1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Preprocessor interface. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // Options to support: 14 // -H - Print the name of each header file used. 15 // -d[DNI] - Dump various things. 16 // -fworking-directory - #line's with preprocessor's working dir. 17 // -fpreprocessed 18 // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD 19 // -W* 20 // -w 21 // 22 // Messages to emit: 23 // "Multiple include guards may be useful for:\n" 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/Lex/Preprocessor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/FileSystemStatCache.h" 31 #include "clang/Basic/IdentifierTable.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/LangOptions.h" 34 #include "clang/Basic/Module.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Lex/CodeCompletionHandler.h" 39 #include "clang/Lex/ExternalPreprocessorSource.h" 40 #include "clang/Lex/HeaderSearch.h" 41 #include "clang/Lex/LexDiagnostic.h" 42 #include "clang/Lex/Lexer.h" 43 #include "clang/Lex/LiteralSupport.h" 44 #include "clang/Lex/MacroArgs.h" 45 #include "clang/Lex/MacroInfo.h" 46 #include "clang/Lex/ModuleLoader.h" 47 #include "clang/Lex/Pragma.h" 48 #include "clang/Lex/PreprocessingRecord.h" 49 #include "clang/Lex/PreprocessorLexer.h" 50 #include "clang/Lex/PreprocessorOptions.h" 51 #include "clang/Lex/ScratchBuffer.h" 52 #include "clang/Lex/Token.h" 53 #include "clang/Lex/TokenLexer.h" 54 #include "llvm/ADT/APInt.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/DenseMap.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallString.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/Support/Capacity.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MemoryBuffer.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <memory> 68 #include <optional> 69 #include <string> 70 #include <utility> 71 #include <vector> 72 73 using namespace clang; 74 75 /// Minimum distance between two check points, in tokens. 76 static constexpr unsigned CheckPointStepSize = 1024; 77 78 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) 79 80 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; 81 82 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, 83 DiagnosticsEngine &diags, const LangOptions &opts, 84 SourceManager &SM, HeaderSearch &Headers, 85 ModuleLoader &TheModuleLoader, 86 IdentifierInfoLookup *IILookup, bool OwnsHeaders, 87 TranslationUnitKind TUKind) 88 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), 89 FileMgr(Headers.getFileMgr()), SourceMgr(SM), 90 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), 91 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), 92 // As the language options may have not been loaded yet (when 93 // deserializing an ASTUnit), adding keywords to the identifier table is 94 // deferred to Preprocessor::Initialize(). 95 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), 96 TUKind(TUKind), SkipMainFilePreamble(0, true), 97 CurSubmoduleState(&NullSubmoduleState) { 98 OwnsHeaderSearch = OwnsHeaders; 99 100 // Default to discarding comments. 101 KeepComments = false; 102 KeepMacroComments = false; 103 SuppressIncludeNotFoundError = false; 104 105 // Macro expansion is enabled. 106 DisableMacroExpansion = false; 107 MacroExpansionInDirectivesOverride = false; 108 InMacroArgs = false; 109 ArgMacro = nullptr; 110 InMacroArgPreExpansion = false; 111 NumCachedTokenLexers = 0; 112 PragmasEnabled = true; 113 ParsingIfOrElifDirective = false; 114 PreprocessedOutput = false; 115 116 // We haven't read anything from the external source. 117 ReadMacrosFromExternalSource = false; 118 119 BuiltinInfo = std::make_unique<Builtin::Context>(); 120 121 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of 122 // a macro. They get unpoisoned where it is allowed. 123 (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); 124 SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); 125 (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); 126 SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); 127 128 // Initialize the pragma handlers. 129 RegisterBuiltinPragmas(); 130 131 // Initialize builtin macros like __LINE__ and friends. 132 RegisterBuiltinMacros(); 133 134 if(LangOpts.Borland) { 135 Ident__exception_info = getIdentifierInfo("_exception_info"); 136 Ident___exception_info = getIdentifierInfo("__exception_info"); 137 Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); 138 Ident__exception_code = getIdentifierInfo("_exception_code"); 139 Ident___exception_code = getIdentifierInfo("__exception_code"); 140 Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); 141 Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); 142 Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); 143 Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); 144 } else { 145 Ident__exception_info = Ident__exception_code = nullptr; 146 Ident__abnormal_termination = Ident___exception_info = nullptr; 147 Ident___exception_code = Ident___abnormal_termination = nullptr; 148 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; 149 Ident_AbnormalTermination = nullptr; 150 } 151 152 // Default incremental processing to -fincremental-extensions, clients can 153 // override with `enableIncrementalProcessing` if desired. 154 IncrementalProcessing = LangOpts.IncrementalExtensions; 155 156 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. 157 if (usingPCHWithPragmaHdrStop()) 158 SkippingUntilPragmaHdrStop = true; 159 160 // If using a PCH with a through header, start skipping tokens. 161 if (!this->PPOpts->PCHThroughHeader.empty() && 162 !this->PPOpts->ImplicitPCHInclude.empty()) 163 SkippingUntilPCHThroughHeader = true; 164 165 if (this->PPOpts->GeneratePreamble) 166 PreambleConditionalStack.startRecording(); 167 168 MaxTokens = LangOpts.MaxTokens; 169 } 170 171 Preprocessor::~Preprocessor() { 172 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); 173 174 IncludeMacroStack.clear(); 175 176 // Free any cached macro expanders. 177 // This populates MacroArgCache, so all TokenLexers need to be destroyed 178 // before the code below that frees up the MacroArgCache list. 179 std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); 180 CurTokenLexer.reset(); 181 182 // Free any cached MacroArgs. 183 for (MacroArgs *ArgList = MacroArgCache; ArgList;) 184 ArgList = ArgList->deallocate(); 185 186 // Delete the header search info, if we own it. 187 if (OwnsHeaderSearch) 188 delete &HeaderInfo; 189 } 190 191 void Preprocessor::Initialize(const TargetInfo &Target, 192 const TargetInfo *AuxTarget) { 193 assert((!this->Target || this->Target == &Target) && 194 "Invalid override of target information"); 195 this->Target = &Target; 196 197 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && 198 "Invalid override of aux target information."); 199 this->AuxTarget = AuxTarget; 200 201 // Initialize information about built-ins. 202 BuiltinInfo->InitializeTarget(Target, AuxTarget); 203 HeaderInfo.setTarget(Target); 204 205 // Populate the identifier table with info about keywords for the current language. 206 Identifiers.AddKeywords(LangOpts); 207 208 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo. 209 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod()); 210 211 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine) 212 // Use setting from TargetInfo. 213 setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod()); 214 else 215 // Set initial value of __FLT_EVAL_METHOD__ from the command line. 216 setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod()); 217 } 218 219 void Preprocessor::InitializeForModelFile() { 220 NumEnteredSourceFiles = 0; 221 222 // Reset pragmas 223 PragmaHandlersBackup = std::move(PragmaHandlers); 224 PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef()); 225 RegisterBuiltinPragmas(); 226 227 // Reset PredefinesFileID 228 PredefinesFileID = FileID(); 229 } 230 231 void Preprocessor::FinalizeForModelFile() { 232 NumEnteredSourceFiles = 1; 233 234 PragmaHandlers = std::move(PragmaHandlersBackup); 235 } 236 237 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { 238 llvm::errs() << tok::getTokenName(Tok.getKind()); 239 240 if (!Tok.isAnnotation()) 241 llvm::errs() << " '" << getSpelling(Tok) << "'"; 242 243 if (!DumpFlags) return; 244 245 llvm::errs() << "\t"; 246 if (Tok.isAtStartOfLine()) 247 llvm::errs() << " [StartOfLine]"; 248 if (Tok.hasLeadingSpace()) 249 llvm::errs() << " [LeadingSpace]"; 250 if (Tok.isExpandDisabled()) 251 llvm::errs() << " [ExpandDisabled]"; 252 if (Tok.needsCleaning()) { 253 const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); 254 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) 255 << "']"; 256 } 257 258 llvm::errs() << "\tLoc=<"; 259 DumpLocation(Tok.getLocation()); 260 llvm::errs() << ">"; 261 } 262 263 void Preprocessor::DumpLocation(SourceLocation Loc) const { 264 Loc.print(llvm::errs(), SourceMgr); 265 } 266 267 void Preprocessor::DumpMacro(const MacroInfo &MI) const { 268 llvm::errs() << "MACRO: "; 269 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { 270 DumpToken(MI.getReplacementToken(i)); 271 llvm::errs() << " "; 272 } 273 llvm::errs() << "\n"; 274 } 275 276 void Preprocessor::PrintStats() { 277 llvm::errs() << "\n*** Preprocessor Stats:\n"; 278 llvm::errs() << NumDirectives << " directives found:\n"; 279 llvm::errs() << " " << NumDefined << " #define.\n"; 280 llvm::errs() << " " << NumUndefined << " #undef.\n"; 281 llvm::errs() << " #include/#include_next/#import:\n"; 282 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; 283 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; 284 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; 285 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; 286 llvm::errs() << " " << NumEndif << " #endif.\n"; 287 llvm::errs() << " " << NumPragma << " #pragma.\n"; 288 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; 289 290 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" 291 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " 292 << NumFastMacroExpanded << " on the fast path.\n"; 293 llvm::errs() << (NumFastTokenPaste+NumTokenPaste) 294 << " token paste (##) operations performed, " 295 << NumFastTokenPaste << " on the fast path.\n"; 296 297 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; 298 299 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); 300 llvm::errs() << "\n Macro Expanded Tokens: " 301 << llvm::capacity_in_bytes(MacroExpandedTokens); 302 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); 303 // FIXME: List information for all submodules. 304 llvm::errs() << "\n Macros: " 305 << llvm::capacity_in_bytes(CurSubmoduleState->Macros); 306 llvm::errs() << "\n #pragma push_macro Info: " 307 << llvm::capacity_in_bytes(PragmaPushMacroInfo); 308 llvm::errs() << "\n Poison Reasons: " 309 << llvm::capacity_in_bytes(PoisonReasons); 310 llvm::errs() << "\n Comment Handlers: " 311 << llvm::capacity_in_bytes(CommentHandlers) << "\n"; 312 } 313 314 Preprocessor::macro_iterator 315 Preprocessor::macro_begin(bool IncludeExternalMacros) const { 316 if (IncludeExternalMacros && ExternalSource && 317 !ReadMacrosFromExternalSource) { 318 ReadMacrosFromExternalSource = true; 319 ExternalSource->ReadDefinedMacros(); 320 } 321 322 // Make sure we cover all macros in visible modules. 323 for (const ModuleMacro &Macro : ModuleMacros) 324 CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); 325 326 return CurSubmoduleState->Macros.begin(); 327 } 328 329 size_t Preprocessor::getTotalMemory() const { 330 return BP.getTotalMemory() 331 + llvm::capacity_in_bytes(MacroExpandedTokens) 332 + Predefines.capacity() /* Predefines buffer. */ 333 // FIXME: Include sizes from all submodules, and include MacroInfo sizes, 334 // and ModuleMacros. 335 + llvm::capacity_in_bytes(CurSubmoduleState->Macros) 336 + llvm::capacity_in_bytes(PragmaPushMacroInfo) 337 + llvm::capacity_in_bytes(PoisonReasons) 338 + llvm::capacity_in_bytes(CommentHandlers); 339 } 340 341 Preprocessor::macro_iterator 342 Preprocessor::macro_end(bool IncludeExternalMacros) const { 343 if (IncludeExternalMacros && ExternalSource && 344 !ReadMacrosFromExternalSource) { 345 ReadMacrosFromExternalSource = true; 346 ExternalSource->ReadDefinedMacros(); 347 } 348 349 return CurSubmoduleState->Macros.end(); 350 } 351 352 /// Compares macro tokens with a specified token value sequence. 353 static bool MacroDefinitionEquals(const MacroInfo *MI, 354 ArrayRef<TokenValue> Tokens) { 355 return Tokens.size() == MI->getNumTokens() && 356 std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); 357 } 358 359 StringRef Preprocessor::getLastMacroWithSpelling( 360 SourceLocation Loc, 361 ArrayRef<TokenValue> Tokens) const { 362 SourceLocation BestLocation; 363 StringRef BestSpelling; 364 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); 365 I != E; ++I) { 366 const MacroDirective::DefInfo 367 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); 368 if (!Def || !Def.getMacroInfo()) 369 continue; 370 if (!Def.getMacroInfo()->isObjectLike()) 371 continue; 372 if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) 373 continue; 374 SourceLocation Location = Def.getLocation(); 375 // Choose the macro defined latest. 376 if (BestLocation.isInvalid() || 377 (Location.isValid() && 378 SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { 379 BestLocation = Location; 380 BestSpelling = I->first->getName(); 381 } 382 } 383 return BestSpelling; 384 } 385 386 void Preprocessor::recomputeCurLexerKind() { 387 if (CurLexer) 388 CurLexerCallback = CurLexer->isDependencyDirectivesLexer() 389 ? CLK_DependencyDirectivesLexer 390 : CLK_Lexer; 391 else if (CurTokenLexer) 392 CurLexerCallback = CLK_TokenLexer; 393 else 394 CurLexerCallback = CLK_CachingLexer; 395 } 396 397 bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File, 398 unsigned CompleteLine, 399 unsigned CompleteColumn) { 400 assert(CompleteLine && CompleteColumn && "Starts from 1:1"); 401 assert(!CodeCompletionFile && "Already set"); 402 403 // Load the actual file's contents. 404 std::optional<llvm::MemoryBufferRef> Buffer = 405 SourceMgr.getMemoryBufferForFileOrNone(File); 406 if (!Buffer) 407 return true; 408 409 // Find the byte position of the truncation point. 410 const char *Position = Buffer->getBufferStart(); 411 for (unsigned Line = 1; Line < CompleteLine; ++Line) { 412 for (; *Position; ++Position) { 413 if (*Position != '\r' && *Position != '\n') 414 continue; 415 416 // Eat \r\n or \n\r as a single line. 417 if ((Position[1] == '\r' || Position[1] == '\n') && 418 Position[0] != Position[1]) 419 ++Position; 420 ++Position; 421 break; 422 } 423 } 424 425 Position += CompleteColumn - 1; 426 427 // If pointing inside the preamble, adjust the position at the beginning of 428 // the file after the preamble. 429 if (SkipMainFilePreamble.first && 430 SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { 431 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) 432 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; 433 } 434 435 if (Position > Buffer->getBufferEnd()) 436 Position = Buffer->getBufferEnd(); 437 438 CodeCompletionFile = File; 439 CodeCompletionOffset = Position - Buffer->getBufferStart(); 440 441 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( 442 Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); 443 char *NewBuf = NewBuffer->getBufferStart(); 444 char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); 445 *NewPos = '\0'; 446 std::copy(Position, Buffer->getBufferEnd(), NewPos+1); 447 SourceMgr.overrideFileContents(File, std::move(NewBuffer)); 448 449 return false; 450 } 451 452 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, 453 bool IsAngled) { 454 setCodeCompletionReached(); 455 if (CodeComplete) 456 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); 457 } 458 459 void Preprocessor::CodeCompleteNaturalLanguage() { 460 setCodeCompletionReached(); 461 if (CodeComplete) 462 CodeComplete->CodeCompleteNaturalLanguage(); 463 } 464 465 /// getSpelling - This method is used to get the spelling of a token into a 466 /// SmallVector. Note that the returned StringRef may not point to the 467 /// supplied buffer if a copy can be avoided. 468 StringRef Preprocessor::getSpelling(const Token &Tok, 469 SmallVectorImpl<char> &Buffer, 470 bool *Invalid) const { 471 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 472 if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { 473 // Try the fast path. 474 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) 475 return II->getName(); 476 } 477 478 // Resize the buffer if we need to copy into it. 479 if (Tok.needsCleaning()) 480 Buffer.resize(Tok.getLength()); 481 482 const char *Ptr = Buffer.data(); 483 unsigned Len = getSpelling(Tok, Ptr, Invalid); 484 return StringRef(Ptr, Len); 485 } 486 487 /// CreateString - Plop the specified string into a scratch buffer and return a 488 /// location for it. If specified, the source location provides a source 489 /// location for the token. 490 void Preprocessor::CreateString(StringRef Str, Token &Tok, 491 SourceLocation ExpansionLocStart, 492 SourceLocation ExpansionLocEnd) { 493 Tok.setLength(Str.size()); 494 495 const char *DestPtr; 496 SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); 497 498 if (ExpansionLocStart.isValid()) 499 Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, 500 ExpansionLocEnd, Str.size()); 501 Tok.setLocation(Loc); 502 503 // If this is a raw identifier or a literal token, set the pointer data. 504 if (Tok.is(tok::raw_identifier)) 505 Tok.setRawIdentifierData(DestPtr); 506 else if (Tok.isLiteral()) 507 Tok.setLiteralData(DestPtr); 508 } 509 510 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { 511 auto &SM = getSourceManager(); 512 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); 513 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc); 514 bool Invalid = false; 515 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 516 if (Invalid) 517 return SourceLocation(); 518 519 // FIXME: We could consider re-using spelling for tokens we see repeatedly. 520 const char *DestPtr; 521 SourceLocation Spelling = 522 ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); 523 return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); 524 } 525 526 Module *Preprocessor::getCurrentModule() { 527 if (!getLangOpts().isCompilingModule()) 528 return nullptr; 529 530 return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); 531 } 532 533 Module *Preprocessor::getCurrentModuleImplementation() { 534 if (!getLangOpts().isCompilingModuleImplementation()) 535 return nullptr; 536 537 return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName); 538 } 539 540 //===----------------------------------------------------------------------===// 541 // Preprocessor Initialization Methods 542 //===----------------------------------------------------------------------===// 543 544 /// EnterMainSourceFile - Enter the specified FileID as the main source file, 545 /// which implicitly adds the builtin defines etc. 546 void Preprocessor::EnterMainSourceFile() { 547 // We do not allow the preprocessor to reenter the main file. Doing so will 548 // cause FileID's to accumulate information from both runs (e.g. #line 549 // information) and predefined macros aren't guaranteed to be set properly. 550 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); 551 FileID MainFileID = SourceMgr.getMainFileID(); 552 553 // If MainFileID is loaded it means we loaded an AST file, no need to enter 554 // a main file. 555 if (!SourceMgr.isLoadedFileID(MainFileID)) { 556 // Enter the main file source buffer. 557 EnterSourceFile(MainFileID, nullptr, SourceLocation()); 558 559 // If we've been asked to skip bytes in the main file (e.g., as part of a 560 // precompiled preamble), do so now. 561 if (SkipMainFilePreamble.first > 0) 562 CurLexer->SetByteOffset(SkipMainFilePreamble.first, 563 SkipMainFilePreamble.second); 564 565 // Tell the header info that the main file was entered. If the file is later 566 // #imported, it won't be re-entered. 567 if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(MainFileID)) 568 markIncluded(*FE); 569 } 570 571 // Preprocess Predefines to populate the initial preprocessor state. 572 std::unique_ptr<llvm::MemoryBuffer> SB = 573 llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>"); 574 assert(SB && "Cannot create predefined source buffer"); 575 FileID FID = SourceMgr.createFileID(std::move(SB)); 576 assert(FID.isValid() && "Could not create FileID for predefines?"); 577 setPredefinesFileID(FID); 578 579 // Start parsing the predefines. 580 EnterSourceFile(FID, nullptr, SourceLocation()); 581 582 if (!PPOpts->PCHThroughHeader.empty()) { 583 // Lookup and save the FileID for the through header. If it isn't found 584 // in the search path, it's a fatal error. 585 OptionalFileEntryRef File = LookupFile( 586 SourceLocation(), PPOpts->PCHThroughHeader, 587 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, 588 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, 589 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 590 /*IsFrameworkFound=*/nullptr); 591 if (!File) { 592 Diag(SourceLocation(), diag::err_pp_through_header_not_found) 593 << PPOpts->PCHThroughHeader; 594 return; 595 } 596 setPCHThroughHeaderFileID( 597 SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); 598 } 599 600 // Skip tokens from the Predefines and if needed the main file. 601 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || 602 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) 603 SkipTokensWhileUsingPCH(); 604 } 605 606 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { 607 assert(PCHThroughHeaderFileID.isInvalid() && 608 "PCHThroughHeaderFileID already set!"); 609 PCHThroughHeaderFileID = FID; 610 } 611 612 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { 613 assert(PCHThroughHeaderFileID.isValid() && 614 "Invalid PCH through header FileID"); 615 return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); 616 } 617 618 bool Preprocessor::creatingPCHWithThroughHeader() { 619 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 620 PCHThroughHeaderFileID.isValid(); 621 } 622 623 bool Preprocessor::usingPCHWithThroughHeader() { 624 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 625 PCHThroughHeaderFileID.isValid(); 626 } 627 628 bool Preprocessor::creatingPCHWithPragmaHdrStop() { 629 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; 630 } 631 632 bool Preprocessor::usingPCHWithPragmaHdrStop() { 633 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; 634 } 635 636 /// Skip tokens until after the #include of the through header or 637 /// until after a #pragma hdrstop is seen. Tokens in the predefines file 638 /// and the main file may be skipped. If the end of the predefines file 639 /// is reached, skipping continues into the main file. If the end of the 640 /// main file is reached, it's a fatal error. 641 void Preprocessor::SkipTokensWhileUsingPCH() { 642 bool ReachedMainFileEOF = false; 643 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; 644 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; 645 Token Tok; 646 while (true) { 647 bool InPredefines = 648 (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); 649 CurLexerCallback(*this, Tok); 650 if (Tok.is(tok::eof) && !InPredefines) { 651 ReachedMainFileEOF = true; 652 break; 653 } 654 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) 655 break; 656 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) 657 break; 658 } 659 if (ReachedMainFileEOF) { 660 if (UsingPCHThroughHeader) 661 Diag(SourceLocation(), diag::err_pp_through_header_not_seen) 662 << PPOpts->PCHThroughHeader << 1; 663 else if (!PPOpts->PCHWithHdrStopCreate) 664 Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); 665 } 666 } 667 668 void Preprocessor::replayPreambleConditionalStack() { 669 // Restore the conditional stack from the preamble, if there is one. 670 if (PreambleConditionalStack.isReplaying()) { 671 assert(CurPPLexer && 672 "CurPPLexer is null when calling replayPreambleConditionalStack."); 673 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); 674 PreambleConditionalStack.doneReplaying(); 675 if (PreambleConditionalStack.reachedEOFWhileSkipping()) 676 SkipExcludedConditionalBlock( 677 PreambleConditionalStack.SkipInfo->HashTokenLoc, 678 PreambleConditionalStack.SkipInfo->IfTokenLoc, 679 PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, 680 PreambleConditionalStack.SkipInfo->FoundElse, 681 PreambleConditionalStack.SkipInfo->ElseLoc); 682 } 683 } 684 685 void Preprocessor::EndSourceFile() { 686 // Notify the client that we reached the end of the source file. 687 if (Callbacks) 688 Callbacks->EndOfMainFile(); 689 } 690 691 //===----------------------------------------------------------------------===// 692 // Lexer Event Handling. 693 //===----------------------------------------------------------------------===// 694 695 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the 696 /// identifier information for the token and install it into the token, 697 /// updating the token kind accordingly. 698 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { 699 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); 700 701 // Look up this token, see if it is a macro, or if it is a language keyword. 702 IdentifierInfo *II; 703 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { 704 // No cleaning needed, just use the characters from the lexed buffer. 705 II = getIdentifierInfo(Identifier.getRawIdentifier()); 706 } else { 707 // Cleaning needed, alloca a buffer, clean into it, then use the buffer. 708 SmallString<64> IdentifierBuffer; 709 StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); 710 711 if (Identifier.hasUCN()) { 712 SmallString<64> UCNIdentifierBuffer; 713 expandUCNs(UCNIdentifierBuffer, CleanedStr); 714 II = getIdentifierInfo(UCNIdentifierBuffer); 715 } else { 716 II = getIdentifierInfo(CleanedStr); 717 } 718 } 719 720 // Update the token info (identifier info and appropriate token kind). 721 // FIXME: the raw_identifier may contain leading whitespace which is removed 722 // from the cleaned identifier token. The SourceLocation should be updated to 723 // refer to the non-whitespace character. For instance, the text "\\\nB" (a 724 // line continuation before 'B') is parsed as a single tok::raw_identifier and 725 // is cleaned to tok::identifier "B". After cleaning the token's length is 726 // still 3 and the SourceLocation refers to the location of the backslash. 727 Identifier.setIdentifierInfo(II); 728 Identifier.setKind(II->getTokenID()); 729 730 return II; 731 } 732 733 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { 734 PoisonReasons[II] = DiagID; 735 } 736 737 void Preprocessor::PoisonSEHIdentifiers(bool Poison) { 738 assert(Ident__exception_code && Ident__exception_info); 739 assert(Ident___exception_code && Ident___exception_info); 740 Ident__exception_code->setIsPoisoned(Poison); 741 Ident___exception_code->setIsPoisoned(Poison); 742 Ident_GetExceptionCode->setIsPoisoned(Poison); 743 Ident__exception_info->setIsPoisoned(Poison); 744 Ident___exception_info->setIsPoisoned(Poison); 745 Ident_GetExceptionInfo->setIsPoisoned(Poison); 746 Ident__abnormal_termination->setIsPoisoned(Poison); 747 Ident___abnormal_termination->setIsPoisoned(Poison); 748 Ident_AbnormalTermination->setIsPoisoned(Poison); 749 } 750 751 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { 752 assert(Identifier.getIdentifierInfo() && 753 "Can't handle identifiers without identifier info!"); 754 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it = 755 PoisonReasons.find(Identifier.getIdentifierInfo()); 756 if(it == PoisonReasons.end()) 757 Diag(Identifier, diag::err_pp_used_poisoned_id); 758 else 759 Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); 760 } 761 762 void Preprocessor::updateOutOfDateIdentifier(const IdentifierInfo &II) const { 763 assert(II.isOutOfDate() && "not out of date"); 764 getExternalSource()->updateOutOfDateIdentifier(II); 765 } 766 767 /// HandleIdentifier - This callback is invoked when the lexer reads an 768 /// identifier. This callback looks up the identifier in the map and/or 769 /// potentially macro expands it or turns it into a named token (like 'for'). 770 /// 771 /// Note that callers of this method are guarded by checking the 772 /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the 773 /// IdentifierInfo methods that compute these properties will need to change to 774 /// match. 775 bool Preprocessor::HandleIdentifier(Token &Identifier) { 776 assert(Identifier.getIdentifierInfo() && 777 "Can't handle identifiers without identifier info!"); 778 779 IdentifierInfo &II = *Identifier.getIdentifierInfo(); 780 781 // If the information about this identifier is out of date, update it from 782 // the external source. 783 // We have to treat __VA_ARGS__ in a special way, since it gets 784 // serialized with isPoisoned = true, but our preprocessor may have 785 // unpoisoned it if we're defining a C99 macro. 786 if (II.isOutOfDate()) { 787 bool CurrentIsPoisoned = false; 788 const bool IsSpecialVariadicMacro = 789 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; 790 if (IsSpecialVariadicMacro) 791 CurrentIsPoisoned = II.isPoisoned(); 792 793 updateOutOfDateIdentifier(II); 794 Identifier.setKind(II.getTokenID()); 795 796 if (IsSpecialVariadicMacro) 797 II.setIsPoisoned(CurrentIsPoisoned); 798 } 799 800 // If this identifier was poisoned, and if it was not produced from a macro 801 // expansion, emit an error. 802 if (II.isPoisoned() && CurPPLexer) { 803 HandlePoisonedIdentifier(Identifier); 804 } 805 806 // If this is a macro to be expanded, do it. 807 if (const MacroDefinition MD = getMacroDefinition(&II)) { 808 const auto *MI = MD.getMacroInfo(); 809 assert(MI && "macro definition with no macro info?"); 810 if (!DisableMacroExpansion) { 811 if (!Identifier.isExpandDisabled() && MI->isEnabled()) { 812 // C99 6.10.3p10: If the preprocessing token immediately after the 813 // macro name isn't a '(', this macro should not be expanded. 814 if (!MI->isFunctionLike() || isNextPPTokenLParen()) 815 return HandleMacroExpandedIdentifier(Identifier, MD); 816 } else { 817 // C99 6.10.3.4p2 says that a disabled macro may never again be 818 // expanded, even if it's in a context where it could be expanded in the 819 // future. 820 Identifier.setFlag(Token::DisableExpand); 821 if (MI->isObjectLike() || isNextPPTokenLParen()) 822 Diag(Identifier, diag::pp_disabled_macro_expansion); 823 } 824 } 825 } 826 827 // If this identifier is a keyword in a newer Standard or proposed Standard, 828 // produce a warning. Don't warn if we're not considering macro expansion, 829 // since this identifier might be the name of a macro. 830 // FIXME: This warning is disabled in cases where it shouldn't be, like 831 // "#define constexpr constexpr", "int constexpr;" 832 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { 833 Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts())) 834 << II.getName(); 835 // Don't diagnose this keyword again in this translation unit. 836 II.setIsFutureCompatKeyword(false); 837 } 838 839 // If this is an extension token, diagnose its use. 840 // We avoid diagnosing tokens that originate from macro definitions. 841 // FIXME: This warning is disabled in cases where it shouldn't be, 842 // like "#define TY typeof", "TY(1) x". 843 if (II.isExtensionToken() && !DisableMacroExpansion) 844 Diag(Identifier, diag::ext_token_used); 845 846 // If this is the 'import' contextual keyword following an '@', note 847 // that the next token indicates a module name. 848 // 849 // Note that we do not treat 'import' as a contextual 850 // keyword when we're in a caching lexer, because caching lexers only get 851 // used in contexts where import declarations are disallowed. 852 // 853 // Likewise if this is the standard C++ import keyword. 854 if (((LastTokenWasAt && II.isModulesImport()) || 855 Identifier.is(tok::kw_import)) && 856 !InMacroArgs && !DisableMacroExpansion && 857 (getLangOpts().Modules || getLangOpts().DebuggerSupport) && 858 CurLexerCallback != CLK_CachingLexer) { 859 ModuleImportLoc = Identifier.getLocation(); 860 NamedModuleImportPath.clear(); 861 IsAtImport = true; 862 ModuleImportExpectsIdentifier = true; 863 CurLexerCallback = CLK_LexAfterModuleImport; 864 } 865 return true; 866 } 867 868 void Preprocessor::Lex(Token &Result) { 869 ++LexLevel; 870 871 // We loop here until a lex function returns a token; this avoids recursion. 872 while (!CurLexerCallback(*this, Result)) 873 ; 874 875 if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) 876 return; 877 878 if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { 879 // Remember the identifier before code completion token. 880 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); 881 setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); 882 // Set IdenfitierInfo to null to avoid confusing code that handles both 883 // identifiers and completion tokens. 884 Result.setIdentifierInfo(nullptr); 885 } 886 887 // Update StdCXXImportSeqState to track our position within a C++20 import-seq 888 // if this token is being produced as a result of phase 4 of translation. 889 // Update TrackGMFState to decide if we are currently in a Global Module 890 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state 891 // depends on the prevailing StdCXXImportSeq state in two cases. 892 if (getLangOpts().CPlusPlusModules && LexLevel == 1 && 893 !Result.getFlag(Token::IsReinjected)) { 894 switch (Result.getKind()) { 895 case tok::l_paren: case tok::l_square: case tok::l_brace: 896 StdCXXImportSeqState.handleOpenBracket(); 897 break; 898 case tok::r_paren: case tok::r_square: 899 StdCXXImportSeqState.handleCloseBracket(); 900 break; 901 case tok::r_brace: 902 StdCXXImportSeqState.handleCloseBrace(); 903 break; 904 // This token is injected to represent the translation of '#include "a.h"' 905 // into "import a.h;". Mimic the notional ';'. 906 case tok::annot_module_include: 907 case tok::semi: 908 TrackGMFState.handleSemi(); 909 StdCXXImportSeqState.handleSemi(); 910 ModuleDeclState.handleSemi(); 911 break; 912 case tok::header_name: 913 case tok::annot_header_unit: 914 StdCXXImportSeqState.handleHeaderName(); 915 break; 916 case tok::kw_export: 917 TrackGMFState.handleExport(); 918 StdCXXImportSeqState.handleExport(); 919 ModuleDeclState.handleExport(); 920 break; 921 case tok::colon: 922 ModuleDeclState.handleColon(); 923 break; 924 case tok::period: 925 ModuleDeclState.handlePeriod(); 926 break; 927 case tok::identifier: 928 // Check "import" and "module" when there is no open bracket. The two 929 // identifiers are not meaningful with open brackets. 930 if (StdCXXImportSeqState.atTopLevel()) { 931 if (Result.getIdentifierInfo()->isModulesImport()) { 932 TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq()); 933 StdCXXImportSeqState.handleImport(); 934 if (StdCXXImportSeqState.afterImportSeq()) { 935 ModuleImportLoc = Result.getLocation(); 936 NamedModuleImportPath.clear(); 937 IsAtImport = false; 938 ModuleImportExpectsIdentifier = true; 939 CurLexerCallback = CLK_LexAfterModuleImport; 940 } 941 break; 942 } else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) { 943 TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq()); 944 ModuleDeclState.handleModule(); 945 break; 946 } 947 } 948 ModuleDeclState.handleIdentifier(Result.getIdentifierInfo()); 949 if (ModuleDeclState.isModuleCandidate()) 950 break; 951 [[fallthrough]]; 952 default: 953 TrackGMFState.handleMisc(); 954 StdCXXImportSeqState.handleMisc(); 955 ModuleDeclState.handleMisc(); 956 break; 957 } 958 } 959 960 if (CurLexer && ++CheckPointCounter == CheckPointStepSize) { 961 CheckPoints[CurLexer->getFileID()].push_back(CurLexer->BufferPtr); 962 CheckPointCounter = 0; 963 } 964 965 LastTokenWasAt = Result.is(tok::at); 966 --LexLevel; 967 968 if ((LexLevel == 0 || PreprocessToken) && 969 !Result.getFlag(Token::IsReinjected)) { 970 if (LexLevel == 0) 971 ++TokenCount; 972 if (OnToken) 973 OnToken(Result); 974 } 975 } 976 977 void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) { 978 while (1) { 979 Token Tok; 980 Lex(Tok); 981 if (Tok.isOneOf(tok::unknown, tok::eof, tok::eod, 982 tok::annot_repl_input_end)) 983 break; 984 if (Tokens != nullptr) 985 Tokens->push_back(Tok); 986 } 987 } 988 989 /// Lex a header-name token (including one formed from header-name-tokens if 990 /// \p AllowConcatenation is \c true). 991 /// 992 /// \param FilenameTok Filled in with the next token. On success, this will 993 /// be either a header_name token. On failure, it will be whatever other 994 /// token was found instead. 995 /// \param AllowMacroExpansion If \c true, allow the header name to be formed 996 /// by macro expansion (concatenating tokens as necessary if the first 997 /// token is a '<'). 998 /// \return \c true if we reached EOD or EOF while looking for a > token in 999 /// a concatenated header name and diagnosed it. \c false otherwise. 1000 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { 1001 // Lex using header-name tokenization rules if tokens are being lexed from 1002 // a file. Just grab a token normally if we're in a macro expansion. 1003 if (CurPPLexer) 1004 CurPPLexer->LexIncludeFilename(FilenameTok); 1005 else 1006 Lex(FilenameTok); 1007 1008 // This could be a <foo/bar.h> file coming from a macro expansion. In this 1009 // case, glue the tokens together into an angle_string_literal token. 1010 SmallString<128> FilenameBuffer; 1011 if (FilenameTok.is(tok::less) && AllowMacroExpansion) { 1012 bool StartOfLine = FilenameTok.isAtStartOfLine(); 1013 bool LeadingSpace = FilenameTok.hasLeadingSpace(); 1014 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); 1015 1016 SourceLocation Start = FilenameTok.getLocation(); 1017 SourceLocation End; 1018 FilenameBuffer.push_back('<'); 1019 1020 // Consume tokens until we find a '>'. 1021 // FIXME: A header-name could be formed starting or ending with an 1022 // alternative token. It's not clear whether that's ill-formed in all 1023 // cases. 1024 while (FilenameTok.isNot(tok::greater)) { 1025 Lex(FilenameTok); 1026 if (FilenameTok.isOneOf(tok::eod, tok::eof)) { 1027 Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; 1028 Diag(Start, diag::note_matching) << tok::less; 1029 return true; 1030 } 1031 1032 End = FilenameTok.getLocation(); 1033 1034 // FIXME: Provide code completion for #includes. 1035 if (FilenameTok.is(tok::code_completion)) { 1036 setCodeCompletionReached(); 1037 Lex(FilenameTok); 1038 continue; 1039 } 1040 1041 // Append the spelling of this token to the buffer. If there was a space 1042 // before it, add it now. 1043 if (FilenameTok.hasLeadingSpace()) 1044 FilenameBuffer.push_back(' '); 1045 1046 // Get the spelling of the token, directly into FilenameBuffer if 1047 // possible. 1048 size_t PreAppendSize = FilenameBuffer.size(); 1049 FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); 1050 1051 const char *BufPtr = &FilenameBuffer[PreAppendSize]; 1052 unsigned ActualLen = getSpelling(FilenameTok, BufPtr); 1053 1054 // If the token was spelled somewhere else, copy it into FilenameBuffer. 1055 if (BufPtr != &FilenameBuffer[PreAppendSize]) 1056 memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); 1057 1058 // Resize FilenameBuffer to the correct size. 1059 if (FilenameTok.getLength() != ActualLen) 1060 FilenameBuffer.resize(PreAppendSize + ActualLen); 1061 } 1062 1063 FilenameTok.startToken(); 1064 FilenameTok.setKind(tok::header_name); 1065 FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); 1066 FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); 1067 FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); 1068 CreateString(FilenameBuffer, FilenameTok, Start, End); 1069 } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { 1070 // Convert a string-literal token of the form " h-char-sequence " 1071 // (produced by macro expansion) into a header-name token. 1072 // 1073 // The rules for header-names don't quite match the rules for 1074 // string-literals, but all the places where they differ result in 1075 // undefined behavior, so we can and do treat them the same. 1076 // 1077 // A string-literal with a prefix or suffix is not translated into a 1078 // header-name. This could theoretically be observable via the C++20 1079 // context-sensitive header-name formation rules. 1080 StringRef Str = getSpelling(FilenameTok, FilenameBuffer); 1081 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') 1082 FilenameTok.setKind(tok::header_name); 1083 } 1084 1085 return false; 1086 } 1087 1088 /// Collect the tokens of a C++20 pp-import-suffix. 1089 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) { 1090 // FIXME: For error recovery, consider recognizing attribute syntax here 1091 // and terminating / diagnosing a missing semicolon if we find anything 1092 // else? (Can we leave that to the parser?) 1093 unsigned BracketDepth = 0; 1094 while (true) { 1095 Toks.emplace_back(); 1096 Lex(Toks.back()); 1097 1098 switch (Toks.back().getKind()) { 1099 case tok::l_paren: case tok::l_square: case tok::l_brace: 1100 ++BracketDepth; 1101 break; 1102 1103 case tok::r_paren: case tok::r_square: case tok::r_brace: 1104 if (BracketDepth == 0) 1105 return; 1106 --BracketDepth; 1107 break; 1108 1109 case tok::semi: 1110 if (BracketDepth == 0) 1111 return; 1112 break; 1113 1114 case tok::eof: 1115 return; 1116 1117 default: 1118 break; 1119 } 1120 } 1121 } 1122 1123 1124 /// Lex a token following the 'import' contextual keyword. 1125 /// 1126 /// pp-import: [C++20] 1127 /// import header-name pp-import-suffix[opt] ; 1128 /// import header-name-tokens pp-import-suffix[opt] ; 1129 /// [ObjC] @ import module-name ; 1130 /// [Clang] import module-name ; 1131 /// 1132 /// header-name-tokens: 1133 /// string-literal 1134 /// < [any sequence of preprocessing-tokens other than >] > 1135 /// 1136 /// module-name: 1137 /// module-name-qualifier[opt] identifier 1138 /// 1139 /// module-name-qualifier 1140 /// module-name-qualifier[opt] identifier . 1141 /// 1142 /// We respond to a pp-import by importing macros from the named module. 1143 bool Preprocessor::LexAfterModuleImport(Token &Result) { 1144 // Figure out what kind of lexer we actually have. 1145 recomputeCurLexerKind(); 1146 1147 // Lex the next token. The header-name lexing rules are used at the start of 1148 // a pp-import. 1149 // 1150 // For now, we only support header-name imports in C++20 mode. 1151 // FIXME: Should we allow this in all language modes that support an import 1152 // declaration as an extension? 1153 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { 1154 if (LexHeaderName(Result)) 1155 return true; 1156 1157 if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) { 1158 std::string Name = ModuleDeclState.getPrimaryName().str(); 1159 Name += ":"; 1160 NamedModuleImportPath.push_back( 1161 {getIdentifierInfo(Name), Result.getLocation()}); 1162 CurLexerCallback = CLK_LexAfterModuleImport; 1163 return true; 1164 } 1165 } else { 1166 Lex(Result); 1167 } 1168 1169 // Allocate a holding buffer for a sequence of tokens and introduce it into 1170 // the token stream. 1171 auto EnterTokens = [this](ArrayRef<Token> Toks) { 1172 auto ToksCopy = std::make_unique<Token[]>(Toks.size()); 1173 std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); 1174 EnterTokenStream(std::move(ToksCopy), Toks.size(), 1175 /*DisableMacroExpansion*/ true, /*IsReinject*/ false); 1176 }; 1177 1178 bool ImportingHeader = Result.is(tok::header_name); 1179 // Check for a header-name. 1180 SmallVector<Token, 32> Suffix; 1181 if (ImportingHeader) { 1182 // Enter the header-name token into the token stream; a Lex action cannot 1183 // both return a token and cache tokens (doing so would corrupt the token 1184 // cache if the call to Lex comes from CachingLex / PeekAhead). 1185 Suffix.push_back(Result); 1186 1187 // Consume the pp-import-suffix and expand any macros in it now. We'll add 1188 // it back into the token stream later. 1189 CollectPpImportSuffix(Suffix); 1190 if (Suffix.back().isNot(tok::semi)) { 1191 // This is not a pp-import after all. 1192 EnterTokens(Suffix); 1193 return false; 1194 } 1195 1196 // C++2a [cpp.module]p1: 1197 // The ';' preprocessing-token terminating a pp-import shall not have 1198 // been produced by macro replacement. 1199 SourceLocation SemiLoc = Suffix.back().getLocation(); 1200 if (SemiLoc.isMacroID()) 1201 Diag(SemiLoc, diag::err_header_import_semi_in_macro); 1202 1203 // Reconstitute the import token. 1204 Token ImportTok; 1205 ImportTok.startToken(); 1206 ImportTok.setKind(tok::kw_import); 1207 ImportTok.setLocation(ModuleImportLoc); 1208 ImportTok.setIdentifierInfo(getIdentifierInfo("import")); 1209 ImportTok.setLength(6); 1210 1211 auto Action = HandleHeaderIncludeOrImport( 1212 /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); 1213 switch (Action.Kind) { 1214 case ImportAction::None: 1215 break; 1216 1217 case ImportAction::ModuleBegin: 1218 // Let the parser know we're textually entering the module. 1219 Suffix.emplace_back(); 1220 Suffix.back().startToken(); 1221 Suffix.back().setKind(tok::annot_module_begin); 1222 Suffix.back().setLocation(SemiLoc); 1223 Suffix.back().setAnnotationEndLoc(SemiLoc); 1224 Suffix.back().setAnnotationValue(Action.ModuleForHeader); 1225 [[fallthrough]]; 1226 1227 case ImportAction::ModuleImport: 1228 case ImportAction::HeaderUnitImport: 1229 case ImportAction::SkippedModuleImport: 1230 // We chose to import (or textually enter) the file. Convert the 1231 // header-name token into a header unit annotation token. 1232 Suffix[0].setKind(tok::annot_header_unit); 1233 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); 1234 Suffix[0].setAnnotationValue(Action.ModuleForHeader); 1235 // FIXME: Call the moduleImport callback? 1236 break; 1237 case ImportAction::Failure: 1238 assert(TheModuleLoader.HadFatalFailure && 1239 "This should be an early exit only to a fatal error"); 1240 Result.setKind(tok::eof); 1241 CurLexer->cutOffLexing(); 1242 EnterTokens(Suffix); 1243 return true; 1244 } 1245 1246 EnterTokens(Suffix); 1247 return false; 1248 } 1249 1250 // The token sequence 1251 // 1252 // import identifier (. identifier)* 1253 // 1254 // indicates a module import directive. We already saw the 'import' 1255 // contextual keyword, so now we're looking for the identifiers. 1256 if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { 1257 // We expected to see an identifier here, and we did; continue handling 1258 // identifiers. 1259 NamedModuleImportPath.push_back( 1260 std::make_pair(Result.getIdentifierInfo(), Result.getLocation())); 1261 ModuleImportExpectsIdentifier = false; 1262 CurLexerCallback = CLK_LexAfterModuleImport; 1263 return true; 1264 } 1265 1266 // If we're expecting a '.' or a ';', and we got a '.', then wait until we 1267 // see the next identifier. (We can also see a '[[' that begins an 1268 // attribute-specifier-seq here under the Standard C++ Modules.) 1269 if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { 1270 ModuleImportExpectsIdentifier = true; 1271 CurLexerCallback = CLK_LexAfterModuleImport; 1272 return true; 1273 } 1274 1275 // If we didn't recognize a module name at all, this is not a (valid) import. 1276 if (NamedModuleImportPath.empty() || Result.is(tok::eof)) 1277 return true; 1278 1279 // Consume the pp-import-suffix and expand any macros in it now, if we're not 1280 // at the semicolon already. 1281 SourceLocation SemiLoc = Result.getLocation(); 1282 if (Result.isNot(tok::semi)) { 1283 Suffix.push_back(Result); 1284 CollectPpImportSuffix(Suffix); 1285 if (Suffix.back().isNot(tok::semi)) { 1286 // This is not an import after all. 1287 EnterTokens(Suffix); 1288 return false; 1289 } 1290 SemiLoc = Suffix.back().getLocation(); 1291 } 1292 1293 // Under the standard C++ Modules, the dot is just part of the module name, 1294 // and not a real hierarchy separator. Flatten such module names now. 1295 // 1296 // FIXME: Is this the right level to be performing this transformation? 1297 std::string FlatModuleName; 1298 if (getLangOpts().CPlusPlusModules) { 1299 for (auto &Piece : NamedModuleImportPath) { 1300 // If the FlatModuleName ends with colon, it implies it is a partition. 1301 if (!FlatModuleName.empty() && FlatModuleName.back() != ':') 1302 FlatModuleName += "."; 1303 FlatModuleName += Piece.first->getName(); 1304 } 1305 SourceLocation FirstPathLoc = NamedModuleImportPath[0].second; 1306 NamedModuleImportPath.clear(); 1307 NamedModuleImportPath.push_back( 1308 std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc)); 1309 } 1310 1311 Module *Imported = nullptr; 1312 // We don't/shouldn't load the standard c++20 modules when preprocessing. 1313 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) { 1314 Imported = TheModuleLoader.loadModule(ModuleImportLoc, 1315 NamedModuleImportPath, 1316 Module::Hidden, 1317 /*IsInclusionDirective=*/false); 1318 if (Imported) 1319 makeModuleVisible(Imported, SemiLoc); 1320 } 1321 1322 if (Callbacks) 1323 Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported); 1324 1325 if (!Suffix.empty()) { 1326 EnterTokens(Suffix); 1327 return false; 1328 } 1329 return true; 1330 } 1331 1332 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { 1333 CurSubmoduleState->VisibleModules.setVisible( 1334 M, Loc, [](Module *) {}, 1335 [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) { 1336 // FIXME: Include the path in the diagnostic. 1337 // FIXME: Include the import location for the conflicting module. 1338 Diag(ModuleImportLoc, diag::warn_module_conflict) 1339 << Path[0]->getFullModuleName() 1340 << Conflict->getFullModuleName() 1341 << Message; 1342 }); 1343 1344 // Add this module to the imports list of the currently-built submodule. 1345 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) 1346 BuildingSubmoduleStack.back().M->Imports.insert(M); 1347 } 1348 1349 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, 1350 const char *DiagnosticTag, 1351 bool AllowMacroExpansion) { 1352 // We need at least one string literal. 1353 if (Result.isNot(tok::string_literal)) { 1354 Diag(Result, diag::err_expected_string_literal) 1355 << /*Source='in...'*/0 << DiagnosticTag; 1356 return false; 1357 } 1358 1359 // Lex string literal tokens, optionally with macro expansion. 1360 SmallVector<Token, 4> StrToks; 1361 do { 1362 StrToks.push_back(Result); 1363 1364 if (Result.hasUDSuffix()) 1365 Diag(Result, diag::err_invalid_string_udl); 1366 1367 if (AllowMacroExpansion) 1368 Lex(Result); 1369 else 1370 LexUnexpandedToken(Result); 1371 } while (Result.is(tok::string_literal)); 1372 1373 // Concatenate and parse the strings. 1374 StringLiteralParser Literal(StrToks, *this); 1375 assert(Literal.isOrdinary() && "Didn't allow wide strings in"); 1376 1377 if (Literal.hadError) 1378 return false; 1379 1380 if (Literal.Pascal) { 1381 Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) 1382 << /*Source='in...'*/0 << DiagnosticTag; 1383 return false; 1384 } 1385 1386 String = std::string(Literal.GetString()); 1387 return true; 1388 } 1389 1390 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { 1391 assert(Tok.is(tok::numeric_constant)); 1392 SmallString<8> IntegerBuffer; 1393 bool NumberInvalid = false; 1394 StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); 1395 if (NumberInvalid) 1396 return false; 1397 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), 1398 getLangOpts(), getTargetInfo(), 1399 getDiagnostics()); 1400 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) 1401 return false; 1402 llvm::APInt APVal(64, 0); 1403 if (Literal.GetIntegerValue(APVal)) 1404 return false; 1405 Lex(Tok); 1406 Value = APVal.getLimitedValue(); 1407 return true; 1408 } 1409 1410 void Preprocessor::addCommentHandler(CommentHandler *Handler) { 1411 assert(Handler && "NULL comment handler"); 1412 assert(!llvm::is_contained(CommentHandlers, Handler) && 1413 "Comment handler already registered"); 1414 CommentHandlers.push_back(Handler); 1415 } 1416 1417 void Preprocessor::removeCommentHandler(CommentHandler *Handler) { 1418 std::vector<CommentHandler *>::iterator Pos = 1419 llvm::find(CommentHandlers, Handler); 1420 assert(Pos != CommentHandlers.end() && "Comment handler not registered"); 1421 CommentHandlers.erase(Pos); 1422 } 1423 1424 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { 1425 bool AnyPendingTokens = false; 1426 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(), 1427 HEnd = CommentHandlers.end(); 1428 H != HEnd; ++H) { 1429 if ((*H)->HandleComment(*this, Comment)) 1430 AnyPendingTokens = true; 1431 } 1432 if (!AnyPendingTokens || getCommentRetentionState()) 1433 return false; 1434 Lex(result); 1435 return true; 1436 } 1437 1438 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const { 1439 const MacroAnnotations &A = 1440 getMacroAnnotations(Identifier.getIdentifierInfo()); 1441 assert(A.DeprecationInfo && 1442 "Macro deprecation warning without recorded annotation!"); 1443 const MacroAnnotationInfo &Info = *A.DeprecationInfo; 1444 if (Info.Message.empty()) 1445 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1446 << Identifier.getIdentifierInfo() << 0; 1447 else 1448 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1449 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1450 Diag(Info.Location, diag::note_pp_macro_annotation) << 0; 1451 } 1452 1453 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const { 1454 const MacroAnnotations &A = 1455 getMacroAnnotations(Identifier.getIdentifierInfo()); 1456 assert(A.RestrictExpansionInfo && 1457 "Macro restricted expansion warning without recorded annotation!"); 1458 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo; 1459 if (Info.Message.empty()) 1460 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1461 << Identifier.getIdentifierInfo() << 0; 1462 else 1463 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1464 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1465 Diag(Info.Location, diag::note_pp_macro_annotation) << 1; 1466 } 1467 1468 void Preprocessor::emitRestrictInfNaNWarning(const Token &Identifier, 1469 unsigned DiagSelection) const { 1470 Diag(Identifier, diag::warn_fp_nan_inf_when_disabled) << DiagSelection << 1; 1471 } 1472 1473 void Preprocessor::emitFinalMacroWarning(const Token &Identifier, 1474 bool IsUndef) const { 1475 const MacroAnnotations &A = 1476 getMacroAnnotations(Identifier.getIdentifierInfo()); 1477 assert(A.FinalAnnotationLoc && 1478 "Final macro warning without recorded annotation!"); 1479 1480 Diag(Identifier, diag::warn_pragma_final_macro) 1481 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1); 1482 Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2; 1483 } 1484 1485 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr, 1486 const SourceLocation &Loc) const { 1487 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in: 1488 auto FirstRegionEndingAfterLoc = llvm::partition_point( 1489 SafeBufferOptOutMap, 1490 [&SourceMgr, 1491 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) { 1492 return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc); 1493 }); 1494 1495 if (FirstRegionEndingAfterLoc != SafeBufferOptOutMap.end()) { 1496 // To test if the start location of the found region precedes `Loc`: 1497 return SourceMgr.isBeforeInTranslationUnit(FirstRegionEndingAfterLoc->first, 1498 Loc); 1499 } 1500 // If we do not find a region whose end location passes `Loc`, we want to 1501 // check if the current region is still open: 1502 if (!SafeBufferOptOutMap.empty() && 1503 SafeBufferOptOutMap.back().first == SafeBufferOptOutMap.back().second) 1504 return SourceMgr.isBeforeInTranslationUnit(SafeBufferOptOutMap.back().first, 1505 Loc); 1506 return false; 1507 } 1508 1509 bool Preprocessor::enterOrExitSafeBufferOptOutRegion( 1510 bool isEnter, const SourceLocation &Loc) { 1511 if (isEnter) { 1512 if (isPPInSafeBufferOptOutRegion()) 1513 return true; // invalid enter action 1514 InSafeBufferOptOutRegion = true; 1515 CurrentSafeBufferOptOutStart = Loc; 1516 1517 // To set the start location of a new region: 1518 1519 if (!SafeBufferOptOutMap.empty()) { 1520 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back(); 1521 assert(PrevRegion->first != PrevRegion->second && 1522 "Shall not begin a safe buffer opt-out region before closing the " 1523 "previous one."); 1524 } 1525 // If the start location equals to the end location, we call the region a 1526 // open region or a unclosed region (i.e., end location has not been set 1527 // yet). 1528 SafeBufferOptOutMap.emplace_back(Loc, Loc); 1529 } else { 1530 if (!isPPInSafeBufferOptOutRegion()) 1531 return true; // invalid enter action 1532 InSafeBufferOptOutRegion = false; 1533 1534 // To set the end location of the current open region: 1535 1536 assert(!SafeBufferOptOutMap.empty() && 1537 "Misordered safe buffer opt-out regions"); 1538 auto *CurrRegion = &SafeBufferOptOutMap.back(); 1539 assert(CurrRegion->first == CurrRegion->second && 1540 "Set end location to a closed safe buffer opt-out region"); 1541 CurrRegion->second = Loc; 1542 } 1543 return false; 1544 } 1545 1546 bool Preprocessor::isPPInSafeBufferOptOutRegion() { 1547 return InSafeBufferOptOutRegion; 1548 } 1549 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) { 1550 StartLoc = CurrentSafeBufferOptOutStart; 1551 return InSafeBufferOptOutRegion; 1552 } 1553 1554 ModuleLoader::~ModuleLoader() = default; 1555 1556 CommentHandler::~CommentHandler() = default; 1557 1558 EmptylineHandler::~EmptylineHandler() = default; 1559 1560 CodeCompletionHandler::~CodeCompletionHandler() = default; 1561 1562 void Preprocessor::createPreprocessingRecord() { 1563 if (Record) 1564 return; 1565 1566 Record = new PreprocessingRecord(getSourceManager()); 1567 addPPCallbacks(std::unique_ptr<PPCallbacks>(Record)); 1568 } 1569 1570 const char *Preprocessor::getCheckPoint(FileID FID, const char *Start) const { 1571 if (auto It = CheckPoints.find(FID); It != CheckPoints.end()) { 1572 const SmallVector<const char *> &FileCheckPoints = It->second; 1573 const char *Last = nullptr; 1574 // FIXME: Do better than a linear search. 1575 for (const char *P : FileCheckPoints) { 1576 if (P > Start) 1577 break; 1578 Last = P; 1579 } 1580 return Last; 1581 } 1582 1583 return nullptr; 1584 } 1585