xref: /llvm-project/clang/lib/Lex/Preprocessor.cpp (revision 6470706bc0ed2425704bc8c9e121a72e2d272616)
1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Preprocessor interface.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // Options to support:
14 //   -H       - Print the name of each header file used.
15 //   -d[DNI] - Dump various things.
16 //   -fworking-directory - #line's with preprocessor's working dir.
17 //   -fpreprocessed
18 //   -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
19 //   -W*
20 //   -w
21 //
22 // Messages to emit:
23 //   "Multiple include guards may be useful for:\n"
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/FileManager.h"
30 #include "clang/Basic/FileSystemStatCache.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/Module.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/CodeCompletionHandler.h"
39 #include "clang/Lex/ExternalPreprocessorSource.h"
40 #include "clang/Lex/HeaderSearch.h"
41 #include "clang/Lex/LexDiagnostic.h"
42 #include "clang/Lex/Lexer.h"
43 #include "clang/Lex/LiteralSupport.h"
44 #include "clang/Lex/MacroArgs.h"
45 #include "clang/Lex/MacroInfo.h"
46 #include "clang/Lex/ModuleLoader.h"
47 #include "clang/Lex/Pragma.h"
48 #include "clang/Lex/PreprocessingRecord.h"
49 #include "clang/Lex/PreprocessorLexer.h"
50 #include "clang/Lex/PreprocessorOptions.h"
51 #include "clang/Lex/ScratchBuffer.h"
52 #include "clang/Lex/Token.h"
53 #include "clang/Lex/TokenLexer.h"
54 #include "llvm/ADT/APInt.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/DenseMap.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallString.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/Support/Capacity.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MemoryBuffer.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <memory>
68 #include <optional>
69 #include <string>
70 #include <utility>
71 #include <vector>
72 
73 using namespace clang;
74 
75 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry)
76 
77 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default;
78 
79 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
80                            DiagnosticsEngine &diags, LangOptions &opts,
81                            SourceManager &SM, HeaderSearch &Headers,
82                            ModuleLoader &TheModuleLoader,
83                            IdentifierInfoLookup *IILookup, bool OwnsHeaders,
84                            TranslationUnitKind TUKind)
85     : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts),
86       FileMgr(Headers.getFileMgr()), SourceMgr(SM),
87       ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers),
88       TheModuleLoader(TheModuleLoader), ExternalSource(nullptr),
89       // As the language options may have not been loaded yet (when
90       // deserializing an ASTUnit), adding keywords to the identifier table is
91       // deferred to Preprocessor::Initialize().
92       Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())),
93       TUKind(TUKind), SkipMainFilePreamble(0, true),
94       CurSubmoduleState(&NullSubmoduleState) {
95   OwnsHeaderSearch = OwnsHeaders;
96 
97   // Default to discarding comments.
98   KeepComments = false;
99   KeepMacroComments = false;
100   SuppressIncludeNotFoundError = false;
101 
102   // Macro expansion is enabled.
103   DisableMacroExpansion = false;
104   MacroExpansionInDirectivesOverride = false;
105   InMacroArgs = false;
106   ArgMacro = nullptr;
107   InMacroArgPreExpansion = false;
108   NumCachedTokenLexers = 0;
109   PragmasEnabled = true;
110   ParsingIfOrElifDirective = false;
111   PreprocessedOutput = false;
112 
113   // We haven't read anything from the external source.
114   ReadMacrosFromExternalSource = false;
115 
116   BuiltinInfo = std::make_unique<Builtin::Context>();
117 
118   // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of
119   // a macro. They get unpoisoned where it is allowed.
120   (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
121   SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use);
122   (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned();
123   SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use);
124 
125   // Initialize the pragma handlers.
126   RegisterBuiltinPragmas();
127 
128   // Initialize builtin macros like __LINE__ and friends.
129   RegisterBuiltinMacros();
130 
131   if(LangOpts.Borland) {
132     Ident__exception_info        = getIdentifierInfo("_exception_info");
133     Ident___exception_info       = getIdentifierInfo("__exception_info");
134     Ident_GetExceptionInfo       = getIdentifierInfo("GetExceptionInformation");
135     Ident__exception_code        = getIdentifierInfo("_exception_code");
136     Ident___exception_code       = getIdentifierInfo("__exception_code");
137     Ident_GetExceptionCode       = getIdentifierInfo("GetExceptionCode");
138     Ident__abnormal_termination  = getIdentifierInfo("_abnormal_termination");
139     Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination");
140     Ident_AbnormalTermination    = getIdentifierInfo("AbnormalTermination");
141   } else {
142     Ident__exception_info = Ident__exception_code = nullptr;
143     Ident__abnormal_termination = Ident___exception_info = nullptr;
144     Ident___exception_code = Ident___abnormal_termination = nullptr;
145     Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr;
146     Ident_AbnormalTermination = nullptr;
147   }
148 
149   // If using a PCH where a #pragma hdrstop is expected, start skipping tokens.
150   if (usingPCHWithPragmaHdrStop())
151     SkippingUntilPragmaHdrStop = true;
152 
153   // If using a PCH with a through header, start skipping tokens.
154   if (!this->PPOpts->PCHThroughHeader.empty() &&
155       !this->PPOpts->ImplicitPCHInclude.empty())
156     SkippingUntilPCHThroughHeader = true;
157 
158   if (this->PPOpts->GeneratePreamble)
159     PreambleConditionalStack.startRecording();
160 
161   MaxTokens = LangOpts.MaxTokens;
162 }
163 
164 Preprocessor::~Preprocessor() {
165   assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
166 
167   IncludeMacroStack.clear();
168 
169   // Free any cached macro expanders.
170   // This populates MacroArgCache, so all TokenLexers need to be destroyed
171   // before the code below that frees up the MacroArgCache list.
172   std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr);
173   CurTokenLexer.reset();
174 
175   // Free any cached MacroArgs.
176   for (MacroArgs *ArgList = MacroArgCache; ArgList;)
177     ArgList = ArgList->deallocate();
178 
179   // Delete the header search info, if we own it.
180   if (OwnsHeaderSearch)
181     delete &HeaderInfo;
182 }
183 
184 void Preprocessor::Initialize(const TargetInfo &Target,
185                               const TargetInfo *AuxTarget) {
186   assert((!this->Target || this->Target == &Target) &&
187          "Invalid override of target information");
188   this->Target = &Target;
189 
190   assert((!this->AuxTarget || this->AuxTarget == AuxTarget) &&
191          "Invalid override of aux target information.");
192   this->AuxTarget = AuxTarget;
193 
194   // Initialize information about built-ins.
195   BuiltinInfo->InitializeTarget(Target, AuxTarget);
196   HeaderInfo.setTarget(Target);
197 
198   // Populate the identifier table with info about keywords for the current language.
199   Identifiers.AddKeywords(LangOpts);
200 
201   // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo.
202   setTUFPEvalMethod(getTargetInfo().getFPEvalMethod());
203 
204   if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine)
205     // Use setting from TargetInfo.
206     setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod());
207   else
208     // Set initial value of __FLT_EVAL_METHOD__ from the command line.
209     setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod());
210   // When `-ffast-math` option is enabled, it triggers several driver math
211   // options to be enabled. Among those, only one the following two modes
212   // affect the eval-method:  reciprocal or reassociate.
213   if (getLangOpts().AllowFPReassoc || getLangOpts().AllowRecip)
214     setCurrentFPEvalMethod(SourceLocation(), LangOptions::FEM_Indeterminable);
215 }
216 
217 void Preprocessor::InitializeForModelFile() {
218   NumEnteredSourceFiles = 0;
219 
220   // Reset pragmas
221   PragmaHandlersBackup = std::move(PragmaHandlers);
222   PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef());
223   RegisterBuiltinPragmas();
224 
225   // Reset PredefinesFileID
226   PredefinesFileID = FileID();
227 }
228 
229 void Preprocessor::FinalizeForModelFile() {
230   NumEnteredSourceFiles = 1;
231 
232   PragmaHandlers = std::move(PragmaHandlersBackup);
233 }
234 
235 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
236   llvm::errs() << tok::getTokenName(Tok.getKind());
237 
238   if (!Tok.isAnnotation())
239     llvm::errs() << " '" << getSpelling(Tok) << "'";
240 
241   if (!DumpFlags) return;
242 
243   llvm::errs() << "\t";
244   if (Tok.isAtStartOfLine())
245     llvm::errs() << " [StartOfLine]";
246   if (Tok.hasLeadingSpace())
247     llvm::errs() << " [LeadingSpace]";
248   if (Tok.isExpandDisabled())
249     llvm::errs() << " [ExpandDisabled]";
250   if (Tok.needsCleaning()) {
251     const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
252     llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength())
253                  << "']";
254   }
255 
256   llvm::errs() << "\tLoc=<";
257   DumpLocation(Tok.getLocation());
258   llvm::errs() << ">";
259 }
260 
261 void Preprocessor::DumpLocation(SourceLocation Loc) const {
262   Loc.print(llvm::errs(), SourceMgr);
263 }
264 
265 void Preprocessor::DumpMacro(const MacroInfo &MI) const {
266   llvm::errs() << "MACRO: ";
267   for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
268     DumpToken(MI.getReplacementToken(i));
269     llvm::errs() << "  ";
270   }
271   llvm::errs() << "\n";
272 }
273 
274 void Preprocessor::PrintStats() {
275   llvm::errs() << "\n*** Preprocessor Stats:\n";
276   llvm::errs() << NumDirectives << " directives found:\n";
277   llvm::errs() << "  " << NumDefined << " #define.\n";
278   llvm::errs() << "  " << NumUndefined << " #undef.\n";
279   llvm::errs() << "  #include/#include_next/#import:\n";
280   llvm::errs() << "    " << NumEnteredSourceFiles << " source files entered.\n";
281   llvm::errs() << "    " << MaxIncludeStackDepth << " max include stack depth\n";
282   llvm::errs() << "  " << NumIf << " #if/#ifndef/#ifdef.\n";
283   llvm::errs() << "  " << NumElse << " #else/#elif/#elifdef/#elifndef.\n";
284   llvm::errs() << "  " << NumEndif << " #endif.\n";
285   llvm::errs() << "  " << NumPragma << " #pragma.\n";
286   llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
287 
288   llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
289              << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
290              << NumFastMacroExpanded << " on the fast path.\n";
291   llvm::errs() << (NumFastTokenPaste+NumTokenPaste)
292              << " token paste (##) operations performed, "
293              << NumFastTokenPaste << " on the fast path.\n";
294 
295   llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total";
296 
297   llvm::errs() << "\n  BumpPtr: " << BP.getTotalMemory();
298   llvm::errs() << "\n  Macro Expanded Tokens: "
299                << llvm::capacity_in_bytes(MacroExpandedTokens);
300   llvm::errs() << "\n  Predefines Buffer: " << Predefines.capacity();
301   // FIXME: List information for all submodules.
302   llvm::errs() << "\n  Macros: "
303                << llvm::capacity_in_bytes(CurSubmoduleState->Macros);
304   llvm::errs() << "\n  #pragma push_macro Info: "
305                << llvm::capacity_in_bytes(PragmaPushMacroInfo);
306   llvm::errs() << "\n  Poison Reasons: "
307                << llvm::capacity_in_bytes(PoisonReasons);
308   llvm::errs() << "\n  Comment Handlers: "
309                << llvm::capacity_in_bytes(CommentHandlers) << "\n";
310 }
311 
312 Preprocessor::macro_iterator
313 Preprocessor::macro_begin(bool IncludeExternalMacros) const {
314   if (IncludeExternalMacros && ExternalSource &&
315       !ReadMacrosFromExternalSource) {
316     ReadMacrosFromExternalSource = true;
317     ExternalSource->ReadDefinedMacros();
318   }
319 
320   // Make sure we cover all macros in visible modules.
321   for (const ModuleMacro &Macro : ModuleMacros)
322     CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState()));
323 
324   return CurSubmoduleState->Macros.begin();
325 }
326 
327 size_t Preprocessor::getTotalMemory() const {
328   return BP.getTotalMemory()
329     + llvm::capacity_in_bytes(MacroExpandedTokens)
330     + Predefines.capacity() /* Predefines buffer. */
331     // FIXME: Include sizes from all submodules, and include MacroInfo sizes,
332     // and ModuleMacros.
333     + llvm::capacity_in_bytes(CurSubmoduleState->Macros)
334     + llvm::capacity_in_bytes(PragmaPushMacroInfo)
335     + llvm::capacity_in_bytes(PoisonReasons)
336     + llvm::capacity_in_bytes(CommentHandlers);
337 }
338 
339 Preprocessor::macro_iterator
340 Preprocessor::macro_end(bool IncludeExternalMacros) const {
341   if (IncludeExternalMacros && ExternalSource &&
342       !ReadMacrosFromExternalSource) {
343     ReadMacrosFromExternalSource = true;
344     ExternalSource->ReadDefinedMacros();
345   }
346 
347   return CurSubmoduleState->Macros.end();
348 }
349 
350 /// Compares macro tokens with a specified token value sequence.
351 static bool MacroDefinitionEquals(const MacroInfo *MI,
352                                   ArrayRef<TokenValue> Tokens) {
353   return Tokens.size() == MI->getNumTokens() &&
354       std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin());
355 }
356 
357 StringRef Preprocessor::getLastMacroWithSpelling(
358                                     SourceLocation Loc,
359                                     ArrayRef<TokenValue> Tokens) const {
360   SourceLocation BestLocation;
361   StringRef BestSpelling;
362   for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end();
363        I != E; ++I) {
364     const MacroDirective::DefInfo
365       Def = I->second.findDirectiveAtLoc(Loc, SourceMgr);
366     if (!Def || !Def.getMacroInfo())
367       continue;
368     if (!Def.getMacroInfo()->isObjectLike())
369       continue;
370     if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens))
371       continue;
372     SourceLocation Location = Def.getLocation();
373     // Choose the macro defined latest.
374     if (BestLocation.isInvalid() ||
375         (Location.isValid() &&
376          SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) {
377       BestLocation = Location;
378       BestSpelling = I->first->getName();
379     }
380   }
381   return BestSpelling;
382 }
383 
384 void Preprocessor::recomputeCurLexerKind() {
385   if (CurLexer)
386     CurLexerKind = CurLexer->isDependencyDirectivesLexer()
387                        ? CLK_DependencyDirectivesLexer
388                        : CLK_Lexer;
389   else if (CurTokenLexer)
390     CurLexerKind = CLK_TokenLexer;
391   else
392     CurLexerKind = CLK_CachingLexer;
393 }
394 
395 bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File,
396                                           unsigned CompleteLine,
397                                           unsigned CompleteColumn) {
398   assert(File);
399   assert(CompleteLine && CompleteColumn && "Starts from 1:1");
400   assert(!CodeCompletionFile && "Already set");
401 
402   // Load the actual file's contents.
403   std::optional<llvm::MemoryBufferRef> Buffer =
404       SourceMgr.getMemoryBufferForFileOrNone(File);
405   if (!Buffer)
406     return true;
407 
408   // Find the byte position of the truncation point.
409   const char *Position = Buffer->getBufferStart();
410   for (unsigned Line = 1; Line < CompleteLine; ++Line) {
411     for (; *Position; ++Position) {
412       if (*Position != '\r' && *Position != '\n')
413         continue;
414 
415       // Eat \r\n or \n\r as a single line.
416       if ((Position[1] == '\r' || Position[1] == '\n') &&
417           Position[0] != Position[1])
418         ++Position;
419       ++Position;
420       break;
421     }
422   }
423 
424   Position += CompleteColumn - 1;
425 
426   // If pointing inside the preamble, adjust the position at the beginning of
427   // the file after the preamble.
428   if (SkipMainFilePreamble.first &&
429       SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) {
430     if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first)
431       Position = Buffer->getBufferStart() + SkipMainFilePreamble.first;
432   }
433 
434   if (Position > Buffer->getBufferEnd())
435     Position = Buffer->getBufferEnd();
436 
437   CodeCompletionFile = File;
438   CodeCompletionOffset = Position - Buffer->getBufferStart();
439 
440   auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer(
441       Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier());
442   char *NewBuf = NewBuffer->getBufferStart();
443   char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf);
444   *NewPos = '\0';
445   std::copy(Position, Buffer->getBufferEnd(), NewPos+1);
446   SourceMgr.overrideFileContents(File, std::move(NewBuffer));
447 
448   return false;
449 }
450 
451 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir,
452                                             bool IsAngled) {
453   setCodeCompletionReached();
454   if (CodeComplete)
455     CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled);
456 }
457 
458 void Preprocessor::CodeCompleteNaturalLanguage() {
459   setCodeCompletionReached();
460   if (CodeComplete)
461     CodeComplete->CodeCompleteNaturalLanguage();
462 }
463 
464 /// getSpelling - This method is used to get the spelling of a token into a
465 /// SmallVector. Note that the returned StringRef may not point to the
466 /// supplied buffer if a copy can be avoided.
467 StringRef Preprocessor::getSpelling(const Token &Tok,
468                                           SmallVectorImpl<char> &Buffer,
469                                           bool *Invalid) const {
470   // NOTE: this has to be checked *before* testing for an IdentifierInfo.
471   if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) {
472     // Try the fast path.
473     if (const IdentifierInfo *II = Tok.getIdentifierInfo())
474       return II->getName();
475   }
476 
477   // Resize the buffer if we need to copy into it.
478   if (Tok.needsCleaning())
479     Buffer.resize(Tok.getLength());
480 
481   const char *Ptr = Buffer.data();
482   unsigned Len = getSpelling(Tok, Ptr, Invalid);
483   return StringRef(Ptr, Len);
484 }
485 
486 /// CreateString - Plop the specified string into a scratch buffer and return a
487 /// location for it.  If specified, the source location provides a source
488 /// location for the token.
489 void Preprocessor::CreateString(StringRef Str, Token &Tok,
490                                 SourceLocation ExpansionLocStart,
491                                 SourceLocation ExpansionLocEnd) {
492   Tok.setLength(Str.size());
493 
494   const char *DestPtr;
495   SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr);
496 
497   if (ExpansionLocStart.isValid())
498     Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart,
499                                        ExpansionLocEnd, Str.size());
500   Tok.setLocation(Loc);
501 
502   // If this is a raw identifier or a literal token, set the pointer data.
503   if (Tok.is(tok::raw_identifier))
504     Tok.setRawIdentifierData(DestPtr);
505   else if (Tok.isLiteral())
506     Tok.setLiteralData(DestPtr);
507 }
508 
509 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) {
510   auto &SM = getSourceManager();
511   SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
512   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc);
513   bool Invalid = false;
514   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
515   if (Invalid)
516     return SourceLocation();
517 
518   // FIXME: We could consider re-using spelling for tokens we see repeatedly.
519   const char *DestPtr;
520   SourceLocation Spelling =
521       ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr);
522   return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length));
523 }
524 
525 Module *Preprocessor::getCurrentModule() {
526   if (!getLangOpts().isCompilingModule())
527     return nullptr;
528 
529   return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule);
530 }
531 
532 Module *Preprocessor::getCurrentModuleImplementation() {
533   if (!getLangOpts().isCompilingModuleImplementation())
534     return nullptr;
535 
536   return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName);
537 }
538 
539 //===----------------------------------------------------------------------===//
540 // Preprocessor Initialization Methods
541 //===----------------------------------------------------------------------===//
542 
543 /// EnterMainSourceFile - Enter the specified FileID as the main source file,
544 /// which implicitly adds the builtin defines etc.
545 void Preprocessor::EnterMainSourceFile() {
546   // We do not allow the preprocessor to reenter the main file.  Doing so will
547   // cause FileID's to accumulate information from both runs (e.g. #line
548   // information) and predefined macros aren't guaranteed to be set properly.
549   assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!");
550   FileID MainFileID = SourceMgr.getMainFileID();
551 
552   // If MainFileID is loaded it means we loaded an AST file, no need to enter
553   // a main file.
554   if (!SourceMgr.isLoadedFileID(MainFileID)) {
555     // Enter the main file source buffer.
556     EnterSourceFile(MainFileID, nullptr, SourceLocation());
557 
558     // If we've been asked to skip bytes in the main file (e.g., as part of a
559     // precompiled preamble), do so now.
560     if (SkipMainFilePreamble.first > 0)
561       CurLexer->SetByteOffset(SkipMainFilePreamble.first,
562                               SkipMainFilePreamble.second);
563 
564     // Tell the header info that the main file was entered.  If the file is later
565     // #imported, it won't be re-entered.
566     if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID))
567       markIncluded(FE);
568   }
569 
570   // Preprocess Predefines to populate the initial preprocessor state.
571   std::unique_ptr<llvm::MemoryBuffer> SB =
572     llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>");
573   assert(SB && "Cannot create predefined source buffer");
574   FileID FID = SourceMgr.createFileID(std::move(SB));
575   assert(FID.isValid() && "Could not create FileID for predefines?");
576   setPredefinesFileID(FID);
577 
578   // Start parsing the predefines.
579   EnterSourceFile(FID, nullptr, SourceLocation());
580 
581   if (!PPOpts->PCHThroughHeader.empty()) {
582     // Lookup and save the FileID for the through header. If it isn't found
583     // in the search path, it's a fatal error.
584     OptionalFileEntryRef File = LookupFile(
585         SourceLocation(), PPOpts->PCHThroughHeader,
586         /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr,
587         /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr,
588         /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
589         /*IsFrameworkFound=*/nullptr);
590     if (!File) {
591       Diag(SourceLocation(), diag::err_pp_through_header_not_found)
592           << PPOpts->PCHThroughHeader;
593       return;
594     }
595     setPCHThroughHeaderFileID(
596         SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User));
597   }
598 
599   // Skip tokens from the Predefines and if needed the main file.
600   if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) ||
601       (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop))
602     SkipTokensWhileUsingPCH();
603 }
604 
605 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) {
606   assert(PCHThroughHeaderFileID.isInvalid() &&
607          "PCHThroughHeaderFileID already set!");
608   PCHThroughHeaderFileID = FID;
609 }
610 
611 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) {
612   assert(PCHThroughHeaderFileID.isValid() &&
613          "Invalid PCH through header FileID");
614   return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID);
615 }
616 
617 bool Preprocessor::creatingPCHWithThroughHeader() {
618   return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
619          PCHThroughHeaderFileID.isValid();
620 }
621 
622 bool Preprocessor::usingPCHWithThroughHeader() {
623   return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() &&
624          PCHThroughHeaderFileID.isValid();
625 }
626 
627 bool Preprocessor::creatingPCHWithPragmaHdrStop() {
628   return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop;
629 }
630 
631 bool Preprocessor::usingPCHWithPragmaHdrStop() {
632   return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop;
633 }
634 
635 /// Skip tokens until after the #include of the through header or
636 /// until after a #pragma hdrstop is seen. Tokens in the predefines file
637 /// and the main file may be skipped. If the end of the predefines file
638 /// is reached, skipping continues into the main file. If the end of the
639 /// main file is reached, it's a fatal error.
640 void Preprocessor::SkipTokensWhileUsingPCH() {
641   bool ReachedMainFileEOF = false;
642   bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader;
643   bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop;
644   Token Tok;
645   while (true) {
646     bool InPredefines =
647         (CurLexer && CurLexer->getFileID() == getPredefinesFileID());
648     switch (CurLexerKind) {
649     case CLK_Lexer:
650       CurLexer->Lex(Tok);
651      break;
652     case CLK_TokenLexer:
653       CurTokenLexer->Lex(Tok);
654       break;
655     case CLK_CachingLexer:
656       CachingLex(Tok);
657       break;
658     case CLK_DependencyDirectivesLexer:
659       CurLexer->LexDependencyDirectiveToken(Tok);
660       break;
661     case CLK_LexAfterModuleImport:
662       LexAfterModuleImport(Tok);
663       break;
664     }
665     if (Tok.is(tok::eof) && !InPredefines) {
666       ReachedMainFileEOF = true;
667       break;
668     }
669     if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader)
670       break;
671     if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop)
672       break;
673   }
674   if (ReachedMainFileEOF) {
675     if (UsingPCHThroughHeader)
676       Diag(SourceLocation(), diag::err_pp_through_header_not_seen)
677           << PPOpts->PCHThroughHeader << 1;
678     else if (!PPOpts->PCHWithHdrStopCreate)
679       Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen);
680   }
681 }
682 
683 void Preprocessor::replayPreambleConditionalStack() {
684   // Restore the conditional stack from the preamble, if there is one.
685   if (PreambleConditionalStack.isReplaying()) {
686     assert(CurPPLexer &&
687            "CurPPLexer is null when calling replayPreambleConditionalStack.");
688     CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack());
689     PreambleConditionalStack.doneReplaying();
690     if (PreambleConditionalStack.reachedEOFWhileSkipping())
691       SkipExcludedConditionalBlock(
692           PreambleConditionalStack.SkipInfo->HashTokenLoc,
693           PreambleConditionalStack.SkipInfo->IfTokenLoc,
694           PreambleConditionalStack.SkipInfo->FoundNonSkipPortion,
695           PreambleConditionalStack.SkipInfo->FoundElse,
696           PreambleConditionalStack.SkipInfo->ElseLoc);
697   }
698 }
699 
700 void Preprocessor::EndSourceFile() {
701   // Notify the client that we reached the end of the source file.
702   if (Callbacks)
703     Callbacks->EndOfMainFile();
704 }
705 
706 //===----------------------------------------------------------------------===//
707 // Lexer Event Handling.
708 //===----------------------------------------------------------------------===//
709 
710 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the
711 /// identifier information for the token and install it into the token,
712 /// updating the token kind accordingly.
713 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const {
714   assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!");
715 
716   // Look up this token, see if it is a macro, or if it is a language keyword.
717   IdentifierInfo *II;
718   if (!Identifier.needsCleaning() && !Identifier.hasUCN()) {
719     // No cleaning needed, just use the characters from the lexed buffer.
720     II = getIdentifierInfo(Identifier.getRawIdentifier());
721   } else {
722     // Cleaning needed, alloca a buffer, clean into it, then use the buffer.
723     SmallString<64> IdentifierBuffer;
724     StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer);
725 
726     if (Identifier.hasUCN()) {
727       SmallString<64> UCNIdentifierBuffer;
728       expandUCNs(UCNIdentifierBuffer, CleanedStr);
729       II = getIdentifierInfo(UCNIdentifierBuffer);
730     } else {
731       II = getIdentifierInfo(CleanedStr);
732     }
733   }
734 
735   // Update the token info (identifier info and appropriate token kind).
736   // FIXME: the raw_identifier may contain leading whitespace which is removed
737   // from the cleaned identifier token. The SourceLocation should be updated to
738   // refer to the non-whitespace character. For instance, the text "\\\nB" (a
739   // line continuation before 'B') is parsed as a single tok::raw_identifier and
740   // is cleaned to tok::identifier "B". After cleaning the token's length is
741   // still 3 and the SourceLocation refers to the location of the backslash.
742   Identifier.setIdentifierInfo(II);
743   Identifier.setKind(II->getTokenID());
744 
745   return II;
746 }
747 
748 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) {
749   PoisonReasons[II] = DiagID;
750 }
751 
752 void Preprocessor::PoisonSEHIdentifiers(bool Poison) {
753   assert(Ident__exception_code && Ident__exception_info);
754   assert(Ident___exception_code && Ident___exception_info);
755   Ident__exception_code->setIsPoisoned(Poison);
756   Ident___exception_code->setIsPoisoned(Poison);
757   Ident_GetExceptionCode->setIsPoisoned(Poison);
758   Ident__exception_info->setIsPoisoned(Poison);
759   Ident___exception_info->setIsPoisoned(Poison);
760   Ident_GetExceptionInfo->setIsPoisoned(Poison);
761   Ident__abnormal_termination->setIsPoisoned(Poison);
762   Ident___abnormal_termination->setIsPoisoned(Poison);
763   Ident_AbnormalTermination->setIsPoisoned(Poison);
764 }
765 
766 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) {
767   assert(Identifier.getIdentifierInfo() &&
768          "Can't handle identifiers without identifier info!");
769   llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it =
770     PoisonReasons.find(Identifier.getIdentifierInfo());
771   if(it == PoisonReasons.end())
772     Diag(Identifier, diag::err_pp_used_poisoned_id);
773   else
774     Diag(Identifier,it->second) << Identifier.getIdentifierInfo();
775 }
776 
777 void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const {
778   assert(II.isOutOfDate() && "not out of date");
779   getExternalSource()->updateOutOfDateIdentifier(II);
780 }
781 
782 /// HandleIdentifier - This callback is invoked when the lexer reads an
783 /// identifier.  This callback looks up the identifier in the map and/or
784 /// potentially macro expands it or turns it into a named token (like 'for').
785 ///
786 /// Note that callers of this method are guarded by checking the
787 /// IdentifierInfo's 'isHandleIdentifierCase' bit.  If this method changes, the
788 /// IdentifierInfo methods that compute these properties will need to change to
789 /// match.
790 bool Preprocessor::HandleIdentifier(Token &Identifier) {
791   assert(Identifier.getIdentifierInfo() &&
792          "Can't handle identifiers without identifier info!");
793 
794   IdentifierInfo &II = *Identifier.getIdentifierInfo();
795 
796   // If the information about this identifier is out of date, update it from
797   // the external source.
798   // We have to treat __VA_ARGS__ in a special way, since it gets
799   // serialized with isPoisoned = true, but our preprocessor may have
800   // unpoisoned it if we're defining a C99 macro.
801   if (II.isOutOfDate()) {
802     bool CurrentIsPoisoned = false;
803     const bool IsSpecialVariadicMacro =
804         &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__;
805     if (IsSpecialVariadicMacro)
806       CurrentIsPoisoned = II.isPoisoned();
807 
808     updateOutOfDateIdentifier(II);
809     Identifier.setKind(II.getTokenID());
810 
811     if (IsSpecialVariadicMacro)
812       II.setIsPoisoned(CurrentIsPoisoned);
813   }
814 
815   // If this identifier was poisoned, and if it was not produced from a macro
816   // expansion, emit an error.
817   if (II.isPoisoned() && CurPPLexer) {
818     HandlePoisonedIdentifier(Identifier);
819   }
820 
821   // If this is a macro to be expanded, do it.
822   if (MacroDefinition MD = getMacroDefinition(&II)) {
823     auto *MI = MD.getMacroInfo();
824     assert(MI && "macro definition with no macro info?");
825     if (!DisableMacroExpansion) {
826       if (!Identifier.isExpandDisabled() && MI->isEnabled()) {
827         // C99 6.10.3p10: If the preprocessing token immediately after the
828         // macro name isn't a '(', this macro should not be expanded.
829         if (!MI->isFunctionLike() || isNextPPTokenLParen())
830           return HandleMacroExpandedIdentifier(Identifier, MD);
831       } else {
832         // C99 6.10.3.4p2 says that a disabled macro may never again be
833         // expanded, even if it's in a context where it could be expanded in the
834         // future.
835         Identifier.setFlag(Token::DisableExpand);
836         if (MI->isObjectLike() || isNextPPTokenLParen())
837           Diag(Identifier, diag::pp_disabled_macro_expansion);
838       }
839     }
840   }
841 
842   // If this identifier is a keyword in a newer Standard or proposed Standard,
843   // produce a warning. Don't warn if we're not considering macro expansion,
844   // since this identifier might be the name of a macro.
845   // FIXME: This warning is disabled in cases where it shouldn't be, like
846   //   "#define constexpr constexpr", "int constexpr;"
847   if (II.isFutureCompatKeyword() && !DisableMacroExpansion) {
848     Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts()))
849         << II.getName();
850     // Don't diagnose this keyword again in this translation unit.
851     II.setIsFutureCompatKeyword(false);
852   }
853 
854   // If this is an extension token, diagnose its use.
855   // We avoid diagnosing tokens that originate from macro definitions.
856   // FIXME: This warning is disabled in cases where it shouldn't be,
857   // like "#define TY typeof", "TY(1) x".
858   if (II.isExtensionToken() && !DisableMacroExpansion)
859     Diag(Identifier, diag::ext_token_used);
860 
861   // If this is the 'import' contextual keyword following an '@', note
862   // that the next token indicates a module name.
863   //
864   // Note that we do not treat 'import' as a contextual
865   // keyword when we're in a caching lexer, because caching lexers only get
866   // used in contexts where import declarations are disallowed.
867   //
868   // Likewise if this is the C++ Modules TS import keyword.
869   if (((LastTokenWasAt && II.isModulesImport()) ||
870        Identifier.is(tok::kw_import)) &&
871       !InMacroArgs && !DisableMacroExpansion &&
872       (getLangOpts().Modules || getLangOpts().DebuggerSupport) &&
873       CurLexerKind != CLK_CachingLexer) {
874     ModuleImportLoc = Identifier.getLocation();
875     NamedModuleImportPath.clear();
876     IsAtImport = true;
877     ModuleImportExpectsIdentifier = true;
878     CurLexerKind = CLK_LexAfterModuleImport;
879   }
880   return true;
881 }
882 
883 void Preprocessor::Lex(Token &Result) {
884   ++LexLevel;
885 
886   // We loop here until a lex function returns a token; this avoids recursion.
887   bool ReturnedToken;
888   do {
889     switch (CurLexerKind) {
890     case CLK_Lexer:
891       ReturnedToken = CurLexer->Lex(Result);
892       break;
893     case CLK_TokenLexer:
894       ReturnedToken = CurTokenLexer->Lex(Result);
895       break;
896     case CLK_CachingLexer:
897       CachingLex(Result);
898       ReturnedToken = true;
899       break;
900     case CLK_DependencyDirectivesLexer:
901       ReturnedToken = CurLexer->LexDependencyDirectiveToken(Result);
902       break;
903     case CLK_LexAfterModuleImport:
904       ReturnedToken = LexAfterModuleImport(Result);
905       break;
906     }
907   } while (!ReturnedToken);
908 
909   if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure)
910     return;
911 
912   if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) {
913     // Remember the identifier before code completion token.
914     setCodeCompletionIdentifierInfo(Result.getIdentifierInfo());
915     setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc());
916     // Set IdenfitierInfo to null to avoid confusing code that handles both
917     // identifiers and completion tokens.
918     Result.setIdentifierInfo(nullptr);
919   }
920 
921   // Update StdCXXImportSeqState to track our position within a C++20 import-seq
922   // if this token is being produced as a result of phase 4 of translation.
923   // Update TrackGMFState to decide if we are currently in a Global Module
924   // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state
925   // depends on the prevailing StdCXXImportSeq state in two cases.
926   if (getLangOpts().CPlusPlusModules && LexLevel == 1 &&
927       !Result.getFlag(Token::IsReinjected)) {
928     switch (Result.getKind()) {
929     case tok::l_paren: case tok::l_square: case tok::l_brace:
930       StdCXXImportSeqState.handleOpenBracket();
931       break;
932     case tok::r_paren: case tok::r_square:
933       StdCXXImportSeqState.handleCloseBracket();
934       break;
935     case tok::r_brace:
936       StdCXXImportSeqState.handleCloseBrace();
937       break;
938     // This token is injected to represent the translation of '#include "a.h"'
939     // into "import a.h;". Mimic the notional ';'.
940     case tok::annot_module_include:
941     case tok::semi:
942       TrackGMFState.handleSemi();
943       StdCXXImportSeqState.handleSemi();
944       ModuleDeclState.handleSemi();
945       break;
946     case tok::header_name:
947     case tok::annot_header_unit:
948       StdCXXImportSeqState.handleHeaderName();
949       break;
950     case tok::kw_export:
951       TrackGMFState.handleExport();
952       StdCXXImportSeqState.handleExport();
953       ModuleDeclState.handleExport();
954       break;
955     case tok::colon:
956       ModuleDeclState.handleColon();
957       break;
958     case tok::period:
959       ModuleDeclState.handlePeriod();
960       break;
961     case tok::identifier:
962       if (Result.getIdentifierInfo()->isModulesImport()) {
963         TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq());
964         StdCXXImportSeqState.handleImport();
965         if (StdCXXImportSeqState.afterImportSeq()) {
966           ModuleImportLoc = Result.getLocation();
967           NamedModuleImportPath.clear();
968           IsAtImport = false;
969           ModuleImportExpectsIdentifier = true;
970           CurLexerKind = CLK_LexAfterModuleImport;
971         }
972         break;
973       } else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) {
974         TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq());
975         ModuleDeclState.handleModule();
976         break;
977       } else {
978         ModuleDeclState.handleIdentifier(Result.getIdentifierInfo());
979         if (ModuleDeclState.isModuleCandidate())
980           break;
981       }
982       [[fallthrough]];
983     default:
984       TrackGMFState.handleMisc();
985       StdCXXImportSeqState.handleMisc();
986       ModuleDeclState.handleMisc();
987       break;
988     }
989   }
990 
991   LastTokenWasAt = Result.is(tok::at);
992   --LexLevel;
993 
994   if ((LexLevel == 0 || PreprocessToken) &&
995       !Result.getFlag(Token::IsReinjected)) {
996     if (LexLevel == 0)
997       ++TokenCount;
998     if (OnToken)
999       OnToken(Result);
1000   }
1001 }
1002 
1003 /// Lex a header-name token (including one formed from header-name-tokens if
1004 /// \p AllowConcatenation is \c true).
1005 ///
1006 /// \param FilenameTok Filled in with the next token. On success, this will
1007 ///        be either a header_name token. On failure, it will be whatever other
1008 ///        token was found instead.
1009 /// \param AllowMacroExpansion If \c true, allow the header name to be formed
1010 ///        by macro expansion (concatenating tokens as necessary if the first
1011 ///        token is a '<').
1012 /// \return \c true if we reached EOD or EOF while looking for a > token in
1013 ///         a concatenated header name and diagnosed it. \c false otherwise.
1014 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) {
1015   // Lex using header-name tokenization rules if tokens are being lexed from
1016   // a file. Just grab a token normally if we're in a macro expansion.
1017   if (CurPPLexer)
1018     CurPPLexer->LexIncludeFilename(FilenameTok);
1019   else
1020     Lex(FilenameTok);
1021 
1022   // This could be a <foo/bar.h> file coming from a macro expansion.  In this
1023   // case, glue the tokens together into an angle_string_literal token.
1024   SmallString<128> FilenameBuffer;
1025   if (FilenameTok.is(tok::less) && AllowMacroExpansion) {
1026     bool StartOfLine = FilenameTok.isAtStartOfLine();
1027     bool LeadingSpace = FilenameTok.hasLeadingSpace();
1028     bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro();
1029 
1030     SourceLocation Start = FilenameTok.getLocation();
1031     SourceLocation End;
1032     FilenameBuffer.push_back('<');
1033 
1034     // Consume tokens until we find a '>'.
1035     // FIXME: A header-name could be formed starting or ending with an
1036     // alternative token. It's not clear whether that's ill-formed in all
1037     // cases.
1038     while (FilenameTok.isNot(tok::greater)) {
1039       Lex(FilenameTok);
1040       if (FilenameTok.isOneOf(tok::eod, tok::eof)) {
1041         Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater;
1042         Diag(Start, diag::note_matching) << tok::less;
1043         return true;
1044       }
1045 
1046       End = FilenameTok.getLocation();
1047 
1048       // FIXME: Provide code completion for #includes.
1049       if (FilenameTok.is(tok::code_completion)) {
1050         setCodeCompletionReached();
1051         Lex(FilenameTok);
1052         continue;
1053       }
1054 
1055       // Append the spelling of this token to the buffer. If there was a space
1056       // before it, add it now.
1057       if (FilenameTok.hasLeadingSpace())
1058         FilenameBuffer.push_back(' ');
1059 
1060       // Get the spelling of the token, directly into FilenameBuffer if
1061       // possible.
1062       size_t PreAppendSize = FilenameBuffer.size();
1063       FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength());
1064 
1065       const char *BufPtr = &FilenameBuffer[PreAppendSize];
1066       unsigned ActualLen = getSpelling(FilenameTok, BufPtr);
1067 
1068       // If the token was spelled somewhere else, copy it into FilenameBuffer.
1069       if (BufPtr != &FilenameBuffer[PreAppendSize])
1070         memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen);
1071 
1072       // Resize FilenameBuffer to the correct size.
1073       if (FilenameTok.getLength() != ActualLen)
1074         FilenameBuffer.resize(PreAppendSize + ActualLen);
1075     }
1076 
1077     FilenameTok.startToken();
1078     FilenameTok.setKind(tok::header_name);
1079     FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine);
1080     FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace);
1081     FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro);
1082     CreateString(FilenameBuffer, FilenameTok, Start, End);
1083   } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) {
1084     // Convert a string-literal token of the form " h-char-sequence "
1085     // (produced by macro expansion) into a header-name token.
1086     //
1087     // The rules for header-names don't quite match the rules for
1088     // string-literals, but all the places where they differ result in
1089     // undefined behavior, so we can and do treat them the same.
1090     //
1091     // A string-literal with a prefix or suffix is not translated into a
1092     // header-name. This could theoretically be observable via the C++20
1093     // context-sensitive header-name formation rules.
1094     StringRef Str = getSpelling(FilenameTok, FilenameBuffer);
1095     if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"')
1096       FilenameTok.setKind(tok::header_name);
1097   }
1098 
1099   return false;
1100 }
1101 
1102 /// Collect the tokens of a C++20 pp-import-suffix.
1103 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) {
1104   // FIXME: For error recovery, consider recognizing attribute syntax here
1105   // and terminating / diagnosing a missing semicolon if we find anything
1106   // else? (Can we leave that to the parser?)
1107   unsigned BracketDepth = 0;
1108   while (true) {
1109     Toks.emplace_back();
1110     Lex(Toks.back());
1111 
1112     switch (Toks.back().getKind()) {
1113     case tok::l_paren: case tok::l_square: case tok::l_brace:
1114       ++BracketDepth;
1115       break;
1116 
1117     case tok::r_paren: case tok::r_square: case tok::r_brace:
1118       if (BracketDepth == 0)
1119         return;
1120       --BracketDepth;
1121       break;
1122 
1123     case tok::semi:
1124       if (BracketDepth == 0)
1125         return;
1126     break;
1127 
1128     case tok::eof:
1129       return;
1130 
1131     default:
1132       break;
1133     }
1134   }
1135 }
1136 
1137 
1138 /// Lex a token following the 'import' contextual keyword.
1139 ///
1140 ///     pp-import: [C++20]
1141 ///           import header-name pp-import-suffix[opt] ;
1142 ///           import header-name-tokens pp-import-suffix[opt] ;
1143 /// [ObjC]    @ import module-name ;
1144 /// [Clang]   import module-name ;
1145 ///
1146 ///     header-name-tokens:
1147 ///           string-literal
1148 ///           < [any sequence of preprocessing-tokens other than >] >
1149 ///
1150 ///     module-name:
1151 ///           module-name-qualifier[opt] identifier
1152 ///
1153 ///     module-name-qualifier
1154 ///           module-name-qualifier[opt] identifier .
1155 ///
1156 /// We respond to a pp-import by importing macros from the named module.
1157 bool Preprocessor::LexAfterModuleImport(Token &Result) {
1158   // Figure out what kind of lexer we actually have.
1159   recomputeCurLexerKind();
1160 
1161   // Lex the next token. The header-name lexing rules are used at the start of
1162   // a pp-import.
1163   //
1164   // For now, we only support header-name imports in C++20 mode.
1165   // FIXME: Should we allow this in all language modes that support an import
1166   // declaration as an extension?
1167   if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) {
1168     if (LexHeaderName(Result))
1169       return true;
1170 
1171     if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) {
1172       std::string Name = ModuleDeclState.getPrimaryName().str();
1173       Name += ":";
1174       NamedModuleImportPath.push_back(
1175           {getIdentifierInfo(Name), Result.getLocation()});
1176       CurLexerKind = CLK_LexAfterModuleImport;
1177       return true;
1178     }
1179   } else {
1180     Lex(Result);
1181   }
1182 
1183   // Allocate a holding buffer for a sequence of tokens and introduce it into
1184   // the token stream.
1185   auto EnterTokens = [this](ArrayRef<Token> Toks) {
1186     auto ToksCopy = std::make_unique<Token[]>(Toks.size());
1187     std::copy(Toks.begin(), Toks.end(), ToksCopy.get());
1188     EnterTokenStream(std::move(ToksCopy), Toks.size(),
1189                      /*DisableMacroExpansion*/ true, /*IsReinject*/ false);
1190   };
1191 
1192   bool ImportingHeader = Result.is(tok::header_name);
1193   // Check for a header-name.
1194   SmallVector<Token, 32> Suffix;
1195   if (ImportingHeader) {
1196     // Enter the header-name token into the token stream; a Lex action cannot
1197     // both return a token and cache tokens (doing so would corrupt the token
1198     // cache if the call to Lex comes from CachingLex / PeekAhead).
1199     Suffix.push_back(Result);
1200 
1201     // Consume the pp-import-suffix and expand any macros in it now. We'll add
1202     // it back into the token stream later.
1203     CollectPpImportSuffix(Suffix);
1204     if (Suffix.back().isNot(tok::semi)) {
1205       // This is not a pp-import after all.
1206       EnterTokens(Suffix);
1207       return false;
1208     }
1209 
1210     // C++2a [cpp.module]p1:
1211     //   The ';' preprocessing-token terminating a pp-import shall not have
1212     //   been produced by macro replacement.
1213     SourceLocation SemiLoc = Suffix.back().getLocation();
1214     if (SemiLoc.isMacroID())
1215       Diag(SemiLoc, diag::err_header_import_semi_in_macro);
1216 
1217     // Reconstitute the import token.
1218     Token ImportTok;
1219     ImportTok.startToken();
1220     ImportTok.setKind(tok::kw_import);
1221     ImportTok.setLocation(ModuleImportLoc);
1222     ImportTok.setIdentifierInfo(getIdentifierInfo("import"));
1223     ImportTok.setLength(6);
1224 
1225     auto Action = HandleHeaderIncludeOrImport(
1226         /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc);
1227     switch (Action.Kind) {
1228     case ImportAction::None:
1229       break;
1230 
1231     case ImportAction::ModuleBegin:
1232       // Let the parser know we're textually entering the module.
1233       Suffix.emplace_back();
1234       Suffix.back().startToken();
1235       Suffix.back().setKind(tok::annot_module_begin);
1236       Suffix.back().setLocation(SemiLoc);
1237       Suffix.back().setAnnotationEndLoc(SemiLoc);
1238       Suffix.back().setAnnotationValue(Action.ModuleForHeader);
1239       [[fallthrough]];
1240 
1241     case ImportAction::ModuleImport:
1242     case ImportAction::HeaderUnitImport:
1243     case ImportAction::SkippedModuleImport:
1244       // We chose to import (or textually enter) the file. Convert the
1245       // header-name token into a header unit annotation token.
1246       Suffix[0].setKind(tok::annot_header_unit);
1247       Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation());
1248       Suffix[0].setAnnotationValue(Action.ModuleForHeader);
1249       // FIXME: Call the moduleImport callback?
1250       break;
1251     case ImportAction::Failure:
1252       assert(TheModuleLoader.HadFatalFailure &&
1253              "This should be an early exit only to a fatal error");
1254       Result.setKind(tok::eof);
1255       CurLexer->cutOffLexing();
1256       EnterTokens(Suffix);
1257       return true;
1258     }
1259 
1260     EnterTokens(Suffix);
1261     return false;
1262   }
1263 
1264   // The token sequence
1265   //
1266   //   import identifier (. identifier)*
1267   //
1268   // indicates a module import directive. We already saw the 'import'
1269   // contextual keyword, so now we're looking for the identifiers.
1270   if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) {
1271     // We expected to see an identifier here, and we did; continue handling
1272     // identifiers.
1273     NamedModuleImportPath.push_back(
1274         std::make_pair(Result.getIdentifierInfo(), Result.getLocation()));
1275     ModuleImportExpectsIdentifier = false;
1276     CurLexerKind = CLK_LexAfterModuleImport;
1277     return true;
1278   }
1279 
1280   // If we're expecting a '.' or a ';', and we got a '.', then wait until we
1281   // see the next identifier. (We can also see a '[[' that begins an
1282   // attribute-specifier-seq here under the C++ Modules TS.)
1283   if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) {
1284     ModuleImportExpectsIdentifier = true;
1285     CurLexerKind = CLK_LexAfterModuleImport;
1286     return true;
1287   }
1288 
1289   // If we didn't recognize a module name at all, this is not a (valid) import.
1290   if (NamedModuleImportPath.empty() || Result.is(tok::eof))
1291     return true;
1292 
1293   // Consume the pp-import-suffix and expand any macros in it now, if we're not
1294   // at the semicolon already.
1295   SourceLocation SemiLoc = Result.getLocation();
1296   if (Result.isNot(tok::semi)) {
1297     Suffix.push_back(Result);
1298     CollectPpImportSuffix(Suffix);
1299     if (Suffix.back().isNot(tok::semi)) {
1300       // This is not an import after all.
1301       EnterTokens(Suffix);
1302       return false;
1303     }
1304     SemiLoc = Suffix.back().getLocation();
1305   }
1306 
1307   // Under the Modules TS, the dot is just part of the module name, and not
1308   // a real hierarchy separator. Flatten such module names now.
1309   //
1310   // FIXME: Is this the right level to be performing this transformation?
1311   std::string FlatModuleName;
1312   if (getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) {
1313     for (auto &Piece : NamedModuleImportPath) {
1314       // If the FlatModuleName ends with colon, it implies it is a partition.
1315       if (!FlatModuleName.empty() && FlatModuleName.back() != ':')
1316         FlatModuleName += ".";
1317       FlatModuleName += Piece.first->getName();
1318     }
1319     SourceLocation FirstPathLoc = NamedModuleImportPath[0].second;
1320     NamedModuleImportPath.clear();
1321     NamedModuleImportPath.push_back(
1322         std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc));
1323   }
1324 
1325   Module *Imported = nullptr;
1326   // We don't/shouldn't load the standard c++20 modules when preprocessing.
1327   if (getLangOpts().Modules && !isInImportingCXXNamedModules()) {
1328     Imported = TheModuleLoader.loadModule(ModuleImportLoc,
1329                                           NamedModuleImportPath,
1330                                           Module::Hidden,
1331                                           /*IsInclusionDirective=*/false);
1332     if (Imported)
1333       makeModuleVisible(Imported, SemiLoc);
1334   }
1335 
1336   if (Callbacks)
1337     Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported);
1338 
1339   if (!Suffix.empty()) {
1340     EnterTokens(Suffix);
1341     return false;
1342   }
1343   return true;
1344 }
1345 
1346 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) {
1347   CurSubmoduleState->VisibleModules.setVisible(
1348       M, Loc, [](Module *) {},
1349       [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) {
1350         // FIXME: Include the path in the diagnostic.
1351         // FIXME: Include the import location for the conflicting module.
1352         Diag(ModuleImportLoc, diag::warn_module_conflict)
1353             << Path[0]->getFullModuleName()
1354             << Conflict->getFullModuleName()
1355             << Message;
1356       });
1357 
1358   // Add this module to the imports list of the currently-built submodule.
1359   if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M)
1360     BuildingSubmoduleStack.back().M->Imports.insert(M);
1361 }
1362 
1363 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String,
1364                                           const char *DiagnosticTag,
1365                                           bool AllowMacroExpansion) {
1366   // We need at least one string literal.
1367   if (Result.isNot(tok::string_literal)) {
1368     Diag(Result, diag::err_expected_string_literal)
1369       << /*Source='in...'*/0 << DiagnosticTag;
1370     return false;
1371   }
1372 
1373   // Lex string literal tokens, optionally with macro expansion.
1374   SmallVector<Token, 4> StrToks;
1375   do {
1376     StrToks.push_back(Result);
1377 
1378     if (Result.hasUDSuffix())
1379       Diag(Result, diag::err_invalid_string_udl);
1380 
1381     if (AllowMacroExpansion)
1382       Lex(Result);
1383     else
1384       LexUnexpandedToken(Result);
1385   } while (Result.is(tok::string_literal));
1386 
1387   // Concatenate and parse the strings.
1388   StringLiteralParser Literal(StrToks, *this);
1389   assert(Literal.isOrdinary() && "Didn't allow wide strings in");
1390 
1391   if (Literal.hadError)
1392     return false;
1393 
1394   if (Literal.Pascal) {
1395     Diag(StrToks[0].getLocation(), diag::err_expected_string_literal)
1396       << /*Source='in...'*/0 << DiagnosticTag;
1397     return false;
1398   }
1399 
1400   String = std::string(Literal.GetString());
1401   return true;
1402 }
1403 
1404 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) {
1405   assert(Tok.is(tok::numeric_constant));
1406   SmallString<8> IntegerBuffer;
1407   bool NumberInvalid = false;
1408   StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid);
1409   if (NumberInvalid)
1410     return false;
1411   NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(),
1412                                getLangOpts(), getTargetInfo(),
1413                                getDiagnostics());
1414   if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix())
1415     return false;
1416   llvm::APInt APVal(64, 0);
1417   if (Literal.GetIntegerValue(APVal))
1418     return false;
1419   Lex(Tok);
1420   Value = APVal.getLimitedValue();
1421   return true;
1422 }
1423 
1424 void Preprocessor::addCommentHandler(CommentHandler *Handler) {
1425   assert(Handler && "NULL comment handler");
1426   assert(!llvm::is_contained(CommentHandlers, Handler) &&
1427          "Comment handler already registered");
1428   CommentHandlers.push_back(Handler);
1429 }
1430 
1431 void Preprocessor::removeCommentHandler(CommentHandler *Handler) {
1432   std::vector<CommentHandler *>::iterator Pos =
1433       llvm::find(CommentHandlers, Handler);
1434   assert(Pos != CommentHandlers.end() && "Comment handler not registered");
1435   CommentHandlers.erase(Pos);
1436 }
1437 
1438 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) {
1439   bool AnyPendingTokens = false;
1440   for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(),
1441        HEnd = CommentHandlers.end();
1442        H != HEnd; ++H) {
1443     if ((*H)->HandleComment(*this, Comment))
1444       AnyPendingTokens = true;
1445   }
1446   if (!AnyPendingTokens || getCommentRetentionState())
1447     return false;
1448   Lex(result);
1449   return true;
1450 }
1451 
1452 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const {
1453   const MacroAnnotations &A =
1454       getMacroAnnotations(Identifier.getIdentifierInfo());
1455   assert(A.DeprecationInfo &&
1456          "Macro deprecation warning without recorded annotation!");
1457   const MacroAnnotationInfo &Info = *A.DeprecationInfo;
1458   if (Info.Message.empty())
1459     Diag(Identifier, diag::warn_pragma_deprecated_macro_use)
1460         << Identifier.getIdentifierInfo() << 0;
1461   else
1462     Diag(Identifier, diag::warn_pragma_deprecated_macro_use)
1463         << Identifier.getIdentifierInfo() << 1 << Info.Message;
1464   Diag(Info.Location, diag::note_pp_macro_annotation) << 0;
1465 }
1466 
1467 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const {
1468   const MacroAnnotations &A =
1469       getMacroAnnotations(Identifier.getIdentifierInfo());
1470   assert(A.RestrictExpansionInfo &&
1471          "Macro restricted expansion warning without recorded annotation!");
1472   const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo;
1473   if (Info.Message.empty())
1474     Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use)
1475         << Identifier.getIdentifierInfo() << 0;
1476   else
1477     Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use)
1478         << Identifier.getIdentifierInfo() << 1 << Info.Message;
1479   Diag(Info.Location, diag::note_pp_macro_annotation) << 1;
1480 }
1481 
1482 void Preprocessor::emitFinalMacroWarning(const Token &Identifier,
1483                                          bool IsUndef) const {
1484   const MacroAnnotations &A =
1485       getMacroAnnotations(Identifier.getIdentifierInfo());
1486   assert(A.FinalAnnotationLoc &&
1487          "Final macro warning without recorded annotation!");
1488 
1489   Diag(Identifier, diag::warn_pragma_final_macro)
1490       << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1);
1491   Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2;
1492 }
1493 
1494 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr,
1495                                            const SourceLocation &Loc) const {
1496   // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in:
1497   auto FirstRegionEndingAfterLoc = llvm::partition_point(
1498       SafeBufferOptOutMap,
1499       [&SourceMgr,
1500        &Loc](const std::pair<SourceLocation, SourceLocation> &Region) {
1501         return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc);
1502       });
1503 
1504   if (FirstRegionEndingAfterLoc != SafeBufferOptOutMap.end()) {
1505     // To test if the start location of the found region precedes `Loc`:
1506     return SourceMgr.isBeforeInTranslationUnit(FirstRegionEndingAfterLoc->first,
1507                                                Loc);
1508   }
1509   // If we do not find a region whose end location passes `Loc`, we want to
1510   // check if the current region is still open:
1511   if (!SafeBufferOptOutMap.empty() &&
1512       SafeBufferOptOutMap.back().first == SafeBufferOptOutMap.back().second)
1513     return SourceMgr.isBeforeInTranslationUnit(SafeBufferOptOutMap.back().first,
1514                                                Loc);
1515   return false;
1516 }
1517 
1518 bool Preprocessor::enterOrExitSafeBufferOptOutRegion(
1519     bool isEnter, const SourceLocation &Loc) {
1520   if (isEnter) {
1521     if (isPPInSafeBufferOptOutRegion())
1522       return true; // invalid enter action
1523     InSafeBufferOptOutRegion = true;
1524     CurrentSafeBufferOptOutStart = Loc;
1525 
1526     // To set the start location of a new region:
1527 
1528     if (!SafeBufferOptOutMap.empty()) {
1529       [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back();
1530       assert(PrevRegion->first != PrevRegion->second &&
1531              "Shall not begin a safe buffer opt-out region before closing the "
1532              "previous one.");
1533     }
1534     // If the start location equals to the end location, we call the region a
1535     // open region or a unclosed region (i.e., end location has not been set
1536     // yet).
1537     SafeBufferOptOutMap.emplace_back(Loc, Loc);
1538   } else {
1539     if (!isPPInSafeBufferOptOutRegion())
1540       return true; // invalid enter action
1541     InSafeBufferOptOutRegion = false;
1542 
1543     // To set the end location of the current open region:
1544 
1545     assert(!SafeBufferOptOutMap.empty() &&
1546            "Misordered safe buffer opt-out regions");
1547     auto *CurrRegion = &SafeBufferOptOutMap.back();
1548     assert(CurrRegion->first == CurrRegion->second &&
1549            "Set end location to a closed safe buffer opt-out region");
1550     CurrRegion->second = Loc;
1551   }
1552   return false;
1553 }
1554 
1555 bool Preprocessor::isPPInSafeBufferOptOutRegion() {
1556   return InSafeBufferOptOutRegion;
1557 }
1558 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) {
1559   StartLoc = CurrentSafeBufferOptOutStart;
1560   return InSafeBufferOptOutRegion;
1561 }
1562 
1563 ModuleLoader::~ModuleLoader() = default;
1564 
1565 CommentHandler::~CommentHandler() = default;
1566 
1567 EmptylineHandler::~EmptylineHandler() = default;
1568 
1569 CodeCompletionHandler::~CodeCompletionHandler() = default;
1570 
1571 void Preprocessor::createPreprocessingRecord() {
1572   if (Record)
1573     return;
1574 
1575   Record = new PreprocessingRecord(getSourceManager());
1576   addPPCallbacks(std::unique_ptr<PPCallbacks>(Record));
1577 }
1578