip_atomic_load:
3745   case AtomicExpr::AO__atomic_load_n:
3746   case AtomicExpr::AO__scoped_atomic_load_n:
3747     Form = Load;
3748     break;
3749 
3750   case AtomicExpr::AO__atomic_load:
3751   case AtomicExpr::AO__scoped_atomic_load:
3752     Form = LoadCopy;
3753     break;
3754 
3755   case AtomicExpr::AO__c11_atomic_store:
3756   case AtomicExpr::AO__opencl_atomic_store:
3757   case AtomicExpr::AO__hip_atomic_store:
3758   case AtomicExpr::AO__atomic_store:
3759   case AtomicExpr::AO__atomic_store_n:
3760   case AtomicExpr::AO__scoped_atomic_store:
3761   case AtomicExpr::AO__scoped_atomic_store_n:
3762     Form = Copy;
3763     break;
3764   case AtomicExpr::AO__atomic_fetch_add:
3765   case AtomicExpr::AO__atomic_fetch_sub:
3766   case AtomicExpr::AO__atomic_add_fetch:
3767   case AtomicExpr::AO__atomic_sub_fetch:
3768   case AtomicExpr::AO__scoped_atomic_fetch_add:
3769   case AtomicExpr::AO__scoped_atomic_fetch_sub:
3770   case AtomicExpr::AO__scoped_atomic_add_fetch:
3771   case AtomicExpr::AO__scoped_atomic_sub_fetch:
3772   case AtomicExpr::AO__c11_atomic_fetch_add:
3773   case AtomicExpr::AO__c11_atomic_fetch_sub:
3774   case AtomicExpr::AO__opencl_atomic_fetch_add:
3775   case AtomicExpr::AO__opencl_atomic_fetch_sub:
3776   case AtomicExpr::AO__hip_atomic_fetch_add:
3777   case AtomicExpr::AO__hip_atomic_fetch_sub:
3778     ArithAllows = AOEVT_Pointer | AOEVT_FP;
3779     Form = Arithmetic;
3780     break;
3781   case AtomicExpr::AO__atomic_fetch_max:
3782   case AtomicExpr::AO__atomic_fetch_min:
3783   case AtomicExpr::AO__atomic_max_fetch:
3784   case AtomicExpr::AO__atomic_min_fetch:
3785   case AtomicExpr::AO__scoped_atomic_fetch_max:
3786   case AtomicExpr::AO__scoped_atomic_fetch_min:
3787   case AtomicExpr::AO__scoped_atomic_max_fetch:
3788   case AtomicExpr::AO__scoped_atomic_min_fetch:
3789   case AtomicExpr::AO__c11_atomic_fetch_max:
3790   case AtomicExpr::AO__c11_atomic_fetch_min:
3791   case AtomicExpr::AO__opencl_atomic_fetch_max:
3792   case AtomicExpr::AO__opencl_atomic_fetch_min:
3793   case AtomicExpr::AO__hip_atomic_fetch_max:
3794   case AtomicExpr::AO__hip_atomic_fetch_min:
3795     ArithAllows = AOEVT_FP;
3796     Form = Arithmetic;
3797     break;
3798   case AtomicExpr::AO__c11_atomic_fetch_and:
3799   case AtomicExpr::AO__c11_atomic_fetch_or:
3800   case AtomicExpr::AO__c11_atomic_fetch_xor:
3801   case AtomicExpr::AO__hip_atomic_fetch_and:
3802   case AtomicExpr::AO__hip_atomic_fetch_or:
3803   case AtomicExpr::AO__hip_atomic_fetch_xor:
3804   case AtomicExpr::AO__c11_atomic_fetch_nand:
3805   case AtomicExpr::AO__opencl_atomic_fetch_and:
3806   case AtomicExpr::AO__opencl_atomic_fetch_or:
3807   case AtomicExpr::AO__opencl_atomic_fetch_xor:
3808   case AtomicExpr::AO__atomic_fetch_and:
3809   case AtomicExpr::AO__atomic_fetch_or:
3810   case AtomicExpr::AO__atomic_fetch_xor:
3811   case AtomicExpr::AO__atomic_fetch_nand:
3812   case AtomicExpr::AO__atomic_and_fetch:
3813   case AtomicExpr::AO__atomic_or_fetch:
3814   case AtomicExpr::AO__atomic_xor_fetch:
3815   case AtomicExpr::AO__atomic_nand_fetch:
3816   case AtomicExpr::AO__scoped_atomic_fetch_and:
3817   case AtomicExpr::AO__scoped_atomic_fetch_or:
3818   case AtomicExpr::AO__scoped_atomic_fetch_xor:
3819   case AtomicExpr::AO__scoped_atomic_fetch_nand:
3820   case AtomicExpr::AO__scoped_atomic_and_fetch:
3821   case AtomicExpr::AO__scoped_atomic_or_fetch:
3822   case AtomicExpr::AO__scoped_atomic_xor_fetch:
3823   case AtomicExpr::AO__scoped_atomic_nand_fetch:
3824     Form = Arithmetic;
3825     break;
3826 
3827   case AtomicExpr::AO__c11_atomic_exchange:
3828   case AtomicExpr::AO__hip_atomic_exchange:
3829   case AtomicExpr::AO__opencl_atomic_exchange:
3830   case AtomicExpr::AO__atomic_exchange_n:
3831   case AtomicExpr::AO__scoped_atomic_exchange_n:
3832     Form = Xchg;
3833     break;
3834 
3835   case AtomicExpr::AO__atomic_exchange:
3836   case AtomicExpr::AO__scoped_atomic_exchange:
3837     Form = GNUXchg;
3838     break;
3839 
3840   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
3841   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
3842   case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
3843   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
3844   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
3845   case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
3846     Form = C11CmpXchg;
3847     break;
3848 
3849   case AtomicExpr::AO__atomic_compare_exchange:
3850   case AtomicExpr::AO__atomic_compare_exchange_n:
3851   case AtomicExpr::AO__scoped_atomic_compare_exchange:
3852   case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
3853     Form = GNUCmpXchg;
3854     break;
3855   }
3856 
3857   unsigned AdjustedNumArgs = NumArgs[Form];
3858   if ((IsOpenCL || IsHIP || IsScoped) &&
3859       Op != AtomicExpr::AO__opencl_atomic_init)
3860     ++AdjustedNumArgs;
3861   // Check we have the right number of arguments.
3862   if (Args.size() < AdjustedNumArgs) {
3863     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
3864         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
3865         << /*is non object*/ 0 << ExprRange;
3866     return ExprError();
3867   } else if (Args.size() > AdjustedNumArgs) {
3868     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
3869          diag::err_typecheck_call_too_many_args)
3870         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
3871         << /*is non object*/ 0 << ExprRange;
3872     return ExprError();
3873   }
3874 
3875   // Inspect the first argument of the atomic operation.
3876   Expr *Ptr = Args[0];
3877   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
3878   if (ConvertedPtr.isInvalid())
3879     return ExprError();
3880 
3881   Ptr = ConvertedPtr.get();
3882   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
3883   if (!pointerType) {
3884     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
3885         << Ptr->getType() << 0 << Ptr->getSourceRange();
3886     return ExprError();
3887   }
3888 
3889   // For a __c11 builtin, this should be a pointer to an _Atomic type.
3890   QualType AtomTy = pointerType->getPointeeType(); // 'A'
3891   QualType ValType = AtomTy; // 'C'
3892   if (IsC11) {
3893     if (!AtomTy->isAtomicType()) {
3894       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
3895           << Ptr->getType() << Ptr->getSourceRange();
3896       return ExprError();
3897     }
3898     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
3899         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
3900       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
3901           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
3902           << Ptr->getSourceRange();
3903       return ExprError();
3904     }
3905     ValType = AtomTy->castAs<AtomicType>()->getValueType();
3906   } else if (Form != Load && Form != LoadCopy) {
3907     if (ValType.isConstQualified()) {
3908       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
3909           << Ptr->getType() << Ptr->getSourceRange();
3910       return ExprError();
3911     }
3912   }
3913 
3914   // Pointer to object of size zero is not allowed.
3915   if (RequireCompleteType(Ptr->getBeginLoc(), AtomTy,
3916                           diag::err_incomplete_type))
3917     return ExprError();
3918   if (Context.getTypeInfoInChars(AtomTy).Width.isZero()) {
3919     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
3920         << Ptr->getType() << 1 << Ptr->getSourceRange();
3921     return ExprError();
3922   }
3923 
3924   // For an arithmetic operation, the implied arithmetic must be well-formed.
3925   if (Form == Arithmetic) {
3926     // GCC does not enforce these rules for GNU atomics, but we do to help catch
3927     // trivial type errors.
3928     auto IsAllowedValueType = [&](QualType ValType,
3929                                   unsigned AllowedType) -> bool {
3930       if (ValType->isIntegerType())
3931         return true;
3932       if (ValType->isPointerType())
3933         return AllowedType & AOEVT_Pointer;
3934       if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP)))
3935         return false;
3936       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
3937       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
3938           &Context.getTargetInfo().getLongDoubleFormat() ==
3939               &llvm::APFloat::x87DoubleExtended())
3940         return false;
3941       return true;
3942     };
3943     if (!IsAllowedValueType(ValType, ArithAllows)) {
3944       auto DID = ArithAllows & AOEVT_FP
3945                      ? (ArithAllows & AOEVT_Pointer
3946                             ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp
3947                             : diag::err_atomic_op_needs_atomic_int_or_fp)
3948                      : diag::err_atomic_op_needs_atomic_int;
3949       Diag(ExprRange.getBegin(), DID)
3950           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3951       return ExprError();
3952     }
3953     if (IsC11 && ValType->isPointerType() &&
3954         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
3955                             diag::err_incomplete_type)) {
3956       return ExprError();
3957     }
3958   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
3959     // For __atomic_*_n operations, the value type must be a scalar integral or
3960     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
3961     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
3962         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
3963     return ExprError();
3964   }
3965 
3966   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
3967       !AtomTy->isScalarType()) {
3968     // For GNU atomics, require a trivially-copyable type. This is not part of
3969     // the GNU atomics specification but we enforce it for consistency with
3970     // other atomics which generally all require a trivially-copyable type. This
3971     // is because atomics just copy bits.
3972     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
3973         << Ptr->getType() << Ptr->getSourceRange();
3974     return ExprError();
3975   }
3976 
3977   switch (ValType.getObjCLifetime()) {
3978   case Qualifiers::OCL_None:
3979   case Qualifiers::OCL_ExplicitNone:
3980     // okay
3981     break;
3982 
3983   case Qualifiers::OCL_Weak:
3984   case Qualifiers::OCL_Strong:
3985   case Qualifiers::OCL_Autoreleasing:
3986     // FIXME: Can this happen? By this point, ValType should be known
3987     // to be trivially copyable.
3988     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
3989         << ValType << Ptr->getSourceRange();
3990     return ExprError();
3991   }
3992 
3993   // All atomic operations have an overload which takes a pointer to a volatile
3994   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
3995   // into the result or the other operands. Similarly atomic_load takes a
3996   // pointer to a const 'A'.
3997   ValType.removeLocalVolatile();
3998   ValType.removeLocalConst();
3999   QualType ResultType = ValType;
4000   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4001       Form == Init)
4002     ResultType = Context.VoidTy;
4003   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4004     ResultType = Context.BoolTy;
4005 
4006   // The type of a parameter passed 'by value'. In the GNU atomics, such
4007   // arguments are actually passed as pointers.
4008   QualType ByValType = ValType; // 'CP'
4009   bool IsPassedByAddress = false;
4010   if (!IsC11 && !IsHIP && !IsN) {
4011     ByValType = Ptr->getType();
4012     IsPassedByAddress = true;
4013   }
4014 
4015   SmallVector<Expr *, 5> APIOrderedArgs;
4016   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4017     APIOrderedArgs.push_back(Args[0]);
4018     switch (Form) {
4019     case Init:
4020     case Load:
4021       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4022       break;
4023     case LoadCopy:
4024     case Copy:
4025     case Arithmetic:
4026     case Xchg:
4027       APIOrderedArgs.push_back(Args[2]); // Val1
4028       APIOrderedArgs.push_back(Args[1]); // Order
4029       break;
4030     case GNUXchg:
4031       APIOrderedArgs.push_back(Args[2]); // Val1
4032       APIOrderedArgs.push_back(Args[3]); // Val2
4033       APIOrderedArgs.push_back(Args[1]); // Order
4034       break;
4035     case C11CmpXchg:
4036       APIOrderedArgs.push_back(Args[2]); // Val1
4037       APIOrderedArgs.push_back(Args[4]); // Val2
4038       APIOrderedArgs.push_back(Args[1]); // Order
4039       APIOrderedArgs.push_back(Args[3]); // OrderFail
4040       break;
4041     case GNUCmpXchg:
4042       APIOrderedArgs.push_back(Args[2]); // Val1
4043       APIOrderedArgs.push_back(Args[4]); // Val2
4044       APIOrderedArgs.push_back(Args[5]); // Weak
4045       APIOrderedArgs.push_back(Args[1]); // Order
4046       APIOrderedArgs.push_back(Args[3]); // OrderFail
4047       break;
4048     }
4049   } else
4050     APIOrderedArgs.append(Args.begin(), Args.end());
4051 
4052   // The first argument's non-CV pointer type is used to deduce the type of
4053   // subsequent arguments, except for:
4054   //  - weak flag (always converted to bool)
4055   //  - memory order (always converted to int)
4056   //  - scope  (always converted to int)
4057   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
4058     QualType Ty;
4059     if (i < NumVals[Form] + 1) {
4060       switch (i) {
4061       case 0:
4062         // The first argument is always a pointer. It has a fixed type.
4063         // It is always dereferenced, a nullptr is undefined.
4064         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4065         // Nothing else to do: we already know all we want about this pointer.
4066         continue;
4067       case 1:
4068         // The second argument is the non-atomic operand. For arithmetic, this
4069         // is always passed by value, and for a compare_exchange it is always
4070         // passed by address. For the rest, GNU uses by-address and C11 uses
4071         // by-value.
4072         assert(Form != Load);
4073         if (Form == Arithmetic && ValType->isPointerType())
4074           Ty = Context.getPointerDiffType();
4075         else if (Form == Init || Form == Arithmetic)
4076           Ty = ValType;
4077         else if (Form == Copy || Form == Xchg) {
4078           if (IsPassedByAddress) {
4079             // The value pointer is always dereferenced, a nullptr is undefined.
4080             CheckNonNullArgument(*this, APIOrderedArgs[i],
4081                                  ExprRange.getBegin());
4082           }
4083           Ty = ByValType;
4084         } else {
4085           Expr *ValArg = APIOrderedArgs[i];
4086           // The value pointer is always dereferenced, a nullptr is undefined.
4087           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
4088           LangAS AS = LangAS::Default;
4089           // Keep address space of non-atomic pointer type.
4090           if (const PointerType *PtrTy =
4091                   ValArg->getType()->getAs<PointerType>()) {
4092             AS = PtrTy->getPointeeType().getAddressSpace();
4093           }
4094           Ty = Context.getPointerType(
4095               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
4096         }
4097         break;
4098       case 2:
4099         // The third argument to compare_exchange / GNU exchange is the desired
4100         // value, either by-value (for the C11 and *_n variant) or as a pointer.
4101         if (IsPassedByAddress)
4102           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
4103         Ty = ByValType;
4104         break;
4105       case 3:
4106         // The fourth argument to GNU compare_exchange is a 'weak' flag.
4107         Ty = Context.BoolTy;
4108         break;
4109       }
4110     } else {
4111       // The order(s) and scope are always converted to int.
4112       Ty = Context.IntTy;
4113     }
4114 
4115     InitializedEntity Entity =
4116         InitializedEntity::InitializeParameter(Context, Ty, false);
4117     ExprResult Arg = APIOrderedArgs[i];
4118     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4119     if (Arg.isInvalid())
4120       return true;
4121     APIOrderedArgs[i] = Arg.get();
4122   }
4123 
4124   // Permute the arguments into a 'consistent' order.
4125   SmallVector<Expr*, 5> SubExprs;
4126   SubExprs.push_back(Ptr);
4127   switch (Form) {
4128   case Init:
4129     // Note, AtomicExpr::getVal1() has a special case for this atomic.
4130     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4131     break;
4132   case Load:
4133     SubExprs.push_back(APIOrderedArgs[1]); // Order
4134     break;
4135   case LoadCopy:
4136   case Copy:
4137   case Arithmetic:
4138   case Xchg:
4139     SubExprs.push_back(APIOrderedArgs[2]); // Order
4140     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4141     break;
4142   case GNUXchg:
4143     // Note, AtomicExpr::getVal2() has a special case for this atomic.
4144     SubExprs.push_back(APIOrderedArgs[3]); // Order
4145     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4146     SubExprs.push_back(APIOrderedArgs[2]); // Val2
4147     break;
4148   case C11CmpXchg:
4149     SubExprs.push_back(APIOrderedArgs[3]); // Order
4150     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4151     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
4152     SubExprs.push_back(APIOrderedArgs[2]); // Val2
4153     break;
4154   case GNUCmpXchg:
4155     SubExprs.push_back(APIOrderedArgs[4]); // Order
4156     SubExprs.push_back(APIOrderedArgs[1]); // Val1
4157     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
4158     SubExprs.push_back(APIOrderedArgs[2]); // Val2
4159     SubExprs.push_back(APIOrderedArgs[3]); // Weak
4160     break;
4161   }
4162 
4163   // If the memory orders are constants, check they are valid.
4164   if (SubExprs.size() >= 2 && Form != Init) {
4165     std::optional<llvm::APSInt> Success =
4166         SubExprs[1]->getIntegerConstantExpr(Context);
4167     if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) {
4168       Diag(SubExprs[1]->getBeginLoc(),
4169            diag::warn_atomic_op_has_invalid_memory_order)
4170           << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg)
4171           << SubExprs[1]->getSourceRange();
4172     }
4173     if (SubExprs.size() >= 5) {
4174       if (std::optional<llvm::APSInt> Failure =
4175               SubExprs[3]->getIntegerConstantExpr(Context)) {
4176         if (!llvm::is_contained(
4177                 {llvm::AtomicOrderingCABI::relaxed,
4178                  llvm::AtomicOrderingCABI::consume,
4179                  llvm::AtomicOrderingCABI::acquire,
4180                  llvm::AtomicOrderingCABI::seq_cst},
4181                 (llvm::AtomicOrderingCABI)Failure->getSExtValue())) {
4182           Diag(SubExprs[3]->getBeginLoc(),
4183                diag::warn_atomic_op_has_invalid_memory_order)
4184               << /*failure=*/2 << SubExprs[3]->getSourceRange();
4185         }
4186       }
4187     }
4188   }
4189 
4190   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
4191     auto *Scope = Args[Args.size() - 1];
4192     if (std::optional<llvm::APSInt> Result =
4193             Scope->getIntegerConstantExpr(Context)) {
4194       if (!ScopeModel->isValid(Result->getZExtValue()))
4195         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
4196             << Scope->getSourceRange();
4197     }
4198     SubExprs.push_back(Scope);
4199   }
4200 
4201   AtomicExpr *AE = new (Context)
4202       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
4203 
4204   if ((Op == AtomicExpr::AO__c11_atomic_load ||
4205        Op == AtomicExpr::AO__c11_atomic_store ||
4206        Op == AtomicExpr::AO__opencl_atomic_load ||
4207        Op == AtomicExpr::AO__hip_atomic_load ||
4208        Op == AtomicExpr::AO__opencl_atomic_store ||
4209        Op == AtomicExpr::AO__hip_atomic_store) &&
4210       Context.AtomicUsesUnsupportedLibcall(AE))
4211     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
4212         << ((Op == AtomicExpr::AO__c11_atomic_load ||
4213              Op == AtomicExpr::AO__opencl_atomic_load ||
4214              Op == AtomicExpr::AO__hip_atomic_load)
4215                 ? 0
4216                 : 1);
4217 
4218   if (ValType->isBitIntType()) {
4219     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
4220     return ExprError();
4221   }
4222 
4223   return AE;
4224 }
4225 
4226 /// checkBuiltinArgument - Given a call to a builtin function, perform
4227 /// normal type-checking on the given argument, updating the call in
4228 /// place.  This is useful when a builtin function requires custom
4229 /// type-checking for some of its arguments but not necessarily all of
4230 /// them.
4231 ///
4232 /// Returns true on error.
4233 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
4234   FunctionDecl *Fn = E->getDirectCallee();
4235   assert(Fn && "builtin call without direct callee!");
4236 
4237   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
4238   InitializedEntity Entity =
4239     InitializedEntity::InitializeParameter(S.Context, Param);
4240 
4241   ExprResult Arg = E->getArg(ArgIndex);
4242   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
4243   if (Arg.isInvalid())
4244     return true;
4245 
4246   E->setArg(ArgIndex, Arg.get());
4247   return false;
4248 }
4249 
4250 ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) {
4251   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
4252   Expr *Callee = TheCall->getCallee();
4253   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
4254   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4255 
4256   // Ensure that we have at least one argument to do type inference from.
4257   if (TheCall->getNumArgs() < 1) {
4258     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4259         << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
4260         << Callee->getSourceRange();
4261     return ExprError();
4262   }
4263 
4264   // Inspect the first argument of the atomic builtin.  This should always be
4265   // a pointer type, whose element is an integral scalar or pointer type.
4266   // Because it is a pointer type, we don't have to worry about any implicit
4267   // casts here.
4268   // FIXME: We don't allow floating point scalars as input.
4269   Expr *FirstArg = TheCall->getArg(0);
4270   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
4271   if (FirstArgResult.isInvalid())
4272     return ExprError();
4273   FirstArg = FirstArgResult.get();
4274   TheCall->setArg(0, FirstArg);
4275 
4276   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
4277   if (!pointerType) {
4278     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
4279         << FirstArg->getType() << 0 << FirstArg->getSourceRange();
4280     return ExprError();
4281   }
4282 
4283   QualType ValType = pointerType->getPointeeType();
4284   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4285       !ValType->isBlockPointerType()) {
4286     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
4287         << FirstArg->getType() << 0 << FirstArg->getSourceRange();
4288     return ExprError();
4289   }
4290 
4291   if (ValType.isConstQualified()) {
4292     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
4293         << FirstArg->getType() << FirstArg->getSourceRange();
4294     return ExprError();
4295   }
4296 
4297   switch (ValType.getObjCLifetime()) {
4298   case Qualifiers::OCL_None:
4299   case Qualifiers::OCL_ExplicitNone:
4300     // okay
4301     break;
4302 
4303   case Qualifiers::OCL_Weak:
4304   case Qualifiers::OCL_Strong:
4305   case Qualifiers::OCL_Autoreleasing:
4306     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
4307         << ValType << FirstArg->getSourceRange();
4308     return ExprError();
4309   }
4310 
4311   // Strip any qualifiers off ValType.
4312   ValType = ValType.getUnqualifiedType();
4313 
4314   // The majority of builtins return a value, but a few have special return
4315   // types, so allow them to override appropriately below.
4316   QualType ResultType = ValType;
4317 
4318   // We need to figure out which concrete builtin this maps onto.  For example,
4319   // __sync_fetch_and_add with a 2 byte object turns into
4320   // __sync_fetch_and_add_2.
4321 #define BUILTIN_ROW(x) \
4322   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
4323     Builtin::BI##x##_8, Builtin::BI##x##_16 }
4324 
4325   static const unsigned BuiltinIndices[][5] = {
4326     BUILTIN_ROW(__sync_fetch_and_add),
4327     BUILTIN_ROW(__sync_fetch_and_sub),
4328     BUILTIN_ROW(__sync_fetch_and_or),
4329     BUILTIN_ROW(__sync_fetch_and_and),
4330     BUILTIN_ROW(__sync_fetch_and_xor),
4331     BUILTIN_ROW(__sync_fetch_and_nand),
4332 
4333     BUILTIN_ROW(__sync_add_and_fetch),
4334     BUILTIN_ROW(__sync_sub_and_fetch),
4335     BUILTIN_ROW(__sync_and_and_fetch),
4336     BUILTIN_ROW(__sync_or_and_fetch),
4337     BUILTIN_ROW(__sync_xor_and_fetch),
4338     BUILTIN_ROW(__sync_nand_and_fetch),
4339 
4340     BUILTIN_ROW(__sync_val_compare_and_swap),
4341     BUILTIN_ROW(__sync_bool_compare_and_swap),
4342     BUILTIN_ROW(__sync_lock_test_and_set),
4343     BUILTIN_ROW(__sync_lock_release),
4344     BUILTIN_ROW(__sync_swap)
4345   };
4346 #undef BUILTIN_ROW
4347 
4348   // Determine the index of the size.
4349   unsigned SizeIndex;
4350   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
4351   case 1: SizeIndex = 0; break;
4352   case 2: SizeIndex = 1; break;
4353   case 4: SizeIndex = 2; break;
4354   case 8: SizeIndex = 3; break;
4355   case 16: SizeIndex = 4; break;
4356   default:
4357     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
4358         << FirstArg->getType() << FirstArg->getSourceRange();
4359     return ExprError();
4360   }
4361 
4362   // Each of these builtins has one pointer argument, followed by some number of
4363   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
4364   // that we ignore.  Find out which row of BuiltinIndices to read from as well
4365   // as the number of fixed args.
4366   unsigned BuiltinID = FDecl->getBuiltinID();
4367   unsigned BuiltinIndex, NumFixed = 1;
4368   bool WarnAboutSemanticsChange = false;
4369   switch (BuiltinID) {
4370   default: llvm_unreachable("Unknown overloaded atomic builtin!");
4371   case Builtin::BI__sync_fetch_and_add:
4372   case Builtin::BI__sync_fetch_and_add_1:
4373   case Builtin::BI__sync_fetch_and_add_2:
4374   case Builtin::BI__sync_fetch_and_add_4:
4375   case Builtin::BI__sync_fetch_and_add_8:
4376   case Builtin::BI__sync_fetch_and_add_16:
4377     BuiltinIndex = 0;
4378     break;
4379 
4380   case Builtin::BI__sync_fetch_and_sub:
4381   case Builtin::BI__sync_fetch_and_sub_1:
4382   case Builtin::BI__sync_fetch_and_sub_2:
4383   case Builtin::BI__sync_fetch_and_sub_4:
4384   case Builtin::BI__sync_fetch_and_sub_8:
4385   case Builtin::BI__sync_fetch_and_sub_16:
4386     BuiltinIndex = 1;
4387     break;
4388 
4389   case Builtin::BI__sync_fetch_and_or:
4390   case Builtin::BI__sync_fetch_and_or_1:
4391   case Builtin::BI__sync_fetch_and_or_2:
4392   case Builtin::BI__sync_fetch_and_or_4:
4393   case Builtin::BI__sync_fetch_and_or_8:
4394   case Builtin::BI__sync_fetch_and_or_16:
4395     BuiltinIndex = 2;
4396     break;
4397 
4398   case Builtin::BI__sync_fetch_and_and:
4399   case Builtin::BI__sync_fetch_and_and_1:
4400   case Builtin::BI__sync_fetch_and_and_2:
4401   case Builtin::BI__sync_fetch_and_and_4:
4402   case Builtin::BI__sync_fetch_and_and_8:
4403   case Builtin::BI__sync_fetch_and_and_16:
4404     BuiltinIndex = 3;
4405     break;
4406 
4407   case Builtin::BI__sync_fetch_and_xor:
4408   case Builtin::BI__sync_fetch_and_xor_1:
4409   case Builtin::BI__sync_fetch_and_xor_2:
4410   case Builtin::BI__sync_fetch_and_xor_4:
4411   case Builtin::BI__sync_fetch_and_xor_8:
4412   case Builtin::BI__sync_fetch_and_xor_16:
4413     BuiltinIndex = 4;
4414     break;
4415 
4416   case Builtin::BI__sync_fetch_and_nand:
4417   case Builtin::BI__sync_fetch_and_nand_1:
4418   case Builtin::BI__sync_fetch_and_nand_2:
4419   case Builtin::BI__sync_fetch_and_nand_4:
4420   case Builtin::BI__sync_fetch_and_nand_8:
4421   case Builtin::BI__sync_fetch_and_nand_16:
4422     BuiltinIndex = 5;
4423     WarnAboutSemanticsChange = true;
4424     break;
4425 
4426   case Builtin::BI__sync_add_and_fetch:
4427   case Builtin::BI__sync_add_and_fetch_1:
4428   case Builtin::BI__sync_add_and_fetch_2:
4429   case Builtin::BI__sync_add_and_fetch_4:
4430   case Builtin::BI__sync_add_and_fetch_8:
4431   case Builtin::BI__sync_add_and_fetch_16:
4432     BuiltinIndex = 6;
4433     break;
4434 
4435   case Builtin::BI__sync_sub_and_fetch:
4436   case Builtin::BI__sync_sub_and_fetch_1:
4437   case Builtin::BI__sync_sub_and_fetch_2:
4438   case Builtin::BI__sync_sub_and_fetch_4:
4439   case Builtin::BI__sync_sub_and_fetch_8:
4440   case Builtin::BI__sync_sub_and_fetch_16:
4441     BuiltinIndex = 7;
4442     break;
4443 
4444   case Builtin::BI__sync_and_and_fetch:
4445   case Builtin::BI__sync_and_and_fetch_1:
4446   case Builtin::BI__sync_and_and_fetch_2:
4447   case Builtin::BI__sync_and_and_fetch_4:
4448   case Builtin::BI__sync_and_and_fetch_8:
4449   case Builtin::BI__sync_and_and_fetch_16:
4450     BuiltinIndex = 8;
4451     break;
4452 
4453   case Builtin::BI__sync_or_and_fetch:
4454   case Builtin::BI__sync_or_and_fetch_1:
4455   case Builtin::BI__sync_or_and_fetch_2:
4456   case Builtin::BI__sync_or_and_fetch_4:
4457   case Builtin::BI__sync_or_and_fetch_8:
4458   case Builtin::BI__sync_or_and_fetch_16:
4459     BuiltinIndex = 9;
4460     break;
4461 
4462   case Builtin::BI__sync_xor_and_fetch:
4463   case Builtin::BI__sync_xor_and_fetch_1:
4464   case Builtin::BI__sync_xor_and_fetch_2:
4465   case Builtin::BI__sync_xor_and_fetch_4:
4466   case Builtin::BI__sync_xor_and_fetch_8:
4467   case Builtin::BI__sync_xor_and_fetch_16:
4468     BuiltinIndex = 10;
4469     break;
4470 
4471   case Builtin::BI__sync_nand_and_fetch:
4472   case Builtin::BI__sync_nand_and_fetch_1:
4473   case Builtin::BI__sync_nand_and_fetch_2:
4474   case Builtin::BI__sync_nand_and_fetch_4:
4475   case Builtin::BI__sync_nand_and_fetch_8:
4476   case Builtin::BI__sync_nand_and_fetch_16:
4477     BuiltinIndex = 11;
4478     WarnAboutSemanticsChange = true;
4479     break;
4480 
4481   case Builtin::BI__sync_val_compare_and_swap:
4482   case Builtin::BI__sync_val_compare_and_swap_1:
4483   case Builtin::BI__sync_val_compare_and_swap_2:
4484   case Builtin::BI__sync_val_compare_and_swap_4:
4485   case Builtin::BI__sync_val_compare_and_swap_8:
4486   case Builtin::BI__sync_val_compare_and_swap_16:
4487     BuiltinIndex = 12;
4488     NumFixed = 2;
4489     break;
4490 
4491   case Builtin::BI__sync_bool_compare_and_swap:
4492   case Builtin::BI__sync_bool_compare_and_swap_1:
4493   case Builtin::BI__sync_bool_compare_and_swap_2:
4494   case Builtin::BI__sync_bool_compare_and_swap_4:
4495   case Builtin::BI__sync_bool_compare_and_swap_8:
4496   case Builtin::BI__sync_bool_compare_and_swap_16:
4497     BuiltinIndex = 13;
4498     NumFixed = 2;
4499     ResultType = Context.BoolTy;
4500     break;
4501 
4502   case Builtin::BI__sync_lock_test_and_set:
4503   case Builtin::BI__sync_lock_test_and_set_1:
4504   case Builtin::BI__sync_lock_test_and_set_2:
4505   case Builtin::BI__sync_lock_test_and_set_4:
4506   case Builtin::BI__sync_lock_test_and_set_8:
4507   case Builtin::BI__sync_lock_test_and_set_16:
4508     BuiltinIndex = 14;
4509     break;
4510 
4511   case Builtin::BI__sync_lock_release:
4512   case Builtin::BI__sync_lock_release_1:
4513   case Builtin::BI__sync_lock_release_2:
4514   case Builtin::BI__sync_lock_release_4:
4515   case Builtin::BI__sync_lock_release_8:
4516   case Builtin::BI__sync_lock_release_16:
4517     BuiltinIndex = 15;
4518     NumFixed = 0;
4519     ResultType = Context.VoidTy;
4520     break;
4521 
4522   case Builtin::BI__sync_swap:
4523   case Builtin::BI__sync_swap_1:
4524   case Builtin::BI__sync_swap_2:
4525   case Builtin::BI__sync_swap_4:
4526   case Builtin::BI__sync_swap_8:
4527   case Builtin::BI__sync_swap_16:
4528     BuiltinIndex = 16;
4529     break;
4530   }
4531 
4532   // Now that we know how many fixed arguments we expect, first check that we
4533   // have at least that many.
4534   if (TheCall->getNumArgs() < 1+NumFixed) {
4535     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
4536         << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0
4537         << Callee->getSourceRange();
4538     return ExprError();
4539   }
4540 
4541   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
4542       << Callee->getSourceRange();
4543 
4544   if (WarnAboutSemanticsChange) {
4545     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
4546         << Callee->getSourceRange();
4547   }
4548 
4549   // Get the decl for the concrete builtin from this, we can tell what the
4550   // concrete integer type we should convert to is.
4551   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
4552   StringRef NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
4553   FunctionDecl *NewBuiltinDecl;
4554   if (NewBuiltinID == BuiltinID)
4555     NewBuiltinDecl = FDecl;
4556   else {
4557     // Perform builtin lookup to avoid redeclaring it.
4558     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
4559     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
4560     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
4561     assert(Res.getFoundDecl());
4562     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
4563     if (!NewBuiltinDecl)
4564       return ExprError();
4565   }
4566 
4567   // The first argument --- the pointer --- has a fixed type; we
4568   // deduce the types of the rest of the arguments accordingly.  Walk
4569   // the remaining arguments, converting them to the deduced value type.
4570   for (unsigned i = 0; i != NumFixed; ++i) {
4571     ExprResult Arg = TheCall->getArg(i+1);
4572 
4573     // GCC does an implicit conversion to the pointer or integer ValType.  This
4574     // can fail in some cases (1i -> int**), check for this error case now.
4575     // Initialize the argument.
4576     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
4577                                                    ValType, /*consume*/ false);
4578     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
4579     if (Arg.isInvalid())
4580       return ExprError();
4581 
4582     // Okay, we have something that *can* be converted to the right type.  Check
4583     // to see if there is a potentially weird extension going on here.  This can
4584     // happen when you do an atomic operation on something like an char* and
4585     // pass in 42.  The 42 gets converted to char.  This is even more strange
4586     // for things like 45.123 -> char, etc.
4587     // FIXME: Do this check.
4588     TheCall->setArg(i+1, Arg.get());
4589   }
4590 
4591   // Create a new DeclRefExpr to refer to the new decl.
4592   DeclRefExpr *NewDRE = DeclRefExpr::Create(
4593       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
4594       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
4595       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
4596 
4597   // Set the callee in the CallExpr.
4598   // FIXME: This loses syntactic information.
4599   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
4600   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
4601                                               CK_BuiltinFnToFnPtr);
4602   TheCall->setCallee(PromotedCall.get());
4603 
4604   // Change the result type of the call to match the original value type. This
4605   // is arbitrary, but the codegen for these builtins ins design to handle it
4606   // gracefully.
4607   TheCall->setType(ResultType);
4608 
4609   // Prohibit problematic uses of bit-precise integer types with atomic
4610   // builtins. The arguments would have already been converted to the first
4611   // argument's type, so only need to check the first argument.
4612   const auto *BitIntValType = ValType->getAs<BitIntType>();
4613   if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
4614     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
4615     return ExprError();
4616   }
4617 
4618   return TheCallResult;
4619 }
4620 
4621 ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) {
4622   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
4623   DeclRefExpr *DRE =
4624       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4625   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
4626   unsigned BuiltinID = FDecl->getBuiltinID();
4627   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
4628           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
4629          "Unexpected nontemporal load/store builtin!");
4630   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
4631   unsigned numArgs = isStore ? 2 : 1;
4632 
4633   // Ensure that we have the proper number of arguments.
4634   if (checkArgCount(TheCall, numArgs))
4635     return ExprError();
4636 
4637   // Inspect the last argument of the nontemporal builtin.  This should always
4638   // be a pointer type, from which we imply the type of the memory access.
4639   // Because it is a pointer type, we don't have to worry about any implicit
4640   // casts here.
4641   Expr *PointerArg = TheCall->getArg(numArgs - 1);
4642   ExprResult PointerArgResult =
4643       DefaultFunctionArrayLvalueConversion(PointerArg);
4644 
4645   if (PointerArgResult.isInvalid())
4646     return ExprError();
4647   PointerArg = PointerArgResult.get();
4648   TheCall->setArg(numArgs - 1, PointerArg);
4649 
4650   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
4651   if (!pointerType) {
4652     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
4653         << PointerArg->getType() << PointerArg->getSourceRange();
4654     return ExprError();
4655   }
4656 
4657   QualType ValType = pointerType->getPointeeType();
4658 
4659   // Strip any qualifiers off ValType.
4660   ValType = ValType.getUnqualifiedType();
4661   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
4662       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
4663       !ValType->isVectorType()) {
4664     Diag(DRE->getBeginLoc(),
4665          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
4666         << PointerArg->getType() << PointerArg->getSourceRange();
4667     return ExprError();
4668   }
4669 
4670   if (!isStore) {
4671     TheCall->setType(ValType);
4672     return TheCallResult;
4673   }
4674 
4675   ExprResult ValArg = TheCall->getArg(0);
4676   InitializedEntity Entity = InitializedEntity::InitializeParameter(
4677       Context, ValType, /*consume*/ false);
4678   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
4679   if (ValArg.isInvalid())
4680     return ExprError();
4681 
4682   TheCall->setArg(0, ValArg.get());
4683   TheCall->setType(Context.VoidTy);
4684   return TheCallResult;
4685 }
4686 
4687 /// CheckObjCString - Checks that the format string argument to the os_log()
4688 /// and os_trace() functions is correct, and converts it to const char *.
4689 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
4690   Arg = Arg->IgnoreParenCasts();
4691   auto *Literal = dyn_cast<StringLiteral>(Arg);
4692   if (!Literal) {
4693     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
4694       Literal = ObjcLiteral->getString();
4695     }
4696   }
4697 
4698   if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
4699     return ExprError(
4700         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
4701         << Arg->getSourceRange());
4702   }
4703 
4704   ExprResult Result(Literal);
4705   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
4706   InitializedEntity Entity =
4707       InitializedEntity::InitializeParameter(Context, ResultTy, false);
4708   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
4709   return Result;
4710 }
4711 
4712 /// Check that the user is calling the appropriate va_start builtin for the
4713 /// target and calling convention.
4714 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
4715   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
4716   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
4717   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
4718                     TT.getArch() == llvm::Triple::aarch64_32);
4719   bool IsWindows = TT.isOSWindows();
4720   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
4721   if (IsX64 || IsAArch64) {
4722     CallingConv CC = CC_C;
4723     if (const FunctionDecl *FD = S.getCurFunctionDecl())
4724       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
4725     if (IsMSVAStart) {
4726       // Don't allow this in System V ABI functions.
4727       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
4728         return S.Diag(Fn->getBeginLoc(),
4729                       diag::err_ms_va_start_used_in_sysv_function);
4730     } else {
4731       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
4732       // On x64 Windows, don't allow this in System V ABI functions.
4733       // (Yes, that means there's no corresponding way to support variadic
4734       // System V ABI functions on Windows.)
4735       if ((IsWindows && CC == CC_X86_64SysV) ||
4736           (!IsWindows && CC == CC_Win64))
4737         return S.Diag(Fn->getBeginLoc(),
4738                       diag::err_va_start_used_in_wrong_abi_function)
4739                << !IsWindows;
4740     }
4741     return false;
4742   }
4743 
4744   if (IsMSVAStart)
4745     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
4746   return false;
4747 }
4748 
4749 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
4750                                              ParmVarDecl **LastParam = nullptr) {
4751   // Determine whether the current function, block, or obj-c method is variadic
4752   // and get its parameter list.
4753   bool IsVariadic = false;
4754   ArrayRef<ParmVarDecl *> Params;
4755   DeclContext *Caller = S.CurContext;
4756   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
4757     IsVariadic = Block->isVariadic();
4758     Params = Block->parameters();
4759   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
4760     IsVariadic = FD->isVariadic();
4761     Params = FD->parameters();
4762   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
4763     IsVariadic = MD->isVariadic();
4764     // FIXME: This isn't correct for methods (results in bogus warning).
4765     Params = MD->parameters();
4766   } else if (isa<CapturedDecl>(Caller)) {
4767     // We don't support va_start in a CapturedDecl.
4768     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
4769     return true;
4770   } else {
4771     // This must be some other declcontext that parses exprs.
4772     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
4773     return true;
4774   }
4775 
4776   if (!IsVariadic) {
4777     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
4778     return true;
4779   }
4780 
4781   if (LastParam)
4782     *LastParam = Params.empty() ? nullptr : Params.back();
4783 
4784   return false;
4785 }
4786 
4787 bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
4788   Expr *Fn = TheCall->getCallee();
4789 
4790   if (checkVAStartABI(*this, BuiltinID, Fn))
4791     return true;
4792 
4793   // In C23 mode, va_start only needs one argument. However, the builtin still
4794   // requires two arguments (which matches the behavior of the GCC builtin),
4795   // <stdarg.h> passes `0` as the second argument in C23 mode.
4796   if (checkArgCount(TheCall, 2))
4797     return true;
4798 
4799   // Type-check the first argument normally.
4800   if (checkBuiltinArgument(*this, TheCall, 0))
4801     return true;
4802 
4803   // Check that the current function is variadic, and get its last parameter.
4804   ParmVarDecl *LastParam;
4805   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
4806     return true;
4807 
4808   // Verify that the second argument to the builtin is the last argument of the
4809   // current function or method. In C23 mode, if the second argument is an
4810   // integer constant expression with value 0, then we don't bother with this
4811   // check.
4812   bool SecondArgIsLastNamedArgument = false;
4813   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
4814   if (std::optional<llvm::APSInt> Val =
4815           TheCall->getArg(1)->getIntegerConstantExpr(Context);
4816       Val && LangOpts.C23 && *Val == 0)
4817     return false;
4818 
4819   // These are valid if SecondArgIsLastNamedArgument is false after the next
4820   // block.
4821   QualType Type;
4822   SourceLocation ParamLoc;
4823   bool IsCRegister = false;
4824 
4825   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
4826     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
4827       SecondArgIsLastNamedArgument = PV == LastParam;
4828 
4829       Type = PV->getType();
4830       ParamLoc = PV->getLocation();
4831       IsCRegister =
4832           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
4833     }
4834   }
4835 
4836   if (!SecondArgIsLastNamedArgument)
4837     Diag(TheCall->getArg(1)->getBeginLoc(),
4838          diag::warn_second_arg_of_va_start_not_last_named_param);
4839   else if (IsCRegister || Type->isReferenceType() ||
4840            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
4841              // Promotable integers are UB, but enumerations need a bit of
4842              // extra checking to see what their promotable type actually is.
4843              if (!Context.isPromotableIntegerType(Type))
4844                return false;
4845              if (!Type->isEnumeralType())
4846                return true;
4847              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
4848              return !(ED &&
4849                       Context.typesAreCompatible(ED->getPromotionType(), Type));
4850            }()) {
4851     unsigned Reason = 0;
4852     if (Type->isReferenceType())  Reason = 1;
4853     else if (IsCRegister)         Reason = 2;
4854     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
4855     Diag(ParamLoc, diag::note_parameter_type) << Type;
4856   }
4857 
4858   return false;
4859 }
4860 
4861 bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) {
4862   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
4863     const LangOptions &LO = getLangOpts();
4864 
4865     if (LO.CPlusPlus)
4866       return Arg->getType()
4867                  .getCanonicalType()
4868                  .getTypePtr()
4869                  ->getPointeeType()
4870                  .withoutLocalFastQualifiers() == Context.CharTy;
4871 
4872     // In C, allow aliasing through `char *`, this is required for AArch64 at
4873     // least.
4874     return true;
4875   };
4876 
4877   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
4878   //                 const char *named_addr);
4879 
4880   Expr *Func = Call->getCallee();
4881 
4882   if (Call->getNumArgs() < 3)
4883     return Diag(Call->getEndLoc(),
4884                 diag::err_typecheck_call_too_few_args_at_least)
4885            << 0 /*function call*/ << 3 << Call->getNumArgs()
4886            << /*is non object*/ 0;
4887 
4888   // Type-check the first argument normally.
4889   if (checkBuiltinArgument(*this, Call, 0))
4890     return true;
4891 
4892   // Check that the current function is variadic.
4893   if (checkVAStartIsInVariadicFunction(*this, Func))
4894     return true;
4895 
4896   // __va_start on Windows does not validate the parameter qualifiers
4897 
4898   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
4899   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
4900 
4901   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
4902   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
4903 
4904   const QualType &ConstCharPtrTy =
4905       Context.getPointerType(Context.CharTy.withConst());
4906   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
4907     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
4908         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
4909         << 0                                      /* qualifier difference */
4910         << 3                                      /* parameter mismatch */
4911         << 2 << Arg1->getType() << ConstCharPtrTy;
4912 
4913   const QualType SizeTy = Context.getSizeType();
4914   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
4915     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
4916         << Arg2->getType() << SizeTy << 1 /* different class */
4917         << 0                              /* qualifier difference */
4918         << 3                              /* parameter mismatch */
4919         << 3 << Arg2->getType() << SizeTy;
4920 
4921   return false;
4922 }
4923 
4924 bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) {
4925   if (checkArgCount(TheCall, 2))
4926     return true;
4927 
4928   if (BuiltinID == Builtin::BI__builtin_isunordered &&
4929       TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs())
4930     Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4931         << 1 << 0 << TheCall->getSourceRange();
4932 
4933   ExprResult OrigArg0 = TheCall->getArg(0);
4934   ExprResult OrigArg1 = TheCall->getArg(1);
4935 
4936   // Do standard promotions between the two arguments, returning their common
4937   // type.
4938   QualType Res = UsualArithmeticConversions(
4939       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
4940   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
4941     return true;
4942 
4943   // Make sure any conversions are pushed back into the call; this is
4944   // type safe since unordered compare builtins are declared as "_Bool
4945   // foo(...)".
4946   TheCall->setArg(0, OrigArg0.get());
4947   TheCall->setArg(1, OrigArg1.get());
4948 
4949   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
4950     return false;
4951 
4952   // If the common type isn't a real floating type, then the arguments were
4953   // invalid for this operation.
4954   if (Res.isNull() || !Res->isRealFloatingType())
4955     return Diag(OrigArg0.get()->getBeginLoc(),
4956                 diag::err_typecheck_call_invalid_ordered_compare)
4957            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
4958            << SourceRange(OrigArg0.get()->getBeginLoc(),
4959                           OrigArg1.get()->getEndLoc());
4960 
4961   return false;
4962 }
4963 
4964 bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
4965                                    unsigned BuiltinID) {
4966   if (checkArgCount(TheCall, NumArgs))
4967     return true;
4968 
4969   FPOptions FPO = TheCall->getFPFeaturesInEffect(getLangOpts());
4970   if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite ||
4971                                BuiltinID == Builtin::BI__builtin_isinf ||
4972                                BuiltinID == Builtin::BI__builtin_isinf_sign))
4973     Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4974         << 0 << 0 << TheCall->getSourceRange();
4975 
4976   if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan ||
4977                                BuiltinID == Builtin::BI__builtin_isunordered))
4978     Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
4979         << 1 << 0 << TheCall->getSourceRange();
4980 
4981   bool IsFPClass = NumArgs == 2;
4982 
4983   // Find out position of floating-point argument.
4984   unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1;
4985 
4986   // We can count on all parameters preceding the floating-point just being int.
4987   // Try all of those.
4988   for (unsigned i = 0; i < FPArgNo; ++i) {
4989     Expr *Arg = TheCall->getArg(i);
4990 
4991     if (Arg->isTypeDependent())
4992       return false;
4993 
4994     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy,
4995                                                AssignmentAction::Passing);
4996 
4997     if (Res.isInvalid())
4998       return true;
4999     TheCall->setArg(i, Res.get());
5000   }
5001 
5002   Expr *OrigArg = TheCall->getArg(FPArgNo);
5003 
5004   if (OrigArg->isTypeDependent())
5005     return false;
5006 
5007   // Usual Unary Conversions will convert half to float, which we want for
5008   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5009   // type how it is, but do normal L->Rvalue conversions.
5010   if (Context.getTargetInfo().useFP16ConversionIntrinsics()) {
5011     ExprResult Res = UsualUnaryConversions(OrigArg);
5012 
5013     if (!Res.isUsable())
5014       return true;
5015     OrigArg = Res.get();
5016   } else {
5017     ExprResult Res = DefaultFunctionArrayLvalueConversion(OrigArg);
5018 
5019     if (!Res.isUsable())
5020       return true;
5021     OrigArg = Res.get();
5022   }
5023   TheCall->setArg(FPArgNo, OrigArg);
5024 
5025   QualType VectorResultTy;
5026   QualType ElementTy = OrigArg->getType();
5027   // TODO: When all classification function are implemented with is_fpclass,
5028   // vector argument can be supported in all of them.
5029   if (ElementTy->isVectorType() && IsFPClass) {
5030     VectorResultTy = GetSignedVectorType(ElementTy);
5031     ElementTy = ElementTy->castAs<VectorType>()->getElementType();
5032   }
5033 
5034   // This operation requires a non-_Complex floating-point number.
5035   if (!ElementTy->isRealFloatingType())
5036     return Diag(OrigArg->getBeginLoc(),
5037                 diag::err_typecheck_call_invalid_unary_fp)
5038            << OrigArg->getType() << OrigArg->getSourceRange();
5039 
5040   // __builtin_isfpclass has integer parameter that specify test mask. It is
5041   // passed in (...), so it should be analyzed completely here.
5042   if (IsFPClass)
5043     if (BuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags))
5044       return true;
5045 
5046   // TODO: enable this code to all classification functions.
5047   if (IsFPClass) {
5048     QualType ResultTy;
5049     if (!VectorResultTy.isNull())
5050       ResultTy = VectorResultTy;
5051     else
5052       ResultTy = Context.IntTy;
5053     TheCall->setType(ResultTy);
5054   }
5055 
5056   return false;
5057 }
5058 
5059 bool Sema::BuiltinComplex(CallExpr *TheCall) {
5060   if (checkArgCount(TheCall, 2))
5061     return true;
5062 
5063   bool Dependent = false;
5064   for (unsigned I = 0; I != 2; ++I) {
5065     Expr *Arg = TheCall->getArg(I);
5066     QualType T = Arg->getType();
5067     if (T->isDependentType()) {
5068       Dependent = true;
5069       continue;
5070     }
5071 
5072     // Despite supporting _Complex int, GCC requires a real floating point type
5073     // for the operands of __builtin_complex.
5074     if (!T->isRealFloatingType()) {
5075       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5076              << Arg->getType() << Arg->getSourceRange();
5077     }
5078 
5079     ExprResult Converted = DefaultLvalueConversion(Arg);
5080     if (Converted.isInvalid())
5081       return true;
5082     TheCall->setArg(I, Converted.get());
5083   }
5084 
5085   if (Dependent) {
5086     TheCall->setType(Context.DependentTy);
5087     return false;
5088   }
5089 
5090   Expr *Real = TheCall->getArg(0);
5091   Expr *Imag = TheCall->getArg(1);
5092   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
5093     return Diag(Real->getBeginLoc(),
5094                 diag::err_typecheck_call_different_arg_types)
5095            << Real->getType() << Imag->getType()
5096            << Real->getSourceRange() << Imag->getSourceRange();
5097   }
5098 
5099   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
5100   // don't allow this builtin to form those types either.
5101   // FIXME: Should we allow these types?
5102   if (Real->getType()->isFloat16Type())
5103     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
5104            << "_Float16";
5105   if (Real->getType()->isHalfType())
5106     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
5107            << "half";
5108 
5109   TheCall->setType(Context.getComplexType(Real->getType()));
5110   return false;
5111 }
5112 
5113 /// BuiltinShuffleVector - Handle __builtin_shufflevector.
5114 // This is declared to take (...), so we have to check everything.
5115 ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) {
5116   if (TheCall->getNumArgs() < 2)
5117     return ExprError(Diag(TheCall->getEndLoc(),
5118                           diag::err_typecheck_call_too_few_args_at_least)
5119                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
5120                      << /*is non object*/ 0 << TheCall->getSourceRange());
5121 
5122   // Determine which of the following types of shufflevector we're checking:
5123   // 1) unary, vector mask: (lhs, mask)
5124   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
5125   QualType resType = TheCall->getArg(0)->getType();
5126   unsigned numElements = 0;
5127 
5128   if (!TheCall->getArg(0)->isTypeDependent() &&
5129       !TheCall->getArg(1)->isTypeDependent()) {
5130     QualType LHSType = TheCall->getArg(0)->getType();
5131     QualType RHSType = TheCall->getArg(1)->getType();
5132 
5133     if (!LHSType->isVectorType() || !RHSType->isVectorType())
5134       return ExprError(
5135           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
5136           << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false
5137           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5138                          TheCall->getArg(1)->getEndLoc()));
5139 
5140     numElements = LHSType->castAs<VectorType>()->getNumElements();
5141     unsigned numResElements = TheCall->getNumArgs() - 2;
5142 
5143     // Check to see if we have a call with 2 vector arguments, the unary shuffle
5144     // with mask.  If so, verify that RHS is an integer vector type with the
5145     // same number of elts as lhs.
5146     if (TheCall->getNumArgs() == 2) {
5147       if (!RHSType->hasIntegerRepresentation() ||
5148           RHSType->castAs<VectorType>()->getNumElements() != numElements)
5149         return ExprError(Diag(TheCall->getBeginLoc(),
5150                               diag::err_vec_builtin_incompatible_vector)
5151                          << TheCall->getDirectCallee()
5152                          << /*isMorethantwoArgs*/ false
5153                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
5154                                         TheCall->getArg(1)->getEndLoc()));
5155     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
5156       return ExprError(Diag(TheCall->getBeginLoc(),
5157                             diag::err_vec_builtin_incompatible_vector)
5158                        << TheCall->getDirectCallee()
5159                        << /*isMorethantwoArgs*/ false
5160                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
5161                                       TheCall->getArg(1)->getEndLoc()));
5162     } else if (numElements != numResElements) {
5163       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
5164       resType =
5165           Context.getVectorType(eltType, numResElements, VectorKind::Generic);
5166     }
5167   }
5168 
5169   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
5170     if (TheCall->getArg(i)->isTypeDependent() ||
5171         TheCall->getArg(i)->isValueDependent())
5172       continue;
5173 
5174     std::optional<llvm::APSInt> Result;
5175     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
5176       return ExprError(Diag(TheCall->getBeginLoc(),
5177                             diag::err_shufflevector_nonconstant_argument)
5178                        << TheCall->getArg(i)->getSourceRange());
5179 
5180     // Allow -1 which will be translated to undef in the IR.
5181     if (Result->isSigned() && Result->isAllOnes())
5182       continue;
5183 
5184     if (Result->getActiveBits() > 64 ||
5185         Result->getZExtValue() >= numElements * 2)
5186       return ExprError(Diag(TheCall->getBeginLoc(),
5187                             diag::err_shufflevector_argument_too_large)
5188                        << TheCall->getArg(i)->getSourceRange());
5189   }
5190 
5191   SmallVector<Expr*, 32> exprs;
5192 
5193   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
5194     exprs.push_back(TheCall->getArg(i));
5195     TheCall->setArg(i, nullptr);
5196   }
5197 
5198   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
5199                                          TheCall->getCallee()->getBeginLoc(),
5200                                          TheCall->getRParenLoc());
5201 }
5202 
5203 ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
5204                                    SourceLocation BuiltinLoc,
5205                                    SourceLocation RParenLoc) {
5206   ExprValueKind VK = VK_PRValue;
5207   ExprObjectKind OK = OK_Ordinary;
5208   QualType DstTy = TInfo->getType();
5209   QualType SrcTy = E->getType();
5210 
5211   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
5212     return ExprError(Diag(BuiltinLoc,
5213                           diag::err_convertvector_non_vector)
5214                      << E->getSourceRange());
5215   if (!DstTy->isVectorType() && !DstTy->isDependentType())
5216     return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type)
5217                      << "second"
5218                      << "__builtin_convertvector");
5219 
5220   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
5221     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
5222     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
5223     if (SrcElts != DstElts)
5224       return ExprError(Diag(BuiltinLoc,
5225                             diag::err_convertvector_incompatible_vector)
5226                        << E->getSourceRange());
5227   }
5228 
5229   return new (Context) class ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
5230                                                BuiltinLoc, RParenLoc);
5231 }
5232 
5233 bool Sema::BuiltinPrefetch(CallExpr *TheCall) {
5234   unsigned NumArgs = TheCall->getNumArgs();
5235 
5236   if (NumArgs > 3)
5237     return Diag(TheCall->getEndLoc(),
5238                 diag::err_typecheck_call_too_many_args_at_most)
5239            << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0
5240            << TheCall->getSourceRange();
5241 
5242   // Argument 0 is checked for us and the remaining arguments must be
5243   // constant integers.
5244   for (unsigned i = 1; i != NumArgs; ++i)
5245     if (BuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
5246       return true;
5247 
5248   return false;
5249 }
5250 
5251 bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) {
5252   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
5253     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
5254            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5255   if (checkArgCount(TheCall, 1))
5256     return true;
5257   Expr *Arg = TheCall->getArg(0);
5258   if (Arg->isInstantiationDependent())
5259     return false;
5260 
5261   QualType ArgTy = Arg->getType();
5262   if (!ArgTy->hasFloatingRepresentation())
5263     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
5264            << ArgTy;
5265   if (Arg->isLValue()) {
5266     ExprResult FirstArg = DefaultLvalueConversion(Arg);
5267     TheCall->setArg(0, FirstArg.get());
5268   }
5269   TheCall->setType(TheCall->getArg(0)->getType());
5270   return false;
5271 }
5272 
5273 bool Sema::BuiltinAssume(CallExpr *TheCall) {
5274   Expr *Arg = TheCall->getArg(0);
5275   if (Arg->isInstantiationDependent()) return false;
5276 
5277   if (Arg->HasSideEffects(Context))
5278     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
5279         << Arg->getSourceRange()
5280         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
5281 
5282   return false;
5283 }
5284 
5285 bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) {
5286   // The alignment must be a constant integer.
5287   Expr *Arg = TheCall->getArg(1);
5288 
5289   // We can't check the value of a dependent argument.
5290   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
5291     if (const auto *UE =
5292             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
5293       if (UE->getKind() == UETT_AlignOf ||
5294           UE->getKind() == UETT_PreferredAlignOf)
5295         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
5296             << Arg->getSourceRange();
5297 
5298     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
5299 
5300     if (!Result.isPowerOf2())
5301       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5302              << Arg->getSourceRange();
5303 
5304     if (Result < Context.getCharWidth())
5305       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
5306              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
5307 
5308     if (Result > std::numeric_limits<int32_t>::max())
5309       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
5310              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
5311   }
5312 
5313   return false;
5314 }
5315 
5316 bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) {
5317   if (checkArgCountRange(TheCall, 2, 3))
5318     return true;
5319 
5320   unsigned NumArgs = TheCall->getNumArgs();
5321   Expr *FirstArg = TheCall->getArg(0);
5322 
5323   {
5324     ExprResult FirstArgResult =
5325         DefaultFunctionArrayLvalueConversion(FirstArg);
5326     if (!FirstArgResult.get()->getType()->isPointerType()) {
5327       Diag(TheCall->getBeginLoc(), diag::err_builtin_assume_aligned_invalid_arg)
5328           << TheCall->getSourceRange();
5329       return true;
5330     }
5331     TheCall->setArg(0, FirstArgResult.get());
5332   }
5333 
5334   // The alignment must be a constant integer.
5335   Expr *SecondArg = TheCall->getArg(1);
5336 
5337   // We can't check the value of a dependent argument.
5338   if (!SecondArg->isValueDependent()) {
5339     llvm::APSInt Result;
5340     if (BuiltinConstantArg(TheCall, 1, Result))
5341       return true;
5342 
5343     if (!Result.isPowerOf2())
5344       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
5345              << SecondArg->getSourceRange();
5346 
5347     if (Result > Sema::MaximumAlignment)
5348       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
5349           << SecondArg->getSourceRange() << Sema::MaximumAlignment;
5350   }
5351 
5352   if (NumArgs > 2) {
5353     Expr *ThirdArg = TheCall->getArg(2);
5354     if (convertArgumentToType(*this, ThirdArg, Context.getSizeType()))
5355       return true;
5356     TheCall->setArg(2, ThirdArg);
5357   }
5358 
5359   return false;
5360 }
5361 
5362 bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) {
5363   unsigned BuiltinID =
5364       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
5365   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
5366 
5367   unsigned NumArgs = TheCall->getNumArgs();
5368   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
5369   if (NumArgs < NumRequiredArgs) {
5370     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
5371            << 0 /* function call */ << NumRequiredArgs << NumArgs
5372            << /*is non object*/ 0 << TheCall->getSourceRange();
5373   }
5374   if (NumArgs >= NumRequiredArgs + 0x100) {
5375     return Diag(TheCall->getEndLoc(),
5376                 diag::err_typecheck_call_too_many_args_at_most)
5377            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
5378            << /*is non object*/ 0 << TheCall->getSourceRange();
5379   }
5380   unsigned i = 0;
5381 
5382   // For formatting call, check buffer arg.
5383   if (!IsSizeCall) {
5384     ExprResult Arg(TheCall->getArg(i));
5385     InitializedEntity Entity = InitializedEntity::InitializeParameter(
5386         Context, Context.VoidPtrTy, false);
5387     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5388     if (Arg.isInvalid())
5389       return true;
5390     TheCall->setArg(i, Arg.get());
5391     i++;
5392   }
5393 
5394   // Check string literal arg.
5395   unsigned FormatIdx = i;
5396   {
5397     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
5398     if (Arg.isInvalid())
5399       return true;
5400     TheCall->setArg(i, Arg.get());
5401     i++;
5402   }
5403 
5404   // Make sure variadic args are scalar.
5405   unsigned FirstDataArg = i;
5406   while (i < NumArgs) {
5407     ExprResult Arg = DefaultVariadicArgumentPromotion(
5408         TheCall->getArg(i), VariadicFunction, nullptr);
5409     if (Arg.isInvalid())
5410       return true;
5411     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
5412     if (ArgSize.getQuantity() >= 0x100) {
5413       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
5414              << i << (int)ArgSize.getQuantity() << 0xff
5415              << TheCall->getSourceRange();
5416     }
5417     TheCall->setArg(i, Arg.get());
5418     i++;
5419   }
5420 
5421   // Check formatting specifiers. NOTE: We're only doing this for the non-size
5422   // call to avoid duplicate diagnostics.
5423   if (!IsSizeCall) {
5424     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
5425     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
5426     bool Success = CheckFormatArguments(
5427         Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog,
5428         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
5429         CheckedVarArgs);
5430     if (!Success)
5431       return true;
5432   }
5433 
5434   if (IsSizeCall) {
5435     TheCall->setType(Context.getSizeType());
5436   } else {
5437     TheCall->setType(Context.VoidPtrTy);
5438   }
5439   return false;
5440 }
5441 
5442 bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum,
5443                               llvm::APSInt &Result) {
5444   Expr *Arg = TheCall->getArg(ArgNum);
5445   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5446   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5447 
5448   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
5449 
5450   std::optional<llvm::APSInt> R;
5451   if (!(R = Arg->getIntegerConstantExpr(Context)))
5452     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
5453            << FDecl->getDeclName() << Arg->getSourceRange();
5454   Result = *R;
5455   return false;
5456 }
5457 
5458 bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
5459                                    int High, bool RangeIsError) {
5460   if (isConstantEvaluatedContext())
5461     return false;
5462   llvm::APSInt Result;
5463 
5464   // We can't check the value of a dependent argument.
5465   Expr *Arg = TheCall->getArg(ArgNum);
5466   if (Arg->isTypeDependent() || Arg->isValueDependent())
5467     return false;
5468 
5469   // Check constant-ness first.
5470   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5471     return true;
5472 
5473   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
5474     if (RangeIsError)
5475       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
5476              << toString(Result, 10) << Low << High << Arg->getSourceRange();
5477     else
5478       // Defer the warning until we know if the code will be emitted so that
5479       // dead code can ignore this.
5480       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
5481                           PDiag(diag::warn_argument_invalid_range)
5482                               << toString(Result, 10) << Low << High
5483                               << Arg->getSourceRange());
5484   }
5485 
5486   return false;
5487 }
5488 
5489 bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
5490                                       unsigned Num) {
5491   llvm::APSInt Result;
5492 
5493   // We can't check the value of a dependent argument.
5494   Expr *Arg = TheCall->getArg(ArgNum);
5495   if (Arg->isTypeDependent() || Arg->isValueDependent())
5496     return false;
5497 
5498   // Check constant-ness first.
5499   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5500     return true;
5501 
5502   if (Result.getSExtValue() % Num != 0)
5503     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
5504            << Num << Arg->getSourceRange();
5505 
5506   return false;
5507 }
5508 
5509 bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
5510   llvm::APSInt Result;
5511 
5512   // We can't check the value of a dependent argument.
5513   Expr *Arg = TheCall->getArg(ArgNum);
5514   if (Arg->isTypeDependent() || Arg->isValueDependent())
5515     return false;
5516 
5517   // Check constant-ness first.
5518   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5519     return true;
5520 
5521   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
5522   // and only if x is a power of 2.
5523   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
5524     return false;
5525 
5526   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
5527          << Arg->getSourceRange();
5528 }
5529 
5530 static bool IsShiftedByte(llvm::APSInt Value) {
5531   if (Value.isNegative())
5532     return false;
5533 
5534   // Check if it's a shifted byte, by shifting it down
5535   while (true) {
5536     // If the value fits in the bottom byte, the check passes.
5537     if (Value < 0x100)
5538       return true;
5539 
5540     // Otherwise, if the value has _any_ bits in the bottom byte, the check
5541     // fails.
5542     if ((Value & 0xFF) != 0)
5543       return false;
5544 
5545     // If the bottom 8 bits are all 0, but something above that is nonzero,
5546     // then shifting the value right by 8 bits won't affect whether it's a
5547     // shifted byte or not. So do that, and go round again.
5548     Value >>= 8;
5549   }
5550 }
5551 
5552 bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
5553                                          unsigned ArgBits) {
5554   llvm::APSInt Result;
5555 
5556   // We can't check the value of a dependent argument.
5557   Expr *Arg = TheCall->getArg(ArgNum);
5558   if (Arg->isTypeDependent() || Arg->isValueDependent())
5559     return false;
5560 
5561   // Check constant-ness first.
5562   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5563     return true;
5564 
5565   // Truncate to the given size.
5566   Result = Result.getLoBits(ArgBits);
5567   Result.setIsUnsigned(true);
5568 
5569   if (IsShiftedByte(Result))
5570     return false;
5571 
5572   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
5573          << Arg->getSourceRange();
5574 }
5575 
5576 bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
5577                                                unsigned ArgBits) {
5578   llvm::APSInt Result;
5579 
5580   // We can't check the value of a dependent argument.
5581   Expr *Arg = TheCall->getArg(ArgNum);
5582   if (Arg->isTypeDependent() || Arg->isValueDependent())
5583     return false;
5584 
5585   // Check constant-ness first.
5586   if (BuiltinConstantArg(TheCall, ArgNum, Result))
5587     return true;
5588 
5589   // Truncate to the given size.
5590   Result = Result.getLoBits(ArgBits);
5591   Result.setIsUnsigned(true);
5592 
5593   // Check to see if it's in either of the required forms.
5594   if (IsShiftedByte(Result) ||
5595       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
5596     return false;
5597 
5598   return Diag(TheCall->getBeginLoc(),
5599               diag::err_argument_not_shifted_byte_or_xxff)
5600          << Arg->getSourceRange();
5601 }
5602 
5603 bool Sema::BuiltinLongjmp(CallExpr *TheCall) {
5604   if (!Context.getTargetInfo().hasSjLjLowering())
5605     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
5606            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5607 
5608   Expr *Arg = TheCall->getArg(1);
5609   llvm::APSInt Result;
5610 
5611   // TODO: This is less than ideal. Overload this to take a value.
5612   if (BuiltinConstantArg(TheCall, 1, Result))
5613     return true;
5614 
5615   if (Result != 1)
5616     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
5617            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
5618 
5619   return false;
5620 }
5621 
5622 bool Sema::BuiltinSetjmp(CallExpr *TheCall) {
5623   if (!Context.getTargetInfo().hasSjLjLowering())
5624     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
5625            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
5626   return false;
5627 }
5628 
5629 bool Sema::BuiltinCountedByRef(CallExpr *TheCall) {
5630   if (checkArgCount(TheCall, 1))
5631     return true;
5632 
5633   ExprResult ArgRes = UsualUnaryConversions(TheCall->getArg(0));
5634   if (ArgRes.isInvalid())
5635     return true;
5636 
5637   // For simplicity, we support only limited expressions for the argument.
5638   // Specifically a pointer to a flexible array member:'ptr->array'. This
5639   // allows us to reject arguments with complex casting, which really shouldn't
5640   // be a huge problem.
5641   const Expr *Arg = ArgRes.get()->IgnoreParenImpCasts();
5642   if (!isa<PointerType>(Arg->getType()) && !Arg->getType()->isArrayType())
5643     return Diag(Arg->getBeginLoc(),
5644                 diag::err_builtin_counted_by_ref_must_be_flex_array_member)
5645            << Arg->getSourceRange();
5646 
5647   if (Arg->HasSideEffects(Context))
5648     return Diag(Arg->getBeginLoc(),
5649                 diag::err_builtin_counted_by_ref_has_side_effects)
5650            << Arg->getSourceRange();
5651 
5652   if (const auto *ME = dyn_cast<MemberExpr>(Arg)) {
5653     if (!ME->isFlexibleArrayMemberLike(
5654             Context, getLangOpts().getStrictFlexArraysLevel()))
5655       return Diag(Arg->getBeginLoc(),
5656                   diag::err_builtin_counted_by_ref_must_be_flex_array_member)
5657              << Arg->getSourceRange();
5658 
5659     if (auto *CATy =
5660             ME->getMemberDecl()->getType()->getAs<CountAttributedType>();
5661         CATy && CATy->getKind() == CountAttributedType::CountedBy) {
5662       const auto *FAMDecl = cast<FieldDecl>(ME->getMemberDecl());
5663       if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) {
5664         TheCall->setType(Context.getPointerType(CountFD->getType()));
5665         return false;
5666       }
5667     }
5668   } else {
5669     return Diag(Arg->getBeginLoc(),
5670                 diag::err_builtin_counted_by_ref_must_be_flex_array_member)
5671            << Arg->getSourceRange();
5672   }
5673 
5674   TheCall->setType(Context.getPointerType(Context.VoidTy));
5675   return false;
5676 }
5677 
5678 /// The result of __builtin_counted_by_ref cannot be assigned to a variable.
5679 /// It allows leaking and modification of bounds safety information.
5680 bool Sema::CheckInvalidBuiltinCountedByRef(const Expr *E,
5681                                            BuiltinCountedByRefKind K) {
5682   const CallExpr *CE =
5683       E ? dyn_cast<CallExpr>(E->IgnoreParenImpCasts()) : nullptr;
5684   if (!CE || CE->getBuiltinCallee() != Builtin::BI__builtin_counted_by_ref)
5685     return false;
5686 
5687   switch (K) {
5688   case AssignmentKind:
5689   case InitializerKind:
5690     Diag(E->getExprLoc(),
5691          diag::err_builtin_counted_by_ref_cannot_leak_reference)
5692         << 0 << E->getSourceRange();
5693     break;
5694   case FunctionArgKind:
5695     Diag(E->getExprLoc(),
5696          diag::err_builtin_counted_by_ref_cannot_leak_reference)
5697         << 1 << E->getSourceRange();
5698     break;
5699   case ReturnArgKind:
5700     Diag(E->getExprLoc(),
5701          diag::err_builtin_counted_by_ref_cannot_leak_reference)
5702         << 2 << E->getSourceRange();
5703     break;
5704   case ArraySubscriptKind:
5705     Diag(E->getExprLoc(), diag::err_builtin_counted_by_ref_invalid_use)
5706         << 0 << E->getSourceRange();
5707     break;
5708   case BinaryExprKind:
5709     Diag(E->getExprLoc(), diag::err_builtin_counted_by_ref_invalid_use)
5710         << 1 << E->getSourceRange();
5711     break;
5712   }
5713 
5714   return true;
5715 }
5716 
5717 namespace {
5718 
5719 class UncoveredArgHandler {
5720   enum { Unknown = -1, AllCovered = -2 };
5721 
5722   signed FirstUncoveredArg = Unknown;
5723   SmallVector<const Expr *, 4> DiagnosticExprs;
5724 
5725 public:
5726   UncoveredArgHandler() = default;
5727 
5728   bool hasUncoveredArg() const {
5729     return (FirstUncoveredArg >= 0);
5730   }
5731 
5732   unsigned getUncoveredArg() const {
5733     assert(hasUncoveredArg() && "no uncovered argument");
5734     return FirstUncoveredArg;
5735   }
5736 
5737   void setAllCovered() {
5738     // A string has been found with all arguments covered, so clear out
5739     // the diagnostics.
5740     DiagnosticExprs.clear();
5741     FirstUncoveredArg = AllCovered;
5742   }
5743 
5744   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
5745     assert(NewFirstUncoveredArg >= 0 && "Outside range");
5746 
5747     // Don't update if a previous string covers all arguments.
5748     if (FirstUncoveredArg == AllCovered)
5749       return;
5750 
5751     // UncoveredArgHandler tracks the highest uncovered argument index
5752     // and with it all the strings that match this index.
5753     if (NewFirstUncoveredArg == FirstUncoveredArg)
5754       DiagnosticExprs.push_back(StrExpr);
5755     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
5756       DiagnosticExprs.clear();
5757       DiagnosticExprs.push_back(StrExpr);
5758       FirstUncoveredArg = NewFirstUncoveredArg;
5759     }
5760   }
5761 
5762   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
5763 };
5764 
5765 enum StringLiteralCheckType {
5766   SLCT_NotALiteral,
5767   SLCT_UncheckedLiteral,
5768   SLCT_CheckedLiteral
5769 };
5770 
5771 } // namespace
5772 
5773 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
5774                                      BinaryOperatorKind BinOpKind,
5775                                      bool AddendIsRight) {
5776   unsigned BitWidth = Offset.getBitWidth();
5777   unsigned AddendBitWidth = Addend.getBitWidth();
5778   // There might be negative interim results.
5779   if (Addend.isUnsigned()) {
5780     Addend = Addend.zext(++AddendBitWidth);
5781     Addend.setIsSigned(true);
5782   }
5783   // Adjust the bit width of the APSInts.
5784   if (AddendBitWidth > BitWidth) {
5785     Offset = Offset.sext(AddendBitWidth);
5786     BitWidth = AddendBitWidth;
5787   } else if (BitWidth > AddendBitWidth) {
5788     Addend = Addend.sext(BitWidth);
5789   }
5790 
5791   bool Ov = false;
5792   llvm::APSInt ResOffset = Offset;
5793   if (BinOpKind == BO_Add)
5794     ResOffset = Offset.sadd_ov(Addend, Ov);
5795   else {
5796     assert(AddendIsRight && BinOpKind == BO_Sub &&
5797            "operator must be add or sub with addend on the right");
5798     ResOffset = Offset.ssub_ov(Addend, Ov);
5799   }
5800 
5801   // We add an offset to a pointer here so we should support an offset as big as
5802   // possible.
5803   if (Ov) {
5804     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
5805            "index (intermediate) result too big");
5806     Offset = Offset.sext(2 * BitWidth);
5807     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
5808     return;
5809   }
5810 
5811   Offset = ResOffset;
5812 }
5813 
5814 namespace {
5815 
5816 // This is a wrapper class around StringLiteral to support offsetted string
5817 // literals as format strings. It takes the offset into account when returning
5818 // the string and its length or the source locations to display notes correctly.
5819 class FormatStringLiteral {
5820   const StringLiteral *FExpr;
5821   int64_t Offset;
5822 
5823  public:
5824   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
5825       : FExpr(fexpr), Offset(Offset) {}
5826 
5827   StringRef getString() const {
5828     return FExpr->getString().drop_front(Offset);
5829   }
5830 
5831   unsigned getByteLength() const {
5832     return FExpr->getByteLength() - getCharByteWidth() * Offset;
5833   }
5834 
5835   unsigned getLength() const { return FExpr->getLength() - Offset; }
5836   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
5837 
5838   StringLiteralKind getKind() const { return FExpr->getKind(); }
5839 
5840   QualType getType() const { return FExpr->getType(); }
5841 
5842   bool isAscii() const { return FExpr->isOrdinary(); }
5843   bool isWide() const { return FExpr->isWide(); }
5844   bool isUTF8() const { return FExpr->isUTF8(); }
5845   bool isUTF16() const { return FExpr->isUTF16(); }
5846   bool isUTF32() const { return FExpr->isUTF32(); }
5847   bool isPascal() const { return FExpr->isPascal(); }
5848 
5849   SourceLocation getLocationOfByte(
5850       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
5851       const TargetInfo &Target, unsigned *StartToken = nullptr,
5852       unsigned *StartTokenByteOffset = nullptr) const {
5853     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
5854                                     StartToken, StartTokenByteOffset);
5855   }
5856 
5857   SourceLocation getBeginLoc() const LLVM_READONLY {
5858     return FExpr->getBeginLoc().getLocWithOffset(Offset);
5859   }
5860 
5861   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
5862 };
5863 
5864 } // namespace
5865 
5866 static void CheckFormatString(
5867     Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
5868     ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
5869     unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
5870     bool inFunctionCall, Sema::VariadicCallType CallType,
5871     llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
5872     bool IgnoreStringsWithoutSpecifiers);
5873 
5874 static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
5875                                                const Expr *E);
5876 
5877 // Determine if an expression is a string literal or constant string.
5878 // If this function returns false on the arguments to a function expecting a
5879 // format string, we will usually need to emit a warning.
5880 // True string literals are then checked by CheckFormatString.
5881 static StringLiteralCheckType
5882 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
5883                       Sema::FormatArgumentPassingKind APK, unsigned format_idx,
5884                       unsigned firstDataArg, Sema::FormatStringType Type,
5885                       Sema::VariadicCallType CallType, bool InFunctionCall,
5886                       llvm::SmallBitVector &CheckedVarArgs,
5887                       UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset,
5888                       bool IgnoreStringsWithoutSpecifiers = false) {
5889   if (S.isConstantEvaluatedContext())
5890     return SLCT_NotALiteral;
5891 tryAgain:
5892   assert(Offset.isSigned() && "invalid offset");
5893 
5894   if (E->isTypeDependent() || E->isValueDependent())
5895     return SLCT_NotALiteral;
5896 
5897   E = E->IgnoreParenCasts();
5898 
5899   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
5900     // Technically -Wformat-nonliteral does not warn about this case.
5901     // The behavior of printf and friends in this case is implementation
5902     // dependent.  Ideally if the format string cannot be null then
5903     // it should have a 'nonnull' attribute in the function prototype.
5904     return SLCT_UncheckedLiteral;
5905 
5906   switch (E->getStmtClass()) {
5907   case Stmt::InitListExprClass:
5908     // Handle expressions like {"foobar"}.
5909     if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) {
5910       return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
5911                                    Type, CallType, /*InFunctionCall*/ false,
5912                                    CheckedVarArgs, UncoveredArg, Offset,
5913                                    IgnoreStringsWithoutSpecifiers);
5914     }
5915     return SLCT_NotALiteral;
5916   case Stmt::BinaryConditionalOperatorClass:
5917   case Stmt::ConditionalOperatorClass: {
5918     // The expression is a literal if both sub-expressions were, and it was
5919     // completely checked only if both sub-expressions were checked.
5920     const AbstractConditionalOperator *C =
5921         cast<AbstractConditionalOperator>(E);
5922 
5923     // Determine whether it is necessary to check both sub-expressions, for
5924     // example, because the condition expression is a constant that can be
5925     // evaluated at compile time.
5926     bool CheckLeft = true, CheckRight = true;
5927 
5928     bool Cond;
5929     if (C->getCond()->EvaluateAsBooleanCondition(
5930             Cond, S.getASTContext(), S.isConstantEvaluatedContext())) {
5931       if (Cond)
5932         CheckRight = false;
5933       else
5934         CheckLeft = false;
5935     }
5936 
5937     // We need to maintain the offsets for the right and the left hand side
5938     // separately to check if every possible indexed expression is a valid
5939     // string literal. They might have different offsets for different string
5940     // literals in the end.
5941     StringLiteralCheckType Left;
5942     if (!CheckLeft)
5943       Left = SLCT_UncheckedLiteral;
5944     else {
5945       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx,
5946                                    firstDataArg, Type, CallType, InFunctionCall,
5947                                    CheckedVarArgs, UncoveredArg, Offset,
5948                                    IgnoreStringsWithoutSpecifiers);
5949       if (Left == SLCT_NotALiteral || !CheckRight) {
5950         return Left;
5951       }
5952     }
5953 
5954     StringLiteralCheckType Right = checkFormatStringExpr(
5955         S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type,
5956         CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
5957         IgnoreStringsWithoutSpecifiers);
5958 
5959     return (CheckLeft && Left < Right) ? Left : Right;
5960   }
5961 
5962   case Stmt::ImplicitCastExprClass:
5963     E = cast<ImplicitCastExpr>(E)->getSubExpr();
5964     goto tryAgain;
5965 
5966   case Stmt::OpaqueValueExprClass:
5967     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
5968       E = src;
5969       goto tryAgain;
5970     }
5971     return SLCT_NotALiteral;
5972 
5973   case Stmt::PredefinedExprClass:
5974     // While __func__, etc., are technically not string literals, they
5975     // cannot contain format specifiers and thus are not a security
5976     // liability.
5977     return SLCT_UncheckedLiteral;
5978 
5979   case Stmt::DeclRefExprClass: {
5980     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
5981 
5982     // As an exception, do not flag errors for variables binding to
5983     // const string literals.
5984     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
5985       bool isConstant = false;
5986       QualType T = DR->getType();
5987 
5988       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
5989         isConstant = AT->getElementType().isConstant(S.Context);
5990       } else if (const PointerType *PT = T->getAs<PointerType>()) {
5991         isConstant = T.isConstant(S.Context) &&
5992                      PT->getPointeeType().isConstant(S.Context);
5993       } else if (T->isObjCObjectPointerType()) {
5994         // In ObjC, there is usually no "const ObjectPointer" type,
5995         // so don't check if the pointee type is constant.
5996         isConstant = T.isConstant(S.Context);
5997       }
5998 
5999       if (isConstant) {
6000         if (const Expr *Init = VD->getAnyInitializer()) {
6001           // Look through initializers like const char c[] = { "foo" }
6002           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
6003             if (InitList->isStringLiteralInit())
6004               Init = InitList->getInit(0)->IgnoreParenImpCasts();
6005           }
6006           return checkFormatStringExpr(
6007               S, Init, Args, APK, format_idx, firstDataArg, Type, CallType,
6008               /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
6009         }
6010       }
6011 
6012       // When the format argument is an argument of this function, and this
6013       // function also has the format attribute, there are several interactions
6014       // for which there shouldn't be a warning. For instance, when calling
6015       // v*printf from a function that has the printf format attribute, we
6016       // should not emit a warning about using `fmt`, even though it's not
6017       // constant, because the arguments have already been checked for the
6018       // caller of `logmessage`:
6019       //
6020       //  __attribute__((format(printf, 1, 2)))
6021       //  void logmessage(char const *fmt, ...) {
6022       //    va_list ap;
6023       //    va_start(ap, fmt);
6024       //    vprintf(fmt, ap);  /* do not emit a warning about "fmt" */
6025       //    ...
6026       // }
6027       //
6028       // Another interaction that we need to support is calling a variadic
6029       // format function from a format function that has fixed arguments. For
6030       // instance:
6031       //
6032       //  __attribute__((format(printf, 1, 2)))
6033       //  void logstring(char const *fmt, char const *str) {
6034       //    printf(fmt, str);  /* do not emit a warning about "fmt" */
6035       //  }
6036       //
6037       // Same (and perhaps more relatably) for the variadic template case:
6038       //
6039       //  template<typename... Args>
6040       //  __attribute__((format(printf, 1, 2)))
6041       //  void log(const char *fmt, Args&&... args) {
6042       //    printf(fmt, forward<Args>(args)...);
6043       //           /* do not emit a warning about "fmt" */
6044       //  }
6045       //
6046       // Due to implementation difficulty, we only check the format, not the
6047       // format arguments, in all cases.
6048       //
6049       if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
6050         if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
6051           for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
6052             bool IsCXXMember = false;
6053             if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
6054               IsCXXMember = MD->isInstance();
6055 
6056             bool IsVariadic = false;
6057             if (const FunctionType *FnTy = D->getFunctionType())
6058               IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
6059             else if (const auto *BD = dyn_cast<BlockDecl>(D))
6060               IsVariadic = BD->isVariadic();
6061             else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
6062               IsVariadic = OMD->isVariadic();
6063 
6064             Sema::FormatStringInfo CallerFSI;
6065             if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic,
6066                                           &CallerFSI)) {
6067               // We also check if the formats are compatible.
6068               // We can't pass a 'scanf' string to a 'printf' function.
6069               if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx &&
6070                   Type == S.GetFormatStringType(PVFormat)) {
6071                 // Lastly, check that argument passing kinds transition in a
6072                 // way that makes sense:
6073                 // from a caller with FAPK_VAList, allow FAPK_VAList
6074                 // from a caller with FAPK_Fixed, allow FAPK_Fixed
6075                 // from a caller with FAPK_Fixed, allow FAPK_Variadic
6076                 // from a caller with FAPK_Variadic, allow FAPK_VAList
6077                 switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
6078                 case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
6079                 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
6080                 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
6081                 case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
6082                   return SLCT_UncheckedLiteral;
6083                 }
6084               }
6085             }
6086           }
6087         }
6088       }
6089     }
6090 
6091     return SLCT_NotALiteral;
6092   }
6093 
6094   case Stmt::CallExprClass:
6095   case Stmt::CXXMemberCallExprClass: {
6096     const CallExpr *CE = cast<CallExpr>(E);
6097     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
6098       bool IsFirst = true;
6099       StringLiteralCheckType CommonResult;
6100       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
6101         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
6102         StringLiteralCheckType Result = checkFormatStringExpr(
6103             S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
6104             InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6105             IgnoreStringsWithoutSpecifiers);
6106         if (IsFirst) {
6107           CommonResult = Result;
6108           IsFirst = false;
6109         }
6110       }
6111       if (!IsFirst)
6112         return CommonResult;
6113 
6114       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
6115         unsigned BuiltinID = FD->getBuiltinID();
6116         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
6117             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
6118           const Expr *Arg = CE->getArg(0);
6119           return checkFormatStringExpr(
6120               S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
6121               InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6122               IgnoreStringsWithoutSpecifiers);
6123         }
6124       }
6125     }
6126     if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E))
6127       return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
6128                                    Type, CallType, /*InFunctionCall*/ false,
6129                                    CheckedVarArgs, UncoveredArg, Offset,
6130                                    IgnoreStringsWithoutSpecifiers);
6131     return SLCT_NotALiteral;
6132   }
6133   case Stmt::ObjCMessageExprClass: {
6134     const auto *ME = cast<ObjCMessageExpr>(E);
6135     if (const auto *MD = ME->getMethodDecl()) {
6136       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
6137         // As a special case heuristic, if we're using the method -[NSBundle
6138         // localizedStringForKey:value:table:], ignore any key strings that lack
6139         // format specifiers. The idea is that if the key doesn't have any
6140         // format specifiers then its probably just a key to map to the
6141         // localized strings. If it does have format specifiers though, then its
6142         // likely that the text of the key is the format string in the
6143         // programmer's language, and should be checked.
6144         const ObjCInterfaceDecl *IFace;
6145         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
6146             IFace->getIdentifier()->isStr("NSBundle") &&
6147             MD->getSelector().isKeywordSelector(
6148                 {"localizedStringForKey", "value", "table"})) {
6149           IgnoreStringsWithoutSpecifiers = true;
6150         }
6151 
6152         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
6153         return checkFormatStringExpr(
6154             S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
6155             InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
6156             IgnoreStringsWithoutSpecifiers);
6157       }
6158     }
6159 
6160     return SLCT_NotALiteral;
6161   }
6162   case Stmt::ObjCStringLiteralClass:
6163   case Stmt::StringLiteralClass: {
6164     const StringLiteral *StrE = nullptr;
6165 
6166     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
6167       StrE = ObjCFExpr->getString();
6168     else
6169       StrE = cast<StringLiteral>(E);
6170 
6171     if (StrE) {
6172       if (Offset.isNegative() || Offset > StrE->getLength()) {
6173         // TODO: It would be better to have an explicit warning for out of
6174         // bounds literals.
6175         return SLCT_NotALiteral;
6176       }
6177       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
6178       CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type,
6179                         InFunctionCall, CallType, CheckedVarArgs, UncoveredArg,
6180                         IgnoreStringsWithoutSpecifiers);
6181       return SLCT_CheckedLiteral;
6182     }
6183 
6184     return SLCT_NotALiteral;
6185   }
6186   case Stmt::BinaryOperatorClass: {
6187     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
6188 
6189     // A string literal + an int offset is still a string literal.
6190     if (BinOp->isAdditiveOp()) {
6191       Expr::EvalResult LResult, RResult;
6192 
6193       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
6194           LResult, S.Context, Expr::SE_NoSideEffects,
6195           S.isConstantEvaluatedContext());
6196       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
6197           RResult, S.Context, Expr::SE_NoSideEffects,
6198           S.isConstantEvaluatedContext());
6199 
6200       if (LIsInt != RIsInt) {
6201         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
6202 
6203         if (LIsInt) {
6204           if (BinOpKind == BO_Add) {
6205             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
6206             E = BinOp->getRHS();
6207             goto tryAgain;
6208           }
6209         } else {
6210           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
6211           E = BinOp->getLHS();
6212           goto tryAgain;
6213         }
6214       }
6215     }
6216 
6217     return SLCT_NotALiteral;
6218   }
6219   case Stmt::UnaryOperatorClass: {
6220     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
6221     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
6222     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
6223       Expr::EvalResult IndexResult;
6224       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
6225                                        Expr::SE_NoSideEffects,
6226                                        S.isConstantEvaluatedContext())) {
6227         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
6228                    /*RHS is int*/ true);
6229         E = ASE->getBase();
6230         goto tryAgain;
6231       }
6232     }
6233 
6234     return SLCT_NotALiteral;
6235   }
6236 
6237   default:
6238     return SLCT_NotALiteral;
6239   }
6240 }
6241 
6242 // If this expression can be evaluated at compile-time,
6243 // check if the result is a StringLiteral and return it
6244 // otherwise return nullptr
6245 static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
6246                                                const Expr *E) {
6247   Expr::EvalResult Result;
6248   if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) {
6249     const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>();
6250     if (isa_and_nonnull<StringLiteral>(LVE))
6251       return LVE;
6252   }
6253   return nullptr;
6254 }
6255 
6256 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
6257   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
6258       .Case("scanf", FST_Scanf)
6259       .Cases("printf", "printf0", "syslog", FST_Printf)
6260       .Cases("NSString", "CFString", FST_NSString)
6261       .Case("strftime", FST_Strftime)
6262       .Case("strfmon", FST_Strfmon)
6263       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
6264       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
6265       .Case("os_trace", FST_OSLog)
6266       .Case("os_log", FST_OSLog)
6267       .Default(FST_Unknown);
6268 }
6269 
6270 bool Sema::CheckFormatArguments(const FormatAttr *Format,
6271                                 ArrayRef<const Expr *> Args, bool IsCXXMember,
6272                                 VariadicCallType CallType, SourceLocation Loc,
6273                                 SourceRange Range,
6274                                 llvm::SmallBitVector &CheckedVarArgs) {
6275   FormatStringInfo FSI;
6276   if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply,
6277                           &FSI))
6278     return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx,
6279                                 FSI.FirstDataArg, GetFormatStringType(Format),
6280                                 CallType, Loc, Range, CheckedVarArgs);
6281   return false;
6282 }
6283 
6284 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
6285                                 Sema::FormatArgumentPassingKind APK,
6286                                 unsigned format_idx, unsigned firstDataArg,
6287                                 FormatStringType Type,
6288                                 VariadicCallType CallType, SourceLocation Loc,
6289                                 SourceRange Range,
6290                                 llvm::SmallBitVector &CheckedVarArgs) {
6291   // CHECK: printf/scanf-like function is called with no format string.
6292   if (format_idx >= Args.size()) {
6293     Diag(Loc, diag::warn_missing_format_string) << Range;
6294     return false;
6295   }
6296 
6297   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
6298 
6299   // CHECK: format string is not a string literal.
6300   //
6301   // Dynamically generated format strings are difficult to
6302   // automatically vet at compile time.  Requiring that format strings
6303   // are string literals: (1) permits the checking of format strings by
6304   // the compiler and thereby (2) can practically remove the source of
6305   // many format string exploits.
6306 
6307   // Format string can be either ObjC string (e.g. @"%d") or
6308   // C string (e.g. "%d")
6309   // ObjC string uses the same format specifiers as C string, so we can use
6310   // the same format string checking logic for both ObjC and C strings.
6311   UncoveredArgHandler UncoveredArg;
6312   StringLiteralCheckType CT = checkFormatStringExpr(
6313       *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type,
6314       CallType,
6315       /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
6316       /*no string offset*/ llvm::APSInt(64, false) = 0);
6317 
6318   // Generate a diagnostic where an uncovered argument is detected.
6319   if (UncoveredArg.hasUncoveredArg()) {
6320     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
6321     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
6322     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
6323   }
6324 
6325   if (CT != SLCT_NotALiteral)
6326     // Literal format string found, check done!
6327     return CT == SLCT_CheckedLiteral;
6328 
6329   // Strftime is particular as it always uses a single 'time' argument,
6330   // so it is safe to pass a non-literal string.
6331   if (Type == FST_Strftime)
6332     return false;
6333 
6334   // Do not emit diag when the string param is a macro expansion and the
6335   // format is either NSString or CFString. This is a hack to prevent
6336   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
6337   // which are usually used in place of NS and CF string literals.
6338   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
6339   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
6340     return false;
6341 
6342   // If there are no arguments specified, warn with -Wformat-security, otherwise
6343   // warn only with -Wformat-nonliteral.
6344   if (Args.size() == firstDataArg) {
6345     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
6346       << OrigFormatExpr->getSourceRange();
6347     switch (Type) {
6348     default:
6349       break;
6350     case FST_Kprintf:
6351     case FST_FreeBSDKPrintf:
6352     case FST_Printf:
6353     case FST_Syslog:
6354       Diag(FormatLoc, diag::note_format_security_fixit)
6355         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
6356       break;
6357     case FST_NSString:
6358       Diag(FormatLoc, diag::note_format_security_fixit)
6359         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
6360       break;
6361     }
6362   } else {
6363     Diag(FormatLoc, diag::warn_format_nonliteral)
6364       << OrigFormatExpr->getSourceRange();
6365   }
6366   return false;
6367 }
6368 
6369 namespace {
6370 
6371 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
6372 protected:
6373   Sema &S;
6374   const FormatStringLiteral *FExpr;
6375   const Expr *OrigFormatExpr;
6376   const Sema::FormatStringType FSType;
6377   const unsigned FirstDataArg;
6378   const unsigned NumDataArgs;
6379   const char *Beg; // Start of format string.
6380   const Sema::FormatArgumentPassingKind ArgPassingKind;
6381   ArrayRef<const Expr *> Args;
6382   unsigned FormatIdx;
6383   llvm::SmallBitVector CoveredArgs;
6384   bool usesPositionalArgs = false;
6385   bool atFirstArg = true;
6386   bool inFunctionCall;
6387   Sema::VariadicCallType CallType;
6388   llvm::SmallBitVector &CheckedVarArgs;
6389   UncoveredArgHandler &UncoveredArg;
6390 
6391 public:
6392   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
6393                      const Expr *origFormatExpr,
6394                      const Sema::FormatStringType type, unsigned firstDataArg,
6395                      unsigned numDataArgs, const char *beg,
6396                      Sema::FormatArgumentPassingKind APK,
6397                      ArrayRef<const Expr *> Args, unsigned formatIdx,
6398                      bool inFunctionCall, Sema::VariadicCallType callType,
6399                      llvm::SmallBitVector &CheckedVarArgs,
6400                      UncoveredArgHandler &UncoveredArg)
6401       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
6402         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
6403         ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
6404         inFunctionCall(inFunctionCall), CallType(callType),
6405         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
6406     CoveredArgs.resize(numDataArgs);
6407     CoveredArgs.reset();
6408   }
6409 
6410   void DoneProcessing();
6411 
6412   void HandleIncompleteSpecifier(const char *startSpecifier,
6413                                  unsigned specifierLen) override;
6414 
6415   void HandleInvalidLengthModifier(
6416                            const analyze_format_string::FormatSpecifier &FS,
6417                            const analyze_format_string::ConversionSpecifier &CS,
6418                            const char *startSpecifier, unsigned specifierLen,
6419                            unsigned DiagID);
6420 
6421   void HandleNonStandardLengthModifier(
6422                     const analyze_format_string::FormatSpecifier &FS,
6423                     const char *startSpecifier, unsigned specifierLen);
6424 
6425   void HandleNonStandardConversionSpecifier(
6426                     const analyze_format_string::ConversionSpecifier &CS,
6427                     const char *startSpecifier, unsigned specifierLen);
6428 
6429   void HandlePosition(const char *startPos, unsigned posLen) override;
6430 
6431   void HandleInvalidPosition(const char *startSpecifier,
6432                              unsigned specifierLen,
6433                              analyze_format_string::PositionContext p) override;
6434 
6435   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
6436 
6437   void HandleNullChar(const char *nullCharacter) override;
6438 
6439   template <typename Range>
6440   static void
6441   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
6442                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
6443                        bool IsStringLocation, Range StringRange,
6444                        ArrayRef<FixItHint> Fixit = {});
6445 
6446 protected:
6447   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
6448                                         const char *startSpec,
6449                                         unsigned specifierLen,
6450                                         const char *csStart, unsigned csLen);
6451 
6452   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
6453                                          const char *startSpec,
6454                                          unsigned specifierLen);
6455 
6456   SourceRange getFormatStringRange();
6457   CharSourceRange getSpecifierRange(const char *startSpecifier,
6458                                     unsigned specifierLen);
6459   SourceLocation getLocationOfByte(const char *x);
6460 
6461   const Expr *getDataArg(unsigned i) const;
6462 
6463   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
6464                     const analyze_format_string::ConversionSpecifier &CS,
6465                     const char *startSpecifier, unsigned specifierLen,
6466                     unsigned argIndex);
6467 
6468   template <typename Range>
6469   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
6470                             bool IsStringLocation, Range StringRange,
6471                             ArrayRef<FixItHint> Fixit = {});
6472 };
6473 
6474 } // namespace
6475 
6476 SourceRange CheckFormatHandler::getFormatStringRange() {
6477   return OrigFormatExpr->getSourceRange();
6478 }
6479 
6480 CharSourceRange CheckFormatHandler::
6481 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
6482   SourceLocation Start = getLocationOfByte(startSpecifier);
6483   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
6484 
6485   // Advance the end SourceLocation by one due to half-open ranges.
6486   End = End.getLocWithOffset(1);
6487 
6488   return CharSourceRange::getCharRange(Start, End);
6489 }
6490 
6491 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
6492   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
6493                                   S.getLangOpts(), S.Context.getTargetInfo());
6494 }
6495 
6496 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
6497                                                    unsigned specifierLen){
6498   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
6499                        getLocationOfByte(startSpecifier),
6500                        /*IsStringLocation*/true,
6501                        getSpecifierRange(startSpecifier, specifierLen));
6502 }
6503 
6504 void CheckFormatHandler::HandleInvalidLengthModifier(
6505     const analyze_format_string::FormatSpecifier &FS,
6506     const analyze_format_string::ConversionSpecifier &CS,
6507     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
6508   using namespace analyze_format_string;
6509 
6510   const LengthModifier &LM = FS.getLengthModifier();
6511   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6512 
6513   // See if we know how to fix this length modifier.
6514   std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6515   if (FixedLM) {
6516     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6517                          getLocationOfByte(LM.getStart()),
6518                          /*IsStringLocation*/true,
6519                          getSpecifierRange(startSpecifier, specifierLen));
6520 
6521     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6522       << FixedLM->toString()
6523       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6524 
6525   } else {
6526     FixItHint Hint;
6527     if (DiagID == diag::warn_format_nonsensical_length)
6528       Hint = FixItHint::CreateRemoval(LMRange);
6529 
6530     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
6531                          getLocationOfByte(LM.getStart()),
6532                          /*IsStringLocation*/true,
6533                          getSpecifierRange(startSpecifier, specifierLen),
6534                          Hint);
6535   }
6536 }
6537 
6538 void CheckFormatHandler::HandleNonStandardLengthModifier(
6539     const analyze_format_string::FormatSpecifier &FS,
6540     const char *startSpecifier, unsigned specifierLen) {
6541   using namespace analyze_format_string;
6542 
6543   const LengthModifier &LM = FS.getLengthModifier();
6544   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
6545 
6546   // See if we know how to fix this length modifier.
6547   std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
6548   if (FixedLM) {
6549     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6550                            << LM.toString() << 0,
6551                          getLocationOfByte(LM.getStart()),
6552                          /*IsStringLocation*/true,
6553                          getSpecifierRange(startSpecifier, specifierLen));
6554 
6555     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
6556       << FixedLM->toString()
6557       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
6558 
6559   } else {
6560     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6561                            << LM.toString() << 0,
6562                          getLocationOfByte(LM.getStart()),
6563                          /*IsStringLocation*/true,
6564                          getSpecifierRange(startSpecifier, specifierLen));
6565   }
6566 }
6567 
6568 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
6569     const analyze_format_string::ConversionSpecifier &CS,
6570     const char *startSpecifier, unsigned specifierLen) {
6571   using namespace analyze_format_string;
6572 
6573   // See if we know how to fix this conversion specifier.
6574   std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
6575   if (FixedCS) {
6576     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6577                           << CS.toString() << /*conversion specifier*/1,
6578                          getLocationOfByte(CS.getStart()),
6579                          /*IsStringLocation*/true,
6580                          getSpecifierRange(startSpecifier, specifierLen));
6581 
6582     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
6583     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
6584       << FixedCS->toString()
6585       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
6586   } else {
6587     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
6588                           << CS.toString() << /*conversion specifier*/1,
6589                          getLocationOfByte(CS.getStart()),
6590                          /*IsStringLocation*/true,
6591                          getSpecifierRange(startSpecifier, specifierLen));
6592   }
6593 }
6594 
6595 void CheckFormatHandler::HandlePosition(const char *startPos,
6596                                         unsigned posLen) {
6597   if (!S.getDiagnostics().isIgnored(
6598           diag::warn_format_non_standard_positional_arg, SourceLocation()))
6599     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
6600                          getLocationOfByte(startPos),
6601                          /*IsStringLocation*/ true,
6602                          getSpecifierRange(startPos, posLen));
6603 }
6604 
6605 void CheckFormatHandler::HandleInvalidPosition(
6606     const char *startSpecifier, unsigned specifierLen,
6607     analyze_format_string::PositionContext p) {
6608   if (!S.getDiagnostics().isIgnored(
6609           diag::warn_format_invalid_positional_specifier, SourceLocation()))
6610     EmitFormatDiagnostic(
6611         S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p,
6612         getLocationOfByte(startSpecifier), /*IsStringLocation*/ true,
6613         getSpecifierRange(startSpecifier, specifierLen));
6614 }
6615 
6616 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
6617                                             unsigned posLen) {
6618   if (!S.getDiagnostics().isIgnored(diag::warn_format_zero_positional_specifier,
6619                                     SourceLocation()))
6620     EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
6621                          getLocationOfByte(startPos),
6622                          /*IsStringLocation*/ true,
6623                          getSpecifierRange(startPos, posLen));
6624 }
6625 
6626 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
6627   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
6628     // The presence of a null character is likely an error.
6629     EmitFormatDiagnostic(
6630       S.PDiag(diag::warn_printf_format_string_contains_null_char),
6631       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
6632       getFormatStringRange());
6633   }
6634 }
6635 
6636 // Note that this may return NULL if there was an error parsing or building
6637 // one of the argument expressions.
6638 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
6639   return Args[FirstDataArg + i];
6640 }
6641 
6642 void CheckFormatHandler::DoneProcessing() {
6643   // Does the number of data arguments exceed the number of
6644   // format conversions in the format string?
6645   if (ArgPassingKind != Sema::FAPK_VAList) {
6646     // Find any arguments that weren't covered.
6647     CoveredArgs.flip();
6648     signed notCoveredArg = CoveredArgs.find_first();
6649     if (notCoveredArg >= 0) {
6650       assert((unsigned)notCoveredArg < NumDataArgs);
6651       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
6652     } else {
6653       UncoveredArg.setAllCovered();
6654     }
6655   }
6656 }
6657 
6658 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
6659                                    const Expr *ArgExpr) {
6660   assert(hasUncoveredArg() && !DiagnosticExprs.empty() &&
6661          "Invalid state");
6662 
6663   if (!ArgExpr)
6664     return;
6665 
6666   SourceLocation Loc = ArgExpr->getBeginLoc();
6667 
6668   if (S.getSourceManager().isInSystemMacro(Loc))
6669     return;
6670 
6671   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
6672   for (auto E : DiagnosticExprs)
6673     PDiag << E->getSourceRange();
6674 
6675   CheckFormatHandler::EmitFormatDiagnostic(
6676                                   S, IsFunctionCall, DiagnosticExprs[0],
6677                                   PDiag, Loc, /*IsStringLocation*/false,
6678                                   DiagnosticExprs[0]->getSourceRange());
6679 }
6680 
6681 bool
6682 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
6683                                                      SourceLocation Loc,
6684                                                      const char *startSpec,
6685                                                      unsigned specifierLen,
6686                                                      const char *csStart,
6687                                                      unsigned csLen) {
6688   bool keepGoing = true;
6689   if (argIndex < NumDataArgs) {
6690     // Consider the argument coverered, even though the specifier doesn't
6691     // make sense.
6692     CoveredArgs.set(argIndex);
6693   }
6694   else {
6695     // If argIndex exceeds the number of data arguments we
6696     // don't issue a warning because that is just a cascade of warnings (and
6697     // they may have intended '%%' anyway). We don't want to continue processing
6698     // the format string after this point, however, as we will like just get
6699     // gibberish when trying to match arguments.
6700     keepGoing = false;
6701   }
6702 
6703   StringRef Specifier(csStart, csLen);
6704 
6705   // If the specifier in non-printable, it could be the first byte of a UTF-8
6706   // sequence. In that case, print the UTF-8 code point. If not, print the byte
6707   // hex value.
6708   std::string CodePointStr;
6709   if (!llvm::sys::locale::isPrint(*csStart)) {
6710     llvm::UTF32 CodePoint;
6711     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
6712     const llvm::UTF8 *E =
6713         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
6714     llvm::ConversionResult Result =
6715         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
6716 
6717     if (Result != llvm::conversionOK) {
6718       unsigned char FirstChar = *csStart;
6719       CodePoint = (llvm::UTF32)FirstChar;
6720     }
6721 
6722     llvm::raw_string_ostream OS(CodePointStr);
6723     if (CodePoint < 256)
6724       OS << "\\x" << llvm::format("%02x", CodePoint);
6725     else if (CodePoint <= 0xFFFF)
6726       OS << "\\u" << llvm::format("%04x", CodePoint);
6727     else
6728       OS << "\\U" << llvm::format("%08x", CodePoint);
6729     Specifier = CodePointStr;
6730   }
6731 
6732   EmitFormatDiagnostic(
6733       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
6734       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
6735 
6736   return keepGoing;
6737 }
6738 
6739 void
6740 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
6741                                                       const char *startSpec,
6742                                                       unsigned specifierLen) {
6743   EmitFormatDiagnostic(
6744     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
6745     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
6746 }
6747 
6748 bool
6749 CheckFormatHandler::CheckNumArgs(
6750   const analyze_format_string::FormatSpecifier &FS,
6751   const analyze_format_string::ConversionSpecifier &CS,
6752   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
6753 
6754   if (argIndex >= NumDataArgs) {
6755     PartialDiagnostic PDiag = FS.usesPositionalArg()
6756       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
6757            << (argIndex+1) << NumDataArgs)
6758       : S.PDiag(diag::warn_printf_insufficient_data_args);
6759     EmitFormatDiagnostic(
6760       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
6761       getSpecifierRange(startSpecifier, specifierLen));
6762 
6763     // Since more arguments than conversion tokens are given, by extension
6764     // all arguments are covered, so mark this as so.
6765     UncoveredArg.setAllCovered();
6766     return false;
6767   }
6768   return true;
6769 }
6770 
6771 template<typename Range>
6772 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
6773                                               SourceLocation Loc,
6774                                               bool IsStringLocation,
6775                                               Range StringRange,
6776                                               ArrayRef<FixItHint> FixIt) {
6777   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
6778                        Loc, IsStringLocation, StringRange, FixIt);
6779 }
6780 
6781 /// If the format string is not within the function call, emit a note
6782 /// so that the function call and string are in diagnostic messages.
6783 ///
6784 /// \param InFunctionCall if true, the format string is within the function
6785 /// call and only one diagnostic message will be produced.  Otherwise, an
6786 /// extra note will be emitted pointing to location of the format string.
6787 ///
6788 /// \param ArgumentExpr the expression that is passed as the format string
6789 /// argument in the function call.  Used for getting locations when two
6790 /// diagnostics are emitted.
6791 ///
6792 /// \param PDiag the callee should already have provided any strings for the
6793 /// diagnostic message.  This function only adds locations and fixits
6794 /// to diagnostics.
6795 ///
6796 /// \param Loc primary location for diagnostic.  If two diagnostics are
6797 /// required, one will be at Loc and a new SourceLocation will be created for
6798 /// the other one.
6799 ///
6800 /// \param IsStringLocation if true, Loc points to the format string should be
6801 /// used for the note.  Otherwise, Loc points to the argument list and will
6802 /// be used with PDiag.
6803 ///
6804 /// \param StringRange some or all of the string to highlight.  This is
6805 /// templated so it can accept either a CharSourceRange or a SourceRange.
6806 ///
6807 /// \param FixIt optional fix it hint for the format string.
6808 template <typename Range>
6809 void CheckFormatHandler::EmitFormatDiagnostic(
6810     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
6811     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
6812     Range StringRange, ArrayRef<FixItHint> FixIt) {
6813   if (InFunctionCall) {
6814     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
6815     D << StringRange;
6816     D << FixIt;
6817   } else {
6818     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
6819       << ArgumentExpr->getSourceRange();
6820 
6821     const Sema::SemaDiagnosticBuilder &Note =
6822       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
6823              diag::note_format_string_defined);
6824 
6825     Note << StringRange;
6826     Note << FixIt;
6827   }
6828 }
6829 
6830 //===--- CHECK: Printf format string checking -----------------------------===//
6831 
6832 namespace {
6833 
6834 class CheckPrintfHandler : public CheckFormatHandler {
6835 public:
6836   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
6837                      const Expr *origFormatExpr,
6838                      const Sema::FormatStringType type, unsigned firstDataArg,
6839                      unsigned numDataArgs, bool isObjC, const char *beg,
6840                      Sema::FormatArgumentPassingKind APK,
6841                      ArrayRef<const Expr *> Args, unsigned formatIdx,
6842                      bool inFunctionCall, Sema::VariadicCallType CallType,
6843                      llvm::SmallBitVector &CheckedVarArgs,
6844                      UncoveredArgHandler &UncoveredArg)
6845       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
6846                            numDataArgs, beg, APK, Args, formatIdx,
6847                            inFunctionCall, CallType, CheckedVarArgs,
6848                            UncoveredArg) {}
6849 
6850   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
6851 
6852   /// Returns true if '%@' specifiers are allowed in the format string.
6853   bool allowsObjCArg() const {
6854     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
6855            FSType == Sema::FST_OSTrace;
6856   }
6857 
6858   bool HandleInvalidPrintfConversionSpecifier(
6859                                       const analyze_printf::PrintfSpecifier &FS,
6860                                       const char *startSpecifier,
6861                                       unsigned specifierLen) override;
6862 
6863   void handleInvalidMaskType(StringRef MaskType) override;
6864 
6865   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
6866                              const char *startSpecifier, unsigned specifierLen,
6867                              const TargetInfo &Target) override;
6868   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
6869                        const char *StartSpecifier,
6870                        unsigned SpecifierLen,
6871                        const Expr *E);
6872 
6873   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
6874                     const char *startSpecifier, unsigned specifierLen);
6875   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
6876                            const analyze_printf::OptionalAmount &Amt,
6877                            unsigned type,
6878                            const char *startSpecifier, unsigned specifierLen);
6879   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
6880                   const analyze_printf::OptionalFlag &flag,
6881                   const char *startSpecifier, unsigned specifierLen);
6882   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
6883                          const analyze_printf::OptionalFlag &ignoredFlag,
6884                          const analyze_printf::OptionalFlag &flag,
6885                          const char *startSpecifier, unsigned specifierLen);
6886   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
6887                            const Expr *E);
6888 
6889   void HandleEmptyObjCModifierFlag(const char *startFlag,
6890                                    unsigned flagLen) override;
6891 
6892   void HandleInvalidObjCModifierFlag(const char *startFlag,
6893                                             unsigned flagLen) override;
6894 
6895   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
6896                                            const char *flagsEnd,
6897                                            const char *conversionPosition)
6898                                              override;
6899 };
6900 
6901 } // namespace
6902 
6903 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
6904                                       const analyze_printf::PrintfSpecifier &FS,
6905                                       const char *startSpecifier,
6906                                       unsigned specifierLen) {
6907   const analyze_printf::PrintfConversionSpecifier &CS =
6908     FS.getConversionSpecifier();
6909 
6910   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
6911                                           getLocationOfByte(CS.getStart()),
6912                                           startSpecifier, specifierLen,
6913                                           CS.getStart(), CS.getLength());
6914 }
6915 
6916 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
6917   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
6918 }
6919 
6920 bool CheckPrintfHandler::HandleAmount(
6921     const analyze_format_string::OptionalAmount &Amt, unsigned k,
6922     const char *startSpecifier, unsigned specifierLen) {
6923   if (Amt.hasDataArgument()) {
6924     if (ArgPassingKind != Sema::FAPK_VAList) {
6925       unsigned argIndex = Amt.getArgIndex();
6926       if (argIndex >= NumDataArgs) {
6927         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
6928                                  << k,
6929                              getLocationOfByte(Amt.getStart()),
6930                              /*IsStringLocation*/ true,
6931                              getSpecifierRange(startSpecifier, specifierLen));
6932         // Don't do any more checking.  We will just emit
6933         // spurious errors.
6934         return false;
6935       }
6936 
6937       // Type check the data argument.  It should be an 'int'.
6938       // Although not in conformance with C99, we also allow the argument to be
6939       // an 'unsigned int' as that is a reasonably safe case.  GCC also
6940       // doesn't emit a warning for that case.
6941       CoveredArgs.set(argIndex);
6942       const Expr *Arg = getDataArg(argIndex);
6943       if (!Arg)
6944         return false;
6945 
6946       QualType T = Arg->getType();
6947 
6948       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
6949       assert(AT.isValid());
6950 
6951       if (!AT.matchesType(S.Context, T)) {
6952         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
6953                                << k << AT.getRepresentativeTypeName(S.Context)
6954                                << T << Arg->getSourceRange(),
6955                              getLocationOfByte(Amt.getStart()),
6956                              /*IsStringLocation*/true,
6957                              getSpecifierRange(startSpecifier, specifierLen));
6958         // Don't do any more checking.  We will just emit
6959         // spurious errors.
6960         return false;
6961       }
6962     }
6963   }
6964   return true;
6965 }
6966 
6967 void CheckPrintfHandler::HandleInvalidAmount(
6968                                       const analyze_printf::PrintfSpecifier &FS,
6969                                       const analyze_printf::OptionalAmount &Amt,
6970                                       unsigned type,
6971                                       const char *startSpecifier,
6972                                       unsigned specifierLen) {
6973   const analyze_printf::PrintfConversionSpecifier &CS =
6974     FS.getConversionSpecifier();
6975 
6976   FixItHint fixit =
6977     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
6978       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
6979                                  Amt.getConstantLength()))
6980       : FixItHint();
6981 
6982   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
6983                          << type << CS.toString(),
6984                        getLocationOfByte(Amt.getStart()),
6985                        /*IsStringLocation*/true,
6986                        getSpecifierRange(startSpecifier, specifierLen),
6987                        fixit);
6988 }
6989 
6990 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
6991                                     const analyze_printf::OptionalFlag &flag,
6992                                     const char *startSpecifier,
6993                                     unsigned specifierLen) {
6994   // Warn about pointless flag with a fixit removal.
6995   const analyze_printf::PrintfConversionSpecifier &CS =
6996     FS.getConversionSpecifier();
6997   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
6998                          << flag.toString() << CS.toString(),
6999                        getLocationOfByte(flag.getPosition()),
7000                        /*IsStringLocation*/true,
7001                        getSpecifierRange(startSpecifier, specifierLen),
7002                        FixItHint::CreateRemoval(
7003                          getSpecifierRange(flag.getPosition(), 1)));
7004 }
7005 
7006 void CheckPrintfHandler::HandleIgnoredFlag(
7007                                 const analyze_printf::PrintfSpecifier &FS,
7008                                 const analyze_printf::OptionalFlag &ignoredFlag,
7009                                 const analyze_printf::OptionalFlag &flag,
7010                                 const char *startSpecifier,
7011                                 unsigned specifierLen) {
7012   // Warn about ignored flag with a fixit removal.
7013   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
7014                          << ignoredFlag.toString() << flag.toString(),
7015                        getLocationOfByte(ignoredFlag.getPosition()),
7016                        /*IsStringLocation*/true,
7017                        getSpecifierRange(startSpecifier, specifierLen),
7018                        FixItHint::CreateRemoval(
7019                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
7020 }
7021 
7022 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
7023                                                      unsigned flagLen) {
7024   // Warn about an empty flag.
7025   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
7026                        getLocationOfByte(startFlag),
7027                        /*IsStringLocation*/true,
7028                        getSpecifierRange(startFlag, flagLen));
7029 }
7030 
7031 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
7032                                                        unsigned flagLen) {
7033   // Warn about an invalid flag.
7034   auto Range = getSpecifierRange(startFlag, flagLen);
7035   StringRef flag(startFlag, flagLen);
7036   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
7037                       getLocationOfByte(startFlag),
7038                       /*IsStringLocation*/true,
7039                       Range, FixItHint::CreateRemoval(Range));
7040 }
7041 
7042 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
7043     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
7044     // Warn about using '[...]' without a '@' conversion.
7045     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
7046     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
7047     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
7048                          getLocationOfByte(conversionPosition),
7049                          /*IsStringLocation*/true,
7050                          Range, FixItHint::CreateRemoval(Range));
7051 }
7052 
7053 // Determines if the specified is a C++ class or struct containing
7054 // a member with the specified name and kind (e.g. a CXXMethodDecl named
7055 // "c_str()").
7056 template<typename MemberKind>
7057 static llvm::SmallPtrSet<MemberKind*, 1>
7058 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
7059   const RecordType *RT = Ty->getAs<RecordType>();
7060   llvm::SmallPtrSet<MemberKind*, 1> Results;
7061 
7062   if (!RT)
7063     return Results;
7064   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
7065   if (!RD || !RD->getDefinition())
7066     return Results;
7067 
7068   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
7069                  Sema::LookupMemberName);
7070   R.suppressDiagnostics();
7071 
7072   // We just need to include all members of the right kind turned up by the
7073   // filter, at this point.
7074   if (S.LookupQualifiedName(R, RT->getDecl()))
7075     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7076       NamedDecl *decl = (*I)->getUnderlyingDecl();
7077       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
7078         Results.insert(FK);
7079     }
7080   return Results;
7081 }
7082 
7083 /// Check if we could call '.c_str()' on an object.
7084 ///
7085 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
7086 /// allow the call, or if it would be ambiguous).
7087 bool Sema::hasCStrMethod(const Expr *E) {
7088   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7089 
7090   MethodSet Results =
7091       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
7092   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7093        MI != ME; ++MI)
7094     if ((*MI)->getMinRequiredArguments() == 0)
7095       return true;
7096   return false;
7097 }
7098 
7099 // Check if a (w)string was passed when a (w)char* was needed, and offer a
7100 // better diagnostic if so. AT is assumed to be valid.
7101 // Returns true when a c_str() conversion method is found.
7102 bool CheckPrintfHandler::checkForCStrMembers(
7103     const analyze_printf::ArgType &AT, const Expr *E) {
7104   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
7105 
7106   MethodSet Results =
7107       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
7108 
7109   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
7110        MI != ME; ++MI) {
7111     const CXXMethodDecl *Method = *MI;
7112     if (Method->getMinRequiredArguments() == 0 &&
7113         AT.matchesType(S.Context, Method->getReturnType())) {
7114       // FIXME: Suggest parens if the expression needs them.
7115       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
7116       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
7117           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
7118       return true;
7119     }
7120   }
7121 
7122   return false;
7123 }
7124 
7125 bool CheckPrintfHandler::HandlePrintfSpecifier(
7126     const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
7127     unsigned specifierLen, const TargetInfo &Target) {
7128   using namespace analyze_format_string;
7129   using namespace analyze_printf;
7130 
7131   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
7132 
7133   if (FS.consumesDataArgument()) {
7134     if (atFirstArg) {
7135         atFirstArg = false;
7136         usesPositionalArgs = FS.usesPositionalArg();
7137     }
7138     else if (usesPositionalArgs != FS.usesPositionalArg()) {
7139       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7140                                         startSpecifier, specifierLen);
7141       return false;
7142     }
7143   }
7144 
7145   // First check if the field width, precision, and conversion specifier
7146   // have matching data arguments.
7147   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
7148                     startSpecifier, specifierLen)) {
7149     return false;
7150   }
7151 
7152   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
7153                     startSpecifier, specifierLen)) {
7154     return false;
7155   }
7156 
7157   if (!CS.consumesDataArgument()) {
7158     // FIXME: Technically specifying a precision or field width here
7159     // makes no sense.  Worth issuing a warning at some point.
7160     return true;
7161   }
7162 
7163   // Consume the argument.
7164   unsigned argIndex = FS.getArgIndex();
7165   if (argIndex < NumDataArgs) {
7166     // The check to see if the argIndex is valid will come later.
7167     // We set the bit here because we may exit early from this
7168     // function if we encounter some other error.
7169     CoveredArgs.set(argIndex);
7170   }
7171 
7172   // FreeBSD kernel extensions.
7173   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
7174       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
7175     // We need at least two arguments.
7176     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
7177       return false;
7178 
7179     // Claim the second argument.
7180     CoveredArgs.set(argIndex + 1);
7181 
7182     // Type check the first argument (int for %b, pointer for %D)
7183     const Expr *Ex = getDataArg(argIndex);
7184     const analyze_printf::ArgType &AT =
7185       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
7186         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
7187     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
7188       EmitFormatDiagnostic(
7189           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7190               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
7191               << false << Ex->getSourceRange(),
7192           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7193           getSpecifierRange(startSpecifier, specifierLen));
7194 
7195     // Type check the second argument (char * for both %b and %D)
7196     Ex = getDataArg(argIndex + 1);
7197     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
7198     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
7199       EmitFormatDiagnostic(
7200           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7201               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
7202               << false << Ex->getSourceRange(),
7203           Ex->getBeginLoc(), /*IsStringLocation*/ false,
7204           getSpecifierRange(startSpecifier, specifierLen));
7205 
7206      return true;
7207   }
7208 
7209   // Check for using an Objective-C specific conversion specifier
7210   // in a non-ObjC literal.
7211   if (!allowsObjCArg() && CS.isObjCArg()) {
7212     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7213                                                   specifierLen);
7214   }
7215 
7216   // %P can only be used with os_log.
7217   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
7218     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7219                                                   specifierLen);
7220   }
7221 
7222   // %n is not allowed with os_log.
7223   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
7224     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
7225                          getLocationOfByte(CS.getStart()),
7226                          /*IsStringLocation*/ false,
7227                          getSpecifierRange(startSpecifier, specifierLen));
7228 
7229     return true;
7230   }
7231 
7232   // Only scalars are allowed for os_trace.
7233   if (FSType == Sema::FST_OSTrace &&
7234       (CS.getKind() == ConversionSpecifier::PArg ||
7235        CS.getKind() == ConversionSpecifier::sArg ||
7236        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
7237     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
7238                                                   specifierLen);
7239   }
7240 
7241   // Check for use of public/private annotation outside of os_log().
7242   if (FSType != Sema::FST_OSLog) {
7243     if (FS.isPublic().isSet()) {
7244       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7245                                << "public",
7246                            getLocationOfByte(FS.isPublic().getPosition()),
7247                            /*IsStringLocation*/ false,
7248                            getSpecifierRange(startSpecifier, specifierLen));
7249     }
7250     if (FS.isPrivate().isSet()) {
7251       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
7252                                << "private",
7253                            getLocationOfByte(FS.isPrivate().getPosition()),
7254                            /*IsStringLocation*/ false,
7255                            getSpecifierRange(startSpecifier, specifierLen));
7256     }
7257   }
7258 
7259   const llvm::Triple &Triple = Target.getTriple();
7260   if (CS.getKind() == ConversionSpecifier::nArg &&
7261       (Triple.isAndroid() || Triple.isOSFuchsia())) {
7262     EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
7263                          getLocationOfByte(CS.getStart()),
7264                          /*IsStringLocation*/ false,
7265                          getSpecifierRange(startSpecifier, specifierLen));
7266   }
7267 
7268   // Check for invalid use of field width
7269   if (!FS.hasValidFieldWidth()) {
7270     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
7271         startSpecifier, specifierLen);
7272   }
7273 
7274   // Check for invalid use of precision
7275   if (!FS.hasValidPrecision()) {
7276     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
7277         startSpecifier, specifierLen);
7278   }
7279 
7280   // Precision is mandatory for %P specifier.
7281   if (CS.getKind() == ConversionSpecifier::PArg &&
7282       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
7283     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
7284                          getLocationOfByte(startSpecifier),
7285                          /*IsStringLocation*/ false,
7286                          getSpecifierRange(startSpecifier, specifierLen));
7287   }
7288 
7289   // Check each flag does not conflict with any other component.
7290   if (!FS.hasValidThousandsGroupingPrefix())
7291     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
7292   if (!FS.hasValidLeadingZeros())
7293     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
7294   if (!FS.hasValidPlusPrefix())
7295     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
7296   if (!FS.hasValidSpacePrefix())
7297     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
7298   if (!FS.hasValidAlternativeForm())
7299     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
7300   if (!FS.hasValidLeftJustified())
7301     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
7302 
7303   // Check that flags are not ignored by another flag
7304   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
7305     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
7306         startSpecifier, specifierLen);
7307   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
7308     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
7309             startSpecifier, specifierLen);
7310 
7311   // Check the length modifier is valid with the given conversion specifier.
7312   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7313                                  S.getLangOpts()))
7314     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7315                                 diag::warn_format_nonsensical_length);
7316   else if (!FS.hasStandardLengthModifier())
7317     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7318   else if (!FS.hasStandardLengthConversionCombination())
7319     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7320                                 diag::warn_format_non_standard_conversion_spec);
7321 
7322   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7323     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7324 
7325   // The remaining checks depend on the data arguments.
7326   if (ArgPassingKind == Sema::FAPK_VAList)
7327     return true;
7328 
7329   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7330     return false;
7331 
7332   const Expr *Arg = getDataArg(argIndex);
7333   if (!Arg)
7334     return true;
7335 
7336   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
7337 }
7338 
7339 static bool requiresParensToAddCast(const Expr *E) {
7340   // FIXME: We should have a general way to reason about operator
7341   // precedence and whether parens are actually needed here.
7342   // Take care of a few common cases where they aren't.
7343   const Expr *Inside = E->IgnoreImpCasts();
7344   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
7345     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
7346 
7347   switch (Inside->getStmtClass()) {
7348   case Stmt::ArraySubscriptExprClass:
7349   case Stmt::CallExprClass:
7350   case Stmt::CharacterLiteralClass:
7351   case Stmt::CXXBoolLiteralExprClass:
7352   case Stmt::DeclRefExprClass:
7353   case Stmt::FloatingLiteralClass:
7354   case Stmt::IntegerLiteralClass:
7355   case Stmt::MemberExprClass:
7356   case Stmt::ObjCArrayLiteralClass:
7357   case Stmt::ObjCBoolLiteralExprClass:
7358   case Stmt::ObjCBoxedExprClass:
7359   case Stmt::ObjCDictionaryLiteralClass:
7360   case Stmt::ObjCEncodeExprClass:
7361   case Stmt::ObjCIvarRefExprClass:
7362   case Stmt::ObjCMessageExprClass:
7363   case Stmt::ObjCPropertyRefExprClass:
7364   case Stmt::ObjCStringLiteralClass:
7365   case Stmt::ObjCSubscriptRefExprClass:
7366   case Stmt::ParenExprClass:
7367   case Stmt::StringLiteralClass:
7368   case Stmt::UnaryOperatorClass:
7369     return false;
7370   default:
7371     return true;
7372   }
7373 }
7374 
7375 static std::pair<QualType, StringRef>
7376 shouldNotPrintDirectly(const ASTContext &Context,
7377                        QualType IntendedTy,
7378                        const Expr *E) {
7379   // Use a 'while' to peel off layers of typedefs.
7380   QualType TyTy = IntendedTy;
7381   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
7382     StringRef Name = UserTy->getDecl()->getName();
7383     QualType CastTy = llvm::StringSwitch<QualType>(Name)
7384       .Case("CFIndex", Context.getNSIntegerType())
7385       .Case("NSInteger", Context.getNSIntegerType())
7386       .Case("NSUInteger", Context.getNSUIntegerType())
7387       .Case("SInt32", Context.IntTy)
7388       .Case("UInt32", Context.UnsignedIntTy)
7389       .Default(QualType());
7390 
7391     if (!CastTy.isNull())
7392       return std::make_pair(CastTy, Name);
7393 
7394     TyTy = UserTy->desugar();
7395   }
7396 
7397   // Strip parens if necessary.
7398   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
7399     return shouldNotPrintDirectly(Context,
7400                                   PE->getSubExpr()->getType(),
7401                                   PE->getSubExpr());
7402 
7403   // If this is a conditional expression, then its result type is constructed
7404   // via usual arithmetic conversions and thus there might be no necessary
7405   // typedef sugar there.  Recurse to operands to check for NSInteger &
7406   // Co. usage condition.
7407   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7408     QualType TrueTy, FalseTy;
7409     StringRef TrueName, FalseName;
7410 
7411     std::tie(TrueTy, TrueName) =
7412       shouldNotPrintDirectly(Context,
7413                              CO->getTrueExpr()->getType(),
7414                              CO->getTrueExpr());
7415     std::tie(FalseTy, FalseName) =
7416       shouldNotPrintDirectly(Context,
7417                              CO->getFalseExpr()->getType(),
7418                              CO->getFalseExpr());
7419 
7420     if (TrueTy == FalseTy)
7421       return std::make_pair(TrueTy, TrueName);
7422     else if (TrueTy.isNull())
7423       return std::make_pair(FalseTy, FalseName);
7424     else if (FalseTy.isNull())
7425       return std::make_pair(TrueTy, TrueName);
7426   }
7427 
7428   return std::make_pair(QualType(), StringRef());
7429 }
7430 
7431 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
7432 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
7433 /// type do not count.
7434 static bool
7435 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
7436   QualType From = ICE->getSubExpr()->getType();
7437   QualType To = ICE->getType();
7438   // It's an integer promotion if the destination type is the promoted
7439   // source type.
7440   if (ICE->getCastKind() == CK_IntegralCast &&
7441       S.Context.isPromotableIntegerType(From) &&
7442       S.Context.getPromotedIntegerType(From) == To)
7443     return true;
7444   // Look through vector types, since we do default argument promotion for
7445   // those in OpenCL.
7446   if (const auto *VecTy = From->getAs<ExtVectorType>())
7447     From = VecTy->getElementType();
7448   if (const auto *VecTy = To->getAs<ExtVectorType>())
7449     To = VecTy->getElementType();
7450   // It's a floating promotion if the source type is a lower rank.
7451   return ICE->getCastKind() == CK_FloatingCast &&
7452          S.Context.getFloatingTypeOrder(From, To) < 0;
7453 }
7454 
7455 static analyze_format_string::ArgType::MatchKind
7456 handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match,
7457                        DiagnosticsEngine &Diags, SourceLocation Loc) {
7458   if (Match == analyze_format_string::ArgType::NoMatchSignedness) {
7459     Match =
7460         Diags.isIgnored(
7461             diag::warn_format_conversion_argument_type_mismatch_signedness, Loc)
7462             ? analyze_format_string::ArgType::Match
7463             : analyze_format_string::ArgType::NoMatch;
7464   }
7465   return Match;
7466 }
7467 
7468 bool
7469 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7470                                     const char *StartSpecifier,
7471                                     unsigned SpecifierLen,
7472                                     const Expr *E) {
7473   using namespace analyze_format_string;
7474   using namespace analyze_printf;
7475 
7476   // Now type check the data expression that matches the
7477   // format specifier.
7478   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
7479   if (!AT.isValid())
7480     return true;
7481 
7482   QualType ExprTy = E->getType();
7483   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
7484     ExprTy = TET->getUnderlyingExpr()->getType();
7485   }
7486 
7487   // When using the format attribute in C++, you can receive a function or an
7488   // array that will necessarily decay to a pointer when passed to the final
7489   // format consumer. Apply decay before type comparison.
7490   if (ExprTy->canDecayToPointerType())
7491     ExprTy = S.Context.getDecayedType(ExprTy);
7492 
7493   // Diagnose attempts to print a boolean value as a character. Unlike other
7494   // -Wformat diagnostics, this is fine from a type perspective, but it still
7495   // doesn't make sense.
7496   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
7497       E->isKnownToHaveBooleanValue()) {
7498     const CharSourceRange &CSR =
7499         getSpecifierRange(StartSpecifier, SpecifierLen);
7500     SmallString<4> FSString;
7501     llvm::raw_svector_ostream os(FSString);
7502     FS.toString(os);
7503     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
7504                              << FSString,
7505                          E->getExprLoc(), false, CSR);
7506     return true;
7507   }
7508 
7509   // Diagnose attempts to use '%P' with ObjC object types, which will result in
7510   // dumping raw class data (like is-a pointer), not actual data.
7511   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg &&
7512       ExprTy->isObjCObjectPointerType()) {
7513     const CharSourceRange &CSR =
7514         getSpecifierRange(StartSpecifier, SpecifierLen);
7515     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_with_objc_pointer),
7516                          E->getExprLoc(), false, CSR);
7517     return true;
7518   }
7519 
7520   ArgType::MatchKind ImplicitMatch = ArgType::NoMatch;
7521   ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
7522   ArgType::MatchKind OrigMatch = Match;
7523 
7524   Match = handleFormatSignedness(Match, S.getDiagnostics(), E->getExprLoc());
7525   if (Match == ArgType::Match)
7526     return true;
7527 
7528   // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr
7529   assert(Match != ArgType::NoMatchPromotionTypeConfusion);
7530 
7531   // Look through argument promotions for our error message's reported type.
7532   // This includes the integral and floating promotions, but excludes array
7533   // and function pointer decay (seeing that an argument intended to be a
7534   // string has type 'char [6]' is probably more confusing than 'char *') and
7535   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
7536   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7537     if (isArithmeticArgumentPromotion(S, ICE)) {
7538       E = ICE->getSubExpr();
7539       ExprTy = E->getType();
7540 
7541       // Check if we didn't match because of an implicit cast from a 'char'
7542       // or 'short' to an 'int'.  This is done because printf is a varargs
7543       // function.
7544       if (ICE->getType() == S.Context.IntTy ||
7545           ICE->getType() == S.Context.UnsignedIntTy) {
7546         // All further checking is done on the subexpression
7547         ImplicitMatch = AT.matchesType(S.Context, ExprTy);
7548         if (OrigMatch == ArgType::NoMatchSignedness &&
7549             ImplicitMatch != ArgType::NoMatchSignedness)
7550           // If the original match was a signedness match this match on the
7551           // implicit cast type also need to be signedness match otherwise we
7552           // might introduce new unexpected warnings from -Wformat-signedness.
7553           return true;
7554         ImplicitMatch = handleFormatSignedness(
7555             ImplicitMatch, S.getDiagnostics(), E->getExprLoc());
7556         if (ImplicitMatch == ArgType::Match)
7557           return true;
7558       }
7559     }
7560   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
7561     // Special case for 'a', which has type 'int' in C.
7562     // Note, however, that we do /not/ want to treat multibyte constants like
7563     // 'MooV' as characters! This form is deprecated but still exists. In
7564     // addition, don't treat expressions as of type 'char' if one byte length
7565     // modifier is provided.
7566     if (ExprTy == S.Context.IntTy &&
7567         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
7568       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) {
7569         ExprTy = S.Context.CharTy;
7570         // To improve check results, we consider a character literal in C
7571         // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is
7572         // more likely a type confusion situation, so we will suggest to
7573         // use '%hhd' instead by discarding the MatchPromotion.
7574         if (Match == ArgType::MatchPromotion)
7575           Match = ArgType::NoMatch;
7576       }
7577   }
7578   if (Match == ArgType::MatchPromotion) {
7579     // WG14 N2562 only clarified promotions in *printf
7580     // For NSLog in ObjC, just preserve -Wformat behavior
7581     if (!S.getLangOpts().ObjC &&
7582         ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion &&
7583         ImplicitMatch != ArgType::NoMatchTypeConfusion)
7584       return true;
7585     Match = ArgType::NoMatch;
7586   }
7587   if (ImplicitMatch == ArgType::NoMatchPedantic ||
7588       ImplicitMatch == ArgType::NoMatchTypeConfusion)
7589     Match = ImplicitMatch;
7590   assert(Match != ArgType::MatchPromotion);
7591 
7592   // Look through unscoped enums to their underlying type.
7593   bool IsEnum = false;
7594   bool IsScopedEnum = false;
7595   QualType IntendedTy = ExprTy;
7596   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
7597     IntendedTy = EnumTy->getDecl()->getIntegerType();
7598     if (EnumTy->isUnscopedEnumerationType()) {
7599       ExprTy = IntendedTy;
7600       // This controls whether we're talking about the underlying type or not,
7601       // which we only want to do when it's an unscoped enum.
7602       IsEnum = true;
7603     } else {
7604       IsScopedEnum = true;
7605     }
7606   }
7607 
7608   // %C in an Objective-C context prints a unichar, not a wchar_t.
7609   // If the argument is an integer of some kind, believe the %C and suggest
7610   // a cast instead of changing the conversion specifier.
7611   if (isObjCContext() &&
7612       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
7613     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
7614         !ExprTy->isCharType()) {
7615       // 'unichar' is defined as a typedef of unsigned short, but we should
7616       // prefer using the typedef if it is visible.
7617       IntendedTy = S.Context.UnsignedShortTy;
7618 
7619       // While we are here, check if the value is an IntegerLiteral that happens
7620       // to be within the valid range.
7621       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
7622         const llvm::APInt &V = IL->getValue();
7623         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
7624           return true;
7625       }
7626 
7627       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
7628                           Sema::LookupOrdinaryName);
7629       if (S.LookupName(Result, S.getCurScope())) {
7630         NamedDecl *ND = Result.getFoundDecl();
7631         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
7632           if (TD->getUnderlyingType() == IntendedTy)
7633             IntendedTy = S.Context.getTypedefType(TD);
7634       }
7635     }
7636   }
7637 
7638   // Special-case some of Darwin's platform-independence types by suggesting
7639   // casts to primitive types that are known to be large enough.
7640   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
7641   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
7642     QualType CastTy;
7643     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
7644     if (!CastTy.isNull()) {
7645       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
7646       // (long in ASTContext). Only complain to pedants or when they're the
7647       // underlying type of a scoped enum (which always needs a cast).
7648       if (!IsScopedEnum &&
7649           (CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
7650           (AT.isSizeT() || AT.isPtrdiffT()) &&
7651           AT.matchesType(S.Context, CastTy))
7652         Match = ArgType::NoMatchPedantic;
7653       IntendedTy = CastTy;
7654       ShouldNotPrintDirectly = true;
7655     }
7656   }
7657 
7658   // We may be able to offer a FixItHint if it is a supported type.
7659   PrintfSpecifier fixedFS = FS;
7660   bool Success =
7661       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
7662 
7663   if (Success) {
7664     // Get the fix string from the fixed format specifier
7665     SmallString<16> buf;
7666     llvm::raw_svector_ostream os(buf);
7667     fixedFS.toString(os);
7668 
7669     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
7670 
7671     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) {
7672       unsigned Diag;
7673       switch (Match) {
7674       case ArgType::Match:
7675       case ArgType::MatchPromotion:
7676       case ArgType::NoMatchPromotionTypeConfusion:
7677       case ArgType::NoMatchSignedness:
7678         llvm_unreachable("expected non-matching");
7679       case ArgType::NoMatchPedantic:
7680         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
7681         break;
7682       case ArgType::NoMatchTypeConfusion:
7683         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
7684         break;
7685       case ArgType::NoMatch:
7686         Diag = diag::warn_format_conversion_argument_type_mismatch;
7687         break;
7688       }
7689 
7690       // In this case, the specifier is wrong and should be changed to match
7691       // the argument.
7692       EmitFormatDiagnostic(S.PDiag(Diag)
7693                                << AT.getRepresentativeTypeName(S.Context)
7694                                << IntendedTy << IsEnum << E->getSourceRange(),
7695                            E->getBeginLoc(),
7696                            /*IsStringLocation*/ false, SpecRange,
7697                            FixItHint::CreateReplacement(SpecRange, os.str()));
7698     } else {
7699       // The canonical type for formatting this value is different from the
7700       // actual type of the expression. (This occurs, for example, with Darwin's
7701       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
7702       // should be printed as 'long' for 64-bit compatibility.)
7703       // Rather than emitting a normal format/argument mismatch, we want to
7704       // add a cast to the recommended type (and correct the format string
7705       // if necessary). We should also do so for scoped enumerations.
7706       SmallString<16> CastBuf;
7707       llvm::raw_svector_ostream CastFix(CastBuf);
7708       CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(");
7709       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
7710       CastFix << (S.LangOpts.CPlusPlus ? ">" : ")");
7711 
7712       SmallVector<FixItHint,4> Hints;
7713       ArgType::MatchKind IntendedMatch = AT.matchesType(S.Context, IntendedTy);
7714       IntendedMatch = handleFormatSignedness(IntendedMatch, S.getDiagnostics(),
7715                                              E->getExprLoc());
7716       if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly)
7717         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
7718 
7719       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
7720         // If there's already a cast present, just replace it.
7721         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
7722         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
7723 
7724       } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) {
7725         // If the expression has high enough precedence,
7726         // just write the C-style cast.
7727         Hints.push_back(
7728             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
7729       } else {
7730         // Otherwise, add parens around the expression as well as the cast.
7731         CastFix << "(";
7732         Hints.push_back(
7733             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
7734 
7735         // We don't use getLocForEndOfToken because it returns invalid source
7736         // locations for macro expansions (by design).
7737         SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc());
7738         SourceLocation After = EndLoc.getLocWithOffset(
7739             Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts));
7740         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
7741       }
7742 
7743       if (ShouldNotPrintDirectly && !IsScopedEnum) {
7744         // The expression has a type that should not be printed directly.
7745         // We extract the name from the typedef because we don't want to show
7746         // the underlying type in the diagnostic.
7747         StringRef Name;
7748         if (const auto *TypedefTy = ExprTy->getAs<TypedefType>())
7749           Name = TypedefTy->getDecl()->getName();
7750         else
7751           Name = CastTyName;
7752         unsigned Diag = Match == ArgType::NoMatchPedantic
7753                             ? diag::warn_format_argument_needs_cast_pedantic
7754                             : diag::warn_format_argument_needs_cast;
7755         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
7756                                            << E->getSourceRange(),
7757                              E->getBeginLoc(), /*IsStringLocation=*/false,
7758                              SpecRange, Hints);
7759       } else {
7760         // In this case, the expression could be printed using a different
7761         // specifier, but we've decided that the specifier is probably correct
7762         // and we should cast instead. Just use the normal warning message.
7763 
7764         unsigned Diag =
7765             IsScopedEnum
7766                 ? diag::warn_format_conversion_argument_type_mismatch_pedantic
7767                 : diag::warn_format_conversion_argument_type_mismatch;
7768 
7769         EmitFormatDiagnostic(
7770             S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
7771                           << IsEnum << E->getSourceRange(),
7772             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
7773       }
7774     }
7775   } else {
7776     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
7777                                                    SpecifierLen);
7778     // Since the warning for passing non-POD types to variadic functions
7779     // was deferred until now, we emit a warning for non-POD
7780     // arguments here.
7781     bool EmitTypeMismatch = false;
7782     switch (S.isValidVarArgType(ExprTy)) {
7783     case Sema::VAK_Valid:
7784     case Sema::VAK_ValidInCXX11: {
7785       unsigned Diag;
7786       switch (Match) {
7787       case ArgType::Match:
7788       case ArgType::MatchPromotion:
7789       case ArgType::NoMatchPromotionTypeConfusion:
7790       case ArgType::NoMatchSignedness:
7791         llvm_unreachable("expected non-matching");
7792       case ArgType::NoMatchPedantic:
7793         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
7794         break;
7795       case ArgType::NoMatchTypeConfusion:
7796         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
7797         break;
7798       case ArgType::NoMatch:
7799         Diag = diag::warn_format_conversion_argument_type_mismatch;
7800         break;
7801       }
7802 
7803       EmitFormatDiagnostic(
7804           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
7805                         << IsEnum << CSR << E->getSourceRange(),
7806           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7807       break;
7808     }
7809     case Sema::VAK_Undefined:
7810     case Sema::VAK_MSVCUndefined:
7811       if (CallType == Sema::VariadicDoesNotApply) {
7812         EmitTypeMismatch = true;
7813       } else {
7814         EmitFormatDiagnostic(
7815             S.PDiag(diag::warn_non_pod_vararg_with_format_string)
7816                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
7817                 << AT.getRepresentativeTypeName(S.Context) << CSR
7818                 << E->getSourceRange(),
7819             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7820         checkForCStrMembers(AT, E);
7821       }
7822       break;
7823 
7824     case Sema::VAK_Invalid:
7825       if (CallType == Sema::VariadicDoesNotApply)
7826         EmitTypeMismatch = true;
7827       else if (ExprTy->isObjCObjectType())
7828         EmitFormatDiagnostic(
7829             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
7830                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
7831                 << AT.getRepresentativeTypeName(S.Context) << CSR
7832                 << E->getSourceRange(),
7833             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
7834       else
7835         // FIXME: If this is an initializer list, suggest removing the braces
7836         // or inserting a cast to the target type.
7837         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
7838             << isa<InitListExpr>(E) << ExprTy << CallType
7839             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
7840       break;
7841     }
7842 
7843     if (EmitTypeMismatch) {
7844       // The function is not variadic, so we do not generate warnings about
7845       // being allowed to pass that object as a variadic argument. Instead,
7846       // since there are inherently no printf specifiers for types which cannot
7847       // be passed as variadic arguments, emit a plain old specifier mismatch
7848       // argument.
7849       EmitFormatDiagnostic(
7850           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
7851               << AT.getRepresentativeTypeName(S.Context) << ExprTy << false
7852               << E->getSourceRange(),
7853           E->getBeginLoc(), false, CSR);
7854     }
7855 
7856     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
7857            "format string specifier index out of range");
7858     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
7859   }
7860 
7861   return true;
7862 }
7863 
7864 //===--- CHECK: Scanf format string checking ------------------------------===//
7865 
7866 namespace {
7867 
7868 class CheckScanfHandler : public CheckFormatHandler {
7869 public:
7870   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
7871                     const Expr *origFormatExpr, Sema::FormatStringType type,
7872                     unsigned firstDataArg, unsigned numDataArgs,
7873                     const char *beg, Sema::FormatArgumentPassingKind APK,
7874                     ArrayRef<const Expr *> Args, unsigned formatIdx,
7875                     bool inFunctionCall, Sema::VariadicCallType CallType,
7876                     llvm::SmallBitVector &CheckedVarArgs,
7877                     UncoveredArgHandler &UncoveredArg)
7878       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7879                            numDataArgs, beg, APK, Args, formatIdx,
7880                            inFunctionCall, CallType, CheckedVarArgs,
7881                            UncoveredArg) {}
7882 
7883   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
7884                             const char *startSpecifier,
7885                             unsigned specifierLen) override;
7886 
7887   bool HandleInvalidScanfConversionSpecifier(
7888           const analyze_scanf::ScanfSpecifier &FS,
7889           const char *startSpecifier,
7890           unsigned specifierLen) override;
7891 
7892   void HandleIncompleteScanList(const char *start, const char *end) override;
7893 };
7894 
7895 } // namespace
7896 
7897 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
7898                                                  const char *end) {
7899   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
7900                        getLocationOfByte(end), /*IsStringLocation*/true,
7901                        getSpecifierRange(start, end - start));
7902 }
7903 
7904 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
7905                                         const analyze_scanf::ScanfSpecifier &FS,
7906                                         const char *startSpecifier,
7907                                         unsigned specifierLen) {
7908   const analyze_scanf::ScanfConversionSpecifier &CS =
7909     FS.getConversionSpecifier();
7910 
7911   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
7912                                           getLocationOfByte(CS.getStart()),
7913                                           startSpecifier, specifierLen,
7914                                           CS.getStart(), CS.getLength());
7915 }
7916 
7917 bool CheckScanfHandler::HandleScanfSpecifier(
7918                                        const analyze_scanf::ScanfSpecifier &FS,
7919                                        const char *startSpecifier,
7920                                        unsigned specifierLen) {
7921   using namespace analyze_scanf;
7922   using namespace analyze_format_string;
7923 
7924   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
7925 
7926   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
7927   // be used to decide if we are using positional arguments consistently.
7928   if (FS.consumesDataArgument()) {
7929     if (atFirstArg) {
7930       atFirstArg = false;
7931       usesPositionalArgs = FS.usesPositionalArg();
7932     }
7933     else if (usesPositionalArgs != FS.usesPositionalArg()) {
7934       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
7935                                         startSpecifier, specifierLen);
7936       return false;
7937     }
7938   }
7939 
7940   // Check if the field with is non-zero.
7941   const OptionalAmount &Amt = FS.getFieldWidth();
7942   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
7943     if (Amt.getConstantAmount() == 0) {
7944       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
7945                                                    Amt.getConstantLength());
7946       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
7947                            getLocationOfByte(Amt.getStart()),
7948                            /*IsStringLocation*/true, R,
7949                            FixItHint::CreateRemoval(R));
7950     }
7951   }
7952 
7953   if (!FS.consumesDataArgument()) {
7954     // FIXME: Technically specifying a precision or field width here
7955     // makes no sense.  Worth issuing a warning at some point.
7956     return true;
7957   }
7958 
7959   // Consume the argument.
7960   unsigned argIndex = FS.getArgIndex();
7961   if (argIndex < NumDataArgs) {
7962       // The check to see if the argIndex is valid will come later.
7963       // We set the bit here because we may exit early from this
7964       // function if we encounter some other error.
7965     CoveredArgs.set(argIndex);
7966   }
7967 
7968   // Check the length modifier is valid with the given conversion specifier.
7969   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
7970                                  S.getLangOpts()))
7971     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7972                                 diag::warn_format_nonsensical_length);
7973   else if (!FS.hasStandardLengthModifier())
7974     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
7975   else if (!FS.hasStandardLengthConversionCombination())
7976     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
7977                                 diag::warn_format_non_standard_conversion_spec);
7978 
7979   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
7980     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
7981 
7982   // The remaining checks depend on the data arguments.
7983   if (ArgPassingKind == Sema::FAPK_VAList)
7984     return true;
7985 
7986   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
7987     return false;
7988 
7989   // Check that the argument type matches the format specifier.
7990   const Expr *Ex = getDataArg(argIndex);
7991   if (!Ex)
7992     return true;
7993 
7994   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
7995 
7996   if (!AT.isValid()) {
7997     return true;
7998   }
7999 
8000   analyze_format_string::ArgType::MatchKind Match =
8001       AT.matchesType(S.Context, Ex->getType());
8002   Match = handleFormatSignedness(Match, S.getDiagnostics(), Ex->getExprLoc());
8003   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
8004   if (Match == analyze_format_string::ArgType::Match)
8005     return true;
8006 
8007   ScanfSpecifier fixedFS = FS;
8008   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
8009                                  S.getLangOpts(), S.Context);
8010 
8011   unsigned Diag =
8012       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
8013                : diag::warn_format_conversion_argument_type_mismatch;
8014 
8015   if (Success) {
8016     // Get the fix string from the fixed format specifier.
8017     SmallString<128> buf;
8018     llvm::raw_svector_ostream os(buf);
8019     fixedFS.toString(os);
8020 
8021     EmitFormatDiagnostic(
8022         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
8023                       << Ex->getType() << false << Ex->getSourceRange(),
8024         Ex->getBeginLoc(),
8025         /*IsStringLocation*/ false,
8026         getSpecifierRange(startSpecifier, specifierLen),
8027         FixItHint::CreateReplacement(
8028             getSpecifierRange(startSpecifier, specifierLen), os.str()));
8029   } else {
8030     EmitFormatDiagnostic(S.PDiag(Diag)
8031                              << AT.getRepresentativeTypeName(S.Context)
8032                              << Ex->getType() << false << Ex->getSourceRange(),
8033                          Ex->getBeginLoc(),
8034                          /*IsStringLocation*/ false,
8035                          getSpecifierRange(startSpecifier, specifierLen));
8036   }
8037 
8038   return true;
8039 }
8040 
8041 static void CheckFormatString(
8042     Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
8043     ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
8044     unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
8045     bool inFunctionCall, Sema::VariadicCallType CallType,
8046     llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
8047     bool IgnoreStringsWithoutSpecifiers) {
8048   // CHECK: is the format string a wide literal?
8049   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
8050     CheckFormatHandler::EmitFormatDiagnostic(
8051         S, inFunctionCall, Args[format_idx],
8052         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
8053         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8054     return;
8055   }
8056 
8057   // Str - The format string.  NOTE: this is NOT null-terminated!
8058   StringRef StrRef = FExpr->getString();
8059   const char *Str = StrRef.data();
8060   // Account for cases where the string literal is truncated in a declaration.
8061   const ConstantArrayType *T =
8062     S.Context.getAsConstantArrayType(FExpr->getType());
8063   assert(T && "String literal not of constant array type!");
8064   size_t TypeSize = T->getZExtSize();
8065   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8066   const unsigned numDataArgs = Args.size() - firstDataArg;
8067 
8068   if (IgnoreStringsWithoutSpecifiers &&
8069       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
8070           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8071     return;
8072 
8073   // Emit a warning if the string literal is truncated and does not contain an
8074   // embedded null character.
8075   if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
8076     CheckFormatHandler::EmitFormatDiagnostic(
8077         S, inFunctionCall, Args[format_idx],
8078         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
8079         FExpr->getBeginLoc(),
8080         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
8081     return;
8082   }
8083 
8084   // CHECK: empty format string?
8085   if (StrLen == 0 && numDataArgs > 0) {
8086     CheckFormatHandler::EmitFormatDiagnostic(
8087         S, inFunctionCall, Args[format_idx],
8088         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
8089         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
8090     return;
8091   }
8092 
8093   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
8094       Type == Sema::FST_Kprintf || Type == Sema::FST_FreeBSDKPrintf ||
8095       Type == Sema::FST_OSLog || Type == Sema::FST_OSTrace ||
8096       Type == Sema::FST_Syslog) {
8097     CheckPrintfHandler H(
8098         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
8099         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK,
8100         Args, format_idx, inFunctionCall, CallType, CheckedVarArgs,
8101         UncoveredArg);
8102 
8103     if (!analyze_format_string::ParsePrintfString(
8104             H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
8105             Type == Sema::FST_Kprintf || Type == Sema::FST_FreeBSDKPrintf))
8106       H.DoneProcessing();
8107   } else if (Type == Sema::FST_Scanf) {
8108     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
8109                         numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
8110                         CallType, CheckedVarArgs, UncoveredArg);
8111 
8112     if (!analyze_format_string::ParseScanfString(
8113             H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
8114       H.DoneProcessing();
8115   } // TODO: handle other formats
8116 }
8117 
8118 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
8119   // Str - The format string.  NOTE: this is NOT null-terminated!
8120   StringRef StrRef = FExpr->getString();
8121   const char *Str = StrRef.data();
8122   // Account for cases where the string literal is truncated in a declaration.
8123   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
8124   assert(T && "String literal not of constant array type!");
8125   size_t TypeSize = T->getZExtSize();
8126   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
8127   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
8128                                                          getLangOpts(),
8129                                                          Context.getTargetInfo());
8130 }
8131 
8132 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
8133 
8134 // Returns the related absolute value function that is larger, of 0 if one
8135 // does not exist.
8136 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
8137   switch (AbsFunction) {
8138   default:
8139     return 0;
8140 
8141   case Builtin::BI__builtin_abs:
8142     return Builtin::BI__builtin_labs;
8143   case Builtin::BI__builtin_labs:
8144     return Builtin::BI__builtin_llabs;
8145   case Builtin::BI__builtin_llabs:
8146     return 0;
8147 
8148   case Builtin::BI__builtin_fabsf:
8149     return Builtin::BI__builtin_fabs;
8150   case Builtin::BI__builtin_fabs:
8151     return Builtin::BI__builtin_fabsl;
8152   case Builtin::BI__builtin_fabsl:
8153     return 0;
8154 
8155   case Builtin::BI__builtin_cabsf:
8156     return Builtin::BI__builtin_cabs;
8157   case Builtin::BI__builtin_cabs:
8158     return Builtin::BI__builtin_cabsl;
8159   case Builtin::BI__builtin_cabsl:
8160     return 0;
8161 
8162   case Builtin::BIabs:
8163     return Builtin::BIlabs;
8164   case Builtin::BIlabs:
8165     return Builtin::BIllabs;
8166   case Builtin::BIllabs:
8167     return 0;
8168 
8169   case Builtin::BIfabsf:
8170     return Builtin::BIfabs;
8171   case Builtin::BIfabs:
8172     return Builtin::BIfabsl;
8173   case Builtin::BIfabsl:
8174     return 0;
8175 
8176   case Builtin::BIcabsf:
8177    return Builtin::BIcabs;
8178   case Builtin::BIcabs:
8179     return Builtin::BIcabsl;
8180   case Builtin::BIcabsl:
8181     return 0;
8182   }
8183 }
8184 
8185 // Returns the argument type of the absolute value function.
8186 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
8187                                              unsigned AbsType) {
8188   if (AbsType == 0)
8189     return QualType();
8190 
8191   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
8192   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
8193   if (Error != ASTContext::GE_None)
8194     return QualType();
8195 
8196   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
8197   if (!FT)
8198     return QualType();
8199 
8200   if (FT->getNumParams() != 1)
8201     return QualType();
8202 
8203   return FT->getParamType(0);
8204 }
8205 
8206 // Returns the best absolute value function, or zero, based on type and
8207 // current absolute value function.
8208 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
8209                                    unsigned AbsFunctionKind) {
8210   unsigned BestKind = 0;
8211   uint64_t ArgSize = Context.getTypeSize(ArgType);
8212   for (unsigned Kind = AbsFunctionKind; Kind != 0;
8213        Kind = getLargerAbsoluteValueFunction(Kind)) {
8214     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
8215     if (Context.getTypeSize(ParamType) >= ArgSize) {
8216       if (BestKind == 0)
8217         BestKind = Kind;
8218       else if (Context.hasSameType(ParamType, ArgType)) {
8219         BestKind = Kind;
8220         break;
8221       }
8222     }
8223   }
8224   return BestKind;
8225 }
8226 
8227 enum AbsoluteValueKind {
8228   AVK_Integer,
8229   AVK_Floating,
8230   AVK_Complex
8231 };
8232 
8233 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
8234   if (T->isIntegralOrEnumerationType())
8235     return AVK_Integer;
8236   if (T->isRealFloatingType())
8237     return AVK_Floating;
8238   if (T->isAnyComplexType())
8239     return AVK_Complex;
8240 
8241   llvm_unreachable("Type not integer, floating, or complex");
8242 }
8243 
8244 // Changes the absolute value function to a different type.  Preserves whether
8245 // the function is a builtin.
8246 static unsigned changeAbsFunction(unsigned AbsKind,
8247                                   AbsoluteValueKind ValueKind) {
8248   switch (ValueKind) {
8249   case AVK_Integer:
8250     switch (AbsKind) {
8251     default:
8252       return 0;
8253     case Builtin::BI__builtin_fabsf:
8254     case Builtin::BI__builtin_fabs:
8255     case Builtin::BI__builtin_fabsl:
8256     case Builtin::BI__builtin_cabsf:
8257     case Builtin::BI__builtin_cabs:
8258     case Builtin::BI__builtin_cabsl:
8259       return Builtin::BI__builtin_abs;
8260     case Builtin::BIfabsf:
8261     case Builtin::BIfabs:
8262     case Builtin::BIfabsl:
8263     case Builtin::BIcabsf:
8264     case Builtin::BIcabs:
8265     case Builtin::BIcabsl:
8266       return Builtin::BIabs;
8267     }
8268   case AVK_Floating:
8269     switch (AbsKind) {
8270     default:
8271       return 0;
8272     case Builtin::BI__builtin_abs:
8273     case Builtin::BI__builtin_labs:
8274     case Builtin::BI__builtin_llabs:
8275     case Builtin::BI__builtin_cabsf:
8276     case Builtin::BI__builtin_cabs:
8277     case Builtin::BI__builtin_cabsl:
8278       return Builtin::BI__builtin_fabsf;
8279     case Builtin::BIabs:
8280     case Builtin::BIlabs:
8281     case Builtin::BIllabs:
8282     case Builtin::BIcabsf:
8283     case Builtin::BIcabs:
8284     case Builtin::BIcabsl:
8285       return Builtin::BIfabsf;
8286     }
8287   case AVK_Complex:
8288     switch (AbsKind) {
8289     default:
8290       return 0;
8291     case Builtin::BI__builtin_abs:
8292     case Builtin::BI__builtin_labs:
8293     case Builtin::BI__builtin_llabs:
8294     case Builtin::BI__builtin_fabsf:
8295     case Builtin::BI__builtin_fabs:
8296     case Builtin::BI__builtin_fabsl:
8297       return Builtin::BI__builtin_cabsf;
8298     case Builtin::BIabs:
8299     case Builtin::BIlabs:
8300     case Builtin::BIllabs:
8301     case Builtin::BIfabsf:
8302     case Builtin::BIfabs:
8303     case Builtin::BIfabsl:
8304       return Builtin::BIcabsf;
8305     }
8306   }
8307   llvm_unreachable("Unable to convert function");
8308 }
8309 
8310 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
8311   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
8312   if (!FnInfo)
8313     return 0;
8314 
8315   switch (FDecl->getBuiltinID()) {
8316   default:
8317     return 0;
8318   case Builtin::BI__builtin_abs:
8319   case Builtin::BI__builtin_fabs:
8320   case Builtin::BI__builtin_fabsf:
8321   case Builtin::BI__builtin_fabsl:
8322   case Builtin::BI__builtin_labs:
8323   case Builtin::BI__builtin_llabs:
8324   case Builtin::BI__builtin_cabs:
8325   case Builtin::BI__builtin_cabsf:
8326   case Builtin::BI__builtin_cabsl:
8327   case Builtin::BIabs:
8328   case Builtin::BIlabs:
8329   case Builtin::BIllabs:
8330   case Builtin::BIfabs:
8331   case Builtin::BIfabsf:
8332   case Builtin::BIfabsl:
8333   case Builtin::BIcabs:
8334   case Builtin::BIcabsf:
8335   case Builtin::BIcabsl:
8336     return FDecl->getBuiltinID();
8337   }
8338   llvm_unreachable("Unknown Builtin type");
8339 }
8340 
8341 // If the replacement is valid, emit a note with replacement function.
8342 // Additionally, suggest including the proper header if not already included.
8343 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
8344                             unsigned AbsKind, QualType ArgType) {
8345   bool EmitHeaderHint = true;
8346   const char *HeaderName = nullptr;
8347   StringRef FunctionName;
8348   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
8349     FunctionName = "std::abs";
8350     if (ArgType->isIntegralOrEnumerationType()) {
8351       HeaderName = "cstdlib";
8352     } else if (ArgType->isRealFloatingType()) {
8353       HeaderName = "cmath";
8354     } else {
8355       llvm_unreachable("Invalid Type");
8356     }
8357 
8358     // Lookup all std::abs
8359     if (NamespaceDecl *Std = S.getStdNamespace()) {
8360       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
8361       R.suppressDiagnostics();
8362       S.LookupQualifiedName(R, Std);
8363 
8364       for (const auto *I : R) {
8365         const FunctionDecl *FDecl = nullptr;
8366         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
8367           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
8368         } else {
8369           FDecl = dyn_cast<FunctionDecl>(I);
8370         }
8371         if (!FDecl)
8372           continue;
8373 
8374         // Found std::abs(), check that they are the right ones.
8375         if (FDecl->getNumParams() != 1)
8376           continue;
8377 
8378         // Check that the parameter type can handle the argument.
8379         QualType ParamType = FDecl->getParamDecl(0)->getType();
8380         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
8381             S.Context.getTypeSize(ArgType) <=
8382                 S.Context.getTypeSize(ParamType)) {
8383           // Found a function, don't need the header hint.
8384           EmitHeaderHint = false;
8385           break;
8386         }
8387       }
8388     }
8389   } else {
8390     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
8391     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
8392 
8393     if (HeaderName) {
8394       DeclarationName DN(&S.Context.Idents.get(FunctionName));
8395       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
8396       R.suppressDiagnostics();
8397       S.LookupName(R, S.getCurScope());
8398 
8399       if (R.isSingleResult()) {
8400         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
8401         if (FD && FD->getBuiltinID() == AbsKind) {
8402           EmitHeaderHint = false;
8403         } else {
8404           return;
8405         }
8406       } else if (!R.empty()) {
8407         return;
8408       }
8409     }
8410   }
8411 
8412   S.Diag(Loc, diag::note_replace_abs_function)
8413       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
8414 
8415   if (!HeaderName)
8416     return;
8417 
8418   if (!EmitHeaderHint)
8419     return;
8420 
8421   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
8422                                                     << FunctionName;
8423 }
8424 
8425 template <std::size_t StrLen>
8426 static bool IsStdFunction(const FunctionDecl *FDecl,
8427                           const char (&Str)[StrLen]) {
8428   if (!FDecl)
8429     return false;
8430   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
8431     return false;
8432   if (!FDecl->isInStdNamespace())
8433     return false;
8434 
8435   return true;
8436 }
8437 
8438 enum class MathCheck { NaN, Inf };
8439 static bool IsInfOrNanFunction(StringRef calleeName, MathCheck Check) {
8440   auto MatchesAny = [&](std::initializer_list<llvm::StringRef> names) {
8441     return std::any_of(names.begin(), names.end(), [&](llvm::StringRef name) {
8442       return calleeName == name;
8443     });
8444   };
8445 
8446   switch (Check) {
8447   case MathCheck::NaN:
8448     return MatchesAny({"__builtin_nan", "__builtin_nanf", "__builtin_nanl",
8449                        "__builtin_nanf16", "__builtin_nanf128"});
8450   case MathCheck::Inf:
8451     return MatchesAny({"__builtin_inf", "__builtin_inff", "__builtin_infl",
8452                        "__builtin_inff16", "__builtin_inff128"});
8453   }
8454   llvm_unreachable("unknown MathCheck");
8455 }
8456 
8457 void Sema::CheckInfNaNFunction(const CallExpr *Call,
8458                                const FunctionDecl *FDecl) {
8459   FPOptions FPO = Call->getFPFeaturesInEffect(getLangOpts());
8460   bool HasIdentifier = FDecl->getIdentifier() != nullptr;
8461   bool IsNaNOrIsUnordered =
8462       IsStdFunction(FDecl, "isnan") || IsStdFunction(FDecl, "isunordered");
8463   bool IsSpecialNaN =
8464       HasIdentifier && IsInfOrNanFunction(FDecl->getName(), MathCheck::NaN);
8465   if ((IsNaNOrIsUnordered || IsSpecialNaN) && FPO.getNoHonorNaNs()) {
8466     Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
8467         << 1 << 0 << Call->getSourceRange();
8468   } else {
8469     bool IsInfOrIsFinite =
8470         IsStdFunction(FDecl, "isinf") || IsStdFunction(FDecl, "isfinite");
8471     bool IsInfinityOrIsSpecialInf =
8472         HasIdentifier && ((FDecl->getName() == "infinity") ||
8473                           IsInfOrNanFunction(FDecl->getName(), MathCheck::Inf));
8474     if ((IsInfOrIsFinite || IsInfinityOrIsSpecialInf) && FPO.getNoHonorInfs())
8475       Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
8476           << 0 << 0 << Call->getSourceRange();
8477   }
8478 }
8479 
8480 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
8481                                       const FunctionDecl *FDecl) {
8482   if (Call->getNumArgs() != 1)
8483     return;
8484 
8485   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
8486   bool IsStdAbs = IsStdFunction(FDecl, "abs");
8487   if (AbsKind == 0 && !IsStdAbs)
8488     return;
8489 
8490   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8491   QualType ParamType = Call->getArg(0)->getType();
8492 
8493   // Unsigned types cannot be negative.  Suggest removing the absolute value
8494   // function call.
8495   if (ArgType->isUnsignedIntegerType()) {
8496     StringRef FunctionName =
8497         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
8498     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
8499     Diag(Call->getExprLoc(), diag::note_remove_abs)
8500         << FunctionName
8501         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
8502     return;
8503   }
8504 
8505   // Taking the absolute value of a pointer is very suspicious, they probably
8506   // wanted to index into an array, dereference a pointer, call a function, etc.
8507   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
8508     unsigned DiagType = 0;
8509     if (ArgType->isFunctionType())
8510       DiagType = 1;
8511     else if (ArgType->isArrayType())
8512       DiagType = 2;
8513 
8514     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
8515     return;
8516   }
8517 
8518   // std::abs has overloads which prevent most of the absolute value problems
8519   // from occurring.
8520   if (IsStdAbs)
8521     return;
8522 
8523   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
8524   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
8525 
8526   // The argument and parameter are the same kind.  Check if they are the right
8527   // size.
8528   if (ArgValueKind == ParamValueKind) {
8529     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
8530       return;
8531 
8532     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
8533     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
8534         << FDecl << ArgType << ParamType;
8535 
8536     if (NewAbsKind == 0)
8537       return;
8538 
8539     emitReplacement(*this, Call->getExprLoc(),
8540                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8541     return;
8542   }
8543 
8544   // ArgValueKind != ParamValueKind
8545   // The wrong type of absolute value function was used.  Attempt to find the
8546   // proper one.
8547   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
8548   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
8549   if (NewAbsKind == 0)
8550     return;
8551 
8552   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
8553       << FDecl << ParamValueKind << ArgValueKind;
8554 
8555   emitReplacement(*this, Call->getExprLoc(),
8556                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
8557 }
8558 
8559 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
8560 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
8561                                 const FunctionDecl *FDecl) {
8562   if (!Call || !FDecl) return;
8563 
8564   // Ignore template specializations and macros.
8565   if (inTemplateInstantiation()) return;
8566   if (Call->getExprLoc().isMacroID()) return;
8567 
8568   // Only care about the one template argument, two function parameter std::max
8569   if (Call->getNumArgs() != 2) return;
8570   if (!IsStdFunction(FDecl, "max")) return;
8571   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
8572   if (!ArgList) return;
8573   if (ArgList->size() != 1) return;
8574 
8575   // Check that template type argument is unsigned integer.
8576   const auto& TA = ArgList->get(0);
8577   if (TA.getKind() != TemplateArgument::Type) return;
8578   QualType ArgType = TA.getAsType();
8579   if (!ArgType->isUnsignedIntegerType()) return;
8580 
8581   // See if either argument is a literal zero.
8582   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
8583     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
8584     if (!MTE) return false;
8585     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
8586     if (!Num) return false;
8587     if (Num->getValue() != 0) return false;
8588     return true;
8589   };
8590 
8591   const Expr *FirstArg = Call->getArg(0);
8592   const Expr *SecondArg = Call->getArg(1);
8593   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
8594   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
8595 
8596   // Only warn when exactly one argument is zero.
8597   if (IsFirstArgZero == IsSecondArgZero) return;
8598 
8599   SourceRange FirstRange = FirstArg->getSourceRange();
8600   SourceRange SecondRange = SecondArg->getSourceRange();
8601 
8602   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
8603 
8604   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
8605       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
8606 
8607   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
8608   SourceRange RemovalRange;
8609   if (IsFirstArgZero) {
8610     RemovalRange = SourceRange(FirstRange.getBegin(),
8611                                SecondRange.getBegin().getLocWithOffset(-1));
8612   } else {
8613     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
8614                                SecondRange.getEnd());
8615   }
8616 
8617   Diag(Call->getExprLoc(), diag::note_remove_max_call)
8618         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
8619         << FixItHint::CreateRemoval(RemovalRange);
8620 }
8621 
8622 //===--- CHECK: Standard memory functions ---------------------------------===//
8623 
8624 /// Takes the expression passed to the size_t parameter of functions
8625 /// such as memcmp, strncat, etc and warns if it's a comparison.
8626 ///
8627 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
8628 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
8629                                            IdentifierInfo *FnName,
8630                                            SourceLocation FnLoc,
8631                                            SourceLocation RParenLoc) {
8632   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
8633   if (!Size)
8634     return false;
8635 
8636   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
8637   if (!Size->isComparisonOp() && !Size->isLogicalOp())
8638     return false;
8639 
8640   SourceRange SizeRange = Size->getSourceRange();
8641   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
8642       << SizeRange << FnName;
8643   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
8644       << FnName
8645       << FixItHint::CreateInsertion(
8646              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
8647       << FixItHint::CreateRemoval(RParenLoc);
8648   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
8649       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
8650       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
8651                                     ")");
8652 
8653   return true;
8654 }
8655 
8656 /// Determine whether the given type is or contains a dynamic class type
8657 /// (e.g., whether it has a vtable).
8658 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
8659                                                      bool &IsContained) {
8660   // Look through array types while ignoring qualifiers.
8661   const Type *Ty = T->getBaseElementTypeUnsafe();
8662   IsContained = false;
8663 
8664   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
8665   RD = RD ? RD->getDefinition() : nullptr;
8666   if (!RD || RD->isInvalidDecl())
8667     return nullptr;
8668 
8669   if (RD->isDynamicClass())
8670     return RD;
8671 
8672   // Check all the fields.  If any bases were dynamic, the class is dynamic.
8673   // It's impossible for a class to transitively contain itself by value, so
8674   // infinite recursion is impossible.
8675   for (auto *FD : RD->fields()) {
8676     bool SubContained;
8677     if (const CXXRecordDecl *ContainedRD =
8678             getContainedDynamicClass(FD->getType(), SubContained)) {
8679       IsContained = true;
8680       return ContainedRD;
8681     }
8682   }
8683 
8684   return nullptr;
8685 }
8686 
8687 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
8688   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
8689     if (Unary->getKind() == UETT_SizeOf)
8690       return Unary;
8691   return nullptr;
8692 }
8693 
8694 /// If E is a sizeof expression, returns its argument expression,
8695 /// otherwise returns NULL.
8696 static const Expr *getSizeOfExprArg(const Expr *E) {
8697   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8698     if (!SizeOf->isArgumentType())
8699       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
8700   return nullptr;
8701 }
8702 
8703 /// If E is a sizeof expression, returns its argument type.
8704 static QualType getSizeOfArgType(const Expr *E) {
8705   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
8706     return SizeOf->getTypeOfArgument();
8707   return QualType();
8708 }
8709 
8710 namespace {
8711 
8712 struct SearchNonTrivialToInitializeField
8713     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
8714   using Super =
8715       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
8716 
8717   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
8718 
8719   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
8720                      SourceLocation SL) {
8721     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8722       asDerived().visitArray(PDIK, AT, SL);
8723       return;
8724     }
8725 
8726     Super::visitWithKind(PDIK, FT, SL);
8727   }
8728 
8729   void visitARCStrong(QualType FT, SourceLocation SL) {
8730     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8731   }
8732   void visitARCWeak(QualType FT, SourceLocation SL) {
8733     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
8734   }
8735   void visitStruct(QualType FT, SourceLocation SL) {
8736     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8737       visit(FD->getType(), FD->getLocation());
8738   }
8739   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
8740                   const ArrayType *AT, SourceLocation SL) {
8741     visit(getContext().getBaseElementType(AT), SL);
8742   }
8743   void visitTrivial(QualType FT, SourceLocation SL) {}
8744 
8745   static void diag(QualType RT, const Expr *E, Sema &S) {
8746     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
8747   }
8748 
8749   ASTContext &getContext() { return S.getASTContext(); }
8750 
8751   const Expr *E;
8752   Sema &S;
8753 };
8754 
8755 struct SearchNonTrivialToCopyField
8756     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
8757   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
8758 
8759   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
8760 
8761   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
8762                      SourceLocation SL) {
8763     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
8764       asDerived().visitArray(PCK, AT, SL);
8765       return;
8766     }
8767 
8768     Super::visitWithKind(PCK, FT, SL);
8769   }
8770 
8771   void visitARCStrong(QualType FT, SourceLocation SL) {
8772     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8773   }
8774   void visitARCWeak(QualType FT, SourceLocation SL) {
8775     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
8776   }
8777   void visitStruct(QualType FT, SourceLocation SL) {
8778     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
8779       visit(FD->getType(), FD->getLocation());
8780   }
8781   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
8782                   SourceLocation SL) {
8783     visit(getContext().getBaseElementType(AT), SL);
8784   }
8785   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
8786                 SourceLocation SL) {}
8787   void visitTrivial(QualType FT, SourceLocation SL) {}
8788   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
8789 
8790   static void diag(QualType RT, const Expr *E, Sema &S) {
8791     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
8792   }
8793 
8794   ASTContext &getContext() { return S.getASTContext(); }
8795 
8796   const Expr *E;
8797   Sema &S;
8798 };
8799 
8800 }
8801 
8802 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
8803 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
8804   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
8805 
8806   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
8807     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
8808       return false;
8809 
8810     return doesExprLikelyComputeSize(BO->getLHS()) ||
8811            doesExprLikelyComputeSize(BO->getRHS());
8812   }
8813 
8814   return getAsSizeOfExpr(SizeofExpr) != nullptr;
8815 }
8816 
8817 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
8818 ///
8819 /// \code
8820 ///   #define MACRO 0
8821 ///   foo(MACRO);
8822 ///   foo(0);
8823 /// \endcode
8824 ///
8825 /// This should return true for the first call to foo, but not for the second
8826 /// (regardless of whether foo is a macro or function).
8827 static bool isArgumentExpandedFromMacro(SourceManager &SM,
8828                                         SourceLocation CallLoc,
8829                                         SourceLocation ArgLoc) {
8830   if (!CallLoc.isMacroID())
8831     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
8832 
8833   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
8834          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
8835 }
8836 
8837 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
8838 /// last two arguments transposed.
8839 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
8840   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
8841     return;
8842 
8843   const Expr *SizeArg =
8844     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
8845 
8846   auto isLiteralZero = [](const Expr *E) {
8847     return (isa<IntegerLiteral>(E) &&
8848             cast<IntegerLiteral>(E)->getValue() == 0) ||
8849            (isa<CharacterLiteral>(E) &&
8850             cast<CharacterLiteral>(E)->getValue() == 0);
8851   };
8852 
8853   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
8854   SourceLocation CallLoc = Call->getRParenLoc();
8855   SourceManager &SM = S.getSourceManager();
8856   if (isLiteralZero(SizeArg) &&
8857       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
8858 
8859     SourceLocation DiagLoc = SizeArg->getExprLoc();
8860 
8861     // Some platforms #define bzero to __builtin_memset. See if this is the
8862     // case, and if so, emit a better diagnostic.
8863     if (BId == Builtin::BIbzero ||
8864         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
8865                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
8866       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
8867       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
8868     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
8869       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
8870       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
8871     }
8872     return;
8873   }
8874 
8875   // If the second argument to a memset is a sizeof expression and the third
8876   // isn't, this is also likely an error. This should catch
8877   // 'memset(buf, sizeof(buf), 0xff)'.
8878   if (BId == Builtin::BImemset &&
8879       doesExprLikelyComputeSize(Call->getArg(1)) &&
8880       !doesExprLikelyComputeSize(Call->getArg(2))) {
8881     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
8882     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
8883     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
8884     return;
8885   }
8886 }
8887 
8888 void Sema::CheckMemaccessArguments(const CallExpr *Call,
8889                                    unsigned BId,
8890                                    IdentifierInfo *FnName) {
8891   assert(BId != 0);
8892 
8893   // It is possible to have a non-standard definition of memset.  Validate
8894   // we have enough arguments, and if not, abort further checking.
8895   unsigned ExpectedNumArgs =
8896       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
8897   if (Call->getNumArgs() < ExpectedNumArgs)
8898     return;
8899 
8900   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
8901                       BId == Builtin::BIstrndup ? 1 : 2);
8902   unsigned LenArg =
8903       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
8904   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
8905 
8906   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
8907                                      Call->getBeginLoc(), Call->getRParenLoc()))
8908     return;
8909 
8910   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
8911   CheckMemaccessSize(*this, BId, Call);
8912 
8913   // We have special checking when the length is a sizeof expression.
8914   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
8915   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
8916   llvm::FoldingSetNodeID SizeOfArgID;
8917 
8918   // Although widely used, 'bzero' is not a standard function. Be more strict
8919   // with the argument types before allowing diagnostics and only allow the
8920   // form bzero(ptr, sizeof(...)).
8921   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
8922   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
8923     return;
8924 
8925   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
8926     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
8927     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
8928 
8929     QualType DestTy = Dest->getType();
8930     QualType PointeeTy;
8931     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
8932       PointeeTy = DestPtrTy->getPointeeType();
8933 
8934       // Never warn about void type pointers. This can be used to suppress
8935       // false positives.
8936       if (PointeeTy->isVoidType())
8937         continue;
8938 
8939       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
8940       // actually comparing the expressions for equality. Because computing the
8941       // expression IDs can be expensive, we only do this if the diagnostic is
8942       // enabled.
8943       if (SizeOfArg &&
8944           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
8945                            SizeOfArg->getExprLoc())) {
8946         // We only compute IDs for expressions if the warning is enabled, and
8947         // cache the sizeof arg's ID.
8948         if (SizeOfArgID == llvm::FoldingSetNodeID())
8949           SizeOfArg->Profile(SizeOfArgID, Context, true);
8950         llvm::FoldingSetNodeID DestID;
8951         Dest->Profile(DestID, Context, true);
8952         if (DestID == SizeOfArgID) {
8953           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
8954           //       over sizeof(src) as well.
8955           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
8956           StringRef ReadableName = FnName->getName();
8957 
8958           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
8959             if (UnaryOp->getOpcode() == UO_AddrOf)
8960               ActionIdx = 1; // If its an address-of operator, just remove it.
8961           if (!PointeeTy->isIncompleteType() &&
8962               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
8963             ActionIdx = 2; // If the pointee's size is sizeof(char),
8964                            // suggest an explicit length.
8965 
8966           // If the function is defined as a builtin macro, do not show macro
8967           // expansion.
8968           SourceLocation SL = SizeOfArg->getExprLoc();
8969           SourceRange DSR = Dest->getSourceRange();
8970           SourceRange SSR = SizeOfArg->getSourceRange();
8971           SourceManager &SM = getSourceManager();
8972 
8973           if (SM.isMacroArgExpansion(SL)) {
8974             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
8975             SL = SM.getSpellingLoc(SL);
8976             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
8977                              SM.getSpellingLoc(DSR.getEnd()));
8978             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
8979                              SM.getSpellingLoc(SSR.getEnd()));
8980           }
8981 
8982           DiagRuntimeBehavior(SL, SizeOfArg,
8983                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
8984                                 << ReadableName
8985                                 << PointeeTy
8986                                 << DestTy
8987                                 << DSR
8988                                 << SSR);
8989           DiagRuntimeBehavior(SL, SizeOfArg,
8990                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
8991                                 << ActionIdx
8992                                 << SSR);
8993 
8994           break;
8995         }
8996       }
8997 
8998       // Also check for cases where the sizeof argument is the exact same
8999       // type as the memory argument, and where it points to a user-defined
9000       // record type.
9001       if (SizeOfArgTy != QualType()) {
9002         if (PointeeTy->isRecordType() &&
9003             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9004           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9005                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9006                                 << FnName << SizeOfArgTy << ArgIdx
9007                                 << PointeeTy << Dest->getSourceRange()
9008                                 << LenExpr->getSourceRange());
9009           break;
9010         }
9011       }
9012     } else if (DestTy->isArrayType()) {
9013       PointeeTy = DestTy;
9014     }
9015 
9016     if (PointeeTy == QualType())
9017       continue;
9018 
9019     // Always complain about dynamic classes.
9020     bool IsContained;
9021     if (const CXXRecordDecl *ContainedRD =
9022             getContainedDynamicClass(PointeeTy, IsContained)) {
9023 
9024       unsigned OperationType = 0;
9025       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9026       // "overwritten" if we're warning about the destination for any call
9027       // but memcmp; otherwise a verb appropriate to the call.
9028       if (ArgIdx != 0 || IsCmp) {
9029         if (BId == Builtin::BImemcpy)
9030           OperationType = 1;
9031         else if(BId == Builtin::BImemmove)
9032           OperationType = 2;
9033         else if (IsCmp)
9034           OperationType = 3;
9035       }
9036 
9037       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9038                           PDiag(diag::warn_dyn_class_memaccess)
9039                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
9040                               << IsContained << ContainedRD << OperationType
9041                               << Call->getCallee()->getSourceRange());
9042     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
9043              BId != Builtin::BImemset)
9044       DiagRuntimeBehavior(
9045         Dest->getExprLoc(), Dest,
9046         PDiag(diag::warn_arc_object_memaccess)
9047           << ArgIdx << FnName << PointeeTy
9048           << Call->getCallee()->getSourceRange());
9049     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
9050 
9051       // FIXME: Do not consider incomplete types even though they may be
9052       // completed later. GCC does not diagnose such code, but we may want to
9053       // consider diagnosing it in the future, perhaps under a different, but
9054       // related, diagnostic group.
9055       bool MayBeTriviallyCopyableCXXRecord =
9056           RT->isIncompleteType() ||
9057           RT->desugar().isTriviallyCopyableType(Context);
9058 
9059       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9060           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
9061         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9062                             PDiag(diag::warn_cstruct_memaccess)
9063                                 << ArgIdx << FnName << PointeeTy << 0);
9064         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
9065       } else if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
9066                  !MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
9067         // FIXME: Limiting this warning to dest argument until we decide
9068         // whether it's valid for source argument too.
9069         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9070                             PDiag(diag::warn_cxxstruct_memaccess)
9071                                 << FnName << PointeeTy);
9072       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9073                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
9074         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9075                             PDiag(diag::warn_cstruct_memaccess)
9076                                 << ArgIdx << FnName << PointeeTy << 1);
9077         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
9078       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
9079                  !MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
9080         // FIXME: Limiting this warning to dest argument until we decide
9081         // whether it's valid for source argument too.
9082         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
9083                             PDiag(diag::warn_cxxstruct_memaccess)
9084                                 << FnName << PointeeTy);
9085       } else {
9086         continue;
9087       }
9088     } else
9089       continue;
9090 
9091     DiagRuntimeBehavior(
9092       Dest->getExprLoc(), Dest,
9093       PDiag(diag::note_bad_memaccess_silence)
9094         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
9095     break;
9096   }
9097 }
9098 
9099 // A little helper routine: ignore addition and subtraction of integer literals.
9100 // This intentionally does not ignore all integer constant expressions because
9101 // we don't want to remove sizeof().
9102 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
9103   Ex = Ex->IgnoreParenCasts();
9104 
9105   while (true) {
9106     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
9107     if (!BO || !BO->isAdditiveOp())
9108       break;
9109 
9110     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
9111     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
9112 
9113     if (isa<IntegerLiteral>(RHS))
9114       Ex = LHS;
9115     else if (isa<IntegerLiteral>(LHS))
9116       Ex = RHS;
9117     else
9118       break;
9119   }
9120 
9121   return Ex;
9122 }
9123 
9124 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
9125                                                       ASTContext &Context) {
9126   // Only handle constant-sized or VLAs, but not flexible members.
9127   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
9128     // Only issue the FIXIT for arrays of size > 1.
9129     if (CAT->getZExtSize() <= 1)
9130       return false;
9131   } else if (!Ty->isVariableArrayType()) {
9132     return false;
9133   }
9134   return true;
9135 }
9136 
9137 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
9138                                     IdentifierInfo *FnName) {
9139 
9140   // Don't crash if the user has the wrong number of arguments
9141   unsigned NumArgs = Call->getNumArgs();
9142   if ((NumArgs != 3) && (NumArgs != 4))
9143     return;
9144 
9145   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
9146   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
9147   const Expr *CompareWithSrc = nullptr;
9148 
9149   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
9150                                      Call->getBeginLoc(), Call->getRParenLoc()))
9151     return;
9152 
9153   // Look for 'strlcpy(dst, x, sizeof(x))'
9154   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
9155     CompareWithSrc = Ex;
9156   else {
9157     // Look for 'strlcpy(dst, x, strlen(x))'
9158     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
9159       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
9160           SizeCall->getNumArgs() == 1)
9161         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
9162     }
9163   }
9164 
9165   if (!CompareWithSrc)
9166     return;
9167 
9168   // Determine if the argument to sizeof/strlen is equal to the source
9169   // argument.  In principle there's all kinds of things you could do
9170   // here, for instance creating an == expression and evaluating it with
9171   // EvaluateAsBooleanCondition, but this uses a more direct technique:
9172   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
9173   if (!SrcArgDRE)
9174     return;
9175 
9176   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
9177   if (!CompareWithSrcDRE ||
9178       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
9179     return;
9180 
9181   const Expr *OriginalSizeArg = Call->getArg(2);
9182   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
9183       << OriginalSizeArg->getSourceRange() << FnName;
9184 
9185   // Output a FIXIT hint if the destination is an array (rather than a
9186   // pointer to an array).  This could be enhanced to handle some
9187   // pointers if we know the actual size, like if DstArg is 'array+2'
9188   // we could say 'sizeof(array)-2'.
9189   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
9190   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
9191     return;
9192 
9193   SmallString<128> sizeString;
9194   llvm::raw_svector_ostream OS(sizeString);
9195   OS << "sizeof(";
9196   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9197   OS << ")";
9198 
9199   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
9200       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
9201                                       OS.str());
9202 }
9203 
9204 /// Check if two expressions refer to the same declaration.
9205 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
9206   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
9207     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
9208       return D1->getDecl() == D2->getDecl();
9209   return false;
9210 }
9211 
9212 static const Expr *getStrlenExprArg(const Expr *E) {
9213   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9214     const FunctionDecl *FD = CE->getDirectCallee();
9215     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
9216       return nullptr;
9217     return CE->getArg(0)->IgnoreParenCasts();
9218   }
9219   return nullptr;
9220 }
9221 
9222 void Sema::CheckStrncatArguments(const CallExpr *CE,
9223                                  IdentifierInfo *FnName) {
9224   // Don't crash if the user has the wrong number of arguments.
9225   if (CE->getNumArgs() < 3)
9226     return;
9227   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
9228   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
9229   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
9230 
9231   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
9232                                      CE->getRParenLoc()))
9233     return;
9234 
9235   // Identify common expressions, which are wrongly used as the size argument
9236   // to strncat and may lead to buffer overflows.
9237   unsigned PatternType = 0;
9238   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
9239     // - sizeof(dst)
9240     if (referToTheSameDecl(SizeOfArg, DstArg))
9241       PatternType = 1;
9242     // - sizeof(src)
9243     else if (referToTheSameDecl(SizeOfArg, SrcArg))
9244       PatternType = 2;
9245   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
9246     if (BE->getOpcode() == BO_Sub) {
9247       const Expr *L = BE->getLHS()->IgnoreParenCasts();
9248       const Expr *R = BE->getRHS()->IgnoreParenCasts();
9249       // - sizeof(dst) - strlen(dst)
9250       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
9251           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
9252         PatternType = 1;
9253       // - sizeof(src) - (anything)
9254       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
9255         PatternType = 2;
9256     }
9257   }
9258 
9259   if (PatternType == 0)
9260     return;
9261 
9262   // Generate the diagnostic.
9263   SourceLocation SL = LenArg->getBeginLoc();
9264   SourceRange SR = LenArg->getSourceRange();
9265   SourceManager &SM = getSourceManager();
9266 
9267   // If the function is defined as a builtin macro, do not show macro expansion.
9268   if (SM.isMacroArgExpansion(SL)) {
9269     SL = SM.getSpellingLoc(SL);
9270     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
9271                      SM.getSpellingLoc(SR.getEnd()));
9272   }
9273 
9274   // Check if the destination is an array (rather than a pointer to an array).
9275   QualType DstTy = DstArg->getType();
9276   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
9277                                                                     Context);
9278   if (!isKnownSizeArray) {
9279     if (PatternType == 1)
9280       Diag(SL, diag::warn_strncat_wrong_size) << SR;
9281     else
9282       Diag(SL, diag::warn_strncat_src_size) << SR;
9283     return;
9284   }
9285 
9286   if (PatternType == 1)
9287     Diag(SL, diag::warn_strncat_large_size) << SR;
9288   else
9289     Diag(SL, diag::warn_strncat_src_size) << SR;
9290 
9291   SmallString<128> sizeString;
9292   llvm::raw_svector_ostream OS(sizeString);
9293   OS << "sizeof(";
9294   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9295   OS << ") - ";
9296   OS << "strlen(";
9297   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
9298   OS << ") - 1";
9299 
9300   Diag(SL, diag::note_strncat_wrong_size)
9301     << FixItHint::CreateReplacement(SR, OS.str());
9302 }
9303 
9304 namespace {
9305 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
9306                                 const UnaryOperator *UnaryExpr, const Decl *D) {
9307   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
9308     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
9309         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
9310     return;
9311   }
9312 }
9313 
9314 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
9315                                  const UnaryOperator *UnaryExpr) {
9316   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
9317     const Decl *D = Lvalue->getDecl();
9318     if (isa<DeclaratorDecl>(D))
9319       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
9320         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
9321   }
9322 
9323   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
9324     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
9325                                       Lvalue->getMemberDecl());
9326 }
9327 
9328 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
9329                             const UnaryOperator *UnaryExpr) {
9330   const auto *Lambda = dyn_cast<LambdaExpr>(
9331       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
9332   if (!Lambda)
9333     return;
9334 
9335   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
9336       << CalleeName << 2 /*object: lambda expression*/;
9337 }
9338 
9339 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
9340                                   const DeclRefExpr *Lvalue) {
9341   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
9342   if (Var == nullptr)
9343     return;
9344 
9345   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
9346       << CalleeName << 0 /*object: */ << Var;
9347 }
9348 
9349 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
9350                             const CastExpr *Cast) {
9351   SmallString<128> SizeString;
9352   llvm::raw_svector_ostream OS(SizeString);
9353 
9354   clang::CastKind Kind = Cast->getCastKind();
9355   if (Kind == clang::CK_BitCast &&
9356       !Cast->getSubExpr()->getType()->isFunctionPointerType())
9357     return;
9358   if (Kind == clang::CK_IntegralToPointer &&
9359       !isa<IntegerLiteral>(
9360           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
9361     return;
9362 
9363   switch (Cast->getCastKind()) {
9364   case clang::CK_BitCast:
9365   case clang::CK_IntegralToPointer:
9366   case clang::CK_FunctionToPointerDecay:
9367     OS << '\'';
9368     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
9369     OS << '\'';
9370     break;
9371   default:
9372     return;
9373   }
9374 
9375   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
9376       << CalleeName << 0 /*object: */ << OS.str();
9377 }
9378 } // namespace
9379 
9380 void Sema::CheckFreeArguments(const CallExpr *E) {
9381   const std::string CalleeName =
9382       cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
9383 
9384   { // Prefer something that doesn't involve a cast to make things simpler.
9385     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
9386     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
9387       switch (UnaryExpr->getOpcode()) {
9388       case UnaryOperator::Opcode::UO_AddrOf:
9389         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
9390       case UnaryOperator::Opcode::UO_Plus:
9391         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
9392       default:
9393         break;
9394       }
9395 
9396     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
9397       if (Lvalue->getType()->isArrayType())
9398         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
9399 
9400     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
9401       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
9402           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
9403       return;
9404     }
9405 
9406     if (isa<BlockExpr>(Arg)) {
9407       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
9408           << CalleeName << 1 /*object: block*/;
9409       return;
9410     }
9411   }
9412   // Maybe the cast was important, check after the other cases.
9413   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
9414     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
9415 }
9416 
9417 void
9418 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
9419                          SourceLocation ReturnLoc,
9420                          bool isObjCMethod,
9421                          const AttrVec *Attrs,
9422                          const FunctionDecl *FD) {
9423   // Check if the return value is null but should not be.
9424   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
9425        (!isObjCMethod && isNonNullType(lhsType))) &&
9426       CheckNonNullExpr(*this, RetValExp))
9427     Diag(ReturnLoc, diag::warn_null_ret)
9428       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
9429 
9430   // C++11 [basic.stc.dynamic.allocation]p4:
9431   //   If an allocation function declared with a non-throwing
9432   //   exception-specification fails to allocate storage, it shall return
9433   //   a null pointer. Any other allocation function that fails to allocate
9434   //   storage shall indicate failure only by throwing an exception [...]
9435   if (FD) {
9436     OverloadedOperatorKind Op = FD->getOverloadedOperator();
9437     if (Op == OO_New || Op == OO_Array_New) {
9438       const FunctionProtoType *Proto
9439         = FD->getType()->castAs<FunctionProtoType>();
9440       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
9441           CheckNonNullExpr(*this, RetValExp))
9442         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
9443           << FD << getLangOpts().CPlusPlus11;
9444     }
9445   }
9446 
9447   if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) {
9448     Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
9449   }
9450 
9451   // PPC MMA non-pointer types are not allowed as return type. Checking the type
9452   // here prevent the user from using a PPC MMA type as trailing return type.
9453   if (Context.getTargetInfo().getTriple().isPPC64())
9454     PPC().CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
9455 }
9456 
9457 void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
9458                                 BinaryOperatorKind Opcode) {
9459   if (!BinaryOperator::isEqualityOp(Opcode))
9460     return;
9461 
9462   // Match and capture subexpressions such as "(float) X == 0.1".
9463   FloatingLiteral *FPLiteral;
9464   CastExpr *FPCast;
9465   auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
9466     FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
9467     FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
9468     return FPLiteral && FPCast;
9469   };
9470 
9471   if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
9472     auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
9473     auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
9474     if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
9475         TargetTy->isFloatingPoint()) {
9476       bool Lossy;
9477       llvm::APFloat TargetC = FPLiteral->getValue();
9478       TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
9479                       llvm::APFloat::rmNearestTiesToEven, &Lossy);
9480       if (Lossy) {
9481         // If the literal cannot be represented in the source type, then a
9482         // check for == is always false and check for != is always true.
9483         Diag(Loc, diag::warn_float_compare_literal)
9484             << (Opcode == BO_EQ) << QualType(SourceTy, 0)
9485             << LHS->getSourceRange() << RHS->getSourceRange();
9486         return;
9487       }
9488     }
9489   }
9490 
9491   // Match a more general floating-point equality comparison (-Wfloat-equal).
9492   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
9493   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
9494 
9495   // Special case: check for x == x (which is OK).
9496   // Do not emit warnings for such cases.
9497   if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
9498     if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
9499       if (DRL->getDecl() == DRR->getDecl())
9500         return;
9501 
9502   // Special case: check for comparisons against literals that can be exactly
9503   //  represented by APFloat.  In such cases, do not emit a warning.  This
9504   //  is a heuristic: often comparison against such literals are used to
9505   //  detect if a value in a variable has not changed.  This clearly can
9506   //  lead to false negatives.
9507   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
9508     if (FLL->isExact())
9509       return;
9510   } else
9511     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
9512       if (FLR->isExact())
9513         return;
9514 
9515   // Check for comparisons with builtin types.
9516   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
9517     if (CL->getBuiltinCallee())
9518       return;
9519 
9520   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
9521     if (CR->getBuiltinCallee())
9522       return;
9523 
9524   // Emit the diagnostic.
9525   Diag(Loc, diag::warn_floatingpoint_eq)
9526     << LHS->getSourceRange() << RHS->getSourceRange();
9527 }
9528 
9529 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
9530 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
9531 
9532 namespace {
9533 
9534 /// Structure recording the 'active' range of an integer-valued
9535 /// expression.
9536 struct IntRange {
9537   /// The number of bits active in the int. Note that this includes exactly one
9538   /// sign bit if !NonNegative.
9539   unsigned Width;
9540 
9541   /// True if the int is known not to have negative values. If so, all leading
9542   /// bits before Width are known zero, otherwise they are known to be the
9543   /// same as the MSB within Width.
9544   bool NonNegative;
9545 
9546   IntRange(unsigned Width, bool NonNegative)
9547       : Width(Width), NonNegative(NonNegative) {}
9548 
9549   /// Number of bits excluding the sign bit.
9550   unsigned valueBits() const {
9551     return NonNegative ? Width : Width - 1;
9552   }
9553 
9554   /// Returns the range of the bool type.
9555   static IntRange forBoolType() {
9556     return IntRange(1, true);
9557   }
9558 
9559   /// Returns the range of an opaque value of the given integral type.
9560   static IntRange forValueOfType(ASTContext &C, QualType T) {
9561     return forValueOfCanonicalType(C,
9562                           T->getCanonicalTypeInternal().getTypePtr());
9563   }
9564 
9565   /// Returns the range of an opaque value of a canonical integral type.
9566   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
9567     assert(T->isCanonicalUnqualified());
9568 
9569     if (const VectorType *VT = dyn_cast<VectorType>(T))
9570       T = VT->getElementType().getTypePtr();
9571     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9572       T = CT->getElementType().getTypePtr();
9573     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9574       T = AT->getValueType().getTypePtr();
9575 
9576     if (!C.getLangOpts().CPlusPlus) {
9577       // For enum types in C code, use the underlying datatype.
9578       if (const EnumType *ET = dyn_cast<EnumType>(T))
9579         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
9580     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
9581       // For enum types in C++, use the known bit width of the enumerators.
9582       EnumDecl *Enum = ET->getDecl();
9583       // In C++11, enums can have a fixed underlying type. Use this type to
9584       // compute the range.
9585       if (Enum->isFixed()) {
9586         return IntRange(C.getIntWidth(QualType(T, 0)),
9587                         !ET->isSignedIntegerOrEnumerationType());
9588       }
9589 
9590       unsigned NumPositive = Enum->getNumPositiveBits();
9591       unsigned NumNegative = Enum->getNumNegativeBits();
9592 
9593       if (NumNegative == 0)
9594         return IntRange(NumPositive, true/*NonNegative*/);
9595       else
9596         return IntRange(std::max(NumPositive + 1, NumNegative),
9597                         false/*NonNegative*/);
9598     }
9599 
9600     if (const auto *EIT = dyn_cast<BitIntType>(T))
9601       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
9602 
9603     const BuiltinType *BT = cast<BuiltinType>(T);
9604     assert(BT->isInteger());
9605 
9606     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9607   }
9608 
9609   /// Returns the "target" range of a canonical integral type, i.e.
9610   /// the range of values expressible in the type.
9611   ///
9612   /// This matches forValueOfCanonicalType except that enums have the
9613   /// full range of their type, not the range of their enumerators.
9614   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
9615     assert(T->isCanonicalUnqualified());
9616 
9617     if (const VectorType *VT = dyn_cast<VectorType>(T))
9618       T = VT->getElementType().getTypePtr();
9619     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
9620       T = CT->getElementType().getTypePtr();
9621     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
9622       T = AT->getValueType().getTypePtr();
9623     if (const EnumType *ET = dyn_cast<EnumType>(T))
9624       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
9625 
9626     if (const auto *EIT = dyn_cast<BitIntType>(T))
9627       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
9628 
9629     const BuiltinType *BT = cast<BuiltinType>(T);
9630     assert(BT->isInteger());
9631 
9632     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
9633   }
9634 
9635   /// Returns the supremum of two ranges: i.e. their conservative merge.
9636   static IntRange join(IntRange L, IntRange R) {
9637     bool Unsigned = L.NonNegative && R.NonNegative;
9638     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
9639                     L.NonNegative && R.NonNegative);
9640   }
9641 
9642   /// Return the range of a bitwise-AND of the two ranges.
9643   static IntRange bit_and(IntRange L, IntRange R) {
9644     unsigned Bits = std::max(L.Width, R.Width);
9645     bool NonNegative = false;
9646     if (L.NonNegative) {
9647       Bits = std::min(Bits, L.Width);
9648       NonNegative = true;
9649     }
9650     if (R.NonNegative) {
9651       Bits = std::min(Bits, R.Width);
9652       NonNegative = true;
9653     }
9654     return IntRange(Bits, NonNegative);
9655   }
9656 
9657   /// Return the range of a sum of the two ranges.
9658   static IntRange sum(IntRange L, IntRange R) {
9659     bool Unsigned = L.NonNegative && R.NonNegative;
9660     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
9661                     Unsigned);
9662   }
9663 
9664   /// Return the range of a difference of the two ranges.
9665   static IntRange difference(IntRange L, IntRange R) {
9666     // We need a 1-bit-wider range if:
9667     //   1) LHS can be negative: least value can be reduced.
9668     //   2) RHS can be negative: greatest value can be increased.
9669     bool CanWiden = !L.NonNegative || !R.NonNegative;
9670     bool Unsigned = L.NonNegative && R.Width == 0;
9671     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
9672                         !Unsigned,
9673                     Unsigned);
9674   }
9675 
9676   /// Return the range of a product of the two ranges.
9677   static IntRange product(IntRange L, IntRange R) {
9678     // If both LHS and RHS can be negative, we can form
9679     //   -2^L * -2^R = 2^(L + R)
9680     // which requires L + R + 1 value bits to represent.
9681     bool CanWiden = !L.NonNegative && !R.NonNegative;
9682     bool Unsigned = L.NonNegative && R.NonNegative;
9683     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
9684                     Unsigned);
9685   }
9686 
9687   /// Return the range of a remainder operation between the two ranges.
9688   static IntRange rem(IntRange L, IntRange R) {
9689     // The result of a remainder can't be larger than the result of
9690     // either side. The sign of the result is the sign of the LHS.
9691     bool Unsigned = L.NonNegative;
9692     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
9693                     Unsigned);
9694   }
9695 };
9696 
9697 } // namespace
9698 
9699 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
9700                               unsigned MaxWidth) {
9701   if (value.isSigned() && value.isNegative())
9702     return IntRange(value.getSignificantBits(), false);
9703 
9704   if (value.getBitWidth() > MaxWidth)
9705     value = value.trunc(MaxWidth);
9706 
9707   // isNonNegative() just checks the sign bit without considering
9708   // signedness.
9709   return IntRange(value.getActiveBits(), true);
9710 }
9711 
9712 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
9713                               unsigned MaxWidth) {
9714   if (result.isInt())
9715     return GetValueRange(C, result.getInt(), MaxWidth);
9716 
9717   if (result.isVector()) {
9718     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
9719     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
9720       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
9721       R = IntRange::join(R, El);
9722     }
9723     return R;
9724   }
9725 
9726   if (result.isComplexInt()) {
9727     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
9728     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
9729     return IntRange::join(R, I);
9730   }
9731 
9732   // This can happen with lossless casts to intptr_t of "based" lvalues.
9733   // Assume it might use arbitrary bits.
9734   // FIXME: The only reason we need to pass the type in here is to get
9735   // the sign right on this one case.  It would be nice if APValue
9736   // preserved this.
9737   assert(result.isLValue() || result.isAddrLabelDiff());
9738   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
9739 }
9740 
9741 static QualType GetExprType(const Expr *E) {
9742   QualType Ty = E->getType();
9743   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
9744     Ty = AtomicRHS->getValueType();
9745   return Ty;
9746 }
9747 
9748 /// Attempts to estimate an approximate range for the given integer expression.
9749 /// Returns a range if successful, otherwise it returns \c std::nullopt if a
9750 /// reliable estimation cannot be determined.
9751 ///
9752 /// \param MaxWidth The width to which the value will be truncated.
9753 /// \param InConstantContext If \c true, interpret the expression within a
9754 ///        constant context.
9755 /// \param Approximate If \c true, provide a likely range of values by assuming
9756 ///        that arithmetic on narrower types remains within those types.
9757 ///        If \c false, return a range that includes all possible values
9758 ///        resulting from the expression.
9759 /// \returns A range of values that the expression might take, or
9760 ///          std::nullopt if a reliable estimation cannot be determined.
9761 static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
9762                                                unsigned MaxWidth,
9763                                                bool InConstantContext,
9764                                                bool Approximate) {
9765   E = E->IgnoreParens();
9766 
9767   // Try a full evaluation first.
9768   Expr::EvalResult result;
9769   if (E->EvaluateAsRValue(result, C, InConstantContext))
9770     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
9771 
9772   // I think we only want to look through implicit casts here; if the
9773   // user has an explicit widening cast, we should treat the value as
9774   // being of the new, wider type.
9775   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
9776     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
9777       return TryGetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
9778                              Approximate);
9779 
9780     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
9781 
9782     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
9783                          CE->getCastKind() == CK_BooleanToSignedIntegral;
9784 
9785     // Assume that non-integer casts can span the full range of the type.
9786     if (!isIntegerCast)
9787       return OutputTypeRange;
9788 
9789     std::optional<IntRange> SubRange = TryGetExprRange(
9790         C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width),
9791         InConstantContext, Approximate);
9792     if (!SubRange)
9793       return std::nullopt;
9794 
9795     // Bail out if the subexpr's range is as wide as the cast type.
9796     if (SubRange->Width >= OutputTypeRange.Width)
9797       return OutputTypeRange;
9798 
9799     // Otherwise, we take the smaller width, and we're non-negative if
9800     // either the output type or the subexpr is.
9801     return IntRange(SubRange->Width,
9802                     SubRange->NonNegative || OutputTypeRange.NonNegative);
9803   }
9804 
9805   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
9806     // If we can fold the condition, just take that operand.
9807     bool CondResult;
9808     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
9809       return TryGetExprRange(
9810           C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth,
9811           InConstantContext, Approximate);
9812 
9813     // Otherwise, conservatively merge.
9814     // TryGetExprRange requires an integer expression, but a throw expression
9815     // results in a void type.
9816     Expr *TrueExpr = CO->getTrueExpr();
9817     if (TrueExpr->getType()->isVoidType())
9818       return std::nullopt;
9819 
9820     std::optional<IntRange> L =
9821         TryGetExprRange(C, TrueExpr, MaxWidth, InConstantContext, Approximate);
9822     if (!L)
9823       return std::nullopt;
9824 
9825     Expr *FalseExpr = CO->getFalseExpr();
9826     if (FalseExpr->getType()->isVoidType())
9827       return std::nullopt;
9828 
9829     std::optional<IntRange> R =
9830         TryGetExprRange(C, FalseExpr, MaxWidth, InConstantContext, Approximate);
9831     if (!R)
9832       return std::nullopt;
9833 
9834     return IntRange::join(*L, *R);
9835   }
9836 
9837   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
9838     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
9839 
9840     switch (BO->getOpcode()) {
9841     case BO_Cmp:
9842       llvm_unreachable("builtin <=> should have class type");
9843 
9844     // Boolean-valued operations are single-bit and positive.
9845     case BO_LAnd:
9846     case BO_LOr:
9847     case BO_LT:
9848     case BO_GT:
9849     case BO_LE:
9850     case BO_GE:
9851     case BO_EQ:
9852     case BO_NE:
9853       return IntRange::forBoolType();
9854 
9855     // The type of the assignments is the type of the LHS, so the RHS
9856     // is not necessarily the same type.
9857     case BO_MulAssign:
9858     case BO_DivAssign:
9859     case BO_RemAssign:
9860     case BO_AddAssign:
9861     case BO_SubAssign:
9862     case BO_XorAssign:
9863     case BO_OrAssign:
9864       // TODO: bitfields?
9865       return IntRange::forValueOfType(C, GetExprType(E));
9866 
9867     // Simple assignments just pass through the RHS, which will have
9868     // been coerced to the LHS type.
9869     case BO_Assign:
9870       // TODO: bitfields?
9871       return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
9872                              Approximate);
9873 
9874     // Operations with opaque sources are black-listed.
9875     case BO_PtrMemD:
9876     case BO_PtrMemI:
9877       return IntRange::forValueOfType(C, GetExprType(E));
9878 
9879     // Bitwise-and uses the *infinum* of the two source ranges.
9880     case BO_And:
9881     case BO_AndAssign:
9882       Combine = IntRange::bit_and;
9883       break;
9884 
9885     // Left shift gets black-listed based on a judgement call.
9886     case BO_Shl:
9887       // ...except that we want to treat '1 << (blah)' as logically
9888       // positive.  It's an important idiom.
9889       if (IntegerLiteral *I
9890             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
9891         if (I->getValue() == 1) {
9892           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
9893           return IntRange(R.Width, /*NonNegative*/ true);
9894         }
9895       }
9896       [[fallthrough]];
9897 
9898     case BO_ShlAssign:
9899       return IntRange::forValueOfType(C, GetExprType(E));
9900 
9901     // Right shift by a constant can narrow its left argument.
9902     case BO_Shr:
9903     case BO_ShrAssign: {
9904       std::optional<IntRange> L = TryGetExprRange(
9905           C, BO->getLHS(), MaxWidth, InConstantContext, Approximate);
9906       if (!L)
9907         return std::nullopt;
9908 
9909       // If the shift amount is a positive constant, drop the width by
9910       // that much.
9911       if (std::optional<llvm::APSInt> shift =
9912               BO->getRHS()->getIntegerConstantExpr(C)) {
9913         if (shift->isNonNegative()) {
9914           if (shift->uge(L->Width))
9915             L->Width = (L->NonNegative ? 0 : 1);
9916           else
9917             L->Width -= shift->getZExtValue();
9918         }
9919       }
9920 
9921       return L;
9922     }
9923 
9924     // Comma acts as its right operand.
9925     case BO_Comma:
9926       return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
9927                              Approximate);
9928 
9929     case BO_Add:
9930       if (!Approximate)
9931         Combine = IntRange::sum;
9932       break;
9933 
9934     case BO_Sub:
9935       if (BO->getLHS()->getType()->isPointerType())
9936         return IntRange::forValueOfType(C, GetExprType(E));
9937       if (!Approximate)
9938         Combine = IntRange::difference;
9939       break;
9940 
9941     case BO_Mul:
9942       if (!Approximate)
9943         Combine = IntRange::product;
9944       break;
9945 
9946     // The width of a division result is mostly determined by the size
9947     // of the LHS.
9948     case BO_Div: {
9949       // Don't 'pre-truncate' the operands.
9950       unsigned opWidth = C.getIntWidth(GetExprType(E));
9951       std::optional<IntRange> L = TryGetExprRange(
9952           C, BO->getLHS(), opWidth, InConstantContext, Approximate);
9953       if (!L)
9954         return std::nullopt;
9955 
9956       // If the divisor is constant, use that.
9957       if (std::optional<llvm::APSInt> divisor =
9958               BO->getRHS()->getIntegerConstantExpr(C)) {
9959         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
9960         if (log2 >= L->Width)
9961           L->Width = (L->NonNegative ? 0 : 1);
9962         else
9963           L->Width = std::min(L->Width - log2, MaxWidth);
9964         return L;
9965       }
9966 
9967       // Otherwise, just use the LHS's width.
9968       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
9969       // could be -1.
9970       std::optional<IntRange> R = TryGetExprRange(
9971           C, BO->getRHS(), opWidth, InConstantContext, Approximate);
9972       if (!R)
9973         return std::nullopt;
9974 
9975       return IntRange(L->Width, L->NonNegative && R->NonNegative);
9976     }
9977 
9978     case BO_Rem:
9979       Combine = IntRange::rem;
9980       break;
9981 
9982     // The default behavior is okay for these.
9983     case BO_Xor:
9984     case BO_Or:
9985       break;
9986     }
9987 
9988     // Combine the two ranges, but limit the result to the type in which we
9989     // performed the computation.
9990     QualType T = GetExprType(E);
9991     unsigned opWidth = C.getIntWidth(T);
9992     std::optional<IntRange> L = TryGetExprRange(C, BO->getLHS(), opWidth,
9993                                                 InConstantContext, Approximate);
9994     if (!L)
9995       return std::nullopt;
9996 
9997     std::optional<IntRange> R = TryGetExprRange(C, BO->getRHS(), opWidth,
9998                                                 InConstantContext, Approximate);
9999     if (!R)
10000       return std::nullopt;
10001 
10002     IntRange C = Combine(*L, *R);
10003     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10004     C.Width = std::min(C.Width, MaxWidth);
10005     return C;
10006   }
10007 
10008   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10009     switch (UO->getOpcode()) {
10010     // Boolean-valued operations are white-listed.
10011     case UO_LNot:
10012       return IntRange::forBoolType();
10013 
10014     // Operations with opaque sources are black-listed.
10015     case UO_Deref:
10016     case UO_AddrOf: // should be impossible
10017       return IntRange::forValueOfType(C, GetExprType(E));
10018 
10019     default:
10020       return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10021                              Approximate);
10022     }
10023   }
10024 
10025   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10026     return TryGetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10027                            Approximate);
10028 
10029   if (const auto *BitField = E->getSourceBitField())
10030     return IntRange(BitField->getBitWidthValue(C),
10031                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10032 
10033   if (GetExprType(E)->isVoidType())
10034     return std::nullopt;
10035 
10036   return IntRange::forValueOfType(C, GetExprType(E));
10037 }
10038 
10039 static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
10040                                                bool InConstantContext,
10041                                                bool Approximate) {
10042   return TryGetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10043                          Approximate);
10044 }
10045 
10046 /// Checks whether the given value, which currently has the given
10047 /// source semantics, has the same value when coerced through the
10048 /// target semantics.
10049 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10050                                  const llvm::fltSemantics &Src,
10051                                  const llvm::fltSemantics &Tgt) {
10052   llvm::APFloat truncated = value;
10053 
10054   bool ignored;
10055   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10056   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10057 
10058   return truncated.bitwiseIsEqual(value);
10059 }
10060 
10061 /// Checks whether the given value, which currently has the given
10062 /// source semantics, has the same value when coerced through the
10063 /// target semantics.
10064 ///
10065 /// The value might be a vector of floats (or a complex number).
10066 static bool IsSameFloatAfterCast(const APValue &value,
10067                                  const llvm::fltSemantics &Src,
10068                                  const llvm::fltSemantics &Tgt) {
10069   if (value.isFloat())
10070     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10071 
10072   if (value.isVector()) {
10073     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10074       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10075         return false;
10076     return true;
10077   }
10078 
10079   assert(value.isComplexFloat());
10080   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10081           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10082 }
10083 
10084 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10085                                        bool IsListInit = false);
10086 
10087 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10088   // Suppress cases where we are comparing against an enum constant.
10089   if (const DeclRefExpr *DR =
10090       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10091     if (isa<EnumConstantDecl>(DR->getDecl()))
10092       return true;
10093 
10094   // Suppress cases where the value is expanded from a macro, unless that macro
10095   // is how a language represents a boolean literal. This is the case in both C
10096   // and Objective-C.
10097   SourceLocation BeginLoc = E->getBeginLoc();
10098   if (BeginLoc.isMacroID()) {
10099     StringRef MacroName = Lexer::getImmediateMacroName(
10100         BeginLoc, S.getSourceManager(), S.getLangOpts());
10101     return MacroName != "YES" && MacroName != "NO" &&
10102            MacroName != "true" && MacroName != "false";
10103   }
10104 
10105   return false;
10106 }
10107 
10108 static bool isKnownToHaveUnsignedValue(Expr *E) {
10109   return E->getType()->isIntegerType() &&
10110          (!E->getType()->isSignedIntegerType() ||
10111           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10112 }
10113 
10114 namespace {
10115 /// The promoted range of values of a type. In general this has the
10116 /// following structure:
10117 ///
10118 ///     |-----------| . . . |-----------|
10119 ///     ^           ^       ^           ^
10120 ///    Min       HoleMin  HoleMax      Max
10121 ///
10122 /// ... where there is only a hole if a signed type is promoted to unsigned
10123 /// (in which case Min and Max are the smallest and largest representable
10124 /// values).
10125 struct PromotedRange {
10126   // Min, or HoleMax if there is a hole.
10127   llvm::APSInt PromotedMin;
10128   // Max, or HoleMin if there is a hole.
10129   llvm::APSInt PromotedMax;
10130 
10131   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10132     if (R.Width == 0)
10133       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10134     else if (R.Width >= BitWidth && !Unsigned) {
10135       // Promotion made the type *narrower*. This happens when promoting
10136       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10137       // Treat all values of 'signed int' as being in range for now.
10138       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10139       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10140     } else {
10141       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10142                         .extOrTrunc(BitWidth);
10143       PromotedMin.setIsUnsigned(Unsigned);
10144 
10145       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10146                         .extOrTrunc(BitWidth);
10147       PromotedMax.setIsUnsigned(Unsigned);
10148     }
10149   }
10150 
10151   // Determine whether this range is contiguous (has no hole).
10152   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10153 
10154   // Where a constant value is within the range.
10155   enum ComparisonResult {
10156     LT = 0x1,
10157     LE = 0x2,
10158     GT = 0x4,
10159     GE = 0x8,
10160     EQ = 0x10,
10161     NE = 0x20,
10162     InRangeFlag = 0x40,
10163 
10164     Less = LE | LT | NE,
10165     Min = LE | InRangeFlag,
10166     InRange = InRangeFlag,
10167     Max = GE | InRangeFlag,
10168     Greater = GE | GT | NE,
10169 
10170     OnlyValue = LE | GE | EQ | InRangeFlag,
10171     InHole = NE
10172   };
10173 
10174   ComparisonResult compare(const llvm::APSInt &Value) const {
10175     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
10176            Value.isUnsigned() == PromotedMin.isUnsigned());
10177     if (!isContiguous()) {
10178       assert(Value.isUnsigned() && "discontiguous range for signed compare");
10179       if (Value.isMinValue()) return Min;
10180       if (Value.isMaxValue()) return Max;
10181       if (Value >= PromotedMin) return InRange;
10182       if (Value <= PromotedMax) return InRange;
10183       return InHole;
10184     }
10185 
10186     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
10187     case -1: return Less;
10188     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
10189     case 1:
10190       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
10191       case -1: return InRange;
10192       case 0: return Max;
10193       case 1: return Greater;
10194       }
10195     }
10196 
10197     llvm_unreachable("impossible compare result");
10198   }
10199 
10200   static std::optional<StringRef>
10201   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
10202     if (Op == BO_Cmp) {
10203       ComparisonResult LTFlag = LT, GTFlag = GT;
10204       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
10205 
10206       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
10207       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
10208       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
10209       return std::nullopt;
10210     }
10211 
10212     ComparisonResult TrueFlag, FalseFlag;
10213     if (Op == BO_EQ) {
10214       TrueFlag = EQ;
10215       FalseFlag = NE;
10216     } else if (Op == BO_NE) {
10217       TrueFlag = NE;
10218       FalseFlag = EQ;
10219     } else {
10220       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
10221         TrueFlag = LT;
10222         FalseFlag = GE;
10223       } else {
10224         TrueFlag = GT;
10225         FalseFlag = LE;
10226       }
10227       if (Op == BO_GE || Op == BO_LE)
10228         std::swap(TrueFlag, FalseFlag);
10229     }
10230     if (R & TrueFlag)
10231       return StringRef("true");
10232     if (R & FalseFlag)
10233       return StringRef("false");
10234     return std::nullopt;
10235   }
10236 };
10237 }
10238 
10239 static bool HasEnumType(Expr *E) {
10240   // Strip off implicit integral promotions.
10241   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10242     if (ICE->getCastKind() != CK_IntegralCast &&
10243         ICE->getCastKind() != CK_NoOp)
10244       break;
10245     E = ICE->getSubExpr();
10246   }
10247 
10248   return E->getType()->isEnumeralType();
10249 }
10250 
10251 static int classifyConstantValue(Expr *Constant) {
10252   // The values of this enumeration are used in the diagnostics
10253   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
10254   enum ConstantValueKind {
10255     Miscellaneous = 0,
10256     LiteralTrue,
10257     LiteralFalse
10258   };
10259   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
10260     return BL->getValue() ? ConstantValueKind::LiteralTrue
10261                           : ConstantValueKind::LiteralFalse;
10262   return ConstantValueKind::Miscellaneous;
10263 }
10264 
10265 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
10266                                         Expr *Constant, Expr *Other,
10267                                         const llvm::APSInt &Value,
10268                                         bool RhsConstant) {
10269   if (S.inTemplateInstantiation())
10270     return false;
10271 
10272   Expr *OriginalOther = Other;
10273 
10274   Constant = Constant->IgnoreParenImpCasts();
10275   Other = Other->IgnoreParenImpCasts();
10276 
10277   // Suppress warnings on tautological comparisons between values of the same
10278   // enumeration type. There are only two ways we could warn on this:
10279   //  - If the constant is outside the range of representable values of
10280   //    the enumeration. In such a case, we should warn about the cast
10281   //    to enumeration type, not about the comparison.
10282   //  - If the constant is the maximum / minimum in-range value. For an
10283   //    enumeratin type, such comparisons can be meaningful and useful.
10284   if (Constant->getType()->isEnumeralType() &&
10285       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
10286     return false;
10287 
10288   std::optional<IntRange> OtherValueRange = TryGetExprRange(
10289       S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false);
10290   if (!OtherValueRange)
10291     return false;
10292 
10293   QualType OtherT = Other->getType();
10294   if (const auto *AT = OtherT->getAs<AtomicType>())
10295     OtherT = AT->getValueType();
10296   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
10297 
10298   // Special case for ObjC BOOL on targets where its a typedef for a signed char
10299   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
10300   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
10301                               S.ObjC().NSAPIObj->isObjCBOOLType(OtherT) &&
10302                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
10303 
10304   // Whether we're treating Other as being a bool because of the form of
10305   // expression despite it having another type (typically 'int' in C).
10306   bool OtherIsBooleanDespiteType =
10307       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
10308   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
10309     OtherTypeRange = *OtherValueRange = IntRange::forBoolType();
10310 
10311   // Check if all values in the range of possible values of this expression
10312   // lead to the same comparison outcome.
10313   PromotedRange OtherPromotedValueRange(*OtherValueRange, Value.getBitWidth(),
10314                                         Value.isUnsigned());
10315   auto Cmp = OtherPromotedValueRange.compare(Value);
10316   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
10317   if (!Result)
10318     return false;
10319 
10320   // Also consider the range determined by the type alone. This allows us to
10321   // classify the warning under the proper diagnostic group.
10322   bool TautologicalTypeCompare = false;
10323   {
10324     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
10325                                          Value.isUnsigned());
10326     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
10327     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
10328                                                        RhsConstant)) {
10329       TautologicalTypeCompare = true;
10330       Cmp = TypeCmp;
10331       Result = TypeResult;
10332     }
10333   }
10334 
10335   // Don't warn if the non-constant operand actually always evaluates to the
10336   // same value.
10337   if (!TautologicalTypeCompare && OtherValueRange->Width == 0)
10338     return false;
10339 
10340   // Suppress the diagnostic for an in-range comparison if the constant comes
10341   // from a macro or enumerator. We don't want to diagnose
10342   //
10343   //   some_long_value <= INT_MAX
10344   //
10345   // when sizeof(int) == sizeof(long).
10346   bool InRange = Cmp & PromotedRange::InRangeFlag;
10347   if (InRange && IsEnumConstOrFromMacro(S, Constant))
10348     return false;
10349 
10350   // A comparison of an unsigned bit-field against 0 is really a type problem,
10351   // even though at the type level the bit-field might promote to 'signed int'.
10352   if (Other->refersToBitField() && InRange && Value == 0 &&
10353       Other->getType()->isUnsignedIntegerOrEnumerationType())
10354     TautologicalTypeCompare = true;
10355 
10356   // If this is a comparison to an enum constant, include that
10357   // constant in the diagnostic.
10358   const EnumConstantDecl *ED = nullptr;
10359   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
10360     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
10361 
10362   // Should be enough for uint128 (39 decimal digits)
10363   SmallString<64> PrettySourceValue;
10364   llvm::raw_svector_ostream OS(PrettySourceValue);
10365   if (ED) {
10366     OS << '\'' << *ED << "' (" << Value << ")";
10367   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
10368                Constant->IgnoreParenImpCasts())) {
10369     OS << (BL->getValue() ? "YES" : "NO");
10370   } else {
10371     OS << Value;
10372   }
10373 
10374   if (!TautologicalTypeCompare) {
10375     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
10376         << RhsConstant << OtherValueRange->Width << OtherValueRange->NonNegative
10377         << E->getOpcodeStr() << OS.str() << *Result
10378         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10379     return true;
10380   }
10381 
10382   if (IsObjCSignedCharBool) {
10383     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10384                           S.PDiag(diag::warn_tautological_compare_objc_bool)
10385                               << OS.str() << *Result);
10386     return true;
10387   }
10388 
10389   // FIXME: We use a somewhat different formatting for the in-range cases and
10390   // cases involving boolean values for historical reasons. We should pick a
10391   // consistent way of presenting these diagnostics.
10392   if (!InRange || Other->isKnownToHaveBooleanValue()) {
10393 
10394     S.DiagRuntimeBehavior(
10395         E->getOperatorLoc(), E,
10396         S.PDiag(!InRange ? diag::warn_out_of_range_compare
10397                          : diag::warn_tautological_bool_compare)
10398             << OS.str() << classifyConstantValue(Constant) << OtherT
10399             << OtherIsBooleanDespiteType << *Result
10400             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
10401   } else {
10402     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
10403     unsigned Diag =
10404         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
10405             ? (HasEnumType(OriginalOther)
10406                    ? diag::warn_unsigned_enum_always_true_comparison
10407                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
10408                               : diag::warn_unsigned_always_true_comparison)
10409             : diag::warn_tautological_constant_compare;
10410 
10411     S.Diag(E->getOperatorLoc(), Diag)
10412         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
10413         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
10414   }
10415 
10416   return true;
10417 }
10418 
10419 /// Analyze the operands of the given comparison.  Implements the
10420 /// fallback case from AnalyzeComparison.
10421 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
10422   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10423   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10424 }
10425 
10426 /// Implements -Wsign-compare.
10427 ///
10428 /// \param E the binary operator to check for warnings
10429 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
10430   // The type the comparison is being performed in.
10431   QualType T = E->getLHS()->getType();
10432 
10433   // Only analyze comparison operators where both sides have been converted to
10434   // the same type.
10435   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
10436     return AnalyzeImpConvsInComparison(S, E);
10437 
10438   // Don't analyze value-dependent comparisons directly.
10439   if (E->isValueDependent())
10440     return AnalyzeImpConvsInComparison(S, E);
10441 
10442   Expr *LHS = E->getLHS();
10443   Expr *RHS = E->getRHS();
10444 
10445   if (T->isIntegralType(S.Context)) {
10446     std::optional<llvm::APSInt> RHSValue =
10447         RHS->getIntegerConstantExpr(S.Context);
10448     std::optional<llvm::APSInt> LHSValue =
10449         LHS->getIntegerConstantExpr(S.Context);
10450 
10451     // We don't care about expressions whose result is a constant.
10452     if (RHSValue && LHSValue)
10453       return AnalyzeImpConvsInComparison(S, E);
10454 
10455     // We only care about expressions where just one side is literal
10456     if ((bool)RHSValue ^ (bool)LHSValue) {
10457       // Is the constant on the RHS or LHS?
10458       const bool RhsConstant = (bool)RHSValue;
10459       Expr *Const = RhsConstant ? RHS : LHS;
10460       Expr *Other = RhsConstant ? LHS : RHS;
10461       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
10462 
10463       // Check whether an integer constant comparison results in a value
10464       // of 'true' or 'false'.
10465       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
10466         return AnalyzeImpConvsInComparison(S, E);
10467     }
10468   }
10469 
10470   if (!T->hasUnsignedIntegerRepresentation()) {
10471     // We don't do anything special if this isn't an unsigned integral
10472     // comparison:  we're only interested in integral comparisons, and
10473     // signed comparisons only happen in cases we don't care to warn about.
10474     return AnalyzeImpConvsInComparison(S, E);
10475   }
10476 
10477   LHS = LHS->IgnoreParenImpCasts();
10478   RHS = RHS->IgnoreParenImpCasts();
10479 
10480   if (!S.getLangOpts().CPlusPlus) {
10481     // Avoid warning about comparison of integers with different signs when
10482     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
10483     // the type of `E`.
10484     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
10485       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10486     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
10487       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
10488   }
10489 
10490   // Check to see if one of the (unmodified) operands is of different
10491   // signedness.
10492   Expr *signedOperand, *unsignedOperand;
10493   if (LHS->getType()->hasSignedIntegerRepresentation()) {
10494     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
10495            "unsigned comparison between two signed integer expressions?");
10496     signedOperand = LHS;
10497     unsignedOperand = RHS;
10498   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
10499     signedOperand = RHS;
10500     unsignedOperand = LHS;
10501   } else {
10502     return AnalyzeImpConvsInComparison(S, E);
10503   }
10504 
10505   // Otherwise, calculate the effective range of the signed operand.
10506   std::optional<IntRange> signedRange =
10507       TryGetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(),
10508                       /*Approximate=*/true);
10509   if (!signedRange)
10510     return;
10511 
10512   // Go ahead and analyze implicit conversions in the operands.  Note
10513   // that we skip the implicit conversions on both sides.
10514   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
10515   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
10516 
10517   // If the signed range is non-negative, -Wsign-compare won't fire.
10518   if (signedRange->NonNegative)
10519     return;
10520 
10521   // For (in)equality comparisons, if the unsigned operand is a
10522   // constant which cannot collide with a overflowed signed operand,
10523   // then reinterpreting the signed operand as unsigned will not
10524   // change the result of the comparison.
10525   if (E->isEqualityOp()) {
10526     unsigned comparisonWidth = S.Context.getIntWidth(T);
10527     std::optional<IntRange> unsignedRange = TryGetExprRange(
10528         S.Context, unsignedOperand, S.isConstantEvaluatedContext(),
10529         /*Approximate=*/true);
10530     if (!unsignedRange)
10531       return;
10532 
10533     // We should never be unable to prove that the unsigned operand is
10534     // non-negative.
10535     assert(unsignedRange->NonNegative && "unsigned range includes negative?");
10536 
10537     if (unsignedRange->Width < comparisonWidth)
10538       return;
10539   }
10540 
10541   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
10542                         S.PDiag(diag::warn_mixed_sign_comparison)
10543                             << LHS->getType() << RHS->getType()
10544                             << LHS->getSourceRange() << RHS->getSourceRange());
10545 }
10546 
10547 /// Analyzes an attempt to assign the given value to a bitfield.
10548 ///
10549 /// Returns true if there was something fishy about the attempt.
10550 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
10551                                       SourceLocation InitLoc) {
10552   assert(Bitfield->isBitField());
10553   if (Bitfield->isInvalidDecl())
10554     return false;
10555 
10556   // White-list bool bitfields.
10557   QualType BitfieldType = Bitfield->getType();
10558   if (BitfieldType->isBooleanType())
10559      return false;
10560 
10561   if (BitfieldType->isEnumeralType()) {
10562     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
10563     // If the underlying enum type was not explicitly specified as an unsigned
10564     // type and the enum contain only positive values, MSVC++ will cause an
10565     // inconsistency by storing this as a signed type.
10566     if (S.getLangOpts().CPlusPlus11 &&
10567         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
10568         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
10569         BitfieldEnumDecl->getNumNegativeBits() == 0) {
10570       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
10571           << BitfieldEnumDecl;
10572     }
10573   }
10574 
10575   // Ignore value- or type-dependent expressions.
10576   if (Bitfield->getBitWidth()->isValueDependent() ||
10577       Bitfield->getBitWidth()->isTypeDependent() ||
10578       Init->isValueDependent() ||
10579       Init->isTypeDependent())
10580     return false;
10581 
10582   Expr *OriginalInit = Init->IgnoreParenImpCasts();
10583   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
10584 
10585   Expr::EvalResult Result;
10586   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
10587                                    Expr::SE_AllowSideEffects)) {
10588     // The RHS is not constant.  If the RHS has an enum type, make sure the
10589     // bitfield is wide enough to hold all the values of the enum without
10590     // truncation.
10591     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
10592       EnumDecl *ED = EnumTy->getDecl();
10593       bool SignedBitfield = BitfieldType->isSignedIntegerType();
10594 
10595       // Enum types are implicitly signed on Windows, so check if there are any
10596       // negative enumerators to see if the enum was intended to be signed or
10597       // not.
10598       bool SignedEnum = ED->getNumNegativeBits() > 0;
10599 
10600       // Check for surprising sign changes when assigning enum values to a
10601       // bitfield of different signedness.  If the bitfield is signed and we
10602       // have exactly the right number of bits to store this unsigned enum,
10603       // suggest changing the enum to an unsigned type. This typically happens
10604       // on Windows where unfixed enums always use an underlying type of 'int'.
10605       unsigned DiagID = 0;
10606       if (SignedEnum && !SignedBitfield) {
10607         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
10608       } else if (SignedBitfield && !SignedEnum &&
10609                  ED->getNumPositiveBits() == FieldWidth) {
10610         DiagID = diag::warn_signed_bitfield_enum_conversion;
10611       }
10612 
10613       if (DiagID) {
10614         S.Diag(InitLoc, DiagID) << Bitfield << ED;
10615         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
10616         SourceRange TypeRange =
10617             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
10618         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
10619             << SignedEnum << TypeRange;
10620       }
10621 
10622       // Compute the required bitwidth. If the enum has negative values, we need
10623       // one more bit than the normal number of positive bits to represent the
10624       // sign bit.
10625       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
10626                                                   ED->getNumNegativeBits())
10627                                        : ED->getNumPositiveBits();
10628 
10629       // Check the bitwidth.
10630       if (BitsNeeded > FieldWidth) {
10631         Expr *WidthExpr = Bitfield->getBitWidth();
10632         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
10633             << Bitfield << ED;
10634         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
10635             << BitsNeeded << ED << WidthExpr->getSourceRange();
10636       }
10637     }
10638 
10639     return false;
10640   }
10641 
10642   llvm::APSInt Value = Result.Val.getInt();
10643 
10644   unsigned OriginalWidth = Value.getBitWidth();
10645 
10646   // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce
10647   // false positives where the user is demonstrating they intend to use the
10648   // bit-field as a Boolean, check to see if the value is 1 and we're assigning
10649   // to a one-bit bit-field to see if the value came from a macro named 'true'.
10650   bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1;
10651   if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) {
10652     SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc();
10653     if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
10654         S.findMacroSpelling(MaybeMacroLoc, "true"))
10655       return false;
10656   }
10657 
10658   if (!Value.isSigned() || Value.isNegative())
10659     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
10660       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
10661         OriginalWidth = Value.getSignificantBits();
10662 
10663   if (OriginalWidth <= FieldWidth)
10664     return false;
10665 
10666   // Compute the value which the bitfield will contain.
10667   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
10668   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
10669 
10670   // Check whether the stored value is equal to the original value.
10671   TruncatedValue = TruncatedValue.extend(OriginalWidth);
10672   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
10673     return false;
10674 
10675   std::string PrettyValue = toString(Value, 10);
10676   std::string PrettyTrunc = toString(TruncatedValue, 10);
10677 
10678   S.Diag(InitLoc, OneAssignedToOneBitBitfield
10679                       ? diag::warn_impcast_single_bit_bitield_precision_constant
10680                       : diag::warn_impcast_bitfield_precision_constant)
10681       << PrettyValue << PrettyTrunc << OriginalInit->getType()
10682       << Init->getSourceRange();
10683 
10684   return true;
10685 }
10686 
10687 /// Analyze the given simple or compound assignment for warning-worthy
10688 /// operations.
10689 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
10690   // Just recurse on the LHS.
10691   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10692 
10693   // We want to recurse on the RHS as normal unless we're assigning to
10694   // a bitfield.
10695   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
10696     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
10697                                   E->getOperatorLoc())) {
10698       // Recurse, ignoring any implicit conversions on the RHS.
10699       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
10700                                         E->getOperatorLoc());
10701     }
10702   }
10703 
10704   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10705 
10706   // Diagnose implicitly sequentially-consistent atomic assignment.
10707   if (E->getLHS()->getType()->isAtomicType())
10708     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
10709 }
10710 
10711 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10712 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
10713                             SourceLocation CContext, unsigned diag,
10714                             bool pruneControlFlow = false) {
10715   if (pruneControlFlow) {
10716     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10717                           S.PDiag(diag)
10718                               << SourceType << T << E->getSourceRange()
10719                               << SourceRange(CContext));
10720     return;
10721   }
10722   S.Diag(E->getExprLoc(), diag)
10723     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
10724 }
10725 
10726 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
10727 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
10728                             SourceLocation CContext,
10729                             unsigned diag, bool pruneControlFlow = false) {
10730   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
10731 }
10732 
10733 /// Diagnose an implicit cast from a floating point value to an integer value.
10734 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
10735                                     SourceLocation CContext) {
10736   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
10737   const bool PruneWarnings = S.inTemplateInstantiation();
10738 
10739   Expr *InnerE = E->IgnoreParenImpCasts();
10740   // We also want to warn on, e.g., "int i = -1.234"
10741   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
10742     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
10743       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
10744 
10745   const bool IsLiteral =
10746       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
10747 
10748   llvm::APFloat Value(0.0);
10749   bool IsConstant =
10750     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
10751   if (!IsConstant) {
10752     if (S.ObjC().isSignedCharBool(T)) {
10753       return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
10754           E, S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
10755                  << E->getType());
10756     }
10757 
10758     return DiagnoseImpCast(S, E, T, CContext,
10759                            diag::warn_impcast_float_integer, PruneWarnings);
10760   }
10761 
10762   bool isExact = false;
10763 
10764   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
10765                             T->hasUnsignedIntegerRepresentation());
10766   llvm::APFloat::opStatus Result = Value.convertToInteger(
10767       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
10768 
10769   // FIXME: Force the precision of the source value down so we don't print
10770   // digits which are usually useless (we don't really care here if we
10771   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
10772   // would automatically print the shortest representation, but it's a bit
10773   // tricky to implement.
10774   SmallString<16> PrettySourceValue;
10775   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
10776   precision = (precision * 59 + 195) / 196;
10777   Value.toString(PrettySourceValue, precision);
10778 
10779   if (S.ObjC().isSignedCharBool(T) && IntegerValue != 0 && IntegerValue != 1) {
10780     return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
10781         E, S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
10782                << PrettySourceValue);
10783   }
10784 
10785   if (Result == llvm::APFloat::opOK && isExact) {
10786     if (IsLiteral) return;
10787     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
10788                            PruneWarnings);
10789   }
10790 
10791   // Conversion of a floating-point value to a non-bool integer where the
10792   // integral part cannot be represented by the integer type is undefined.
10793   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
10794     return DiagnoseImpCast(
10795         S, E, T, CContext,
10796         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
10797                   : diag::warn_impcast_float_to_integer_out_of_range,
10798         PruneWarnings);
10799 
10800   unsigned DiagID = 0;
10801   if (IsLiteral) {
10802     // Warn on floating point literal to integer.
10803     DiagID = diag::warn_impcast_literal_float_to_integer;
10804   } else if (IntegerValue == 0) {
10805     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
10806       return DiagnoseImpCast(S, E, T, CContext,
10807                              diag::warn_impcast_float_integer, PruneWarnings);
10808     }
10809     // Warn on non-zero to zero conversion.
10810     DiagID = diag::warn_impcast_float_to_integer_zero;
10811   } else {
10812     if (IntegerValue.isUnsigned()) {
10813       if (!IntegerValue.isMaxValue()) {
10814         return DiagnoseImpCast(S, E, T, CContext,
10815                                diag::warn_impcast_float_integer, PruneWarnings);
10816       }
10817     } else {  // IntegerValue.isSigned()
10818       if (!IntegerValue.isMaxSignedValue() &&
10819           !IntegerValue.isMinSignedValue()) {
10820         return DiagnoseImpCast(S, E, T, CContext,
10821                                diag::warn_impcast_float_integer, PruneWarnings);
10822       }
10823     }
10824     // Warn on evaluatable floating point expression to integer conversion.
10825     DiagID = diag::warn_impcast_float_to_integer;
10826   }
10827 
10828   SmallString<16> PrettyTargetValue;
10829   if (IsBool)
10830     PrettyTargetValue = Value.isZero() ? "false" : "true";
10831   else
10832     IntegerValue.toString(PrettyTargetValue);
10833 
10834   if (PruneWarnings) {
10835     S.DiagRuntimeBehavior(E->getExprLoc(), E,
10836                           S.PDiag(DiagID)
10837                               << E->getType() << T.getUnqualifiedType()
10838                               << PrettySourceValue << PrettyTargetValue
10839                               << E->getSourceRange() << SourceRange(CContext));
10840   } else {
10841     S.Diag(E->getExprLoc(), DiagID)
10842         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
10843         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
10844   }
10845 }
10846 
10847 /// Analyze the given compound assignment for the possible losing of
10848 /// floating-point precision.
10849 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
10850   assert(isa<CompoundAssignOperator>(E) &&
10851          "Must be compound assignment operation");
10852   // Recurse on the LHS and RHS in here
10853   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
10854   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
10855 
10856   if (E->getLHS()->getType()->isAtomicType())
10857     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
10858 
10859   // Now check the outermost expression
10860   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
10861   const auto *RBT = cast<CompoundAssignOperator>(E)
10862                         ->getComputationResultType()
10863                         ->getAs<BuiltinType>();
10864 
10865   // The below checks assume source is floating point.
10866   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
10867 
10868   // If source is floating point but target is an integer.
10869   if (ResultBT->isInteger())
10870     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
10871                            E->getExprLoc(), diag::warn_impcast_float_integer);
10872 
10873   if (!ResultBT->isFloatingPoint())
10874     return;
10875 
10876   // If both source and target are floating points, warn about losing precision.
10877   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
10878       QualType(ResultBT, 0), QualType(RBT, 0));
10879   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
10880     // warn about dropping FP rank.
10881     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
10882                     diag::warn_impcast_float_result_precision);
10883 }
10884 
10885 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
10886                                       IntRange Range) {
10887   if (!Range.Width) return "0";
10888 
10889   llvm::APSInt ValueInRange = Value;
10890   ValueInRange.setIsSigned(!Range.NonNegative);
10891   ValueInRange = ValueInRange.trunc(Range.Width);
10892   return toString(ValueInRange, 10);
10893 }
10894 
10895 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
10896   if (!isa<ImplicitCastExpr>(Ex))
10897     return false;
10898 
10899   Expr *InnerE = Ex->IgnoreParenImpCasts();
10900   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
10901   const Type *Source =
10902     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
10903   if (Target->isDependentType())
10904     return false;
10905 
10906   const BuiltinType *FloatCandidateBT =
10907     dyn_cast<BuiltinType>(ToBool ? Source : Target);
10908   const Type *BoolCandidateType = ToBool ? Target : Source;
10909 
10910   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
10911           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
10912 }
10913 
10914 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
10915                                              SourceLocation CC) {
10916   unsigned NumArgs = TheCall->getNumArgs();
10917   for (unsigned i = 0; i < NumArgs; ++i) {
10918     Expr *CurrA = TheCall->getArg(i);
10919     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
10920       continue;
10921 
10922     bool IsSwapped = ((i > 0) &&
10923         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
10924     IsSwapped |= ((i < (NumArgs - 1)) &&
10925         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
10926     if (IsSwapped) {
10927       // Warn on this floating-point to bool conversion.
10928       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
10929                       CurrA->getType(), CC,
10930                       diag::warn_impcast_floating_point_to_bool);
10931     }
10932   }
10933 }
10934 
10935 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
10936                                    SourceLocation CC) {
10937   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
10938                         E->getExprLoc()))
10939     return;
10940 
10941   // Don't warn on functions which have return type nullptr_t.
10942   if (isa<CallExpr>(E))
10943     return;
10944 
10945   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
10946   const Expr *NewE = E->IgnoreParenImpCasts();
10947   bool IsGNUNullExpr = isa<GNUNullExpr>(NewE);
10948   bool HasNullPtrType = NewE->getType()->isNullPtrType();
10949   if (!IsGNUNullExpr && !HasNullPtrType)
10950     return;
10951 
10952   // Return if target type is a safe conversion.
10953   if (T->isAnyPointerType() || T->isBlockPointerType() ||
10954       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
10955     return;
10956 
10957   SourceLocation Loc = E->getSourceRange().getBegin();
10958 
10959   // Venture through the macro stacks to get to the source of macro arguments.
10960   // The new location is a better location than the complete location that was
10961   // passed in.
10962   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
10963   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
10964 
10965   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
10966   if (IsGNUNullExpr && Loc.isMacroID()) {
10967     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
10968         Loc, S.SourceMgr, S.getLangOpts());
10969     if (MacroName == "NULL")
10970       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
10971   }
10972 
10973   // Only warn if the null and context location are in the same macro expansion.
10974   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
10975     return;
10976 
10977   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
10978       << HasNullPtrType << T << SourceRange(CC)
10979       << FixItHint::CreateReplacement(Loc,
10980                                       S.getFixItZeroLiteralForType(T, Loc));
10981 }
10982 
10983 // Helper function to filter out cases for constant width constant conversion.
10984 // Don't warn on char array initialization or for non-decimal values.
10985 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
10986                                           SourceLocation CC) {
10987   // If initializing from a constant, and the constant starts with '0',
10988   // then it is a binary, octal, or hexadecimal.  Allow these constants
10989   // to fill all the bits, even if there is a sign change.
10990   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
10991     const char FirstLiteralCharacter =
10992         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
10993     if (FirstLiteralCharacter == '0')
10994       return false;
10995   }
10996 
10997   // If the CC location points to a '{', and the type is char, then assume
10998   // assume it is an array initialization.
10999   if (CC.isValid() && T->isCharType()) {
11000     const char FirstContextCharacter =
11001         S.getSourceManager().getCharacterData(CC)[0];
11002     if (FirstContextCharacter == '{')
11003       return false;
11004   }
11005 
11006   return true;
11007 }
11008 
11009 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11010   const auto *IL = dyn_cast<IntegerLiteral>(E);
11011   if (!IL) {
11012     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11013       if (UO->getOpcode() == UO_Minus)
11014         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11015     }
11016   }
11017 
11018   return IL;
11019 }
11020 
11021 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11022   E = E->IgnoreParenImpCasts();
11023   SourceLocation ExprLoc = E->getExprLoc();
11024 
11025   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11026     BinaryOperator::Opcode Opc = BO->getOpcode();
11027     Expr::EvalResult Result;
11028     // Do not diagnose unsigned shifts.
11029     if (Opc == BO_Shl) {
11030       const auto *LHS = getIntegerLiteral(BO->getLHS());
11031       const auto *RHS = getIntegerLiteral(BO->getRHS());
11032       if (LHS && LHS->getValue() == 0)
11033         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11034       else if (!E->isValueDependent() && LHS && RHS &&
11035                RHS->getValue().isNonNegative() &&
11036                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11037         S.Diag(ExprLoc, diag::warn_left_shift_always)
11038             << (Result.Val.getInt() != 0);
11039       else if (E->getType()->isSignedIntegerType())
11040         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11041     }
11042   }
11043 
11044   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11045     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11046     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11047     if (!LHS || !RHS)
11048       return;
11049     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11050         (RHS->getValue() == 0 || RHS->getValue() == 1))
11051       // Do not diagnose common idioms.
11052       return;
11053     if (LHS->getValue() != 0 && RHS->getValue() != 0)
11054       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11055   }
11056 }
11057 
11058 void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
11059                                    bool *ICContext, bool IsListInit) {
11060   if (E->isTypeDependent() || E->isValueDependent()) return;
11061 
11062   const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
11063   const Type *Target = Context.getCanonicalType(T).getTypePtr();
11064   if (Source == Target) return;
11065   if (Target->isDependentType()) return;
11066 
11067   // If the conversion context location is invalid don't complain. We also
11068   // don't want to emit a warning if the issue occurs from the expansion of
11069   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11070   // delay this check as long as possible. Once we detect we are in that
11071   // scenario, we just return.
11072   if (CC.isInvalid())
11073     return;
11074 
11075   if (Source->isAtomicType())
11076     Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
11077 
11078   // Diagnose implicit casts to bool.
11079   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
11080     if (isa<StringLiteral>(E))
11081       // Warn on string literal to bool.  Checks for string literals in logical
11082       // and expressions, for instance, assert(0 && "error here"), are
11083       // prevented by a check in AnalyzeImplicitConversions().
11084       return DiagnoseImpCast(*this, E, T, CC,
11085                              diag::warn_impcast_string_literal_to_bool);
11086     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
11087         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
11088       // This covers the literal expressions that evaluate to Objective-C
11089       // objects.
11090       return DiagnoseImpCast(*this, E, T, CC,
11091                              diag::warn_impcast_objective_c_literal_to_bool);
11092     }
11093     if (Source->isPointerType() || Source->canDecayToPointerType()) {
11094       // Warn on pointer to bool conversion that is always true.
11095       DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
11096                                    SourceRange(CC));
11097     }
11098   }
11099 
11100   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
11101   // is a typedef for signed char (macOS), then that constant value has to be 1
11102   // or 0.
11103   if (ObjC().isSignedCharBool(T) && Source->isIntegralType(Context)) {
11104     Expr::EvalResult Result;
11105     if (E->EvaluateAsInt(Result, getASTContext(), Expr::SE_AllowSideEffects)) {
11106       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
11107         ObjC().adornBoolConversionDiagWithTernaryFixit(
11108             E, Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
11109                    << toString(Result.Val.getInt(), 10));
11110       }
11111       return;
11112     }
11113   }
11114 
11115   // Check implicit casts from Objective-C collection literals to specialized
11116   // collection types, e.g., NSArray<NSString *> *.
11117   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
11118     ObjC().checkArrayLiteral(QualType(Target, 0), ArrayLiteral);
11119   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
11120     ObjC().checkDictionaryLiteral(QualType(Target, 0), DictionaryLiteral);
11121 
11122   // Strip vector types.
11123   if (isa<VectorType>(Source)) {
11124     if (Target->isSveVLSBuiltinType() &&
11125         (Context.areCompatibleSveTypes(QualType(Target, 0),
11126                                        QualType(Source, 0)) ||
11127          Context.areLaxCompatibleSveTypes(QualType(Target, 0),
11128                                           QualType(Source, 0))))
11129       return;
11130 
11131     if (Target->isRVVVLSBuiltinType() &&
11132         (Context.areCompatibleRVVTypes(QualType(Target, 0),
11133                                        QualType(Source, 0)) ||
11134          Context.areLaxCompatibleRVVTypes(QualType(Target, 0),
11135                                           QualType(Source, 0))))
11136       return;
11137 
11138     if (!isa<VectorType>(Target)) {
11139       if (SourceMgr.isInSystemMacro(CC))
11140         return;
11141       return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_vector_scalar);
11142     } else if (getLangOpts().HLSL &&
11143                Target->castAs<VectorType>()->getNumElements() <
11144                    Source->castAs<VectorType>()->getNumElements()) {
11145       // Diagnose vector truncation but don't return. We may also want to
11146       // diagnose an element conversion.
11147       DiagnoseImpCast(*this, E, T, CC,
11148                       diag::warn_hlsl_impcast_vector_truncation);
11149     }
11150 
11151     // If the vector cast is cast between two vectors of the same size, it is
11152     // a bitcast, not a conversion, except under HLSL where it is a conversion.
11153     if (!getLangOpts().HLSL &&
11154         Context.getTypeSize(Source) == Context.getTypeSize(Target))
11155       return;
11156 
11157     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
11158     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
11159   }
11160   if (auto VecTy = dyn_cast<VectorType>(Target))
11161     Target = VecTy->getElementType().getTypePtr();
11162 
11163   // Strip complex types.
11164   if (isa<ComplexType>(Source)) {
11165     if (!isa<ComplexType>(Target)) {
11166       if (SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
11167         return;
11168 
11169       return DiagnoseImpCast(*this, E, T, CC,
11170                              getLangOpts().CPlusPlus
11171                                  ? diag::err_impcast_complex_scalar
11172                                  : diag::warn_impcast_complex_scalar);
11173     }
11174 
11175     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
11176     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
11177   }
11178 
11179   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
11180   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
11181 
11182   // Strip SVE vector types
11183   if (SourceBT && SourceBT->isSveVLSBuiltinType()) {
11184     // Need the original target type for vector type checks
11185     const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr();
11186     // Handle conversion from scalable to fixed when msve-vector-bits is
11187     // specified
11188     if (Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
11189                                       QualType(Source, 0)) ||
11190         Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
11191                                          QualType(Source, 0)))
11192       return;
11193 
11194     // If the vector cast is cast between two vectors of the same size, it is
11195     // a bitcast, not a conversion.
11196     if (Context.getTypeSize(Source) == Context.getTypeSize(Target))
11197       return;
11198 
11199     Source = SourceBT->getSveEltType(Context).getTypePtr();
11200   }
11201 
11202   if (TargetBT && TargetBT->isSveVLSBuiltinType())
11203     Target = TargetBT->getSveEltType(Context).getTypePtr();
11204 
11205   // If the source is floating point...
11206   if (SourceBT && SourceBT->isFloatingPoint()) {
11207     // ...and the target is floating point...
11208     if (TargetBT && TargetBT->isFloatingPoint()) {
11209       // ...then warn if we're dropping FP rank.
11210 
11211       int Order = getASTContext().getFloatingTypeSemanticOrder(
11212           QualType(SourceBT, 0), QualType(TargetBT, 0));
11213       if (Order > 0) {
11214         // Don't warn about float constants that are precisely
11215         // representable in the target type.
11216         Expr::EvalResult result;
11217         if (E->EvaluateAsRValue(result, Context)) {
11218           // Value might be a float, a float vector, or a float complex.
11219           if (IsSameFloatAfterCast(
11220                   result.Val,
11221                   Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
11222                   Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
11223             return;
11224         }
11225 
11226         if (SourceMgr.isInSystemMacro(CC))
11227           return;
11228 
11229         DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_float_precision);
11230       }
11231       // ... or possibly if we're increasing rank, too
11232       else if (Order < 0) {
11233         if (SourceMgr.isInSystemMacro(CC))
11234           return;
11235 
11236         DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_double_promotion);
11237       }
11238       return;
11239     }
11240 
11241     // If the target is integral, always warn.
11242     if (TargetBT && TargetBT->isInteger()) {
11243       if (SourceMgr.isInSystemMacro(CC))
11244         return;
11245 
11246       DiagnoseFloatingImpCast(*this, E, T, CC);
11247     }
11248 
11249     // Detect the case where a call result is converted from floating-point to
11250     // to bool, and the final argument to the call is converted from bool, to
11251     // discover this typo:
11252     //
11253     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
11254     //
11255     // FIXME: This is an incredibly special case; is there some more general
11256     // way to detect this class of misplaced-parentheses bug?
11257     if (Target->isBooleanType() && isa<CallExpr>(E)) {
11258       // Check last argument of function call to see if it is an
11259       // implicit cast from a type matching the type the result
11260       // is being cast to.
11261       CallExpr *CEx = cast<CallExpr>(E);
11262       if (unsigned NumArgs = CEx->getNumArgs()) {
11263         Expr *LastA = CEx->getArg(NumArgs - 1);
11264         Expr *InnerE = LastA->IgnoreParenImpCasts();
11265         if (isa<ImplicitCastExpr>(LastA) &&
11266             InnerE->getType()->isBooleanType()) {
11267           // Warn on this floating-point to bool conversion
11268           DiagnoseImpCast(*this, E, T, CC,
11269                           diag::warn_impcast_floating_point_to_bool);
11270         }
11271       }
11272     }
11273     return;
11274   }
11275 
11276   // Valid casts involving fixed point types should be accounted for here.
11277   if (Source->isFixedPointType()) {
11278     if (Target->isUnsaturatedFixedPointType()) {
11279       Expr::EvalResult Result;
11280       if (E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects,
11281                                   isConstantEvaluatedContext())) {
11282         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
11283         llvm::APFixedPoint MaxVal = Context.getFixedPointMax(T);
11284         llvm::APFixedPoint MinVal = Context.getFixedPointMin(T);
11285         if (Value > MaxVal || Value < MinVal) {
11286           DiagRuntimeBehavior(E->getExprLoc(), E,
11287                               PDiag(diag::warn_impcast_fixed_point_range)
11288                                   << Value.toString() << T
11289                                   << E->getSourceRange()
11290                                   << clang::SourceRange(CC));
11291           return;
11292         }
11293       }
11294     } else if (Target->isIntegerType()) {
11295       Expr::EvalResult Result;
11296       if (!isConstantEvaluatedContext() &&
11297           E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects)) {
11298         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
11299 
11300         bool Overflowed;
11301         llvm::APSInt IntResult = FXResult.convertToInt(
11302             Context.getIntWidth(T), Target->isSignedIntegerOrEnumerationType(),
11303             &Overflowed);
11304 
11305         if (Overflowed) {
11306           DiagRuntimeBehavior(E->getExprLoc(), E,
11307                               PDiag(diag::warn_impcast_fixed_point_range)
11308                                   << FXResult.toString() << T
11309                                   << E->getSourceRange()
11310                                   << clang::SourceRange(CC));
11311           return;
11312         }
11313       }
11314     }
11315   } else if (Target->isUnsaturatedFixedPointType()) {
11316     if (Source->isIntegerType()) {
11317       Expr::EvalResult Result;
11318       if (!isConstantEvaluatedContext() &&
11319           E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) {
11320         llvm::APSInt Value = Result.Val.getInt();
11321 
11322         bool Overflowed;
11323         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
11324             Value, Context.getFixedPointSemantics(T), &Overflowed);
11325 
11326         if (Overflowed) {
11327           DiagRuntimeBehavior(E->getExprLoc(), E,
11328                               PDiag(diag::warn_impcast_fixed_point_range)
11329                                   << toString(Value, /*Radix=*/10) << T
11330                                   << E->getSourceRange()
11331                                   << clang::SourceRange(CC));
11332           return;
11333         }
11334       }
11335     }
11336   }
11337 
11338   // If we are casting an integer type to a floating point type without
11339   // initialization-list syntax, we might lose accuracy if the floating
11340   // point type has a narrower significand than the integer type.
11341   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
11342       TargetBT->isFloatingType() && !IsListInit) {
11343     // Determine the number of precision bits in the source integer type.
11344     std::optional<IntRange> SourceRange =
11345         TryGetExprRange(Context, E, isConstantEvaluatedContext(),
11346                         /*Approximate=*/true);
11347     if (!SourceRange)
11348       return;
11349     unsigned int SourcePrecision = SourceRange->Width;
11350 
11351     // Determine the number of precision bits in the
11352     // target floating point type.
11353     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
11354         Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11355 
11356     if (SourcePrecision > 0 && TargetPrecision > 0 &&
11357         SourcePrecision > TargetPrecision) {
11358 
11359       if (std::optional<llvm::APSInt> SourceInt =
11360               E->getIntegerConstantExpr(Context)) {
11361         // If the source integer is a constant, convert it to the target
11362         // floating point type. Issue a warning if the value changes
11363         // during the whole conversion.
11364         llvm::APFloat TargetFloatValue(
11365             Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
11366         llvm::APFloat::opStatus ConversionStatus =
11367             TargetFloatValue.convertFromAPInt(
11368                 *SourceInt, SourceBT->isSignedInteger(),
11369                 llvm::APFloat::rmNearestTiesToEven);
11370 
11371         if (ConversionStatus != llvm::APFloat::opOK) {
11372           SmallString<32> PrettySourceValue;
11373           SourceInt->toString(PrettySourceValue, 10);
11374           SmallString<32> PrettyTargetValue;
11375           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
11376 
11377           DiagRuntimeBehavior(
11378               E->getExprLoc(), E,
11379               PDiag(diag::warn_impcast_integer_float_precision_constant)
11380                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
11381                   << E->getSourceRange() << clang::SourceRange(CC));
11382         }
11383       } else {
11384         // Otherwise, the implicit conversion may lose precision.
11385         DiagnoseImpCast(*this, E, T, CC,
11386                         diag::warn_impcast_integer_float_precision);
11387       }
11388     }
11389   }
11390 
11391   DiagnoseNullConversion(*this, E, T, CC);
11392 
11393   DiscardMisalignedMemberAddress(Target, E);
11394 
11395   if (Target->isBooleanType())
11396     DiagnoseIntInBoolContext(*this, E);
11397 
11398   if (!Source->isIntegerType() || !Target->isIntegerType())
11399     return;
11400 
11401   // TODO: remove this early return once the false positives for constant->bool
11402   // in templates, macros, etc, are reduced or removed.
11403   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
11404     return;
11405 
11406   if (ObjC().isSignedCharBool(T) && !Source->isCharType() &&
11407       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
11408     return ObjC().adornBoolConversionDiagWithTernaryFixit(
11409         E, Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
11410                << E->getType());
11411   }
11412   std::optional<IntRange> LikelySourceRange = TryGetExprRange(
11413       Context, E, isConstantEvaluatedContext(), /*Approximate=*/true);
11414   if (!LikelySourceRange)
11415     return;
11416 
11417   IntRange SourceTypeRange =
11418       IntRange::forTargetOfCanonicalType(Context, Source);
11419   IntRange TargetRange = IntRange::forTargetOfCanonicalType(Context, Target);
11420 
11421   if (LikelySourceRange->Width > TargetRange.Width) {
11422     // If the source is a constant, use a default-on diagnostic.
11423     // TODO: this should happen for bitfield stores, too.
11424     Expr::EvalResult Result;
11425     if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects,
11426                          isConstantEvaluatedContext())) {
11427       llvm::APSInt Value(32);
11428       Value = Result.Val.getInt();
11429 
11430       if (SourceMgr.isInSystemMacro(CC))
11431         return;
11432 
11433       std::string PrettySourceValue = toString(Value, 10);
11434       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11435 
11436       DiagRuntimeBehavior(E->getExprLoc(), E,
11437                           PDiag(diag::warn_impcast_integer_precision_constant)
11438                               << PrettySourceValue << PrettyTargetValue
11439                               << E->getType() << T << E->getSourceRange()
11440                               << SourceRange(CC));
11441       return;
11442     }
11443 
11444     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
11445     if (SourceMgr.isInSystemMacro(CC))
11446       return;
11447 
11448     if (TargetRange.Width == 32 && Context.getIntWidth(E->getType()) == 64)
11449       return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_64_32,
11450                              /* pruneControlFlow */ true);
11451     return DiagnoseImpCast(*this, E, T, CC,
11452                            diag::warn_impcast_integer_precision);
11453   }
11454 
11455   if (TargetRange.Width > SourceTypeRange.Width) {
11456     if (auto *UO = dyn_cast<UnaryOperator>(E))
11457       if (UO->getOpcode() == UO_Minus)
11458         if (Source->isUnsignedIntegerType()) {
11459           if (Target->isUnsignedIntegerType())
11460             return DiagnoseImpCast(*this, E, T, CC,
11461                                    diag::warn_impcast_high_order_zero_bits);
11462           if (Target->isSignedIntegerType())
11463             return DiagnoseImpCast(*this, E, T, CC,
11464                                    diag::warn_impcast_nonnegative_result);
11465         }
11466   }
11467 
11468   if (TargetRange.Width == LikelySourceRange->Width &&
11469       !TargetRange.NonNegative && LikelySourceRange->NonNegative &&
11470       Source->isSignedIntegerType()) {
11471     // Warn when doing a signed to signed conversion, warn if the positive
11472     // source value is exactly the width of the target type, which will
11473     // cause a negative value to be stored.
11474 
11475     Expr::EvalResult Result;
11476     if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects) &&
11477         !SourceMgr.isInSystemMacro(CC)) {
11478       llvm::APSInt Value = Result.Val.getInt();
11479       if (isSameWidthConstantConversion(*this, E, T, CC)) {
11480         std::string PrettySourceValue = toString(Value, 10);
11481         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
11482 
11483         Diag(E->getExprLoc(),
11484              PDiag(diag::warn_impcast_integer_precision_constant)
11485                  << PrettySourceValue << PrettyTargetValue << E->getType() << T
11486                  << E->getSourceRange() << SourceRange(CC));
11487         return;
11488       }
11489     }
11490 
11491     // Fall through for non-constants to give a sign conversion warning.
11492   }
11493 
11494   if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
11495       ((TargetRange.NonNegative && !LikelySourceRange->NonNegative) ||
11496        (!TargetRange.NonNegative && LikelySourceRange->NonNegative &&
11497         LikelySourceRange->Width == TargetRange.Width))) {
11498     if (SourceMgr.isInSystemMacro(CC))
11499       return;
11500 
11501     if (SourceBT && SourceBT->isInteger() && TargetBT &&
11502         TargetBT->isInteger() &&
11503         Source->isSignedIntegerType() == Target->isSignedIntegerType()) {
11504       return;
11505     }
11506 
11507     unsigned DiagID = diag::warn_impcast_integer_sign;
11508 
11509     // Traditionally, gcc has warned about this under -Wsign-compare.
11510     // We also want to warn about it in -Wconversion.
11511     // So if -Wconversion is off, use a completely identical diagnostic
11512     // in the sign-compare group.
11513     // The conditional-checking code will
11514     if (ICContext) {
11515       DiagID = diag::warn_impcast_integer_sign_conditional;
11516       *ICContext = true;
11517     }
11518 
11519     return DiagnoseImpCast(*this, E, T, CC, DiagID);
11520   }
11521 
11522   // Diagnose conversions between different enumeration types.
11523   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
11524   // type, to give us better diagnostics.
11525   QualType SourceType = E->getEnumCoercedType(Context);
11526   Source = Context.getCanonicalType(SourceType).getTypePtr();
11527 
11528   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
11529     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
11530       if (SourceEnum->getDecl()->hasNameForLinkage() &&
11531           TargetEnum->getDecl()->hasNameForLinkage() &&
11532           SourceEnum != TargetEnum) {
11533         if (SourceMgr.isInSystemMacro(CC))
11534           return;
11535 
11536         return DiagnoseImpCast(*this, E, SourceType, T, CC,
11537                                diag::warn_impcast_different_enum_types);
11538       }
11539 }
11540 
11541 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
11542                                      SourceLocation CC, QualType T);
11543 
11544 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
11545                                     SourceLocation CC, bool &ICContext) {
11546   E = E->IgnoreParenImpCasts();
11547   // Diagnose incomplete type for second or third operand in C.
11548   if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType())
11549     S.RequireCompleteExprType(E, diag::err_incomplete_type);
11550 
11551   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
11552     return CheckConditionalOperator(S, CO, CC, T);
11553 
11554   AnalyzeImplicitConversions(S, E, CC);
11555   if (E->getType() != T)
11556     return S.CheckImplicitConversion(E, T, CC, &ICContext);
11557 }
11558 
11559 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
11560                                      SourceLocation CC, QualType T) {
11561   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
11562 
11563   Expr *TrueExpr = E->getTrueExpr();
11564   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
11565     TrueExpr = BCO->getCommon();
11566 
11567   bool Suspicious = false;
11568   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
11569   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
11570 
11571   if (T->isBooleanType())
11572     DiagnoseIntInBoolContext(S, E);
11573 
11574   // If -Wconversion would have warned about either of the candidates
11575   // for a signedness conversion to the context type...
11576   if (!Suspicious) return;
11577 
11578   // ...but it's currently ignored...
11579   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
11580     return;
11581 
11582   // ...then check whether it would have warned about either of the
11583   // candidates for a signedness conversion to the condition type.
11584   if (E->getType() == T) return;
11585 
11586   Suspicious = false;
11587   S.CheckImplicitConversion(TrueExpr->IgnoreParenImpCasts(), E->getType(), CC,
11588                             &Suspicious);
11589   if (!Suspicious)
11590     S.CheckImplicitConversion(E->getFalseExpr()->IgnoreParenImpCasts(),
11591                               E->getType(), CC, &Suspicious);
11592 }
11593 
11594 /// Check conversion of given expression to boolean.
11595 /// Input argument E is a logical expression.
11596 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
11597   // Run the bool-like conversion checks only for C since there bools are
11598   // still not used as the return type from "boolean" operators or as the input
11599   // type for conditional operators.
11600   if (S.getLangOpts().CPlusPlus)
11601     return;
11602   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
11603     return;
11604   S.CheckImplicitConversion(E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
11605 }
11606 
11607 namespace {
11608 struct AnalyzeImplicitConversionsWorkItem {
11609   Expr *E;
11610   SourceLocation CC;
11611   bool IsListInit;
11612 };
11613 }
11614 
11615 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
11616 /// that should be visited are added to WorkList.
11617 static void AnalyzeImplicitConversions(
11618     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
11619     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
11620   Expr *OrigE = Item.E;
11621   SourceLocation CC = Item.CC;
11622 
11623   QualType T = OrigE->getType();
11624   Expr *E = OrigE->IgnoreParenImpCasts();
11625 
11626   // Propagate whether we are in a C++ list initialization expression.
11627   // If so, we do not issue warnings for implicit int-float conversion
11628   // precision loss, because C++11 narrowing already handles it.
11629   bool IsListInit = Item.IsListInit ||
11630                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
11631 
11632   if (E->isTypeDependent() || E->isValueDependent())
11633     return;
11634 
11635   Expr *SourceExpr = E;
11636   // Examine, but don't traverse into the source expression of an
11637   // OpaqueValueExpr, since it may have multiple parents and we don't want to
11638   // emit duplicate diagnostics. Its fine to examine the form or attempt to
11639   // evaluate it in the context of checking the specific conversion to T though.
11640   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
11641     if (auto *Src = OVE->getSourceExpr())
11642       SourceExpr = Src;
11643 
11644   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
11645     if (UO->getOpcode() == UO_Not &&
11646         UO->getSubExpr()->isKnownToHaveBooleanValue())
11647       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
11648           << OrigE->getSourceRange() << T->isBooleanType()
11649           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
11650 
11651   if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
11652     if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
11653         BO->getLHS()->isKnownToHaveBooleanValue() &&
11654         BO->getRHS()->isKnownToHaveBooleanValue() &&
11655         BO->getLHS()->HasSideEffects(S.Context) &&
11656         BO->getRHS()->HasSideEffects(S.Context)) {
11657       SourceManager &SM = S.getSourceManager();
11658       const LangOptions &LO = S.getLangOpts();
11659       SourceLocation BLoc = BO->getOperatorLoc();
11660       SourceLocation ELoc = Lexer::getLocForEndOfToken(BLoc, 0, SM, LO);
11661       StringRef SR = clang::Lexer::getSourceText(
11662           clang::CharSourceRange::getTokenRange(BLoc, ELoc), SM, LO);
11663       // To reduce false positives, only issue the diagnostic if the operator
11664       // is explicitly spelled as a punctuator. This suppresses the diagnostic
11665       // when using 'bitand' or 'bitor' either as keywords in C++ or as macros
11666       // in C, along with other macro spellings the user might invent.
11667       if (SR.str() == "&" || SR.str() == "|") {
11668 
11669         S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
11670             << (BO->getOpcode() == BO_And ? "&" : "|")
11671             << OrigE->getSourceRange()
11672             << FixItHint::CreateReplacement(
11673                    BO->getOperatorLoc(),
11674                    (BO->getOpcode() == BO_And ? "&&" : "||"));
11675         S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
11676       }
11677     }
11678 
11679   // For conditional operators, we analyze the arguments as if they
11680   // were being fed directly into the output.
11681   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
11682     CheckConditionalOperator(S, CO, CC, T);
11683     return;
11684   }
11685 
11686   // Check implicit argument conversions for function calls.
11687   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
11688     CheckImplicitArgumentConversions(S, Call, CC);
11689 
11690   // Go ahead and check any implicit conversions we might have skipped.
11691   // The non-canonical typecheck is just an optimization;
11692   // CheckImplicitConversion will filter out dead implicit conversions.
11693   if (SourceExpr->getType() != T)
11694     S.CheckImplicitConversion(SourceExpr, T, CC, nullptr, IsListInit);
11695 
11696   // Now continue drilling into this expression.
11697 
11698   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
11699     // The bound subexpressions in a PseudoObjectExpr are not reachable
11700     // as transitive children.
11701     // FIXME: Use a more uniform representation for this.
11702     for (auto *SE : POE->semantics())
11703       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
11704         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
11705   }
11706 
11707   // Skip past explicit casts.
11708   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
11709     E = CE->getSubExpr()->IgnoreParenImpCasts();
11710     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
11711       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11712     WorkList.push_back({E, CC, IsListInit});
11713     return;
11714   }
11715 
11716   if (auto *OutArgE = dyn_cast<HLSLOutArgExpr>(E)) {
11717     WorkList.push_back({OutArgE->getArgLValue(), CC, IsListInit});
11718     // The base expression is only used to initialize the parameter for
11719     // arguments to `inout` parameters, so we only traverse down the base
11720     // expression for `inout` cases.
11721     if (OutArgE->isInOut())
11722       WorkList.push_back(
11723           {OutArgE->getCastedTemporary()->getSourceExpr(), CC, IsListInit});
11724     WorkList.push_back({OutArgE->getWritebackCast(), CC, IsListInit});
11725     return;
11726   }
11727 
11728   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11729     // Do a somewhat different check with comparison operators.
11730     if (BO->isComparisonOp())
11731       return AnalyzeComparison(S, BO);
11732 
11733     // And with simple assignments.
11734     if (BO->getOpcode() == BO_Assign)
11735       return AnalyzeAssignment(S, BO);
11736     // And with compound assignments.
11737     if (BO->isAssignmentOp())
11738       return AnalyzeCompoundAssignment(S, BO);
11739   }
11740 
11741   // These break the otherwise-useful invariant below.  Fortunately,
11742   // we don't really need to recurse into them, because any internal
11743   // expressions should have been analyzed already when they were
11744   // built into statements.
11745   if (isa<StmtExpr>(E)) return;
11746 
11747   // Don't descend into unevaluated contexts.
11748   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
11749 
11750   // Now just recurse over the expression's children.
11751   CC = E->getExprLoc();
11752   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
11753   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
11754   for (Stmt *SubStmt : E->children()) {
11755     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
11756     if (!ChildExpr)
11757       continue;
11758 
11759     if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
11760       if (ChildExpr == CSE->getOperand())
11761         // Do not recurse over a CoroutineSuspendExpr's operand.
11762         // The operand is also a subexpression of getCommonExpr(), and
11763         // recursing into it directly would produce duplicate diagnostics.
11764         continue;
11765 
11766     if (IsLogicalAndOperator &&
11767         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
11768       // Ignore checking string literals that are in logical and operators.
11769       // This is a common pattern for asserts.
11770       continue;
11771     WorkList.push_back({ChildExpr, CC, IsListInit});
11772   }
11773 
11774   if (BO && BO->isLogicalOp()) {
11775     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
11776     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11777       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11778 
11779     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
11780     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
11781       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
11782   }
11783 
11784   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
11785     if (U->getOpcode() == UO_LNot) {
11786       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
11787     } else if (U->getOpcode() != UO_AddrOf) {
11788       if (U->getSubExpr()->getType()->isAtomicType())
11789         S.Diag(U->getSubExpr()->getBeginLoc(),
11790                diag::warn_atomic_implicit_seq_cst);
11791     }
11792   }
11793 }
11794 
11795 /// AnalyzeImplicitConversions - Find and report any interesting
11796 /// implicit conversions in the given expression.  There are a couple
11797 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
11798 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
11799                                        bool IsListInit/*= false*/) {
11800   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
11801   WorkList.push_back({OrigE, CC, IsListInit});
11802   while (!WorkList.empty())
11803     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
11804 }
11805 
11806 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
11807 // Returns true when emitting a warning about taking the address of a reference.
11808 static bool CheckForReference(Sema &SemaRef, const Expr *E,
11809                               const PartialDiagnostic &PD) {
11810   E = E->IgnoreParenImpCasts();
11811 
11812   const FunctionDecl *FD = nullptr;
11813 
11814   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11815     if (!DRE->getDecl()->getType()->isReferenceType())
11816       return false;
11817   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11818     if (!M->getMemberDecl()->getType()->isReferenceType())
11819       return false;
11820   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
11821     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
11822       return false;
11823     FD = Call->getDirectCallee();
11824   } else {
11825     return false;
11826   }
11827 
11828   SemaRef.Diag(E->getExprLoc(), PD);
11829 
11830   // If possible, point to location of function.
11831   if (FD) {
11832     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
11833   }
11834 
11835   return true;
11836 }
11837 
11838 // Returns true if the SourceLocation is expanded from any macro body.
11839 // Returns false if the SourceLocation is invalid, is from not in a macro
11840 // expansion, or is from expanded from a top-level macro argument.
11841 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
11842   if (Loc.isInvalid())
11843     return false;
11844 
11845   while (Loc.isMacroID()) {
11846     if (SM.isMacroBodyExpansion(Loc))
11847       return true;
11848     Loc = SM.getImmediateMacroCallerLoc(Loc);
11849   }
11850 
11851   return false;
11852 }
11853 
11854 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
11855                                         Expr::NullPointerConstantKind NullKind,
11856                                         bool IsEqual, SourceRange Range) {
11857   if (!E)
11858     return;
11859 
11860   // Don't warn inside macros.
11861   if (E->getExprLoc().isMacroID()) {
11862     const SourceManager &SM = getSourceManager();
11863     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
11864         IsInAnyMacroBody(SM, Range.getBegin()))
11865       return;
11866   }
11867   E = E->IgnoreImpCasts();
11868 
11869   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
11870 
11871   if (isa<CXXThisExpr>(E)) {
11872     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
11873                                 : diag::warn_this_bool_conversion;
11874     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
11875     return;
11876   }
11877 
11878   bool IsAddressOf = false;
11879 
11880   if (auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
11881     if (UO->getOpcode() != UO_AddrOf)
11882       return;
11883     IsAddressOf = true;
11884     E = UO->getSubExpr();
11885   }
11886 
11887   if (IsAddressOf) {
11888     unsigned DiagID = IsCompare
11889                           ? diag::warn_address_of_reference_null_compare
11890                           : diag::warn_address_of_reference_bool_conversion;
11891     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
11892                                          << IsEqual;
11893     if (CheckForReference(*this, E, PD)) {
11894       return;
11895     }
11896   }
11897 
11898   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
11899     bool IsParam = isa<NonNullAttr>(NonnullAttr);
11900     std::string Str;
11901     llvm::raw_string_ostream S(Str);
11902     E->printPretty(S, nullptr, getPrintingPolicy());
11903     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
11904                                 : diag::warn_cast_nonnull_to_bool;
11905     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
11906       << E->getSourceRange() << Range << IsEqual;
11907     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
11908   };
11909 
11910   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
11911   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
11912     if (auto *Callee = Call->getDirectCallee()) {
11913       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
11914         ComplainAboutNonnullParamOrCall(A);
11915         return;
11916       }
11917     }
11918   }
11919 
11920   // Complain if we are converting a lambda expression to a boolean value
11921   // outside of instantiation.
11922   if (!inTemplateInstantiation()) {
11923     if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(E)) {
11924       if (const auto *MRecordDecl = MCallExpr->getRecordDecl();
11925           MRecordDecl && MRecordDecl->isLambda()) {
11926         Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool)
11927             << /*LambdaPointerConversionOperatorType=*/3
11928             << MRecordDecl->getSourceRange() << Range << IsEqual;
11929         return;
11930       }
11931     }
11932   }
11933 
11934   // Expect to find a single Decl.  Skip anything more complicated.
11935   ValueDecl *D = nullptr;
11936   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
11937     D = R->getDecl();
11938   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
11939     D = M->getMemberDecl();
11940   }
11941 
11942   // Weak Decls can be null.
11943   if (!D || D->isWeak())
11944     return;
11945 
11946   // Check for parameter decl with nonnull attribute
11947   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
11948     if (getCurFunction() &&
11949         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
11950       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
11951         ComplainAboutNonnullParamOrCall(A);
11952         return;
11953       }
11954 
11955       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
11956         // Skip function template not specialized yet.
11957         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11958           return;
11959         auto ParamIter = llvm::find(FD->parameters(), PV);
11960         assert(ParamIter != FD->param_end());
11961         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
11962 
11963         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
11964           if (!NonNull->args_size()) {
11965               ComplainAboutNonnullParamOrCall(NonNull);
11966               return;
11967           }
11968 
11969           for (const ParamIdx &ArgNo : NonNull->args()) {
11970             if (ArgNo.getASTIndex() == ParamNo) {
11971               ComplainAboutNonnullParamOrCall(NonNull);
11972               return;
11973             }
11974           }
11975         }
11976       }
11977     }
11978   }
11979 
11980   QualType T = D->getType();
11981   const bool IsArray = T->isArrayType();
11982   const bool IsFunction = T->isFunctionType();
11983 
11984   // Address of function is used to silence the function warning.
11985   if (IsAddressOf && IsFunction) {
11986     return;
11987   }
11988 
11989   // Found nothing.
11990   if (!IsAddressOf && !IsFunction && !IsArray)
11991     return;
11992 
11993   // Pretty print the expression for the diagnostic.
11994   std::string Str;
11995   llvm::raw_string_ostream S(Str);
11996   E->printPretty(S, nullptr, getPrintingPolicy());
11997 
11998   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
11999                               : diag::warn_impcast_pointer_to_bool;
12000   enum {
12001     AddressOf,
12002     FunctionPointer,
12003     ArrayPointer
12004   } DiagType;
12005   if (IsAddressOf)
12006     DiagType = AddressOf;
12007   else if (IsFunction)
12008     DiagType = FunctionPointer;
12009   else if (IsArray)
12010     DiagType = ArrayPointer;
12011   else
12012     llvm_unreachable("Could not determine diagnostic.");
12013   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12014                                 << Range << IsEqual;
12015 
12016   if (!IsFunction)
12017     return;
12018 
12019   // Suggest '&' to silence the function warning.
12020   Diag(E->getExprLoc(), diag::note_function_warning_silence)
12021       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12022 
12023   // Check to see if '()' fixit should be emitted.
12024   QualType ReturnType;
12025   UnresolvedSet<4> NonTemplateOverloads;
12026   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12027   if (ReturnType.isNull())
12028     return;
12029 
12030   if (IsCompare) {
12031     // There are two cases here.  If there is null constant, the only suggest
12032     // for a pointer return type.  If the null is 0, then suggest if the return
12033     // type is a pointer or an integer type.
12034     if (!ReturnType->isPointerType()) {
12035       if (NullKind == Expr::NPCK_ZeroExpression ||
12036           NullKind == Expr::NPCK_ZeroLiteral) {
12037         if (!ReturnType->isIntegerType())
12038           return;
12039       } else {
12040         return;
12041       }
12042     }
12043   } else { // !IsCompare
12044     // For function to bool, only suggest if the function pointer has bool
12045     // return type.
12046     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12047       return;
12048   }
12049   Diag(E->getExprLoc(), diag::note_function_to_function_call)
12050       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12051 }
12052 
12053 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12054   // Don't diagnose in unevaluated contexts.
12055   if (isUnevaluatedContext())
12056     return;
12057 
12058   // Don't diagnose for value- or type-dependent expressions.
12059   if (E->isTypeDependent() || E->isValueDependent())
12060     return;
12061 
12062   // Check for array bounds violations in cases where the check isn't triggered
12063   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12064   // ArraySubscriptExpr is on the RHS of a variable initialization.
12065   CheckArrayAccess(E);
12066 
12067   // This is not the right CC for (e.g.) a variable initialization.
12068   AnalyzeImplicitConversions(*this, E, CC);
12069 }
12070 
12071 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12072   ::CheckBoolLikeConversion(*this, E, CC);
12073 }
12074 
12075 void Sema::CheckForIntOverflow (const Expr *E) {
12076   // Use a work list to deal with nested struct initializers.
12077   SmallVector<const Expr *, 2> Exprs(1, E);
12078 
12079   do {
12080     const Expr *OriginalE = Exprs.pop_back_val();
12081     const Expr *E = OriginalE->IgnoreParenCasts();
12082 
12083     if (isa<BinaryOperator, UnaryOperator>(E)) {
12084       E->EvaluateForOverflow(Context);
12085       continue;
12086     }
12087 
12088     if (const auto *InitList = dyn_cast<InitListExpr>(OriginalE))
12089       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12090     else if (isa<ObjCBoxedExpr>(OriginalE))
12091       E->EvaluateForOverflow(Context);
12092     else if (const auto *Call = dyn_cast<CallExpr>(E))
12093       Exprs.append(Call->arg_begin(), Call->arg_end());
12094     else if (const auto *Message = dyn_cast<ObjCMessageExpr>(E))
12095       Exprs.append(Message->arg_begin(), Message->arg_end());
12096     else if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
12097       Exprs.append(Construct->arg_begin(), Construct->arg_end());
12098     else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(E))
12099       Exprs.push_back(Temporary->getSubExpr());
12100     else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(E))
12101       Exprs.push_back(Array->getIdx());
12102     else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(E))
12103       Exprs.push_back(Compound->getInitializer());
12104     else if (const auto *New = dyn_cast<CXXNewExpr>(E);
12105              New && New->isArray()) {
12106       if (auto ArraySize = New->getArraySize())
12107         Exprs.push_back(*ArraySize);
12108     } else if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(OriginalE))
12109       Exprs.push_back(MTE->getSubExpr());
12110   } while (!Exprs.empty());
12111 }
12112 
12113 namespace {
12114 
12115 /// Visitor for expressions which looks for unsequenced operations on the
12116 /// same object.
12117 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12118   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12119 
12120   /// A tree of sequenced regions within an expression. Two regions are
12121   /// unsequenced if one is an ancestor or a descendent of the other. When we
12122   /// finish processing an expression with sequencing, such as a comma
12123   /// expression, we fold its tree nodes into its parent, since they are
12124   /// unsequenced with respect to nodes we will visit later.
12125   class SequenceTree {
12126     struct Value {
12127       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12128       unsigned Parent : 31;
12129       LLVM_PREFERRED_TYPE(bool)
12130       unsigned Merged : 1;
12131     };
12132     SmallVector<Value, 8> Values;
12133 
12134   public:
12135     /// A region within an expression which may be sequenced with respect
12136     /// to some other region.
12137     class Seq {
12138       friend class SequenceTree;
12139 
12140       unsigned Index;
12141 
12142       explicit Seq(unsigned N) : Index(N) {}
12143 
12144     public:
12145       Seq() : Index(0) {}
12146     };
12147 
12148     SequenceTree() { Values.push_back(Value(0)); }
12149     Seq root() const { return Seq(0); }
12150 
12151     /// Create a new sequence of operations, which is an unsequenced
12152     /// subset of \p Parent. This sequence of operations is sequenced with
12153     /// respect to other children of \p Parent.
12154     Seq allocate(Seq Parent) {
12155       Values.push_back(Value(Parent.Index));
12156       return Seq(Values.size() - 1);
12157     }
12158 
12159     /// Merge a sequence of operations into its parent.
12160     void merge(Seq S) {
12161       Values[S.Index].Merged = true;
12162     }
12163 
12164     /// Determine whether two operations are unsequenced. This operation
12165     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12166     /// should have been merged into its parent as appropriate.
12167     bool isUnsequenced(Seq Cur, Seq Old) {
12168       unsigned C = representative(Cur.Index);
12169       unsigned Target = representative(Old.Index);
12170       while (C >= Target) {
12171         if (C == Target)
12172           return true;
12173         C = Values[C].Parent;
12174       }
12175       return false;
12176     }
12177 
12178   private:
12179     /// Pick a representative for a sequence.
12180     unsigned representative(unsigned K) {
12181       if (Values[K].Merged)
12182         // Perform path compression as we go.
12183         return Values[K].Parent = representative(Values[K].Parent);
12184       return K;
12185     }
12186   };
12187 
12188   /// An object for which we can track unsequenced uses.
12189   using Object = const NamedDecl *;
12190 
12191   /// Different flavors of object usage which we track. We only track the
12192   /// least-sequenced usage of each kind.
12193   enum UsageKind {
12194     /// A read of an object. Multiple unsequenced reads are OK.
12195     UK_Use,
12196 
12197     /// A modification of an object which is sequenced before the value
12198     /// computation of the expression, such as ++n in C++.
12199     UK_ModAsValue,
12200 
12201     /// A modification of an object which is not sequenced before the value
12202     /// computation of the expression, such as n++.
12203     UK_ModAsSideEffect,
12204 
12205     UK_Count = UK_ModAsSideEffect + 1
12206   };
12207 
12208   /// Bundle together a sequencing region and the expression corresponding
12209   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
12210   struct Usage {
12211     const Expr *UsageExpr = nullptr;
12212     SequenceTree::Seq Seq;
12213 
12214     Usage() = default;
12215   };
12216 
12217   struct UsageInfo {
12218     Usage Uses[UK_Count];
12219 
12220     /// Have we issued a diagnostic for this object already?
12221     bool Diagnosed = false;
12222 
12223     UsageInfo();
12224   };
12225   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
12226 
12227   Sema &SemaRef;
12228 
12229   /// Sequenced regions within the expression.
12230   SequenceTree Tree;
12231 
12232   /// Declaration modifications and references which we have seen.
12233   UsageInfoMap UsageMap;
12234 
12235   /// The region we are currently within.
12236   SequenceTree::Seq Region;
12237 
12238   /// Filled in with declarations which were modified as a side-effect
12239   /// (that is, post-increment operations).
12240   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
12241 
12242   /// Expressions to check later. We defer checking these to reduce
12243   /// stack usage.
12244   SmallVectorImpl<const Expr *> &WorkList;
12245 
12246   /// RAII object wrapping the visitation of a sequenced subexpression of an
12247   /// expression. At the end of this process, the side-effects of the evaluation
12248   /// become sequenced with respect to the value computation of the result, so
12249   /// we downgrade any UK_ModAsSideEffect within the evaluation to
12250   /// UK_ModAsValue.
12251   struct SequencedSubexpression {
12252     SequencedSubexpression(SequenceChecker &Self)
12253       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
12254       Self.ModAsSideEffect = &ModAsSideEffect;
12255     }
12256 
12257     ~SequencedSubexpression() {
12258       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
12259         // Add a new usage with usage kind UK_ModAsValue, and then restore
12260         // the previous usage with UK_ModAsSideEffect (thus clearing it if
12261         // the previous one was empty).
12262         UsageInfo &UI = Self.UsageMap[M.first];
12263         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
12264         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
12265         SideEffectUsage = M.second;
12266       }
12267       Self.ModAsSideEffect = OldModAsSideEffect;
12268     }
12269 
12270     SequenceChecker &Self;
12271     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
12272     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
12273   };
12274 
12275   /// RAII object wrapping the visitation of a subexpression which we might
12276   /// choose to evaluate as a constant. If any subexpression is evaluated and
12277   /// found to be non-constant, this allows us to suppress the evaluation of
12278   /// the outer expression.
12279   class EvaluationTracker {
12280   public:
12281     EvaluationTracker(SequenceChecker &Self)
12282         : Self(Self), Prev(Self.EvalTracker) {
12283       Self.EvalTracker = this;
12284     }
12285 
12286     ~EvaluationTracker() {
12287       Self.EvalTracker = Prev;
12288       if (Prev)
12289         Prev->EvalOK &= EvalOK;
12290     }
12291 
12292     bool evaluate(const Expr *E, bool &Result) {
12293       if (!EvalOK || E->isValueDependent())
12294         return false;
12295       EvalOK = E->EvaluateAsBooleanCondition(
12296           Result, Self.SemaRef.Context,
12297           Self.SemaRef.isConstantEvaluatedContext());
12298       return EvalOK;
12299     }
12300 
12301   private:
12302     SequenceChecker &Self;
12303     EvaluationTracker *Prev;
12304     bool EvalOK = true;
12305   } *EvalTracker = nullptr;
12306 
12307   /// Find the object which is produced by the specified expression,
12308   /// if any.
12309   Object getObject(const Expr *E, bool Mod) const {
12310     E = E->IgnoreParenCasts();
12311     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12312       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
12313         return getObject(UO->getSubExpr(), Mod);
12314     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12315       if (BO->getOpcode() == BO_Comma)
12316         return getObject(BO->getRHS(), Mod);
12317       if (Mod && BO->isAssignmentOp())
12318         return getObject(BO->getLHS(), Mod);
12319     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12320       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
12321       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
12322         return ME->getMemberDecl();
12323     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12324       // FIXME: If this is a reference, map through to its value.
12325       return DRE->getDecl();
12326     return nullptr;
12327   }
12328 
12329   /// Note that an object \p O was modified or used by an expression
12330   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
12331   /// the object \p O as obtained via the \p UsageMap.
12332   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
12333     // Get the old usage for the given object and usage kind.
12334     Usage &U = UI.Uses[UK];
12335     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
12336       // If we have a modification as side effect and are in a sequenced
12337       // subexpression, save the old Usage so that we can restore it later
12338       // in SequencedSubexpression::~SequencedSubexpression.
12339       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
12340         ModAsSideEffect->push_back(std::make_pair(O, U));
12341       // Then record the new usage with the current sequencing region.
12342       U.UsageExpr = UsageExpr;
12343       U.Seq = Region;
12344     }
12345   }
12346 
12347   /// Check whether a modification or use of an object \p O in an expression
12348   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
12349   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
12350   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
12351   /// usage and false we are checking for a mod-use unsequenced usage.
12352   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
12353                   UsageKind OtherKind, bool IsModMod) {
12354     if (UI.Diagnosed)
12355       return;
12356 
12357     const Usage &U = UI.Uses[OtherKind];
12358     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
12359       return;
12360 
12361     const Expr *Mod = U.UsageExpr;
12362     const Expr *ModOrUse = UsageExpr;
12363     if (OtherKind == UK_Use)
12364       std::swap(Mod, ModOrUse);
12365 
12366     SemaRef.DiagRuntimeBehavior(
12367         Mod->getExprLoc(), {Mod, ModOrUse},
12368         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
12369                                : diag::warn_unsequenced_mod_use)
12370             << O << SourceRange(ModOrUse->getExprLoc()));
12371     UI.Diagnosed = true;
12372   }
12373 
12374   // A note on note{Pre, Post}{Use, Mod}:
12375   //
12376   // (It helps to follow the algorithm with an expression such as
12377   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
12378   //  operations before C++17 and both are well-defined in C++17).
12379   //
12380   // When visiting a node which uses/modify an object we first call notePreUse
12381   // or notePreMod before visiting its sub-expression(s). At this point the
12382   // children of the current node have not yet been visited and so the eventual
12383   // uses/modifications resulting from the children of the current node have not
12384   // been recorded yet.
12385   //
12386   // We then visit the children of the current node. After that notePostUse or
12387   // notePostMod is called. These will 1) detect an unsequenced modification
12388   // as side effect (as in "k++ + k") and 2) add a new usage with the
12389   // appropriate usage kind.
12390   //
12391   // We also have to be careful that some operation sequences modification as
12392   // side effect as well (for example: || or ,). To account for this we wrap
12393   // the visitation of such a sub-expression (for example: the LHS of || or ,)
12394   // with SequencedSubexpression. SequencedSubexpression is an RAII object
12395   // which record usages which are modifications as side effect, and then
12396   // downgrade them (or more accurately restore the previous usage which was a
12397   // modification as side effect) when exiting the scope of the sequenced
12398   // subexpression.
12399 
12400   void notePreUse(Object O, const Expr *UseExpr) {
12401     UsageInfo &UI = UsageMap[O];
12402     // Uses conflict with other modifications.
12403     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
12404   }
12405 
12406   void notePostUse(Object O, const Expr *UseExpr) {
12407     UsageInfo &UI = UsageMap[O];
12408     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
12409                /*IsModMod=*/false);
12410     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
12411   }
12412 
12413   void notePreMod(Object O, const Expr *ModExpr) {
12414     UsageInfo &UI = UsageMap[O];
12415     // Modifications conflict with other modifications and with uses.
12416     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
12417     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
12418   }
12419 
12420   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
12421     UsageInfo &UI = UsageMap[O];
12422     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
12423                /*IsModMod=*/true);
12424     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
12425   }
12426 
12427 public:
12428   SequenceChecker(Sema &S, const Expr *E,
12429                   SmallVectorImpl<const Expr *> &WorkList)
12430       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
12431     Visit(E);
12432     // Silence a -Wunused-private-field since WorkList is now unused.
12433     // TODO: Evaluate if it can be used, and if not remove it.
12434     (void)this->WorkList;
12435   }
12436 
12437   void VisitStmt(const Stmt *S) {
12438     // Skip all statements which aren't expressions for now.
12439   }
12440 
12441   void VisitExpr(const Expr *E) {
12442     // By default, just recurse to evaluated subexpressions.
12443     Base::VisitStmt(E);
12444   }
12445 
12446   void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) {
12447     for (auto *Sub : CSE->children()) {
12448       const Expr *ChildExpr = dyn_cast_or_null<Expr>(Sub);
12449       if (!ChildExpr)
12450         continue;
12451 
12452       if (ChildExpr == CSE->getOperand())
12453         // Do not recurse over a CoroutineSuspendExpr's operand.
12454         // The operand is also a subexpression of getCommonExpr(), and
12455         // recursing into it directly could confuse object management
12456         // for the sake of sequence tracking.
12457         continue;
12458 
12459       Visit(Sub);
12460     }
12461   }
12462 
12463   void VisitCastExpr(const CastExpr *E) {
12464     Object O = Object();
12465     if (E->getCastKind() == CK_LValueToRValue)
12466       O = getObject(E->getSubExpr(), false);
12467 
12468     if (O)
12469       notePreUse(O, E);
12470     VisitExpr(E);
12471     if (O)
12472       notePostUse(O, E);
12473   }
12474 
12475   void VisitSequencedExpressions(const Expr *SequencedBefore,
12476                                  const Expr *SequencedAfter) {
12477     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
12478     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
12479     SequenceTree::Seq OldRegion = Region;
12480 
12481     {
12482       SequencedSubexpression SeqBefore(*this);
12483       Region = BeforeRegion;
12484       Visit(SequencedBefore);
12485     }
12486 
12487     Region = AfterRegion;
12488     Visit(SequencedAfter);
12489 
12490     Region = OldRegion;
12491 
12492     Tree.merge(BeforeRegion);
12493     Tree.merge(AfterRegion);
12494   }
12495 
12496   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
12497     // C++17 [expr.sub]p1:
12498     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
12499     //   expression E1 is sequenced before the expression E2.
12500     if (SemaRef.getLangOpts().CPlusPlus17)
12501       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
12502     else {
12503       Visit(ASE->getLHS());
12504       Visit(ASE->getRHS());
12505     }
12506   }
12507 
12508   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12509   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
12510   void VisitBinPtrMem(const BinaryOperator *BO) {
12511     // C++17 [expr.mptr.oper]p4:
12512     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
12513     //  the expression E1 is sequenced before the expression E2.
12514     if (SemaRef.getLangOpts().CPlusPlus17)
12515       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12516     else {
12517       Visit(BO->getLHS());
12518       Visit(BO->getRHS());
12519     }
12520   }
12521 
12522   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12523   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
12524   void VisitBinShlShr(const BinaryOperator *BO) {
12525     // C++17 [expr.shift]p4:
12526     //  The expression E1 is sequenced before the expression E2.
12527     if (SemaRef.getLangOpts().CPlusPlus17)
12528       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12529     else {
12530       Visit(BO->getLHS());
12531       Visit(BO->getRHS());
12532     }
12533   }
12534 
12535   void VisitBinComma(const BinaryOperator *BO) {
12536     // C++11 [expr.comma]p1:
12537     //   Every value computation and side effect associated with the left
12538     //   expression is sequenced before every value computation and side
12539     //   effect associated with the right expression.
12540     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
12541   }
12542 
12543   void VisitBinAssign(const BinaryOperator *BO) {
12544     SequenceTree::Seq RHSRegion;
12545     SequenceTree::Seq LHSRegion;
12546     if (SemaRef.getLangOpts().CPlusPlus17) {
12547       RHSRegion = Tree.allocate(Region);
12548       LHSRegion = Tree.allocate(Region);
12549     } else {
12550       RHSRegion = Region;
12551       LHSRegion = Region;
12552     }
12553     SequenceTree::Seq OldRegion = Region;
12554 
12555     // C++11 [expr.ass]p1:
12556     //  [...] the assignment is sequenced after the value computation
12557     //  of the right and left operands, [...]
12558     //
12559     // so check it before inspecting the operands and update the
12560     // map afterwards.
12561     Object O = getObject(BO->getLHS(), /*Mod=*/true);
12562     if (O)
12563       notePreMod(O, BO);
12564 
12565     if (SemaRef.getLangOpts().CPlusPlus17) {
12566       // C++17 [expr.ass]p1:
12567       //  [...] The right operand is sequenced before the left operand. [...]
12568       {
12569         SequencedSubexpression SeqBefore(*this);
12570         Region = RHSRegion;
12571         Visit(BO->getRHS());
12572       }
12573 
12574       Region = LHSRegion;
12575       Visit(BO->getLHS());
12576 
12577       if (O && isa<CompoundAssignOperator>(BO))
12578         notePostUse(O, BO);
12579 
12580     } else {
12581       // C++11 does not specify any sequencing between the LHS and RHS.
12582       Region = LHSRegion;
12583       Visit(BO->getLHS());
12584 
12585       if (O && isa<CompoundAssignOperator>(BO))
12586         notePostUse(O, BO);
12587 
12588       Region = RHSRegion;
12589       Visit(BO->getRHS());
12590     }
12591 
12592     // C++11 [expr.ass]p1:
12593     //  the assignment is sequenced [...] before the value computation of the
12594     //  assignment expression.
12595     // C11 6.5.16/3 has no such rule.
12596     Region = OldRegion;
12597     if (O)
12598       notePostMod(O, BO,
12599                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12600                                                   : UK_ModAsSideEffect);
12601     if (SemaRef.getLangOpts().CPlusPlus17) {
12602       Tree.merge(RHSRegion);
12603       Tree.merge(LHSRegion);
12604     }
12605   }
12606 
12607   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
12608     VisitBinAssign(CAO);
12609   }
12610 
12611   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12612   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
12613   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
12614     Object O = getObject(UO->getSubExpr(), true);
12615     if (!O)
12616       return VisitExpr(UO);
12617 
12618     notePreMod(O, UO);
12619     Visit(UO->getSubExpr());
12620     // C++11 [expr.pre.incr]p1:
12621     //   the expression ++x is equivalent to x+=1
12622     notePostMod(O, UO,
12623                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
12624                                                 : UK_ModAsSideEffect);
12625   }
12626 
12627   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12628   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
12629   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
12630     Object O = getObject(UO->getSubExpr(), true);
12631     if (!O)
12632       return VisitExpr(UO);
12633 
12634     notePreMod(O, UO);
12635     Visit(UO->getSubExpr());
12636     notePostMod(O, UO, UK_ModAsSideEffect);
12637   }
12638 
12639   void VisitBinLOr(const BinaryOperator *BO) {
12640     // C++11 [expr.log.or]p2:
12641     //  If the second expression is evaluated, every value computation and
12642     //  side effect associated with the first expression is sequenced before
12643     //  every value computation and side effect associated with the
12644     //  second expression.
12645     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
12646     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
12647     SequenceTree::Seq OldRegion = Region;
12648 
12649     EvaluationTracker Eval(*this);
12650     {
12651       SequencedSubexpression Sequenced(*this);
12652       Region = LHSRegion;
12653       Visit(BO->getLHS());
12654     }
12655 
12656     // C++11 [expr.log.or]p1:
12657     //  [...] the second operand is not evaluated if the first operand
12658     //  evaluates to true.
12659     bool EvalResult = false;
12660     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
12661     bool ShouldVisitRHS = !EvalOK || !EvalResult;
12662     if (ShouldVisitRHS) {
12663       Region = RHSRegion;
12664       Visit(BO->getRHS());
12665     }
12666 
12667     Region = OldRegion;
12668     Tree.merge(LHSRegion);
12669     Tree.merge(RHSRegion);
12670   }
12671 
12672   void VisitBinLAnd(const BinaryOperator *BO) {
12673     // C++11 [expr.log.and]p2:
12674     //  If the second expression is evaluated, every value computation and
12675     //  side effect associated with the first expression is sequenced before
12676     //  every value computation and side effect associated with the
12677     //  second expression.
12678     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
12679     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
12680     SequenceTree::Seq OldRegion = Region;
12681 
12682     EvaluationTracker Eval(*this);
12683     {
12684       SequencedSubexpression Sequenced(*this);
12685       Region = LHSRegion;
12686       Visit(BO->getLHS());
12687     }
12688 
12689     // C++11 [expr.log.and]p1:
12690     //  [...] the second operand is not evaluated if the first operand is false.
12691     bool EvalResult = false;
12692     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
12693     bool ShouldVisitRHS = !EvalOK || EvalResult;
12694     if (ShouldVisitRHS) {
12695       Region = RHSRegion;
12696       Visit(BO->getRHS());
12697     }
12698 
12699     Region = OldRegion;
12700     Tree.merge(LHSRegion);
12701     Tree.merge(RHSRegion);
12702   }
12703 
12704   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
12705     // C++11 [expr.cond]p1:
12706     //  [...] Every value computation and side effect associated with the first
12707     //  expression is sequenced before every value computation and side effect
12708     //  associated with the second or third expression.
12709     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
12710 
12711     // No sequencing is specified between the true and false expression.
12712     // However since exactly one of both is going to be evaluated we can
12713     // consider them to be sequenced. This is needed to avoid warning on
12714     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
12715     // both the true and false expressions because we can't evaluate x.
12716     // This will still allow us to detect an expression like (pre C++17)
12717     // "(x ? y += 1 : y += 2) = y".
12718     //
12719     // We don't wrap the visitation of the true and false expression with
12720     // SequencedSubexpression because we don't want to downgrade modifications
12721     // as side effect in the true and false expressions after the visition
12722     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
12723     // not warn between the two "y++", but we should warn between the "y++"
12724     // and the "y".
12725     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
12726     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
12727     SequenceTree::Seq OldRegion = Region;
12728 
12729     EvaluationTracker Eval(*this);
12730     {
12731       SequencedSubexpression Sequenced(*this);
12732       Region = ConditionRegion;
12733       Visit(CO->getCond());
12734     }
12735 
12736     // C++11 [expr.cond]p1:
12737     // [...] The first expression is contextually converted to bool (Clause 4).
12738     // It is evaluated and if it is true, the result of the conditional
12739     // expression is the value of the second expression, otherwise that of the
12740     // third expression. Only one of the second and third expressions is
12741     // evaluated. [...]
12742     bool EvalResult = false;
12743     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
12744     bool ShouldVisitTrueExpr = !EvalOK || EvalResult;
12745     bool ShouldVisitFalseExpr = !EvalOK || !EvalResult;
12746     if (ShouldVisitTrueExpr) {
12747       Region = TrueRegion;
12748       Visit(CO->getTrueExpr());
12749     }
12750     if (ShouldVisitFalseExpr) {
12751       Region = FalseRegion;
12752       Visit(CO->getFalseExpr());
12753     }
12754 
12755     Region = OldRegion;
12756     Tree.merge(ConditionRegion);
12757     Tree.merge(TrueRegion);
12758     Tree.merge(FalseRegion);
12759   }
12760 
12761   void VisitCallExpr(const CallExpr *CE) {
12762     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
12763 
12764     if (CE->isUnevaluatedBuiltinCall(Context))
12765       return;
12766 
12767     // C++11 [intro.execution]p15:
12768     //   When calling a function [...], every value computation and side effect
12769     //   associated with any argument expression, or with the postfix expression
12770     //   designating the called function, is sequenced before execution of every
12771     //   expression or statement in the body of the function [and thus before
12772     //   the value computation of its result].
12773     SequencedSubexpression Sequenced(*this);
12774     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
12775       // C++17 [expr.call]p5
12776       //   The postfix-expression is sequenced before each expression in the
12777       //   expression-list and any default argument. [...]
12778       SequenceTree::Seq CalleeRegion;
12779       SequenceTree::Seq OtherRegion;
12780       if (SemaRef.getLangOpts().CPlusPlus17) {
12781         CalleeRegion = Tree.allocate(Region);
12782         OtherRegion = Tree.allocate(Region);
12783       } else {
12784         CalleeRegion = Region;
12785         OtherRegion = Region;
12786       }
12787       SequenceTree::Seq OldRegion = Region;
12788 
12789       // Visit the callee expression first.
12790       Region = CalleeRegion;
12791       if (SemaRef.getLangOpts().CPlusPlus17) {
12792         SequencedSubexpression Sequenced(*this);
12793         Visit(CE->getCallee());
12794       } else {
12795         Visit(CE->getCallee());
12796       }
12797 
12798       // Then visit the argument expressions.
12799       Region = OtherRegion;
12800       for (const Expr *Argument : CE->arguments())
12801         Visit(Argument);
12802 
12803       Region = OldRegion;
12804       if (SemaRef.getLangOpts().CPlusPlus17) {
12805         Tree.merge(CalleeRegion);
12806         Tree.merge(OtherRegion);
12807       }
12808     });
12809   }
12810 
12811   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
12812     // C++17 [over.match.oper]p2:
12813     //   [...] the operator notation is first transformed to the equivalent
12814     //   function-call notation as summarized in Table 12 (where @ denotes one
12815     //   of the operators covered in the specified subclause). However, the
12816     //   operands are sequenced in the order prescribed for the built-in
12817     //   operator (Clause 8).
12818     //
12819     // From the above only overloaded binary operators and overloaded call
12820     // operators have sequencing rules in C++17 that we need to handle
12821     // separately.
12822     if (!SemaRef.getLangOpts().CPlusPlus17 ||
12823         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
12824       return VisitCallExpr(CXXOCE);
12825 
12826     enum {
12827       NoSequencing,
12828       LHSBeforeRHS,
12829       RHSBeforeLHS,
12830       LHSBeforeRest
12831     } SequencingKind;
12832     switch (CXXOCE->getOperator()) {
12833     case OO_Equal:
12834     case OO_PlusEqual:
12835     case OO_MinusEqual:
12836     case OO_StarEqual:
12837     case OO_SlashEqual:
12838     case OO_PercentEqual:
12839     case OO_CaretEqual:
12840     case OO_AmpEqual:
12841     case OO_PipeEqual:
12842     case OO_LessLessEqual:
12843     case OO_GreaterGreaterEqual:
12844       SequencingKind = RHSBeforeLHS;
12845       break;
12846 
12847     case OO_LessLess:
12848     case OO_GreaterGreater:
12849     case OO_AmpAmp:
12850     case OO_PipePipe:
12851     case OO_Comma:
12852     case OO_ArrowStar:
12853     case OO_Subscript:
12854       SequencingKind = LHSBeforeRHS;
12855       break;
12856 
12857     case OO_Call:
12858       SequencingKind = LHSBeforeRest;
12859       break;
12860 
12861     default:
12862       SequencingKind = NoSequencing;
12863       break;
12864     }
12865 
12866     if (SequencingKind == NoSequencing)
12867       return VisitCallExpr(CXXOCE);
12868 
12869     // This is a call, so all subexpressions are sequenced before the result.
12870     SequencedSubexpression Sequenced(*this);
12871 
12872     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
12873       assert(SemaRef.getLangOpts().CPlusPlus17 &&
12874              "Should only get there with C++17 and above!");
12875       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
12876              "Should only get there with an overloaded binary operator"
12877              " or an overloaded call operator!");
12878 
12879       if (SequencingKind == LHSBeforeRest) {
12880         assert(CXXOCE->getOperator() == OO_Call &&
12881                "We should only have an overloaded call operator here!");
12882 
12883         // This is very similar to VisitCallExpr, except that we only have the
12884         // C++17 case. The postfix-expression is the first argument of the
12885         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
12886         // are in the following arguments.
12887         //
12888         // Note that we intentionally do not visit the callee expression since
12889         // it is just a decayed reference to a function.
12890         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
12891         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
12892         SequenceTree::Seq OldRegion = Region;
12893 
12894         assert(CXXOCE->getNumArgs() >= 1 &&
12895                "An overloaded call operator must have at least one argument"
12896                " for the postfix-expression!");
12897         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
12898         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
12899                                           CXXOCE->getNumArgs() - 1);
12900 
12901         // Visit the postfix-expression first.
12902         {
12903           Region = PostfixExprRegion;
12904           SequencedSubexpression Sequenced(*this);
12905           Visit(PostfixExpr);
12906         }
12907 
12908         // Then visit the argument expressions.
12909         Region = ArgsRegion;
12910         for (const Expr *Arg : Args)
12911           Visit(Arg);
12912 
12913         Region = OldRegion;
12914         Tree.merge(PostfixExprRegion);
12915         Tree.merge(ArgsRegion);
12916       } else {
12917         assert(CXXOCE->getNumArgs() == 2 &&
12918                "Should only have two arguments here!");
12919         assert((SequencingKind == LHSBeforeRHS ||
12920                 SequencingKind == RHSBeforeLHS) &&
12921                "Unexpected sequencing kind!");
12922 
12923         // We do not visit the callee expression since it is just a decayed
12924         // reference to a function.
12925         const Expr *E1 = CXXOCE->getArg(0);
12926         const Expr *E2 = CXXOCE->getArg(1);
12927         if (SequencingKind == RHSBeforeLHS)
12928           std::swap(E1, E2);
12929 
12930         return VisitSequencedExpressions(E1, E2);
12931       }
12932     });
12933   }
12934 
12935   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
12936     // This is a call, so all subexpressions are sequenced before the result.
12937     SequencedSubexpression Sequenced(*this);
12938 
12939     if (!CCE->isListInitialization())
12940       return VisitExpr(CCE);
12941 
12942     // In C++11, list initializations are sequenced.
12943     SequenceExpressionsInOrder(
12944         llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()));
12945   }
12946 
12947   void VisitInitListExpr(const InitListExpr *ILE) {
12948     if (!SemaRef.getLangOpts().CPlusPlus11)
12949       return VisitExpr(ILE);
12950 
12951     // In C++11, list initializations are sequenced.
12952     SequenceExpressionsInOrder(ILE->inits());
12953   }
12954 
12955   void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) {
12956     // C++20 parenthesized list initializations are sequenced. See C++20
12957     // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2.
12958     SequenceExpressionsInOrder(PLIE->getInitExprs());
12959   }
12960 
12961 private:
12962   void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) {
12963     SmallVector<SequenceTree::Seq, 32> Elts;
12964     SequenceTree::Seq Parent = Region;
12965     for (const Expr *E : ExpressionList) {
12966       if (!E)
12967         continue;
12968       Region = Tree.allocate(Parent);
12969       Elts.push_back(Region);
12970       Visit(E);
12971     }
12972 
12973     // Forget that the initializers are sequenced.
12974     Region = Parent;
12975     for (unsigned I = 0; I < Elts.size(); ++I)
12976       Tree.merge(Elts[I]);
12977   }
12978 };
12979 
12980 SequenceChecker::UsageInfo::UsageInfo() = default;
12981 
12982 } // namespace
12983 
12984 void Sema::CheckUnsequencedOperations(const Expr *E) {
12985   SmallVector<const Expr *, 8> WorkList;
12986   WorkList.push_back(E);
12987   while (!WorkList.empty()) {
12988     const Expr *Item = WorkList.pop_back_val();
12989     SequenceChecker(*this, Item, WorkList);
12990   }
12991 }
12992 
12993 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
12994                               bool IsConstexpr) {
12995   llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride,
12996                                        IsConstexpr || isa<ConstantExpr>(E));
12997   CheckImplicitConversions(E, CheckLoc);
12998   if (!E->isInstantiationDependent())
12999     CheckUnsequencedOperations(E);
13000   if (!IsConstexpr && !E->isValueDependent())
13001     CheckForIntOverflow(E);
13002   DiagnoseMisalignedMembers();
13003 }
13004 
13005 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13006                                        FieldDecl *BitField,
13007                                        Expr *Init) {
13008   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13009 }
13010 
13011 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13012                                          SourceLocation Loc) {
13013   if (!PType->isVariablyModifiedType())
13014     return;
13015   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13016     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13017     return;
13018   }
13019   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13020     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13021     return;
13022   }
13023   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13024     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13025     return;
13026   }
13027 
13028   const ArrayType *AT = S.Context.getAsArrayType(PType);
13029   if (!AT)
13030     return;
13031 
13032   if (AT->getSizeModifier() != ArraySizeModifier::Star) {
13033     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13034     return;
13035   }
13036 
13037   S.Diag(Loc, diag::err_array_star_in_function_definition);
13038 }
13039 
13040 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13041                                     bool CheckParameterNames) {
13042   bool HasInvalidParm = false;
13043   for (ParmVarDecl *Param : Parameters) {
13044     assert(Param && "null in a parameter list");
13045     // C99 6.7.5.3p4: the parameters in a parameter type list in a
13046     // function declarator that is part of a function definition of
13047     // that function shall not have incomplete type.
13048     //
13049     // C++23 [dcl.fct.def.general]/p2
13050     // The type of a parameter [...] for a function definition
13051     // shall not be a (possibly cv-qualified) class type that is incomplete
13052     // or abstract within the function body unless the function is deleted.
13053     if (!Param->isInvalidDecl() &&
13054         (RequireCompleteType(Param->getLocation(), Param->getType(),
13055                              diag::err_typecheck_decl_incomplete_type) ||
13056          RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(),
13057                                 diag::err_abstract_type_in_decl,
13058                                 AbstractParamType))) {
13059       Param->setInvalidDecl();
13060       HasInvalidParm = true;
13061     }
13062 
13063     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13064     // declaration of each parameter shall include an identifier.
13065     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13066         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13067       // Diagnose this as an extension in C17 and earlier.
13068       if (!getLangOpts().C23)
13069         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
13070     }
13071 
13072     // C99 6.7.5.3p12:
13073     //   If the function declarator is not part of a definition of that
13074     //   function, parameters may have incomplete type and may use the [*]
13075     //   notation in their sequences of declarator specifiers to specify
13076     //   variable length array types.
13077     QualType PType = Param->getOriginalType();
13078     // FIXME: This diagnostic should point the '[*]' if source-location
13079     // information is added for it.
13080     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13081 
13082     // If the parameter is a c++ class type and it has to be destructed in the
13083     // callee function, declare the destructor so that it can be called by the
13084     // callee function. Do not perform any direct access check on the dtor here.
13085     if (!Param->isInvalidDecl()) {
13086       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13087         if (!ClassDecl->isInvalidDecl() &&
13088             !ClassDecl->hasIrrelevantDestructor() &&
13089             !ClassDecl->isDependentContext() &&
13090             ClassDecl->isParamDestroyedInCallee()) {
13091           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13092           MarkFunctionReferenced(Param->getLocation(), Destructor);
13093           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13094         }
13095       }
13096     }
13097 
13098     // Parameters with the pass_object_size attribute only need to be marked
13099     // constant at function definitions. Because we lack information about
13100     // whether we're on a declaration or definition when we're instantiating the
13101     // attribute, we need to check for constness here.
13102     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13103       if (!Param->getType().isConstQualified())
13104         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13105             << Attr->getSpelling() << 1;
13106 
13107     // Check for parameter names shadowing fields from the class.
13108     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13109       // The owning context for the parameter should be the function, but we
13110       // want to see if this function's declaration context is a record.
13111       DeclContext *DC = Param->getDeclContext();
13112       if (DC && DC->isFunctionOrMethod()) {
13113         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13114           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13115                                      RD, /*DeclIsField*/ false);
13116       }
13117     }
13118 
13119     if (!Param->isInvalidDecl() &&
13120         Param->getOriginalType()->isWebAssemblyTableType()) {
13121       Param->setInvalidDecl();
13122       HasInvalidParm = true;
13123       Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter);
13124     }
13125   }
13126 
13127   return HasInvalidParm;
13128 }
13129 
13130 std::optional<std::pair<
13131     CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
13132                                                                        *E,
13133                                                                    ASTContext
13134                                                                        &Ctx);
13135 
13136 /// Compute the alignment and offset of the base class object given the
13137 /// derived-to-base cast expression and the alignment and offset of the derived
13138 /// class object.
13139 static std::pair<CharUnits, CharUnits>
13140 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13141                                    CharUnits BaseAlignment, CharUnits Offset,
13142                                    ASTContext &Ctx) {
13143   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13144        ++PathI) {
13145     const CXXBaseSpecifier *Base = *PathI;
13146     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13147     if (Base->isVirtual()) {
13148       // The complete object may have a lower alignment than the non-virtual
13149       // alignment of the base, in which case the base may be misaligned. Choose
13150       // the smaller of the non-virtual alignment and BaseAlignment, which is a
13151       // conservative lower bound of the complete object alignment.
13152       CharUnits NonVirtualAlignment =
13153           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13154       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13155       Offset = CharUnits::Zero();
13156     } else {
13157       const ASTRecordLayout &RL =
13158           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13159       Offset += RL.getBaseClassOffset(BaseDecl);
13160     }
13161     DerivedType = Base->getType();
13162   }
13163 
13164   return std::make_pair(BaseAlignment, Offset);
13165 }
13166 
13167 /// Compute the alignment and offset of a binary additive operator.
13168 static std::optional<std::pair<CharUnits, CharUnits>>
13169 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13170                                      bool IsSub, ASTContext &Ctx) {
13171   QualType PointeeType = PtrE->getType()->getPointeeType();
13172 
13173   if (!PointeeType->isConstantSizeType())
13174     return std::nullopt;
13175 
13176   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13177 
13178   if (!P)
13179     return std::nullopt;
13180 
13181   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13182   if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13183     CharUnits Offset = EltSize * IdxRes->getExtValue();
13184     if (IsSub)
13185       Offset = -Offset;
13186     return std::make_pair(P->first, P->second + Offset);
13187   }
13188 
13189   // If the integer expression isn't a constant expression, compute the lower
13190   // bound of the alignment using the alignment and offset of the pointer
13191   // expression and the element size.
13192   return std::make_pair(
13193       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13194       CharUnits::Zero());
13195 }
13196 
13197 /// This helper function takes an lvalue expression and returns the alignment of
13198 /// a VarDecl and a constant offset from the VarDecl.
13199 std::optional<std::pair<
13200     CharUnits,
13201     CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E,
13202                                                            ASTContext &Ctx) {
13203   E = E->IgnoreParens();
13204   switch (E->getStmtClass()) {
13205   default:
13206     break;
13207   case Stmt::CStyleCastExprClass:
13208   case Stmt::CXXStaticCastExprClass:
13209   case Stmt::ImplicitCastExprClass: {
13210     auto *CE = cast<CastExpr>(E);
13211     const Expr *From = CE->getSubExpr();
13212     switch (CE->getCastKind()) {
13213     default:
13214       break;
13215     case CK_NoOp:
13216       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13217     case CK_UncheckedDerivedToBase:
13218     case CK_DerivedToBase: {
13219       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13220       if (!P)
13221         break;
13222       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
13223                                                 P->second, Ctx);
13224     }
13225     }
13226     break;
13227   }
13228   case Stmt::ArraySubscriptExprClass: {
13229     auto *ASE = cast<ArraySubscriptExpr>(E);
13230     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
13231                                                 false, Ctx);
13232   }
13233   case Stmt::DeclRefExprClass: {
13234     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
13235       // FIXME: If VD is captured by copy or is an escaping __block variable,
13236       // use the alignment of VD's type.
13237       if (!VD->getType()->isReferenceType()) {
13238         // Dependent alignment cannot be resolved -> bail out.
13239         if (VD->hasDependentAlignment())
13240           break;
13241         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
13242       }
13243       if (VD->hasInit())
13244         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
13245     }
13246     break;
13247   }
13248   case Stmt::MemberExprClass: {
13249     auto *ME = cast<MemberExpr>(E);
13250     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
13251     if (!FD || FD->getType()->isReferenceType() ||
13252         FD->getParent()->isInvalidDecl())
13253       break;
13254     std::optional<std::pair<CharUnits, CharUnits>> P;
13255     if (ME->isArrow())
13256       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
13257     else
13258       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
13259     if (!P)
13260       break;
13261     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
13262     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
13263     return std::make_pair(P->first,
13264                           P->second + CharUnits::fromQuantity(Offset));
13265   }
13266   case Stmt::UnaryOperatorClass: {
13267     auto *UO = cast<UnaryOperator>(E);
13268     switch (UO->getOpcode()) {
13269     default:
13270       break;
13271     case UO_Deref:
13272       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
13273     }
13274     break;
13275   }
13276   case Stmt::BinaryOperatorClass: {
13277     auto *BO = cast<BinaryOperator>(E);
13278     auto Opcode = BO->getOpcode();
13279     switch (Opcode) {
13280     default:
13281       break;
13282     case BO_Comma:
13283       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
13284     }
13285     break;
13286   }
13287   }
13288   return std::nullopt;
13289 }
13290 
13291 /// This helper function takes a pointer expression and returns the alignment of
13292 /// a VarDecl and a constant offset from the VarDecl.
13293 std::optional<std::pair<
13294     CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
13295                                                                        *E,
13296                                                                    ASTContext
13297                                                                        &Ctx) {
13298   E = E->IgnoreParens();
13299   switch (E->getStmtClass()) {
13300   default:
13301     break;
13302   case Stmt::CStyleCastExprClass:
13303   case Stmt::CXXStaticCastExprClass:
13304   case Stmt::ImplicitCastExprClass: {
13305     auto *CE = cast<CastExpr>(E);
13306     const Expr *From = CE->getSubExpr();
13307     switch (CE->getCastKind()) {
13308     default:
13309       break;
13310     case CK_NoOp:
13311       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
13312     case CK_ArrayToPointerDecay:
13313       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
13314     case CK_UncheckedDerivedToBase:
13315     case CK_DerivedToBase: {
13316       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
13317       if (!P)
13318         break;
13319       return getDerivedToBaseAlignmentAndOffset(
13320           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
13321     }
13322     }
13323     break;
13324   }
13325   case Stmt::CXXThisExprClass: {
13326     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
13327     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
13328     return std::make_pair(Alignment, CharUnits::Zero());
13329   }
13330   case Stmt::UnaryOperatorClass: {
13331     auto *UO = cast<UnaryOperator>(E);
13332     if (UO->getOpcode() == UO_AddrOf)
13333       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
13334     break;
13335   }
13336   case Stmt::BinaryOperatorClass: {
13337     auto *BO = cast<BinaryOperator>(E);
13338     auto Opcode = BO->getOpcode();
13339     switch (Opcode) {
13340     default:
13341       break;
13342     case BO_Add:
13343     case BO_Sub: {
13344       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
13345       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
13346         std::swap(LHS, RHS);
13347       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
13348                                                   Ctx);
13349     }
13350     case BO_Comma:
13351       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
13352     }
13353     break;
13354   }
13355   }
13356   return std::nullopt;
13357 }
13358 
13359 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
13360   // See if we can compute the alignment of a VarDecl and an offset from it.
13361   std::optional<std::pair<CharUnits, CharUnits>> P =
13362       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
13363 
13364   if (P)
13365     return P->first.alignmentAtOffset(P->second);
13366 
13367   // If that failed, return the type's alignment.
13368   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
13369 }
13370 
13371 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
13372   // This is actually a lot of work to potentially be doing on every
13373   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
13374   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
13375     return;
13376 
13377   // Ignore dependent types.
13378   if (T->isDependentType() || Op->getType()->isDependentType())
13379     return;
13380 
13381   // Require that the destination be a pointer type.
13382   const PointerType *DestPtr = T->getAs<PointerType>();
13383   if (!DestPtr) return;
13384 
13385   // If the destination has alignment 1, we're done.
13386   QualType DestPointee = DestPtr->getPointeeType();
13387   if (DestPointee->isIncompleteType()) return;
13388   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
13389   if (DestAlign.isOne()) return;
13390 
13391   // Require that the source be a pointer type.
13392   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
13393   if (!SrcPtr) return;
13394   QualType SrcPointee = SrcPtr->getPointeeType();
13395 
13396   // Explicitly allow casts from cv void*.  We already implicitly
13397   // allowed casts to cv void*, since they have alignment 1.
13398   // Also allow casts involving incomplete types, which implicitly
13399   // includes 'void'.
13400   if (SrcPointee->isIncompleteType()) return;
13401 
13402   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
13403 
13404   if (SrcAlign >= DestAlign) return;
13405 
13406   Diag(TRange.getBegin(), diag::warn_cast_align)
13407     << Op->getType() << T
13408     << static_cast<unsigned>(SrcAlign.getQuantity())
13409     << static_cast<unsigned>(DestAlign.getQuantity())
13410     << TRange << Op->getSourceRange();
13411 }
13412 
13413 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
13414                             const ArraySubscriptExpr *ASE,
13415                             bool AllowOnePastEnd, bool IndexNegated) {
13416   // Already diagnosed by the constant evaluator.
13417   if (isConstantEvaluatedContext())
13418     return;
13419 
13420   IndexExpr = IndexExpr->IgnoreParenImpCasts();
13421   if (IndexExpr->isValueDependent())
13422     return;
13423 
13424   const Type *EffectiveType =
13425       BaseExpr->getType()->getPointeeOrArrayElementType();
13426   BaseExpr = BaseExpr->IgnoreParenCasts();
13427   const ConstantArrayType *ArrayTy =
13428       Context.getAsConstantArrayType(BaseExpr->getType());
13429 
13430   LangOptions::StrictFlexArraysLevelKind
13431     StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel();
13432 
13433   const Type *BaseType =
13434       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
13435   bool IsUnboundedArray =
13436       BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike(
13437                                  Context, StrictFlexArraysLevel,
13438                                  /*IgnoreTemplateOrMacroSubstitution=*/true);
13439   if (EffectiveType->isDependentType() ||
13440       (!IsUnboundedArray && BaseType->isDependentType()))
13441     return;
13442 
13443   Expr::EvalResult Result;
13444   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
13445     return;
13446 
13447   llvm::APSInt index = Result.Val.getInt();
13448   if (IndexNegated) {
13449     index.setIsUnsigned(false);
13450     index = -index;
13451   }
13452 
13453   if (IsUnboundedArray) {
13454     if (EffectiveType->isFunctionType())
13455       return;
13456     if (index.isUnsigned() || !index.isNegative()) {
13457       const auto &ASTC = getASTContext();
13458       unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth(
13459           EffectiveType->getCanonicalTypeInternal().getAddressSpace());
13460       if (index.getBitWidth() < AddrBits)
13461         index = index.zext(AddrBits);
13462       std::optional<CharUnits> ElemCharUnits =
13463           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
13464       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
13465       // pointer) bounds-checking isn't meaningful.
13466       if (!ElemCharUnits || ElemCharUnits->isZero())
13467         return;
13468       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
13469       // If index has more active bits than address space, we already know
13470       // we have a bounds violation to warn about.  Otherwise, compute
13471       // address of (index + 1)th element, and warn about bounds violation
13472       // only if that address exceeds address space.
13473       if (index.getActiveBits() <= AddrBits) {
13474         bool Overflow;
13475         llvm::APInt Product(index);
13476         Product += 1;
13477         Product = Product.umul_ov(ElemBytes, Overflow);
13478         if (!Overflow && Product.getActiveBits() <= AddrBits)
13479           return;
13480       }
13481 
13482       // Need to compute max possible elements in address space, since that
13483       // is included in diag message.
13484       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
13485       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
13486       MaxElems += 1;
13487       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
13488       MaxElems = MaxElems.udiv(ElemBytes);
13489 
13490       unsigned DiagID =
13491           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
13492               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
13493 
13494       // Diag message shows element size in bits and in "bytes" (platform-
13495       // dependent CharUnits)
13496       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13497                           PDiag(DiagID)
13498                               << toString(index, 10, true) << AddrBits
13499                               << (unsigned)ASTC.toBits(*ElemCharUnits)
13500                               << toString(ElemBytes, 10, false)
13501                               << toString(MaxElems, 10, false)
13502                               << (unsigned)MaxElems.getLimitedValue(~0U)
13503                               << IndexExpr->getSourceRange());
13504 
13505       const NamedDecl *ND = nullptr;
13506       // Try harder to find a NamedDecl to point at in the note.
13507       while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
13508         BaseExpr = ASE->getBase()->IgnoreParenCasts();
13509       if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13510         ND = DRE->getDecl();
13511       if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
13512         ND = ME->getMemberDecl();
13513 
13514       if (ND)
13515         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13516                             PDiag(diag::note_array_declared_here) << ND);
13517     }
13518     return;
13519   }
13520 
13521   if (index.isUnsigned() || !index.isNegative()) {
13522     // It is possible that the type of the base expression after
13523     // IgnoreParenCasts is incomplete, even though the type of the base
13524     // expression before IgnoreParenCasts is complete (see PR39746 for an
13525     // example). In this case we have no information about whether the array
13526     // access exceeds the array bounds. However we can still diagnose an array
13527     // access which precedes the array bounds.
13528     if (BaseType->isIncompleteType())
13529       return;
13530 
13531     llvm::APInt size = ArrayTy->getSize();
13532 
13533     if (BaseType != EffectiveType) {
13534       // Make sure we're comparing apples to apples when comparing index to
13535       // size.
13536       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
13537       uint64_t array_typesize = Context.getTypeSize(BaseType);
13538 
13539       // Handle ptrarith_typesize being zero, such as when casting to void*.
13540       // Use the size in bits (what "getTypeSize()" returns) rather than bytes.
13541       if (!ptrarith_typesize)
13542         ptrarith_typesize = Context.getCharWidth();
13543 
13544       if (ptrarith_typesize != array_typesize) {
13545         // There's a cast to a different size type involved.
13546         uint64_t ratio = array_typesize / ptrarith_typesize;
13547 
13548         // TODO: Be smarter about handling cases where array_typesize is not a
13549         // multiple of ptrarith_typesize.
13550         if (ptrarith_typesize * ratio == array_typesize)
13551           size *= llvm::APInt(size.getBitWidth(), ratio);
13552       }
13553     }
13554 
13555     if (size.getBitWidth() > index.getBitWidth())
13556       index = index.zext(size.getBitWidth());
13557     else if (size.getBitWidth() < index.getBitWidth())
13558       size = size.zext(index.getBitWidth());
13559 
13560     // For array subscripting the index must be less than size, but for pointer
13561     // arithmetic also allow the index (offset) to be equal to size since
13562     // computing the next address after the end of the array is legal and
13563     // commonly done e.g. in C++ iterators and range-based for loops.
13564     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
13565       return;
13566 
13567     // Suppress the warning if the subscript expression (as identified by the
13568     // ']' location) and the index expression are both from macro expansions
13569     // within a system header.
13570     if (ASE) {
13571       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
13572           ASE->getRBracketLoc());
13573       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
13574         SourceLocation IndexLoc =
13575             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
13576         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
13577           return;
13578       }
13579     }
13580 
13581     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
13582                           : diag::warn_ptr_arith_exceeds_bounds;
13583     unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1;
13584     QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType();
13585 
13586     DiagRuntimeBehavior(
13587         BaseExpr->getBeginLoc(), BaseExpr,
13588         PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar()
13589                       << CastMsg << CastMsgTy << IndexExpr->getSourceRange());
13590   } else {
13591     unsigned DiagID = diag::warn_array_index_precedes_bounds;
13592     if (!ASE) {
13593       DiagID = diag::warn_ptr_arith_precedes_bounds;
13594       if (index.isNegative()) index = -index;
13595     }
13596 
13597     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
13598                         PDiag(DiagID) << toString(index, 10, true)
13599                                       << IndexExpr->getSourceRange());
13600   }
13601 
13602   const NamedDecl *ND = nullptr;
13603   // Try harder to find a NamedDecl to point at in the note.
13604   while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
13605     BaseExpr = ASE->getBase()->IgnoreParenCasts();
13606   if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
13607     ND = DRE->getDecl();
13608   if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
13609     ND = ME->getMemberDecl();
13610 
13611   if (ND)
13612     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
13613                         PDiag(diag::note_array_declared_here) << ND);
13614 }
13615 
13616 void Sema::CheckArrayAccess(const Expr *expr) {
13617   int AllowOnePastEnd = 0;
13618   while (expr) {
13619     expr = expr->IgnoreParenImpCasts();
13620     switch (expr->getStmtClass()) {
13621       case Stmt::ArraySubscriptExprClass: {
13622         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
13623         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
13624                          AllowOnePastEnd > 0);
13625         expr = ASE->getBase();
13626         break;
13627       }
13628       case Stmt::MemberExprClass: {
13629         expr = cast<MemberExpr>(expr)->getBase();
13630         break;
13631       }
13632       case Stmt::ArraySectionExprClass: {
13633         const ArraySectionExpr *ASE = cast<ArraySectionExpr>(expr);
13634         // FIXME: We should probably be checking all of the elements to the
13635         // 'length' here as well.
13636         if (ASE->getLowerBound())
13637           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
13638                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
13639         return;
13640       }
13641       case Stmt::UnaryOperatorClass: {
13642         // Only unwrap the * and & unary operators
13643         const UnaryOperator *UO = cast<UnaryOperator>(expr);
13644         expr = UO->getSubExpr();
13645         switch (UO->getOpcode()) {
13646           case UO_AddrOf:
13647             AllowOnePastEnd++;
13648             break;
13649           case UO_Deref:
13650             AllowOnePastEnd--;
13651             break;
13652           default:
13653             return;
13654         }
13655         break;
13656       }
13657       case Stmt::ConditionalOperatorClass: {
13658         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
13659         if (const Expr *lhs = cond->getLHS())
13660           CheckArrayAccess(lhs);
13661         if (const Expr *rhs = cond->getRHS())
13662           CheckArrayAccess(rhs);
13663         return;
13664       }
13665       case Stmt::CXXOperatorCallExprClass: {
13666         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
13667         for (const auto *Arg : OCE->arguments())
13668           CheckArrayAccess(Arg);
13669         return;
13670       }
13671       default:
13672         return;
13673     }
13674   }
13675 }
13676 
13677 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
13678                                      Expr *RHS, bool isProperty) {
13679   // Check if RHS is an Objective-C object literal, which also can get
13680   // immediately zapped in a weak reference.  Note that we explicitly
13681   // allow ObjCStringLiterals, since those are designed to never really die.
13682   RHS = RHS->IgnoreParenImpCasts();
13683 
13684   // This enum needs to match with the 'select' in
13685   // warn_objc_arc_literal_assign (off-by-1).
13686   SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(RHS);
13687   if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None)
13688     return false;
13689 
13690   S.Diag(Loc, diag::warn_arc_literal_assign)
13691     << (unsigned) Kind
13692     << (isProperty ? 0 : 1)
13693     << RHS->getSourceRange();
13694 
13695   return true;
13696 }
13697 
13698 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
13699                                     Qualifiers::ObjCLifetime LT,
13700                                     Expr *RHS, bool isProperty) {
13701   // Strip off any implicit cast added to get to the one ARC-specific.
13702   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13703     if (cast->getCastKind() == CK_ARCConsumeObject) {
13704       S.Diag(Loc, diag::warn_arc_retained_assign)
13705         << (LT == Qualifiers::OCL_ExplicitNone)
13706         << (isProperty ? 0 : 1)
13707         << RHS->getSourceRange();
13708       return true;
13709     }
13710     RHS = cast->getSubExpr();
13711   }
13712 
13713   if (LT == Qualifiers::OCL_Weak &&
13714       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
13715     return true;
13716 
13717   return false;
13718 }
13719 
13720 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
13721                               QualType LHS, Expr *RHS) {
13722   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
13723 
13724   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
13725     return false;
13726 
13727   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
13728     return true;
13729 
13730   return false;
13731 }
13732 
13733 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
13734                               Expr *LHS, Expr *RHS) {
13735   QualType LHSType;
13736   // PropertyRef on LHS type need be directly obtained from
13737   // its declaration as it has a PseudoType.
13738   ObjCPropertyRefExpr *PRE
13739     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
13740   if (PRE && !PRE->isImplicitProperty()) {
13741     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13742     if (PD)
13743       LHSType = PD->getType();
13744   }
13745 
13746   if (LHSType.isNull())
13747     LHSType = LHS->getType();
13748 
13749   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
13750 
13751   if (LT == Qualifiers::OCL_Weak) {
13752     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
13753       getCurFunction()->markSafeWeakUse(LHS);
13754   }
13755 
13756   if (checkUnsafeAssigns(Loc, LHSType, RHS))
13757     return;
13758 
13759   // FIXME. Check for other life times.
13760   if (LT != Qualifiers::OCL_None)
13761     return;
13762 
13763   if (PRE) {
13764     if (PRE->isImplicitProperty())
13765       return;
13766     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
13767     if (!PD)
13768       return;
13769 
13770     unsigned Attributes = PD->getPropertyAttributes();
13771     if (Attributes & ObjCPropertyAttribute::kind_assign) {
13772       // when 'assign' attribute was not explicitly specified
13773       // by user, ignore it and rely on property type itself
13774       // for lifetime info.
13775       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
13776       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
13777           LHSType->isObjCRetainableType())
13778         return;
13779 
13780       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
13781         if (cast->getCastKind() == CK_ARCConsumeObject) {
13782           Diag(Loc, diag::warn_arc_retained_property_assign)
13783           << RHS->getSourceRange();
13784           return;
13785         }
13786         RHS = cast->getSubExpr();
13787       }
13788     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
13789       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
13790         return;
13791     }
13792   }
13793 }
13794 
13795 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
13796 
13797 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
13798                                         SourceLocation StmtLoc,
13799                                         const NullStmt *Body) {
13800   // Do not warn if the body is a macro that expands to nothing, e.g:
13801   //
13802   // #define CALL(x)
13803   // if (condition)
13804   //   CALL(0);
13805   if (Body->hasLeadingEmptyMacro())
13806     return false;
13807 
13808   // Get line numbers of statement and body.
13809   bool StmtLineInvalid;
13810   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
13811                                                       &StmtLineInvalid);
13812   if (StmtLineInvalid)
13813     return false;
13814 
13815   bool BodyLineInvalid;
13816   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
13817                                                       &BodyLineInvalid);
13818   if (BodyLineInvalid)
13819     return false;
13820 
13821   // Warn if null statement and body are on the same line.
13822   if (StmtLine != BodyLine)
13823     return false;
13824 
13825   return true;
13826 }
13827 
13828 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
13829                                  const Stmt *Body,
13830                                  unsigned DiagID) {
13831   // Since this is a syntactic check, don't emit diagnostic for template
13832   // instantiations, this just adds noise.
13833   if (CurrentInstantiationScope)
13834     return;
13835 
13836   // The body should be a null statement.
13837   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13838   if (!NBody)
13839     return;
13840 
13841   // Do the usual checks.
13842   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13843     return;
13844 
13845   Diag(NBody->getSemiLoc(), DiagID);
13846   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13847 }
13848 
13849 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
13850                                  const Stmt *PossibleBody) {
13851   assert(!CurrentInstantiationScope); // Ensured by caller
13852 
13853   SourceLocation StmtLoc;
13854   const Stmt *Body;
13855   unsigned DiagID;
13856   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
13857     StmtLoc = FS->getRParenLoc();
13858     Body = FS->getBody();
13859     DiagID = diag::warn_empty_for_body;
13860   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
13861     StmtLoc = WS->getRParenLoc();
13862     Body = WS->getBody();
13863     DiagID = diag::warn_empty_while_body;
13864   } else
13865     return; // Neither `for' nor `while'.
13866 
13867   // The body should be a null statement.
13868   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
13869   if (!NBody)
13870     return;
13871 
13872   // Skip expensive checks if diagnostic is disabled.
13873   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
13874     return;
13875 
13876   // Do the usual checks.
13877   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
13878     return;
13879 
13880   // `for(...);' and `while(...);' are popular idioms, so in order to keep
13881   // noise level low, emit diagnostics only if for/while is followed by a
13882   // CompoundStmt, e.g.:
13883   //    for (int i = 0; i < n; i++);
13884   //    {
13885   //      a(i);
13886   //    }
13887   // or if for/while is followed by a statement with more indentation
13888   // than for/while itself:
13889   //    for (int i = 0; i < n; i++);
13890   //      a(i);
13891   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
13892   if (!ProbableTypo) {
13893     bool BodyColInvalid;
13894     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
13895         PossibleBody->getBeginLoc(), &BodyColInvalid);
13896     if (BodyColInvalid)
13897       return;
13898 
13899     bool StmtColInvalid;
13900     unsigned StmtCol =
13901         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
13902     if (StmtColInvalid)
13903       return;
13904 
13905     if (BodyCol > StmtCol)
13906       ProbableTypo = true;
13907   }
13908 
13909   if (ProbableTypo) {
13910     Diag(NBody->getSemiLoc(), DiagID);
13911     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
13912   }
13913 }
13914 
13915 //===--- CHECK: Warn on self move with std::move. -------------------------===//
13916 
13917 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
13918                              SourceLocation OpLoc) {
13919   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
13920     return;
13921 
13922   if (inTemplateInstantiation())
13923     return;
13924 
13925   // Strip parens and casts away.
13926   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13927   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13928 
13929   // Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue
13930   // which we can treat as an inlined std::move
13931   if (const auto *CE = dyn_cast<CallExpr>(RHSExpr);
13932       CE && CE->getNumArgs() == 1 && CE->isCallToStdMove())
13933     RHSExpr = CE->getArg(0);
13934   else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(RHSExpr);
13935            CXXSCE && CXXSCE->isXValue())
13936     RHSExpr = CXXSCE->getSubExpr();
13937   else
13938     return;
13939 
13940   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13941   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13942 
13943   // Two DeclRefExpr's, check that the decls are the same.
13944   if (LHSDeclRef && RHSDeclRef) {
13945     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13946       return;
13947     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13948         RHSDeclRef->getDecl()->getCanonicalDecl())
13949       return;
13950 
13951     auto D = Diag(OpLoc, diag::warn_self_move)
13952              << LHSExpr->getType() << LHSExpr->getSourceRange()
13953              << RHSExpr->getSourceRange();
13954     if (const FieldDecl *F =
13955             getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
13956       D << 1 << F
13957         << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
13958     else
13959       D << 0;
13960     return;
13961   }
13962 
13963   // Member variables require a different approach to check for self moves.
13964   // MemberExpr's are the same if every nested MemberExpr refers to the same
13965   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
13966   // the base Expr's are CXXThisExpr's.
13967   const Expr *LHSBase = LHSExpr;
13968   const Expr *RHSBase = RHSExpr;
13969   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
13970   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
13971   if (!LHSME || !RHSME)
13972     return;
13973 
13974   while (LHSME && RHSME) {
13975     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
13976         RHSME->getMemberDecl()->getCanonicalDecl())
13977       return;
13978 
13979     LHSBase = LHSME->getBase();
13980     RHSBase = RHSME->getBase();
13981     LHSME = dyn_cast<MemberExpr>(LHSBase);
13982     RHSME = dyn_cast<MemberExpr>(RHSBase);
13983   }
13984 
13985   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
13986   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
13987   if (LHSDeclRef && RHSDeclRef) {
13988     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
13989       return;
13990     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
13991         RHSDeclRef->getDecl()->getCanonicalDecl())
13992       return;
13993 
13994     Diag(OpLoc, diag::warn_self_move)
13995         << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
13996         << RHSExpr->getSourceRange();
13997     return;
13998   }
13999 
14000   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
14001     Diag(OpLoc, diag::warn_self_move)
14002         << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
14003         << RHSExpr->getSourceRange();
14004 }
14005 
14006 //===--- Layout compatibility ----------------------------------------------//
14007 
14008 static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2);
14009 
14010 /// Check if two enumeration types are layout-compatible.
14011 static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1,
14012                                const EnumDecl *ED2) {
14013   // C++11 [dcl.enum] p8:
14014   // Two enumeration types are layout-compatible if they have the same
14015   // underlying type.
14016   return ED1->isComplete() && ED2->isComplete() &&
14017          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
14018 }
14019 
14020 /// Check if two fields are layout-compatible.
14021 /// Can be used on union members, which are exempt from alignment requirement
14022 /// of common initial sequence.
14023 static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1,
14024                                const FieldDecl *Field2,
14025                                bool AreUnionMembers = false) {
14026   [[maybe_unused]] const Type *Field1Parent =
14027       Field1->getParent()->getTypeForDecl();
14028   [[maybe_unused]] const Type *Field2Parent =
14029       Field2->getParent()->getTypeForDecl();
14030   assert(((Field1Parent->isStructureOrClassType() &&
14031            Field2Parent->isStructureOrClassType()) ||
14032           (Field1Parent->isUnionType() && Field2Parent->isUnionType())) &&
14033          "Can't evaluate layout compatibility between a struct field and a "
14034          "union field.");
14035   assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) ||
14036           (AreUnionMembers && Field1Parent->isUnionType())) &&
14037          "AreUnionMembers should be 'true' for union fields (only).");
14038 
14039   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
14040     return false;
14041 
14042   if (Field1->isBitField() != Field2->isBitField())
14043     return false;
14044 
14045   if (Field1->isBitField()) {
14046     // Make sure that the bit-fields are the same length.
14047     unsigned Bits1 = Field1->getBitWidthValue(C);
14048     unsigned Bits2 = Field2->getBitWidthValue(C);
14049 
14050     if (Bits1 != Bits2)
14051       return false;
14052   }
14053 
14054   if (Field1->hasAttr<clang::NoUniqueAddressAttr>() ||
14055       Field2->hasAttr<clang::NoUniqueAddressAttr>())
14056     return false;
14057 
14058   if (!AreUnionMembers &&
14059       Field1->getMaxAlignment() != Field2->getMaxAlignment())
14060     return false;
14061 
14062   return true;
14063 }
14064 
14065 /// Check if two standard-layout structs are layout-compatible.
14066 /// (C++11 [class.mem] p17)
14067 static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1,
14068                                      const RecordDecl *RD2) {
14069   // Get to the class where the fields are declared
14070   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1))
14071     RD1 = D1CXX->getStandardLayoutBaseWithFields();
14072 
14073   if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2))
14074     RD2 = D2CXX->getStandardLayoutBaseWithFields();
14075 
14076   // Check the fields.
14077   return llvm::equal(RD1->fields(), RD2->fields(),
14078                      [&C](const FieldDecl *F1, const FieldDecl *F2) -> bool {
14079                        return isLayoutCompatible(C, F1, F2);
14080                      });
14081 }
14082 
14083 /// Check if two standard-layout unions are layout-compatible.
14084 /// (C++11 [class.mem] p18)
14085 static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1,
14086                                     const RecordDecl *RD2) {
14087   llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields;
14088   for (auto *Field2 : RD2->fields())
14089     UnmatchedFields.insert(Field2);
14090 
14091   for (auto *Field1 : RD1->fields()) {
14092     auto I = UnmatchedFields.begin();
14093     auto E = UnmatchedFields.end();
14094 
14095     for ( ; I != E; ++I) {
14096       if (isLayoutCompatible(C, Field1, *I, /*IsUnionMember=*/true)) {
14097         bool Result = UnmatchedFields.erase(*I);
14098         (void) Result;
14099         assert(Result);
14100         break;
14101       }
14102     }
14103     if (I == E)
14104       return false;
14105   }
14106 
14107   return UnmatchedFields.empty();
14108 }
14109 
14110 static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1,
14111                                const RecordDecl *RD2) {
14112   if (RD1->isUnion() != RD2->isUnion())
14113     return false;
14114 
14115   if (RD1->isUnion())
14116     return isLayoutCompatibleUnion(C, RD1, RD2);
14117   else
14118     return isLayoutCompatibleStruct(C, RD1, RD2);
14119 }
14120 
14121 /// Check if two types are layout-compatible in C++11 sense.
14122 static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) {
14123   if (T1.isNull() || T2.isNull())
14124     return false;
14125 
14126   // C++20 [basic.types] p11:
14127   // Two types cv1 T1 and cv2 T2 are layout-compatible types
14128   // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1),
14129   // or layout-compatible standard-layout class types (11.4).
14130   T1 = T1.getCanonicalType().getUnqualifiedType();
14131   T2 = T2.getCanonicalType().getUnqualifiedType();
14132 
14133   if (C.hasSameType(T1, T2))
14134     return true;
14135 
14136   const Type::TypeClass TC1 = T1->getTypeClass();
14137   const Type::TypeClass TC2 = T2->getTypeClass();
14138 
14139   if (TC1 != TC2)
14140     return false;
14141 
14142   if (TC1 == Type::Enum) {
14143     return isLayoutCompatible(C,
14144                               cast<EnumType>(T1)->getDecl(),
14145                               cast<EnumType>(T2)->getDecl());
14146   } else if (TC1 == Type::Record) {
14147     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
14148       return false;
14149 
14150     return isLayoutCompatible(C,
14151                               cast<RecordType>(T1)->getDecl(),
14152                               cast<RecordType>(T2)->getDecl());
14153   }
14154 
14155   return false;
14156 }
14157 
14158 bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const {
14159   return isLayoutCompatible(getASTContext(), T1, T2);
14160 }
14161 
14162 //===-------------- Pointer interconvertibility ----------------------------//
14163 
14164 bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
14165                                            const TypeSourceInfo *Derived) {
14166   QualType BaseT = Base->getType()->getCanonicalTypeUnqualified();
14167   QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified();
14168 
14169   if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() &&
14170       getASTContext().hasSameType(BaseT, DerivedT))
14171     return true;
14172 
14173   if (!IsDerivedFrom(Derived->getTypeLoc().getBeginLoc(), DerivedT, BaseT))
14174     return false;
14175 
14176   // Per [basic.compound]/4.3, containing object has to be standard-layout.
14177   if (DerivedT->getAsCXXRecordDecl()->isStandardLayout())
14178     return true;
14179 
14180   return false;
14181 }
14182 
14183 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
14184 
14185 /// Given a type tag expression find the type tag itself.
14186 ///
14187 /// \param TypeExpr Type tag expression, as it appears in user's code.
14188 ///
14189 /// \param VD Declaration of an identifier that appears in a type tag.
14190 ///
14191 /// \param MagicValue Type tag magic value.
14192 ///
14193 /// \param isConstantEvaluated whether the evalaution should be performed in
14194 
14195 /// constant context.
14196 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
14197                             const ValueDecl **VD, uint64_t *MagicValue,
14198                             bool isConstantEvaluated) {
14199   while(true) {
14200     if (!TypeExpr)
14201       return false;
14202 
14203     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
14204 
14205     switch (TypeExpr->getStmtClass()) {
14206     case Stmt::UnaryOperatorClass: {
14207       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
14208       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
14209         TypeExpr = UO->getSubExpr();
14210         continue;
14211       }
14212       return false;
14213     }
14214 
14215     case Stmt::DeclRefExprClass: {
14216       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
14217       *VD = DRE->getDecl();
14218       return true;
14219     }
14220 
14221     case Stmt::IntegerLiteralClass: {
14222       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
14223       llvm::APInt MagicValueAPInt = IL->getValue();
14224       if (MagicValueAPInt.getActiveBits() <= 64) {
14225         *MagicValue = MagicValueAPInt.getZExtValue();
14226         return true;
14227       } else
14228         return false;
14229     }
14230 
14231     case Stmt::BinaryConditionalOperatorClass:
14232     case Stmt::ConditionalOperatorClass: {
14233       const AbstractConditionalOperator *ACO =
14234           cast<AbstractConditionalOperator>(TypeExpr);
14235       bool Result;
14236       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
14237                                                      isConstantEvaluated)) {
14238         if (Result)
14239           TypeExpr = ACO->getTrueExpr();
14240         else
14241           TypeExpr = ACO->getFalseExpr();
14242         continue;
14243       }
14244       return false;
14245     }
14246 
14247     case Stmt::BinaryOperatorClass: {
14248       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
14249       if (BO->getOpcode() == BO_Comma) {
14250         TypeExpr = BO->getRHS();
14251         continue;
14252       }
14253       return false;
14254     }
14255 
14256     default:
14257       return false;
14258     }
14259   }
14260 }
14261 
14262 /// Retrieve the C type corresponding to type tag TypeExpr.
14263 ///
14264 /// \param TypeExpr Expression that specifies a type tag.
14265 ///
14266 /// \param MagicValues Registered magic values.
14267 ///
14268 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
14269 ///        kind.
14270 ///
14271 /// \param TypeInfo Information about the corresponding C type.
14272 ///
14273 /// \param isConstantEvaluated whether the evalaution should be performed in
14274 /// constant context.
14275 ///
14276 /// \returns true if the corresponding C type was found.
14277 static bool GetMatchingCType(
14278     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
14279     const ASTContext &Ctx,
14280     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
14281         *MagicValues,
14282     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
14283     bool isConstantEvaluated) {
14284   FoundWrongKind = false;
14285 
14286   // Variable declaration that has type_tag_for_datatype attribute.
14287   const ValueDecl *VD = nullptr;
14288 
14289   uint64_t MagicValue;
14290 
14291   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
14292     return false;
14293 
14294   if (VD) {
14295     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
14296       if (I->getArgumentKind() != ArgumentKind) {
14297         FoundWrongKind = true;
14298         return false;
14299       }
14300       TypeInfo.Type = I->getMatchingCType();
14301       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
14302       TypeInfo.MustBeNull = I->getMustBeNull();
14303       return true;
14304     }
14305     return false;
14306   }
14307 
14308   if (!MagicValues)
14309     return false;
14310 
14311   llvm::DenseMap<Sema::TypeTagMagicValue,
14312                  Sema::TypeTagData>::const_iterator I =
14313       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
14314   if (I == MagicValues->end())
14315     return false;
14316 
14317   TypeInfo = I->second;
14318   return true;
14319 }
14320 
14321 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
14322                                       uint64_t MagicValue, QualType Type,
14323                                       bool LayoutCompatible,
14324                                       bool MustBeNull) {
14325   if (!TypeTagForDatatypeMagicValues)
14326     TypeTagForDatatypeMagicValues.reset(
14327         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
14328 
14329   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
14330   (*TypeTagForDatatypeMagicValues)[Magic] =
14331       TypeTagData(Type, LayoutCompatible, MustBeNull);
14332 }
14333 
14334 static bool IsSameCharType(QualType T1, QualType T2) {
14335   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
14336   if (!BT1)
14337     return false;
14338 
14339   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
14340   if (!BT2)
14341     return false;
14342 
14343   BuiltinType::Kind T1Kind = BT1->getKind();
14344   BuiltinType::Kind T2Kind = BT2->getKind();
14345 
14346   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
14347          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
14348          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
14349          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
14350 }
14351 
14352 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
14353                                     const ArrayRef<const Expr *> ExprArgs,
14354                                     SourceLocation CallSiteLoc) {
14355   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
14356   bool IsPointerAttr = Attr->getIsPointer();
14357 
14358   // Retrieve the argument representing the 'type_tag'.
14359   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
14360   if (TypeTagIdxAST >= ExprArgs.size()) {
14361     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14362         << 0 << Attr->getTypeTagIdx().getSourceIndex();
14363     return;
14364   }
14365   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
14366   bool FoundWrongKind;
14367   TypeTagData TypeInfo;
14368   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
14369                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
14370                         TypeInfo, isConstantEvaluatedContext())) {
14371     if (FoundWrongKind)
14372       Diag(TypeTagExpr->getExprLoc(),
14373            diag::warn_type_tag_for_datatype_wrong_kind)
14374         << TypeTagExpr->getSourceRange();
14375     return;
14376   }
14377 
14378   // Retrieve the argument representing the 'arg_idx'.
14379   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
14380   if (ArgumentIdxAST >= ExprArgs.size()) {
14381     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
14382         << 1 << Attr->getArgumentIdx().getSourceIndex();
14383     return;
14384   }
14385   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
14386   if (IsPointerAttr) {
14387     // Skip implicit cast of pointer to `void *' (as a function argument).
14388     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
14389       if (ICE->getType()->isVoidPointerType() &&
14390           ICE->getCastKind() == CK_BitCast)
14391         ArgumentExpr = ICE->getSubExpr();
14392   }
14393   QualType ArgumentType = ArgumentExpr->getType();
14394 
14395   // Passing a `void*' pointer shouldn't trigger a warning.
14396   if (IsPointerAttr && ArgumentType->isVoidPointerType())
14397     return;
14398 
14399   if (TypeInfo.MustBeNull) {
14400     // Type tag with matching void type requires a null pointer.
14401     if (!ArgumentExpr->isNullPointerConstant(Context,
14402                                              Expr::NPC_ValueDependentIsNotNull)) {
14403       Diag(ArgumentExpr->getExprLoc(),
14404            diag::warn_type_safety_null_pointer_required)
14405           << ArgumentKind->getName()
14406           << ArgumentExpr->getSourceRange()
14407           << TypeTagExpr->getSourceRange();
14408     }
14409     return;
14410   }
14411 
14412   QualType RequiredType = TypeInfo.Type;
14413   if (IsPointerAttr)
14414     RequiredType = Context.getPointerType(RequiredType);
14415 
14416   bool mismatch = false;
14417   if (!TypeInfo.LayoutCompatible) {
14418     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
14419 
14420     // C++11 [basic.fundamental] p1:
14421     // Plain char, signed char, and unsigned char are three distinct types.
14422     //
14423     // But we treat plain `char' as equivalent to `signed char' or `unsigned
14424     // char' depending on the current char signedness mode.
14425     if (mismatch)
14426       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
14427                                            RequiredType->getPointeeType())) ||
14428           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
14429         mismatch = false;
14430   } else
14431     if (IsPointerAttr)
14432       mismatch = !isLayoutCompatible(Context,
14433                                      ArgumentType->getPointeeType(),
14434                                      RequiredType->getPointeeType());
14435     else
14436       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
14437 
14438   if (mismatch)
14439     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
14440         << ArgumentType << ArgumentKind
14441         << TypeInfo.LayoutCompatible << RequiredType
14442         << ArgumentExpr->getSourceRange()
14443         << TypeTagExpr->getSourceRange();
14444 }
14445 
14446 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
14447                                          CharUnits Alignment) {
14448   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
14449 }
14450 
14451 void Sema::DiagnoseMisalignedMembers() {
14452   for (MisalignedMember &m : MisalignedMembers) {
14453     const NamedDecl *ND = m.RD;
14454     if (ND->getName().empty()) {
14455       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
14456         ND = TD;
14457     }
14458     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
14459         << m.MD << ND << m.E->getSourceRange();
14460   }
14461   MisalignedMembers.clear();
14462 }
14463 
14464 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
14465   E = E->IgnoreParens();
14466   if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType())
14467     return;
14468   if (isa<UnaryOperator>(E) &&
14469       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
14470     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
14471     if (isa<MemberExpr>(Op)) {
14472       auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
14473       if (MA != MisalignedMembers.end() &&
14474           (T->isDependentType() || T->isIntegerType() ||
14475            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
14476                                    Context.getTypeAlignInChars(
14477                                        T->getPointeeType()) <= MA->Alignment))))
14478         MisalignedMembers.erase(MA);
14479     }
14480   }
14481 }
14482 
14483 void Sema::RefersToMemberWithReducedAlignment(
14484     Expr *E,
14485     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
14486         Action) {
14487   const auto *ME = dyn_cast<MemberExpr>(E);
14488   if (!ME)
14489     return;
14490 
14491   // No need to check expressions with an __unaligned-qualified type.
14492   if (E->getType().getQualifiers().hasUnaligned())
14493     return;
14494 
14495   // For a chain of MemberExpr like "a.b.c.d" this list
14496   // will keep FieldDecl's like [d, c, b].
14497   SmallVector<FieldDecl *, 4> ReverseMemberChain;
14498   const MemberExpr *TopME = nullptr;
14499   bool AnyIsPacked = false;
14500   do {
14501     QualType BaseType = ME->getBase()->getType();
14502     if (BaseType->isDependentType())
14503       return;
14504     if (ME->isArrow())
14505       BaseType = BaseType->getPointeeType();
14506     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
14507     if (RD->isInvalidDecl())
14508       return;
14509 
14510     ValueDecl *MD = ME->getMemberDecl();
14511     auto *FD = dyn_cast<FieldDecl>(MD);
14512     // We do not care about non-data members.
14513     if (!FD || FD->isInvalidDecl())
14514       return;
14515 
14516     AnyIsPacked =
14517         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
14518     ReverseMemberChain.push_back(FD);
14519 
14520     TopME = ME;
14521     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
14522   } while (ME);
14523   assert(TopME && "We did not compute a topmost MemberExpr!");
14524 
14525   // Not the scope of this diagnostic.
14526   if (!AnyIsPacked)
14527     return;
14528 
14529   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
14530   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
14531   // TODO: The innermost base of the member expression may be too complicated.
14532   // For now, just disregard these cases. This is left for future
14533   // improvement.
14534   if (!DRE && !isa<CXXThisExpr>(TopBase))
14535       return;
14536 
14537   // Alignment expected by the whole expression.
14538   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
14539 
14540   // No need to do anything else with this case.
14541   if (ExpectedAlignment.isOne())
14542     return;
14543 
14544   // Synthesize offset of the whole access.
14545   CharUnits Offset;
14546   for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
14547     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
14548 
14549   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
14550   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
14551       ReverseMemberChain.back()->getParent()->getTypeForDecl());
14552 
14553   // The base expression of the innermost MemberExpr may give
14554   // stronger guarantees than the class containing the member.
14555   if (DRE && !TopME->isArrow()) {
14556     const ValueDecl *VD = DRE->getDecl();
14557     if (!VD->getType()->isReferenceType())
14558       CompleteObjectAlignment =
14559           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
14560   }
14561 
14562   // Check if the synthesized offset fulfills the alignment.
14563   if (Offset % ExpectedAlignment != 0 ||
14564       // It may fulfill the offset it but the effective alignment may still be
14565       // lower than the expected expression alignment.
14566       CompleteObjectAlignment < ExpectedAlignment) {
14567     // If this happens, we want to determine a sensible culprit of this.
14568     // Intuitively, watching the chain of member expressions from right to
14569     // left, we start with the required alignment (as required by the field
14570     // type) but some packed attribute in that chain has reduced the alignment.
14571     // It may happen that another packed structure increases it again. But if
14572     // we are here such increase has not been enough. So pointing the first
14573     // FieldDecl that either is packed or else its RecordDecl is,
14574     // seems reasonable.
14575     FieldDecl *FD = nullptr;
14576     CharUnits Alignment;
14577     for (FieldDecl *FDI : ReverseMemberChain) {
14578       if (FDI->hasAttr<PackedAttr>() ||
14579           FDI->getParent()->hasAttr<PackedAttr>()) {
14580         FD = FDI;
14581         Alignment = std::min(
14582             Context.getTypeAlignInChars(FD->getType()),
14583             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
14584         break;
14585       }
14586     }
14587     assert(FD && "We did not find a packed FieldDecl!");
14588     Action(E, FD->getParent(), FD, Alignment);
14589   }
14590 }
14591 
14592 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
14593   using namespace std::placeholders;
14594 
14595   RefersToMemberWithReducedAlignment(
14596       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
14597                      _2, _3, _4));
14598 }
14599 
14600 bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
14601   if (checkArgCount(TheCall, 1))
14602     return true;
14603 
14604   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
14605   if (A.isInvalid())
14606     return true;
14607 
14608   TheCall->setArg(0, A.get());
14609   QualType TyA = A.get()->getType();
14610 
14611   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14612     return true;
14613 
14614   TheCall->setType(TyA);
14615   return false;
14616 }
14617 
14618 bool Sema::BuiltinElementwiseMath(CallExpr *TheCall, bool FPOnly) {
14619   QualType Res;
14620   if (BuiltinVectorMath(TheCall, Res, FPOnly))
14621     return true;
14622   TheCall->setType(Res);
14623   return false;
14624 }
14625 
14626 bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) {
14627   QualType Res;
14628   if (BuiltinVectorMath(TheCall, Res))
14629     return true;
14630 
14631   if (auto *VecTy0 = Res->getAs<VectorType>())
14632     TheCall->setType(VecTy0->getElementType());
14633   else
14634     TheCall->setType(Res);
14635 
14636   return false;
14637 }
14638 
14639 bool Sema::BuiltinVectorMath(CallExpr *TheCall, QualType &Res, bool FPOnly) {
14640   if (checkArgCount(TheCall, 2))
14641     return true;
14642 
14643   ExprResult A = TheCall->getArg(0);
14644   ExprResult B = TheCall->getArg(1);
14645   // Do standard promotions between the two arguments, returning their common
14646   // type.
14647   Res = UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
14648   if (A.isInvalid() || B.isInvalid())
14649     return true;
14650 
14651   QualType TyA = A.get()->getType();
14652   QualType TyB = B.get()->getType();
14653 
14654   if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
14655     return Diag(A.get()->getBeginLoc(),
14656                 diag::err_typecheck_call_different_arg_types)
14657            << TyA << TyB;
14658 
14659   if (FPOnly) {
14660     if (checkFPMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14661       return true;
14662   } else {
14663     if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA, 1))
14664       return true;
14665   }
14666 
14667   TheCall->setArg(0, A.get());
14668   TheCall->setArg(1, B.get());
14669   return false;
14670 }
14671 
14672 bool Sema::BuiltinElementwiseTernaryMath(CallExpr *TheCall,
14673                                          bool CheckForFloatArgs) {
14674   if (checkArgCount(TheCall, 3))
14675     return true;
14676 
14677   Expr *Args[3];
14678   for (int I = 0; I < 3; ++I) {
14679     ExprResult Converted = UsualUnaryConversions(TheCall->getArg(I));
14680     if (Converted.isInvalid())
14681       return true;
14682     Args[I] = Converted.get();
14683   }
14684 
14685   if (CheckForFloatArgs) {
14686     int ArgOrdinal = 1;
14687     for (Expr *Arg : Args) {
14688       if (checkFPMathBuiltinElementType(*this, Arg->getBeginLoc(),
14689                                         Arg->getType(), ArgOrdinal++))
14690         return true;
14691     }
14692   } else {
14693     int ArgOrdinal = 1;
14694     for (Expr *Arg : Args) {
14695       if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(),
14696                                       ArgOrdinal++))
14697         return true;
14698     }
14699   }
14700 
14701   for (int I = 1; I < 3; ++I) {
14702     if (Args[0]->getType().getCanonicalType() !=
14703         Args[I]->getType().getCanonicalType()) {
14704       return Diag(Args[0]->getBeginLoc(),
14705                   diag::err_typecheck_call_different_arg_types)
14706              << Args[0]->getType() << Args[I]->getType();
14707     }
14708 
14709     TheCall->setArg(I, Args[I]);
14710   }
14711 
14712   TheCall->setType(Args[0]->getType());
14713   return false;
14714 }
14715 
14716 bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
14717   if (checkArgCount(TheCall, 1))
14718     return true;
14719 
14720   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
14721   if (A.isInvalid())
14722     return true;
14723 
14724   TheCall->setArg(0, A.get());
14725   return false;
14726 }
14727 
14728 bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) {
14729   if (checkArgCount(TheCall, 1))
14730     return true;
14731 
14732   ExprResult Arg = TheCall->getArg(0);
14733   QualType TyArg = Arg.get()->getType();
14734 
14735   if (!TyArg->isBuiltinType() && !TyArg->isVectorType())
14736     return Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14737            << 1 << /*vector, integer or floating point ty*/ 0 << TyArg;
14738 
14739   TheCall->setType(TyArg);
14740   return false;
14741 }
14742 
14743 ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall,
14744                                         ExprResult CallResult) {
14745   if (checkArgCount(TheCall, 1))
14746     return ExprError();
14747 
14748   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
14749   if (MatrixArg.isInvalid())
14750     return MatrixArg;
14751   Expr *Matrix = MatrixArg.get();
14752 
14753   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
14754   if (!MType) {
14755     Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14756         << 1 << /* matrix ty*/ 1 << Matrix->getType();
14757     return ExprError();
14758   }
14759 
14760   // Create returned matrix type by swapping rows and columns of the argument
14761   // matrix type.
14762   QualType ResultType = Context.getConstantMatrixType(
14763       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
14764 
14765   // Change the return type to the type of the returned matrix.
14766   TheCall->setType(ResultType);
14767 
14768   // Update call argument to use the possibly converted matrix argument.
14769   TheCall->setArg(0, Matrix);
14770   return CallResult;
14771 }
14772 
14773 // Get and verify the matrix dimensions.
14774 static std::optional<unsigned>
14775 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
14776   SourceLocation ErrorPos;
14777   std::optional<llvm::APSInt> Value =
14778       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
14779   if (!Value) {
14780     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
14781         << Name;
14782     return {};
14783   }
14784   uint64_t Dim = Value->getZExtValue();
14785   if (!ConstantMatrixType::isDimensionValid(Dim)) {
14786     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
14787         << Name << ConstantMatrixType::getMaxElementsPerDimension();
14788     return {};
14789   }
14790   return Dim;
14791 }
14792 
14793 ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
14794                                               ExprResult CallResult) {
14795   if (!getLangOpts().MatrixTypes) {
14796     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
14797     return ExprError();
14798   }
14799 
14800   if (checkArgCount(TheCall, 4))
14801     return ExprError();
14802 
14803   unsigned PtrArgIdx = 0;
14804   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
14805   Expr *RowsExpr = TheCall->getArg(1);
14806   Expr *ColumnsExpr = TheCall->getArg(2);
14807   Expr *StrideExpr = TheCall->getArg(3);
14808 
14809   bool ArgError = false;
14810 
14811   // Check pointer argument.
14812   {
14813     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
14814     if (PtrConv.isInvalid())
14815       return PtrConv;
14816     PtrExpr = PtrConv.get();
14817     TheCall->setArg(0, PtrExpr);
14818     if (PtrExpr->isTypeDependent()) {
14819       TheCall->setType(Context.DependentTy);
14820       return TheCall;
14821     }
14822   }
14823 
14824   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
14825   QualType ElementTy;
14826   if (!PtrTy) {
14827     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14828         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
14829     ArgError = true;
14830   } else {
14831     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
14832 
14833     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
14834       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14835           << PtrArgIdx + 1 << /* pointer to element ty*/ 2
14836           << PtrExpr->getType();
14837       ArgError = true;
14838     }
14839   }
14840 
14841   // Apply default Lvalue conversions and convert the expression to size_t.
14842   auto ApplyArgumentConversions = [this](Expr *E) {
14843     ExprResult Conv = DefaultLvalueConversion(E);
14844     if (Conv.isInvalid())
14845       return Conv;
14846 
14847     return tryConvertExprToType(Conv.get(), Context.getSizeType());
14848   };
14849 
14850   // Apply conversion to row and column expressions.
14851   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
14852   if (!RowsConv.isInvalid()) {
14853     RowsExpr = RowsConv.get();
14854     TheCall->setArg(1, RowsExpr);
14855   } else
14856     RowsExpr = nullptr;
14857 
14858   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
14859   if (!ColumnsConv.isInvalid()) {
14860     ColumnsExpr = ColumnsConv.get();
14861     TheCall->setArg(2, ColumnsExpr);
14862   } else
14863     ColumnsExpr = nullptr;
14864 
14865   // If any part of the result matrix type is still pending, just use
14866   // Context.DependentTy, until all parts are resolved.
14867   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
14868       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
14869     TheCall->setType(Context.DependentTy);
14870     return CallResult;
14871   }
14872 
14873   // Check row and column dimensions.
14874   std::optional<unsigned> MaybeRows;
14875   if (RowsExpr)
14876     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
14877 
14878   std::optional<unsigned> MaybeColumns;
14879   if (ColumnsExpr)
14880     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
14881 
14882   // Check stride argument.
14883   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
14884   if (StrideConv.isInvalid())
14885     return ExprError();
14886   StrideExpr = StrideConv.get();
14887   TheCall->setArg(3, StrideExpr);
14888 
14889   if (MaybeRows) {
14890     if (std::optional<llvm::APSInt> Value =
14891             StrideExpr->getIntegerConstantExpr(Context)) {
14892       uint64_t Stride = Value->getZExtValue();
14893       if (Stride < *MaybeRows) {
14894         Diag(StrideExpr->getBeginLoc(),
14895              diag::err_builtin_matrix_stride_too_small);
14896         ArgError = true;
14897       }
14898     }
14899   }
14900 
14901   if (ArgError || !MaybeRows || !MaybeColumns)
14902     return ExprError();
14903 
14904   TheCall->setType(
14905       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
14906   return CallResult;
14907 }
14908 
14909 ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
14910                                                ExprResult CallResult) {
14911   if (checkArgCount(TheCall, 3))
14912     return ExprError();
14913 
14914   unsigned PtrArgIdx = 1;
14915   Expr *MatrixExpr = TheCall->getArg(0);
14916   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
14917   Expr *StrideExpr = TheCall->getArg(2);
14918 
14919   bool ArgError = false;
14920 
14921   {
14922     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
14923     if (MatrixConv.isInvalid())
14924       return MatrixConv;
14925     MatrixExpr = MatrixConv.get();
14926     TheCall->setArg(0, MatrixExpr);
14927   }
14928   if (MatrixExpr->isTypeDependent()) {
14929     TheCall->setType(Context.DependentTy);
14930     return TheCall;
14931   }
14932 
14933   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
14934   if (!MatrixTy) {
14935     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14936         << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
14937     ArgError = true;
14938   }
14939 
14940   {
14941     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
14942     if (PtrConv.isInvalid())
14943       return PtrConv;
14944     PtrExpr = PtrConv.get();
14945     TheCall->setArg(1, PtrExpr);
14946     if (PtrExpr->isTypeDependent()) {
14947       TheCall->setType(Context.DependentTy);
14948       return TheCall;
14949     }
14950   }
14951 
14952   // Check pointer argument.
14953   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
14954   if (!PtrTy) {
14955     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
14956         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
14957     ArgError = true;
14958   } else {
14959     QualType ElementTy = PtrTy->getPointeeType();
14960     if (ElementTy.isConstQualified()) {
14961       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
14962       ArgError = true;
14963     }
14964     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
14965     if (MatrixTy &&
14966         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
14967       Diag(PtrExpr->getBeginLoc(),
14968            diag::err_builtin_matrix_pointer_arg_mismatch)
14969           << ElementTy << MatrixTy->getElementType();
14970       ArgError = true;
14971     }
14972   }
14973 
14974   // Apply default Lvalue conversions and convert the stride expression to
14975   // size_t.
14976   {
14977     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
14978     if (StrideConv.isInvalid())
14979       return StrideConv;
14980 
14981     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
14982     if (StrideConv.isInvalid())
14983       return StrideConv;
14984     StrideExpr = StrideConv.get();
14985     TheCall->setArg(2, StrideExpr);
14986   }
14987 
14988   // Check stride argument.
14989   if (MatrixTy) {
14990     if (std::optional<llvm::APSInt> Value =
14991             StrideExpr->getIntegerConstantExpr(Context)) {
14992       uint64_t Stride = Value->getZExtValue();
14993       if (Stride < MatrixTy->getNumRows()) {
14994         Diag(StrideExpr->getBeginLoc(),
14995              diag::err_builtin_matrix_stride_too_small);
14996         ArgError = true;
14997       }
14998     }
14999   }
15000 
15001   if (ArgError)
15002     return ExprError();
15003 
15004   return CallResult;
15005 }
15006 
15007 void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
15008                                const NamedDecl *Callee) {
15009   // This warning does not make sense in code that has no runtime behavior.
15010   if (isUnevaluatedContext())
15011     return;
15012 
15013   const NamedDecl *Caller = getCurFunctionOrMethodDecl();
15014 
15015   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
15016     return;
15017 
15018   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
15019   // all TCBs the callee is a part of.
15020   llvm::StringSet<> CalleeTCBs;
15021   for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
15022     CalleeTCBs.insert(A->getTCBName());
15023   for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
15024     CalleeTCBs.insert(A->getTCBName());
15025 
15026   // Go through the TCBs the caller is a part of and emit warnings if Caller
15027   // is in a TCB that the Callee is not.
15028   for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
15029     StringRef CallerTCB = A->getTCBName();
15030     if (CalleeTCBs.count(CallerTCB) == 0) {
15031       this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
15032           << Callee << CallerTCB;
15033     }
15034   }
15035 }
15036