xref: /llvm-project/clang/lib/Lex/Lexer.cpp (revision c654193c22d29c7de35004b1935b8848c43e2aa2)
1 //===- Lexer.cpp - C Language Family Lexer --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Lexer and Token interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Lex/Lexer.h"
14 #include "UnicodeCharSets.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TokenKinds.h"
23 #include "clang/Lex/LexDiagnostic.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/MultipleIncludeOpt.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Lex/PreprocessorOptions.h"
28 #include "clang/Lex/Token.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/StringSwitch.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/MemoryBufferRef.h"
37 #include "llvm/Support/NativeFormatting.h"
38 #include "llvm/Support/Unicode.h"
39 #include "llvm/Support/UnicodeCharRanges.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <cstring>
45 #include <optional>
46 #include <string>
47 #include <tuple>
48 #include <utility>
49 
50 using namespace clang;
51 
52 //===----------------------------------------------------------------------===//
53 // Token Class Implementation
54 //===----------------------------------------------------------------------===//
55 
56 /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
57 bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
58   if (isAnnotation())
59     return false;
60   if (const IdentifierInfo *II = getIdentifierInfo())
61     return II->getObjCKeywordID() == objcKey;
62   return false;
63 }
64 
65 /// getObjCKeywordID - Return the ObjC keyword kind.
66 tok::ObjCKeywordKind Token::getObjCKeywordID() const {
67   if (isAnnotation())
68     return tok::objc_not_keyword;
69   const IdentifierInfo *specId = getIdentifierInfo();
70   return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
71 }
72 
73 //===----------------------------------------------------------------------===//
74 // Lexer Class Implementation
75 //===----------------------------------------------------------------------===//
76 
77 void Lexer::anchor() {}
78 
79 void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
80                       const char *BufEnd) {
81   BufferStart = BufStart;
82   BufferPtr = BufPtr;
83   BufferEnd = BufEnd;
84 
85   assert(BufEnd[0] == 0 &&
86          "We assume that the input buffer has a null character at the end"
87          " to simplify lexing!");
88 
89   // Check whether we have a BOM in the beginning of the buffer. If yes - act
90   // accordingly. Right now we support only UTF-8 with and without BOM, so, just
91   // skip the UTF-8 BOM if it's present.
92   if (BufferStart == BufferPtr) {
93     // Determine the size of the BOM.
94     StringRef Buf(BufferStart, BufferEnd - BufferStart);
95     size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
96       .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
97       .Default(0);
98 
99     // Skip the BOM.
100     BufferPtr += BOMLength;
101   }
102 
103   Is_PragmaLexer = false;
104   CurrentConflictMarkerState = CMK_None;
105 
106   // Start of the file is a start of line.
107   IsAtStartOfLine = true;
108   IsAtPhysicalStartOfLine = true;
109 
110   HasLeadingSpace = false;
111   HasLeadingEmptyMacro = false;
112 
113   // We are not after parsing a #.
114   ParsingPreprocessorDirective = false;
115 
116   // We are not after parsing #include.
117   ParsingFilename = false;
118 
119   // We are not in raw mode.  Raw mode disables diagnostics and interpretation
120   // of tokens (e.g. identifiers, thus disabling macro expansion).  It is used
121   // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
122   // or otherwise skipping over tokens.
123   LexingRawMode = false;
124 
125   // Default to not keeping comments.
126   ExtendedTokenMode = 0;
127 
128   NewLinePtr = nullptr;
129 }
130 
131 /// Lexer constructor - Create a new lexer object for the specified buffer
132 /// with the specified preprocessor managing the lexing process.  This lexer
133 /// assumes that the associated file buffer and Preprocessor objects will
134 /// outlive it, so it doesn't take ownership of either of them.
135 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile,
136              Preprocessor &PP, bool IsFirstIncludeOfFile)
137     : PreprocessorLexer(&PP, FID),
138       FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
139       LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment),
140       IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
141   InitLexer(InputFile.getBufferStart(), InputFile.getBufferStart(),
142             InputFile.getBufferEnd());
143 
144   resetExtendedTokenMode();
145 }
146 
147 /// Lexer constructor - Create a new raw lexer object.  This object is only
148 /// suitable for calls to 'LexFromRawLexer'.  This lexer assumes that the text
149 /// range will outlive it, so it doesn't take ownership of it.
150 Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
151              const char *BufStart, const char *BufPtr, const char *BufEnd,
152              bool IsFirstIncludeOfFile)
153     : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment),
154       IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
155   InitLexer(BufStart, BufPtr, BufEnd);
156 
157   // We *are* in raw mode.
158   LexingRawMode = true;
159 }
160 
161 /// Lexer constructor - Create a new raw lexer object.  This object is only
162 /// suitable for calls to 'LexFromRawLexer'.  This lexer assumes that the text
163 /// range will outlive it, so it doesn't take ownership of it.
164 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile,
165              const SourceManager &SM, const LangOptions &langOpts,
166              bool IsFirstIncludeOfFile)
167     : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(),
168             FromFile.getBufferStart(), FromFile.getBufferEnd(),
169             IsFirstIncludeOfFile) {}
170 
171 void Lexer::resetExtendedTokenMode() {
172   assert(PP && "Cannot reset token mode without a preprocessor");
173   if (LangOpts.TraditionalCPP)
174     SetKeepWhitespaceMode(true);
175   else
176     SetCommentRetentionState(PP->getCommentRetentionState());
177 }
178 
179 /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
180 /// _Pragma expansion.  This has a variety of magic semantics that this method
181 /// sets up.  It returns a new'd Lexer that must be delete'd when done.
182 ///
183 /// On entrance to this routine, TokStartLoc is a macro location which has a
184 /// spelling loc that indicates the bytes to be lexed for the token and an
185 /// expansion location that indicates where all lexed tokens should be
186 /// "expanded from".
187 ///
188 /// TODO: It would really be nice to make _Pragma just be a wrapper around a
189 /// normal lexer that remaps tokens as they fly by.  This would require making
190 /// Preprocessor::Lex virtual.  Given that, we could just dump in a magic lexer
191 /// interface that could handle this stuff.  This would pull GetMappedTokenLoc
192 /// out of the critical path of the lexer!
193 ///
194 Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
195                                  SourceLocation ExpansionLocStart,
196                                  SourceLocation ExpansionLocEnd,
197                                  unsigned TokLen, Preprocessor &PP) {
198   SourceManager &SM = PP.getSourceManager();
199 
200   // Create the lexer as if we were going to lex the file normally.
201   FileID SpellingFID = SM.getFileID(SpellingLoc);
202   llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(SpellingFID);
203   Lexer *L = new Lexer(SpellingFID, InputFile, PP);
204 
205   // Now that the lexer is created, change the start/end locations so that we
206   // just lex the subsection of the file that we want.  This is lexing from a
207   // scratch buffer.
208   const char *StrData = SM.getCharacterData(SpellingLoc);
209 
210   L->BufferPtr = StrData;
211   L->BufferEnd = StrData+TokLen;
212   assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
213 
214   // Set the SourceLocation with the remapping information.  This ensures that
215   // GetMappedTokenLoc will remap the tokens as they are lexed.
216   L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
217                                      ExpansionLocStart,
218                                      ExpansionLocEnd, TokLen);
219 
220   // Ensure that the lexer thinks it is inside a directive, so that end \n will
221   // return an EOD token.
222   L->ParsingPreprocessorDirective = true;
223 
224   // This lexer really is for _Pragma.
225   L->Is_PragmaLexer = true;
226   return L;
227 }
228 
229 void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) {
230   this->IsAtPhysicalStartOfLine = IsAtStartOfLine;
231   this->IsAtStartOfLine = IsAtStartOfLine;
232   assert((BufferStart + Offset) <= BufferEnd);
233   BufferPtr = BufferStart + Offset;
234 }
235 
236 template <typename T> static void StringifyImpl(T &Str, char Quote) {
237   typename T::size_type i = 0, e = Str.size();
238   while (i < e) {
239     if (Str[i] == '\\' || Str[i] == Quote) {
240       Str.insert(Str.begin() + i, '\\');
241       i += 2;
242       ++e;
243     } else if (Str[i] == '\n' || Str[i] == '\r') {
244       // Replace '\r\n' and '\n\r' to '\\' followed by 'n'.
245       if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') &&
246           Str[i] != Str[i + 1]) {
247         Str[i] = '\\';
248         Str[i + 1] = 'n';
249       } else {
250         // Replace '\n' and '\r' to '\\' followed by 'n'.
251         Str[i] = '\\';
252         Str.insert(Str.begin() + i + 1, 'n');
253         ++e;
254       }
255       i += 2;
256     } else
257       ++i;
258   }
259 }
260 
261 std::string Lexer::Stringify(StringRef Str, bool Charify) {
262   std::string Result = std::string(Str);
263   char Quote = Charify ? '\'' : '"';
264   StringifyImpl(Result, Quote);
265   return Result;
266 }
267 
268 void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); }
269 
270 //===----------------------------------------------------------------------===//
271 // Token Spelling
272 //===----------------------------------------------------------------------===//
273 
274 /// Slow case of getSpelling. Extract the characters comprising the
275 /// spelling of this token from the provided input buffer.
276 static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
277                               const LangOptions &LangOpts, char *Spelling) {
278   assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
279 
280   size_t Length = 0;
281   const char *BufEnd = BufPtr + Tok.getLength();
282 
283   if (tok::isStringLiteral(Tok.getKind())) {
284     // Munch the encoding-prefix and opening double-quote.
285     while (BufPtr < BufEnd) {
286       unsigned Size;
287       Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
288       BufPtr += Size;
289 
290       if (Spelling[Length - 1] == '"')
291         break;
292     }
293 
294     // Raw string literals need special handling; trigraph expansion and line
295     // splicing do not occur within their d-char-sequence nor within their
296     // r-char-sequence.
297     if (Length >= 2 &&
298         Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
299       // Search backwards from the end of the token to find the matching closing
300       // quote.
301       const char *RawEnd = BufEnd;
302       do --RawEnd; while (*RawEnd != '"');
303       size_t RawLength = RawEnd - BufPtr + 1;
304 
305       // Everything between the quotes is included verbatim in the spelling.
306       memcpy(Spelling + Length, BufPtr, RawLength);
307       Length += RawLength;
308       BufPtr += RawLength;
309 
310       // The rest of the token is lexed normally.
311     }
312   }
313 
314   while (BufPtr < BufEnd) {
315     unsigned Size;
316     Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
317     BufPtr += Size;
318   }
319 
320   assert(Length < Tok.getLength() &&
321          "NeedsCleaning flag set on token that didn't need cleaning!");
322   return Length;
323 }
324 
325 /// getSpelling() - Return the 'spelling' of this token.  The spelling of a
326 /// token are the characters used to represent the token in the source file
327 /// after trigraph expansion and escaped-newline folding.  In particular, this
328 /// wants to get the true, uncanonicalized, spelling of things like digraphs
329 /// UCNs, etc.
330 StringRef Lexer::getSpelling(SourceLocation loc,
331                              SmallVectorImpl<char> &buffer,
332                              const SourceManager &SM,
333                              const LangOptions &options,
334                              bool *invalid) {
335   // Break down the source location.
336   std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
337 
338   // Try to the load the file buffer.
339   bool invalidTemp = false;
340   StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
341   if (invalidTemp) {
342     if (invalid) *invalid = true;
343     return {};
344   }
345 
346   const char *tokenBegin = file.data() + locInfo.second;
347 
348   // Lex from the start of the given location.
349   Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
350               file.begin(), tokenBegin, file.end());
351   Token token;
352   lexer.LexFromRawLexer(token);
353 
354   unsigned length = token.getLength();
355 
356   // Common case:  no need for cleaning.
357   if (!token.needsCleaning())
358     return StringRef(tokenBegin, length);
359 
360   // Hard case, we need to relex the characters into the string.
361   buffer.resize(length);
362   buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
363   return StringRef(buffer.data(), buffer.size());
364 }
365 
366 /// getSpelling() - Return the 'spelling' of this token.  The spelling of a
367 /// token are the characters used to represent the token in the source file
368 /// after trigraph expansion and escaped-newline folding.  In particular, this
369 /// wants to get the true, uncanonicalized, spelling of things like digraphs
370 /// UCNs, etc.
371 std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
372                                const LangOptions &LangOpts, bool *Invalid) {
373   assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
374 
375   bool CharDataInvalid = false;
376   const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
377                                                     &CharDataInvalid);
378   if (Invalid)
379     *Invalid = CharDataInvalid;
380   if (CharDataInvalid)
381     return {};
382 
383   // If this token contains nothing interesting, return it directly.
384   if (!Tok.needsCleaning())
385     return std::string(TokStart, TokStart + Tok.getLength());
386 
387   std::string Result;
388   Result.resize(Tok.getLength());
389   Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
390   return Result;
391 }
392 
393 /// getSpelling - This method is used to get the spelling of a token into a
394 /// preallocated buffer, instead of as an std::string.  The caller is required
395 /// to allocate enough space for the token, which is guaranteed to be at least
396 /// Tok.getLength() bytes long.  The actual length of the token is returned.
397 ///
398 /// Note that this method may do two possible things: it may either fill in
399 /// the buffer specified with characters, or it may *change the input pointer*
400 /// to point to a constant buffer with the data already in it (avoiding a
401 /// copy).  The caller is not allowed to modify the returned buffer pointer
402 /// if an internal buffer is returned.
403 unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
404                             const SourceManager &SourceMgr,
405                             const LangOptions &LangOpts, bool *Invalid) {
406   assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
407 
408   const char *TokStart = nullptr;
409   // NOTE: this has to be checked *before* testing for an IdentifierInfo.
410   if (Tok.is(tok::raw_identifier))
411     TokStart = Tok.getRawIdentifier().data();
412   else if (!Tok.hasUCN()) {
413     if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
414       // Just return the string from the identifier table, which is very quick.
415       Buffer = II->getNameStart();
416       return II->getLength();
417     }
418   }
419 
420   // NOTE: this can be checked even after testing for an IdentifierInfo.
421   if (Tok.isLiteral())
422     TokStart = Tok.getLiteralData();
423 
424   if (!TokStart) {
425     // Compute the start of the token in the input lexer buffer.
426     bool CharDataInvalid = false;
427     TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
428     if (Invalid)
429       *Invalid = CharDataInvalid;
430     if (CharDataInvalid) {
431       Buffer = "";
432       return 0;
433     }
434   }
435 
436   // If this token contains nothing interesting, return it directly.
437   if (!Tok.needsCleaning()) {
438     Buffer = TokStart;
439     return Tok.getLength();
440   }
441 
442   // Otherwise, hard case, relex the characters into the string.
443   return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
444 }
445 
446 /// MeasureTokenLength - Relex the token at the specified location and return
447 /// its length in bytes in the input file.  If the token needs cleaning (e.g.
448 /// includes a trigraph or an escaped newline) then this count includes bytes
449 /// that are part of that.
450 unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
451                                    const SourceManager &SM,
452                                    const LangOptions &LangOpts) {
453   Token TheTok;
454   if (getRawToken(Loc, TheTok, SM, LangOpts))
455     return 0;
456   return TheTok.getLength();
457 }
458 
459 /// Relex the token at the specified location.
460 /// \returns true if there was a failure, false on success.
461 bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
462                         const SourceManager &SM,
463                         const LangOptions &LangOpts,
464                         bool IgnoreWhiteSpace) {
465   // TODO: this could be special cased for common tokens like identifiers, ')',
466   // etc to make this faster, if it mattered.  Just look at StrData[0] to handle
467   // all obviously single-char tokens.  This could use
468   // Lexer::isObviouslySimpleCharacter for example to handle identifiers or
469   // something.
470 
471   // If this comes from a macro expansion, we really do want the macro name, not
472   // the token this macro expanded to.
473   Loc = SM.getExpansionLoc(Loc);
474   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
475   bool Invalid = false;
476   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
477   if (Invalid)
478     return true;
479 
480   const char *StrData = Buffer.data()+LocInfo.second;
481 
482   if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
483     return true;
484 
485   // Create a lexer starting at the beginning of this token.
486   Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
487                  Buffer.begin(), StrData, Buffer.end());
488   TheLexer.SetCommentRetentionState(true);
489   TheLexer.LexFromRawLexer(Result);
490   return false;
491 }
492 
493 /// Returns the pointer that points to the beginning of line that contains
494 /// the given offset, or null if the offset if invalid.
495 static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) {
496   const char *BufStart = Buffer.data();
497   if (Offset >= Buffer.size())
498     return nullptr;
499 
500   const char *LexStart = BufStart + Offset;
501   for (; LexStart != BufStart; --LexStart) {
502     if (isVerticalWhitespace(LexStart[0]) &&
503         !Lexer::isNewLineEscaped(BufStart, LexStart)) {
504       // LexStart should point at first character of logical line.
505       ++LexStart;
506       break;
507     }
508   }
509   return LexStart;
510 }
511 
512 static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
513                                               const SourceManager &SM,
514                                               const LangOptions &LangOpts) {
515   assert(Loc.isFileID());
516   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
517   if (LocInfo.first.isInvalid())
518     return Loc;
519 
520   bool Invalid = false;
521   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
522   if (Invalid)
523     return Loc;
524 
525   // Back up from the current location until we hit the beginning of a line
526   // (or the buffer). We'll relex from that point.
527   const char *StrData = Buffer.data() + LocInfo.second;
528   const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second);
529   if (!LexStart || LexStart == StrData)
530     return Loc;
531 
532   // Create a lexer starting at the beginning of this token.
533   SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
534   Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart,
535                  Buffer.end());
536   TheLexer.SetCommentRetentionState(true);
537 
538   // Lex tokens until we find the token that contains the source location.
539   Token TheTok;
540   do {
541     TheLexer.LexFromRawLexer(TheTok);
542 
543     if (TheLexer.getBufferLocation() > StrData) {
544       // Lexing this token has taken the lexer past the source location we're
545       // looking for. If the current token encompasses our source location,
546       // return the beginning of that token.
547       if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
548         return TheTok.getLocation();
549 
550       // We ended up skipping over the source location entirely, which means
551       // that it points into whitespace. We're done here.
552       break;
553     }
554   } while (TheTok.getKind() != tok::eof);
555 
556   // We've passed our source location; just return the original source location.
557   return Loc;
558 }
559 
560 SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
561                                           const SourceManager &SM,
562                                           const LangOptions &LangOpts) {
563   if (Loc.isFileID())
564     return getBeginningOfFileToken(Loc, SM, LangOpts);
565 
566   if (!SM.isMacroArgExpansion(Loc))
567     return Loc;
568 
569   SourceLocation FileLoc = SM.getSpellingLoc(Loc);
570   SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
571   std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
572   std::pair<FileID, unsigned> BeginFileLocInfo =
573       SM.getDecomposedLoc(BeginFileLoc);
574   assert(FileLocInfo.first == BeginFileLocInfo.first &&
575          FileLocInfo.second >= BeginFileLocInfo.second);
576   return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
577 }
578 
579 namespace {
580 
581 enum PreambleDirectiveKind {
582   PDK_Skipped,
583   PDK_Unknown
584 };
585 
586 } // namespace
587 
588 PreambleBounds Lexer::ComputePreamble(StringRef Buffer,
589                                       const LangOptions &LangOpts,
590                                       unsigned MaxLines) {
591   // Create a lexer starting at the beginning of the file. Note that we use a
592   // "fake" file source location at offset 1 so that the lexer will track our
593   // position within the file.
594   const SourceLocation::UIntTy StartOffset = 1;
595   SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
596   Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
597                  Buffer.end());
598   TheLexer.SetCommentRetentionState(true);
599 
600   bool InPreprocessorDirective = false;
601   Token TheTok;
602   SourceLocation ActiveCommentLoc;
603 
604   unsigned MaxLineOffset = 0;
605   if (MaxLines) {
606     const char *CurPtr = Buffer.begin();
607     unsigned CurLine = 0;
608     while (CurPtr != Buffer.end()) {
609       char ch = *CurPtr++;
610       if (ch == '\n') {
611         ++CurLine;
612         if (CurLine == MaxLines)
613           break;
614       }
615     }
616     if (CurPtr != Buffer.end())
617       MaxLineOffset = CurPtr - Buffer.begin();
618   }
619 
620   do {
621     TheLexer.LexFromRawLexer(TheTok);
622 
623     if (InPreprocessorDirective) {
624       // If we've hit the end of the file, we're done.
625       if (TheTok.getKind() == tok::eof) {
626         break;
627       }
628 
629       // If we haven't hit the end of the preprocessor directive, skip this
630       // token.
631       if (!TheTok.isAtStartOfLine())
632         continue;
633 
634       // We've passed the end of the preprocessor directive, and will look
635       // at this token again below.
636       InPreprocessorDirective = false;
637     }
638 
639     // Keep track of the # of lines in the preamble.
640     if (TheTok.isAtStartOfLine()) {
641       unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
642 
643       // If we were asked to limit the number of lines in the preamble,
644       // and we're about to exceed that limit, we're done.
645       if (MaxLineOffset && TokOffset >= MaxLineOffset)
646         break;
647     }
648 
649     // Comments are okay; skip over them.
650     if (TheTok.getKind() == tok::comment) {
651       if (ActiveCommentLoc.isInvalid())
652         ActiveCommentLoc = TheTok.getLocation();
653       continue;
654     }
655 
656     if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
657       // This is the start of a preprocessor directive.
658       Token HashTok = TheTok;
659       InPreprocessorDirective = true;
660       ActiveCommentLoc = SourceLocation();
661 
662       // Figure out which directive this is. Since we're lexing raw tokens,
663       // we don't have an identifier table available. Instead, just look at
664       // the raw identifier to recognize and categorize preprocessor directives.
665       TheLexer.LexFromRawLexer(TheTok);
666       if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
667         StringRef Keyword = TheTok.getRawIdentifier();
668         PreambleDirectiveKind PDK
669           = llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
670               .Case("include", PDK_Skipped)
671               .Case("__include_macros", PDK_Skipped)
672               .Case("define", PDK_Skipped)
673               .Case("undef", PDK_Skipped)
674               .Case("line", PDK_Skipped)
675               .Case("error", PDK_Skipped)
676               .Case("pragma", PDK_Skipped)
677               .Case("import", PDK_Skipped)
678               .Case("include_next", PDK_Skipped)
679               .Case("warning", PDK_Skipped)
680               .Case("ident", PDK_Skipped)
681               .Case("sccs", PDK_Skipped)
682               .Case("assert", PDK_Skipped)
683               .Case("unassert", PDK_Skipped)
684               .Case("if", PDK_Skipped)
685               .Case("ifdef", PDK_Skipped)
686               .Case("ifndef", PDK_Skipped)
687               .Case("elif", PDK_Skipped)
688               .Case("elifdef", PDK_Skipped)
689               .Case("elifndef", PDK_Skipped)
690               .Case("else", PDK_Skipped)
691               .Case("endif", PDK_Skipped)
692               .Default(PDK_Unknown);
693 
694         switch (PDK) {
695         case PDK_Skipped:
696           continue;
697 
698         case PDK_Unknown:
699           // We don't know what this directive is; stop at the '#'.
700           break;
701         }
702       }
703 
704       // We only end up here if we didn't recognize the preprocessor
705       // directive or it was one that can't occur in the preamble at this
706       // point. Roll back the current token to the location of the '#'.
707       TheTok = HashTok;
708     } else if (TheTok.isAtStartOfLine() &&
709                TheTok.getKind() == tok::raw_identifier &&
710                TheTok.getRawIdentifier() == "module" &&
711                LangOpts.CPlusPlusModules) {
712       // The initial global module fragment introducer "module;" is part of
713       // the preamble, which runs up to the module declaration "module foo;".
714       Token ModuleTok = TheTok;
715       do {
716         TheLexer.LexFromRawLexer(TheTok);
717       } while (TheTok.getKind() == tok::comment);
718       if (TheTok.getKind() != tok::semi) {
719         // Not global module fragment, roll back.
720         TheTok = ModuleTok;
721         break;
722       }
723       continue;
724     }
725 
726     // We hit a token that we don't recognize as being in the
727     // "preprocessing only" part of the file, so we're no longer in
728     // the preamble.
729     break;
730   } while (true);
731 
732   SourceLocation End;
733   if (ActiveCommentLoc.isValid())
734     End = ActiveCommentLoc; // don't truncate a decl comment.
735   else
736     End = TheTok.getLocation();
737 
738   return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(),
739                         TheTok.isAtStartOfLine());
740 }
741 
742 unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo,
743                                      const SourceManager &SM,
744                                      const LangOptions &LangOpts) {
745   // Figure out how many physical characters away the specified expansion
746   // character is.  This needs to take into consideration newlines and
747   // trigraphs.
748   bool Invalid = false;
749   const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
750 
751   // If they request the first char of the token, we're trivially done.
752   if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
753     return 0;
754 
755   unsigned PhysOffset = 0;
756 
757   // The usual case is that tokens don't contain anything interesting.  Skip
758   // over the uninteresting characters.  If a token only consists of simple
759   // chars, this method is extremely fast.
760   while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
761     if (CharNo == 0)
762       return PhysOffset;
763     ++TokPtr;
764     --CharNo;
765     ++PhysOffset;
766   }
767 
768   // If we have a character that may be a trigraph or escaped newline, use a
769   // lexer to parse it correctly.
770   for (; CharNo; --CharNo) {
771     unsigned Size;
772     Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
773     TokPtr += Size;
774     PhysOffset += Size;
775   }
776 
777   // Final detail: if we end up on an escaped newline, we want to return the
778   // location of the actual byte of the token.  For example foo\<newline>bar
779   // advanced by 3 should return the location of b, not of \\.  One compounding
780   // detail of this is that the escape may be made by a trigraph.
781   if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
782     PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
783 
784   return PhysOffset;
785 }
786 
787 /// Computes the source location just past the end of the
788 /// token at this source location.
789 ///
790 /// This routine can be used to produce a source location that
791 /// points just past the end of the token referenced by \p Loc, and
792 /// is generally used when a diagnostic needs to point just after a
793 /// token where it expected something different that it received. If
794 /// the returned source location would not be meaningful (e.g., if
795 /// it points into a macro), this routine returns an invalid
796 /// source location.
797 ///
798 /// \param Offset an offset from the end of the token, where the source
799 /// location should refer to. The default offset (0) produces a source
800 /// location pointing just past the end of the token; an offset of 1 produces
801 /// a source location pointing to the last character in the token, etc.
802 SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
803                                           const SourceManager &SM,
804                                           const LangOptions &LangOpts) {
805   if (Loc.isInvalid())
806     return {};
807 
808   if (Loc.isMacroID()) {
809     if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
810       return {}; // Points inside the macro expansion.
811   }
812 
813   unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
814   if (Len > Offset)
815     Len = Len - Offset;
816   else
817     return Loc;
818 
819   return Loc.getLocWithOffset(Len);
820 }
821 
822 /// Returns true if the given MacroID location points at the first
823 /// token of the macro expansion.
824 bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
825                                       const SourceManager &SM,
826                                       const LangOptions &LangOpts,
827                                       SourceLocation *MacroBegin) {
828   assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
829 
830   SourceLocation expansionLoc;
831   if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
832     return false;
833 
834   if (expansionLoc.isFileID()) {
835     // No other macro expansions, this is the first.
836     if (MacroBegin)
837       *MacroBegin = expansionLoc;
838     return true;
839   }
840 
841   return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
842 }
843 
844 /// Returns true if the given MacroID location points at the last
845 /// token of the macro expansion.
846 bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
847                                     const SourceManager &SM,
848                                     const LangOptions &LangOpts,
849                                     SourceLocation *MacroEnd) {
850   assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
851 
852   SourceLocation spellLoc = SM.getSpellingLoc(loc);
853   unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
854   if (tokLen == 0)
855     return false;
856 
857   SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
858   SourceLocation expansionLoc;
859   if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
860     return false;
861 
862   if (expansionLoc.isFileID()) {
863     // No other macro expansions.
864     if (MacroEnd)
865       *MacroEnd = expansionLoc;
866     return true;
867   }
868 
869   return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
870 }
871 
872 static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
873                                              const SourceManager &SM,
874                                              const LangOptions &LangOpts) {
875   SourceLocation Begin = Range.getBegin();
876   SourceLocation End = Range.getEnd();
877   assert(Begin.isFileID() && End.isFileID());
878   if (Range.isTokenRange()) {
879     End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
880     if (End.isInvalid())
881       return {};
882   }
883 
884   // Break down the source locations.
885   FileID FID;
886   unsigned BeginOffs;
887   std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
888   if (FID.isInvalid())
889     return {};
890 
891   unsigned EndOffs;
892   if (!SM.isInFileID(End, FID, &EndOffs) ||
893       BeginOffs > EndOffs)
894     return {};
895 
896   return CharSourceRange::getCharRange(Begin, End);
897 }
898 
899 // Assumes that `Loc` is in an expansion.
900 static bool isInExpansionTokenRange(const SourceLocation Loc,
901                                     const SourceManager &SM) {
902   return SM.getSLocEntry(SM.getFileID(Loc))
903       .getExpansion()
904       .isExpansionTokenRange();
905 }
906 
907 CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
908                                          const SourceManager &SM,
909                                          const LangOptions &LangOpts) {
910   SourceLocation Begin = Range.getBegin();
911   SourceLocation End = Range.getEnd();
912   if (Begin.isInvalid() || End.isInvalid())
913     return {};
914 
915   if (Begin.isFileID() && End.isFileID())
916     return makeRangeFromFileLocs(Range, SM, LangOpts);
917 
918   if (Begin.isMacroID() && End.isFileID()) {
919     if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
920       return {};
921     Range.setBegin(Begin);
922     return makeRangeFromFileLocs(Range, SM, LangOpts);
923   }
924 
925   if (Begin.isFileID() && End.isMacroID()) {
926     if (Range.isTokenRange()) {
927       if (!isAtEndOfMacroExpansion(End, SM, LangOpts, &End))
928         return {};
929       // Use the *original* end, not the expanded one in `End`.
930       Range.setTokenRange(isInExpansionTokenRange(Range.getEnd(), SM));
931     } else if (!isAtStartOfMacroExpansion(End, SM, LangOpts, &End))
932       return {};
933     Range.setEnd(End);
934     return makeRangeFromFileLocs(Range, SM, LangOpts);
935   }
936 
937   assert(Begin.isMacroID() && End.isMacroID());
938   SourceLocation MacroBegin, MacroEnd;
939   if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
940       ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
941                                                         &MacroEnd)) ||
942        (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
943                                                          &MacroEnd)))) {
944     Range.setBegin(MacroBegin);
945     Range.setEnd(MacroEnd);
946     // Use the *original* `End`, not the expanded one in `MacroEnd`.
947     if (Range.isTokenRange())
948       Range.setTokenRange(isInExpansionTokenRange(End, SM));
949     return makeRangeFromFileLocs(Range, SM, LangOpts);
950   }
951 
952   bool Invalid = false;
953   const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
954                                                         &Invalid);
955   if (Invalid)
956     return {};
957 
958   if (BeginEntry.getExpansion().isMacroArgExpansion()) {
959     const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
960                                                         &Invalid);
961     if (Invalid)
962       return {};
963 
964     if (EndEntry.getExpansion().isMacroArgExpansion() &&
965         BeginEntry.getExpansion().getExpansionLocStart() ==
966             EndEntry.getExpansion().getExpansionLocStart()) {
967       Range.setBegin(SM.getImmediateSpellingLoc(Begin));
968       Range.setEnd(SM.getImmediateSpellingLoc(End));
969       return makeFileCharRange(Range, SM, LangOpts);
970     }
971   }
972 
973   return {};
974 }
975 
976 StringRef Lexer::getSourceText(CharSourceRange Range,
977                                const SourceManager &SM,
978                                const LangOptions &LangOpts,
979                                bool *Invalid) {
980   Range = makeFileCharRange(Range, SM, LangOpts);
981   if (Range.isInvalid()) {
982     if (Invalid) *Invalid = true;
983     return {};
984   }
985 
986   // Break down the source location.
987   std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
988   if (beginInfo.first.isInvalid()) {
989     if (Invalid) *Invalid = true;
990     return {};
991   }
992 
993   unsigned EndOffs;
994   if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
995       beginInfo.second > EndOffs) {
996     if (Invalid) *Invalid = true;
997     return {};
998   }
999 
1000   // Try to the load the file buffer.
1001   bool invalidTemp = false;
1002   StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
1003   if (invalidTemp) {
1004     if (Invalid) *Invalid = true;
1005     return {};
1006   }
1007 
1008   if (Invalid) *Invalid = false;
1009   return file.substr(beginInfo.second, EndOffs - beginInfo.second);
1010 }
1011 
1012 StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
1013                                        const SourceManager &SM,
1014                                        const LangOptions &LangOpts) {
1015   assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1016 
1017   // Find the location of the immediate macro expansion.
1018   while (true) {
1019     FileID FID = SM.getFileID(Loc);
1020     const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
1021     const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
1022     Loc = Expansion.getExpansionLocStart();
1023     if (!Expansion.isMacroArgExpansion())
1024       break;
1025 
1026     // For macro arguments we need to check that the argument did not come
1027     // from an inner macro, e.g: "MAC1( MAC2(foo) )"
1028 
1029     // Loc points to the argument id of the macro definition, move to the
1030     // macro expansion.
1031     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1032     SourceLocation SpellLoc = Expansion.getSpellingLoc();
1033     if (SpellLoc.isFileID())
1034       break; // No inner macro.
1035 
1036     // If spelling location resides in the same FileID as macro expansion
1037     // location, it means there is no inner macro.
1038     FileID MacroFID = SM.getFileID(Loc);
1039     if (SM.isInFileID(SpellLoc, MacroFID))
1040       break;
1041 
1042     // Argument came from inner macro.
1043     Loc = SpellLoc;
1044   }
1045 
1046   // Find the spelling location of the start of the non-argument expansion
1047   // range. This is where the macro name was spelled in order to begin
1048   // expanding this macro.
1049   Loc = SM.getSpellingLoc(Loc);
1050 
1051   // Dig out the buffer where the macro name was spelled and the extents of the
1052   // name so that we can render it into the expansion note.
1053   std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1054   unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1055   StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1056   return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1057 }
1058 
1059 StringRef Lexer::getImmediateMacroNameForDiagnostics(
1060     SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) {
1061   assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1062   // Walk past macro argument expansions.
1063   while (SM.isMacroArgExpansion(Loc))
1064     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1065 
1066   // If the macro's spelling isn't FileID or from scratch space, then it's
1067   // actually a token paste or stringization (or similar) and not a macro at
1068   // all.
1069   SourceLocation SpellLoc = SM.getSpellingLoc(Loc);
1070   if (!SpellLoc.isFileID() || SM.isWrittenInScratchSpace(SpellLoc))
1071     return {};
1072 
1073   // Find the spelling location of the start of the non-argument expansion
1074   // range. This is where the macro name was spelled in order to begin
1075   // expanding this macro.
1076   Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin());
1077 
1078   // Dig out the buffer where the macro name was spelled and the extents of the
1079   // name so that we can render it into the expansion note.
1080   std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1081   unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1082   StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1083   return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1084 }
1085 
1086 bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) {
1087   return isAsciiIdentifierContinue(c, LangOpts.DollarIdents);
1088 }
1089 
1090 bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) {
1091   assert(isVerticalWhitespace(Str[0]));
1092   if (Str - 1 < BufferStart)
1093     return false;
1094 
1095   if ((Str[0] == '\n' && Str[-1] == '\r') ||
1096       (Str[0] == '\r' && Str[-1] == '\n')) {
1097     if (Str - 2 < BufferStart)
1098       return false;
1099     --Str;
1100   }
1101   --Str;
1102 
1103   // Rewind to first non-space character:
1104   while (Str > BufferStart && isHorizontalWhitespace(*Str))
1105     --Str;
1106 
1107   return *Str == '\\';
1108 }
1109 
1110 StringRef Lexer::getIndentationForLine(SourceLocation Loc,
1111                                        const SourceManager &SM) {
1112   if (Loc.isInvalid() || Loc.isMacroID())
1113     return {};
1114   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1115   if (LocInfo.first.isInvalid())
1116     return {};
1117   bool Invalid = false;
1118   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1119   if (Invalid)
1120     return {};
1121   const char *Line = findBeginningOfLine(Buffer, LocInfo.second);
1122   if (!Line)
1123     return {};
1124   StringRef Rest = Buffer.substr(Line - Buffer.data());
1125   size_t NumWhitespaceChars = Rest.find_first_not_of(" \t");
1126   return NumWhitespaceChars == StringRef::npos
1127              ? ""
1128              : Rest.take_front(NumWhitespaceChars);
1129 }
1130 
1131 //===----------------------------------------------------------------------===//
1132 // Diagnostics forwarding code.
1133 //===----------------------------------------------------------------------===//
1134 
1135 /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
1136 /// lexer buffer was all expanded at a single point, perform the mapping.
1137 /// This is currently only used for _Pragma implementation, so it is the slow
1138 /// path of the hot getSourceLocation method.  Do not allow it to be inlined.
1139 static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
1140     Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
1141 static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
1142                                         SourceLocation FileLoc,
1143                                         unsigned CharNo, unsigned TokLen) {
1144   assert(FileLoc.isMacroID() && "Must be a macro expansion");
1145 
1146   // Otherwise, we're lexing "mapped tokens".  This is used for things like
1147   // _Pragma handling.  Combine the expansion location of FileLoc with the
1148   // spelling location.
1149   SourceManager &SM = PP.getSourceManager();
1150 
1151   // Create a new SLoc which is expanded from Expansion(FileLoc) but whose
1152   // characters come from spelling(FileLoc)+Offset.
1153   SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
1154   SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
1155 
1156   // Figure out the expansion loc range, which is the range covered by the
1157   // original _Pragma(...) sequence.
1158   CharSourceRange II = SM.getImmediateExpansionRange(FileLoc);
1159 
1160   return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen);
1161 }
1162 
1163 /// getSourceLocation - Return a source location identifier for the specified
1164 /// offset in the current file.
1165 SourceLocation Lexer::getSourceLocation(const char *Loc,
1166                                         unsigned TokLen) const {
1167   assert(Loc >= BufferStart && Loc <= BufferEnd &&
1168          "Location out of range for this buffer!");
1169 
1170   // In the normal case, we're just lexing from a simple file buffer, return
1171   // the file id from FileLoc with the offset specified.
1172   unsigned CharNo = Loc-BufferStart;
1173   if (FileLoc.isFileID())
1174     return FileLoc.getLocWithOffset(CharNo);
1175 
1176   // Otherwise, this is the _Pragma lexer case, which pretends that all of the
1177   // tokens are lexed from where the _Pragma was defined.
1178   assert(PP && "This doesn't work on raw lexers");
1179   return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
1180 }
1181 
1182 /// Diag - Forwarding function for diagnostics.  This translate a source
1183 /// position in the current buffer into a SourceLocation object for rendering.
1184 DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
1185   return PP->Diag(getSourceLocation(Loc), DiagID);
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 // Trigraph and Escaped Newline Handling Code.
1190 //===----------------------------------------------------------------------===//
1191 
1192 /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
1193 /// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
1194 static char GetTrigraphCharForLetter(char Letter) {
1195   switch (Letter) {
1196   default:   return 0;
1197   case '=':  return '#';
1198   case ')':  return ']';
1199   case '(':  return '[';
1200   case '!':  return '|';
1201   case '\'': return '^';
1202   case '>':  return '}';
1203   case '/':  return '\\';
1204   case '<':  return '{';
1205   case '-':  return '~';
1206   }
1207 }
1208 
1209 /// DecodeTrigraphChar - If the specified character is a legal trigraph when
1210 /// prefixed with ??, emit a trigraph warning.  If trigraphs are enabled,
1211 /// return the result character.  Finally, emit a warning about trigraph use
1212 /// whether trigraphs are enabled or not.
1213 static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) {
1214   char Res = GetTrigraphCharForLetter(*CP);
1215   if (!Res)
1216     return Res;
1217 
1218   if (!Trigraphs) {
1219     if (L && !L->isLexingRawMode())
1220       L->Diag(CP-2, diag::trigraph_ignored);
1221     return 0;
1222   }
1223 
1224   if (L && !L->isLexingRawMode())
1225     L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
1226   return Res;
1227 }
1228 
1229 /// getEscapedNewLineSize - Return the size of the specified escaped newline,
1230 /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
1231 /// trigraph equivalent on entry to this function.
1232 unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
1233   unsigned Size = 0;
1234   while (isWhitespace(Ptr[Size])) {
1235     ++Size;
1236 
1237     if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
1238       continue;
1239 
1240     // If this is a \r\n or \n\r, skip the other half.
1241     if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
1242         Ptr[Size-1] != Ptr[Size])
1243       ++Size;
1244 
1245     return Size;
1246   }
1247 
1248   // Not an escaped newline, must be a \t or something else.
1249   return 0;
1250 }
1251 
1252 /// SkipEscapedNewLines - If P points to an escaped newline (or a series of
1253 /// them), skip over them and return the first non-escaped-newline found,
1254 /// otherwise return P.
1255 const char *Lexer::SkipEscapedNewLines(const char *P) {
1256   while (true) {
1257     const char *AfterEscape;
1258     if (*P == '\\') {
1259       AfterEscape = P+1;
1260     } else if (*P == '?') {
1261       // If not a trigraph for escape, bail out.
1262       if (P[1] != '?' || P[2] != '/')
1263         return P;
1264       // FIXME: Take LangOpts into account; the language might not
1265       // support trigraphs.
1266       AfterEscape = P+3;
1267     } else {
1268       return P;
1269     }
1270 
1271     unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
1272     if (NewLineSize == 0) return P;
1273     P = AfterEscape+NewLineSize;
1274   }
1275 }
1276 
1277 std::optional<Token> Lexer::findNextToken(SourceLocation Loc,
1278                                           const SourceManager &SM,
1279                                           const LangOptions &LangOpts) {
1280   if (Loc.isMacroID()) {
1281     if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
1282       return std::nullopt;
1283   }
1284   Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
1285 
1286   // Break down the source location.
1287   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1288 
1289   // Try to load the file buffer.
1290   bool InvalidTemp = false;
1291   StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
1292   if (InvalidTemp)
1293     return std::nullopt;
1294 
1295   const char *TokenBegin = File.data() + LocInfo.second;
1296 
1297   // Lex from the start of the given location.
1298   Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
1299                                       TokenBegin, File.end());
1300   // Find the token.
1301   Token Tok;
1302   lexer.LexFromRawLexer(Tok);
1303   return Tok;
1304 }
1305 
1306 /// Checks that the given token is the first token that occurs after the
1307 /// given location (this excludes comments and whitespace). Returns the location
1308 /// immediately after the specified token. If the token is not found or the
1309 /// location is inside a macro, the returned source location will be invalid.
1310 SourceLocation Lexer::findLocationAfterToken(
1311     SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM,
1312     const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) {
1313   std::optional<Token> Tok = findNextToken(Loc, SM, LangOpts);
1314   if (!Tok || Tok->isNot(TKind))
1315     return {};
1316   SourceLocation TokenLoc = Tok->getLocation();
1317 
1318   // Calculate how much whitespace needs to be skipped if any.
1319   unsigned NumWhitespaceChars = 0;
1320   if (SkipTrailingWhitespaceAndNewLine) {
1321     const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength();
1322     unsigned char C = *TokenEnd;
1323     while (isHorizontalWhitespace(C)) {
1324       C = *(++TokenEnd);
1325       NumWhitespaceChars++;
1326     }
1327 
1328     // Skip \r, \n, \r\n, or \n\r
1329     if (C == '\n' || C == '\r') {
1330       char PrevC = C;
1331       C = *(++TokenEnd);
1332       NumWhitespaceChars++;
1333       if ((C == '\n' || C == '\r') && C != PrevC)
1334         NumWhitespaceChars++;
1335     }
1336   }
1337 
1338   return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars);
1339 }
1340 
1341 /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
1342 /// get its size, and return it.  This is tricky in several cases:
1343 ///   1. If currently at the start of a trigraph, we warn about the trigraph,
1344 ///      then either return the trigraph (skipping 3 chars) or the '?',
1345 ///      depending on whether trigraphs are enabled or not.
1346 ///   2. If this is an escaped newline (potentially with whitespace between
1347 ///      the backslash and newline), implicitly skip the newline and return
1348 ///      the char after it.
1349 ///
1350 /// This handles the slow/uncommon case of the getCharAndSize method.  Here we
1351 /// know that we can accumulate into Size, and that we have already incremented
1352 /// Ptr by Size bytes.
1353 ///
1354 /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
1355 /// be updated to match.
1356 char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
1357                                Token *Tok) {
1358   // If we have a slash, look for an escaped newline.
1359   if (Ptr[0] == '\\') {
1360     ++Size;
1361     ++Ptr;
1362 Slash:
1363     // Common case, backslash-char where the char is not whitespace.
1364     if (!isWhitespace(Ptr[0])) return '\\';
1365 
1366     // See if we have optional whitespace characters between the slash and
1367     // newline.
1368     if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1369       // Remember that this token needs to be cleaned.
1370       if (Tok) Tok->setFlag(Token::NeedsCleaning);
1371 
1372       // Warn if there was whitespace between the backslash and newline.
1373       if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
1374         Diag(Ptr, diag::backslash_newline_space);
1375 
1376       // Found backslash<whitespace><newline>.  Parse the char after it.
1377       Size += EscapedNewLineSize;
1378       Ptr  += EscapedNewLineSize;
1379 
1380       // Use slow version to accumulate a correct size field.
1381       return getCharAndSizeSlow(Ptr, Size, Tok);
1382     }
1383 
1384     // Otherwise, this is not an escaped newline, just return the slash.
1385     return '\\';
1386   }
1387 
1388   // If this is a trigraph, process it.
1389   if (Ptr[0] == '?' && Ptr[1] == '?') {
1390     // If this is actually a legal trigraph (not something like "??x"), emit
1391     // a trigraph warning.  If so, and if trigraphs are enabled, return it.
1392     if (char C = DecodeTrigraphChar(Ptr + 2, Tok ? this : nullptr,
1393                                     LangOpts.Trigraphs)) {
1394       // Remember that this token needs to be cleaned.
1395       if (Tok) Tok->setFlag(Token::NeedsCleaning);
1396 
1397       Ptr += 3;
1398       Size += 3;
1399       if (C == '\\') goto Slash;
1400       return C;
1401     }
1402   }
1403 
1404   // If this is neither, return a single character.
1405   ++Size;
1406   return *Ptr;
1407 }
1408 
1409 /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
1410 /// getCharAndSizeNoWarn method.  Here we know that we can accumulate into Size,
1411 /// and that we have already incremented Ptr by Size bytes.
1412 ///
1413 /// NOTE: When this method is updated, getCharAndSizeSlow (above) should
1414 /// be updated to match.
1415 char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
1416                                      const LangOptions &LangOpts) {
1417   // If we have a slash, look for an escaped newline.
1418   if (Ptr[0] == '\\') {
1419     ++Size;
1420     ++Ptr;
1421 Slash:
1422     // Common case, backslash-char where the char is not whitespace.
1423     if (!isWhitespace(Ptr[0])) return '\\';
1424 
1425     // See if we have optional whitespace characters followed by a newline.
1426     if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1427       // Found backslash<whitespace><newline>.  Parse the char after it.
1428       Size += EscapedNewLineSize;
1429       Ptr  += EscapedNewLineSize;
1430 
1431       // Use slow version to accumulate a correct size field.
1432       return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
1433     }
1434 
1435     // Otherwise, this is not an escaped newline, just return the slash.
1436     return '\\';
1437   }
1438 
1439   // If this is a trigraph, process it.
1440   if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
1441     // If this is actually a legal trigraph (not something like "??x"), return
1442     // it.
1443     if (char C = GetTrigraphCharForLetter(Ptr[2])) {
1444       Ptr += 3;
1445       Size += 3;
1446       if (C == '\\') goto Slash;
1447       return C;
1448     }
1449   }
1450 
1451   // If this is neither, return a single character.
1452   ++Size;
1453   return *Ptr;
1454 }
1455 
1456 //===----------------------------------------------------------------------===//
1457 // Helper methods for lexing.
1458 //===----------------------------------------------------------------------===//
1459 
1460 /// Routine that indiscriminately sets the offset into the source file.
1461 void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) {
1462   BufferPtr = BufferStart + Offset;
1463   if (BufferPtr > BufferEnd)
1464     BufferPtr = BufferEnd;
1465   // FIXME: What exactly does the StartOfLine bit mean?  There are two
1466   // possible meanings for the "start" of the line: the first token on the
1467   // unexpanded line, or the first token on the expanded line.
1468   IsAtStartOfLine = StartOfLine;
1469   IsAtPhysicalStartOfLine = StartOfLine;
1470 }
1471 
1472 static bool isUnicodeWhitespace(uint32_t Codepoint) {
1473   static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
1474       UnicodeWhitespaceCharRanges);
1475   return UnicodeWhitespaceChars.contains(Codepoint);
1476 }
1477 
1478 static llvm::SmallString<5> codepointAsHexString(uint32_t C) {
1479   llvm::SmallString<5> CharBuf;
1480   llvm::raw_svector_ostream CharOS(CharBuf);
1481   llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4);
1482   return CharBuf;
1483 }
1484 
1485 // To mitigate https://github.com/llvm/llvm-project/issues/54732,
1486 // we allow "Mathematical Notation Characters" in identifiers.
1487 // This is a proposed profile that extends the XID_Start/XID_continue
1488 // with mathematical symbols, superscipts and subscripts digits
1489 // found in some production software.
1490 // https://www.unicode.org/L2/L2022/22230-math-profile.pdf
1491 static bool isMathematicalExtensionID(uint32_t C, const LangOptions &LangOpts,
1492                                       bool IsStart, bool &IsExtension) {
1493   static const llvm::sys::UnicodeCharSet MathStartChars(
1494       MathematicalNotationProfileIDStartRanges);
1495   static const llvm::sys::UnicodeCharSet MathContinueChars(
1496       MathematicalNotationProfileIDContinueRanges);
1497   if (MathStartChars.contains(C) ||
1498       (!IsStart && MathContinueChars.contains(C))) {
1499     IsExtension = true;
1500     return true;
1501   }
1502   return false;
1503 }
1504 
1505 static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts,
1506                             bool &IsExtension) {
1507   if (LangOpts.AsmPreprocessor) {
1508     return false;
1509   } else if (LangOpts.DollarIdents && '$' == C) {
1510     return true;
1511   } else if (LangOpts.CPlusPlus || LangOpts.C23) {
1512     // A non-leading codepoint must have the XID_Continue property.
1513     // XIDContinueRanges doesn't contains characters also in XIDStartRanges,
1514     // so we need to check both tables.
1515     // '_' doesn't have the XID_Continue property but is allowed in C and C++.
1516     static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1517     static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges);
1518     if (C == '_' || XIDStartChars.contains(C) || XIDContinueChars.contains(C))
1519       return true;
1520     return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/false,
1521                                      IsExtension);
1522   } else if (LangOpts.C11) {
1523     static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
1524         C11AllowedIDCharRanges);
1525     return C11AllowedIDChars.contains(C);
1526   } else {
1527     static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1528         C99AllowedIDCharRanges);
1529     return C99AllowedIDChars.contains(C);
1530   }
1531 }
1532 
1533 static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts,
1534                                      bool &IsExtension) {
1535   assert(C > 0x7F && "isAllowedInitiallyIDChar called with an ASCII codepoint");
1536   IsExtension = false;
1537   if (LangOpts.AsmPreprocessor) {
1538     return false;
1539   }
1540   if (LangOpts.CPlusPlus || LangOpts.C23) {
1541     static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1542     if (XIDStartChars.contains(C))
1543       return true;
1544     return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/true,
1545                                      IsExtension);
1546   }
1547   if (!isAllowedIDChar(C, LangOpts, IsExtension))
1548     return false;
1549   if (LangOpts.C11) {
1550     static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
1551         C11DisallowedInitialIDCharRanges);
1552     return !C11DisallowedInitialIDChars.contains(C);
1553   }
1554   static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1555       C99DisallowedInitialIDCharRanges);
1556   return !C99DisallowedInitialIDChars.contains(C);
1557 }
1558 
1559 static void diagnoseExtensionInIdentifier(DiagnosticsEngine &Diags, uint32_t C,
1560                                           CharSourceRange Range) {
1561 
1562   static const llvm::sys::UnicodeCharSet MathStartChars(
1563       MathematicalNotationProfileIDStartRanges);
1564   static const llvm::sys::UnicodeCharSet MathContinueChars(
1565       MathematicalNotationProfileIDContinueRanges);
1566 
1567   (void)MathStartChars;
1568   (void)MathContinueChars;
1569   assert((MathStartChars.contains(C) || MathContinueChars.contains(C)) &&
1570          "Unexpected mathematical notation codepoint");
1571   Diags.Report(Range.getBegin(), diag::ext_mathematical_notation)
1572       << codepointAsHexString(C) << Range;
1573 }
1574 
1575 static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
1576                                             const char *End) {
1577   return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
1578                                        L.getSourceLocation(End));
1579 }
1580 
1581 static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
1582                                       CharSourceRange Range, bool IsFirst) {
1583   // Check C99 compatibility.
1584   if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
1585     enum {
1586       CannotAppearInIdentifier = 0,
1587       CannotStartIdentifier
1588     };
1589 
1590     static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1591         C99AllowedIDCharRanges);
1592     static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1593         C99DisallowedInitialIDCharRanges);
1594     if (!C99AllowedIDChars.contains(C)) {
1595       Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1596         << Range
1597         << CannotAppearInIdentifier;
1598     } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
1599       Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1600         << Range
1601         << CannotStartIdentifier;
1602     }
1603   }
1604 }
1605 
1606 /// After encountering UTF-8 character C and interpreting it as an identifier
1607 /// character, check whether it's a homoglyph for a common non-identifier
1608 /// source character that is unlikely to be an intentional identifier
1609 /// character and warn if so.
1610 static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C,
1611                                        CharSourceRange Range) {
1612   // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes).
1613   struct HomoglyphPair {
1614     uint32_t Character;
1615     char LooksLike;
1616     bool operator<(HomoglyphPair R) const { return Character < R.Character; }
1617   };
1618   static constexpr HomoglyphPair SortedHomoglyphs[] = {
1619     {U'\u00ad', 0},   // SOFT HYPHEN
1620     {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK
1621     {U'\u037e', ';'}, // GREEK QUESTION MARK
1622     {U'\u200b', 0},   // ZERO WIDTH SPACE
1623     {U'\u200c', 0},   // ZERO WIDTH NON-JOINER
1624     {U'\u200d', 0},   // ZERO WIDTH JOINER
1625     {U'\u2060', 0},   // WORD JOINER
1626     {U'\u2061', 0},   // FUNCTION APPLICATION
1627     {U'\u2062', 0},   // INVISIBLE TIMES
1628     {U'\u2063', 0},   // INVISIBLE SEPARATOR
1629     {U'\u2064', 0},   // INVISIBLE PLUS
1630     {U'\u2212', '-'}, // MINUS SIGN
1631     {U'\u2215', '/'}, // DIVISION SLASH
1632     {U'\u2216', '\\'}, // SET MINUS
1633     {U'\u2217', '*'}, // ASTERISK OPERATOR
1634     {U'\u2223', '|'}, // DIVIDES
1635     {U'\u2227', '^'}, // LOGICAL AND
1636     {U'\u2236', ':'}, // RATIO
1637     {U'\u223c', '~'}, // TILDE OPERATOR
1638     {U'\ua789', ':'}, // MODIFIER LETTER COLON
1639     {U'\ufeff', 0},   // ZERO WIDTH NO-BREAK SPACE
1640     {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK
1641     {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN
1642     {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN
1643     {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN
1644     {U'\uff06', '&'}, // FULLWIDTH AMPERSAND
1645     {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS
1646     {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS
1647     {U'\uff0a', '*'}, // FULLWIDTH ASTERISK
1648     {U'\uff0b', '+'}, // FULLWIDTH ASTERISK
1649     {U'\uff0c', ','}, // FULLWIDTH COMMA
1650     {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS
1651     {U'\uff0e', '.'}, // FULLWIDTH FULL STOP
1652     {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS
1653     {U'\uff1a', ':'}, // FULLWIDTH COLON
1654     {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON
1655     {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN
1656     {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN
1657     {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN
1658     {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK
1659     {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT
1660     {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET
1661     {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS
1662     {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET
1663     {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT
1664     {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET
1665     {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE
1666     {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET
1667     {U'\uff5e', '~'}, // FULLWIDTH TILDE
1668     {0, 0}
1669   };
1670   auto Homoglyph =
1671       std::lower_bound(std::begin(SortedHomoglyphs),
1672                        std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'});
1673   if (Homoglyph->Character == C) {
1674     if (Homoglyph->LooksLike) {
1675       const char LooksLikeStr[] = {Homoglyph->LooksLike, 0};
1676       Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph)
1677           << Range << codepointAsHexString(C) << LooksLikeStr;
1678     } else {
1679       Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width)
1680           << Range << codepointAsHexString(C);
1681     }
1682   }
1683 }
1684 
1685 static void diagnoseInvalidUnicodeCodepointInIdentifier(
1686     DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint,
1687     CharSourceRange Range, bool IsFirst) {
1688   if (isASCII(CodePoint))
1689     return;
1690 
1691   bool IsExtension;
1692   bool IsIDStart = isAllowedInitiallyIDChar(CodePoint, LangOpts, IsExtension);
1693   bool IsIDContinue =
1694       IsIDStart || isAllowedIDChar(CodePoint, LangOpts, IsExtension);
1695 
1696   if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue))
1697     return;
1698 
1699   bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue;
1700 
1701   if (!IsFirst || InvalidOnlyAtStart) {
1702     Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier)
1703         << Range << codepointAsHexString(CodePoint) << int(InvalidOnlyAtStart)
1704         << FixItHint::CreateRemoval(Range);
1705   } else {
1706     Diags.Report(Range.getBegin(), diag::err_character_not_allowed)
1707         << Range << codepointAsHexString(CodePoint)
1708         << FixItHint::CreateRemoval(Range);
1709   }
1710 }
1711 
1712 bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
1713                                     Token &Result) {
1714   const char *UCNPtr = CurPtr + Size;
1715   uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
1716   if (CodePoint == 0) {
1717     return false;
1718   }
1719   bool IsExtension = false;
1720   if (!isAllowedIDChar(CodePoint, LangOpts, IsExtension)) {
1721     if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1722       return false;
1723     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1724         !PP->isPreprocessedOutput())
1725       diagnoseInvalidUnicodeCodepointInIdentifier(
1726           PP->getDiagnostics(), LangOpts, CodePoint,
1727           makeCharRange(*this, CurPtr, UCNPtr),
1728           /*IsFirst=*/false);
1729 
1730     // We got a unicode codepoint that is neither a space nor a
1731     // a valid identifier part.
1732     // Carry on as if the codepoint was valid for recovery purposes.
1733   } else if (!isLexingRawMode()) {
1734     if (IsExtension)
1735       diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1736                                     makeCharRange(*this, CurPtr, UCNPtr));
1737 
1738     maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1739                               makeCharRange(*this, CurPtr, UCNPtr),
1740                               /*IsFirst=*/false);
1741   }
1742 
1743   Result.setFlag(Token::HasUCN);
1744   if ((UCNPtr - CurPtr ==  6 && CurPtr[1] == 'u') ||
1745       (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
1746     CurPtr = UCNPtr;
1747   else
1748     while (CurPtr != UCNPtr)
1749       (void)getAndAdvanceChar(CurPtr, Result);
1750   return true;
1751 }
1752 
1753 bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr, Token &Result) {
1754   llvm::UTF32 CodePoint;
1755 
1756   // If a UTF-8 codepoint appears immediately after an escaped new line,
1757   // CurPtr may point to the splicing \ on the preceding line,
1758   // so we need to skip it.
1759   unsigned FirstCodeUnitSize;
1760   getCharAndSize(CurPtr, FirstCodeUnitSize);
1761   const char *CharStart = CurPtr + FirstCodeUnitSize - 1;
1762   const char *UnicodePtr = CharStart;
1763 
1764   llvm::ConversionResult ConvResult = llvm::convertUTF8Sequence(
1765       (const llvm::UTF8 **)&UnicodePtr, (const llvm::UTF8 *)BufferEnd,
1766       &CodePoint, llvm::strictConversion);
1767   if (ConvResult != llvm::conversionOK)
1768     return false;
1769 
1770   bool IsExtension = false;
1771   if (!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts,
1772                        IsExtension)) {
1773     if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1774       return false;
1775 
1776     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1777         !PP->isPreprocessedOutput())
1778       diagnoseInvalidUnicodeCodepointInIdentifier(
1779           PP->getDiagnostics(), LangOpts, CodePoint,
1780           makeCharRange(*this, CharStart, UnicodePtr), /*IsFirst=*/false);
1781     // We got a unicode codepoint that is neither a space nor a
1782     // a valid identifier part. Carry on as if the codepoint was
1783     // valid for recovery purposes.
1784   } else if (!isLexingRawMode()) {
1785     if (IsExtension)
1786       diagnoseExtensionInIdentifier(
1787           PP->getDiagnostics(), CodePoint,
1788           makeCharRange(*this, CharStart, UnicodePtr));
1789     maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1790                               makeCharRange(*this, CharStart, UnicodePtr),
1791                               /*IsFirst=*/false);
1792     maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint,
1793                                makeCharRange(*this, CharStart, UnicodePtr));
1794   }
1795 
1796   // Once we sucessfully parsed some UTF-8,
1797   // calling ConsumeChar ensures the NeedsCleaning flag is set on the token
1798   // being lexed, and that warnings about trailing spaces are emitted.
1799   ConsumeChar(CurPtr, FirstCodeUnitSize, Result);
1800   CurPtr = UnicodePtr;
1801   return true;
1802 }
1803 
1804 bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C,
1805                                       const char *CurPtr) {
1806   bool IsExtension = false;
1807   if (isAllowedInitiallyIDChar(C, LangOpts, IsExtension)) {
1808     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1809         !PP->isPreprocessedOutput()) {
1810       if (IsExtension)
1811         diagnoseExtensionInIdentifier(PP->getDiagnostics(), C,
1812                                       makeCharRange(*this, BufferPtr, CurPtr));
1813       maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
1814                                 makeCharRange(*this, BufferPtr, CurPtr),
1815                                 /*IsFirst=*/true);
1816       maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C,
1817                                  makeCharRange(*this, BufferPtr, CurPtr));
1818     }
1819 
1820     MIOpt.ReadToken();
1821     return LexIdentifierContinue(Result, CurPtr);
1822   }
1823 
1824   if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1825       !PP->isPreprocessedOutput() && !isASCII(*BufferPtr) &&
1826       !isUnicodeWhitespace(C)) {
1827     // Non-ASCII characters tend to creep into source code unintentionally.
1828     // Instead of letting the parser complain about the unknown token,
1829     // just drop the character.
1830     // Note that we can /only/ do this when the non-ASCII character is actually
1831     // spelled as Unicode, not written as a UCN. The standard requires that
1832     // we not throw away any possible preprocessor tokens, but there's a
1833     // loophole in the mapping of Unicode characters to basic character set
1834     // characters that allows us to map these particular characters to, say,
1835     // whitespace.
1836     diagnoseInvalidUnicodeCodepointInIdentifier(
1837         PP->getDiagnostics(), LangOpts, C,
1838         makeCharRange(*this, BufferPtr, CurPtr), /*IsStart*/ true);
1839     BufferPtr = CurPtr;
1840     return false;
1841   }
1842 
1843   // Otherwise, we have an explicit UCN or a character that's unlikely to show
1844   // up by accident.
1845   MIOpt.ReadToken();
1846   FormTokenWithChars(Result, CurPtr, tok::unknown);
1847   return true;
1848 }
1849 
1850 bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) {
1851   // Match [_A-Za-z0-9]*, we have already matched an identifier start.
1852   while (true) {
1853     unsigned char C = *CurPtr;
1854     // Fast path.
1855     if (isAsciiIdentifierContinue(C)) {
1856       ++CurPtr;
1857       continue;
1858     }
1859 
1860     unsigned Size;
1861     // Slow path: handle trigraph, unicode codepoints, UCNs.
1862     C = getCharAndSize(CurPtr, Size);
1863     if (isAsciiIdentifierContinue(C)) {
1864       CurPtr = ConsumeChar(CurPtr, Size, Result);
1865       continue;
1866     }
1867     if (C == '$') {
1868       // If we hit a $ and they are not supported in identifiers, we are done.
1869       if (!LangOpts.DollarIdents)
1870         break;
1871       // Otherwise, emit a diagnostic and continue.
1872       if (!isLexingRawMode())
1873         Diag(CurPtr, diag::ext_dollar_in_identifier);
1874       CurPtr = ConsumeChar(CurPtr, Size, Result);
1875       continue;
1876     }
1877     if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1878       continue;
1879     if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr, Result))
1880       continue;
1881     // Neither an expected Unicode codepoint nor a UCN.
1882     break;
1883   }
1884 
1885   const char *IdStart = BufferPtr;
1886   FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
1887   Result.setRawIdentifierData(IdStart);
1888 
1889   // If we are in raw mode, return this identifier raw.  There is no need to
1890   // look up identifier information or attempt to macro expand it.
1891   if (LexingRawMode)
1892     return true;
1893 
1894   // Fill in Result.IdentifierInfo and update the token kind,
1895   // looking up the identifier in the identifier table.
1896   const IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
1897   // Note that we have to call PP->LookUpIdentifierInfo() even for code
1898   // completion, it writes IdentifierInfo into Result, and callers rely on it.
1899 
1900   // If the completion point is at the end of an identifier, we want to treat
1901   // the identifier as incomplete even if it resolves to a macro or a keyword.
1902   // This allows e.g. 'class^' to complete to 'classifier'.
1903   if (isCodeCompletionPoint(CurPtr)) {
1904     // Return the code-completion token.
1905     Result.setKind(tok::code_completion);
1906     // Skip the code-completion char and all immediate identifier characters.
1907     // This ensures we get consistent behavior when completing at any point in
1908     // an identifier (i.e. at the start, in the middle, at the end). Note that
1909     // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code
1910     // simpler.
1911     assert(*CurPtr == 0 && "Completion character must be 0");
1912     ++CurPtr;
1913     // Note that code completion token is not added as a separate character
1914     // when the completion point is at the end of the buffer. Therefore, we need
1915     // to check if the buffer has ended.
1916     if (CurPtr < BufferEnd) {
1917       while (isAsciiIdentifierContinue(*CurPtr))
1918         ++CurPtr;
1919     }
1920     BufferPtr = CurPtr;
1921     return true;
1922   }
1923 
1924   // Finally, now that we know we have an identifier, pass this off to the
1925   // preprocessor, which may macro expand it or something.
1926   if (II->isHandleIdentifierCase())
1927     return PP->HandleIdentifier(Result);
1928 
1929   return true;
1930 }
1931 
1932 /// isHexaLiteral - Return true if Start points to a hex constant.
1933 /// in microsoft mode (where this is supposed to be several different tokens).
1934 bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
1935   unsigned Size;
1936   char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
1937   if (C1 != '0')
1938     return false;
1939   char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
1940   return (C2 == 'x' || C2 == 'X');
1941 }
1942 
1943 /// LexNumericConstant - Lex the remainder of a integer or floating point
1944 /// constant. From[-1] is the first character lexed.  Return the end of the
1945 /// constant.
1946 bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
1947   unsigned Size;
1948   char C = getCharAndSize(CurPtr, Size);
1949   char PrevCh = 0;
1950   while (isPreprocessingNumberBody(C)) {
1951     CurPtr = ConsumeChar(CurPtr, Size, Result);
1952     PrevCh = C;
1953     C = getCharAndSize(CurPtr, Size);
1954   }
1955 
1956   // If we fell out, check for a sign, due to 1e+12.  If we have one, continue.
1957   if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
1958     // If we are in Microsoft mode, don't continue if the constant is hex.
1959     // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
1960     if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
1961       return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1962   }
1963 
1964   // If we have a hex FP constant, continue.
1965   if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
1966     // Outside C99 and C++17, we accept hexadecimal floating point numbers as a
1967     // not-quite-conforming extension. Only do so if this looks like it's
1968     // actually meant to be a hexfloat, and not if it has a ud-suffix.
1969     bool IsHexFloat = true;
1970     if (!LangOpts.C99) {
1971       if (!isHexaLiteral(BufferPtr, LangOpts))
1972         IsHexFloat = false;
1973       else if (!LangOpts.CPlusPlus17 &&
1974                std::find(BufferPtr, CurPtr, '_') != CurPtr)
1975         IsHexFloat = false;
1976     }
1977     if (IsHexFloat)
1978       return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1979   }
1980 
1981   // If we have a digit separator, continue.
1982   if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C23)) {
1983     unsigned NextSize;
1984     char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, LangOpts);
1985     if (isAsciiIdentifierContinue(Next)) {
1986       if (!isLexingRawMode())
1987         Diag(CurPtr, LangOpts.CPlusPlus
1988                          ? diag::warn_cxx11_compat_digit_separator
1989                          : diag::warn_c23_compat_digit_separator);
1990       CurPtr = ConsumeChar(CurPtr, Size, Result);
1991       CurPtr = ConsumeChar(CurPtr, NextSize, Result);
1992       return LexNumericConstant(Result, CurPtr);
1993     }
1994   }
1995 
1996   // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
1997   if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1998     return LexNumericConstant(Result, CurPtr);
1999   if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr, Result))
2000     return LexNumericConstant(Result, CurPtr);
2001 
2002   // Update the location of token as well as BufferPtr.
2003   const char *TokStart = BufferPtr;
2004   FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
2005   Result.setLiteralData(TokStart);
2006   return true;
2007 }
2008 
2009 /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
2010 /// in C++11, or warn on a ud-suffix in C++98.
2011 const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
2012                                bool IsStringLiteral) {
2013   assert(LangOpts.CPlusPlus);
2014 
2015   // Maximally munch an identifier.
2016   unsigned Size;
2017   char C = getCharAndSize(CurPtr, Size);
2018   bool Consumed = false;
2019 
2020   if (!isAsciiIdentifierStart(C)) {
2021     if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
2022       Consumed = true;
2023     else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr, Result))
2024       Consumed = true;
2025     else
2026       return CurPtr;
2027   }
2028 
2029   if (!LangOpts.CPlusPlus11) {
2030     if (!isLexingRawMode())
2031       Diag(CurPtr,
2032            C == '_' ? diag::warn_cxx11_compat_user_defined_literal
2033                     : diag::warn_cxx11_compat_reserved_user_defined_literal)
2034         << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2035     return CurPtr;
2036   }
2037 
2038   // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
2039   // that does not start with an underscore is ill-formed. As a conforming
2040   // extension, we treat all such suffixes as if they had whitespace before
2041   // them. We assume a suffix beginning with a UCN or UTF-8 character is more
2042   // likely to be a ud-suffix than a macro, however, and accept that.
2043   if (!Consumed) {
2044     bool IsUDSuffix = false;
2045     if (C == '_')
2046       IsUDSuffix = true;
2047     else if (IsStringLiteral && LangOpts.CPlusPlus14) {
2048       // In C++1y, we need to look ahead a few characters to see if this is a
2049       // valid suffix for a string literal or a numeric literal (this could be
2050       // the 'operator""if' defining a numeric literal operator).
2051       const unsigned MaxStandardSuffixLength = 3;
2052       char Buffer[MaxStandardSuffixLength] = { C };
2053       unsigned Consumed = Size;
2054       unsigned Chars = 1;
2055       while (true) {
2056         unsigned NextSize;
2057         char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, LangOpts);
2058         if (!isAsciiIdentifierContinue(Next)) {
2059           // End of suffix. Check whether this is on the allowed list.
2060           const StringRef CompleteSuffix(Buffer, Chars);
2061           IsUDSuffix =
2062               StringLiteralParser::isValidUDSuffix(LangOpts, CompleteSuffix);
2063           break;
2064         }
2065 
2066         if (Chars == MaxStandardSuffixLength)
2067           // Too long: can't be a standard suffix.
2068           break;
2069 
2070         Buffer[Chars++] = Next;
2071         Consumed += NextSize;
2072       }
2073     }
2074 
2075     if (!IsUDSuffix) {
2076       if (!isLexingRawMode())
2077         Diag(CurPtr, LangOpts.MSVCCompat
2078                          ? diag::ext_ms_reserved_user_defined_literal
2079                          : diag::ext_reserved_user_defined_literal)
2080             << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2081       return CurPtr;
2082     }
2083 
2084     CurPtr = ConsumeChar(CurPtr, Size, Result);
2085   }
2086 
2087   Result.setFlag(Token::HasUDSuffix);
2088   while (true) {
2089     C = getCharAndSize(CurPtr, Size);
2090     if (isAsciiIdentifierContinue(C)) {
2091       CurPtr = ConsumeChar(CurPtr, Size, Result);
2092     } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
2093     } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr, Result)) {
2094     } else
2095       break;
2096   }
2097 
2098   return CurPtr;
2099 }
2100 
2101 /// LexStringLiteral - Lex the remainder of a string literal, after having lexed
2102 /// either " or L" or u8" or u" or U".
2103 bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
2104                              tok::TokenKind Kind) {
2105   const char *AfterQuote = CurPtr;
2106   // Does this string contain the \0 character?
2107   const char *NulCharacter = nullptr;
2108 
2109   if (!isLexingRawMode() &&
2110       (Kind == tok::utf8_string_literal ||
2111        Kind == tok::utf16_string_literal ||
2112        Kind == tok::utf32_string_literal))
2113     Diag(BufferPtr, LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal
2114                                        : diag::warn_c99_compat_unicode_literal);
2115 
2116   char C = getAndAdvanceChar(CurPtr, Result);
2117   while (C != '"') {
2118     // Skip escaped characters.  Escaped newlines will already be processed by
2119     // getAndAdvanceChar.
2120     if (C == '\\')
2121       C = getAndAdvanceChar(CurPtr, Result);
2122 
2123     if (C == '\n' || C == '\r' ||             // Newline.
2124         (C == 0 && CurPtr-1 == BufferEnd)) {  // End of file.
2125       if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2126         Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1;
2127       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2128       return true;
2129     }
2130 
2131     if (C == 0) {
2132       if (isCodeCompletionPoint(CurPtr-1)) {
2133         if (ParsingFilename)
2134           codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false);
2135         else
2136           PP->CodeCompleteNaturalLanguage();
2137         FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2138         cutOffLexing();
2139         return true;
2140       }
2141 
2142       NulCharacter = CurPtr-1;
2143     }
2144     C = getAndAdvanceChar(CurPtr, Result);
2145   }
2146 
2147   // If we are in C++11, lex the optional ud-suffix.
2148   if (LangOpts.CPlusPlus)
2149     CurPtr = LexUDSuffix(Result, CurPtr, true);
2150 
2151   // If a nul character existed in the string, warn about it.
2152   if (NulCharacter && !isLexingRawMode())
2153     Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2154 
2155   // Update the location of the token as well as the BufferPtr instance var.
2156   const char *TokStart = BufferPtr;
2157   FormTokenWithChars(Result, CurPtr, Kind);
2158   Result.setLiteralData(TokStart);
2159   return true;
2160 }
2161 
2162 /// LexRawStringLiteral - Lex the remainder of a raw string literal, after
2163 /// having lexed R", LR", u8R", uR", or UR".
2164 bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
2165                                 tok::TokenKind Kind) {
2166   // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
2167   //  Between the initial and final double quote characters of the raw string,
2168   //  any transformations performed in phases 1 and 2 (trigraphs,
2169   //  universal-character-names, and line splicing) are reverted.
2170 
2171   if (!isLexingRawMode())
2172     Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
2173 
2174   unsigned PrefixLen = 0;
2175 
2176   while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
2177     ++PrefixLen;
2178 
2179   // If the last character was not a '(', then we didn't lex a valid delimiter.
2180   if (CurPtr[PrefixLen] != '(') {
2181     if (!isLexingRawMode()) {
2182       const char *PrefixEnd = &CurPtr[PrefixLen];
2183       if (PrefixLen == 16) {
2184         Diag(PrefixEnd, diag::err_raw_delim_too_long);
2185       } else {
2186         Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
2187           << StringRef(PrefixEnd, 1);
2188       }
2189     }
2190 
2191     // Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
2192     // it's possible the '"' was intended to be part of the raw string, but
2193     // there's not much we can do about that.
2194     while (true) {
2195       char C = *CurPtr++;
2196 
2197       if (C == '"')
2198         break;
2199       if (C == 0 && CurPtr-1 == BufferEnd) {
2200         --CurPtr;
2201         break;
2202       }
2203     }
2204 
2205     FormTokenWithChars(Result, CurPtr, tok::unknown);
2206     return true;
2207   }
2208 
2209   // Save prefix and move CurPtr past it
2210   const char *Prefix = CurPtr;
2211   CurPtr += PrefixLen + 1; // skip over prefix and '('
2212 
2213   while (true) {
2214     char C = *CurPtr++;
2215 
2216     if (C == ')') {
2217       // Check for prefix match and closing quote.
2218       if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
2219         CurPtr += PrefixLen + 1; // skip over prefix and '"'
2220         break;
2221       }
2222     } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
2223       if (!isLexingRawMode())
2224         Diag(BufferPtr, diag::err_unterminated_raw_string)
2225           << StringRef(Prefix, PrefixLen);
2226       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2227       return true;
2228     }
2229   }
2230 
2231   // If we are in C++11, lex the optional ud-suffix.
2232   if (LangOpts.CPlusPlus)
2233     CurPtr = LexUDSuffix(Result, CurPtr, true);
2234 
2235   // Update the location of token as well as BufferPtr.
2236   const char *TokStart = BufferPtr;
2237   FormTokenWithChars(Result, CurPtr, Kind);
2238   Result.setLiteralData(TokStart);
2239   return true;
2240 }
2241 
2242 /// LexAngledStringLiteral - Lex the remainder of an angled string literal,
2243 /// after having lexed the '<' character.  This is used for #include filenames.
2244 bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
2245   // Does this string contain the \0 character?
2246   const char *NulCharacter = nullptr;
2247   const char *AfterLessPos = CurPtr;
2248   char C = getAndAdvanceChar(CurPtr, Result);
2249   while (C != '>') {
2250     // Skip escaped characters.  Escaped newlines will already be processed by
2251     // getAndAdvanceChar.
2252     if (C == '\\')
2253       C = getAndAdvanceChar(CurPtr, Result);
2254 
2255     if (isVerticalWhitespace(C) ||               // Newline.
2256         (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file.
2257       // If the filename is unterminated, then it must just be a lone <
2258       // character.  Return this as such.
2259       FormTokenWithChars(Result, AfterLessPos, tok::less);
2260       return true;
2261     }
2262 
2263     if (C == 0) {
2264       if (isCodeCompletionPoint(CurPtr - 1)) {
2265         codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true);
2266         cutOffLexing();
2267         FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2268         return true;
2269       }
2270       NulCharacter = CurPtr-1;
2271     }
2272     C = getAndAdvanceChar(CurPtr, Result);
2273   }
2274 
2275   // If a nul character existed in the string, warn about it.
2276   if (NulCharacter && !isLexingRawMode())
2277     Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2278 
2279   // Update the location of token as well as BufferPtr.
2280   const char *TokStart = BufferPtr;
2281   FormTokenWithChars(Result, CurPtr, tok::header_name);
2282   Result.setLiteralData(TokStart);
2283   return true;
2284 }
2285 
2286 void Lexer::codeCompleteIncludedFile(const char *PathStart,
2287                                      const char *CompletionPoint,
2288                                      bool IsAngled) {
2289   // Completion only applies to the filename, after the last slash.
2290   StringRef PartialPath(PathStart, CompletionPoint - PathStart);
2291   llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/";
2292   auto Slash = PartialPath.find_last_of(SlashChars);
2293   StringRef Dir =
2294       (Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash);
2295   const char *StartOfFilename =
2296       (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1;
2297   // Code completion filter range is the filename only, up to completion point.
2298   PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get(
2299       StringRef(StartOfFilename, CompletionPoint - StartOfFilename)));
2300   // We should replace the characters up to the closing quote or closest slash,
2301   // if any.
2302   while (CompletionPoint < BufferEnd) {
2303     char Next = *(CompletionPoint + 1);
2304     if (Next == 0 || Next == '\r' || Next == '\n')
2305       break;
2306     ++CompletionPoint;
2307     if (Next == (IsAngled ? '>' : '"'))
2308       break;
2309     if (SlashChars.contains(Next))
2310       break;
2311   }
2312 
2313   PP->setCodeCompletionTokenRange(
2314       FileLoc.getLocWithOffset(StartOfFilename - BufferStart),
2315       FileLoc.getLocWithOffset(CompletionPoint - BufferStart));
2316   PP->CodeCompleteIncludedFile(Dir, IsAngled);
2317 }
2318 
2319 /// LexCharConstant - Lex the remainder of a character constant, after having
2320 /// lexed either ' or L' or u8' or u' or U'.
2321 bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
2322                             tok::TokenKind Kind) {
2323   // Does this character contain the \0 character?
2324   const char *NulCharacter = nullptr;
2325 
2326   if (!isLexingRawMode()) {
2327     if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
2328       Diag(BufferPtr, LangOpts.CPlusPlus
2329                           ? diag::warn_cxx98_compat_unicode_literal
2330                           : diag::warn_c99_compat_unicode_literal);
2331     else if (Kind == tok::utf8_char_constant)
2332       Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
2333   }
2334 
2335   char C = getAndAdvanceChar(CurPtr, Result);
2336   if (C == '\'') {
2337     if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2338       Diag(BufferPtr, diag::ext_empty_character);
2339     FormTokenWithChars(Result, CurPtr, tok::unknown);
2340     return true;
2341   }
2342 
2343   while (C != '\'') {
2344     // Skip escaped characters.
2345     if (C == '\\')
2346       C = getAndAdvanceChar(CurPtr, Result);
2347 
2348     if (C == '\n' || C == '\r' ||             // Newline.
2349         (C == 0 && CurPtr-1 == BufferEnd)) {  // End of file.
2350       if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2351         Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0;
2352       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2353       return true;
2354     }
2355 
2356     if (C == 0) {
2357       if (isCodeCompletionPoint(CurPtr-1)) {
2358         PP->CodeCompleteNaturalLanguage();
2359         FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2360         cutOffLexing();
2361         return true;
2362       }
2363 
2364       NulCharacter = CurPtr-1;
2365     }
2366     C = getAndAdvanceChar(CurPtr, Result);
2367   }
2368 
2369   // If we are in C++11, lex the optional ud-suffix.
2370   if (LangOpts.CPlusPlus)
2371     CurPtr = LexUDSuffix(Result, CurPtr, false);
2372 
2373   // If a nul character existed in the character, warn about it.
2374   if (NulCharacter && !isLexingRawMode())
2375     Diag(NulCharacter, diag::null_in_char_or_string) << 0;
2376 
2377   // Update the location of token as well as BufferPtr.
2378   const char *TokStart = BufferPtr;
2379   FormTokenWithChars(Result, CurPtr, Kind);
2380   Result.setLiteralData(TokStart);
2381   return true;
2382 }
2383 
2384 /// SkipWhitespace - Efficiently skip over a series of whitespace characters.
2385 /// Update BufferPtr to point to the next non-whitespace character and return.
2386 ///
2387 /// This method forms a token and returns true if KeepWhitespaceMode is enabled.
2388 bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
2389                            bool &TokAtPhysicalStartOfLine) {
2390   // Whitespace - Skip it, then return the token after the whitespace.
2391   bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
2392 
2393   unsigned char Char = *CurPtr;
2394 
2395   const char *lastNewLine = nullptr;
2396   auto setLastNewLine = [&](const char *Ptr) {
2397     lastNewLine = Ptr;
2398     if (!NewLinePtr)
2399       NewLinePtr = Ptr;
2400   };
2401   if (SawNewline)
2402     setLastNewLine(CurPtr - 1);
2403 
2404   // Skip consecutive spaces efficiently.
2405   while (true) {
2406     // Skip horizontal whitespace very aggressively.
2407     while (isHorizontalWhitespace(Char))
2408       Char = *++CurPtr;
2409 
2410     // Otherwise if we have something other than whitespace, we're done.
2411     if (!isVerticalWhitespace(Char))
2412       break;
2413 
2414     if (ParsingPreprocessorDirective) {
2415       // End of preprocessor directive line, let LexTokenInternal handle this.
2416       BufferPtr = CurPtr;
2417       return false;
2418     }
2419 
2420     // OK, but handle newline.
2421     if (*CurPtr == '\n')
2422       setLastNewLine(CurPtr);
2423     SawNewline = true;
2424     Char = *++CurPtr;
2425   }
2426 
2427   // If the client wants us to return whitespace, return it now.
2428   if (isKeepWhitespaceMode()) {
2429     FormTokenWithChars(Result, CurPtr, tok::unknown);
2430     if (SawNewline) {
2431       IsAtStartOfLine = true;
2432       IsAtPhysicalStartOfLine = true;
2433     }
2434     // FIXME: The next token will not have LeadingSpace set.
2435     return true;
2436   }
2437 
2438   // If this isn't immediately after a newline, there is leading space.
2439   char PrevChar = CurPtr[-1];
2440   bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
2441 
2442   Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
2443   if (SawNewline) {
2444     Result.setFlag(Token::StartOfLine);
2445     TokAtPhysicalStartOfLine = true;
2446 
2447     if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) {
2448       if (auto *Handler = PP->getEmptylineHandler())
2449         Handler->HandleEmptyline(SourceRange(getSourceLocation(NewLinePtr + 1),
2450                                              getSourceLocation(lastNewLine)));
2451     }
2452   }
2453 
2454   BufferPtr = CurPtr;
2455   return false;
2456 }
2457 
2458 /// We have just read the // characters from input.  Skip until we find the
2459 /// newline character that terminates the comment.  Then update BufferPtr and
2460 /// return.
2461 ///
2462 /// If we're in KeepCommentMode or any CommentHandler has inserted
2463 /// some tokens, this will store the first token and return true.
2464 bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
2465                             bool &TokAtPhysicalStartOfLine) {
2466   // If Line comments aren't explicitly enabled for this language, emit an
2467   // extension warning.
2468   if (!LineComment) {
2469     if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags.
2470       Diag(BufferPtr, diag::ext_line_comment);
2471 
2472     // Mark them enabled so we only emit one warning for this translation
2473     // unit.
2474     LineComment = true;
2475   }
2476 
2477   // Scan over the body of the comment.  The common case, when scanning, is that
2478   // the comment contains normal ascii characters with nothing interesting in
2479   // them.  As such, optimize for this case with the inner loop.
2480   //
2481   // This loop terminates with CurPtr pointing at the newline (or end of buffer)
2482   // character that ends the line comment.
2483 
2484   // C++23 [lex.phases] p1
2485   // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2486   // diagnostic only once per entire ill-formed subsequence to avoid
2487   // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2488   bool UnicodeDecodingAlreadyDiagnosed = false;
2489 
2490   char C;
2491   while (true) {
2492     C = *CurPtr;
2493     // Skip over characters in the fast loop.
2494     while (isASCII(C) && C != 0 &&   // Potentially EOF.
2495            C != '\n' && C != '\r') { // Newline or DOS-style newline.
2496       C = *++CurPtr;
2497       UnicodeDecodingAlreadyDiagnosed = false;
2498     }
2499 
2500     if (!isASCII(C)) {
2501       unsigned Length = llvm::getUTF8SequenceSize(
2502           (const llvm::UTF8 *)CurPtr, (const llvm::UTF8 *)BufferEnd);
2503       if (Length == 0) {
2504         if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2505           Diag(CurPtr, diag::warn_invalid_utf8_in_comment);
2506         UnicodeDecodingAlreadyDiagnosed = true;
2507         ++CurPtr;
2508       } else {
2509         UnicodeDecodingAlreadyDiagnosed = false;
2510         CurPtr += Length;
2511       }
2512       continue;
2513     }
2514 
2515     const char *NextLine = CurPtr;
2516     if (C != 0) {
2517       // We found a newline, see if it's escaped.
2518       const char *EscapePtr = CurPtr-1;
2519       bool HasSpace = false;
2520       while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
2521         --EscapePtr;
2522         HasSpace = true;
2523       }
2524 
2525       if (*EscapePtr == '\\')
2526         // Escaped newline.
2527         CurPtr = EscapePtr;
2528       else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
2529                EscapePtr[-2] == '?' && LangOpts.Trigraphs)
2530         // Trigraph-escaped newline.
2531         CurPtr = EscapePtr-2;
2532       else
2533         break; // This is a newline, we're done.
2534 
2535       // If there was space between the backslash and newline, warn about it.
2536       if (HasSpace && !isLexingRawMode())
2537         Diag(EscapePtr, diag::backslash_newline_space);
2538     }
2539 
2540     // Otherwise, this is a hard case.  Fall back on getAndAdvanceChar to
2541     // properly decode the character.  Read it in raw mode to avoid emitting
2542     // diagnostics about things like trigraphs.  If we see an escaped newline,
2543     // we'll handle it below.
2544     const char *OldPtr = CurPtr;
2545     bool OldRawMode = isLexingRawMode();
2546     LexingRawMode = true;
2547     C = getAndAdvanceChar(CurPtr, Result);
2548     LexingRawMode = OldRawMode;
2549 
2550     // If we only read only one character, then no special handling is needed.
2551     // We're done and can skip forward to the newline.
2552     if (C != 0 && CurPtr == OldPtr+1) {
2553       CurPtr = NextLine;
2554       break;
2555     }
2556 
2557     // If we read multiple characters, and one of those characters was a \r or
2558     // \n, then we had an escaped newline within the comment.  Emit diagnostic
2559     // unless the next line is also a // comment.
2560     if (CurPtr != OldPtr + 1 && C != '/' &&
2561         (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) {
2562       for (; OldPtr != CurPtr; ++OldPtr)
2563         if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
2564           // Okay, we found a // comment that ends in a newline, if the next
2565           // line is also a // comment, but has spaces, don't emit a diagnostic.
2566           if (isWhitespace(C)) {
2567             const char *ForwardPtr = CurPtr;
2568             while (isWhitespace(*ForwardPtr))  // Skip whitespace.
2569               ++ForwardPtr;
2570             if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
2571               break;
2572           }
2573 
2574           if (!isLexingRawMode())
2575             Diag(OldPtr-1, diag::ext_multi_line_line_comment);
2576           break;
2577         }
2578     }
2579 
2580     if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) {
2581       --CurPtr;
2582       break;
2583     }
2584 
2585     if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2586       PP->CodeCompleteNaturalLanguage();
2587       cutOffLexing();
2588       return false;
2589     }
2590   }
2591 
2592   // Found but did not consume the newline.  Notify comment handlers about the
2593   // comment unless we're in a #if 0 block.
2594   if (PP && !isLexingRawMode() &&
2595       PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2596                                             getSourceLocation(CurPtr)))) {
2597     BufferPtr = CurPtr;
2598     return true; // A token has to be returned.
2599   }
2600 
2601   // If we are returning comments as tokens, return this comment as a token.
2602   if (inKeepCommentMode())
2603     return SaveLineComment(Result, CurPtr);
2604 
2605   // If we are inside a preprocessor directive and we see the end of line,
2606   // return immediately, so that the lexer can return this as an EOD token.
2607   if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
2608     BufferPtr = CurPtr;
2609     return false;
2610   }
2611 
2612   // Otherwise, eat the \n character.  We don't care if this is a \n\r or
2613   // \r\n sequence.  This is an efficiency hack (because we know the \n can't
2614   // contribute to another token), it isn't needed for correctness.  Note that
2615   // this is ok even in KeepWhitespaceMode, because we would have returned the
2616   // comment above in that mode.
2617   NewLinePtr = CurPtr++;
2618 
2619   // The next returned token is at the start of the line.
2620   Result.setFlag(Token::StartOfLine);
2621   TokAtPhysicalStartOfLine = true;
2622   // No leading whitespace seen so far.
2623   Result.clearFlag(Token::LeadingSpace);
2624   BufferPtr = CurPtr;
2625   return false;
2626 }
2627 
2628 /// If in save-comment mode, package up this Line comment in an appropriate
2629 /// way and return it.
2630 bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
2631   // If we're not in a preprocessor directive, just return the // comment
2632   // directly.
2633   FormTokenWithChars(Result, CurPtr, tok::comment);
2634 
2635   if (!ParsingPreprocessorDirective || LexingRawMode)
2636     return true;
2637 
2638   // If this Line-style comment is in a macro definition, transmogrify it into
2639   // a C-style block comment.
2640   bool Invalid = false;
2641   std::string Spelling = PP->getSpelling(Result, &Invalid);
2642   if (Invalid)
2643     return true;
2644 
2645   assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
2646   Spelling[1] = '*';   // Change prefix to "/*".
2647   Spelling += "*/";    // add suffix.
2648 
2649   Result.setKind(tok::comment);
2650   PP->CreateString(Spelling, Result,
2651                    Result.getLocation(), Result.getLocation());
2652   return true;
2653 }
2654 
2655 /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
2656 /// character (either \\n or \\r) is part of an escaped newline sequence.  Issue
2657 /// a diagnostic if so.  We know that the newline is inside of a block comment.
2658 static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L,
2659                                                   bool Trigraphs) {
2660   assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
2661 
2662   // Position of the first trigraph in the ending sequence.
2663   const char *TrigraphPos = nullptr;
2664   // Position of the first whitespace after a '\' in the ending sequence.
2665   const char *SpacePos = nullptr;
2666 
2667   while (true) {
2668     // Back up off the newline.
2669     --CurPtr;
2670 
2671     // If this is a two-character newline sequence, skip the other character.
2672     if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
2673       // \n\n or \r\r -> not escaped newline.
2674       if (CurPtr[0] == CurPtr[1])
2675         return false;
2676       // \n\r or \r\n -> skip the newline.
2677       --CurPtr;
2678     }
2679 
2680     // If we have horizontal whitespace, skip over it.  We allow whitespace
2681     // between the slash and newline.
2682     while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
2683       SpacePos = CurPtr;
2684       --CurPtr;
2685     }
2686 
2687     // If we have a slash, this is an escaped newline.
2688     if (*CurPtr == '\\') {
2689       --CurPtr;
2690     } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') {
2691       // This is a trigraph encoding of a slash.
2692       TrigraphPos = CurPtr - 2;
2693       CurPtr -= 3;
2694     } else {
2695       return false;
2696     }
2697 
2698     // If the character preceding the escaped newline is a '*', then after line
2699     // splicing we have a '*/' ending the comment.
2700     if (*CurPtr == '*')
2701       break;
2702 
2703     if (*CurPtr != '\n' && *CurPtr != '\r')
2704       return false;
2705   }
2706 
2707   if (TrigraphPos) {
2708     // If no trigraphs are enabled, warn that we ignored this trigraph and
2709     // ignore this * character.
2710     if (!Trigraphs) {
2711       if (!L->isLexingRawMode())
2712         L->Diag(TrigraphPos, diag::trigraph_ignored_block_comment);
2713       return false;
2714     }
2715     if (!L->isLexingRawMode())
2716       L->Diag(TrigraphPos, diag::trigraph_ends_block_comment);
2717   }
2718 
2719   // Warn about having an escaped newline between the */ characters.
2720   if (!L->isLexingRawMode())
2721     L->Diag(CurPtr + 1, diag::escaped_newline_block_comment_end);
2722 
2723   // If there was space between the backslash and newline, warn about it.
2724   if (SpacePos && !L->isLexingRawMode())
2725     L->Diag(SpacePos, diag::backslash_newline_space);
2726 
2727   return true;
2728 }
2729 
2730 #ifdef __SSE2__
2731 #include <emmintrin.h>
2732 #elif __ALTIVEC__
2733 #include <altivec.h>
2734 #undef bool
2735 #endif
2736 
2737 /// We have just read from input the / and * characters that started a comment.
2738 /// Read until we find the * and / characters that terminate the comment.
2739 /// Note that we don't bother decoding trigraphs or escaped newlines in block
2740 /// comments, because they cannot cause the comment to end.  The only thing
2741 /// that can happen is the comment could end with an escaped newline between
2742 /// the terminating * and /.
2743 ///
2744 /// If we're in KeepCommentMode or any CommentHandler has inserted
2745 /// some tokens, this will store the first token and return true.
2746 bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
2747                              bool &TokAtPhysicalStartOfLine) {
2748   // Scan one character past where we should, looking for a '/' character.  Once
2749   // we find it, check to see if it was preceded by a *.  This common
2750   // optimization helps people who like to put a lot of * characters in their
2751   // comments.
2752 
2753   // The first character we get with newlines and trigraphs skipped to handle
2754   // the degenerate /*/ case below correctly if the * has an escaped newline
2755   // after it.
2756   unsigned CharSize;
2757   unsigned char C = getCharAndSize(CurPtr, CharSize);
2758   CurPtr += CharSize;
2759   if (C == 0 && CurPtr == BufferEnd+1) {
2760     if (!isLexingRawMode())
2761       Diag(BufferPtr, diag::err_unterminated_block_comment);
2762     --CurPtr;
2763 
2764     // KeepWhitespaceMode should return this broken comment as a token.  Since
2765     // it isn't a well formed comment, just return it as an 'unknown' token.
2766     if (isKeepWhitespaceMode()) {
2767       FormTokenWithChars(Result, CurPtr, tok::unknown);
2768       return true;
2769     }
2770 
2771     BufferPtr = CurPtr;
2772     return false;
2773   }
2774 
2775   // Check to see if the first character after the '/*' is another /.  If so,
2776   // then this slash does not end the block comment, it is part of it.
2777   if (C == '/')
2778     C = *CurPtr++;
2779 
2780   // C++23 [lex.phases] p1
2781   // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2782   // diagnostic only once per entire ill-formed subsequence to avoid
2783   // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2784   bool UnicodeDecodingAlreadyDiagnosed = false;
2785 
2786   while (true) {
2787     // Skip over all non-interesting characters until we find end of buffer or a
2788     // (probably ending) '/' character.
2789     if (CurPtr + 24 < BufferEnd &&
2790         // If there is a code-completion point avoid the fast scan because it
2791         // doesn't check for '\0'.
2792         !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
2793       // While not aligned to a 16-byte boundary.
2794       while (C != '/' && (intptr_t)CurPtr % 16 != 0) {
2795         if (!isASCII(C))
2796           goto MultiByteUTF8;
2797         C = *CurPtr++;
2798       }
2799       if (C == '/') goto FoundSlash;
2800 
2801 #ifdef __SSE2__
2802       __m128i Slashes = _mm_set1_epi8('/');
2803       while (CurPtr + 16 < BufferEnd) {
2804         int Mask = _mm_movemask_epi8(*(const __m128i *)CurPtr);
2805         if (LLVM_UNLIKELY(Mask != 0)) {
2806           goto MultiByteUTF8;
2807         }
2808         // look for slashes
2809         int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
2810                                     Slashes));
2811         if (cmp != 0) {
2812           // Adjust the pointer to point directly after the first slash. It's
2813           // not necessary to set C here, it will be overwritten at the end of
2814           // the outer loop.
2815           CurPtr += llvm::countr_zero<unsigned>(cmp) + 1;
2816           goto FoundSlash;
2817         }
2818         CurPtr += 16;
2819       }
2820 #elif __ALTIVEC__
2821       __vector unsigned char LongUTF = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2822                                         0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2823                                         0x80, 0x80, 0x80, 0x80};
2824       __vector unsigned char Slashes = {
2825         '/', '/', '/', '/',  '/', '/', '/', '/',
2826         '/', '/', '/', '/',  '/', '/', '/', '/'
2827       };
2828       while (CurPtr + 16 < BufferEnd) {
2829         if (LLVM_UNLIKELY(
2830                 vec_any_ge(*(const __vector unsigned char *)CurPtr, LongUTF)))
2831           goto MultiByteUTF8;
2832         if (vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) {
2833           break;
2834         }
2835         CurPtr += 16;
2836       }
2837 
2838 #else
2839       while (CurPtr + 16 < BufferEnd) {
2840         bool HasNonASCII = false;
2841         for (unsigned I = 0; I < 16; ++I)
2842           HasNonASCII |= !isASCII(CurPtr[I]);
2843 
2844         if (LLVM_UNLIKELY(HasNonASCII))
2845           goto MultiByteUTF8;
2846 
2847         bool HasSlash = false;
2848         for (unsigned I = 0; I < 16; ++I)
2849           HasSlash |= CurPtr[I] == '/';
2850         if (HasSlash)
2851           break;
2852         CurPtr += 16;
2853       }
2854 #endif
2855 
2856       // It has to be one of the bytes scanned, increment to it and read one.
2857       C = *CurPtr++;
2858     }
2859 
2860     // Loop to scan the remainder, warning on invalid UTF-8
2861     // if the corresponding warning is enabled, emitting a diagnostic only once
2862     // per sequence that cannot be decoded.
2863     while (C != '/' && C != '\0') {
2864       if (isASCII(C)) {
2865         UnicodeDecodingAlreadyDiagnosed = false;
2866         C = *CurPtr++;
2867         continue;
2868       }
2869     MultiByteUTF8:
2870       // CurPtr is 1 code unit past C, so to decode
2871       // the codepoint, we need to read from the previous position.
2872       unsigned Length = llvm::getUTF8SequenceSize(
2873           (const llvm::UTF8 *)CurPtr - 1, (const llvm::UTF8 *)BufferEnd);
2874       if (Length == 0) {
2875         if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2876           Diag(CurPtr - 1, diag::warn_invalid_utf8_in_comment);
2877         UnicodeDecodingAlreadyDiagnosed = true;
2878       } else {
2879         UnicodeDecodingAlreadyDiagnosed = false;
2880         CurPtr += Length - 1;
2881       }
2882       C = *CurPtr++;
2883     }
2884 
2885     if (C == '/') {
2886   FoundSlash:
2887       if (CurPtr[-2] == '*')  // We found the final */.  We're done!
2888         break;
2889 
2890       if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
2891         if (isEndOfBlockCommentWithEscapedNewLine(CurPtr - 2, this,
2892                                                   LangOpts.Trigraphs)) {
2893           // We found the final */, though it had an escaped newline between the
2894           // * and /.  We're done!
2895           break;
2896         }
2897       }
2898       if (CurPtr[0] == '*' && CurPtr[1] != '/') {
2899         // If this is a /* inside of the comment, emit a warning.  Don't do this
2900         // if this is a /*/, which will end the comment.  This misses cases with
2901         // embedded escaped newlines, but oh well.
2902         if (!isLexingRawMode())
2903           Diag(CurPtr-1, diag::warn_nested_block_comment);
2904       }
2905     } else if (C == 0 && CurPtr == BufferEnd+1) {
2906       if (!isLexingRawMode())
2907         Diag(BufferPtr, diag::err_unterminated_block_comment);
2908       // Note: the user probably forgot a */.  We could continue immediately
2909       // after the /*, but this would involve lexing a lot of what really is the
2910       // comment, which surely would confuse the parser.
2911       --CurPtr;
2912 
2913       // KeepWhitespaceMode should return this broken comment as a token.  Since
2914       // it isn't a well formed comment, just return it as an 'unknown' token.
2915       if (isKeepWhitespaceMode()) {
2916         FormTokenWithChars(Result, CurPtr, tok::unknown);
2917         return true;
2918       }
2919 
2920       BufferPtr = CurPtr;
2921       return false;
2922     } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2923       PP->CodeCompleteNaturalLanguage();
2924       cutOffLexing();
2925       return false;
2926     }
2927 
2928     C = *CurPtr++;
2929   }
2930 
2931   // Notify comment handlers about the comment unless we're in a #if 0 block.
2932   if (PP && !isLexingRawMode() &&
2933       PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2934                                             getSourceLocation(CurPtr)))) {
2935     BufferPtr = CurPtr;
2936     return true; // A token has to be returned.
2937   }
2938 
2939   // If we are returning comments as tokens, return this comment as a token.
2940   if (inKeepCommentMode()) {
2941     FormTokenWithChars(Result, CurPtr, tok::comment);
2942     return true;
2943   }
2944 
2945   // It is common for the tokens immediately after a /**/ comment to be
2946   // whitespace.  Instead of going through the big switch, handle it
2947   // efficiently now.  This is safe even in KeepWhitespaceMode because we would
2948   // have already returned above with the comment as a token.
2949   if (isHorizontalWhitespace(*CurPtr)) {
2950     SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
2951     return false;
2952   }
2953 
2954   // Otherwise, just return so that the next character will be lexed as a token.
2955   BufferPtr = CurPtr;
2956   Result.setFlag(Token::LeadingSpace);
2957   return false;
2958 }
2959 
2960 //===----------------------------------------------------------------------===//
2961 // Primary Lexing Entry Points
2962 //===----------------------------------------------------------------------===//
2963 
2964 /// ReadToEndOfLine - Read the rest of the current preprocessor line as an
2965 /// uninterpreted string.  This switches the lexer out of directive mode.
2966 void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
2967   assert(ParsingPreprocessorDirective && ParsingFilename == false &&
2968          "Must be in a preprocessing directive!");
2969   Token Tmp;
2970   Tmp.startToken();
2971 
2972   // CurPtr - Cache BufferPtr in an automatic variable.
2973   const char *CurPtr = BufferPtr;
2974   while (true) {
2975     char Char = getAndAdvanceChar(CurPtr, Tmp);
2976     switch (Char) {
2977     default:
2978       if (Result)
2979         Result->push_back(Char);
2980       break;
2981     case 0:  // Null.
2982       // Found end of file?
2983       if (CurPtr-1 != BufferEnd) {
2984         if (isCodeCompletionPoint(CurPtr-1)) {
2985           PP->CodeCompleteNaturalLanguage();
2986           cutOffLexing();
2987           return;
2988         }
2989 
2990         // Nope, normal character, continue.
2991         if (Result)
2992           Result->push_back(Char);
2993         break;
2994       }
2995       // FALL THROUGH.
2996       [[fallthrough]];
2997     case '\r':
2998     case '\n':
2999       // Okay, we found the end of the line. First, back up past the \0, \r, \n.
3000       assert(CurPtr[-1] == Char && "Trigraphs for newline?");
3001       BufferPtr = CurPtr-1;
3002 
3003       // Next, lex the character, which should handle the EOD transition.
3004       Lex(Tmp);
3005       if (Tmp.is(tok::code_completion)) {
3006         if (PP)
3007           PP->CodeCompleteNaturalLanguage();
3008         Lex(Tmp);
3009       }
3010       assert(Tmp.is(tok::eod) && "Unexpected token!");
3011 
3012       // Finally, we're done;
3013       return;
3014     }
3015   }
3016 }
3017 
3018 /// LexEndOfFile - CurPtr points to the end of this file.  Handle this
3019 /// condition, reporting diagnostics and handling other edge cases as required.
3020 /// This returns true if Result contains a token, false if PP.Lex should be
3021 /// called again.
3022 bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
3023   // If we hit the end of the file while parsing a preprocessor directive,
3024   // end the preprocessor directive first.  The next token returned will
3025   // then be the end of file.
3026   if (ParsingPreprocessorDirective) {
3027     // Done parsing the "line".
3028     ParsingPreprocessorDirective = false;
3029     // Update the location of token as well as BufferPtr.
3030     FormTokenWithChars(Result, CurPtr, tok::eod);
3031 
3032     // Restore comment saving mode, in case it was disabled for directive.
3033     if (PP)
3034       resetExtendedTokenMode();
3035     return true;  // Have a token.
3036   }
3037 
3038   // If we are in raw mode, return this event as an EOF token.  Let the caller
3039   // that put us in raw mode handle the event.
3040   if (isLexingRawMode()) {
3041     Result.startToken();
3042     BufferPtr = BufferEnd;
3043     FormTokenWithChars(Result, BufferEnd, tok::eof);
3044     return true;
3045   }
3046 
3047   if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) {
3048     PP->setRecordedPreambleConditionalStack(ConditionalStack);
3049     // If the preamble cuts off the end of a header guard, consider it guarded.
3050     // The guard is valid for the preamble content itself, and for tools the
3051     // most useful answer is "yes, this file has a header guard".
3052     if (!ConditionalStack.empty())
3053       MIOpt.ExitTopLevelConditional();
3054     ConditionalStack.clear();
3055   }
3056 
3057   // Issue diagnostics for unterminated #if and missing newline.
3058 
3059   // If we are in a #if directive, emit an error.
3060   while (!ConditionalStack.empty()) {
3061     if (PP->getCodeCompletionFileLoc() != FileLoc)
3062       PP->Diag(ConditionalStack.back().IfLoc,
3063                diag::err_pp_unterminated_conditional);
3064     ConditionalStack.pop_back();
3065   }
3066 
3067   // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
3068   // a pedwarn.
3069   if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
3070     DiagnosticsEngine &Diags = PP->getDiagnostics();
3071     SourceLocation EndLoc = getSourceLocation(BufferEnd);
3072     unsigned DiagID;
3073 
3074     if (LangOpts.CPlusPlus11) {
3075       // C++11 [lex.phases] 2.2 p2
3076       // Prefer the C++98 pedantic compatibility warning over the generic,
3077       // non-extension, user-requested "missing newline at EOF" warning.
3078       if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
3079         DiagID = diag::warn_cxx98_compat_no_newline_eof;
3080       } else {
3081         DiagID = diag::warn_no_newline_eof;
3082       }
3083     } else {
3084       DiagID = diag::ext_no_newline_eof;
3085     }
3086 
3087     Diag(BufferEnd, DiagID)
3088       << FixItHint::CreateInsertion(EndLoc, "\n");
3089   }
3090 
3091   BufferPtr = CurPtr;
3092 
3093   // Finally, let the preprocessor handle this.
3094   return PP->HandleEndOfFile(Result, isPragmaLexer());
3095 }
3096 
3097 /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
3098 /// the specified lexer will return a tok::l_paren token, 0 if it is something
3099 /// else and 2 if there are no more tokens in the buffer controlled by the
3100 /// lexer.
3101 unsigned Lexer::isNextPPTokenLParen() {
3102   assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
3103 
3104   if (isDependencyDirectivesLexer()) {
3105     if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size())
3106       return 2;
3107     return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
3108         tok::l_paren);
3109   }
3110 
3111   // Switch to 'skipping' mode.  This will ensure that we can lex a token
3112   // without emitting diagnostics, disables macro expansion, and will cause EOF
3113   // to return an EOF token instead of popping the include stack.
3114   LexingRawMode = true;
3115 
3116   // Save state that can be changed while lexing so that we can restore it.
3117   const char *TmpBufferPtr = BufferPtr;
3118   bool inPPDirectiveMode = ParsingPreprocessorDirective;
3119   bool atStartOfLine = IsAtStartOfLine;
3120   bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3121   bool leadingSpace = HasLeadingSpace;
3122 
3123   Token Tok;
3124   Lex(Tok);
3125 
3126   // Restore state that may have changed.
3127   BufferPtr = TmpBufferPtr;
3128   ParsingPreprocessorDirective = inPPDirectiveMode;
3129   HasLeadingSpace = leadingSpace;
3130   IsAtStartOfLine = atStartOfLine;
3131   IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
3132 
3133   // Restore the lexer back to non-skipping mode.
3134   LexingRawMode = false;
3135 
3136   if (Tok.is(tok::eof))
3137     return 2;
3138   return Tok.is(tok::l_paren);
3139 }
3140 
3141 /// Find the end of a version control conflict marker.
3142 static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
3143                                    ConflictMarkerKind CMK) {
3144   const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
3145   size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
3146   auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen);
3147   size_t Pos = RestOfBuffer.find(Terminator);
3148   while (Pos != StringRef::npos) {
3149     // Must occur at start of line.
3150     if (Pos == 0 ||
3151         (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
3152       RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
3153       Pos = RestOfBuffer.find(Terminator);
3154       continue;
3155     }
3156     return RestOfBuffer.data()+Pos;
3157   }
3158   return nullptr;
3159 }
3160 
3161 /// IsStartOfConflictMarker - If the specified pointer is the start of a version
3162 /// control conflict marker like '<<<<<<<', recognize it as such, emit an error
3163 /// and recover nicely.  This returns true if it is a conflict marker and false
3164 /// if not.
3165 bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
3166   // Only a conflict marker if it starts at the beginning of a line.
3167   if (CurPtr != BufferStart &&
3168       CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3169     return false;
3170 
3171   // Check to see if we have <<<<<<< or >>>>.
3172   if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") &&
3173       !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> "))
3174     return false;
3175 
3176   // If we have a situation where we don't care about conflict markers, ignore
3177   // it.
3178   if (CurrentConflictMarkerState || isLexingRawMode())
3179     return false;
3180 
3181   ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
3182 
3183   // Check to see if there is an ending marker somewhere in the buffer at the
3184   // start of a line to terminate this conflict marker.
3185   if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
3186     // We found a match.  We are really in a conflict marker.
3187     // Diagnose this, and ignore to the end of line.
3188     Diag(CurPtr, diag::err_conflict_marker);
3189     CurrentConflictMarkerState = Kind;
3190 
3191     // Skip ahead to the end of line.  We know this exists because the
3192     // end-of-conflict marker starts with \r or \n.
3193     while (*CurPtr != '\r' && *CurPtr != '\n') {
3194       assert(CurPtr != BufferEnd && "Didn't find end of line");
3195       ++CurPtr;
3196     }
3197     BufferPtr = CurPtr;
3198     return true;
3199   }
3200 
3201   // No end of conflict marker found.
3202   return false;
3203 }
3204 
3205 /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
3206 /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
3207 /// is the end of a conflict marker.  Handle it by ignoring up until the end of
3208 /// the line.  This returns true if it is a conflict marker and false if not.
3209 bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
3210   // Only a conflict marker if it starts at the beginning of a line.
3211   if (CurPtr != BufferStart &&
3212       CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3213     return false;
3214 
3215   // If we have a situation where we don't care about conflict markers, ignore
3216   // it.
3217   if (!CurrentConflictMarkerState || isLexingRawMode())
3218     return false;
3219 
3220   // Check to see if we have the marker (4 characters in a row).
3221   for (unsigned i = 1; i != 4; ++i)
3222     if (CurPtr[i] != CurPtr[0])
3223       return false;
3224 
3225   // If we do have it, search for the end of the conflict marker.  This could
3226   // fail if it got skipped with a '#if 0' or something.  Note that CurPtr might
3227   // be the end of conflict marker.
3228   if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
3229                                         CurrentConflictMarkerState)) {
3230     CurPtr = End;
3231 
3232     // Skip ahead to the end of line.
3233     while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
3234       ++CurPtr;
3235 
3236     BufferPtr = CurPtr;
3237 
3238     // No longer in the conflict marker.
3239     CurrentConflictMarkerState = CMK_None;
3240     return true;
3241   }
3242 
3243   return false;
3244 }
3245 
3246 static const char *findPlaceholderEnd(const char *CurPtr,
3247                                       const char *BufferEnd) {
3248   if (CurPtr == BufferEnd)
3249     return nullptr;
3250   BufferEnd -= 1; // Scan until the second last character.
3251   for (; CurPtr != BufferEnd; ++CurPtr) {
3252     if (CurPtr[0] == '#' && CurPtr[1] == '>')
3253       return CurPtr + 2;
3254   }
3255   return nullptr;
3256 }
3257 
3258 bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) {
3259   assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!");
3260   if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode)
3261     return false;
3262   const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd);
3263   if (!End)
3264     return false;
3265   const char *Start = CurPtr - 1;
3266   if (!LangOpts.AllowEditorPlaceholders)
3267     Diag(Start, diag::err_placeholder_in_source);
3268   Result.startToken();
3269   FormTokenWithChars(Result, End, tok::raw_identifier);
3270   Result.setRawIdentifierData(Start);
3271   PP->LookUpIdentifierInfo(Result);
3272   Result.setFlag(Token::IsEditorPlaceholder);
3273   BufferPtr = End;
3274   return true;
3275 }
3276 
3277 bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
3278   if (PP && PP->isCodeCompletionEnabled()) {
3279     SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
3280     return Loc == PP->getCodeCompletionLoc();
3281   }
3282 
3283   return false;
3284 }
3285 
3286 std::optional<uint32_t> Lexer::tryReadNumericUCN(const char *&StartPtr,
3287                                                  const char *SlashLoc,
3288                                                  Token *Result) {
3289   unsigned CharSize;
3290   char Kind = getCharAndSize(StartPtr, CharSize);
3291   assert((Kind == 'u' || Kind == 'U') && "expected a UCN");
3292 
3293   unsigned NumHexDigits;
3294   if (Kind == 'u')
3295     NumHexDigits = 4;
3296   else if (Kind == 'U')
3297     NumHexDigits = 8;
3298 
3299   bool Delimited = false;
3300   bool FoundEndDelimiter = false;
3301   unsigned Count = 0;
3302   bool Diagnose = Result && !isLexingRawMode();
3303 
3304   if (!LangOpts.CPlusPlus && !LangOpts.C99) {
3305     if (Diagnose)
3306       Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
3307     return std::nullopt;
3308   }
3309 
3310   const char *CurPtr = StartPtr + CharSize;
3311   const char *KindLoc = &CurPtr[-1];
3312 
3313   uint32_t CodePoint = 0;
3314   while (Count != NumHexDigits || Delimited) {
3315     char C = getCharAndSize(CurPtr, CharSize);
3316     if (!Delimited && Count == 0 && C == '{') {
3317       Delimited = true;
3318       CurPtr += CharSize;
3319       continue;
3320     }
3321 
3322     if (Delimited && C == '}') {
3323       CurPtr += CharSize;
3324       FoundEndDelimiter = true;
3325       break;
3326     }
3327 
3328     unsigned Value = llvm::hexDigitValue(C);
3329     if (Value == -1U) {
3330       if (!Delimited)
3331         break;
3332       if (Diagnose)
3333         Diag(SlashLoc, diag::warn_delimited_ucn_incomplete)
3334             << StringRef(KindLoc, 1);
3335       return std::nullopt;
3336     }
3337 
3338     if (CodePoint & 0xF000'0000) {
3339       if (Diagnose)
3340         Diag(KindLoc, diag::err_escape_too_large) << 0;
3341       return std::nullopt;
3342     }
3343 
3344     CodePoint <<= 4;
3345     CodePoint |= Value;
3346     CurPtr += CharSize;
3347     Count++;
3348   }
3349 
3350   if (Count == 0) {
3351     if (Diagnose)
3352       Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3353                                        : diag::warn_ucn_escape_no_digits)
3354           << StringRef(KindLoc, 1);
3355     return std::nullopt;
3356   }
3357 
3358   if (Delimited && Kind == 'U') {
3359     if (Diagnose)
3360       Diag(SlashLoc, diag::err_hex_escape_no_digits) << StringRef(KindLoc, 1);
3361     return std::nullopt;
3362   }
3363 
3364   if (!Delimited && Count != NumHexDigits) {
3365     if (Diagnose) {
3366       Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3367       // If the user wrote \U1234, suggest a fixit to \u.
3368       if (Count == 4 && NumHexDigits == 8) {
3369         CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
3370         Diag(KindLoc, diag::note_ucn_four_not_eight)
3371             << FixItHint::CreateReplacement(URange, "u");
3372       }
3373     }
3374     return std::nullopt;
3375   }
3376 
3377   if (Delimited && PP) {
3378     Diag(SlashLoc, PP->getLangOpts().CPlusPlus23
3379                        ? diag::warn_cxx23_delimited_escape_sequence
3380                        : diag::ext_delimited_escape_sequence)
3381         << /*delimited*/ 0 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3382   }
3383 
3384   if (Result) {
3385     Result->setFlag(Token::HasUCN);
3386     // If the UCN contains either a trigraph or a line splicing,
3387     // we need to call getAndAdvanceChar again to set the appropriate flags
3388     // on Result.
3389     if (CurPtr - StartPtr == (ptrdiff_t)(Count + 1 + (Delimited ? 2 : 0)))
3390       StartPtr = CurPtr;
3391     else
3392       while (StartPtr != CurPtr)
3393         (void)getAndAdvanceChar(StartPtr, *Result);
3394   } else {
3395     StartPtr = CurPtr;
3396   }
3397   return CodePoint;
3398 }
3399 
3400 std::optional<uint32_t> Lexer::tryReadNamedUCN(const char *&StartPtr,
3401                                                const char *SlashLoc,
3402                                                Token *Result) {
3403   unsigned CharSize;
3404   bool Diagnose = Result && !isLexingRawMode();
3405 
3406   char C = getCharAndSize(StartPtr, CharSize);
3407   assert(C == 'N' && "expected \\N{...}");
3408 
3409   const char *CurPtr = StartPtr + CharSize;
3410   const char *KindLoc = &CurPtr[-1];
3411 
3412   C = getCharAndSize(CurPtr, CharSize);
3413   if (C != '{') {
3414     if (Diagnose)
3415       Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3416     return std::nullopt;
3417   }
3418   CurPtr += CharSize;
3419   const char *StartName = CurPtr;
3420   bool FoundEndDelimiter = false;
3421   llvm::SmallVector<char, 30> Buffer;
3422   while (C) {
3423     C = getCharAndSize(CurPtr, CharSize);
3424     CurPtr += CharSize;
3425     if (C == '}') {
3426       FoundEndDelimiter = true;
3427       break;
3428     }
3429 
3430     if (isVerticalWhitespace(C))
3431       break;
3432     Buffer.push_back(C);
3433   }
3434 
3435   if (!FoundEndDelimiter || Buffer.empty()) {
3436     if (Diagnose)
3437       Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3438                                        : diag::warn_delimited_ucn_incomplete)
3439           << StringRef(KindLoc, 1);
3440     return std::nullopt;
3441   }
3442 
3443   StringRef Name(Buffer.data(), Buffer.size());
3444   std::optional<char32_t> Match =
3445       llvm::sys::unicode::nameToCodepointStrict(Name);
3446   std::optional<llvm::sys::unicode::LooseMatchingResult> LooseMatch;
3447   if (!Match) {
3448     LooseMatch = llvm::sys::unicode::nameToCodepointLooseMatching(Name);
3449     if (Diagnose) {
3450       Diag(StartName, diag::err_invalid_ucn_name)
3451           << StringRef(Buffer.data(), Buffer.size())
3452           << makeCharRange(*this, StartName, CurPtr - CharSize);
3453       if (LooseMatch) {
3454         Diag(StartName, diag::note_invalid_ucn_name_loose_matching)
3455             << FixItHint::CreateReplacement(
3456                    makeCharRange(*this, StartName, CurPtr - CharSize),
3457                    LooseMatch->Name);
3458       }
3459     }
3460     // We do not offer misspelled character names suggestions here
3461     // as the set of what would be a valid suggestion depends on context,
3462     // and we should not make invalid suggestions.
3463   }
3464 
3465   if (Diagnose && Match)
3466     Diag(SlashLoc, PP->getLangOpts().CPlusPlus23
3467                        ? diag::warn_cxx23_delimited_escape_sequence
3468                        : diag::ext_delimited_escape_sequence)
3469         << /*named*/ 1 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3470 
3471   // If no diagnostic has been emitted yet, likely because we are doing a
3472   // tentative lexing, we do not want to recover here to make sure the token
3473   // will not be incorrectly considered valid. This function will be called
3474   // again and a diagnostic emitted then.
3475   if (LooseMatch && Diagnose)
3476     Match = LooseMatch->CodePoint;
3477 
3478   if (Result) {
3479     Result->setFlag(Token::HasUCN);
3480     // If the UCN contains either a trigraph or a line splicing,
3481     // we need to call getAndAdvanceChar again to set the appropriate flags
3482     // on Result.
3483     if (CurPtr - StartPtr == (ptrdiff_t)(Buffer.size() + 3))
3484       StartPtr = CurPtr;
3485     else
3486       while (StartPtr != CurPtr)
3487         (void)getAndAdvanceChar(StartPtr, *Result);
3488   } else {
3489     StartPtr = CurPtr;
3490   }
3491   return Match ? std::optional<uint32_t>(*Match) : std::nullopt;
3492 }
3493 
3494 uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
3495                            Token *Result) {
3496 
3497   unsigned CharSize;
3498   std::optional<uint32_t> CodePointOpt;
3499   char Kind = getCharAndSize(StartPtr, CharSize);
3500   if (Kind == 'u' || Kind == 'U')
3501     CodePointOpt = tryReadNumericUCN(StartPtr, SlashLoc, Result);
3502   else if (Kind == 'N')
3503     CodePointOpt = tryReadNamedUCN(StartPtr, SlashLoc, Result);
3504 
3505   if (!CodePointOpt)
3506     return 0;
3507 
3508   uint32_t CodePoint = *CodePointOpt;
3509 
3510   // Don't apply C family restrictions to UCNs in assembly mode
3511   if (LangOpts.AsmPreprocessor)
3512     return CodePoint;
3513 
3514   // C23 6.4.3p2: A universal character name shall not designate a code point
3515   // where the hexadecimal value is:
3516   // - in the range D800 through DFFF inclusive; or
3517   // - greater than 10FFFF.
3518   // A universal-character-name outside the c-char-sequence of a character
3519   // constant, or the s-char-sequence of a string-literal shall not designate
3520   // a control character or a character in the basic character set.
3521 
3522   // C++11 [lex.charset]p2: If the hexadecimal value for a
3523   //   universal-character-name corresponds to a surrogate code point (in the
3524   //   range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
3525   //   if the hexadecimal value for a universal-character-name outside the
3526   //   c-char-sequence, s-char-sequence, or r-char-sequence of a character or
3527   //   string literal corresponds to a control character (in either of the
3528   //   ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
3529   //   basic source character set, the program is ill-formed.
3530   if (CodePoint < 0xA0) {
3531     // We don't use isLexingRawMode() here because we need to warn about bad
3532     // UCNs even when skipping preprocessing tokens in a #if block.
3533     if (Result && PP) {
3534       if (CodePoint < 0x20 || CodePoint >= 0x7F)
3535         Diag(BufferPtr, diag::err_ucn_control_character);
3536       else {
3537         char C = static_cast<char>(CodePoint);
3538         Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
3539       }
3540     }
3541 
3542     return 0;
3543   } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
3544     // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
3545     // We don't use isLexingRawMode() here because we need to diagnose bad
3546     // UCNs even when skipping preprocessing tokens in a #if block.
3547     if (Result && PP) {
3548       if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
3549         Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
3550       else
3551         Diag(BufferPtr, diag::err_ucn_escape_invalid);
3552     }
3553     return 0;
3554   }
3555 
3556   return CodePoint;
3557 }
3558 
3559 bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
3560                                    const char *CurPtr) {
3561   if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
3562       isUnicodeWhitespace(C)) {
3563     Diag(BufferPtr, diag::ext_unicode_whitespace)
3564       << makeCharRange(*this, BufferPtr, CurPtr);
3565 
3566     Result.setFlag(Token::LeadingSpace);
3567     return true;
3568   }
3569   return false;
3570 }
3571 
3572 void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
3573   IsAtStartOfLine = Result.isAtStartOfLine();
3574   HasLeadingSpace = Result.hasLeadingSpace();
3575   HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
3576   // Note that this doesn't affect IsAtPhysicalStartOfLine.
3577 }
3578 
3579 bool Lexer::Lex(Token &Result) {
3580   assert(!isDependencyDirectivesLexer());
3581 
3582   // Start a new token.
3583   Result.startToken();
3584 
3585   // Set up misc whitespace flags for LexTokenInternal.
3586   if (IsAtStartOfLine) {
3587     Result.setFlag(Token::StartOfLine);
3588     IsAtStartOfLine = false;
3589   }
3590 
3591   if (HasLeadingSpace) {
3592     Result.setFlag(Token::LeadingSpace);
3593     HasLeadingSpace = false;
3594   }
3595 
3596   if (HasLeadingEmptyMacro) {
3597     Result.setFlag(Token::LeadingEmptyMacro);
3598     HasLeadingEmptyMacro = false;
3599   }
3600 
3601   bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3602   IsAtPhysicalStartOfLine = false;
3603   bool isRawLex = isLexingRawMode();
3604   (void) isRawLex;
3605   bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
3606   // (After the LexTokenInternal call, the lexer might be destroyed.)
3607   assert((returnedToken || !isRawLex) && "Raw lex must succeed");
3608   return returnedToken;
3609 }
3610 
3611 /// LexTokenInternal - This implements a simple C family lexer.  It is an
3612 /// extremely performance critical piece of code.  This assumes that the buffer
3613 /// has a null character at the end of the file.  This returns a preprocessing
3614 /// token, not a normal token, as such, it is an internal interface.  It assumes
3615 /// that the Flags of result have been cleared before calling this.
3616 bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
3617 LexStart:
3618   assert(!Result.needsCleaning() && "Result needs cleaning");
3619   assert(!Result.hasPtrData() && "Result has not been reset");
3620 
3621   // CurPtr - Cache BufferPtr in an automatic variable.
3622   const char *CurPtr = BufferPtr;
3623 
3624   // Small amounts of horizontal whitespace is very common between tokens.
3625   if (isHorizontalWhitespace(*CurPtr)) {
3626     do {
3627       ++CurPtr;
3628     } while (isHorizontalWhitespace(*CurPtr));
3629 
3630     // If we are keeping whitespace and other tokens, just return what we just
3631     // skipped.  The next lexer invocation will return the token after the
3632     // whitespace.
3633     if (isKeepWhitespaceMode()) {
3634       FormTokenWithChars(Result, CurPtr, tok::unknown);
3635       // FIXME: The next token will not have LeadingSpace set.
3636       return true;
3637     }
3638 
3639     BufferPtr = CurPtr;
3640     Result.setFlag(Token::LeadingSpace);
3641   }
3642 
3643   unsigned SizeTmp, SizeTmp2;   // Temporaries for use in cases below.
3644 
3645   // Read a character, advancing over it.
3646   char Char = getAndAdvanceChar(CurPtr, Result);
3647   tok::TokenKind Kind;
3648 
3649   if (!isVerticalWhitespace(Char))
3650     NewLinePtr = nullptr;
3651 
3652   switch (Char) {
3653   case 0:  // Null.
3654     // Found end of file?
3655     if (CurPtr-1 == BufferEnd)
3656       return LexEndOfFile(Result, CurPtr-1);
3657 
3658     // Check if we are performing code completion.
3659     if (isCodeCompletionPoint(CurPtr-1)) {
3660       // Return the code-completion token.
3661       Result.startToken();
3662       FormTokenWithChars(Result, CurPtr, tok::code_completion);
3663       return true;
3664     }
3665 
3666     if (!isLexingRawMode())
3667       Diag(CurPtr-1, diag::null_in_file);
3668     Result.setFlag(Token::LeadingSpace);
3669     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3670       return true; // KeepWhitespaceMode
3671 
3672     // We know the lexer hasn't changed, so just try again with this lexer.
3673     // (We manually eliminate the tail call to avoid recursion.)
3674     goto LexNextToken;
3675 
3676   case 26:  // DOS & CP/M EOF: "^Z".
3677     // If we're in Microsoft extensions mode, treat this as end of file.
3678     if (LangOpts.MicrosoftExt) {
3679       if (!isLexingRawMode())
3680         Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft);
3681       return LexEndOfFile(Result, CurPtr-1);
3682     }
3683 
3684     // If Microsoft extensions are disabled, this is just random garbage.
3685     Kind = tok::unknown;
3686     break;
3687 
3688   case '\r':
3689     if (CurPtr[0] == '\n')
3690       (void)getAndAdvanceChar(CurPtr, Result);
3691     [[fallthrough]];
3692   case '\n':
3693     // If we are inside a preprocessor directive and we see the end of line,
3694     // we know we are done with the directive, so return an EOD token.
3695     if (ParsingPreprocessorDirective) {
3696       // Done parsing the "line".
3697       ParsingPreprocessorDirective = false;
3698 
3699       // Restore comment saving mode, in case it was disabled for directive.
3700       if (PP)
3701         resetExtendedTokenMode();
3702 
3703       // Since we consumed a newline, we are back at the start of a line.
3704       IsAtStartOfLine = true;
3705       IsAtPhysicalStartOfLine = true;
3706       NewLinePtr = CurPtr - 1;
3707 
3708       Kind = tok::eod;
3709       break;
3710     }
3711 
3712     // No leading whitespace seen so far.
3713     Result.clearFlag(Token::LeadingSpace);
3714 
3715     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3716       return true; // KeepWhitespaceMode
3717 
3718     // We only saw whitespace, so just try again with this lexer.
3719     // (We manually eliminate the tail call to avoid recursion.)
3720     goto LexNextToken;
3721   case ' ':
3722   case '\t':
3723   case '\f':
3724   case '\v':
3725   SkipHorizontalWhitespace:
3726     Result.setFlag(Token::LeadingSpace);
3727     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3728       return true; // KeepWhitespaceMode
3729 
3730   SkipIgnoredUnits:
3731     CurPtr = BufferPtr;
3732 
3733     // If the next token is obviously a // or /* */ comment, skip it efficiently
3734     // too (without going through the big switch stmt).
3735     if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
3736         LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
3737       if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3738         return true; // There is a token to return.
3739       goto SkipIgnoredUnits;
3740     } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
3741       if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3742         return true; // There is a token to return.
3743       goto SkipIgnoredUnits;
3744     } else if (isHorizontalWhitespace(*CurPtr)) {
3745       goto SkipHorizontalWhitespace;
3746     }
3747     // We only saw whitespace, so just try again with this lexer.
3748     // (We manually eliminate the tail call to avoid recursion.)
3749     goto LexNextToken;
3750 
3751   // C99 6.4.4.1: Integer Constants.
3752   // C99 6.4.4.2: Floating Constants.
3753   case '0': case '1': case '2': case '3': case '4':
3754   case '5': case '6': case '7': case '8': case '9':
3755     // Notify MIOpt that we read a non-whitespace/non-comment token.
3756     MIOpt.ReadToken();
3757     return LexNumericConstant(Result, CurPtr);
3758 
3759   // Identifier (e.g., uber), or
3760   // UTF-8 (C23/C++17) or UTF-16 (C11/C++11) character literal, or
3761   // UTF-8 or UTF-16 string literal (C11/C++11).
3762   case 'u':
3763     // Notify MIOpt that we read a non-whitespace/non-comment token.
3764     MIOpt.ReadToken();
3765 
3766     if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3767       Char = getCharAndSize(CurPtr, SizeTmp);
3768 
3769       // UTF-16 string literal
3770       if (Char == '"')
3771         return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3772                                 tok::utf16_string_literal);
3773 
3774       // UTF-16 character constant
3775       if (Char == '\'')
3776         return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3777                                tok::utf16_char_constant);
3778 
3779       // UTF-16 raw string literal
3780       if (Char == 'R' && LangOpts.CPlusPlus11 &&
3781           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3782         return LexRawStringLiteral(Result,
3783                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3784                                            SizeTmp2, Result),
3785                                tok::utf16_string_literal);
3786 
3787       if (Char == '8') {
3788         char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
3789 
3790         // UTF-8 string literal
3791         if (Char2 == '"')
3792           return LexStringLiteral(Result,
3793                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3794                                            SizeTmp2, Result),
3795                                tok::utf8_string_literal);
3796         if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C23))
3797           return LexCharConstant(
3798               Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3799                                   SizeTmp2, Result),
3800               tok::utf8_char_constant);
3801 
3802         if (Char2 == 'R' && LangOpts.CPlusPlus11) {
3803           unsigned SizeTmp3;
3804           char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
3805           // UTF-8 raw string literal
3806           if (Char3 == '"') {
3807             return LexRawStringLiteral(Result,
3808                    ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3809                                            SizeTmp2, Result),
3810                                SizeTmp3, Result),
3811                    tok::utf8_string_literal);
3812           }
3813         }
3814       }
3815     }
3816 
3817     // treat u like the start of an identifier.
3818     return LexIdentifierContinue(Result, CurPtr);
3819 
3820   case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal
3821     // Notify MIOpt that we read a non-whitespace/non-comment token.
3822     MIOpt.ReadToken();
3823 
3824     if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3825       Char = getCharAndSize(CurPtr, SizeTmp);
3826 
3827       // UTF-32 string literal
3828       if (Char == '"')
3829         return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3830                                 tok::utf32_string_literal);
3831 
3832       // UTF-32 character constant
3833       if (Char == '\'')
3834         return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3835                                tok::utf32_char_constant);
3836 
3837       // UTF-32 raw string literal
3838       if (Char == 'R' && LangOpts.CPlusPlus11 &&
3839           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3840         return LexRawStringLiteral(Result,
3841                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3842                                            SizeTmp2, Result),
3843                                tok::utf32_string_literal);
3844     }
3845 
3846     // treat U like the start of an identifier.
3847     return LexIdentifierContinue(Result, CurPtr);
3848 
3849   case 'R': // Identifier or C++0x raw string literal
3850     // Notify MIOpt that we read a non-whitespace/non-comment token.
3851     MIOpt.ReadToken();
3852 
3853     if (LangOpts.CPlusPlus11) {
3854       Char = getCharAndSize(CurPtr, SizeTmp);
3855 
3856       if (Char == '"')
3857         return LexRawStringLiteral(Result,
3858                                    ConsumeChar(CurPtr, SizeTmp, Result),
3859                                    tok::string_literal);
3860     }
3861 
3862     // treat R like the start of an identifier.
3863     return LexIdentifierContinue(Result, CurPtr);
3864 
3865   case 'L':   // Identifier (Loony) or wide literal (L'x' or L"xyz").
3866     // Notify MIOpt that we read a non-whitespace/non-comment token.
3867     MIOpt.ReadToken();
3868     Char = getCharAndSize(CurPtr, SizeTmp);
3869 
3870     // Wide string literal.
3871     if (Char == '"')
3872       return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3873                               tok::wide_string_literal);
3874 
3875     // Wide raw string literal.
3876     if (LangOpts.CPlusPlus11 && Char == 'R' &&
3877         getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3878       return LexRawStringLiteral(Result,
3879                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3880                                            SizeTmp2, Result),
3881                                tok::wide_string_literal);
3882 
3883     // Wide character constant.
3884     if (Char == '\'')
3885       return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3886                              tok::wide_char_constant);
3887     // FALL THROUGH, treating L like the start of an identifier.
3888     [[fallthrough]];
3889 
3890   // C99 6.4.2: Identifiers.
3891   case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
3892   case 'H': case 'I': case 'J': case 'K':    /*'L'*/case 'M': case 'N':
3893   case 'O': case 'P': case 'Q':    /*'R'*/case 'S': case 'T':    /*'U'*/
3894   case 'V': case 'W': case 'X': case 'Y': case 'Z':
3895   case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
3896   case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
3897   case 'o': case 'p': case 'q': case 'r': case 's': case 't':    /*'u'*/
3898   case 'v': case 'w': case 'x': case 'y': case 'z':
3899   case '_':
3900     // Notify MIOpt that we read a non-whitespace/non-comment token.
3901     MIOpt.ReadToken();
3902     return LexIdentifierContinue(Result, CurPtr);
3903 
3904   case '$':   // $ in identifiers.
3905     if (LangOpts.DollarIdents) {
3906       if (!isLexingRawMode())
3907         Diag(CurPtr-1, diag::ext_dollar_in_identifier);
3908       // Notify MIOpt that we read a non-whitespace/non-comment token.
3909       MIOpt.ReadToken();
3910       return LexIdentifierContinue(Result, CurPtr);
3911     }
3912 
3913     Kind = tok::unknown;
3914     break;
3915 
3916   // C99 6.4.4: Character Constants.
3917   case '\'':
3918     // Notify MIOpt that we read a non-whitespace/non-comment token.
3919     MIOpt.ReadToken();
3920     return LexCharConstant(Result, CurPtr, tok::char_constant);
3921 
3922   // C99 6.4.5: String Literals.
3923   case '"':
3924     // Notify MIOpt that we read a non-whitespace/non-comment token.
3925     MIOpt.ReadToken();
3926     return LexStringLiteral(Result, CurPtr,
3927                             ParsingFilename ? tok::header_name
3928                                             : tok::string_literal);
3929 
3930   // C99 6.4.6: Punctuators.
3931   case '?':
3932     Kind = tok::question;
3933     break;
3934   case '[':
3935     Kind = tok::l_square;
3936     break;
3937   case ']':
3938     Kind = tok::r_square;
3939     break;
3940   case '(':
3941     Kind = tok::l_paren;
3942     break;
3943   case ')':
3944     Kind = tok::r_paren;
3945     break;
3946   case '{':
3947     Kind = tok::l_brace;
3948     break;
3949   case '}':
3950     Kind = tok::r_brace;
3951     break;
3952   case '.':
3953     Char = getCharAndSize(CurPtr, SizeTmp);
3954     if (Char >= '0' && Char <= '9') {
3955       // Notify MIOpt that we read a non-whitespace/non-comment token.
3956       MIOpt.ReadToken();
3957 
3958       return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
3959     } else if (LangOpts.CPlusPlus && Char == '*') {
3960       Kind = tok::periodstar;
3961       CurPtr += SizeTmp;
3962     } else if (Char == '.' &&
3963                getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
3964       Kind = tok::ellipsis;
3965       CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3966                            SizeTmp2, Result);
3967     } else {
3968       Kind = tok::period;
3969     }
3970     break;
3971   case '&':
3972     Char = getCharAndSize(CurPtr, SizeTmp);
3973     if (Char == '&') {
3974       Kind = tok::ampamp;
3975       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3976     } else if (Char == '=') {
3977       Kind = tok::ampequal;
3978       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3979     } else {
3980       Kind = tok::amp;
3981     }
3982     break;
3983   case '*':
3984     if (getCharAndSize(CurPtr, SizeTmp) == '=') {
3985       Kind = tok::starequal;
3986       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3987     } else {
3988       Kind = tok::star;
3989     }
3990     break;
3991   case '+':
3992     Char = getCharAndSize(CurPtr, SizeTmp);
3993     if (Char == '+') {
3994       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3995       Kind = tok::plusplus;
3996     } else if (Char == '=') {
3997       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3998       Kind = tok::plusequal;
3999     } else {
4000       Kind = tok::plus;
4001     }
4002     break;
4003   case '-':
4004     Char = getCharAndSize(CurPtr, SizeTmp);
4005     if (Char == '-') {      // --
4006       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4007       Kind = tok::minusminus;
4008     } else if (Char == '>' && LangOpts.CPlusPlus &&
4009                getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') {  // C++ ->*
4010       CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4011                            SizeTmp2, Result);
4012       Kind = tok::arrowstar;
4013     } else if (Char == '>') {   // ->
4014       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4015       Kind = tok::arrow;
4016     } else if (Char == '=') {   // -=
4017       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4018       Kind = tok::minusequal;
4019     } else {
4020       Kind = tok::minus;
4021     }
4022     break;
4023   case '~':
4024     Kind = tok::tilde;
4025     break;
4026   case '!':
4027     if (getCharAndSize(CurPtr, SizeTmp) == '=') {
4028       Kind = tok::exclaimequal;
4029       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4030     } else {
4031       Kind = tok::exclaim;
4032     }
4033     break;
4034   case '/':
4035     // 6.4.9: Comments
4036     Char = getCharAndSize(CurPtr, SizeTmp);
4037     if (Char == '/') {         // Line comment.
4038       // Even if Line comments are disabled (e.g. in C89 mode), we generally
4039       // want to lex this as a comment.  There is one problem with this though,
4040       // that in one particular corner case, this can change the behavior of the
4041       // resultant program.  For example, In  "foo //**/ bar", C89 would lex
4042       // this as "foo / bar" and languages with Line comments would lex it as
4043       // "foo".  Check to see if the character after the second slash is a '*'.
4044       // If so, we will lex that as a "/" instead of the start of a comment.
4045       // However, we never do this if we are just preprocessing.
4046       bool TreatAsComment =
4047           LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
4048       if (!TreatAsComment)
4049         if (!(PP && PP->isPreprocessedOutput()))
4050           TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
4051 
4052       if (TreatAsComment) {
4053         if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4054                             TokAtPhysicalStartOfLine))
4055           return true; // There is a token to return.
4056 
4057         // It is common for the tokens immediately after a // comment to be
4058         // whitespace (indentation for the next line).  Instead of going through
4059         // the big switch, handle it efficiently now.
4060         goto SkipIgnoredUnits;
4061       }
4062     }
4063 
4064     if (Char == '*') {  // /**/ comment.
4065       if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4066                            TokAtPhysicalStartOfLine))
4067         return true; // There is a token to return.
4068 
4069       // We only saw whitespace, so just try again with this lexer.
4070       // (We manually eliminate the tail call to avoid recursion.)
4071       goto LexNextToken;
4072     }
4073 
4074     if (Char == '=') {
4075       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4076       Kind = tok::slashequal;
4077     } else {
4078       Kind = tok::slash;
4079     }
4080     break;
4081   case '%':
4082     Char = getCharAndSize(CurPtr, SizeTmp);
4083     if (Char == '=') {
4084       Kind = tok::percentequal;
4085       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4086     } else if (LangOpts.Digraphs && Char == '>') {
4087       Kind = tok::r_brace;                             // '%>' -> '}'
4088       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4089     } else if (LangOpts.Digraphs && Char == ':') {
4090       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4091       Char = getCharAndSize(CurPtr, SizeTmp);
4092       if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
4093         Kind = tok::hashhash;                          // '%:%:' -> '##'
4094         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4095                              SizeTmp2, Result);
4096       } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
4097         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4098         if (!isLexingRawMode())
4099           Diag(BufferPtr, diag::ext_charize_microsoft);
4100         Kind = tok::hashat;
4101       } else {                                         // '%:' -> '#'
4102         // We parsed a # character.  If this occurs at the start of the line,
4103         // it's actually the start of a preprocessing directive.  Callback to
4104         // the preprocessor to handle it.
4105         // TODO: -fpreprocessed mode??
4106         if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4107           goto HandleDirective;
4108 
4109         Kind = tok::hash;
4110       }
4111     } else {
4112       Kind = tok::percent;
4113     }
4114     break;
4115   case '<':
4116     Char = getCharAndSize(CurPtr, SizeTmp);
4117     if (ParsingFilename) {
4118       return LexAngledStringLiteral(Result, CurPtr);
4119     } else if (Char == '<') {
4120       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4121       if (After == '=') {
4122         Kind = tok::lesslessequal;
4123         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4124                              SizeTmp2, Result);
4125       } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
4126         // If this is actually a '<<<<<<<' version control conflict marker,
4127         // recognize it as such and recover nicely.
4128         goto LexNextToken;
4129       } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
4130         // If this is '<<<<' and we're in a Perforce-style conflict marker,
4131         // ignore it.
4132         goto LexNextToken;
4133       } else if (LangOpts.CUDA && After == '<') {
4134         Kind = tok::lesslessless;
4135         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4136                              SizeTmp2, Result);
4137       } else {
4138         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4139         Kind = tok::lessless;
4140       }
4141     } else if (Char == '=') {
4142       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4143       if (After == '>') {
4144         if (LangOpts.CPlusPlus20) {
4145           if (!isLexingRawMode())
4146             Diag(BufferPtr, diag::warn_cxx17_compat_spaceship);
4147           CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4148                                SizeTmp2, Result);
4149           Kind = tok::spaceship;
4150           break;
4151         }
4152         // Suggest adding a space between the '<=' and the '>' to avoid a
4153         // change in semantics if this turns up in C++ <=17 mode.
4154         if (LangOpts.CPlusPlus && !isLexingRawMode()) {
4155           Diag(BufferPtr, diag::warn_cxx20_compat_spaceship)
4156             << FixItHint::CreateInsertion(
4157                    getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " ");
4158         }
4159       }
4160       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4161       Kind = tok::lessequal;
4162     } else if (LangOpts.Digraphs && Char == ':') {     // '<:' -> '['
4163       if (LangOpts.CPlusPlus11 &&
4164           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
4165         // C++0x [lex.pptoken]p3:
4166         //  Otherwise, if the next three characters are <:: and the subsequent
4167         //  character is neither : nor >, the < is treated as a preprocessor
4168         //  token by itself and not as the first character of the alternative
4169         //  token <:.
4170         unsigned SizeTmp3;
4171         char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
4172         if (After != ':' && After != '>') {
4173           Kind = tok::less;
4174           if (!isLexingRawMode())
4175             Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
4176           break;
4177         }
4178       }
4179 
4180       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4181       Kind = tok::l_square;
4182     } else if (LangOpts.Digraphs && Char == '%') {     // '<%' -> '{'
4183       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4184       Kind = tok::l_brace;
4185     } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 &&
4186                lexEditorPlaceholder(Result, CurPtr)) {
4187       return true;
4188     } else {
4189       Kind = tok::less;
4190     }
4191     break;
4192   case '>':
4193     Char = getCharAndSize(CurPtr, SizeTmp);
4194     if (Char == '=') {
4195       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4196       Kind = tok::greaterequal;
4197     } else if (Char == '>') {
4198       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4199       if (After == '=') {
4200         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4201                              SizeTmp2, Result);
4202         Kind = tok::greatergreaterequal;
4203       } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
4204         // If this is actually a '>>>>' conflict marker, recognize it as such
4205         // and recover nicely.
4206         goto LexNextToken;
4207       } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
4208         // If this is '>>>>>>>' and we're in a conflict marker, ignore it.
4209         goto LexNextToken;
4210       } else if (LangOpts.CUDA && After == '>') {
4211         Kind = tok::greatergreatergreater;
4212         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4213                              SizeTmp2, Result);
4214       } else {
4215         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4216         Kind = tok::greatergreater;
4217       }
4218     } else {
4219       Kind = tok::greater;
4220     }
4221     break;
4222   case '^':
4223     Char = getCharAndSize(CurPtr, SizeTmp);
4224     if (Char == '=') {
4225       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4226       Kind = tok::caretequal;
4227     } else if (LangOpts.OpenCL && Char == '^') {
4228       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4229       Kind = tok::caretcaret;
4230     } else {
4231       Kind = tok::caret;
4232     }
4233     break;
4234   case '|':
4235     Char = getCharAndSize(CurPtr, SizeTmp);
4236     if (Char == '=') {
4237       Kind = tok::pipeequal;
4238       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4239     } else if (Char == '|') {
4240       // If this is '|||||||' and we're in a conflict marker, ignore it.
4241       if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
4242         goto LexNextToken;
4243       Kind = tok::pipepipe;
4244       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4245     } else {
4246       Kind = tok::pipe;
4247     }
4248     break;
4249   case ':':
4250     Char = getCharAndSize(CurPtr, SizeTmp);
4251     if (LangOpts.Digraphs && Char == '>') {
4252       Kind = tok::r_square; // ':>' -> ']'
4253       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4254     } else if (Char == ':') {
4255       Kind = tok::coloncolon;
4256       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4257     } else {
4258       Kind = tok::colon;
4259     }
4260     break;
4261   case ';':
4262     Kind = tok::semi;
4263     break;
4264   case '=':
4265     Char = getCharAndSize(CurPtr, SizeTmp);
4266     if (Char == '=') {
4267       // If this is '====' and we're in a conflict marker, ignore it.
4268       if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
4269         goto LexNextToken;
4270 
4271       Kind = tok::equalequal;
4272       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4273     } else {
4274       Kind = tok::equal;
4275     }
4276     break;
4277   case ',':
4278     Kind = tok::comma;
4279     break;
4280   case '#':
4281     Char = getCharAndSize(CurPtr, SizeTmp);
4282     if (Char == '#') {
4283       Kind = tok::hashhash;
4284       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4285     } else if (Char == '@' && LangOpts.MicrosoftExt) {  // #@ -> Charize
4286       Kind = tok::hashat;
4287       if (!isLexingRawMode())
4288         Diag(BufferPtr, diag::ext_charize_microsoft);
4289       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4290     } else {
4291       // We parsed a # character.  If this occurs at the start of the line,
4292       // it's actually the start of a preprocessing directive.  Callback to
4293       // the preprocessor to handle it.
4294       // TODO: -fpreprocessed mode??
4295       if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4296         goto HandleDirective;
4297 
4298       Kind = tok::hash;
4299     }
4300     break;
4301 
4302   case '@':
4303     // Objective C support.
4304     if (CurPtr[-1] == '@' && LangOpts.ObjC)
4305       Kind = tok::at;
4306     else
4307       Kind = tok::unknown;
4308     break;
4309 
4310   // UCNs (C99 6.4.3, C++11 [lex.charset]p2)
4311   case '\\':
4312     if (!LangOpts.AsmPreprocessor) {
4313       if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
4314         if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4315           if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4316             return true; // KeepWhitespaceMode
4317 
4318           // We only saw whitespace, so just try again with this lexer.
4319           // (We manually eliminate the tail call to avoid recursion.)
4320           goto LexNextToken;
4321         }
4322 
4323         return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4324       }
4325     }
4326 
4327     Kind = tok::unknown;
4328     break;
4329 
4330   default: {
4331     if (isASCII(Char)) {
4332       Kind = tok::unknown;
4333       break;
4334     }
4335 
4336     llvm::UTF32 CodePoint;
4337 
4338     // We can't just reset CurPtr to BufferPtr because BufferPtr may point to
4339     // an escaped newline.
4340     --CurPtr;
4341     llvm::ConversionResult Status =
4342         llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr,
4343                                   (const llvm::UTF8 *)BufferEnd,
4344                                   &CodePoint,
4345                                   llvm::strictConversion);
4346     if (Status == llvm::conversionOK) {
4347       if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4348         if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4349           return true; // KeepWhitespaceMode
4350 
4351         // We only saw whitespace, so just try again with this lexer.
4352         // (We manually eliminate the tail call to avoid recursion.)
4353         goto LexNextToken;
4354       }
4355       return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4356     }
4357 
4358     if (isLexingRawMode() || ParsingPreprocessorDirective ||
4359         PP->isPreprocessedOutput()) {
4360       ++CurPtr;
4361       Kind = tok::unknown;
4362       break;
4363     }
4364 
4365     // Non-ASCII characters tend to creep into source code unintentionally.
4366     // Instead of letting the parser complain about the unknown token,
4367     // just diagnose the invalid UTF-8, then drop the character.
4368     Diag(CurPtr, diag::err_invalid_utf8);
4369 
4370     BufferPtr = CurPtr+1;
4371     // We're pretending the character didn't exist, so just try again with
4372     // this lexer.
4373     // (We manually eliminate the tail call to avoid recursion.)
4374     goto LexNextToken;
4375   }
4376   }
4377 
4378   // Notify MIOpt that we read a non-whitespace/non-comment token.
4379   MIOpt.ReadToken();
4380 
4381   // Update the location of token as well as BufferPtr.
4382   FormTokenWithChars(Result, CurPtr, Kind);
4383   return true;
4384 
4385 HandleDirective:
4386   // We parsed a # character and it's the start of a preprocessing directive.
4387 
4388   FormTokenWithChars(Result, CurPtr, tok::hash);
4389   PP->HandleDirective(Result);
4390 
4391   if (PP->hadModuleLoaderFatalFailure())
4392     // With a fatal failure in the module loader, we abort parsing.
4393     return true;
4394 
4395   // We parsed the directive; lex a token with the new state.
4396   return false;
4397 
4398 LexNextToken:
4399   Result.clearFlag(Token::NeedsCleaning);
4400   goto LexStart;
4401 }
4402 
4403 const char *Lexer::convertDependencyDirectiveToken(
4404     const dependency_directives_scan::Token &DDTok, Token &Result) {
4405   const char *TokPtr = BufferStart + DDTok.Offset;
4406   Result.startToken();
4407   Result.setLocation(getSourceLocation(TokPtr));
4408   Result.setKind(DDTok.Kind);
4409   Result.setFlag((Token::TokenFlags)DDTok.Flags);
4410   Result.setLength(DDTok.Length);
4411   BufferPtr = TokPtr + DDTok.Length;
4412   return TokPtr;
4413 }
4414 
4415 bool Lexer::LexDependencyDirectiveToken(Token &Result) {
4416   assert(isDependencyDirectivesLexer());
4417 
4418   using namespace dependency_directives_scan;
4419 
4420   while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) {
4421     if (DepDirectives.front().Kind == pp_eof)
4422       return LexEndOfFile(Result, BufferEnd);
4423     if (DepDirectives.front().Kind == tokens_present_before_eof)
4424       MIOpt.ReadToken();
4425     NextDepDirectiveTokenIndex = 0;
4426     DepDirectives = DepDirectives.drop_front();
4427   }
4428 
4429   const dependency_directives_scan::Token &DDTok =
4430       DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++];
4431   if (NextDepDirectiveTokenIndex > 1 || DDTok.Kind != tok::hash) {
4432     // Read something other than a preprocessor directive hash.
4433     MIOpt.ReadToken();
4434   }
4435 
4436   if (ParsingFilename && DDTok.is(tok::less)) {
4437     BufferPtr = BufferStart + DDTok.Offset;
4438     LexAngledStringLiteral(Result, BufferPtr + 1);
4439     if (Result.isNot(tok::header_name))
4440       return true;
4441     // Advance the index of lexed tokens.
4442     while (true) {
4443       const dependency_directives_scan::Token &NextTok =
4444           DepDirectives.front().Tokens[NextDepDirectiveTokenIndex];
4445       if (BufferStart + NextTok.Offset >= BufferPtr)
4446         break;
4447       ++NextDepDirectiveTokenIndex;
4448     }
4449     return true;
4450   }
4451 
4452   const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result);
4453 
4454   if (Result.is(tok::hash) && Result.isAtStartOfLine()) {
4455     PP->HandleDirective(Result);
4456     return false;
4457   }
4458   if (Result.is(tok::raw_identifier)) {
4459     Result.setRawIdentifierData(TokPtr);
4460     if (!isLexingRawMode()) {
4461       const IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
4462       if (II->isHandleIdentifierCase())
4463         return PP->HandleIdentifier(Result);
4464     }
4465     return true;
4466   }
4467   if (Result.isLiteral()) {
4468     Result.setLiteralData(TokPtr);
4469     return true;
4470   }
4471   if (Result.is(tok::colon)) {
4472     // Convert consecutive colons to 'tok::coloncolon'.
4473     if (*BufferPtr == ':') {
4474       assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
4475           tok::colon));
4476       ++NextDepDirectiveTokenIndex;
4477       Result.setKind(tok::coloncolon);
4478     }
4479     return true;
4480   }
4481   if (Result.is(tok::eod))
4482     ParsingPreprocessorDirective = false;
4483 
4484   return true;
4485 }
4486 
4487 bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) {
4488   assert(isDependencyDirectivesLexer());
4489 
4490   using namespace dependency_directives_scan;
4491 
4492   bool Stop = false;
4493   unsigned NestedIfs = 0;
4494   do {
4495     DepDirectives = DepDirectives.drop_front();
4496     switch (DepDirectives.front().Kind) {
4497     case pp_none:
4498       llvm_unreachable("unexpected 'pp_none'");
4499     case pp_include:
4500     case pp___include_macros:
4501     case pp_define:
4502     case pp_undef:
4503     case pp_import:
4504     case pp_pragma_import:
4505     case pp_pragma_once:
4506     case pp_pragma_push_macro:
4507     case pp_pragma_pop_macro:
4508     case pp_pragma_include_alias:
4509     case pp_pragma_system_header:
4510     case pp_include_next:
4511     case decl_at_import:
4512     case cxx_module_decl:
4513     case cxx_import_decl:
4514     case cxx_export_module_decl:
4515     case cxx_export_import_decl:
4516     case tokens_present_before_eof:
4517       break;
4518     case pp_if:
4519     case pp_ifdef:
4520     case pp_ifndef:
4521       ++NestedIfs;
4522       break;
4523     case pp_elif:
4524     case pp_elifdef:
4525     case pp_elifndef:
4526     case pp_else:
4527       if (!NestedIfs) {
4528         Stop = true;
4529       }
4530       break;
4531     case pp_endif:
4532       if (!NestedIfs) {
4533         Stop = true;
4534       } else {
4535         --NestedIfs;
4536       }
4537       break;
4538     case pp_eof:
4539       NextDepDirectiveTokenIndex = 0;
4540       return LexEndOfFile(Result, BufferEnd);
4541     }
4542   } while (!Stop);
4543 
4544   const dependency_directives_scan::Token &DDTok =
4545       DepDirectives.front().Tokens.front();
4546   assert(DDTok.is(tok::hash));
4547   NextDepDirectiveTokenIndex = 1;
4548 
4549   convertDependencyDirectiveToken(DDTok, Result);
4550   return false;
4551 }
4552