1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Preprocessor interface. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // Options to support: 14 // -H - Print the name of each header file used. 15 // -d[DNI] - Dump various things. 16 // -fworking-directory - #line's with preprocessor's working dir. 17 // -fpreprocessed 18 // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD 19 // -W* 20 // -w 21 // 22 // Messages to emit: 23 // "Multiple include guards may be useful for:\n" 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/Lex/Preprocessor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/FileSystemStatCache.h" 31 #include "clang/Basic/IdentifierTable.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/LangOptions.h" 34 #include "clang/Basic/Module.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Lex/CodeCompletionHandler.h" 39 #include "clang/Lex/ExternalPreprocessorSource.h" 40 #include "clang/Lex/HeaderSearch.h" 41 #include "clang/Lex/LexDiagnostic.h" 42 #include "clang/Lex/Lexer.h" 43 #include "clang/Lex/LiteralSupport.h" 44 #include "clang/Lex/MacroArgs.h" 45 #include "clang/Lex/MacroInfo.h" 46 #include "clang/Lex/ModuleLoader.h" 47 #include "clang/Lex/Pragma.h" 48 #include "clang/Lex/PreprocessingRecord.h" 49 #include "clang/Lex/PreprocessorLexer.h" 50 #include "clang/Lex/PreprocessorOptions.h" 51 #include "clang/Lex/ScratchBuffer.h" 52 #include "clang/Lex/Token.h" 53 #include "clang/Lex/TokenLexer.h" 54 #include "llvm/ADT/APInt.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/DenseMap.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallString.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/iterator_range.h" 62 #include "llvm/Support/Capacity.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MemoryBuffer.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <memory> 69 #include <optional> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace clang; 75 76 /// Minimum distance between two check points, in tokens. 77 static constexpr unsigned CheckPointStepSize = 1024; 78 79 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) 80 81 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; 82 83 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, 84 DiagnosticsEngine &diags, const LangOptions &opts, 85 SourceManager &SM, HeaderSearch &Headers, 86 ModuleLoader &TheModuleLoader, 87 IdentifierInfoLookup *IILookup, bool OwnsHeaders, 88 TranslationUnitKind TUKind) 89 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), 90 FileMgr(Headers.getFileMgr()), SourceMgr(SM), 91 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), 92 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), 93 // As the language options may have not been loaded yet (when 94 // deserializing an ASTUnit), adding keywords to the identifier table is 95 // deferred to Preprocessor::Initialize(). 96 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), 97 TUKind(TUKind), SkipMainFilePreamble(0, true), 98 CurSubmoduleState(&NullSubmoduleState) { 99 OwnsHeaderSearch = OwnsHeaders; 100 101 // Default to discarding comments. 102 KeepComments = false; 103 KeepMacroComments = false; 104 SuppressIncludeNotFoundError = false; 105 106 // Macro expansion is enabled. 107 DisableMacroExpansion = false; 108 MacroExpansionInDirectivesOverride = false; 109 InMacroArgs = false; 110 ArgMacro = nullptr; 111 InMacroArgPreExpansion = false; 112 NumCachedTokenLexers = 0; 113 PragmasEnabled = true; 114 ParsingIfOrElifDirective = false; 115 PreprocessedOutput = false; 116 117 // We haven't read anything from the external source. 118 ReadMacrosFromExternalSource = false; 119 120 BuiltinInfo = std::make_unique<Builtin::Context>(); 121 122 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of 123 // a macro. They get unpoisoned where it is allowed. 124 (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); 125 SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); 126 (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); 127 SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); 128 129 // Initialize the pragma handlers. 130 RegisterBuiltinPragmas(); 131 132 // Initialize builtin macros like __LINE__ and friends. 133 RegisterBuiltinMacros(); 134 135 if(LangOpts.Borland) { 136 Ident__exception_info = getIdentifierInfo("_exception_info"); 137 Ident___exception_info = getIdentifierInfo("__exception_info"); 138 Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); 139 Ident__exception_code = getIdentifierInfo("_exception_code"); 140 Ident___exception_code = getIdentifierInfo("__exception_code"); 141 Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); 142 Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); 143 Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); 144 Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); 145 } else { 146 Ident__exception_info = Ident__exception_code = nullptr; 147 Ident__abnormal_termination = Ident___exception_info = nullptr; 148 Ident___exception_code = Ident___abnormal_termination = nullptr; 149 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; 150 Ident_AbnormalTermination = nullptr; 151 } 152 153 // Default incremental processing to -fincremental-extensions, clients can 154 // override with `enableIncrementalProcessing` if desired. 155 IncrementalProcessing = LangOpts.IncrementalExtensions; 156 157 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. 158 if (usingPCHWithPragmaHdrStop()) 159 SkippingUntilPragmaHdrStop = true; 160 161 // If using a PCH with a through header, start skipping tokens. 162 if (!this->PPOpts->PCHThroughHeader.empty() && 163 !this->PPOpts->ImplicitPCHInclude.empty()) 164 SkippingUntilPCHThroughHeader = true; 165 166 if (this->PPOpts->GeneratePreamble) 167 PreambleConditionalStack.startRecording(); 168 169 MaxTokens = LangOpts.MaxTokens; 170 } 171 172 Preprocessor::~Preprocessor() { 173 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); 174 175 IncludeMacroStack.clear(); 176 177 // Free any cached macro expanders. 178 // This populates MacroArgCache, so all TokenLexers need to be destroyed 179 // before the code below that frees up the MacroArgCache list. 180 std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); 181 CurTokenLexer.reset(); 182 183 // Free any cached MacroArgs. 184 for (MacroArgs *ArgList = MacroArgCache; ArgList;) 185 ArgList = ArgList->deallocate(); 186 187 // Delete the header search info, if we own it. 188 if (OwnsHeaderSearch) 189 delete &HeaderInfo; 190 } 191 192 void Preprocessor::Initialize(const TargetInfo &Target, 193 const TargetInfo *AuxTarget) { 194 assert((!this->Target || this->Target == &Target) && 195 "Invalid override of target information"); 196 this->Target = &Target; 197 198 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && 199 "Invalid override of aux target information."); 200 this->AuxTarget = AuxTarget; 201 202 // Initialize information about built-ins. 203 BuiltinInfo->InitializeTarget(Target, AuxTarget); 204 HeaderInfo.setTarget(Target); 205 206 // Populate the identifier table with info about keywords for the current language. 207 Identifiers.AddKeywords(LangOpts); 208 209 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo. 210 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod()); 211 212 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine) 213 // Use setting from TargetInfo. 214 setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod()); 215 else 216 // Set initial value of __FLT_EVAL_METHOD__ from the command line. 217 setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod()); 218 } 219 220 void Preprocessor::InitializeForModelFile() { 221 NumEnteredSourceFiles = 0; 222 223 // Reset pragmas 224 PragmaHandlersBackup = std::move(PragmaHandlers); 225 PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef()); 226 RegisterBuiltinPragmas(); 227 228 // Reset PredefinesFileID 229 PredefinesFileID = FileID(); 230 } 231 232 void Preprocessor::FinalizeForModelFile() { 233 NumEnteredSourceFiles = 1; 234 235 PragmaHandlers = std::move(PragmaHandlersBackup); 236 } 237 238 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { 239 llvm::errs() << tok::getTokenName(Tok.getKind()); 240 241 if (!Tok.isAnnotation()) 242 llvm::errs() << " '" << getSpelling(Tok) << "'"; 243 244 if (!DumpFlags) return; 245 246 llvm::errs() << "\t"; 247 if (Tok.isAtStartOfLine()) 248 llvm::errs() << " [StartOfLine]"; 249 if (Tok.hasLeadingSpace()) 250 llvm::errs() << " [LeadingSpace]"; 251 if (Tok.isExpandDisabled()) 252 llvm::errs() << " [ExpandDisabled]"; 253 if (Tok.needsCleaning()) { 254 const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); 255 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) 256 << "']"; 257 } 258 259 llvm::errs() << "\tLoc=<"; 260 DumpLocation(Tok.getLocation()); 261 llvm::errs() << ">"; 262 } 263 264 void Preprocessor::DumpLocation(SourceLocation Loc) const { 265 Loc.print(llvm::errs(), SourceMgr); 266 } 267 268 void Preprocessor::DumpMacro(const MacroInfo &MI) const { 269 llvm::errs() << "MACRO: "; 270 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { 271 DumpToken(MI.getReplacementToken(i)); 272 llvm::errs() << " "; 273 } 274 llvm::errs() << "\n"; 275 } 276 277 void Preprocessor::PrintStats() { 278 llvm::errs() << "\n*** Preprocessor Stats:\n"; 279 llvm::errs() << NumDirectives << " directives found:\n"; 280 llvm::errs() << " " << NumDefined << " #define.\n"; 281 llvm::errs() << " " << NumUndefined << " #undef.\n"; 282 llvm::errs() << " #include/#include_next/#import:\n"; 283 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; 284 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; 285 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; 286 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; 287 llvm::errs() << " " << NumEndif << " #endif.\n"; 288 llvm::errs() << " " << NumPragma << " #pragma.\n"; 289 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; 290 291 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" 292 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " 293 << NumFastMacroExpanded << " on the fast path.\n"; 294 llvm::errs() << (NumFastTokenPaste+NumTokenPaste) 295 << " token paste (##) operations performed, " 296 << NumFastTokenPaste << " on the fast path.\n"; 297 298 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; 299 300 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); 301 llvm::errs() << "\n Macro Expanded Tokens: " 302 << llvm::capacity_in_bytes(MacroExpandedTokens); 303 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); 304 // FIXME: List information for all submodules. 305 llvm::errs() << "\n Macros: " 306 << llvm::capacity_in_bytes(CurSubmoduleState->Macros); 307 llvm::errs() << "\n #pragma push_macro Info: " 308 << llvm::capacity_in_bytes(PragmaPushMacroInfo); 309 llvm::errs() << "\n Poison Reasons: " 310 << llvm::capacity_in_bytes(PoisonReasons); 311 llvm::errs() << "\n Comment Handlers: " 312 << llvm::capacity_in_bytes(CommentHandlers) << "\n"; 313 } 314 315 Preprocessor::macro_iterator 316 Preprocessor::macro_begin(bool IncludeExternalMacros) const { 317 if (IncludeExternalMacros && ExternalSource && 318 !ReadMacrosFromExternalSource) { 319 ReadMacrosFromExternalSource = true; 320 ExternalSource->ReadDefinedMacros(); 321 } 322 323 // Make sure we cover all macros in visible modules. 324 for (const ModuleMacro &Macro : ModuleMacros) 325 CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); 326 327 return CurSubmoduleState->Macros.begin(); 328 } 329 330 size_t Preprocessor::getTotalMemory() const { 331 return BP.getTotalMemory() 332 + llvm::capacity_in_bytes(MacroExpandedTokens) 333 + Predefines.capacity() /* Predefines buffer. */ 334 // FIXME: Include sizes from all submodules, and include MacroInfo sizes, 335 // and ModuleMacros. 336 + llvm::capacity_in_bytes(CurSubmoduleState->Macros) 337 + llvm::capacity_in_bytes(PragmaPushMacroInfo) 338 + llvm::capacity_in_bytes(PoisonReasons) 339 + llvm::capacity_in_bytes(CommentHandlers); 340 } 341 342 Preprocessor::macro_iterator 343 Preprocessor::macro_end(bool IncludeExternalMacros) const { 344 if (IncludeExternalMacros && ExternalSource && 345 !ReadMacrosFromExternalSource) { 346 ReadMacrosFromExternalSource = true; 347 ExternalSource->ReadDefinedMacros(); 348 } 349 350 return CurSubmoduleState->Macros.end(); 351 } 352 353 /// Compares macro tokens with a specified token value sequence. 354 static bool MacroDefinitionEquals(const MacroInfo *MI, 355 ArrayRef<TokenValue> Tokens) { 356 return Tokens.size() == MI->getNumTokens() && 357 std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); 358 } 359 360 StringRef Preprocessor::getLastMacroWithSpelling( 361 SourceLocation Loc, 362 ArrayRef<TokenValue> Tokens) const { 363 SourceLocation BestLocation; 364 StringRef BestSpelling; 365 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); 366 I != E; ++I) { 367 const MacroDirective::DefInfo 368 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); 369 if (!Def || !Def.getMacroInfo()) 370 continue; 371 if (!Def.getMacroInfo()->isObjectLike()) 372 continue; 373 if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) 374 continue; 375 SourceLocation Location = Def.getLocation(); 376 // Choose the macro defined latest. 377 if (BestLocation.isInvalid() || 378 (Location.isValid() && 379 SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { 380 BestLocation = Location; 381 BestSpelling = I->first->getName(); 382 } 383 } 384 return BestSpelling; 385 } 386 387 void Preprocessor::recomputeCurLexerKind() { 388 if (CurLexer) 389 CurLexerCallback = CurLexer->isDependencyDirectivesLexer() 390 ? CLK_DependencyDirectivesLexer 391 : CLK_Lexer; 392 else if (CurTokenLexer) 393 CurLexerCallback = CLK_TokenLexer; 394 else 395 CurLexerCallback = CLK_CachingLexer; 396 } 397 398 bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File, 399 unsigned CompleteLine, 400 unsigned CompleteColumn) { 401 assert(CompleteLine && CompleteColumn && "Starts from 1:1"); 402 assert(!CodeCompletionFile && "Already set"); 403 404 // Load the actual file's contents. 405 std::optional<llvm::MemoryBufferRef> Buffer = 406 SourceMgr.getMemoryBufferForFileOrNone(File); 407 if (!Buffer) 408 return true; 409 410 // Find the byte position of the truncation point. 411 const char *Position = Buffer->getBufferStart(); 412 for (unsigned Line = 1; Line < CompleteLine; ++Line) { 413 for (; *Position; ++Position) { 414 if (*Position != '\r' && *Position != '\n') 415 continue; 416 417 // Eat \r\n or \n\r as a single line. 418 if ((Position[1] == '\r' || Position[1] == '\n') && 419 Position[0] != Position[1]) 420 ++Position; 421 ++Position; 422 break; 423 } 424 } 425 426 Position += CompleteColumn - 1; 427 428 // If pointing inside the preamble, adjust the position at the beginning of 429 // the file after the preamble. 430 if (SkipMainFilePreamble.first && 431 SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { 432 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) 433 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; 434 } 435 436 if (Position > Buffer->getBufferEnd()) 437 Position = Buffer->getBufferEnd(); 438 439 CodeCompletionFile = File; 440 CodeCompletionOffset = Position - Buffer->getBufferStart(); 441 442 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( 443 Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); 444 char *NewBuf = NewBuffer->getBufferStart(); 445 char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); 446 *NewPos = '\0'; 447 std::copy(Position, Buffer->getBufferEnd(), NewPos+1); 448 SourceMgr.overrideFileContents(File, std::move(NewBuffer)); 449 450 return false; 451 } 452 453 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, 454 bool IsAngled) { 455 setCodeCompletionReached(); 456 if (CodeComplete) 457 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); 458 } 459 460 void Preprocessor::CodeCompleteNaturalLanguage() { 461 setCodeCompletionReached(); 462 if (CodeComplete) 463 CodeComplete->CodeCompleteNaturalLanguage(); 464 } 465 466 /// getSpelling - This method is used to get the spelling of a token into a 467 /// SmallVector. Note that the returned StringRef may not point to the 468 /// supplied buffer if a copy can be avoided. 469 StringRef Preprocessor::getSpelling(const Token &Tok, 470 SmallVectorImpl<char> &Buffer, 471 bool *Invalid) const { 472 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 473 if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { 474 // Try the fast path. 475 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) 476 return II->getName(); 477 } 478 479 // Resize the buffer if we need to copy into it. 480 if (Tok.needsCleaning()) 481 Buffer.resize(Tok.getLength()); 482 483 const char *Ptr = Buffer.data(); 484 unsigned Len = getSpelling(Tok, Ptr, Invalid); 485 return StringRef(Ptr, Len); 486 } 487 488 /// CreateString - Plop the specified string into a scratch buffer and return a 489 /// location for it. If specified, the source location provides a source 490 /// location for the token. 491 void Preprocessor::CreateString(StringRef Str, Token &Tok, 492 SourceLocation ExpansionLocStart, 493 SourceLocation ExpansionLocEnd) { 494 Tok.setLength(Str.size()); 495 496 const char *DestPtr; 497 SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); 498 499 if (ExpansionLocStart.isValid()) 500 Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, 501 ExpansionLocEnd, Str.size()); 502 Tok.setLocation(Loc); 503 504 // If this is a raw identifier or a literal token, set the pointer data. 505 if (Tok.is(tok::raw_identifier)) 506 Tok.setRawIdentifierData(DestPtr); 507 else if (Tok.isLiteral()) 508 Tok.setLiteralData(DestPtr); 509 } 510 511 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { 512 auto &SM = getSourceManager(); 513 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); 514 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc); 515 bool Invalid = false; 516 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 517 if (Invalid) 518 return SourceLocation(); 519 520 // FIXME: We could consider re-using spelling for tokens we see repeatedly. 521 const char *DestPtr; 522 SourceLocation Spelling = 523 ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); 524 return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); 525 } 526 527 Module *Preprocessor::getCurrentModule() { 528 if (!getLangOpts().isCompilingModule()) 529 return nullptr; 530 531 return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); 532 } 533 534 Module *Preprocessor::getCurrentModuleImplementation() { 535 if (!getLangOpts().isCompilingModuleImplementation()) 536 return nullptr; 537 538 return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName); 539 } 540 541 //===----------------------------------------------------------------------===// 542 // Preprocessor Initialization Methods 543 //===----------------------------------------------------------------------===// 544 545 /// EnterMainSourceFile - Enter the specified FileID as the main source file, 546 /// which implicitly adds the builtin defines etc. 547 void Preprocessor::EnterMainSourceFile() { 548 // We do not allow the preprocessor to reenter the main file. Doing so will 549 // cause FileID's to accumulate information from both runs (e.g. #line 550 // information) and predefined macros aren't guaranteed to be set properly. 551 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); 552 FileID MainFileID = SourceMgr.getMainFileID(); 553 554 // If MainFileID is loaded it means we loaded an AST file, no need to enter 555 // a main file. 556 if (!SourceMgr.isLoadedFileID(MainFileID)) { 557 // Enter the main file source buffer. 558 EnterSourceFile(MainFileID, nullptr, SourceLocation()); 559 560 // If we've been asked to skip bytes in the main file (e.g., as part of a 561 // precompiled preamble), do so now. 562 if (SkipMainFilePreamble.first > 0) 563 CurLexer->SetByteOffset(SkipMainFilePreamble.first, 564 SkipMainFilePreamble.second); 565 566 // Tell the header info that the main file was entered. If the file is later 567 // #imported, it won't be re-entered. 568 if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(MainFileID)) 569 markIncluded(*FE); 570 } 571 572 // Preprocess Predefines to populate the initial preprocessor state. 573 std::unique_ptr<llvm::MemoryBuffer> SB = 574 llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>"); 575 assert(SB && "Cannot create predefined source buffer"); 576 FileID FID = SourceMgr.createFileID(std::move(SB)); 577 assert(FID.isValid() && "Could not create FileID for predefines?"); 578 setPredefinesFileID(FID); 579 580 // Start parsing the predefines. 581 EnterSourceFile(FID, nullptr, SourceLocation()); 582 583 if (!PPOpts->PCHThroughHeader.empty()) { 584 // Lookup and save the FileID for the through header. If it isn't found 585 // in the search path, it's a fatal error. 586 OptionalFileEntryRef File = LookupFile( 587 SourceLocation(), PPOpts->PCHThroughHeader, 588 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, 589 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, 590 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 591 /*IsFrameworkFound=*/nullptr); 592 if (!File) { 593 Diag(SourceLocation(), diag::err_pp_through_header_not_found) 594 << PPOpts->PCHThroughHeader; 595 return; 596 } 597 setPCHThroughHeaderFileID( 598 SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); 599 } 600 601 // Skip tokens from the Predefines and if needed the main file. 602 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || 603 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) 604 SkipTokensWhileUsingPCH(); 605 } 606 607 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { 608 assert(PCHThroughHeaderFileID.isInvalid() && 609 "PCHThroughHeaderFileID already set!"); 610 PCHThroughHeaderFileID = FID; 611 } 612 613 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { 614 assert(PCHThroughHeaderFileID.isValid() && 615 "Invalid PCH through header FileID"); 616 return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); 617 } 618 619 bool Preprocessor::creatingPCHWithThroughHeader() { 620 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 621 PCHThroughHeaderFileID.isValid(); 622 } 623 624 bool Preprocessor::usingPCHWithThroughHeader() { 625 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 626 PCHThroughHeaderFileID.isValid(); 627 } 628 629 bool Preprocessor::creatingPCHWithPragmaHdrStop() { 630 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; 631 } 632 633 bool Preprocessor::usingPCHWithPragmaHdrStop() { 634 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; 635 } 636 637 /// Skip tokens until after the #include of the through header or 638 /// until after a #pragma hdrstop is seen. Tokens in the predefines file 639 /// and the main file may be skipped. If the end of the predefines file 640 /// is reached, skipping continues into the main file. If the end of the 641 /// main file is reached, it's a fatal error. 642 void Preprocessor::SkipTokensWhileUsingPCH() { 643 bool ReachedMainFileEOF = false; 644 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; 645 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; 646 Token Tok; 647 while (true) { 648 bool InPredefines = 649 (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); 650 CurLexerCallback(*this, Tok); 651 if (Tok.is(tok::eof) && !InPredefines) { 652 ReachedMainFileEOF = true; 653 break; 654 } 655 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) 656 break; 657 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) 658 break; 659 } 660 if (ReachedMainFileEOF) { 661 if (UsingPCHThroughHeader) 662 Diag(SourceLocation(), diag::err_pp_through_header_not_seen) 663 << PPOpts->PCHThroughHeader << 1; 664 else if (!PPOpts->PCHWithHdrStopCreate) 665 Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); 666 } 667 } 668 669 void Preprocessor::replayPreambleConditionalStack() { 670 // Restore the conditional stack from the preamble, if there is one. 671 if (PreambleConditionalStack.isReplaying()) { 672 assert(CurPPLexer && 673 "CurPPLexer is null when calling replayPreambleConditionalStack."); 674 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); 675 PreambleConditionalStack.doneReplaying(); 676 if (PreambleConditionalStack.reachedEOFWhileSkipping()) 677 SkipExcludedConditionalBlock( 678 PreambleConditionalStack.SkipInfo->HashTokenLoc, 679 PreambleConditionalStack.SkipInfo->IfTokenLoc, 680 PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, 681 PreambleConditionalStack.SkipInfo->FoundElse, 682 PreambleConditionalStack.SkipInfo->ElseLoc); 683 } 684 } 685 686 void Preprocessor::EndSourceFile() { 687 // Notify the client that we reached the end of the source file. 688 if (Callbacks) 689 Callbacks->EndOfMainFile(); 690 } 691 692 //===----------------------------------------------------------------------===// 693 // Lexer Event Handling. 694 //===----------------------------------------------------------------------===// 695 696 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the 697 /// identifier information for the token and install it into the token, 698 /// updating the token kind accordingly. 699 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { 700 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); 701 702 // Look up this token, see if it is a macro, or if it is a language keyword. 703 IdentifierInfo *II; 704 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { 705 // No cleaning needed, just use the characters from the lexed buffer. 706 II = getIdentifierInfo(Identifier.getRawIdentifier()); 707 } else { 708 // Cleaning needed, alloca a buffer, clean into it, then use the buffer. 709 SmallString<64> IdentifierBuffer; 710 StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); 711 712 if (Identifier.hasUCN()) { 713 SmallString<64> UCNIdentifierBuffer; 714 expandUCNs(UCNIdentifierBuffer, CleanedStr); 715 II = getIdentifierInfo(UCNIdentifierBuffer); 716 } else { 717 II = getIdentifierInfo(CleanedStr); 718 } 719 } 720 721 // Update the token info (identifier info and appropriate token kind). 722 // FIXME: the raw_identifier may contain leading whitespace which is removed 723 // from the cleaned identifier token. The SourceLocation should be updated to 724 // refer to the non-whitespace character. For instance, the text "\\\nB" (a 725 // line continuation before 'B') is parsed as a single tok::raw_identifier and 726 // is cleaned to tok::identifier "B". After cleaning the token's length is 727 // still 3 and the SourceLocation refers to the location of the backslash. 728 Identifier.setIdentifierInfo(II); 729 Identifier.setKind(II->getTokenID()); 730 731 return II; 732 } 733 734 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { 735 PoisonReasons[II] = DiagID; 736 } 737 738 void Preprocessor::PoisonSEHIdentifiers(bool Poison) { 739 assert(Ident__exception_code && Ident__exception_info); 740 assert(Ident___exception_code && Ident___exception_info); 741 Ident__exception_code->setIsPoisoned(Poison); 742 Ident___exception_code->setIsPoisoned(Poison); 743 Ident_GetExceptionCode->setIsPoisoned(Poison); 744 Ident__exception_info->setIsPoisoned(Poison); 745 Ident___exception_info->setIsPoisoned(Poison); 746 Ident_GetExceptionInfo->setIsPoisoned(Poison); 747 Ident__abnormal_termination->setIsPoisoned(Poison); 748 Ident___abnormal_termination->setIsPoisoned(Poison); 749 Ident_AbnormalTermination->setIsPoisoned(Poison); 750 } 751 752 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { 753 assert(Identifier.getIdentifierInfo() && 754 "Can't handle identifiers without identifier info!"); 755 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it = 756 PoisonReasons.find(Identifier.getIdentifierInfo()); 757 if(it == PoisonReasons.end()) 758 Diag(Identifier, diag::err_pp_used_poisoned_id); 759 else 760 Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); 761 } 762 763 void Preprocessor::updateOutOfDateIdentifier(const IdentifierInfo &II) const { 764 assert(II.isOutOfDate() && "not out of date"); 765 getExternalSource()->updateOutOfDateIdentifier(II); 766 } 767 768 /// HandleIdentifier - This callback is invoked when the lexer reads an 769 /// identifier. This callback looks up the identifier in the map and/or 770 /// potentially macro expands it or turns it into a named token (like 'for'). 771 /// 772 /// Note that callers of this method are guarded by checking the 773 /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the 774 /// IdentifierInfo methods that compute these properties will need to change to 775 /// match. 776 bool Preprocessor::HandleIdentifier(Token &Identifier) { 777 assert(Identifier.getIdentifierInfo() && 778 "Can't handle identifiers without identifier info!"); 779 780 IdentifierInfo &II = *Identifier.getIdentifierInfo(); 781 782 // If the information about this identifier is out of date, update it from 783 // the external source. 784 // We have to treat __VA_ARGS__ in a special way, since it gets 785 // serialized with isPoisoned = true, but our preprocessor may have 786 // unpoisoned it if we're defining a C99 macro. 787 if (II.isOutOfDate()) { 788 bool CurrentIsPoisoned = false; 789 const bool IsSpecialVariadicMacro = 790 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; 791 if (IsSpecialVariadicMacro) 792 CurrentIsPoisoned = II.isPoisoned(); 793 794 updateOutOfDateIdentifier(II); 795 Identifier.setKind(II.getTokenID()); 796 797 if (IsSpecialVariadicMacro) 798 II.setIsPoisoned(CurrentIsPoisoned); 799 } 800 801 // If this identifier was poisoned, and if it was not produced from a macro 802 // expansion, emit an error. 803 if (II.isPoisoned() && CurPPLexer) { 804 HandlePoisonedIdentifier(Identifier); 805 } 806 807 // If this is a macro to be expanded, do it. 808 if (const MacroDefinition MD = getMacroDefinition(&II)) { 809 const auto *MI = MD.getMacroInfo(); 810 assert(MI && "macro definition with no macro info?"); 811 if (!DisableMacroExpansion) { 812 if (!Identifier.isExpandDisabled() && MI->isEnabled()) { 813 // C99 6.10.3p10: If the preprocessing token immediately after the 814 // macro name isn't a '(', this macro should not be expanded. 815 if (!MI->isFunctionLike() || isNextPPTokenLParen()) 816 return HandleMacroExpandedIdentifier(Identifier, MD); 817 } else { 818 // C99 6.10.3.4p2 says that a disabled macro may never again be 819 // expanded, even if it's in a context where it could be expanded in the 820 // future. 821 Identifier.setFlag(Token::DisableExpand); 822 if (MI->isObjectLike() || isNextPPTokenLParen()) 823 Diag(Identifier, diag::pp_disabled_macro_expansion); 824 } 825 } 826 } 827 828 // If this identifier is a keyword in a newer Standard or proposed Standard, 829 // produce a warning. Don't warn if we're not considering macro expansion, 830 // since this identifier might be the name of a macro. 831 // FIXME: This warning is disabled in cases where it shouldn't be, like 832 // "#define constexpr constexpr", "int constexpr;" 833 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { 834 Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts())) 835 << II.getName(); 836 // Don't diagnose this keyword again in this translation unit. 837 II.setIsFutureCompatKeyword(false); 838 } 839 840 // If this is an extension token, diagnose its use. 841 // We avoid diagnosing tokens that originate from macro definitions. 842 // FIXME: This warning is disabled in cases where it shouldn't be, 843 // like "#define TY typeof", "TY(1) x". 844 if (II.isExtensionToken() && !DisableMacroExpansion) 845 Diag(Identifier, diag::ext_token_used); 846 847 // If this is the 'import' contextual keyword following an '@', note 848 // that the next token indicates a module name. 849 // 850 // Note that we do not treat 'import' as a contextual 851 // keyword when we're in a caching lexer, because caching lexers only get 852 // used in contexts where import declarations are disallowed. 853 // 854 // Likewise if this is the standard C++ import keyword. 855 if (((LastTokenWasAt && II.isModulesImport()) || 856 Identifier.is(tok::kw_import)) && 857 !InMacroArgs && !DisableMacroExpansion && 858 (getLangOpts().Modules || getLangOpts().DebuggerSupport) && 859 CurLexerCallback != CLK_CachingLexer) { 860 ModuleImportLoc = Identifier.getLocation(); 861 NamedModuleImportPath.clear(); 862 IsAtImport = true; 863 CurLexerCallback = CLK_LexAfterModuleImport; 864 } 865 866 if ((II.isModulesDeclaration() || Identifier.is(tok::kw_module)) && 867 !InMacroArgs && !DisableMacroExpansion && 868 (getLangOpts().CPlusPlusModules || getLangOpts().DebuggerSupport) && 869 CurLexerCallback != CLK_CachingLexer) { 870 CurLexerCallback = CLK_LexAfterModuleDecl; 871 } 872 return true; 873 } 874 875 void Preprocessor::Lex(Token &Result) { 876 ++LexLevel; 877 878 // We loop here until a lex function returns a token; this avoids recursion. 879 while (!CurLexerCallback(*this, Result)) 880 ; 881 882 if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) 883 return; 884 885 if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { 886 // Remember the identifier before code completion token. 887 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); 888 setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); 889 // Set IdenfitierInfo to null to avoid confusing code that handles both 890 // identifiers and completion tokens. 891 Result.setIdentifierInfo(nullptr); 892 } 893 894 // Update StdCXXImportSeqState to track our position within a C++20 import-seq 895 // if this token is being produced as a result of phase 4 of translation. 896 // Update TrackGMFState to decide if we are currently in a Global Module 897 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state 898 // depends on the prevailing StdCXXImportSeq state in two cases. 899 if (getLangOpts().CPlusPlusModules && LexLevel == 1 && 900 !Result.getFlag(Token::IsReinjected)) { 901 switch (Result.getKind()) { 902 case tok::l_paren: case tok::l_square: case tok::l_brace: 903 StdCXXImportSeqState.handleOpenBracket(); 904 break; 905 case tok::r_paren: case tok::r_square: 906 StdCXXImportSeqState.handleCloseBracket(); 907 break; 908 case tok::r_brace: 909 StdCXXImportSeqState.handleCloseBrace(); 910 break; 911 // This token is injected to represent the translation of '#include "a.h"' 912 // into "import a.h;". Mimic the notional ';'. 913 case tok::annot_module_include: 914 case tok::annot_repl_input_end: 915 case tok::semi: 916 TrackGMFState.handleSemi(); 917 StdCXXImportSeqState.handleSemi(); 918 ModuleDeclState.handleSemi(); 919 break; 920 case tok::header_name: 921 case tok::annot_header_unit: 922 StdCXXImportSeqState.handleHeaderName(); 923 break; 924 case tok::kw_export: 925 TrackGMFState.handleExport(); 926 StdCXXImportSeqState.handleExport(); 927 ModuleDeclState.handleExport(); 928 break; 929 case tok::annot_module_name: { 930 auto *Info = static_cast<ModuleNameInfo *>(Result.getAnnotationValue()); 931 for (const auto &Tok : Info->getTokens()) { 932 switch (Tok.getKind()) { 933 case tok::identifier: 934 ModuleDeclState.handleIdentifier(Tok.getIdentifierInfo()); 935 break; 936 case tok::period: 937 ModuleDeclState.handlePeriod(); 938 break; 939 case tok::colon: 940 ModuleDeclState.handleColon(); 941 break; 942 default: 943 llvm_unreachable("Unexpected token in module name"); 944 } 945 } 946 if (ModuleDeclState.isModuleCandidate()) 947 break; 948 TrackGMFState.handleMisc(); 949 StdCXXImportSeqState.handleMisc(); 950 ModuleDeclState.handleMisc(); 951 break; 952 } 953 case tok::identifier: 954 // Check "import" and "module" when there is no open bracket. The two 955 // identifiers are not meaningful with open brackets. 956 if (StdCXXImportSeqState.atTopLevel()) { 957 if (Result.getIdentifierInfo()->isModulesImport()) { 958 TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq()); 959 StdCXXImportSeqState.handleImport(); 960 if (StdCXXImportSeqState.afterImportSeq()) { 961 ModuleImportLoc = Result.getLocation(); 962 NamedModuleImportPath.clear(); 963 IsAtImport = false; 964 CurLexerCallback = CLK_LexAfterModuleImport; 965 } 966 break; 967 } 968 if (Result.getIdentifierInfo()->isModulesDeclaration()) { 969 TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq()); 970 ModuleDeclState.handleModule(); 971 CurLexerCallback = CLK_LexAfterModuleDecl; 972 break; 973 } 974 } 975 if (ModuleDeclState.isModuleCandidate()) 976 break; 977 [[fallthrough]]; 978 default: 979 TrackGMFState.handleMisc(); 980 StdCXXImportSeqState.handleMisc(); 981 ModuleDeclState.handleMisc(); 982 break; 983 } 984 } 985 986 if (CurLexer && ++CheckPointCounter == CheckPointStepSize) { 987 CheckPoints[CurLexer->getFileID()].push_back(CurLexer->BufferPtr); 988 CheckPointCounter = 0; 989 } 990 991 LastTokenWasAt = Result.is(tok::at); 992 --LexLevel; 993 994 if ((LexLevel == 0 || PreprocessToken) && 995 !Result.getFlag(Token::IsReinjected)) { 996 if (LexLevel == 0) 997 ++TokenCount; 998 if (OnToken) 999 OnToken(Result); 1000 } 1001 } 1002 1003 void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) { 1004 while (1) { 1005 Token Tok; 1006 Lex(Tok); 1007 if (Tok.isOneOf(tok::unknown, tok::eof, tok::eod, 1008 tok::annot_repl_input_end)) 1009 break; 1010 if (Tokens != nullptr) 1011 Tokens->push_back(Tok); 1012 } 1013 } 1014 1015 /// Lex a header-name token (including one formed from header-name-tokens if 1016 /// \p AllowMacroExpansion is \c true). 1017 /// 1018 /// \param FilenameTok Filled in with the next token. On success, this will 1019 /// be either a header_name token. On failure, it will be whatever other 1020 /// token was found instead. 1021 /// \param AllowMacroExpansion If \c true, allow the header name to be formed 1022 /// by macro expansion (concatenating tokens as necessary if the first 1023 /// token is a '<'). 1024 /// \return \c true if we reached EOD or EOF while looking for a > token in 1025 /// a concatenated header name and diagnosed it. \c false otherwise. 1026 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { 1027 // Lex using header-name tokenization rules if tokens are being lexed from 1028 // a file. Just grab a token normally if we're in a macro expansion. 1029 if (CurPPLexer) 1030 CurPPLexer->LexIncludeFilename(FilenameTok); 1031 else 1032 Lex(FilenameTok); 1033 1034 // This could be a <foo/bar.h> file coming from a macro expansion. In this 1035 // case, glue the tokens together into an angle_string_literal token. 1036 SmallString<128> FilenameBuffer; 1037 if (FilenameTok.is(tok::less) && AllowMacroExpansion) { 1038 bool StartOfLine = FilenameTok.isAtStartOfLine(); 1039 bool LeadingSpace = FilenameTok.hasLeadingSpace(); 1040 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); 1041 1042 SourceLocation Start = FilenameTok.getLocation(); 1043 SourceLocation End; 1044 FilenameBuffer.push_back('<'); 1045 1046 // Consume tokens until we find a '>'. 1047 // FIXME: A header-name could be formed starting or ending with an 1048 // alternative token. It's not clear whether that's ill-formed in all 1049 // cases. 1050 while (FilenameTok.isNot(tok::greater)) { 1051 Lex(FilenameTok); 1052 if (FilenameTok.isOneOf(tok::eod, tok::eof)) { 1053 Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; 1054 Diag(Start, diag::note_matching) << tok::less; 1055 return true; 1056 } 1057 1058 End = FilenameTok.getLocation(); 1059 1060 // FIXME: Provide code completion for #includes. 1061 if (FilenameTok.is(tok::code_completion)) { 1062 setCodeCompletionReached(); 1063 Lex(FilenameTok); 1064 continue; 1065 } 1066 1067 // Append the spelling of this token to the buffer. If there was a space 1068 // before it, add it now. 1069 if (FilenameTok.hasLeadingSpace()) 1070 FilenameBuffer.push_back(' '); 1071 1072 // Get the spelling of the token, directly into FilenameBuffer if 1073 // possible. 1074 size_t PreAppendSize = FilenameBuffer.size(); 1075 FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); 1076 1077 const char *BufPtr = &FilenameBuffer[PreAppendSize]; 1078 unsigned ActualLen = getSpelling(FilenameTok, BufPtr); 1079 1080 // If the token was spelled somewhere else, copy it into FilenameBuffer. 1081 if (BufPtr != &FilenameBuffer[PreAppendSize]) 1082 memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); 1083 1084 // Resize FilenameBuffer to the correct size. 1085 if (FilenameTok.getLength() != ActualLen) 1086 FilenameBuffer.resize(PreAppendSize + ActualLen); 1087 } 1088 1089 FilenameTok.startToken(); 1090 FilenameTok.setKind(tok::header_name); 1091 FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); 1092 FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); 1093 FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); 1094 CreateString(FilenameBuffer, FilenameTok, Start, End); 1095 } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { 1096 // Convert a string-literal token of the form " h-char-sequence " 1097 // (produced by macro expansion) into a header-name token. 1098 // 1099 // The rules for header-names don't quite match the rules for 1100 // string-literals, but all the places where they differ result in 1101 // undefined behavior, so we can and do treat them the same. 1102 // 1103 // A string-literal with a prefix or suffix is not translated into a 1104 // header-name. This could theoretically be observable via the C++20 1105 // context-sensitive header-name formation rules. 1106 StringRef Str = getSpelling(FilenameTok, FilenameBuffer); 1107 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') 1108 FilenameTok.setKind(tok::header_name); 1109 } 1110 1111 return false; 1112 } 1113 1114 /// Collect the tokens of a C++20 pp-import-suffix. 1115 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) { 1116 // FIXME: For error recovery, consider recognizing attribute syntax here 1117 // and terminating / diagnosing a missing semicolon if we find anything 1118 // else? (Can we leave that to the parser?) 1119 unsigned BracketDepth = 0; 1120 while (true) { 1121 Toks.emplace_back(); 1122 Lex(Toks.back()); 1123 1124 switch (Toks.back().getKind()) { 1125 case tok::l_paren: case tok::l_square: case tok::l_brace: 1126 ++BracketDepth; 1127 break; 1128 1129 case tok::r_paren: case tok::r_square: case tok::r_brace: 1130 if (BracketDepth == 0) 1131 return; 1132 --BracketDepth; 1133 break; 1134 1135 case tok::semi: 1136 if (BracketDepth == 0) 1137 return; 1138 break; 1139 1140 case tok::eof: 1141 return; 1142 1143 default: 1144 break; 1145 } 1146 } 1147 } 1148 1149 ModuleNameInfo::ModuleNameInfo(ArrayRef<Token> AnnotToks, 1150 std::optional<unsigned> ColonIndex) { 1151 assert(!AnnotToks.empty() && "Named module token cannot be empty."); 1152 if (!ColonIndex.has_value()) 1153 ColonIndex = AnnotToks.size(); 1154 ModuleName = ArrayRef(AnnotToks.begin(), AnnotToks.begin() + *ColonIndex); 1155 PartitionName = ArrayRef(AnnotToks.begin() + *ColonIndex, AnnotToks.end()); 1156 assert(ModuleName.end() == PartitionName.begin()); 1157 } 1158 1159 std::string ModuleNameInfo::getFlatName() const { 1160 std::string FlatModuleName; 1161 for (auto &Tok : getTokens()) { 1162 switch (Tok.getKind()) { 1163 case tok::identifier: 1164 FlatModuleName += Tok.getIdentifierInfo()->getName(); 1165 break; 1166 case tok::period: 1167 FlatModuleName += '.'; 1168 break; 1169 case tok::colon: 1170 FlatModuleName += ':'; 1171 break; 1172 default: 1173 llvm_unreachable("Unexpected token in module name"); 1174 } 1175 } 1176 return FlatModuleName; 1177 } 1178 1179 void ModuleNameInfo::getModuleIdPath( 1180 SmallVectorImpl<std::pair<IdentifierInfo *, SourceLocation>> &Path) const { 1181 return getModuleIdPath(getTokens(), Path); 1182 } 1183 1184 void ModuleNameInfo::getModuleIdPath( 1185 ArrayRef<Token> ModuleName, 1186 SmallVectorImpl<std::pair<IdentifierInfo *, SourceLocation>> &Path) { 1187 for (const auto &Tok : ModuleName) { 1188 if (Tok.is(tok::identifier)) 1189 Path.push_back( 1190 std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation())); 1191 } 1192 } 1193 1194 /// Lex a module name or a partition name. 1195 /// 1196 /// module-name: 1197 /// module-name-qualifier[opt] identifier 1198 /// 1199 /// partition-name: [C++20] 1200 /// : module-name-qualifier[opt] identifier 1201 /// 1202 /// module-name-qualifier 1203 /// module-name-qualifier[opt] identifier . 1204 bool Preprocessor::LexModuleName(Token &Result, bool IsImport) { 1205 bool ExpectsIdentifier = true, IsLexingPartition = false; 1206 SmallVector<Token, 8> ModuleName; 1207 std::optional<unsigned> ColonTokIndex; 1208 auto LexNextToken = [&](Token &Tok) { 1209 if (IsImport) 1210 Lex(Tok); 1211 else 1212 LexUnexpandedToken(Tok); 1213 }; 1214 1215 while (true) { 1216 LexNextToken(Result); 1217 if (ExpectsIdentifier && Result.is(tok::identifier)) { 1218 auto *MI = getMacroInfo(Result.getIdentifierInfo()); 1219 if (getLangOpts().CPlusPlusModules && !IsImport && MI && 1220 MI->isObjectLike()) { 1221 Diag(Result, diag::err_module_decl_cannot_be_macros) 1222 << Result.getLocation() << IsLexingPartition 1223 << Result.getIdentifierInfo(); 1224 } 1225 ModuleName.push_back(Result); 1226 ExpectsIdentifier = false; 1227 continue; 1228 } 1229 1230 if (!ExpectsIdentifier && Result.is(tok::period)) { 1231 ModuleName.push_back(Result); 1232 ExpectsIdentifier = true; 1233 continue; 1234 } 1235 1236 // Module partition only allowed in C++20 Modules. 1237 if (getLangOpts().CPlusPlusModules && Result.is(tok::colon)) { 1238 // Handle the form like: import :P; 1239 // If the token after ':' is not an identifier, this is a invalid module 1240 // name. 1241 if (ModuleName.empty()) { 1242 Token Tmp; 1243 LexNextToken(Tmp); 1244 EnterToken(Tmp, /*IsReiject=*/false); 1245 // A private-module-fragment: 1246 // export module :private; 1247 if (!IsImport && Tmp.is(tok::kw_private)) 1248 return true; 1249 // import :N; 1250 if (IsImport && Tmp.isNot(tok::identifier)) 1251 return false; 1252 } else if (!ExpectsIdentifier) { 1253 ExpectsIdentifier = true; 1254 } 1255 IsLexingPartition = true; 1256 ColonTokIndex = ModuleName.size(); 1257 ModuleName.push_back(Result); 1258 continue; 1259 } 1260 1261 // [cpp.module]/p2: where the pp-tokens (if any) shall not begin with a ( 1262 // preprocessing token [...] 1263 // 1264 // We only emit diagnostic in the preprocessor, and in the parser we skip 1265 // invalid tokens and recover from errors. 1266 if (getLangOpts().CPlusPlusModules && !ExpectsIdentifier && 1267 Result.is(tok::l_paren)) 1268 Diag(Result, diag::err_unxepected_paren_in_module_decl) 1269 << IsLexingPartition; 1270 break; 1271 } 1272 1273 // Put the last token back to stream, it's not a valid part of module name. 1274 // We lexed it unexpanded but it might be a valid macro expansion 1275 Result.clearFlag(Token::DisableExpand); 1276 auto ToksCopy = std::make_unique<Token[]>(1); 1277 *ToksCopy.get() = Result; 1278 EnterTokenStream(std::move(ToksCopy), 1, 1279 /*DisableMacroExpansion=*/false, 1280 /*IsReinject=*/false); 1281 1282 if (ModuleName.empty()) 1283 return false; 1284 Result.startToken(); 1285 Result.setKind(tok::annot_module_name); 1286 Result.setLocation(ModuleName.front().getLocation()); 1287 Result.setAnnotationEndLoc(ModuleName.back().getLocation()); 1288 auto AnnotToks = ArrayRef(ModuleName).copy(getPreprocessorAllocator()); 1289 ModuleNameInfo *Info = 1290 new (getPreprocessorAllocator()) ModuleNameInfo(AnnotToks, ColonTokIndex); 1291 Result.setAnnotationValue(static_cast<void *>(Info)); 1292 return true; 1293 } 1294 1295 /// Lex a token following the 'import' contextual keyword. 1296 /// 1297 /// pp-import: [C++20] 1298 /// import header-name pp-import-suffix[opt] ; 1299 /// import header-name-tokens pp-import-suffix[opt] ; 1300 /// [ObjC] @ import module-name ; 1301 /// [Clang] import module-name ; 1302 /// 1303 /// header-name-tokens: 1304 /// string-literal 1305 /// < [any sequence of preprocessing-tokens other than >] > 1306 /// 1307 /// module-name: 1308 /// module-name-qualifier[opt] identifier 1309 /// 1310 /// module-name-qualifier 1311 /// module-name-qualifier[opt] identifier . 1312 /// 1313 /// We respond to a pp-import by importing macros from the named module. 1314 bool Preprocessor::LexAfterModuleImport(Token &Result) { 1315 // Figure out what kind of lexer we actually have. 1316 recomputeCurLexerKind(); 1317 1318 // Allocate a holding buffer for a sequence of tokens and introduce it into 1319 // the token stream. 1320 auto EnterTokens = [this](ArrayRef<Token> Toks) { 1321 auto ToksCopy = std::make_unique<Token[]>(Toks.size()); 1322 std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); 1323 EnterTokenStream(std::move(ToksCopy), Toks.size(), 1324 /*DisableMacroExpansion*/ true, /*IsReinject*/ false); 1325 }; 1326 1327 SmallVector<Token, 32> Suffix; 1328 1329 // Lex the next token. The header-name lexing rules are used at the start of 1330 // a pp-import. 1331 // 1332 // For now, we only support header-name imports in C++20 mode. 1333 // FIXME: Should we allow this in all language modes that support an import 1334 // declaration as an extension? 1335 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { 1336 if (LexHeaderName(Result)) 1337 return true; 1338 1339 // Check for a header-name. 1340 if (Result.is(tok::header_name)) { 1341 // Enter the header-name token into the token stream; a Lex action cannot 1342 // both return a token and cache tokens (doing so would corrupt the token 1343 // cache if the call to Lex comes from CachingLex / PeekAhead). 1344 Suffix.push_back(Result); 1345 1346 // Consume the pp-import-suffix and expand any macros in it now. We'll add 1347 // it back into the token stream later. 1348 CollectPpImportSuffix(Suffix); 1349 if (Suffix.back().isNot(tok::semi)) { 1350 // This is not a pp-import after all. 1351 EnterTokens(Suffix); 1352 return false; 1353 } 1354 1355 // C++2a [cpp.module]p1: 1356 // The ';' preprocessing-token terminating a pp-import shall not have 1357 // been produced by macro replacement. 1358 SourceLocation SemiLoc = Suffix.back().getLocation(); 1359 if (SemiLoc.isMacroID()) 1360 Diag(SemiLoc, diag::err_header_import_semi_in_macro); 1361 1362 // Reconstitute the import token. 1363 Token ImportTok; 1364 ImportTok.startToken(); 1365 ImportTok.setKind(tok::kw_import); 1366 ImportTok.setLocation(ModuleImportLoc); 1367 ImportTok.setIdentifierInfo(getIdentifierInfo("import")); 1368 ImportTok.setLength(6); 1369 1370 auto Action = HandleHeaderIncludeOrImport( 1371 /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); 1372 switch (Action.Kind) { 1373 case ImportAction::None: 1374 break; 1375 1376 case ImportAction::ModuleBegin: 1377 // Let the parser know we're textually entering the module. 1378 Suffix.emplace_back(); 1379 Suffix.back().startToken(); 1380 Suffix.back().setKind(tok::annot_module_begin); 1381 Suffix.back().setLocation(SemiLoc); 1382 Suffix.back().setAnnotationEndLoc(SemiLoc); 1383 Suffix.back().setAnnotationValue(Action.ModuleForHeader); 1384 [[fallthrough]]; 1385 1386 case ImportAction::ModuleImport: 1387 case ImportAction::HeaderUnitImport: 1388 case ImportAction::SkippedModuleImport: 1389 // We chose to import (or textually enter) the file. Convert the 1390 // header-name token into a header unit annotation token. 1391 Suffix[0].setKind(tok::annot_header_unit); 1392 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); 1393 Suffix[0].setAnnotationValue(Action.ModuleForHeader); 1394 // FIXME: Call the moduleImport callback? 1395 break; 1396 case ImportAction::Failure: 1397 assert(TheModuleLoader.HadFatalFailure && 1398 "This should be an early exit only to a fatal error"); 1399 Result.setKind(tok::eof); 1400 CurLexer->cutOffLexing(); 1401 EnterTokens(Suffix); 1402 return true; 1403 } 1404 1405 EnterTokens(Suffix); 1406 return false; 1407 } 1408 } else { 1409 Lex(Result); 1410 } 1411 1412 if (Result.isOneOf(tok::identifier, tok::colon)) { 1413 EnterToken(Result, /*IsReinject=*/false); 1414 if (!LexModuleName(Result, /*IsImport=*/true)) 1415 return true; 1416 auto *Info = Result.getAnnotationValueAs<ModuleNameInfo *>(); 1417 if (getLangOpts().CPlusPlusModules) { 1418 // Under the standard C++ Modules, the dot is just part of the module 1419 // name, and not a real hierarchy separator. Flatten such module names 1420 // now. 1421 // 1422 // FIXME: Is this the right level to be performing this transformation? 1423 std::string FlatModuleName; 1424 if (Info->getTokens().front().is(tok::colon)) { 1425 // Import a module partition allowed in C++20 Modules. 1426 // We can import a partition in named module TU. 1427 if (NamedModuleImportPath.empty() && ModuleDeclState.isNamedModule()) 1428 FlatModuleName = llvm::Twine(ModuleDeclState.getPrimaryName()) 1429 .concat(Info->getFlatName()) 1430 .str(); 1431 else 1432 return true; 1433 } else { 1434 FlatModuleName = Info->getFlatName(); 1435 } 1436 NamedModuleImportPath.emplace_back(getIdentifierInfo(FlatModuleName), 1437 Result.getLocation()); 1438 } else { 1439 Info->getModuleIdPath(NamedModuleImportPath); 1440 } 1441 } 1442 1443 // If we didn't recognize a module name at all, this is not a (valid) import. 1444 if (NamedModuleImportPath.empty() || Result.is(tok::eof)) 1445 return true; 1446 1447 // Consume the pp-import-suffix and expand any macros in it now, if we're not 1448 // at the semicolon already. 1449 SourceLocation SemiLoc = Result.getLocation(); 1450 if (Result.isNot(tok::semi)) { 1451 Suffix.push_back(Result); 1452 CollectPpImportSuffix(Suffix); 1453 if (Suffix.back().isNot(tok::semi)) { 1454 // This is not an import after all. 1455 EnterTokens(Suffix); 1456 return false; 1457 } 1458 SemiLoc = Suffix.back().getLocation(); 1459 } 1460 1461 Module *Imported = nullptr; 1462 // We don't/shouldn't load the standard c++20 modules when preprocessing. 1463 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) { 1464 Imported = TheModuleLoader.loadModule(ModuleImportLoc, 1465 NamedModuleImportPath, 1466 Module::Hidden, 1467 /*IsInclusionDirective=*/false); 1468 if (Imported) 1469 makeModuleVisible(Imported, SemiLoc); 1470 } 1471 1472 if (Callbacks) 1473 Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported); 1474 1475 if (!Suffix.empty()) { 1476 EnterTokens(Suffix); 1477 return false; 1478 } 1479 return true; 1480 } 1481 1482 /// Lex a token following the 'module' contextual keyword. 1483 /// 1484 /// [cpp.module]/p2: 1485 /// The pp-tokens, if any, of a pp-module shall be of the form: 1486 /// pp-module-name pp-module-partition[opt] pp-tokens[opt] 1487 /// 1488 /// where the pp-tokens (if any) shall not begin with a ( preprocessing token 1489 /// and the grammar non-terminals are defined as: 1490 /// pp-module-name: 1491 /// pp-module-name-qualifierp[opt] identifier 1492 /// pp-module-partition: 1493 /// : pp-module-name-qualifier[opt] identifier 1494 /// pp-module-name-qualifier: 1495 /// identifier . 1496 /// pp-module-name-qualifier identifier . 1497 /// No identifier in the pp-module-name or pp-module-partition shall currently 1498 /// be defined as an object-like macro. 1499 /// 1500 /// [cpp.module]/p3: 1501 /// Any preprocessing tokens after the module preprocessing token in the module 1502 /// directive are processed just as in normal text. 1503 bool Preprocessor::LexAfterModuleDecl(Token &Result) { 1504 // Figure out what kind of lexer we actually have. 1505 recomputeCurLexerKind(); 1506 return LexModuleName(Result, /*IsImport=*/false); 1507 } 1508 1509 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { 1510 CurSubmoduleState->VisibleModules.setVisible( 1511 M, Loc, [](Module *) {}, 1512 [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) { 1513 // FIXME: Include the path in the diagnostic. 1514 // FIXME: Include the import location for the conflicting module. 1515 Diag(ModuleImportLoc, diag::warn_module_conflict) 1516 << Path[0]->getFullModuleName() 1517 << Conflict->getFullModuleName() 1518 << Message; 1519 }); 1520 1521 // Add this module to the imports list of the currently-built submodule. 1522 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) 1523 BuildingSubmoduleStack.back().M->Imports.insert(M); 1524 } 1525 1526 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, 1527 const char *DiagnosticTag, 1528 bool AllowMacroExpansion) { 1529 // We need at least one string literal. 1530 if (Result.isNot(tok::string_literal)) { 1531 Diag(Result, diag::err_expected_string_literal) 1532 << /*Source='in...'*/0 << DiagnosticTag; 1533 return false; 1534 } 1535 1536 // Lex string literal tokens, optionally with macro expansion. 1537 SmallVector<Token, 4> StrToks; 1538 do { 1539 StrToks.push_back(Result); 1540 1541 if (Result.hasUDSuffix()) 1542 Diag(Result, diag::err_invalid_string_udl); 1543 1544 if (AllowMacroExpansion) 1545 Lex(Result); 1546 else 1547 LexUnexpandedToken(Result); 1548 } while (Result.is(tok::string_literal)); 1549 1550 // Concatenate and parse the strings. 1551 StringLiteralParser Literal(StrToks, *this); 1552 assert(Literal.isOrdinary() && "Didn't allow wide strings in"); 1553 1554 if (Literal.hadError) 1555 return false; 1556 1557 if (Literal.Pascal) { 1558 Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) 1559 << /*Source='in...'*/0 << DiagnosticTag; 1560 return false; 1561 } 1562 1563 String = std::string(Literal.GetString()); 1564 return true; 1565 } 1566 1567 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { 1568 assert(Tok.is(tok::numeric_constant)); 1569 SmallString<8> IntegerBuffer; 1570 bool NumberInvalid = false; 1571 StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); 1572 if (NumberInvalid) 1573 return false; 1574 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), 1575 getLangOpts(), getTargetInfo(), 1576 getDiagnostics()); 1577 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) 1578 return false; 1579 llvm::APInt APVal(64, 0); 1580 if (Literal.GetIntegerValue(APVal)) 1581 return false; 1582 Lex(Tok); 1583 Value = APVal.getLimitedValue(); 1584 return true; 1585 } 1586 1587 void Preprocessor::addCommentHandler(CommentHandler *Handler) { 1588 assert(Handler && "NULL comment handler"); 1589 assert(!llvm::is_contained(CommentHandlers, Handler) && 1590 "Comment handler already registered"); 1591 CommentHandlers.push_back(Handler); 1592 } 1593 1594 void Preprocessor::removeCommentHandler(CommentHandler *Handler) { 1595 std::vector<CommentHandler *>::iterator Pos = 1596 llvm::find(CommentHandlers, Handler); 1597 assert(Pos != CommentHandlers.end() && "Comment handler not registered"); 1598 CommentHandlers.erase(Pos); 1599 } 1600 1601 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { 1602 bool AnyPendingTokens = false; 1603 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(), 1604 HEnd = CommentHandlers.end(); 1605 H != HEnd; ++H) { 1606 if ((*H)->HandleComment(*this, Comment)) 1607 AnyPendingTokens = true; 1608 } 1609 if (!AnyPendingTokens || getCommentRetentionState()) 1610 return false; 1611 Lex(result); 1612 return true; 1613 } 1614 1615 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const { 1616 const MacroAnnotations &A = 1617 getMacroAnnotations(Identifier.getIdentifierInfo()); 1618 assert(A.DeprecationInfo && 1619 "Macro deprecation warning without recorded annotation!"); 1620 const MacroAnnotationInfo &Info = *A.DeprecationInfo; 1621 if (Info.Message.empty()) 1622 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1623 << Identifier.getIdentifierInfo() << 0; 1624 else 1625 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1626 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1627 Diag(Info.Location, diag::note_pp_macro_annotation) << 0; 1628 } 1629 1630 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const { 1631 const MacroAnnotations &A = 1632 getMacroAnnotations(Identifier.getIdentifierInfo()); 1633 assert(A.RestrictExpansionInfo && 1634 "Macro restricted expansion warning without recorded annotation!"); 1635 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo; 1636 if (Info.Message.empty()) 1637 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1638 << Identifier.getIdentifierInfo() << 0; 1639 else 1640 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1641 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1642 Diag(Info.Location, diag::note_pp_macro_annotation) << 1; 1643 } 1644 1645 void Preprocessor::emitRestrictInfNaNWarning(const Token &Identifier, 1646 unsigned DiagSelection) const { 1647 Diag(Identifier, diag::warn_fp_nan_inf_when_disabled) << DiagSelection << 1; 1648 } 1649 1650 void Preprocessor::emitFinalMacroWarning(const Token &Identifier, 1651 bool IsUndef) const { 1652 const MacroAnnotations &A = 1653 getMacroAnnotations(Identifier.getIdentifierInfo()); 1654 assert(A.FinalAnnotationLoc && 1655 "Final macro warning without recorded annotation!"); 1656 1657 Diag(Identifier, diag::warn_pragma_final_macro) 1658 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1); 1659 Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2; 1660 } 1661 1662 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr, 1663 const SourceLocation &Loc) const { 1664 // The lambda that tests if a `Loc` is in an opt-out region given one opt-out 1665 // region map: 1666 auto TestInMap = [&SourceMgr](const SafeBufferOptOutRegionsTy &Map, 1667 const SourceLocation &Loc) -> bool { 1668 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in: 1669 auto FirstRegionEndingAfterLoc = llvm::partition_point( 1670 Map, [&SourceMgr, 1671 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) { 1672 return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc); 1673 }); 1674 1675 if (FirstRegionEndingAfterLoc != Map.end()) { 1676 // To test if the start location of the found region precedes `Loc`: 1677 return SourceMgr.isBeforeInTranslationUnit( 1678 FirstRegionEndingAfterLoc->first, Loc); 1679 } 1680 // If we do not find a region whose end location passes `Loc`, we want to 1681 // check if the current region is still open: 1682 if (!Map.empty() && Map.back().first == Map.back().second) 1683 return SourceMgr.isBeforeInTranslationUnit(Map.back().first, Loc); 1684 return false; 1685 }; 1686 1687 // What the following does: 1688 // 1689 // If `Loc` belongs to the local TU, we just look up `SafeBufferOptOutMap`. 1690 // Otherwise, `Loc` is from a loaded AST. We look up the 1691 // `LoadedSafeBufferOptOutMap` first to get the opt-out region map of the 1692 // loaded AST where `Loc` is at. Then we find if `Loc` is in an opt-out 1693 // region w.r.t. the region map. If the region map is absent, it means there 1694 // is no opt-out pragma in that loaded AST. 1695 // 1696 // Opt-out pragmas in the local TU or a loaded AST is not visible to another 1697 // one of them. That means if you put the pragmas around a `#include 1698 // "module.h"`, where module.h is a module, it is not actually suppressing 1699 // warnings in module.h. This is fine because warnings in module.h will be 1700 // reported when module.h is compiled in isolation and nothing in module.h 1701 // will be analyzed ever again. So you will not see warnings from the file 1702 // that imports module.h anyway. And you can't even do the same thing for PCHs 1703 // because they can only be included from the command line. 1704 1705 if (SourceMgr.isLocalSourceLocation(Loc)) 1706 return TestInMap(SafeBufferOptOutMap, Loc); 1707 1708 const SafeBufferOptOutRegionsTy *LoadedRegions = 1709 LoadedSafeBufferOptOutMap.lookupLoadedOptOutMap(Loc, SourceMgr); 1710 1711 if (LoadedRegions) 1712 return TestInMap(*LoadedRegions, Loc); 1713 return false; 1714 } 1715 1716 bool Preprocessor::enterOrExitSafeBufferOptOutRegion( 1717 bool isEnter, const SourceLocation &Loc) { 1718 if (isEnter) { 1719 if (isPPInSafeBufferOptOutRegion()) 1720 return true; // invalid enter action 1721 InSafeBufferOptOutRegion = true; 1722 CurrentSafeBufferOptOutStart = Loc; 1723 1724 // To set the start location of a new region: 1725 1726 if (!SafeBufferOptOutMap.empty()) { 1727 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back(); 1728 assert(PrevRegion->first != PrevRegion->second && 1729 "Shall not begin a safe buffer opt-out region before closing the " 1730 "previous one."); 1731 } 1732 // If the start location equals to the end location, we call the region a 1733 // open region or a unclosed region (i.e., end location has not been set 1734 // yet). 1735 SafeBufferOptOutMap.emplace_back(Loc, Loc); 1736 } else { 1737 if (!isPPInSafeBufferOptOutRegion()) 1738 return true; // invalid enter action 1739 InSafeBufferOptOutRegion = false; 1740 1741 // To set the end location of the current open region: 1742 1743 assert(!SafeBufferOptOutMap.empty() && 1744 "Misordered safe buffer opt-out regions"); 1745 auto *CurrRegion = &SafeBufferOptOutMap.back(); 1746 assert(CurrRegion->first == CurrRegion->second && 1747 "Set end location to a closed safe buffer opt-out region"); 1748 CurrRegion->second = Loc; 1749 } 1750 return false; 1751 } 1752 1753 bool Preprocessor::isPPInSafeBufferOptOutRegion() { 1754 return InSafeBufferOptOutRegion; 1755 } 1756 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) { 1757 StartLoc = CurrentSafeBufferOptOutStart; 1758 return InSafeBufferOptOutRegion; 1759 } 1760 1761 SmallVector<SourceLocation, 64> 1762 Preprocessor::serializeSafeBufferOptOutMap() const { 1763 assert(!InSafeBufferOptOutRegion && 1764 "Attempt to serialize safe buffer opt-out regions before file being " 1765 "completely preprocessed"); 1766 1767 SmallVector<SourceLocation, 64> SrcSeq; 1768 1769 for (const auto &[begin, end] : SafeBufferOptOutMap) { 1770 SrcSeq.push_back(begin); 1771 SrcSeq.push_back(end); 1772 } 1773 // Only `SafeBufferOptOutMap` gets serialized. No need to serialize 1774 // `LoadedSafeBufferOptOutMap` because if this TU loads a pch/module, every 1775 // pch/module in the pch-chain/module-DAG will be loaded one by one in order. 1776 // It means that for each loading pch/module m, it just needs to load m's own 1777 // `SafeBufferOptOutMap`. 1778 return SrcSeq; 1779 } 1780 1781 bool Preprocessor::setDeserializedSafeBufferOptOutMap( 1782 const SmallVectorImpl<SourceLocation> &SourceLocations) { 1783 if (SourceLocations.size() == 0) 1784 return false; 1785 1786 assert(SourceLocations.size() % 2 == 0 && 1787 "ill-formed SourceLocation sequence"); 1788 1789 auto It = SourceLocations.begin(); 1790 SafeBufferOptOutRegionsTy &Regions = 1791 LoadedSafeBufferOptOutMap.findAndConsLoadedOptOutMap(*It, SourceMgr); 1792 1793 do { 1794 SourceLocation Begin = *It++; 1795 SourceLocation End = *It++; 1796 1797 Regions.emplace_back(Begin, End); 1798 } while (It != SourceLocations.end()); 1799 return true; 1800 } 1801 1802 ModuleLoader::~ModuleLoader() = default; 1803 1804 CommentHandler::~CommentHandler() = default; 1805 1806 EmptylineHandler::~EmptylineHandler() = default; 1807 1808 CodeCompletionHandler::~CodeCompletionHandler() = default; 1809 1810 void Preprocessor::createPreprocessingRecord() { 1811 if (Record) 1812 return; 1813 1814 Record = new PreprocessingRecord(getSourceManager()); 1815 addPPCallbacks(std::unique_ptr<PPCallbacks>(Record)); 1816 } 1817 1818 const char *Preprocessor::getCheckPoint(FileID FID, const char *Start) const { 1819 if (auto It = CheckPoints.find(FID); It != CheckPoints.end()) { 1820 const SmallVector<const char *> &FileCheckPoints = It->second; 1821 const char *Last = nullptr; 1822 // FIXME: Do better than a linear search. 1823 for (const char *P : FileCheckPoints) { 1824 if (P > Start) 1825 break; 1826 Last = P; 1827 } 1828 return Last; 1829 } 1830 1831 return nullptr; 1832 } 1833