xref: /llvm-project/clang/lib/Lex/Lexer.cpp (revision bb94817ecfc5ca7de7a453eec5ad17c9781e24ed)
1 //===- Lexer.cpp - C Language Family Lexer --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Lexer and Token interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Lex/Lexer.h"
14 #include "UnicodeCharSets.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TokenKinds.h"
23 #include "clang/Lex/LexDiagnostic.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/MultipleIncludeOpt.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Lex/PreprocessorOptions.h"
28 #include "clang/Lex/Token.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/StringSwitch.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/MemoryBufferRef.h"
37 #include "llvm/Support/NativeFormatting.h"
38 #include "llvm/Support/Unicode.h"
39 #include "llvm/Support/UnicodeCharRanges.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <cstring>
45 #include <optional>
46 #include <string>
47 #include <tuple>
48 #include <utility>
49 
50 using namespace clang;
51 
52 //===----------------------------------------------------------------------===//
53 // Token Class Implementation
54 //===----------------------------------------------------------------------===//
55 
56 /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
57 bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
58   if (isAnnotation())
59     return false;
60   if (IdentifierInfo *II = getIdentifierInfo())
61     return II->getObjCKeywordID() == objcKey;
62   return false;
63 }
64 
65 /// getObjCKeywordID - Return the ObjC keyword kind.
66 tok::ObjCKeywordKind Token::getObjCKeywordID() const {
67   if (isAnnotation())
68     return tok::objc_not_keyword;
69   IdentifierInfo *specId = getIdentifierInfo();
70   return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
71 }
72 
73 //===----------------------------------------------------------------------===//
74 // Lexer Class Implementation
75 //===----------------------------------------------------------------------===//
76 
77 void Lexer::anchor() {}
78 
79 void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
80                       const char *BufEnd) {
81   BufferStart = BufStart;
82   BufferPtr = BufPtr;
83   BufferEnd = BufEnd;
84 
85   assert(BufEnd[0] == 0 &&
86          "We assume that the input buffer has a null character at the end"
87          " to simplify lexing!");
88 
89   // Check whether we have a BOM in the beginning of the buffer. If yes - act
90   // accordingly. Right now we support only UTF-8 with and without BOM, so, just
91   // skip the UTF-8 BOM if it's present.
92   if (BufferStart == BufferPtr) {
93     // Determine the size of the BOM.
94     StringRef Buf(BufferStart, BufferEnd - BufferStart);
95     size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
96       .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
97       .Default(0);
98 
99     // Skip the BOM.
100     BufferPtr += BOMLength;
101   }
102 
103   Is_PragmaLexer = false;
104   CurrentConflictMarkerState = CMK_None;
105 
106   // Start of the file is a start of line.
107   IsAtStartOfLine = true;
108   IsAtPhysicalStartOfLine = true;
109 
110   HasLeadingSpace = false;
111   HasLeadingEmptyMacro = false;
112 
113   // We are not after parsing a #.
114   ParsingPreprocessorDirective = false;
115 
116   // We are not after parsing #include.
117   ParsingFilename = false;
118 
119   // We are not in raw mode.  Raw mode disables diagnostics and interpretation
120   // of tokens (e.g. identifiers, thus disabling macro expansion).  It is used
121   // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
122   // or otherwise skipping over tokens.
123   LexingRawMode = false;
124 
125   // Default to not keeping comments.
126   ExtendedTokenMode = 0;
127 
128   NewLinePtr = nullptr;
129 }
130 
131 /// Lexer constructor - Create a new lexer object for the specified buffer
132 /// with the specified preprocessor managing the lexing process.  This lexer
133 /// assumes that the associated file buffer and Preprocessor objects will
134 /// outlive it, so it doesn't take ownership of either of them.
135 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile,
136              Preprocessor &PP, bool IsFirstIncludeOfFile)
137     : PreprocessorLexer(&PP, FID),
138       FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
139       LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment),
140       IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
141   InitLexer(InputFile.getBufferStart(), InputFile.getBufferStart(),
142             InputFile.getBufferEnd());
143 
144   resetExtendedTokenMode();
145 }
146 
147 /// Lexer constructor - Create a new raw lexer object.  This object is only
148 /// suitable for calls to 'LexFromRawLexer'.  This lexer assumes that the text
149 /// range will outlive it, so it doesn't take ownership of it.
150 Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
151              const char *BufStart, const char *BufPtr, const char *BufEnd,
152              bool IsFirstIncludeOfFile)
153     : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment),
154       IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
155   InitLexer(BufStart, BufPtr, BufEnd);
156 
157   // We *are* in raw mode.
158   LexingRawMode = true;
159 }
160 
161 /// Lexer constructor - Create a new raw lexer object.  This object is only
162 /// suitable for calls to 'LexFromRawLexer'.  This lexer assumes that the text
163 /// range will outlive it, so it doesn't take ownership of it.
164 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile,
165              const SourceManager &SM, const LangOptions &langOpts,
166              bool IsFirstIncludeOfFile)
167     : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(),
168             FromFile.getBufferStart(), FromFile.getBufferEnd(),
169             IsFirstIncludeOfFile) {}
170 
171 void Lexer::resetExtendedTokenMode() {
172   assert(PP && "Cannot reset token mode without a preprocessor");
173   if (LangOpts.TraditionalCPP)
174     SetKeepWhitespaceMode(true);
175   else
176     SetCommentRetentionState(PP->getCommentRetentionState());
177 }
178 
179 /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
180 /// _Pragma expansion.  This has a variety of magic semantics that this method
181 /// sets up.  It returns a new'd Lexer that must be delete'd when done.
182 ///
183 /// On entrance to this routine, TokStartLoc is a macro location which has a
184 /// spelling loc that indicates the bytes to be lexed for the token and an
185 /// expansion location that indicates where all lexed tokens should be
186 /// "expanded from".
187 ///
188 /// TODO: It would really be nice to make _Pragma just be a wrapper around a
189 /// normal lexer that remaps tokens as they fly by.  This would require making
190 /// Preprocessor::Lex virtual.  Given that, we could just dump in a magic lexer
191 /// interface that could handle this stuff.  This would pull GetMappedTokenLoc
192 /// out of the critical path of the lexer!
193 ///
194 Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
195                                  SourceLocation ExpansionLocStart,
196                                  SourceLocation ExpansionLocEnd,
197                                  unsigned TokLen, Preprocessor &PP) {
198   SourceManager &SM = PP.getSourceManager();
199 
200   // Create the lexer as if we were going to lex the file normally.
201   FileID SpellingFID = SM.getFileID(SpellingLoc);
202   llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(SpellingFID);
203   Lexer *L = new Lexer(SpellingFID, InputFile, PP);
204 
205   // Now that the lexer is created, change the start/end locations so that we
206   // just lex the subsection of the file that we want.  This is lexing from a
207   // scratch buffer.
208   const char *StrData = SM.getCharacterData(SpellingLoc);
209 
210   L->BufferPtr = StrData;
211   L->BufferEnd = StrData+TokLen;
212   assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
213 
214   // Set the SourceLocation with the remapping information.  This ensures that
215   // GetMappedTokenLoc will remap the tokens as they are lexed.
216   L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
217                                      ExpansionLocStart,
218                                      ExpansionLocEnd, TokLen);
219 
220   // Ensure that the lexer thinks it is inside a directive, so that end \n will
221   // return an EOD token.
222   L->ParsingPreprocessorDirective = true;
223 
224   // This lexer really is for _Pragma.
225   L->Is_PragmaLexer = true;
226   return L;
227 }
228 
229 void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) {
230   this->IsAtPhysicalStartOfLine = IsAtStartOfLine;
231   this->IsAtStartOfLine = IsAtStartOfLine;
232   assert((BufferStart + Offset) <= BufferEnd);
233   BufferPtr = BufferStart + Offset;
234 }
235 
236 template <typename T> static void StringifyImpl(T &Str, char Quote) {
237   typename T::size_type i = 0, e = Str.size();
238   while (i < e) {
239     if (Str[i] == '\\' || Str[i] == Quote) {
240       Str.insert(Str.begin() + i, '\\');
241       i += 2;
242       ++e;
243     } else if (Str[i] == '\n' || Str[i] == '\r') {
244       // Replace '\r\n' and '\n\r' to '\\' followed by 'n'.
245       if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') &&
246           Str[i] != Str[i + 1]) {
247         Str[i] = '\\';
248         Str[i + 1] = 'n';
249       } else {
250         // Replace '\n' and '\r' to '\\' followed by 'n'.
251         Str[i] = '\\';
252         Str.insert(Str.begin() + i + 1, 'n');
253         ++e;
254       }
255       i += 2;
256     } else
257       ++i;
258   }
259 }
260 
261 std::string Lexer::Stringify(StringRef Str, bool Charify) {
262   std::string Result = std::string(Str);
263   char Quote = Charify ? '\'' : '"';
264   StringifyImpl(Result, Quote);
265   return Result;
266 }
267 
268 void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); }
269 
270 //===----------------------------------------------------------------------===//
271 // Token Spelling
272 //===----------------------------------------------------------------------===//
273 
274 /// Slow case of getSpelling. Extract the characters comprising the
275 /// spelling of this token from the provided input buffer.
276 static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
277                               const LangOptions &LangOpts, char *Spelling) {
278   assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
279 
280   size_t Length = 0;
281   const char *BufEnd = BufPtr + Tok.getLength();
282 
283   if (tok::isStringLiteral(Tok.getKind())) {
284     // Munch the encoding-prefix and opening double-quote.
285     while (BufPtr < BufEnd) {
286       unsigned Size;
287       Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
288       BufPtr += Size;
289 
290       if (Spelling[Length - 1] == '"')
291         break;
292     }
293 
294     // Raw string literals need special handling; trigraph expansion and line
295     // splicing do not occur within their d-char-sequence nor within their
296     // r-char-sequence.
297     if (Length >= 2 &&
298         Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
299       // Search backwards from the end of the token to find the matching closing
300       // quote.
301       const char *RawEnd = BufEnd;
302       do --RawEnd; while (*RawEnd != '"');
303       size_t RawLength = RawEnd - BufPtr + 1;
304 
305       // Everything between the quotes is included verbatim in the spelling.
306       memcpy(Spelling + Length, BufPtr, RawLength);
307       Length += RawLength;
308       BufPtr += RawLength;
309 
310       // The rest of the token is lexed normally.
311     }
312   }
313 
314   while (BufPtr < BufEnd) {
315     unsigned Size;
316     Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
317     BufPtr += Size;
318   }
319 
320   assert(Length < Tok.getLength() &&
321          "NeedsCleaning flag set on token that didn't need cleaning!");
322   return Length;
323 }
324 
325 /// getSpelling() - Return the 'spelling' of this token.  The spelling of a
326 /// token are the characters used to represent the token in the source file
327 /// after trigraph expansion and escaped-newline folding.  In particular, this
328 /// wants to get the true, uncanonicalized, spelling of things like digraphs
329 /// UCNs, etc.
330 StringRef Lexer::getSpelling(SourceLocation loc,
331                              SmallVectorImpl<char> &buffer,
332                              const SourceManager &SM,
333                              const LangOptions &options,
334                              bool *invalid) {
335   // Break down the source location.
336   std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
337 
338   // Try to the load the file buffer.
339   bool invalidTemp = false;
340   StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
341   if (invalidTemp) {
342     if (invalid) *invalid = true;
343     return {};
344   }
345 
346   const char *tokenBegin = file.data() + locInfo.second;
347 
348   // Lex from the start of the given location.
349   Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
350               file.begin(), tokenBegin, file.end());
351   Token token;
352   lexer.LexFromRawLexer(token);
353 
354   unsigned length = token.getLength();
355 
356   // Common case:  no need for cleaning.
357   if (!token.needsCleaning())
358     return StringRef(tokenBegin, length);
359 
360   // Hard case, we need to relex the characters into the string.
361   buffer.resize(length);
362   buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
363   return StringRef(buffer.data(), buffer.size());
364 }
365 
366 /// getSpelling() - Return the 'spelling' of this token.  The spelling of a
367 /// token are the characters used to represent the token in the source file
368 /// after trigraph expansion and escaped-newline folding.  In particular, this
369 /// wants to get the true, uncanonicalized, spelling of things like digraphs
370 /// UCNs, etc.
371 std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
372                                const LangOptions &LangOpts, bool *Invalid) {
373   assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
374 
375   bool CharDataInvalid = false;
376   const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
377                                                     &CharDataInvalid);
378   if (Invalid)
379     *Invalid = CharDataInvalid;
380   if (CharDataInvalid)
381     return {};
382 
383   // If this token contains nothing interesting, return it directly.
384   if (!Tok.needsCleaning())
385     return std::string(TokStart, TokStart + Tok.getLength());
386 
387   std::string Result;
388   Result.resize(Tok.getLength());
389   Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
390   return Result;
391 }
392 
393 /// getSpelling - This method is used to get the spelling of a token into a
394 /// preallocated buffer, instead of as an std::string.  The caller is required
395 /// to allocate enough space for the token, which is guaranteed to be at least
396 /// Tok.getLength() bytes long.  The actual length of the token is returned.
397 ///
398 /// Note that this method may do two possible things: it may either fill in
399 /// the buffer specified with characters, or it may *change the input pointer*
400 /// to point to a constant buffer with the data already in it (avoiding a
401 /// copy).  The caller is not allowed to modify the returned buffer pointer
402 /// if an internal buffer is returned.
403 unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
404                             const SourceManager &SourceMgr,
405                             const LangOptions &LangOpts, bool *Invalid) {
406   assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
407 
408   const char *TokStart = nullptr;
409   // NOTE: this has to be checked *before* testing for an IdentifierInfo.
410   if (Tok.is(tok::raw_identifier))
411     TokStart = Tok.getRawIdentifier().data();
412   else if (!Tok.hasUCN()) {
413     if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
414       // Just return the string from the identifier table, which is very quick.
415       Buffer = II->getNameStart();
416       return II->getLength();
417     }
418   }
419 
420   // NOTE: this can be checked even after testing for an IdentifierInfo.
421   if (Tok.isLiteral())
422     TokStart = Tok.getLiteralData();
423 
424   if (!TokStart) {
425     // Compute the start of the token in the input lexer buffer.
426     bool CharDataInvalid = false;
427     TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
428     if (Invalid)
429       *Invalid = CharDataInvalid;
430     if (CharDataInvalid) {
431       Buffer = "";
432       return 0;
433     }
434   }
435 
436   // If this token contains nothing interesting, return it directly.
437   if (!Tok.needsCleaning()) {
438     Buffer = TokStart;
439     return Tok.getLength();
440   }
441 
442   // Otherwise, hard case, relex the characters into the string.
443   return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
444 }
445 
446 /// MeasureTokenLength - Relex the token at the specified location and return
447 /// its length in bytes in the input file.  If the token needs cleaning (e.g.
448 /// includes a trigraph or an escaped newline) then this count includes bytes
449 /// that are part of that.
450 unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
451                                    const SourceManager &SM,
452                                    const LangOptions &LangOpts) {
453   Token TheTok;
454   if (getRawToken(Loc, TheTok, SM, LangOpts))
455     return 0;
456   return TheTok.getLength();
457 }
458 
459 /// Relex the token at the specified location.
460 /// \returns true if there was a failure, false on success.
461 bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
462                         const SourceManager &SM,
463                         const LangOptions &LangOpts,
464                         bool IgnoreWhiteSpace) {
465   // TODO: this could be special cased for common tokens like identifiers, ')',
466   // etc to make this faster, if it mattered.  Just look at StrData[0] to handle
467   // all obviously single-char tokens.  This could use
468   // Lexer::isObviouslySimpleCharacter for example to handle identifiers or
469   // something.
470 
471   // If this comes from a macro expansion, we really do want the macro name, not
472   // the token this macro expanded to.
473   Loc = SM.getExpansionLoc(Loc);
474   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
475   bool Invalid = false;
476   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
477   if (Invalid)
478     return true;
479 
480   const char *StrData = Buffer.data()+LocInfo.second;
481 
482   if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
483     return true;
484 
485   // Create a lexer starting at the beginning of this token.
486   Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
487                  Buffer.begin(), StrData, Buffer.end());
488   TheLexer.SetCommentRetentionState(true);
489   TheLexer.LexFromRawLexer(Result);
490   return false;
491 }
492 
493 /// Returns the pointer that points to the beginning of line that contains
494 /// the given offset, or null if the offset if invalid.
495 static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) {
496   const char *BufStart = Buffer.data();
497   if (Offset >= Buffer.size())
498     return nullptr;
499 
500   const char *LexStart = BufStart + Offset;
501   for (; LexStart != BufStart; --LexStart) {
502     if (isVerticalWhitespace(LexStart[0]) &&
503         !Lexer::isNewLineEscaped(BufStart, LexStart)) {
504       // LexStart should point at first character of logical line.
505       ++LexStart;
506       break;
507     }
508   }
509   return LexStart;
510 }
511 
512 static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
513                                               const SourceManager &SM,
514                                               const LangOptions &LangOpts) {
515   assert(Loc.isFileID());
516   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
517   if (LocInfo.first.isInvalid())
518     return Loc;
519 
520   bool Invalid = false;
521   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
522   if (Invalid)
523     return Loc;
524 
525   // Back up from the current location until we hit the beginning of a line
526   // (or the buffer). We'll relex from that point.
527   const char *StrData = Buffer.data() + LocInfo.second;
528   const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second);
529   if (!LexStart || LexStart == StrData)
530     return Loc;
531 
532   // Create a lexer starting at the beginning of this token.
533   SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
534   Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart,
535                  Buffer.end());
536   TheLexer.SetCommentRetentionState(true);
537 
538   // Lex tokens until we find the token that contains the source location.
539   Token TheTok;
540   do {
541     TheLexer.LexFromRawLexer(TheTok);
542 
543     if (TheLexer.getBufferLocation() > StrData) {
544       // Lexing this token has taken the lexer past the source location we're
545       // looking for. If the current token encompasses our source location,
546       // return the beginning of that token.
547       if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
548         return TheTok.getLocation();
549 
550       // We ended up skipping over the source location entirely, which means
551       // that it points into whitespace. We're done here.
552       break;
553     }
554   } while (TheTok.getKind() != tok::eof);
555 
556   // We've passed our source location; just return the original source location.
557   return Loc;
558 }
559 
560 SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
561                                           const SourceManager &SM,
562                                           const LangOptions &LangOpts) {
563   if (Loc.isFileID())
564     return getBeginningOfFileToken(Loc, SM, LangOpts);
565 
566   if (!SM.isMacroArgExpansion(Loc))
567     return Loc;
568 
569   SourceLocation FileLoc = SM.getSpellingLoc(Loc);
570   SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
571   std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
572   std::pair<FileID, unsigned> BeginFileLocInfo =
573       SM.getDecomposedLoc(BeginFileLoc);
574   assert(FileLocInfo.first == BeginFileLocInfo.first &&
575          FileLocInfo.second >= BeginFileLocInfo.second);
576   return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
577 }
578 
579 namespace {
580 
581 enum PreambleDirectiveKind {
582   PDK_Skipped,
583   PDK_Unknown
584 };
585 
586 } // namespace
587 
588 PreambleBounds Lexer::ComputePreamble(StringRef Buffer,
589                                       const LangOptions &LangOpts,
590                                       unsigned MaxLines) {
591   // Create a lexer starting at the beginning of the file. Note that we use a
592   // "fake" file source location at offset 1 so that the lexer will track our
593   // position within the file.
594   const SourceLocation::UIntTy StartOffset = 1;
595   SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
596   Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
597                  Buffer.end());
598   TheLexer.SetCommentRetentionState(true);
599 
600   bool InPreprocessorDirective = false;
601   Token TheTok;
602   SourceLocation ActiveCommentLoc;
603 
604   unsigned MaxLineOffset = 0;
605   if (MaxLines) {
606     const char *CurPtr = Buffer.begin();
607     unsigned CurLine = 0;
608     while (CurPtr != Buffer.end()) {
609       char ch = *CurPtr++;
610       if (ch == '\n') {
611         ++CurLine;
612         if (CurLine == MaxLines)
613           break;
614       }
615     }
616     if (CurPtr != Buffer.end())
617       MaxLineOffset = CurPtr - Buffer.begin();
618   }
619 
620   do {
621     TheLexer.LexFromRawLexer(TheTok);
622 
623     if (InPreprocessorDirective) {
624       // If we've hit the end of the file, we're done.
625       if (TheTok.getKind() == tok::eof) {
626         break;
627       }
628 
629       // If we haven't hit the end of the preprocessor directive, skip this
630       // token.
631       if (!TheTok.isAtStartOfLine())
632         continue;
633 
634       // We've passed the end of the preprocessor directive, and will look
635       // at this token again below.
636       InPreprocessorDirective = false;
637     }
638 
639     // Keep track of the # of lines in the preamble.
640     if (TheTok.isAtStartOfLine()) {
641       unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
642 
643       // If we were asked to limit the number of lines in the preamble,
644       // and we're about to exceed that limit, we're done.
645       if (MaxLineOffset && TokOffset >= MaxLineOffset)
646         break;
647     }
648 
649     // Comments are okay; skip over them.
650     if (TheTok.getKind() == tok::comment) {
651       if (ActiveCommentLoc.isInvalid())
652         ActiveCommentLoc = TheTok.getLocation();
653       continue;
654     }
655 
656     if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
657       // This is the start of a preprocessor directive.
658       Token HashTok = TheTok;
659       InPreprocessorDirective = true;
660       ActiveCommentLoc = SourceLocation();
661 
662       // Figure out which directive this is. Since we're lexing raw tokens,
663       // we don't have an identifier table available. Instead, just look at
664       // the raw identifier to recognize and categorize preprocessor directives.
665       TheLexer.LexFromRawLexer(TheTok);
666       if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
667         StringRef Keyword = TheTok.getRawIdentifier();
668         PreambleDirectiveKind PDK
669           = llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
670               .Case("include", PDK_Skipped)
671               .Case("__include_macros", PDK_Skipped)
672               .Case("define", PDK_Skipped)
673               .Case("undef", PDK_Skipped)
674               .Case("line", PDK_Skipped)
675               .Case("error", PDK_Skipped)
676               .Case("pragma", PDK_Skipped)
677               .Case("import", PDK_Skipped)
678               .Case("include_next", PDK_Skipped)
679               .Case("warning", PDK_Skipped)
680               .Case("ident", PDK_Skipped)
681               .Case("sccs", PDK_Skipped)
682               .Case("assert", PDK_Skipped)
683               .Case("unassert", PDK_Skipped)
684               .Case("if", PDK_Skipped)
685               .Case("ifdef", PDK_Skipped)
686               .Case("ifndef", PDK_Skipped)
687               .Case("elif", PDK_Skipped)
688               .Case("elifdef", PDK_Skipped)
689               .Case("elifndef", PDK_Skipped)
690               .Case("else", PDK_Skipped)
691               .Case("endif", PDK_Skipped)
692               .Default(PDK_Unknown);
693 
694         switch (PDK) {
695         case PDK_Skipped:
696           continue;
697 
698         case PDK_Unknown:
699           // We don't know what this directive is; stop at the '#'.
700           break;
701         }
702       }
703 
704       // We only end up here if we didn't recognize the preprocessor
705       // directive or it was one that can't occur in the preamble at this
706       // point. Roll back the current token to the location of the '#'.
707       TheTok = HashTok;
708     } else if (TheTok.isAtStartOfLine() &&
709                TheTok.getKind() == tok::raw_identifier &&
710                TheTok.getRawIdentifier() == "module" &&
711                LangOpts.CPlusPlusModules) {
712       // The initial global module fragment introducer "module;" is part of
713       // the preamble, which runs up to the module declaration "module foo;".
714       Token ModuleTok = TheTok;
715       do {
716         TheLexer.LexFromRawLexer(TheTok);
717       } while (TheTok.getKind() == tok::comment);
718       if (TheTok.getKind() != tok::semi) {
719         // Not global module fragment, roll back.
720         TheTok = ModuleTok;
721         break;
722       }
723       continue;
724     }
725 
726     // We hit a token that we don't recognize as being in the
727     // "preprocessing only" part of the file, so we're no longer in
728     // the preamble.
729     break;
730   } while (true);
731 
732   SourceLocation End;
733   if (ActiveCommentLoc.isValid())
734     End = ActiveCommentLoc; // don't truncate a decl comment.
735   else
736     End = TheTok.getLocation();
737 
738   return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(),
739                         TheTok.isAtStartOfLine());
740 }
741 
742 unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo,
743                                      const SourceManager &SM,
744                                      const LangOptions &LangOpts) {
745   // Figure out how many physical characters away the specified expansion
746   // character is.  This needs to take into consideration newlines and
747   // trigraphs.
748   bool Invalid = false;
749   const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
750 
751   // If they request the first char of the token, we're trivially done.
752   if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
753     return 0;
754 
755   unsigned PhysOffset = 0;
756 
757   // The usual case is that tokens don't contain anything interesting.  Skip
758   // over the uninteresting characters.  If a token only consists of simple
759   // chars, this method is extremely fast.
760   while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
761     if (CharNo == 0)
762       return PhysOffset;
763     ++TokPtr;
764     --CharNo;
765     ++PhysOffset;
766   }
767 
768   // If we have a character that may be a trigraph or escaped newline, use a
769   // lexer to parse it correctly.
770   for (; CharNo; --CharNo) {
771     unsigned Size;
772     Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
773     TokPtr += Size;
774     PhysOffset += Size;
775   }
776 
777   // Final detail: if we end up on an escaped newline, we want to return the
778   // location of the actual byte of the token.  For example foo\<newline>bar
779   // advanced by 3 should return the location of b, not of \\.  One compounding
780   // detail of this is that the escape may be made by a trigraph.
781   if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
782     PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
783 
784   return PhysOffset;
785 }
786 
787 /// Computes the source location just past the end of the
788 /// token at this source location.
789 ///
790 /// This routine can be used to produce a source location that
791 /// points just past the end of the token referenced by \p Loc, and
792 /// is generally used when a diagnostic needs to point just after a
793 /// token where it expected something different that it received. If
794 /// the returned source location would not be meaningful (e.g., if
795 /// it points into a macro), this routine returns an invalid
796 /// source location.
797 ///
798 /// \param Offset an offset from the end of the token, where the source
799 /// location should refer to. The default offset (0) produces a source
800 /// location pointing just past the end of the token; an offset of 1 produces
801 /// a source location pointing to the last character in the token, etc.
802 SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
803                                           const SourceManager &SM,
804                                           const LangOptions &LangOpts) {
805   if (Loc.isInvalid())
806     return {};
807 
808   if (Loc.isMacroID()) {
809     if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
810       return {}; // Points inside the macro expansion.
811   }
812 
813   unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
814   if (Len > Offset)
815     Len = Len - Offset;
816   else
817     return Loc;
818 
819   return Loc.getLocWithOffset(Len);
820 }
821 
822 /// Returns true if the given MacroID location points at the first
823 /// token of the macro expansion.
824 bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
825                                       const SourceManager &SM,
826                                       const LangOptions &LangOpts,
827                                       SourceLocation *MacroBegin) {
828   assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
829 
830   SourceLocation expansionLoc;
831   if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
832     return false;
833 
834   if (expansionLoc.isFileID()) {
835     // No other macro expansions, this is the first.
836     if (MacroBegin)
837       *MacroBegin = expansionLoc;
838     return true;
839   }
840 
841   return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
842 }
843 
844 /// Returns true if the given MacroID location points at the last
845 /// token of the macro expansion.
846 bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
847                                     const SourceManager &SM,
848                                     const LangOptions &LangOpts,
849                                     SourceLocation *MacroEnd) {
850   assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
851 
852   SourceLocation spellLoc = SM.getSpellingLoc(loc);
853   unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
854   if (tokLen == 0)
855     return false;
856 
857   SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
858   SourceLocation expansionLoc;
859   if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
860     return false;
861 
862   if (expansionLoc.isFileID()) {
863     // No other macro expansions.
864     if (MacroEnd)
865       *MacroEnd = expansionLoc;
866     return true;
867   }
868 
869   return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
870 }
871 
872 static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
873                                              const SourceManager &SM,
874                                              const LangOptions &LangOpts) {
875   SourceLocation Begin = Range.getBegin();
876   SourceLocation End = Range.getEnd();
877   assert(Begin.isFileID() && End.isFileID());
878   if (Range.isTokenRange()) {
879     End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
880     if (End.isInvalid())
881       return {};
882   }
883 
884   // Break down the source locations.
885   FileID FID;
886   unsigned BeginOffs;
887   std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
888   if (FID.isInvalid())
889     return {};
890 
891   unsigned EndOffs;
892   if (!SM.isInFileID(End, FID, &EndOffs) ||
893       BeginOffs > EndOffs)
894     return {};
895 
896   return CharSourceRange::getCharRange(Begin, End);
897 }
898 
899 // Assumes that `Loc` is in an expansion.
900 static bool isInExpansionTokenRange(const SourceLocation Loc,
901                                     const SourceManager &SM) {
902   return SM.getSLocEntry(SM.getFileID(Loc))
903       .getExpansion()
904       .isExpansionTokenRange();
905 }
906 
907 CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
908                                          const SourceManager &SM,
909                                          const LangOptions &LangOpts) {
910   SourceLocation Begin = Range.getBegin();
911   SourceLocation End = Range.getEnd();
912   if (Begin.isInvalid() || End.isInvalid())
913     return {};
914 
915   if (Begin.isFileID() && End.isFileID())
916     return makeRangeFromFileLocs(Range, SM, LangOpts);
917 
918   if (Begin.isMacroID() && End.isFileID()) {
919     if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
920       return {};
921     Range.setBegin(Begin);
922     return makeRangeFromFileLocs(Range, SM, LangOpts);
923   }
924 
925   if (Begin.isFileID() && End.isMacroID()) {
926     if (Range.isTokenRange()) {
927       if (!isAtEndOfMacroExpansion(End, SM, LangOpts, &End))
928         return {};
929       // Use the *original* end, not the expanded one in `End`.
930       Range.setTokenRange(isInExpansionTokenRange(Range.getEnd(), SM));
931     } else if (!isAtStartOfMacroExpansion(End, SM, LangOpts, &End))
932       return {};
933     Range.setEnd(End);
934     return makeRangeFromFileLocs(Range, SM, LangOpts);
935   }
936 
937   assert(Begin.isMacroID() && End.isMacroID());
938   SourceLocation MacroBegin, MacroEnd;
939   if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
940       ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
941                                                         &MacroEnd)) ||
942        (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
943                                                          &MacroEnd)))) {
944     Range.setBegin(MacroBegin);
945     Range.setEnd(MacroEnd);
946     // Use the *original* `End`, not the expanded one in `MacroEnd`.
947     if (Range.isTokenRange())
948       Range.setTokenRange(isInExpansionTokenRange(End, SM));
949     return makeRangeFromFileLocs(Range, SM, LangOpts);
950   }
951 
952   bool Invalid = false;
953   const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
954                                                         &Invalid);
955   if (Invalid)
956     return {};
957 
958   if (BeginEntry.getExpansion().isMacroArgExpansion()) {
959     const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
960                                                         &Invalid);
961     if (Invalid)
962       return {};
963 
964     if (EndEntry.getExpansion().isMacroArgExpansion() &&
965         BeginEntry.getExpansion().getExpansionLocStart() ==
966             EndEntry.getExpansion().getExpansionLocStart()) {
967       Range.setBegin(SM.getImmediateSpellingLoc(Begin));
968       Range.setEnd(SM.getImmediateSpellingLoc(End));
969       return makeFileCharRange(Range, SM, LangOpts);
970     }
971   }
972 
973   return {};
974 }
975 
976 StringRef Lexer::getSourceText(CharSourceRange Range,
977                                const SourceManager &SM,
978                                const LangOptions &LangOpts,
979                                bool *Invalid) {
980   Range = makeFileCharRange(Range, SM, LangOpts);
981   if (Range.isInvalid()) {
982     if (Invalid) *Invalid = true;
983     return {};
984   }
985 
986   // Break down the source location.
987   std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
988   if (beginInfo.first.isInvalid()) {
989     if (Invalid) *Invalid = true;
990     return {};
991   }
992 
993   unsigned EndOffs;
994   if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
995       beginInfo.second > EndOffs) {
996     if (Invalid) *Invalid = true;
997     return {};
998   }
999 
1000   // Try to the load the file buffer.
1001   bool invalidTemp = false;
1002   StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
1003   if (invalidTemp) {
1004     if (Invalid) *Invalid = true;
1005     return {};
1006   }
1007 
1008   if (Invalid) *Invalid = false;
1009   return file.substr(beginInfo.second, EndOffs - beginInfo.second);
1010 }
1011 
1012 StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
1013                                        const SourceManager &SM,
1014                                        const LangOptions &LangOpts) {
1015   assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1016 
1017   // Find the location of the immediate macro expansion.
1018   while (true) {
1019     FileID FID = SM.getFileID(Loc);
1020     const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
1021     const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
1022     Loc = Expansion.getExpansionLocStart();
1023     if (!Expansion.isMacroArgExpansion())
1024       break;
1025 
1026     // For macro arguments we need to check that the argument did not come
1027     // from an inner macro, e.g: "MAC1( MAC2(foo) )"
1028 
1029     // Loc points to the argument id of the macro definition, move to the
1030     // macro expansion.
1031     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1032     SourceLocation SpellLoc = Expansion.getSpellingLoc();
1033     if (SpellLoc.isFileID())
1034       break; // No inner macro.
1035 
1036     // If spelling location resides in the same FileID as macro expansion
1037     // location, it means there is no inner macro.
1038     FileID MacroFID = SM.getFileID(Loc);
1039     if (SM.isInFileID(SpellLoc, MacroFID))
1040       break;
1041 
1042     // Argument came from inner macro.
1043     Loc = SpellLoc;
1044   }
1045 
1046   // Find the spelling location of the start of the non-argument expansion
1047   // range. This is where the macro name was spelled in order to begin
1048   // expanding this macro.
1049   Loc = SM.getSpellingLoc(Loc);
1050 
1051   // Dig out the buffer where the macro name was spelled and the extents of the
1052   // name so that we can render it into the expansion note.
1053   std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1054   unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1055   StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1056   return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1057 }
1058 
1059 StringRef Lexer::getImmediateMacroNameForDiagnostics(
1060     SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) {
1061   assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1062   // Walk past macro argument expansions.
1063   while (SM.isMacroArgExpansion(Loc))
1064     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1065 
1066   // If the macro's spelling isn't FileID or from scratch space, then it's
1067   // actually a token paste or stringization (or similar) and not a macro at
1068   // all.
1069   SourceLocation SpellLoc = SM.getSpellingLoc(Loc);
1070   if (!SpellLoc.isFileID() || SM.isWrittenInScratchSpace(SpellLoc))
1071     return {};
1072 
1073   // Find the spelling location of the start of the non-argument expansion
1074   // range. This is where the macro name was spelled in order to begin
1075   // expanding this macro.
1076   Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin());
1077 
1078   // Dig out the buffer where the macro name was spelled and the extents of the
1079   // name so that we can render it into the expansion note.
1080   std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1081   unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1082   StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1083   return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1084 }
1085 
1086 bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) {
1087   return isAsciiIdentifierContinue(c, LangOpts.DollarIdents);
1088 }
1089 
1090 bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) {
1091   assert(isVerticalWhitespace(Str[0]));
1092   if (Str - 1 < BufferStart)
1093     return false;
1094 
1095   if ((Str[0] == '\n' && Str[-1] == '\r') ||
1096       (Str[0] == '\r' && Str[-1] == '\n')) {
1097     if (Str - 2 < BufferStart)
1098       return false;
1099     --Str;
1100   }
1101   --Str;
1102 
1103   // Rewind to first non-space character:
1104   while (Str > BufferStart && isHorizontalWhitespace(*Str))
1105     --Str;
1106 
1107   return *Str == '\\';
1108 }
1109 
1110 StringRef Lexer::getIndentationForLine(SourceLocation Loc,
1111                                        const SourceManager &SM) {
1112   if (Loc.isInvalid() || Loc.isMacroID())
1113     return {};
1114   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1115   if (LocInfo.first.isInvalid())
1116     return {};
1117   bool Invalid = false;
1118   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1119   if (Invalid)
1120     return {};
1121   const char *Line = findBeginningOfLine(Buffer, LocInfo.second);
1122   if (!Line)
1123     return {};
1124   StringRef Rest = Buffer.substr(Line - Buffer.data());
1125   size_t NumWhitespaceChars = Rest.find_first_not_of(" \t");
1126   return NumWhitespaceChars == StringRef::npos
1127              ? ""
1128              : Rest.take_front(NumWhitespaceChars);
1129 }
1130 
1131 //===----------------------------------------------------------------------===//
1132 // Diagnostics forwarding code.
1133 //===----------------------------------------------------------------------===//
1134 
1135 /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
1136 /// lexer buffer was all expanded at a single point, perform the mapping.
1137 /// This is currently only used for _Pragma implementation, so it is the slow
1138 /// path of the hot getSourceLocation method.  Do not allow it to be inlined.
1139 static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
1140     Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
1141 static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
1142                                         SourceLocation FileLoc,
1143                                         unsigned CharNo, unsigned TokLen) {
1144   assert(FileLoc.isMacroID() && "Must be a macro expansion");
1145 
1146   // Otherwise, we're lexing "mapped tokens".  This is used for things like
1147   // _Pragma handling.  Combine the expansion location of FileLoc with the
1148   // spelling location.
1149   SourceManager &SM = PP.getSourceManager();
1150 
1151   // Create a new SLoc which is expanded from Expansion(FileLoc) but whose
1152   // characters come from spelling(FileLoc)+Offset.
1153   SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
1154   SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
1155 
1156   // Figure out the expansion loc range, which is the range covered by the
1157   // original _Pragma(...) sequence.
1158   CharSourceRange II = SM.getImmediateExpansionRange(FileLoc);
1159 
1160   return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen);
1161 }
1162 
1163 /// getSourceLocation - Return a source location identifier for the specified
1164 /// offset in the current file.
1165 SourceLocation Lexer::getSourceLocation(const char *Loc,
1166                                         unsigned TokLen) const {
1167   assert(Loc >= BufferStart && Loc <= BufferEnd &&
1168          "Location out of range for this buffer!");
1169 
1170   // In the normal case, we're just lexing from a simple file buffer, return
1171   // the file id from FileLoc with the offset specified.
1172   unsigned CharNo = Loc-BufferStart;
1173   if (FileLoc.isFileID())
1174     return FileLoc.getLocWithOffset(CharNo);
1175 
1176   // Otherwise, this is the _Pragma lexer case, which pretends that all of the
1177   // tokens are lexed from where the _Pragma was defined.
1178   assert(PP && "This doesn't work on raw lexers");
1179   return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
1180 }
1181 
1182 /// Diag - Forwarding function for diagnostics.  This translate a source
1183 /// position in the current buffer into a SourceLocation object for rendering.
1184 DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
1185   return PP->Diag(getSourceLocation(Loc), DiagID);
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 // Trigraph and Escaped Newline Handling Code.
1190 //===----------------------------------------------------------------------===//
1191 
1192 /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
1193 /// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
1194 static char GetTrigraphCharForLetter(char Letter) {
1195   switch (Letter) {
1196   default:   return 0;
1197   case '=':  return '#';
1198   case ')':  return ']';
1199   case '(':  return '[';
1200   case '!':  return '|';
1201   case '\'': return '^';
1202   case '>':  return '}';
1203   case '/':  return '\\';
1204   case '<':  return '{';
1205   case '-':  return '~';
1206   }
1207 }
1208 
1209 /// DecodeTrigraphChar - If the specified character is a legal trigraph when
1210 /// prefixed with ??, emit a trigraph warning.  If trigraphs are enabled,
1211 /// return the result character.  Finally, emit a warning about trigraph use
1212 /// whether trigraphs are enabled or not.
1213 static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) {
1214   char Res = GetTrigraphCharForLetter(*CP);
1215   if (!Res)
1216     return Res;
1217 
1218   if (!Trigraphs) {
1219     if (L && !L->isLexingRawMode())
1220       L->Diag(CP-2, diag::trigraph_ignored);
1221     return 0;
1222   }
1223 
1224   if (L && !L->isLexingRawMode())
1225     L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
1226   return Res;
1227 }
1228 
1229 /// getEscapedNewLineSize - Return the size of the specified escaped newline,
1230 /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
1231 /// trigraph equivalent on entry to this function.
1232 unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
1233   unsigned Size = 0;
1234   while (isWhitespace(Ptr[Size])) {
1235     ++Size;
1236 
1237     if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
1238       continue;
1239 
1240     // If this is a \r\n or \n\r, skip the other half.
1241     if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
1242         Ptr[Size-1] != Ptr[Size])
1243       ++Size;
1244 
1245     return Size;
1246   }
1247 
1248   // Not an escaped newline, must be a \t or something else.
1249   return 0;
1250 }
1251 
1252 /// SkipEscapedNewLines - If P points to an escaped newline (or a series of
1253 /// them), skip over them and return the first non-escaped-newline found,
1254 /// otherwise return P.
1255 const char *Lexer::SkipEscapedNewLines(const char *P) {
1256   while (true) {
1257     const char *AfterEscape;
1258     if (*P == '\\') {
1259       AfterEscape = P+1;
1260     } else if (*P == '?') {
1261       // If not a trigraph for escape, bail out.
1262       if (P[1] != '?' || P[2] != '/')
1263         return P;
1264       // FIXME: Take LangOpts into account; the language might not
1265       // support trigraphs.
1266       AfterEscape = P+3;
1267     } else {
1268       return P;
1269     }
1270 
1271     unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
1272     if (NewLineSize == 0) return P;
1273     P = AfterEscape+NewLineSize;
1274   }
1275 }
1276 
1277 std::optional<Token> Lexer::findNextToken(SourceLocation Loc,
1278                                           const SourceManager &SM,
1279                                           const LangOptions &LangOpts) {
1280   if (Loc.isMacroID()) {
1281     if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
1282       return std::nullopt;
1283   }
1284   Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
1285 
1286   // Break down the source location.
1287   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1288 
1289   // Try to load the file buffer.
1290   bool InvalidTemp = false;
1291   StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
1292   if (InvalidTemp)
1293     return std::nullopt;
1294 
1295   const char *TokenBegin = File.data() + LocInfo.second;
1296 
1297   // Lex from the start of the given location.
1298   Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
1299                                       TokenBegin, File.end());
1300   // Find the token.
1301   Token Tok;
1302   lexer.LexFromRawLexer(Tok);
1303   return Tok;
1304 }
1305 
1306 /// Checks that the given token is the first token that occurs after the
1307 /// given location (this excludes comments and whitespace). Returns the location
1308 /// immediately after the specified token. If the token is not found or the
1309 /// location is inside a macro, the returned source location will be invalid.
1310 SourceLocation Lexer::findLocationAfterToken(
1311     SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM,
1312     const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) {
1313   std::optional<Token> Tok = findNextToken(Loc, SM, LangOpts);
1314   if (!Tok || Tok->isNot(TKind))
1315     return {};
1316   SourceLocation TokenLoc = Tok->getLocation();
1317 
1318   // Calculate how much whitespace needs to be skipped if any.
1319   unsigned NumWhitespaceChars = 0;
1320   if (SkipTrailingWhitespaceAndNewLine) {
1321     const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength();
1322     unsigned char C = *TokenEnd;
1323     while (isHorizontalWhitespace(C)) {
1324       C = *(++TokenEnd);
1325       NumWhitespaceChars++;
1326     }
1327 
1328     // Skip \r, \n, \r\n, or \n\r
1329     if (C == '\n' || C == '\r') {
1330       char PrevC = C;
1331       C = *(++TokenEnd);
1332       NumWhitespaceChars++;
1333       if ((C == '\n' || C == '\r') && C != PrevC)
1334         NumWhitespaceChars++;
1335     }
1336   }
1337 
1338   return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars);
1339 }
1340 
1341 /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
1342 /// get its size, and return it.  This is tricky in several cases:
1343 ///   1. If currently at the start of a trigraph, we warn about the trigraph,
1344 ///      then either return the trigraph (skipping 3 chars) or the '?',
1345 ///      depending on whether trigraphs are enabled or not.
1346 ///   2. If this is an escaped newline (potentially with whitespace between
1347 ///      the backslash and newline), implicitly skip the newline and return
1348 ///      the char after it.
1349 ///
1350 /// This handles the slow/uncommon case of the getCharAndSize method.  Here we
1351 /// know that we can accumulate into Size, and that we have already incremented
1352 /// Ptr by Size bytes.
1353 ///
1354 /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
1355 /// be updated to match.
1356 char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
1357                                Token *Tok) {
1358   // If we have a slash, look for an escaped newline.
1359   if (Ptr[0] == '\\') {
1360     ++Size;
1361     ++Ptr;
1362 Slash:
1363     // Common case, backslash-char where the char is not whitespace.
1364     if (!isWhitespace(Ptr[0])) return '\\';
1365 
1366     // See if we have optional whitespace characters between the slash and
1367     // newline.
1368     if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1369       // Remember that this token needs to be cleaned.
1370       if (Tok) Tok->setFlag(Token::NeedsCleaning);
1371 
1372       // Warn if there was whitespace between the backslash and newline.
1373       if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
1374         Diag(Ptr, diag::backslash_newline_space);
1375 
1376       // Found backslash<whitespace><newline>.  Parse the char after it.
1377       Size += EscapedNewLineSize;
1378       Ptr  += EscapedNewLineSize;
1379 
1380       // Use slow version to accumulate a correct size field.
1381       return getCharAndSizeSlow(Ptr, Size, Tok);
1382     }
1383 
1384     // Otherwise, this is not an escaped newline, just return the slash.
1385     return '\\';
1386   }
1387 
1388   // If this is a trigraph, process it.
1389   if (Ptr[0] == '?' && Ptr[1] == '?') {
1390     // If this is actually a legal trigraph (not something like "??x"), emit
1391     // a trigraph warning.  If so, and if trigraphs are enabled, return it.
1392     if (char C = DecodeTrigraphChar(Ptr + 2, Tok ? this : nullptr,
1393                                     LangOpts.Trigraphs)) {
1394       // Remember that this token needs to be cleaned.
1395       if (Tok) Tok->setFlag(Token::NeedsCleaning);
1396 
1397       Ptr += 3;
1398       Size += 3;
1399       if (C == '\\') goto Slash;
1400       return C;
1401     }
1402   }
1403 
1404   // If this is neither, return a single character.
1405   ++Size;
1406   return *Ptr;
1407 }
1408 
1409 /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
1410 /// getCharAndSizeNoWarn method.  Here we know that we can accumulate into Size,
1411 /// and that we have already incremented Ptr by Size bytes.
1412 ///
1413 /// NOTE: When this method is updated, getCharAndSizeSlow (above) should
1414 /// be updated to match.
1415 char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
1416                                      const LangOptions &LangOpts) {
1417   // If we have a slash, look for an escaped newline.
1418   if (Ptr[0] == '\\') {
1419     ++Size;
1420     ++Ptr;
1421 Slash:
1422     // Common case, backslash-char where the char is not whitespace.
1423     if (!isWhitespace(Ptr[0])) return '\\';
1424 
1425     // See if we have optional whitespace characters followed by a newline.
1426     if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1427       // Found backslash<whitespace><newline>.  Parse the char after it.
1428       Size += EscapedNewLineSize;
1429       Ptr  += EscapedNewLineSize;
1430 
1431       // Use slow version to accumulate a correct size field.
1432       return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
1433     }
1434 
1435     // Otherwise, this is not an escaped newline, just return the slash.
1436     return '\\';
1437   }
1438 
1439   // If this is a trigraph, process it.
1440   if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
1441     // If this is actually a legal trigraph (not something like "??x"), return
1442     // it.
1443     if (char C = GetTrigraphCharForLetter(Ptr[2])) {
1444       Ptr += 3;
1445       Size += 3;
1446       if (C == '\\') goto Slash;
1447       return C;
1448     }
1449   }
1450 
1451   // If this is neither, return a single character.
1452   ++Size;
1453   return *Ptr;
1454 }
1455 
1456 //===----------------------------------------------------------------------===//
1457 // Helper methods for lexing.
1458 //===----------------------------------------------------------------------===//
1459 
1460 /// Routine that indiscriminately sets the offset into the source file.
1461 void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) {
1462   BufferPtr = BufferStart + Offset;
1463   if (BufferPtr > BufferEnd)
1464     BufferPtr = BufferEnd;
1465   // FIXME: What exactly does the StartOfLine bit mean?  There are two
1466   // possible meanings for the "start" of the line: the first token on the
1467   // unexpanded line, or the first token on the expanded line.
1468   IsAtStartOfLine = StartOfLine;
1469   IsAtPhysicalStartOfLine = StartOfLine;
1470 }
1471 
1472 static bool isUnicodeWhitespace(uint32_t Codepoint) {
1473   static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
1474       UnicodeWhitespaceCharRanges);
1475   return UnicodeWhitespaceChars.contains(Codepoint);
1476 }
1477 
1478 static llvm::SmallString<5> codepointAsHexString(uint32_t C) {
1479   llvm::SmallString<5> CharBuf;
1480   llvm::raw_svector_ostream CharOS(CharBuf);
1481   llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4);
1482   return CharBuf;
1483 }
1484 
1485 // To mitigate https://github.com/llvm/llvm-project/issues/54732,
1486 // we allow "Mathematical Notation Characters" in identifiers.
1487 // This is a proposed profile that extends the XID_Start/XID_continue
1488 // with mathematical symbols, superscipts and subscripts digits
1489 // found in some production software.
1490 // https://www.unicode.org/L2/L2022/22230-math-profile.pdf
1491 static bool isMathematicalExtensionID(uint32_t C, const LangOptions &LangOpts,
1492                                       bool IsStart, bool &IsExtension) {
1493   static const llvm::sys::UnicodeCharSet MathStartChars(
1494       MathematicalNotationProfileIDStartRanges);
1495   static const llvm::sys::UnicodeCharSet MathContinueChars(
1496       MathematicalNotationProfileIDContinueRanges);
1497   if (MathStartChars.contains(C) ||
1498       (!IsStart && MathContinueChars.contains(C))) {
1499     IsExtension = true;
1500     return true;
1501   }
1502   return false;
1503 }
1504 
1505 static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts,
1506                             bool &IsExtension) {
1507   if (LangOpts.AsmPreprocessor) {
1508     return false;
1509   } else if (LangOpts.DollarIdents && '$' == C) {
1510     return true;
1511   } else if (LangOpts.CPlusPlus || LangOpts.C23) {
1512     // A non-leading codepoint must have the XID_Continue property.
1513     // XIDContinueRanges doesn't contains characters also in XIDStartRanges,
1514     // so we need to check both tables.
1515     // '_' doesn't have the XID_Continue property but is allowed in C and C++.
1516     static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1517     static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges);
1518     if (C == '_' || XIDStartChars.contains(C) || XIDContinueChars.contains(C))
1519       return true;
1520     return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/false,
1521                                      IsExtension);
1522   } else if (LangOpts.C11) {
1523     static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
1524         C11AllowedIDCharRanges);
1525     return C11AllowedIDChars.contains(C);
1526   } else {
1527     static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1528         C99AllowedIDCharRanges);
1529     return C99AllowedIDChars.contains(C);
1530   }
1531 }
1532 
1533 static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts,
1534                                      bool &IsExtension) {
1535   assert(C > 0x7F && "isAllowedInitiallyIDChar called with an ASCII codepoint");
1536   IsExtension = false;
1537   if (LangOpts.AsmPreprocessor) {
1538     return false;
1539   }
1540   if (LangOpts.CPlusPlus || LangOpts.C23) {
1541     static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1542     if (XIDStartChars.contains(C))
1543       return true;
1544     return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/true,
1545                                      IsExtension);
1546   }
1547   if (!isAllowedIDChar(C, LangOpts, IsExtension))
1548     return false;
1549   if (LangOpts.C11) {
1550     static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
1551         C11DisallowedInitialIDCharRanges);
1552     return !C11DisallowedInitialIDChars.contains(C);
1553   }
1554   static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1555       C99DisallowedInitialIDCharRanges);
1556   return !C99DisallowedInitialIDChars.contains(C);
1557 }
1558 
1559 static void diagnoseExtensionInIdentifier(DiagnosticsEngine &Diags, uint32_t C,
1560                                           CharSourceRange Range) {
1561 
1562   static const llvm::sys::UnicodeCharSet MathStartChars(
1563       MathematicalNotationProfileIDStartRanges);
1564   static const llvm::sys::UnicodeCharSet MathContinueChars(
1565       MathematicalNotationProfileIDContinueRanges);
1566 
1567   (void)MathStartChars;
1568   (void)MathContinueChars;
1569   assert((MathStartChars.contains(C) || MathContinueChars.contains(C)) &&
1570          "Unexpected mathematical notation codepoint");
1571   Diags.Report(Range.getBegin(), diag::ext_mathematical_notation)
1572       << codepointAsHexString(C) << Range;
1573 }
1574 
1575 static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
1576                                             const char *End) {
1577   return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
1578                                        L.getSourceLocation(End));
1579 }
1580 
1581 static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
1582                                       CharSourceRange Range, bool IsFirst) {
1583   // Check C99 compatibility.
1584   if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
1585     enum {
1586       CannotAppearInIdentifier = 0,
1587       CannotStartIdentifier
1588     };
1589 
1590     static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1591         C99AllowedIDCharRanges);
1592     static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1593         C99DisallowedInitialIDCharRanges);
1594     if (!C99AllowedIDChars.contains(C)) {
1595       Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1596         << Range
1597         << CannotAppearInIdentifier;
1598     } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
1599       Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1600         << Range
1601         << CannotStartIdentifier;
1602     }
1603   }
1604 }
1605 
1606 /// After encountering UTF-8 character C and interpreting it as an identifier
1607 /// character, check whether it's a homoglyph for a common non-identifier
1608 /// source character that is unlikely to be an intentional identifier
1609 /// character and warn if so.
1610 static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C,
1611                                        CharSourceRange Range) {
1612   // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes).
1613   struct HomoglyphPair {
1614     uint32_t Character;
1615     char LooksLike;
1616     bool operator<(HomoglyphPair R) const { return Character < R.Character; }
1617   };
1618   static constexpr HomoglyphPair SortedHomoglyphs[] = {
1619     {U'\u00ad', 0},   // SOFT HYPHEN
1620     {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK
1621     {U'\u037e', ';'}, // GREEK QUESTION MARK
1622     {U'\u200b', 0},   // ZERO WIDTH SPACE
1623     {U'\u200c', 0},   // ZERO WIDTH NON-JOINER
1624     {U'\u200d', 0},   // ZERO WIDTH JOINER
1625     {U'\u2060', 0},   // WORD JOINER
1626     {U'\u2061', 0},   // FUNCTION APPLICATION
1627     {U'\u2062', 0},   // INVISIBLE TIMES
1628     {U'\u2063', 0},   // INVISIBLE SEPARATOR
1629     {U'\u2064', 0},   // INVISIBLE PLUS
1630     {U'\u2212', '-'}, // MINUS SIGN
1631     {U'\u2215', '/'}, // DIVISION SLASH
1632     {U'\u2216', '\\'}, // SET MINUS
1633     {U'\u2217', '*'}, // ASTERISK OPERATOR
1634     {U'\u2223', '|'}, // DIVIDES
1635     {U'\u2227', '^'}, // LOGICAL AND
1636     {U'\u2236', ':'}, // RATIO
1637     {U'\u223c', '~'}, // TILDE OPERATOR
1638     {U'\ua789', ':'}, // MODIFIER LETTER COLON
1639     {U'\ufeff', 0},   // ZERO WIDTH NO-BREAK SPACE
1640     {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK
1641     {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN
1642     {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN
1643     {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN
1644     {U'\uff06', '&'}, // FULLWIDTH AMPERSAND
1645     {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS
1646     {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS
1647     {U'\uff0a', '*'}, // FULLWIDTH ASTERISK
1648     {U'\uff0b', '+'}, // FULLWIDTH ASTERISK
1649     {U'\uff0c', ','}, // FULLWIDTH COMMA
1650     {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS
1651     {U'\uff0e', '.'}, // FULLWIDTH FULL STOP
1652     {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS
1653     {U'\uff1a', ':'}, // FULLWIDTH COLON
1654     {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON
1655     {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN
1656     {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN
1657     {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN
1658     {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK
1659     {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT
1660     {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET
1661     {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS
1662     {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET
1663     {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT
1664     {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET
1665     {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE
1666     {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET
1667     {U'\uff5e', '~'}, // FULLWIDTH TILDE
1668     {0, 0}
1669   };
1670   auto Homoglyph =
1671       std::lower_bound(std::begin(SortedHomoglyphs),
1672                        std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'});
1673   if (Homoglyph->Character == C) {
1674     if (Homoglyph->LooksLike) {
1675       const char LooksLikeStr[] = {Homoglyph->LooksLike, 0};
1676       Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph)
1677           << Range << codepointAsHexString(C) << LooksLikeStr;
1678     } else {
1679       Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width)
1680           << Range << codepointAsHexString(C);
1681     }
1682   }
1683 }
1684 
1685 static void diagnoseInvalidUnicodeCodepointInIdentifier(
1686     DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint,
1687     CharSourceRange Range, bool IsFirst) {
1688   if (isASCII(CodePoint))
1689     return;
1690 
1691   bool IsExtension;
1692   bool IsIDStart = isAllowedInitiallyIDChar(CodePoint, LangOpts, IsExtension);
1693   bool IsIDContinue =
1694       IsIDStart || isAllowedIDChar(CodePoint, LangOpts, IsExtension);
1695 
1696   if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue))
1697     return;
1698 
1699   bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue;
1700 
1701   if (!IsFirst || InvalidOnlyAtStart) {
1702     Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier)
1703         << Range << codepointAsHexString(CodePoint) << int(InvalidOnlyAtStart)
1704         << FixItHint::CreateRemoval(Range);
1705   } else {
1706     Diags.Report(Range.getBegin(), diag::err_character_not_allowed)
1707         << Range << codepointAsHexString(CodePoint)
1708         << FixItHint::CreateRemoval(Range);
1709   }
1710 }
1711 
1712 bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
1713                                     Token &Result) {
1714   const char *UCNPtr = CurPtr + Size;
1715   uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
1716   if (CodePoint == 0) {
1717     return false;
1718   }
1719   bool IsExtension = false;
1720   if (!isAllowedIDChar(CodePoint, LangOpts, IsExtension)) {
1721     if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1722       return false;
1723     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1724         !PP->isPreprocessedOutput())
1725       diagnoseInvalidUnicodeCodepointInIdentifier(
1726           PP->getDiagnostics(), LangOpts, CodePoint,
1727           makeCharRange(*this, CurPtr, UCNPtr),
1728           /*IsFirst=*/false);
1729 
1730     // We got a unicode codepoint that is neither a space nor a
1731     // a valid identifier part.
1732     // Carry on as if the codepoint was valid for recovery purposes.
1733   } else if (!isLexingRawMode()) {
1734     if (IsExtension)
1735       diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1736                                     makeCharRange(*this, CurPtr, UCNPtr));
1737 
1738     maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1739                               makeCharRange(*this, CurPtr, UCNPtr),
1740                               /*IsFirst=*/false);
1741   }
1742 
1743   Result.setFlag(Token::HasUCN);
1744   if ((UCNPtr - CurPtr ==  6 && CurPtr[1] == 'u') ||
1745       (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
1746     CurPtr = UCNPtr;
1747   else
1748     while (CurPtr != UCNPtr)
1749       (void)getAndAdvanceChar(CurPtr, Result);
1750   return true;
1751 }
1752 
1753 bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) {
1754   const char *UnicodePtr = CurPtr;
1755   llvm::UTF32 CodePoint;
1756   llvm::ConversionResult Result =
1757       llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr,
1758                                 (const llvm::UTF8 *)BufferEnd,
1759                                 &CodePoint,
1760                                 llvm::strictConversion);
1761   if (Result != llvm::conversionOK)
1762     return false;
1763 
1764   bool IsExtension = false;
1765   if (!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts,
1766                        IsExtension)) {
1767     if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1768       return false;
1769 
1770     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1771         !PP->isPreprocessedOutput())
1772       diagnoseInvalidUnicodeCodepointInIdentifier(
1773           PP->getDiagnostics(), LangOpts, CodePoint,
1774           makeCharRange(*this, CurPtr, UnicodePtr), /*IsFirst=*/false);
1775     // We got a unicode codepoint that is neither a space nor a
1776     // a valid identifier part. Carry on as if the codepoint was
1777     // valid for recovery purposes.
1778   } else if (!isLexingRawMode()) {
1779     if (IsExtension)
1780       diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1781                                     makeCharRange(*this, CurPtr, UnicodePtr));
1782     maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1783                               makeCharRange(*this, CurPtr, UnicodePtr),
1784                               /*IsFirst=*/false);
1785     maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint,
1786                                makeCharRange(*this, CurPtr, UnicodePtr));
1787   }
1788 
1789   CurPtr = UnicodePtr;
1790   return true;
1791 }
1792 
1793 bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C,
1794                                       const char *CurPtr) {
1795   bool IsExtension = false;
1796   if (isAllowedInitiallyIDChar(C, LangOpts, IsExtension)) {
1797     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1798         !PP->isPreprocessedOutput()) {
1799       if (IsExtension)
1800         diagnoseExtensionInIdentifier(PP->getDiagnostics(), C,
1801                                       makeCharRange(*this, BufferPtr, CurPtr));
1802       maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
1803                                 makeCharRange(*this, BufferPtr, CurPtr),
1804                                 /*IsFirst=*/true);
1805       maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C,
1806                                  makeCharRange(*this, BufferPtr, CurPtr));
1807     }
1808 
1809     MIOpt.ReadToken();
1810     return LexIdentifierContinue(Result, CurPtr);
1811   }
1812 
1813   if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1814       !PP->isPreprocessedOutput() && !isASCII(*BufferPtr) &&
1815       !isUnicodeWhitespace(C)) {
1816     // Non-ASCII characters tend to creep into source code unintentionally.
1817     // Instead of letting the parser complain about the unknown token,
1818     // just drop the character.
1819     // Note that we can /only/ do this when the non-ASCII character is actually
1820     // spelled as Unicode, not written as a UCN. The standard requires that
1821     // we not throw away any possible preprocessor tokens, but there's a
1822     // loophole in the mapping of Unicode characters to basic character set
1823     // characters that allows us to map these particular characters to, say,
1824     // whitespace.
1825     diagnoseInvalidUnicodeCodepointInIdentifier(
1826         PP->getDiagnostics(), LangOpts, C,
1827         makeCharRange(*this, BufferPtr, CurPtr), /*IsStart*/ true);
1828     BufferPtr = CurPtr;
1829     return false;
1830   }
1831 
1832   // Otherwise, we have an explicit UCN or a character that's unlikely to show
1833   // up by accident.
1834   MIOpt.ReadToken();
1835   FormTokenWithChars(Result, CurPtr, tok::unknown);
1836   return true;
1837 }
1838 
1839 bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) {
1840   // Match [_A-Za-z0-9]*, we have already matched an identifier start.
1841   while (true) {
1842     unsigned char C = *CurPtr;
1843     // Fast path.
1844     if (isAsciiIdentifierContinue(C)) {
1845       ++CurPtr;
1846       continue;
1847     }
1848 
1849     unsigned Size;
1850     // Slow path: handle trigraph, unicode codepoints, UCNs.
1851     C = getCharAndSize(CurPtr, Size);
1852     if (isAsciiIdentifierContinue(C)) {
1853       CurPtr = ConsumeChar(CurPtr, Size, Result);
1854       continue;
1855     }
1856     if (C == '$') {
1857       // If we hit a $ and they are not supported in identifiers, we are done.
1858       if (!LangOpts.DollarIdents)
1859         break;
1860       // Otherwise, emit a diagnostic and continue.
1861       if (!isLexingRawMode())
1862         Diag(CurPtr, diag::ext_dollar_in_identifier);
1863       CurPtr = ConsumeChar(CurPtr, Size, Result);
1864       continue;
1865     }
1866     if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1867       continue;
1868     if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1869       continue;
1870     // Neither an expected Unicode codepoint nor a UCN.
1871     break;
1872   }
1873 
1874   const char *IdStart = BufferPtr;
1875   FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
1876   Result.setRawIdentifierData(IdStart);
1877 
1878   // If we are in raw mode, return this identifier raw.  There is no need to
1879   // look up identifier information or attempt to macro expand it.
1880   if (LexingRawMode)
1881     return true;
1882 
1883   // Fill in Result.IdentifierInfo and update the token kind,
1884   // looking up the identifier in the identifier table.
1885   IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
1886   // Note that we have to call PP->LookUpIdentifierInfo() even for code
1887   // completion, it writes IdentifierInfo into Result, and callers rely on it.
1888 
1889   // If the completion point is at the end of an identifier, we want to treat
1890   // the identifier as incomplete even if it resolves to a macro or a keyword.
1891   // This allows e.g. 'class^' to complete to 'classifier'.
1892   if (isCodeCompletionPoint(CurPtr)) {
1893     // Return the code-completion token.
1894     Result.setKind(tok::code_completion);
1895     // Skip the code-completion char and all immediate identifier characters.
1896     // This ensures we get consistent behavior when completing at any point in
1897     // an identifier (i.e. at the start, in the middle, at the end). Note that
1898     // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code
1899     // simpler.
1900     assert(*CurPtr == 0 && "Completion character must be 0");
1901     ++CurPtr;
1902     // Note that code completion token is not added as a separate character
1903     // when the completion point is at the end of the buffer. Therefore, we need
1904     // to check if the buffer has ended.
1905     if (CurPtr < BufferEnd) {
1906       while (isAsciiIdentifierContinue(*CurPtr))
1907         ++CurPtr;
1908     }
1909     BufferPtr = CurPtr;
1910     return true;
1911   }
1912 
1913   // Finally, now that we know we have an identifier, pass this off to the
1914   // preprocessor, which may macro expand it or something.
1915   if (II->isHandleIdentifierCase())
1916     return PP->HandleIdentifier(Result);
1917 
1918   return true;
1919 }
1920 
1921 /// isHexaLiteral - Return true if Start points to a hex constant.
1922 /// in microsoft mode (where this is supposed to be several different tokens).
1923 bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
1924   unsigned Size;
1925   char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
1926   if (C1 != '0')
1927     return false;
1928   char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
1929   return (C2 == 'x' || C2 == 'X');
1930 }
1931 
1932 /// LexNumericConstant - Lex the remainder of a integer or floating point
1933 /// constant. From[-1] is the first character lexed.  Return the end of the
1934 /// constant.
1935 bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
1936   unsigned Size;
1937   char C = getCharAndSize(CurPtr, Size);
1938   char PrevCh = 0;
1939   while (isPreprocessingNumberBody(C)) {
1940     CurPtr = ConsumeChar(CurPtr, Size, Result);
1941     PrevCh = C;
1942     C = getCharAndSize(CurPtr, Size);
1943   }
1944 
1945   // If we fell out, check for a sign, due to 1e+12.  If we have one, continue.
1946   if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
1947     // If we are in Microsoft mode, don't continue if the constant is hex.
1948     // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
1949     if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
1950       return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1951   }
1952 
1953   // If we have a hex FP constant, continue.
1954   if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
1955     // Outside C99 and C++17, we accept hexadecimal floating point numbers as a
1956     // not-quite-conforming extension. Only do so if this looks like it's
1957     // actually meant to be a hexfloat, and not if it has a ud-suffix.
1958     bool IsHexFloat = true;
1959     if (!LangOpts.C99) {
1960       if (!isHexaLiteral(BufferPtr, LangOpts))
1961         IsHexFloat = false;
1962       else if (!LangOpts.CPlusPlus17 &&
1963                std::find(BufferPtr, CurPtr, '_') != CurPtr)
1964         IsHexFloat = false;
1965     }
1966     if (IsHexFloat)
1967       return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1968   }
1969 
1970   // If we have a digit separator, continue.
1971   if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C23)) {
1972     unsigned NextSize;
1973     char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, LangOpts);
1974     if (isAsciiIdentifierContinue(Next)) {
1975       if (!isLexingRawMode())
1976         Diag(CurPtr, LangOpts.CPlusPlus
1977                          ? diag::warn_cxx11_compat_digit_separator
1978                          : diag::warn_c23_compat_digit_separator);
1979       CurPtr = ConsumeChar(CurPtr, Size, Result);
1980       CurPtr = ConsumeChar(CurPtr, NextSize, Result);
1981       return LexNumericConstant(Result, CurPtr);
1982     }
1983   }
1984 
1985   // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
1986   if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1987     return LexNumericConstant(Result, CurPtr);
1988   if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1989     return LexNumericConstant(Result, CurPtr);
1990 
1991   // Update the location of token as well as BufferPtr.
1992   const char *TokStart = BufferPtr;
1993   FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
1994   Result.setLiteralData(TokStart);
1995   return true;
1996 }
1997 
1998 /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
1999 /// in C++11, or warn on a ud-suffix in C++98.
2000 const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
2001                                bool IsStringLiteral) {
2002   assert(LangOpts.CPlusPlus);
2003 
2004   // Maximally munch an identifier.
2005   unsigned Size;
2006   char C = getCharAndSize(CurPtr, Size);
2007   bool Consumed = false;
2008 
2009   if (!isAsciiIdentifierStart(C)) {
2010     if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
2011       Consumed = true;
2012     else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
2013       Consumed = true;
2014     else
2015       return CurPtr;
2016   }
2017 
2018   if (!LangOpts.CPlusPlus11) {
2019     if (!isLexingRawMode())
2020       Diag(CurPtr,
2021            C == '_' ? diag::warn_cxx11_compat_user_defined_literal
2022                     : diag::warn_cxx11_compat_reserved_user_defined_literal)
2023         << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2024     return CurPtr;
2025   }
2026 
2027   // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
2028   // that does not start with an underscore is ill-formed. As a conforming
2029   // extension, we treat all such suffixes as if they had whitespace before
2030   // them. We assume a suffix beginning with a UCN or UTF-8 character is more
2031   // likely to be a ud-suffix than a macro, however, and accept that.
2032   if (!Consumed) {
2033     bool IsUDSuffix = false;
2034     if (C == '_')
2035       IsUDSuffix = true;
2036     else if (IsStringLiteral && LangOpts.CPlusPlus14) {
2037       // In C++1y, we need to look ahead a few characters to see if this is a
2038       // valid suffix for a string literal or a numeric literal (this could be
2039       // the 'operator""if' defining a numeric literal operator).
2040       const unsigned MaxStandardSuffixLength = 3;
2041       char Buffer[MaxStandardSuffixLength] = { C };
2042       unsigned Consumed = Size;
2043       unsigned Chars = 1;
2044       while (true) {
2045         unsigned NextSize;
2046         char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, LangOpts);
2047         if (!isAsciiIdentifierContinue(Next)) {
2048           // End of suffix. Check whether this is on the allowed list.
2049           const StringRef CompleteSuffix(Buffer, Chars);
2050           IsUDSuffix =
2051               StringLiteralParser::isValidUDSuffix(LangOpts, CompleteSuffix);
2052           break;
2053         }
2054 
2055         if (Chars == MaxStandardSuffixLength)
2056           // Too long: can't be a standard suffix.
2057           break;
2058 
2059         Buffer[Chars++] = Next;
2060         Consumed += NextSize;
2061       }
2062     }
2063 
2064     if (!IsUDSuffix) {
2065       if (!isLexingRawMode())
2066         Diag(CurPtr, LangOpts.MSVCCompat
2067                          ? diag::ext_ms_reserved_user_defined_literal
2068                          : diag::ext_reserved_user_defined_literal)
2069             << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2070       return CurPtr;
2071     }
2072 
2073     CurPtr = ConsumeChar(CurPtr, Size, Result);
2074   }
2075 
2076   Result.setFlag(Token::HasUDSuffix);
2077   while (true) {
2078     C = getCharAndSize(CurPtr, Size);
2079     if (isAsciiIdentifierContinue(C)) {
2080       CurPtr = ConsumeChar(CurPtr, Size, Result);
2081     } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
2082     } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {
2083     } else
2084       break;
2085   }
2086 
2087   return CurPtr;
2088 }
2089 
2090 /// LexStringLiteral - Lex the remainder of a string literal, after having lexed
2091 /// either " or L" or u8" or u" or U".
2092 bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
2093                              tok::TokenKind Kind) {
2094   const char *AfterQuote = CurPtr;
2095   // Does this string contain the \0 character?
2096   const char *NulCharacter = nullptr;
2097 
2098   if (!isLexingRawMode() &&
2099       (Kind == tok::utf8_string_literal ||
2100        Kind == tok::utf16_string_literal ||
2101        Kind == tok::utf32_string_literal))
2102     Diag(BufferPtr, LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal
2103                                        : diag::warn_c99_compat_unicode_literal);
2104 
2105   char C = getAndAdvanceChar(CurPtr, Result);
2106   while (C != '"') {
2107     // Skip escaped characters.  Escaped newlines will already be processed by
2108     // getAndAdvanceChar.
2109     if (C == '\\')
2110       C = getAndAdvanceChar(CurPtr, Result);
2111 
2112     if (C == '\n' || C == '\r' ||             // Newline.
2113         (C == 0 && CurPtr-1 == BufferEnd)) {  // End of file.
2114       if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2115         Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1;
2116       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2117       return true;
2118     }
2119 
2120     if (C == 0) {
2121       if (isCodeCompletionPoint(CurPtr-1)) {
2122         if (ParsingFilename)
2123           codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false);
2124         else
2125           PP->CodeCompleteNaturalLanguage();
2126         FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2127         cutOffLexing();
2128         return true;
2129       }
2130 
2131       NulCharacter = CurPtr-1;
2132     }
2133     C = getAndAdvanceChar(CurPtr, Result);
2134   }
2135 
2136   // If we are in C++11, lex the optional ud-suffix.
2137   if (LangOpts.CPlusPlus)
2138     CurPtr = LexUDSuffix(Result, CurPtr, true);
2139 
2140   // If a nul character existed in the string, warn about it.
2141   if (NulCharacter && !isLexingRawMode())
2142     Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2143 
2144   // Update the location of the token as well as the BufferPtr instance var.
2145   const char *TokStart = BufferPtr;
2146   FormTokenWithChars(Result, CurPtr, Kind);
2147   Result.setLiteralData(TokStart);
2148   return true;
2149 }
2150 
2151 /// LexRawStringLiteral - Lex the remainder of a raw string literal, after
2152 /// having lexed R", LR", u8R", uR", or UR".
2153 bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
2154                                 tok::TokenKind Kind) {
2155   // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
2156   //  Between the initial and final double quote characters of the raw string,
2157   //  any transformations performed in phases 1 and 2 (trigraphs,
2158   //  universal-character-names, and line splicing) are reverted.
2159 
2160   if (!isLexingRawMode())
2161     Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
2162 
2163   unsigned PrefixLen = 0;
2164 
2165   while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
2166     ++PrefixLen;
2167 
2168   // If the last character was not a '(', then we didn't lex a valid delimiter.
2169   if (CurPtr[PrefixLen] != '(') {
2170     if (!isLexingRawMode()) {
2171       const char *PrefixEnd = &CurPtr[PrefixLen];
2172       if (PrefixLen == 16) {
2173         Diag(PrefixEnd, diag::err_raw_delim_too_long);
2174       } else {
2175         Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
2176           << StringRef(PrefixEnd, 1);
2177       }
2178     }
2179 
2180     // Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
2181     // it's possible the '"' was intended to be part of the raw string, but
2182     // there's not much we can do about that.
2183     while (true) {
2184       char C = *CurPtr++;
2185 
2186       if (C == '"')
2187         break;
2188       if (C == 0 && CurPtr-1 == BufferEnd) {
2189         --CurPtr;
2190         break;
2191       }
2192     }
2193 
2194     FormTokenWithChars(Result, CurPtr, tok::unknown);
2195     return true;
2196   }
2197 
2198   // Save prefix and move CurPtr past it
2199   const char *Prefix = CurPtr;
2200   CurPtr += PrefixLen + 1; // skip over prefix and '('
2201 
2202   while (true) {
2203     char C = *CurPtr++;
2204 
2205     if (C == ')') {
2206       // Check for prefix match and closing quote.
2207       if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
2208         CurPtr += PrefixLen + 1; // skip over prefix and '"'
2209         break;
2210       }
2211     } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
2212       if (!isLexingRawMode())
2213         Diag(BufferPtr, diag::err_unterminated_raw_string)
2214           << StringRef(Prefix, PrefixLen);
2215       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2216       return true;
2217     }
2218   }
2219 
2220   // If we are in C++11, lex the optional ud-suffix.
2221   if (LangOpts.CPlusPlus)
2222     CurPtr = LexUDSuffix(Result, CurPtr, true);
2223 
2224   // Update the location of token as well as BufferPtr.
2225   const char *TokStart = BufferPtr;
2226   FormTokenWithChars(Result, CurPtr, Kind);
2227   Result.setLiteralData(TokStart);
2228   return true;
2229 }
2230 
2231 /// LexAngledStringLiteral - Lex the remainder of an angled string literal,
2232 /// after having lexed the '<' character.  This is used for #include filenames.
2233 bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
2234   // Does this string contain the \0 character?
2235   const char *NulCharacter = nullptr;
2236   const char *AfterLessPos = CurPtr;
2237   char C = getAndAdvanceChar(CurPtr, Result);
2238   while (C != '>') {
2239     // Skip escaped characters.  Escaped newlines will already be processed by
2240     // getAndAdvanceChar.
2241     if (C == '\\')
2242       C = getAndAdvanceChar(CurPtr, Result);
2243 
2244     if (isVerticalWhitespace(C) ||               // Newline.
2245         (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file.
2246       // If the filename is unterminated, then it must just be a lone <
2247       // character.  Return this as such.
2248       FormTokenWithChars(Result, AfterLessPos, tok::less);
2249       return true;
2250     }
2251 
2252     if (C == 0) {
2253       if (isCodeCompletionPoint(CurPtr - 1)) {
2254         codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true);
2255         cutOffLexing();
2256         FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2257         return true;
2258       }
2259       NulCharacter = CurPtr-1;
2260     }
2261     C = getAndAdvanceChar(CurPtr, Result);
2262   }
2263 
2264   // If a nul character existed in the string, warn about it.
2265   if (NulCharacter && !isLexingRawMode())
2266     Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2267 
2268   // Update the location of token as well as BufferPtr.
2269   const char *TokStart = BufferPtr;
2270   FormTokenWithChars(Result, CurPtr, tok::header_name);
2271   Result.setLiteralData(TokStart);
2272   return true;
2273 }
2274 
2275 void Lexer::codeCompleteIncludedFile(const char *PathStart,
2276                                      const char *CompletionPoint,
2277                                      bool IsAngled) {
2278   // Completion only applies to the filename, after the last slash.
2279   StringRef PartialPath(PathStart, CompletionPoint - PathStart);
2280   llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/";
2281   auto Slash = PartialPath.find_last_of(SlashChars);
2282   StringRef Dir =
2283       (Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash);
2284   const char *StartOfFilename =
2285       (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1;
2286   // Code completion filter range is the filename only, up to completion point.
2287   PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get(
2288       StringRef(StartOfFilename, CompletionPoint - StartOfFilename)));
2289   // We should replace the characters up to the closing quote or closest slash,
2290   // if any.
2291   while (CompletionPoint < BufferEnd) {
2292     char Next = *(CompletionPoint + 1);
2293     if (Next == 0 || Next == '\r' || Next == '\n')
2294       break;
2295     ++CompletionPoint;
2296     if (Next == (IsAngled ? '>' : '"'))
2297       break;
2298     if (SlashChars.contains(Next))
2299       break;
2300   }
2301 
2302   PP->setCodeCompletionTokenRange(
2303       FileLoc.getLocWithOffset(StartOfFilename - BufferStart),
2304       FileLoc.getLocWithOffset(CompletionPoint - BufferStart));
2305   PP->CodeCompleteIncludedFile(Dir, IsAngled);
2306 }
2307 
2308 /// LexCharConstant - Lex the remainder of a character constant, after having
2309 /// lexed either ' or L' or u8' or u' or U'.
2310 bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
2311                             tok::TokenKind Kind) {
2312   // Does this character contain the \0 character?
2313   const char *NulCharacter = nullptr;
2314 
2315   if (!isLexingRawMode()) {
2316     if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
2317       Diag(BufferPtr, LangOpts.CPlusPlus
2318                           ? diag::warn_cxx98_compat_unicode_literal
2319                           : diag::warn_c99_compat_unicode_literal);
2320     else if (Kind == tok::utf8_char_constant)
2321       Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
2322   }
2323 
2324   char C = getAndAdvanceChar(CurPtr, Result);
2325   if (C == '\'') {
2326     if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2327       Diag(BufferPtr, diag::ext_empty_character);
2328     FormTokenWithChars(Result, CurPtr, tok::unknown);
2329     return true;
2330   }
2331 
2332   while (C != '\'') {
2333     // Skip escaped characters.
2334     if (C == '\\')
2335       C = getAndAdvanceChar(CurPtr, Result);
2336 
2337     if (C == '\n' || C == '\r' ||             // Newline.
2338         (C == 0 && CurPtr-1 == BufferEnd)) {  // End of file.
2339       if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2340         Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0;
2341       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2342       return true;
2343     }
2344 
2345     if (C == 0) {
2346       if (isCodeCompletionPoint(CurPtr-1)) {
2347         PP->CodeCompleteNaturalLanguage();
2348         FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2349         cutOffLexing();
2350         return true;
2351       }
2352 
2353       NulCharacter = CurPtr-1;
2354     }
2355     C = getAndAdvanceChar(CurPtr, Result);
2356   }
2357 
2358   // If we are in C++11, lex the optional ud-suffix.
2359   if (LangOpts.CPlusPlus)
2360     CurPtr = LexUDSuffix(Result, CurPtr, false);
2361 
2362   // If a nul character existed in the character, warn about it.
2363   if (NulCharacter && !isLexingRawMode())
2364     Diag(NulCharacter, diag::null_in_char_or_string) << 0;
2365 
2366   // Update the location of token as well as BufferPtr.
2367   const char *TokStart = BufferPtr;
2368   FormTokenWithChars(Result, CurPtr, Kind);
2369   Result.setLiteralData(TokStart);
2370   return true;
2371 }
2372 
2373 /// SkipWhitespace - Efficiently skip over a series of whitespace characters.
2374 /// Update BufferPtr to point to the next non-whitespace character and return.
2375 ///
2376 /// This method forms a token and returns true if KeepWhitespaceMode is enabled.
2377 bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
2378                            bool &TokAtPhysicalStartOfLine) {
2379   // Whitespace - Skip it, then return the token after the whitespace.
2380   bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
2381 
2382   unsigned char Char = *CurPtr;
2383 
2384   const char *lastNewLine = nullptr;
2385   auto setLastNewLine = [&](const char *Ptr) {
2386     lastNewLine = Ptr;
2387     if (!NewLinePtr)
2388       NewLinePtr = Ptr;
2389   };
2390   if (SawNewline)
2391     setLastNewLine(CurPtr - 1);
2392 
2393   // Skip consecutive spaces efficiently.
2394   while (true) {
2395     // Skip horizontal whitespace very aggressively.
2396     while (isHorizontalWhitespace(Char))
2397       Char = *++CurPtr;
2398 
2399     // Otherwise if we have something other than whitespace, we're done.
2400     if (!isVerticalWhitespace(Char))
2401       break;
2402 
2403     if (ParsingPreprocessorDirective) {
2404       // End of preprocessor directive line, let LexTokenInternal handle this.
2405       BufferPtr = CurPtr;
2406       return false;
2407     }
2408 
2409     // OK, but handle newline.
2410     if (*CurPtr == '\n')
2411       setLastNewLine(CurPtr);
2412     SawNewline = true;
2413     Char = *++CurPtr;
2414   }
2415 
2416   // If the client wants us to return whitespace, return it now.
2417   if (isKeepWhitespaceMode()) {
2418     FormTokenWithChars(Result, CurPtr, tok::unknown);
2419     if (SawNewline) {
2420       IsAtStartOfLine = true;
2421       IsAtPhysicalStartOfLine = true;
2422     }
2423     // FIXME: The next token will not have LeadingSpace set.
2424     return true;
2425   }
2426 
2427   // If this isn't immediately after a newline, there is leading space.
2428   char PrevChar = CurPtr[-1];
2429   bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
2430 
2431   Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
2432   if (SawNewline) {
2433     Result.setFlag(Token::StartOfLine);
2434     TokAtPhysicalStartOfLine = true;
2435 
2436     if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) {
2437       if (auto *Handler = PP->getEmptylineHandler())
2438         Handler->HandleEmptyline(SourceRange(getSourceLocation(NewLinePtr + 1),
2439                                              getSourceLocation(lastNewLine)));
2440     }
2441   }
2442 
2443   BufferPtr = CurPtr;
2444   return false;
2445 }
2446 
2447 /// We have just read the // characters from input.  Skip until we find the
2448 /// newline character that terminates the comment.  Then update BufferPtr and
2449 /// return.
2450 ///
2451 /// If we're in KeepCommentMode or any CommentHandler has inserted
2452 /// some tokens, this will store the first token and return true.
2453 bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
2454                             bool &TokAtPhysicalStartOfLine) {
2455   // If Line comments aren't explicitly enabled for this language, emit an
2456   // extension warning.
2457   if (!LineComment) {
2458     if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags.
2459       Diag(BufferPtr, diag::ext_line_comment);
2460 
2461     // Mark them enabled so we only emit one warning for this translation
2462     // unit.
2463     LineComment = true;
2464   }
2465 
2466   // Scan over the body of the comment.  The common case, when scanning, is that
2467   // the comment contains normal ascii characters with nothing interesting in
2468   // them.  As such, optimize for this case with the inner loop.
2469   //
2470   // This loop terminates with CurPtr pointing at the newline (or end of buffer)
2471   // character that ends the line comment.
2472 
2473   // C++23 [lex.phases] p1
2474   // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2475   // diagnostic only once per entire ill-formed subsequence to avoid
2476   // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2477   bool UnicodeDecodingAlreadyDiagnosed = false;
2478 
2479   char C;
2480   while (true) {
2481     C = *CurPtr;
2482     // Skip over characters in the fast loop.
2483     while (isASCII(C) && C != 0 &&   // Potentially EOF.
2484            C != '\n' && C != '\r') { // Newline or DOS-style newline.
2485       C = *++CurPtr;
2486       UnicodeDecodingAlreadyDiagnosed = false;
2487     }
2488 
2489     if (!isASCII(C)) {
2490       unsigned Length = llvm::getUTF8SequenceSize(
2491           (const llvm::UTF8 *)CurPtr, (const llvm::UTF8 *)BufferEnd);
2492       if (Length == 0) {
2493         if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2494           Diag(CurPtr, diag::warn_invalid_utf8_in_comment);
2495         UnicodeDecodingAlreadyDiagnosed = true;
2496         ++CurPtr;
2497       } else {
2498         UnicodeDecodingAlreadyDiagnosed = false;
2499         CurPtr += Length;
2500       }
2501       continue;
2502     }
2503 
2504     const char *NextLine = CurPtr;
2505     if (C != 0) {
2506       // We found a newline, see if it's escaped.
2507       const char *EscapePtr = CurPtr-1;
2508       bool HasSpace = false;
2509       while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
2510         --EscapePtr;
2511         HasSpace = true;
2512       }
2513 
2514       if (*EscapePtr == '\\')
2515         // Escaped newline.
2516         CurPtr = EscapePtr;
2517       else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
2518                EscapePtr[-2] == '?' && LangOpts.Trigraphs)
2519         // Trigraph-escaped newline.
2520         CurPtr = EscapePtr-2;
2521       else
2522         break; // This is a newline, we're done.
2523 
2524       // If there was space between the backslash and newline, warn about it.
2525       if (HasSpace && !isLexingRawMode())
2526         Diag(EscapePtr, diag::backslash_newline_space);
2527     }
2528 
2529     // Otherwise, this is a hard case.  Fall back on getAndAdvanceChar to
2530     // properly decode the character.  Read it in raw mode to avoid emitting
2531     // diagnostics about things like trigraphs.  If we see an escaped newline,
2532     // we'll handle it below.
2533     const char *OldPtr = CurPtr;
2534     bool OldRawMode = isLexingRawMode();
2535     LexingRawMode = true;
2536     C = getAndAdvanceChar(CurPtr, Result);
2537     LexingRawMode = OldRawMode;
2538 
2539     // If we only read only one character, then no special handling is needed.
2540     // We're done and can skip forward to the newline.
2541     if (C != 0 && CurPtr == OldPtr+1) {
2542       CurPtr = NextLine;
2543       break;
2544     }
2545 
2546     // If we read multiple characters, and one of those characters was a \r or
2547     // \n, then we had an escaped newline within the comment.  Emit diagnostic
2548     // unless the next line is also a // comment.
2549     if (CurPtr != OldPtr + 1 && C != '/' &&
2550         (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) {
2551       for (; OldPtr != CurPtr; ++OldPtr)
2552         if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
2553           // Okay, we found a // comment that ends in a newline, if the next
2554           // line is also a // comment, but has spaces, don't emit a diagnostic.
2555           if (isWhitespace(C)) {
2556             const char *ForwardPtr = CurPtr;
2557             while (isWhitespace(*ForwardPtr))  // Skip whitespace.
2558               ++ForwardPtr;
2559             if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
2560               break;
2561           }
2562 
2563           if (!isLexingRawMode())
2564             Diag(OldPtr-1, diag::ext_multi_line_line_comment);
2565           break;
2566         }
2567     }
2568 
2569     if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) {
2570       --CurPtr;
2571       break;
2572     }
2573 
2574     if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2575       PP->CodeCompleteNaturalLanguage();
2576       cutOffLexing();
2577       return false;
2578     }
2579   }
2580 
2581   // Found but did not consume the newline.  Notify comment handlers about the
2582   // comment unless we're in a #if 0 block.
2583   if (PP && !isLexingRawMode() &&
2584       PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2585                                             getSourceLocation(CurPtr)))) {
2586     BufferPtr = CurPtr;
2587     return true; // A token has to be returned.
2588   }
2589 
2590   // If we are returning comments as tokens, return this comment as a token.
2591   if (inKeepCommentMode())
2592     return SaveLineComment(Result, CurPtr);
2593 
2594   // If we are inside a preprocessor directive and we see the end of line,
2595   // return immediately, so that the lexer can return this as an EOD token.
2596   if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
2597     BufferPtr = CurPtr;
2598     return false;
2599   }
2600 
2601   // Otherwise, eat the \n character.  We don't care if this is a \n\r or
2602   // \r\n sequence.  This is an efficiency hack (because we know the \n can't
2603   // contribute to another token), it isn't needed for correctness.  Note that
2604   // this is ok even in KeepWhitespaceMode, because we would have returned the
2605   // comment above in that mode.
2606   NewLinePtr = CurPtr++;
2607 
2608   // The next returned token is at the start of the line.
2609   Result.setFlag(Token::StartOfLine);
2610   TokAtPhysicalStartOfLine = true;
2611   // No leading whitespace seen so far.
2612   Result.clearFlag(Token::LeadingSpace);
2613   BufferPtr = CurPtr;
2614   return false;
2615 }
2616 
2617 /// If in save-comment mode, package up this Line comment in an appropriate
2618 /// way and return it.
2619 bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
2620   // If we're not in a preprocessor directive, just return the // comment
2621   // directly.
2622   FormTokenWithChars(Result, CurPtr, tok::comment);
2623 
2624   if (!ParsingPreprocessorDirective || LexingRawMode)
2625     return true;
2626 
2627   // If this Line-style comment is in a macro definition, transmogrify it into
2628   // a C-style block comment.
2629   bool Invalid = false;
2630   std::string Spelling = PP->getSpelling(Result, &Invalid);
2631   if (Invalid)
2632     return true;
2633 
2634   assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
2635   Spelling[1] = '*';   // Change prefix to "/*".
2636   Spelling += "*/";    // add suffix.
2637 
2638   Result.setKind(tok::comment);
2639   PP->CreateString(Spelling, Result,
2640                    Result.getLocation(), Result.getLocation());
2641   return true;
2642 }
2643 
2644 /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
2645 /// character (either \\n or \\r) is part of an escaped newline sequence.  Issue
2646 /// a diagnostic if so.  We know that the newline is inside of a block comment.
2647 static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L,
2648                                                   bool Trigraphs) {
2649   assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
2650 
2651   // Position of the first trigraph in the ending sequence.
2652   const char *TrigraphPos = nullptr;
2653   // Position of the first whitespace after a '\' in the ending sequence.
2654   const char *SpacePos = nullptr;
2655 
2656   while (true) {
2657     // Back up off the newline.
2658     --CurPtr;
2659 
2660     // If this is a two-character newline sequence, skip the other character.
2661     if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
2662       // \n\n or \r\r -> not escaped newline.
2663       if (CurPtr[0] == CurPtr[1])
2664         return false;
2665       // \n\r or \r\n -> skip the newline.
2666       --CurPtr;
2667     }
2668 
2669     // If we have horizontal whitespace, skip over it.  We allow whitespace
2670     // between the slash and newline.
2671     while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
2672       SpacePos = CurPtr;
2673       --CurPtr;
2674     }
2675 
2676     // If we have a slash, this is an escaped newline.
2677     if (*CurPtr == '\\') {
2678       --CurPtr;
2679     } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') {
2680       // This is a trigraph encoding of a slash.
2681       TrigraphPos = CurPtr - 2;
2682       CurPtr -= 3;
2683     } else {
2684       return false;
2685     }
2686 
2687     // If the character preceding the escaped newline is a '*', then after line
2688     // splicing we have a '*/' ending the comment.
2689     if (*CurPtr == '*')
2690       break;
2691 
2692     if (*CurPtr != '\n' && *CurPtr != '\r')
2693       return false;
2694   }
2695 
2696   if (TrigraphPos) {
2697     // If no trigraphs are enabled, warn that we ignored this trigraph and
2698     // ignore this * character.
2699     if (!Trigraphs) {
2700       if (!L->isLexingRawMode())
2701         L->Diag(TrigraphPos, diag::trigraph_ignored_block_comment);
2702       return false;
2703     }
2704     if (!L->isLexingRawMode())
2705       L->Diag(TrigraphPos, diag::trigraph_ends_block_comment);
2706   }
2707 
2708   // Warn about having an escaped newline between the */ characters.
2709   if (!L->isLexingRawMode())
2710     L->Diag(CurPtr + 1, diag::escaped_newline_block_comment_end);
2711 
2712   // If there was space between the backslash and newline, warn about it.
2713   if (SpacePos && !L->isLexingRawMode())
2714     L->Diag(SpacePos, diag::backslash_newline_space);
2715 
2716   return true;
2717 }
2718 
2719 #ifdef __SSE2__
2720 #include <emmintrin.h>
2721 #elif __ALTIVEC__
2722 #include <altivec.h>
2723 #undef bool
2724 #endif
2725 
2726 /// We have just read from input the / and * characters that started a comment.
2727 /// Read until we find the * and / characters that terminate the comment.
2728 /// Note that we don't bother decoding trigraphs or escaped newlines in block
2729 /// comments, because they cannot cause the comment to end.  The only thing
2730 /// that can happen is the comment could end with an escaped newline between
2731 /// the terminating * and /.
2732 ///
2733 /// If we're in KeepCommentMode or any CommentHandler has inserted
2734 /// some tokens, this will store the first token and return true.
2735 bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
2736                              bool &TokAtPhysicalStartOfLine) {
2737   // Scan one character past where we should, looking for a '/' character.  Once
2738   // we find it, check to see if it was preceded by a *.  This common
2739   // optimization helps people who like to put a lot of * characters in their
2740   // comments.
2741 
2742   // The first character we get with newlines and trigraphs skipped to handle
2743   // the degenerate /*/ case below correctly if the * has an escaped newline
2744   // after it.
2745   unsigned CharSize;
2746   unsigned char C = getCharAndSize(CurPtr, CharSize);
2747   CurPtr += CharSize;
2748   if (C == 0 && CurPtr == BufferEnd+1) {
2749     if (!isLexingRawMode())
2750       Diag(BufferPtr, diag::err_unterminated_block_comment);
2751     --CurPtr;
2752 
2753     // KeepWhitespaceMode should return this broken comment as a token.  Since
2754     // it isn't a well formed comment, just return it as an 'unknown' token.
2755     if (isKeepWhitespaceMode()) {
2756       FormTokenWithChars(Result, CurPtr, tok::unknown);
2757       return true;
2758     }
2759 
2760     BufferPtr = CurPtr;
2761     return false;
2762   }
2763 
2764   // Check to see if the first character after the '/*' is another /.  If so,
2765   // then this slash does not end the block comment, it is part of it.
2766   if (C == '/')
2767     C = *CurPtr++;
2768 
2769   // C++23 [lex.phases] p1
2770   // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2771   // diagnostic only once per entire ill-formed subsequence to avoid
2772   // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2773   bool UnicodeDecodingAlreadyDiagnosed = false;
2774 
2775   while (true) {
2776     // Skip over all non-interesting characters until we find end of buffer or a
2777     // (probably ending) '/' character.
2778     if (CurPtr + 24 < BufferEnd &&
2779         // If there is a code-completion point avoid the fast scan because it
2780         // doesn't check for '\0'.
2781         !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
2782       // While not aligned to a 16-byte boundary.
2783       while (C != '/' && (intptr_t)CurPtr % 16 != 0) {
2784         if (!isASCII(C))
2785           goto MultiByteUTF8;
2786         C = *CurPtr++;
2787       }
2788       if (C == '/') goto FoundSlash;
2789 
2790 #ifdef __SSE2__
2791       __m128i Slashes = _mm_set1_epi8('/');
2792       while (CurPtr + 16 < BufferEnd) {
2793         int Mask = _mm_movemask_epi8(*(const __m128i *)CurPtr);
2794         if (LLVM_UNLIKELY(Mask != 0)) {
2795           goto MultiByteUTF8;
2796         }
2797         // look for slashes
2798         int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
2799                                     Slashes));
2800         if (cmp != 0) {
2801           // Adjust the pointer to point directly after the first slash. It's
2802           // not necessary to set C here, it will be overwritten at the end of
2803           // the outer loop.
2804           CurPtr += llvm::countr_zero<unsigned>(cmp) + 1;
2805           goto FoundSlash;
2806         }
2807         CurPtr += 16;
2808       }
2809 #elif __ALTIVEC__
2810       __vector unsigned char LongUTF = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2811                                         0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2812                                         0x80, 0x80, 0x80, 0x80};
2813       __vector unsigned char Slashes = {
2814         '/', '/', '/', '/',  '/', '/', '/', '/',
2815         '/', '/', '/', '/',  '/', '/', '/', '/'
2816       };
2817       while (CurPtr + 16 < BufferEnd) {
2818         if (LLVM_UNLIKELY(
2819                 vec_any_ge(*(const __vector unsigned char *)CurPtr, LongUTF)))
2820           goto MultiByteUTF8;
2821         if (vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) {
2822           break;
2823         }
2824         CurPtr += 16;
2825       }
2826 
2827 #else
2828       while (CurPtr + 16 < BufferEnd) {
2829         bool HasNonASCII = false;
2830         for (unsigned I = 0; I < 16; ++I)
2831           HasNonASCII |= !isASCII(CurPtr[I]);
2832 
2833         if (LLVM_UNLIKELY(HasNonASCII))
2834           goto MultiByteUTF8;
2835 
2836         bool HasSlash = false;
2837         for (unsigned I = 0; I < 16; ++I)
2838           HasSlash |= CurPtr[I] == '/';
2839         if (HasSlash)
2840           break;
2841         CurPtr += 16;
2842       }
2843 #endif
2844 
2845       // It has to be one of the bytes scanned, increment to it and read one.
2846       C = *CurPtr++;
2847     }
2848 
2849     // Loop to scan the remainder, warning on invalid UTF-8
2850     // if the corresponding warning is enabled, emitting a diagnostic only once
2851     // per sequence that cannot be decoded.
2852     while (C != '/' && C != '\0') {
2853       if (isASCII(C)) {
2854         UnicodeDecodingAlreadyDiagnosed = false;
2855         C = *CurPtr++;
2856         continue;
2857       }
2858     MultiByteUTF8:
2859       // CurPtr is 1 code unit past C, so to decode
2860       // the codepoint, we need to read from the previous position.
2861       unsigned Length = llvm::getUTF8SequenceSize(
2862           (const llvm::UTF8 *)CurPtr - 1, (const llvm::UTF8 *)BufferEnd);
2863       if (Length == 0) {
2864         if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2865           Diag(CurPtr - 1, diag::warn_invalid_utf8_in_comment);
2866         UnicodeDecodingAlreadyDiagnosed = true;
2867       } else {
2868         UnicodeDecodingAlreadyDiagnosed = false;
2869         CurPtr += Length - 1;
2870       }
2871       C = *CurPtr++;
2872     }
2873 
2874     if (C == '/') {
2875   FoundSlash:
2876       if (CurPtr[-2] == '*')  // We found the final */.  We're done!
2877         break;
2878 
2879       if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
2880         if (isEndOfBlockCommentWithEscapedNewLine(CurPtr - 2, this,
2881                                                   LangOpts.Trigraphs)) {
2882           // We found the final */, though it had an escaped newline between the
2883           // * and /.  We're done!
2884           break;
2885         }
2886       }
2887       if (CurPtr[0] == '*' && CurPtr[1] != '/') {
2888         // If this is a /* inside of the comment, emit a warning.  Don't do this
2889         // if this is a /*/, which will end the comment.  This misses cases with
2890         // embedded escaped newlines, but oh well.
2891         if (!isLexingRawMode())
2892           Diag(CurPtr-1, diag::warn_nested_block_comment);
2893       }
2894     } else if (C == 0 && CurPtr == BufferEnd+1) {
2895       if (!isLexingRawMode())
2896         Diag(BufferPtr, diag::err_unterminated_block_comment);
2897       // Note: the user probably forgot a */.  We could continue immediately
2898       // after the /*, but this would involve lexing a lot of what really is the
2899       // comment, which surely would confuse the parser.
2900       --CurPtr;
2901 
2902       // KeepWhitespaceMode should return this broken comment as a token.  Since
2903       // it isn't a well formed comment, just return it as an 'unknown' token.
2904       if (isKeepWhitespaceMode()) {
2905         FormTokenWithChars(Result, CurPtr, tok::unknown);
2906         return true;
2907       }
2908 
2909       BufferPtr = CurPtr;
2910       return false;
2911     } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2912       PP->CodeCompleteNaturalLanguage();
2913       cutOffLexing();
2914       return false;
2915     }
2916 
2917     C = *CurPtr++;
2918   }
2919 
2920   // Notify comment handlers about the comment unless we're in a #if 0 block.
2921   if (PP && !isLexingRawMode() &&
2922       PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2923                                             getSourceLocation(CurPtr)))) {
2924     BufferPtr = CurPtr;
2925     return true; // A token has to be returned.
2926   }
2927 
2928   // If we are returning comments as tokens, return this comment as a token.
2929   if (inKeepCommentMode()) {
2930     FormTokenWithChars(Result, CurPtr, tok::comment);
2931     return true;
2932   }
2933 
2934   // It is common for the tokens immediately after a /**/ comment to be
2935   // whitespace.  Instead of going through the big switch, handle it
2936   // efficiently now.  This is safe even in KeepWhitespaceMode because we would
2937   // have already returned above with the comment as a token.
2938   if (isHorizontalWhitespace(*CurPtr)) {
2939     SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
2940     return false;
2941   }
2942 
2943   // Otherwise, just return so that the next character will be lexed as a token.
2944   BufferPtr = CurPtr;
2945   Result.setFlag(Token::LeadingSpace);
2946   return false;
2947 }
2948 
2949 //===----------------------------------------------------------------------===//
2950 // Primary Lexing Entry Points
2951 //===----------------------------------------------------------------------===//
2952 
2953 /// ReadToEndOfLine - Read the rest of the current preprocessor line as an
2954 /// uninterpreted string.  This switches the lexer out of directive mode.
2955 void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
2956   assert(ParsingPreprocessorDirective && ParsingFilename == false &&
2957          "Must be in a preprocessing directive!");
2958   Token Tmp;
2959   Tmp.startToken();
2960 
2961   // CurPtr - Cache BufferPtr in an automatic variable.
2962   const char *CurPtr = BufferPtr;
2963   while (true) {
2964     char Char = getAndAdvanceChar(CurPtr, Tmp);
2965     switch (Char) {
2966     default:
2967       if (Result)
2968         Result->push_back(Char);
2969       break;
2970     case 0:  // Null.
2971       // Found end of file?
2972       if (CurPtr-1 != BufferEnd) {
2973         if (isCodeCompletionPoint(CurPtr-1)) {
2974           PP->CodeCompleteNaturalLanguage();
2975           cutOffLexing();
2976           return;
2977         }
2978 
2979         // Nope, normal character, continue.
2980         if (Result)
2981           Result->push_back(Char);
2982         break;
2983       }
2984       // FALL THROUGH.
2985       [[fallthrough]];
2986     case '\r':
2987     case '\n':
2988       // Okay, we found the end of the line. First, back up past the \0, \r, \n.
2989       assert(CurPtr[-1] == Char && "Trigraphs for newline?");
2990       BufferPtr = CurPtr-1;
2991 
2992       // Next, lex the character, which should handle the EOD transition.
2993       Lex(Tmp);
2994       if (Tmp.is(tok::code_completion)) {
2995         if (PP)
2996           PP->CodeCompleteNaturalLanguage();
2997         Lex(Tmp);
2998       }
2999       assert(Tmp.is(tok::eod) && "Unexpected token!");
3000 
3001       // Finally, we're done;
3002       return;
3003     }
3004   }
3005 }
3006 
3007 /// LexEndOfFile - CurPtr points to the end of this file.  Handle this
3008 /// condition, reporting diagnostics and handling other edge cases as required.
3009 /// This returns true if Result contains a token, false if PP.Lex should be
3010 /// called again.
3011 bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
3012   // If we hit the end of the file while parsing a preprocessor directive,
3013   // end the preprocessor directive first.  The next token returned will
3014   // then be the end of file.
3015   if (ParsingPreprocessorDirective) {
3016     // Done parsing the "line".
3017     ParsingPreprocessorDirective = false;
3018     // Update the location of token as well as BufferPtr.
3019     FormTokenWithChars(Result, CurPtr, tok::eod);
3020 
3021     // Restore comment saving mode, in case it was disabled for directive.
3022     if (PP)
3023       resetExtendedTokenMode();
3024     return true;  // Have a token.
3025   }
3026 
3027   // If we are in raw mode, return this event as an EOF token.  Let the caller
3028   // that put us in raw mode handle the event.
3029   if (isLexingRawMode()) {
3030     Result.startToken();
3031     BufferPtr = BufferEnd;
3032     FormTokenWithChars(Result, BufferEnd, tok::eof);
3033     return true;
3034   }
3035 
3036   if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) {
3037     PP->setRecordedPreambleConditionalStack(ConditionalStack);
3038     // If the preamble cuts off the end of a header guard, consider it guarded.
3039     // The guard is valid for the preamble content itself, and for tools the
3040     // most useful answer is "yes, this file has a header guard".
3041     if (!ConditionalStack.empty())
3042       MIOpt.ExitTopLevelConditional();
3043     ConditionalStack.clear();
3044   }
3045 
3046   // Issue diagnostics for unterminated #if and missing newline.
3047 
3048   // If we are in a #if directive, emit an error.
3049   while (!ConditionalStack.empty()) {
3050     if (PP->getCodeCompletionFileLoc() != FileLoc)
3051       PP->Diag(ConditionalStack.back().IfLoc,
3052                diag::err_pp_unterminated_conditional);
3053     ConditionalStack.pop_back();
3054   }
3055 
3056   // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
3057   // a pedwarn.
3058   if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
3059     DiagnosticsEngine &Diags = PP->getDiagnostics();
3060     SourceLocation EndLoc = getSourceLocation(BufferEnd);
3061     unsigned DiagID;
3062 
3063     if (LangOpts.CPlusPlus11) {
3064       // C++11 [lex.phases] 2.2 p2
3065       // Prefer the C++98 pedantic compatibility warning over the generic,
3066       // non-extension, user-requested "missing newline at EOF" warning.
3067       if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
3068         DiagID = diag::warn_cxx98_compat_no_newline_eof;
3069       } else {
3070         DiagID = diag::warn_no_newline_eof;
3071       }
3072     } else {
3073       DiagID = diag::ext_no_newline_eof;
3074     }
3075 
3076     Diag(BufferEnd, DiagID)
3077       << FixItHint::CreateInsertion(EndLoc, "\n");
3078   }
3079 
3080   BufferPtr = CurPtr;
3081 
3082   // Finally, let the preprocessor handle this.
3083   return PP->HandleEndOfFile(Result, isPragmaLexer());
3084 }
3085 
3086 /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
3087 /// the specified lexer will return a tok::l_paren token, 0 if it is something
3088 /// else and 2 if there are no more tokens in the buffer controlled by the
3089 /// lexer.
3090 unsigned Lexer::isNextPPTokenLParen() {
3091   assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
3092 
3093   if (isDependencyDirectivesLexer()) {
3094     if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size())
3095       return 2;
3096     return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
3097         tok::l_paren);
3098   }
3099 
3100   // Switch to 'skipping' mode.  This will ensure that we can lex a token
3101   // without emitting diagnostics, disables macro expansion, and will cause EOF
3102   // to return an EOF token instead of popping the include stack.
3103   LexingRawMode = true;
3104 
3105   // Save state that can be changed while lexing so that we can restore it.
3106   const char *TmpBufferPtr = BufferPtr;
3107   bool inPPDirectiveMode = ParsingPreprocessorDirective;
3108   bool atStartOfLine = IsAtStartOfLine;
3109   bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3110   bool leadingSpace = HasLeadingSpace;
3111 
3112   Token Tok;
3113   Lex(Tok);
3114 
3115   // Restore state that may have changed.
3116   BufferPtr = TmpBufferPtr;
3117   ParsingPreprocessorDirective = inPPDirectiveMode;
3118   HasLeadingSpace = leadingSpace;
3119   IsAtStartOfLine = atStartOfLine;
3120   IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
3121 
3122   // Restore the lexer back to non-skipping mode.
3123   LexingRawMode = false;
3124 
3125   if (Tok.is(tok::eof))
3126     return 2;
3127   return Tok.is(tok::l_paren);
3128 }
3129 
3130 /// Find the end of a version control conflict marker.
3131 static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
3132                                    ConflictMarkerKind CMK) {
3133   const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
3134   size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
3135   auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen);
3136   size_t Pos = RestOfBuffer.find(Terminator);
3137   while (Pos != StringRef::npos) {
3138     // Must occur at start of line.
3139     if (Pos == 0 ||
3140         (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
3141       RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
3142       Pos = RestOfBuffer.find(Terminator);
3143       continue;
3144     }
3145     return RestOfBuffer.data()+Pos;
3146   }
3147   return nullptr;
3148 }
3149 
3150 /// IsStartOfConflictMarker - If the specified pointer is the start of a version
3151 /// control conflict marker like '<<<<<<<', recognize it as such, emit an error
3152 /// and recover nicely.  This returns true if it is a conflict marker and false
3153 /// if not.
3154 bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
3155   // Only a conflict marker if it starts at the beginning of a line.
3156   if (CurPtr != BufferStart &&
3157       CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3158     return false;
3159 
3160   // Check to see if we have <<<<<<< or >>>>.
3161   if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") &&
3162       !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> "))
3163     return false;
3164 
3165   // If we have a situation where we don't care about conflict markers, ignore
3166   // it.
3167   if (CurrentConflictMarkerState || isLexingRawMode())
3168     return false;
3169 
3170   ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
3171 
3172   // Check to see if there is an ending marker somewhere in the buffer at the
3173   // start of a line to terminate this conflict marker.
3174   if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
3175     // We found a match.  We are really in a conflict marker.
3176     // Diagnose this, and ignore to the end of line.
3177     Diag(CurPtr, diag::err_conflict_marker);
3178     CurrentConflictMarkerState = Kind;
3179 
3180     // Skip ahead to the end of line.  We know this exists because the
3181     // end-of-conflict marker starts with \r or \n.
3182     while (*CurPtr != '\r' && *CurPtr != '\n') {
3183       assert(CurPtr != BufferEnd && "Didn't find end of line");
3184       ++CurPtr;
3185     }
3186     BufferPtr = CurPtr;
3187     return true;
3188   }
3189 
3190   // No end of conflict marker found.
3191   return false;
3192 }
3193 
3194 /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
3195 /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
3196 /// is the end of a conflict marker.  Handle it by ignoring up until the end of
3197 /// the line.  This returns true if it is a conflict marker and false if not.
3198 bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
3199   // Only a conflict marker if it starts at the beginning of a line.
3200   if (CurPtr != BufferStart &&
3201       CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3202     return false;
3203 
3204   // If we have a situation where we don't care about conflict markers, ignore
3205   // it.
3206   if (!CurrentConflictMarkerState || isLexingRawMode())
3207     return false;
3208 
3209   // Check to see if we have the marker (4 characters in a row).
3210   for (unsigned i = 1; i != 4; ++i)
3211     if (CurPtr[i] != CurPtr[0])
3212       return false;
3213 
3214   // If we do have it, search for the end of the conflict marker.  This could
3215   // fail if it got skipped with a '#if 0' or something.  Note that CurPtr might
3216   // be the end of conflict marker.
3217   if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
3218                                         CurrentConflictMarkerState)) {
3219     CurPtr = End;
3220 
3221     // Skip ahead to the end of line.
3222     while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
3223       ++CurPtr;
3224 
3225     BufferPtr = CurPtr;
3226 
3227     // No longer in the conflict marker.
3228     CurrentConflictMarkerState = CMK_None;
3229     return true;
3230   }
3231 
3232   return false;
3233 }
3234 
3235 static const char *findPlaceholderEnd(const char *CurPtr,
3236                                       const char *BufferEnd) {
3237   if (CurPtr == BufferEnd)
3238     return nullptr;
3239   BufferEnd -= 1; // Scan until the second last character.
3240   for (; CurPtr != BufferEnd; ++CurPtr) {
3241     if (CurPtr[0] == '#' && CurPtr[1] == '>')
3242       return CurPtr + 2;
3243   }
3244   return nullptr;
3245 }
3246 
3247 bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) {
3248   assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!");
3249   if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode)
3250     return false;
3251   const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd);
3252   if (!End)
3253     return false;
3254   const char *Start = CurPtr - 1;
3255   if (!LangOpts.AllowEditorPlaceholders)
3256     Diag(Start, diag::err_placeholder_in_source);
3257   Result.startToken();
3258   FormTokenWithChars(Result, End, tok::raw_identifier);
3259   Result.setRawIdentifierData(Start);
3260   PP->LookUpIdentifierInfo(Result);
3261   Result.setFlag(Token::IsEditorPlaceholder);
3262   BufferPtr = End;
3263   return true;
3264 }
3265 
3266 bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
3267   if (PP && PP->isCodeCompletionEnabled()) {
3268     SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
3269     return Loc == PP->getCodeCompletionLoc();
3270   }
3271 
3272   return false;
3273 }
3274 
3275 std::optional<uint32_t> Lexer::tryReadNumericUCN(const char *&StartPtr,
3276                                                  const char *SlashLoc,
3277                                                  Token *Result) {
3278   unsigned CharSize;
3279   char Kind = getCharAndSize(StartPtr, CharSize);
3280   assert((Kind == 'u' || Kind == 'U') && "expected a UCN");
3281 
3282   unsigned NumHexDigits;
3283   if (Kind == 'u')
3284     NumHexDigits = 4;
3285   else if (Kind == 'U')
3286     NumHexDigits = 8;
3287 
3288   bool Delimited = false;
3289   bool FoundEndDelimiter = false;
3290   unsigned Count = 0;
3291   bool Diagnose = Result && !isLexingRawMode();
3292 
3293   if (!LangOpts.CPlusPlus && !LangOpts.C99) {
3294     if (Diagnose)
3295       Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
3296     return std::nullopt;
3297   }
3298 
3299   const char *CurPtr = StartPtr + CharSize;
3300   const char *KindLoc = &CurPtr[-1];
3301 
3302   uint32_t CodePoint = 0;
3303   while (Count != NumHexDigits || Delimited) {
3304     char C = getCharAndSize(CurPtr, CharSize);
3305     if (!Delimited && Count == 0 && C == '{') {
3306       Delimited = true;
3307       CurPtr += CharSize;
3308       continue;
3309     }
3310 
3311     if (Delimited && C == '}') {
3312       CurPtr += CharSize;
3313       FoundEndDelimiter = true;
3314       break;
3315     }
3316 
3317     unsigned Value = llvm::hexDigitValue(C);
3318     if (Value == -1U) {
3319       if (!Delimited)
3320         break;
3321       if (Diagnose)
3322         Diag(SlashLoc, diag::warn_delimited_ucn_incomplete)
3323             << StringRef(KindLoc, 1);
3324       return std::nullopt;
3325     }
3326 
3327     if (CodePoint & 0xF000'0000) {
3328       if (Diagnose)
3329         Diag(KindLoc, diag::err_escape_too_large) << 0;
3330       return std::nullopt;
3331     }
3332 
3333     CodePoint <<= 4;
3334     CodePoint |= Value;
3335     CurPtr += CharSize;
3336     Count++;
3337   }
3338 
3339   if (Count == 0) {
3340     if (Diagnose)
3341       Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3342                                        : diag::warn_ucn_escape_no_digits)
3343           << StringRef(KindLoc, 1);
3344     return std::nullopt;
3345   }
3346 
3347   if (Delimited && Kind == 'U') {
3348     if (Diagnose)
3349       Diag(SlashLoc, diag::err_hex_escape_no_digits) << StringRef(KindLoc, 1);
3350     return std::nullopt;
3351   }
3352 
3353   if (!Delimited && Count != NumHexDigits) {
3354     if (Diagnose) {
3355       Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3356       // If the user wrote \U1234, suggest a fixit to \u.
3357       if (Count == 4 && NumHexDigits == 8) {
3358         CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
3359         Diag(KindLoc, diag::note_ucn_four_not_eight)
3360             << FixItHint::CreateReplacement(URange, "u");
3361       }
3362     }
3363     return std::nullopt;
3364   }
3365 
3366   if (Delimited && PP) {
3367     Diag(SlashLoc, PP->getLangOpts().CPlusPlus23
3368                        ? diag::warn_cxx23_delimited_escape_sequence
3369                        : diag::ext_delimited_escape_sequence)
3370         << /*delimited*/ 0 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3371   }
3372 
3373   if (Result) {
3374     Result->setFlag(Token::HasUCN);
3375     // If the UCN contains either a trigraph or a line splicing,
3376     // we need to call getAndAdvanceChar again to set the appropriate flags
3377     // on Result.
3378     if (CurPtr - StartPtr == (ptrdiff_t)(Count + 1 + (Delimited ? 2 : 0)))
3379       StartPtr = CurPtr;
3380     else
3381       while (StartPtr != CurPtr)
3382         (void)getAndAdvanceChar(StartPtr, *Result);
3383   } else {
3384     StartPtr = CurPtr;
3385   }
3386   return CodePoint;
3387 }
3388 
3389 std::optional<uint32_t> Lexer::tryReadNamedUCN(const char *&StartPtr,
3390                                                const char *SlashLoc,
3391                                                Token *Result) {
3392   unsigned CharSize;
3393   bool Diagnose = Result && !isLexingRawMode();
3394 
3395   char C = getCharAndSize(StartPtr, CharSize);
3396   assert(C == 'N' && "expected \\N{...}");
3397 
3398   const char *CurPtr = StartPtr + CharSize;
3399   const char *KindLoc = &CurPtr[-1];
3400 
3401   C = getCharAndSize(CurPtr, CharSize);
3402   if (C != '{') {
3403     if (Diagnose)
3404       Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3405     return std::nullopt;
3406   }
3407   CurPtr += CharSize;
3408   const char *StartName = CurPtr;
3409   bool FoundEndDelimiter = false;
3410   llvm::SmallVector<char, 30> Buffer;
3411   while (C) {
3412     C = getCharAndSize(CurPtr, CharSize);
3413     CurPtr += CharSize;
3414     if (C == '}') {
3415       FoundEndDelimiter = true;
3416       break;
3417     }
3418 
3419     if (isVerticalWhitespace(C))
3420       break;
3421     Buffer.push_back(C);
3422   }
3423 
3424   if (!FoundEndDelimiter || Buffer.empty()) {
3425     if (Diagnose)
3426       Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3427                                        : diag::warn_delimited_ucn_incomplete)
3428           << StringRef(KindLoc, 1);
3429     return std::nullopt;
3430   }
3431 
3432   StringRef Name(Buffer.data(), Buffer.size());
3433   std::optional<char32_t> Match =
3434       llvm::sys::unicode::nameToCodepointStrict(Name);
3435   std::optional<llvm::sys::unicode::LooseMatchingResult> LooseMatch;
3436   if (!Match) {
3437     LooseMatch = llvm::sys::unicode::nameToCodepointLooseMatching(Name);
3438     if (Diagnose) {
3439       Diag(StartName, diag::err_invalid_ucn_name)
3440           << StringRef(Buffer.data(), Buffer.size())
3441           << makeCharRange(*this, StartName, CurPtr - CharSize);
3442       if (LooseMatch) {
3443         Diag(StartName, diag::note_invalid_ucn_name_loose_matching)
3444             << FixItHint::CreateReplacement(
3445                    makeCharRange(*this, StartName, CurPtr - CharSize),
3446                    LooseMatch->Name);
3447       }
3448     }
3449     // We do not offer misspelled character names suggestions here
3450     // as the set of what would be a valid suggestion depends on context,
3451     // and we should not make invalid suggestions.
3452   }
3453 
3454   if (Diagnose && Match)
3455     Diag(SlashLoc, PP->getLangOpts().CPlusPlus23
3456                        ? diag::warn_cxx23_delimited_escape_sequence
3457                        : diag::ext_delimited_escape_sequence)
3458         << /*named*/ 1 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3459 
3460   // If no diagnostic has been emitted yet, likely because we are doing a
3461   // tentative lexing, we do not want to recover here to make sure the token
3462   // will not be incorrectly considered valid. This function will be called
3463   // again and a diagnostic emitted then.
3464   if (LooseMatch && Diagnose)
3465     Match = LooseMatch->CodePoint;
3466 
3467   if (Result) {
3468     Result->setFlag(Token::HasUCN);
3469     // If the UCN contains either a trigraph or a line splicing,
3470     // we need to call getAndAdvanceChar again to set the appropriate flags
3471     // on Result.
3472     if (CurPtr - StartPtr == (ptrdiff_t)(Buffer.size() + 3))
3473       StartPtr = CurPtr;
3474     else
3475       while (StartPtr != CurPtr)
3476         (void)getAndAdvanceChar(StartPtr, *Result);
3477   } else {
3478     StartPtr = CurPtr;
3479   }
3480   return Match ? std::optional<uint32_t>(*Match) : std::nullopt;
3481 }
3482 
3483 uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
3484                            Token *Result) {
3485 
3486   unsigned CharSize;
3487   std::optional<uint32_t> CodePointOpt;
3488   char Kind = getCharAndSize(StartPtr, CharSize);
3489   if (Kind == 'u' || Kind == 'U')
3490     CodePointOpt = tryReadNumericUCN(StartPtr, SlashLoc, Result);
3491   else if (Kind == 'N')
3492     CodePointOpt = tryReadNamedUCN(StartPtr, SlashLoc, Result);
3493 
3494   if (!CodePointOpt)
3495     return 0;
3496 
3497   uint32_t CodePoint = *CodePointOpt;
3498 
3499   // Don't apply C family restrictions to UCNs in assembly mode
3500   if (LangOpts.AsmPreprocessor)
3501     return CodePoint;
3502 
3503   // C23 6.4.3p2: A universal character name shall not designate a code point
3504   // where the hexadecimal value is:
3505   // - in the range D800 through DFFF inclusive; or
3506   // - greater than 10FFFF.
3507   // A universal-character-name outside the c-char-sequence of a character
3508   // constant, or the s-char-sequence of a string-literal shall not designate
3509   // a control character or a character in the basic character set.
3510 
3511   // C++11 [lex.charset]p2: If the hexadecimal value for a
3512   //   universal-character-name corresponds to a surrogate code point (in the
3513   //   range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
3514   //   if the hexadecimal value for a universal-character-name outside the
3515   //   c-char-sequence, s-char-sequence, or r-char-sequence of a character or
3516   //   string literal corresponds to a control character (in either of the
3517   //   ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
3518   //   basic source character set, the program is ill-formed.
3519   if (CodePoint < 0xA0) {
3520     // We don't use isLexingRawMode() here because we need to warn about bad
3521     // UCNs even when skipping preprocessing tokens in a #if block.
3522     if (Result && PP) {
3523       if (CodePoint < 0x20 || CodePoint >= 0x7F)
3524         Diag(BufferPtr, diag::err_ucn_control_character);
3525       else {
3526         char C = static_cast<char>(CodePoint);
3527         Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
3528       }
3529     }
3530 
3531     return 0;
3532   } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
3533     // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
3534     // We don't use isLexingRawMode() here because we need to diagnose bad
3535     // UCNs even when skipping preprocessing tokens in a #if block.
3536     if (Result && PP) {
3537       if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
3538         Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
3539       else
3540         Diag(BufferPtr, diag::err_ucn_escape_invalid);
3541     }
3542     return 0;
3543   }
3544 
3545   return CodePoint;
3546 }
3547 
3548 bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
3549                                    const char *CurPtr) {
3550   if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
3551       isUnicodeWhitespace(C)) {
3552     Diag(BufferPtr, diag::ext_unicode_whitespace)
3553       << makeCharRange(*this, BufferPtr, CurPtr);
3554 
3555     Result.setFlag(Token::LeadingSpace);
3556     return true;
3557   }
3558   return false;
3559 }
3560 
3561 void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
3562   IsAtStartOfLine = Result.isAtStartOfLine();
3563   HasLeadingSpace = Result.hasLeadingSpace();
3564   HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
3565   // Note that this doesn't affect IsAtPhysicalStartOfLine.
3566 }
3567 
3568 bool Lexer::Lex(Token &Result) {
3569   assert(!isDependencyDirectivesLexer());
3570 
3571   // Start a new token.
3572   Result.startToken();
3573 
3574   // Set up misc whitespace flags for LexTokenInternal.
3575   if (IsAtStartOfLine) {
3576     Result.setFlag(Token::StartOfLine);
3577     IsAtStartOfLine = false;
3578   }
3579 
3580   if (HasLeadingSpace) {
3581     Result.setFlag(Token::LeadingSpace);
3582     HasLeadingSpace = false;
3583   }
3584 
3585   if (HasLeadingEmptyMacro) {
3586     Result.setFlag(Token::LeadingEmptyMacro);
3587     HasLeadingEmptyMacro = false;
3588   }
3589 
3590   bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3591   IsAtPhysicalStartOfLine = false;
3592   bool isRawLex = isLexingRawMode();
3593   (void) isRawLex;
3594   bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
3595   // (After the LexTokenInternal call, the lexer might be destroyed.)
3596   assert((returnedToken || !isRawLex) && "Raw lex must succeed");
3597   return returnedToken;
3598 }
3599 
3600 /// LexTokenInternal - This implements a simple C family lexer.  It is an
3601 /// extremely performance critical piece of code.  This assumes that the buffer
3602 /// has a null character at the end of the file.  This returns a preprocessing
3603 /// token, not a normal token, as such, it is an internal interface.  It assumes
3604 /// that the Flags of result have been cleared before calling this.
3605 bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
3606 LexStart:
3607   assert(!Result.needsCleaning() && "Result needs cleaning");
3608   assert(!Result.hasPtrData() && "Result has not been reset");
3609 
3610   // CurPtr - Cache BufferPtr in an automatic variable.
3611   const char *CurPtr = BufferPtr;
3612 
3613   // Small amounts of horizontal whitespace is very common between tokens.
3614   if (isHorizontalWhitespace(*CurPtr)) {
3615     do {
3616       ++CurPtr;
3617     } while (isHorizontalWhitespace(*CurPtr));
3618 
3619     // If we are keeping whitespace and other tokens, just return what we just
3620     // skipped.  The next lexer invocation will return the token after the
3621     // whitespace.
3622     if (isKeepWhitespaceMode()) {
3623       FormTokenWithChars(Result, CurPtr, tok::unknown);
3624       // FIXME: The next token will not have LeadingSpace set.
3625       return true;
3626     }
3627 
3628     BufferPtr = CurPtr;
3629     Result.setFlag(Token::LeadingSpace);
3630   }
3631 
3632   unsigned SizeTmp, SizeTmp2;   // Temporaries for use in cases below.
3633 
3634   // Read a character, advancing over it.
3635   char Char = getAndAdvanceChar(CurPtr, Result);
3636   tok::TokenKind Kind;
3637 
3638   if (!isVerticalWhitespace(Char))
3639     NewLinePtr = nullptr;
3640 
3641   switch (Char) {
3642   case 0:  // Null.
3643     // Found end of file?
3644     if (CurPtr-1 == BufferEnd)
3645       return LexEndOfFile(Result, CurPtr-1);
3646 
3647     // Check if we are performing code completion.
3648     if (isCodeCompletionPoint(CurPtr-1)) {
3649       // Return the code-completion token.
3650       Result.startToken();
3651       FormTokenWithChars(Result, CurPtr, tok::code_completion);
3652       return true;
3653     }
3654 
3655     if (!isLexingRawMode())
3656       Diag(CurPtr-1, diag::null_in_file);
3657     Result.setFlag(Token::LeadingSpace);
3658     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3659       return true; // KeepWhitespaceMode
3660 
3661     // We know the lexer hasn't changed, so just try again with this lexer.
3662     // (We manually eliminate the tail call to avoid recursion.)
3663     goto LexNextToken;
3664 
3665   case 26:  // DOS & CP/M EOF: "^Z".
3666     // If we're in Microsoft extensions mode, treat this as end of file.
3667     if (LangOpts.MicrosoftExt) {
3668       if (!isLexingRawMode())
3669         Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft);
3670       return LexEndOfFile(Result, CurPtr-1);
3671     }
3672 
3673     // If Microsoft extensions are disabled, this is just random garbage.
3674     Kind = tok::unknown;
3675     break;
3676 
3677   case '\r':
3678     if (CurPtr[0] == '\n')
3679       (void)getAndAdvanceChar(CurPtr, Result);
3680     [[fallthrough]];
3681   case '\n':
3682     // If we are inside a preprocessor directive and we see the end of line,
3683     // we know we are done with the directive, so return an EOD token.
3684     if (ParsingPreprocessorDirective) {
3685       // Done parsing the "line".
3686       ParsingPreprocessorDirective = false;
3687 
3688       // Restore comment saving mode, in case it was disabled for directive.
3689       if (PP)
3690         resetExtendedTokenMode();
3691 
3692       // Since we consumed a newline, we are back at the start of a line.
3693       IsAtStartOfLine = true;
3694       IsAtPhysicalStartOfLine = true;
3695       NewLinePtr = CurPtr - 1;
3696 
3697       Kind = tok::eod;
3698       break;
3699     }
3700 
3701     // No leading whitespace seen so far.
3702     Result.clearFlag(Token::LeadingSpace);
3703 
3704     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3705       return true; // KeepWhitespaceMode
3706 
3707     // We only saw whitespace, so just try again with this lexer.
3708     // (We manually eliminate the tail call to avoid recursion.)
3709     goto LexNextToken;
3710   case ' ':
3711   case '\t':
3712   case '\f':
3713   case '\v':
3714   SkipHorizontalWhitespace:
3715     Result.setFlag(Token::LeadingSpace);
3716     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3717       return true; // KeepWhitespaceMode
3718 
3719   SkipIgnoredUnits:
3720     CurPtr = BufferPtr;
3721 
3722     // If the next token is obviously a // or /* */ comment, skip it efficiently
3723     // too (without going through the big switch stmt).
3724     if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
3725         LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
3726       if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3727         return true; // There is a token to return.
3728       goto SkipIgnoredUnits;
3729     } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
3730       if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3731         return true; // There is a token to return.
3732       goto SkipIgnoredUnits;
3733     } else if (isHorizontalWhitespace(*CurPtr)) {
3734       goto SkipHorizontalWhitespace;
3735     }
3736     // We only saw whitespace, so just try again with this lexer.
3737     // (We manually eliminate the tail call to avoid recursion.)
3738     goto LexNextToken;
3739 
3740   // C99 6.4.4.1: Integer Constants.
3741   // C99 6.4.4.2: Floating Constants.
3742   case '0': case '1': case '2': case '3': case '4':
3743   case '5': case '6': case '7': case '8': case '9':
3744     // Notify MIOpt that we read a non-whitespace/non-comment token.
3745     MIOpt.ReadToken();
3746     return LexNumericConstant(Result, CurPtr);
3747 
3748   // Identifier (e.g., uber), or
3749   // UTF-8 (C23/C++17) or UTF-16 (C11/C++11) character literal, or
3750   // UTF-8 or UTF-16 string literal (C11/C++11).
3751   case 'u':
3752     // Notify MIOpt that we read a non-whitespace/non-comment token.
3753     MIOpt.ReadToken();
3754 
3755     if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3756       Char = getCharAndSize(CurPtr, SizeTmp);
3757 
3758       // UTF-16 string literal
3759       if (Char == '"')
3760         return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3761                                 tok::utf16_string_literal);
3762 
3763       // UTF-16 character constant
3764       if (Char == '\'')
3765         return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3766                                tok::utf16_char_constant);
3767 
3768       // UTF-16 raw string literal
3769       if (Char == 'R' && LangOpts.CPlusPlus11 &&
3770           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3771         return LexRawStringLiteral(Result,
3772                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3773                                            SizeTmp2, Result),
3774                                tok::utf16_string_literal);
3775 
3776       if (Char == '8') {
3777         char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
3778 
3779         // UTF-8 string literal
3780         if (Char2 == '"')
3781           return LexStringLiteral(Result,
3782                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3783                                            SizeTmp2, Result),
3784                                tok::utf8_string_literal);
3785         if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C23))
3786           return LexCharConstant(
3787               Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3788                                   SizeTmp2, Result),
3789               tok::utf8_char_constant);
3790 
3791         if (Char2 == 'R' && LangOpts.CPlusPlus11) {
3792           unsigned SizeTmp3;
3793           char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
3794           // UTF-8 raw string literal
3795           if (Char3 == '"') {
3796             return LexRawStringLiteral(Result,
3797                    ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3798                                            SizeTmp2, Result),
3799                                SizeTmp3, Result),
3800                    tok::utf8_string_literal);
3801           }
3802         }
3803       }
3804     }
3805 
3806     // treat u like the start of an identifier.
3807     return LexIdentifierContinue(Result, CurPtr);
3808 
3809   case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal
3810     // Notify MIOpt that we read a non-whitespace/non-comment token.
3811     MIOpt.ReadToken();
3812 
3813     if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3814       Char = getCharAndSize(CurPtr, SizeTmp);
3815 
3816       // UTF-32 string literal
3817       if (Char == '"')
3818         return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3819                                 tok::utf32_string_literal);
3820 
3821       // UTF-32 character constant
3822       if (Char == '\'')
3823         return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3824                                tok::utf32_char_constant);
3825 
3826       // UTF-32 raw string literal
3827       if (Char == 'R' && LangOpts.CPlusPlus11 &&
3828           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3829         return LexRawStringLiteral(Result,
3830                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3831                                            SizeTmp2, Result),
3832                                tok::utf32_string_literal);
3833     }
3834 
3835     // treat U like the start of an identifier.
3836     return LexIdentifierContinue(Result, CurPtr);
3837 
3838   case 'R': // Identifier or C++0x raw string literal
3839     // Notify MIOpt that we read a non-whitespace/non-comment token.
3840     MIOpt.ReadToken();
3841 
3842     if (LangOpts.CPlusPlus11) {
3843       Char = getCharAndSize(CurPtr, SizeTmp);
3844 
3845       if (Char == '"')
3846         return LexRawStringLiteral(Result,
3847                                    ConsumeChar(CurPtr, SizeTmp, Result),
3848                                    tok::string_literal);
3849     }
3850 
3851     // treat R like the start of an identifier.
3852     return LexIdentifierContinue(Result, CurPtr);
3853 
3854   case 'L':   // Identifier (Loony) or wide literal (L'x' or L"xyz").
3855     // Notify MIOpt that we read a non-whitespace/non-comment token.
3856     MIOpt.ReadToken();
3857     Char = getCharAndSize(CurPtr, SizeTmp);
3858 
3859     // Wide string literal.
3860     if (Char == '"')
3861       return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3862                               tok::wide_string_literal);
3863 
3864     // Wide raw string literal.
3865     if (LangOpts.CPlusPlus11 && Char == 'R' &&
3866         getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3867       return LexRawStringLiteral(Result,
3868                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3869                                            SizeTmp2, Result),
3870                                tok::wide_string_literal);
3871 
3872     // Wide character constant.
3873     if (Char == '\'')
3874       return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3875                              tok::wide_char_constant);
3876     // FALL THROUGH, treating L like the start of an identifier.
3877     [[fallthrough]];
3878 
3879   // C99 6.4.2: Identifiers.
3880   case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
3881   case 'H': case 'I': case 'J': case 'K':    /*'L'*/case 'M': case 'N':
3882   case 'O': case 'P': case 'Q':    /*'R'*/case 'S': case 'T':    /*'U'*/
3883   case 'V': case 'W': case 'X': case 'Y': case 'Z':
3884   case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
3885   case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
3886   case 'o': case 'p': case 'q': case 'r': case 's': case 't':    /*'u'*/
3887   case 'v': case 'w': case 'x': case 'y': case 'z':
3888   case '_':
3889     // Notify MIOpt that we read a non-whitespace/non-comment token.
3890     MIOpt.ReadToken();
3891     return LexIdentifierContinue(Result, CurPtr);
3892 
3893   case '$':   // $ in identifiers.
3894     if (LangOpts.DollarIdents) {
3895       if (!isLexingRawMode())
3896         Diag(CurPtr-1, diag::ext_dollar_in_identifier);
3897       // Notify MIOpt that we read a non-whitespace/non-comment token.
3898       MIOpt.ReadToken();
3899       return LexIdentifierContinue(Result, CurPtr);
3900     }
3901 
3902     Kind = tok::unknown;
3903     break;
3904 
3905   // C99 6.4.4: Character Constants.
3906   case '\'':
3907     // Notify MIOpt that we read a non-whitespace/non-comment token.
3908     MIOpt.ReadToken();
3909     return LexCharConstant(Result, CurPtr, tok::char_constant);
3910 
3911   // C99 6.4.5: String Literals.
3912   case '"':
3913     // Notify MIOpt that we read a non-whitespace/non-comment token.
3914     MIOpt.ReadToken();
3915     return LexStringLiteral(Result, CurPtr,
3916                             ParsingFilename ? tok::header_name
3917                                             : tok::string_literal);
3918 
3919   // C99 6.4.6: Punctuators.
3920   case '?':
3921     Kind = tok::question;
3922     break;
3923   case '[':
3924     Kind = tok::l_square;
3925     break;
3926   case ']':
3927     Kind = tok::r_square;
3928     break;
3929   case '(':
3930     Kind = tok::l_paren;
3931     break;
3932   case ')':
3933     Kind = tok::r_paren;
3934     break;
3935   case '{':
3936     Kind = tok::l_brace;
3937     break;
3938   case '}':
3939     Kind = tok::r_brace;
3940     break;
3941   case '.':
3942     Char = getCharAndSize(CurPtr, SizeTmp);
3943     if (Char >= '0' && Char <= '9') {
3944       // Notify MIOpt that we read a non-whitespace/non-comment token.
3945       MIOpt.ReadToken();
3946 
3947       return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
3948     } else if (LangOpts.CPlusPlus && Char == '*') {
3949       Kind = tok::periodstar;
3950       CurPtr += SizeTmp;
3951     } else if (Char == '.' &&
3952                getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
3953       Kind = tok::ellipsis;
3954       CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3955                            SizeTmp2, Result);
3956     } else {
3957       Kind = tok::period;
3958     }
3959     break;
3960   case '&':
3961     Char = getCharAndSize(CurPtr, SizeTmp);
3962     if (Char == '&') {
3963       Kind = tok::ampamp;
3964       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3965     } else if (Char == '=') {
3966       Kind = tok::ampequal;
3967       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3968     } else {
3969       Kind = tok::amp;
3970     }
3971     break;
3972   case '*':
3973     if (getCharAndSize(CurPtr, SizeTmp) == '=') {
3974       Kind = tok::starequal;
3975       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3976     } else {
3977       Kind = tok::star;
3978     }
3979     break;
3980   case '+':
3981     Char = getCharAndSize(CurPtr, SizeTmp);
3982     if (Char == '+') {
3983       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3984       Kind = tok::plusplus;
3985     } else if (Char == '=') {
3986       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3987       Kind = tok::plusequal;
3988     } else {
3989       Kind = tok::plus;
3990     }
3991     break;
3992   case '-':
3993     Char = getCharAndSize(CurPtr, SizeTmp);
3994     if (Char == '-') {      // --
3995       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3996       Kind = tok::minusminus;
3997     } else if (Char == '>' && LangOpts.CPlusPlus &&
3998                getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') {  // C++ ->*
3999       CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4000                            SizeTmp2, Result);
4001       Kind = tok::arrowstar;
4002     } else if (Char == '>') {   // ->
4003       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4004       Kind = tok::arrow;
4005     } else if (Char == '=') {   // -=
4006       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4007       Kind = tok::minusequal;
4008     } else {
4009       Kind = tok::minus;
4010     }
4011     break;
4012   case '~':
4013     Kind = tok::tilde;
4014     break;
4015   case '!':
4016     if (getCharAndSize(CurPtr, SizeTmp) == '=') {
4017       Kind = tok::exclaimequal;
4018       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4019     } else {
4020       Kind = tok::exclaim;
4021     }
4022     break;
4023   case '/':
4024     // 6.4.9: Comments
4025     Char = getCharAndSize(CurPtr, SizeTmp);
4026     if (Char == '/') {         // Line comment.
4027       // Even if Line comments are disabled (e.g. in C89 mode), we generally
4028       // want to lex this as a comment.  There is one problem with this though,
4029       // that in one particular corner case, this can change the behavior of the
4030       // resultant program.  For example, In  "foo //**/ bar", C89 would lex
4031       // this as "foo / bar" and languages with Line comments would lex it as
4032       // "foo".  Check to see if the character after the second slash is a '*'.
4033       // If so, we will lex that as a "/" instead of the start of a comment.
4034       // However, we never do this if we are just preprocessing.
4035       bool TreatAsComment =
4036           LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
4037       if (!TreatAsComment)
4038         if (!(PP && PP->isPreprocessedOutput()))
4039           TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
4040 
4041       if (TreatAsComment) {
4042         if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4043                             TokAtPhysicalStartOfLine))
4044           return true; // There is a token to return.
4045 
4046         // It is common for the tokens immediately after a // comment to be
4047         // whitespace (indentation for the next line).  Instead of going through
4048         // the big switch, handle it efficiently now.
4049         goto SkipIgnoredUnits;
4050       }
4051     }
4052 
4053     if (Char == '*') {  // /**/ comment.
4054       if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4055                            TokAtPhysicalStartOfLine))
4056         return true; // There is a token to return.
4057 
4058       // We only saw whitespace, so just try again with this lexer.
4059       // (We manually eliminate the tail call to avoid recursion.)
4060       goto LexNextToken;
4061     }
4062 
4063     if (Char == '=') {
4064       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4065       Kind = tok::slashequal;
4066     } else {
4067       Kind = tok::slash;
4068     }
4069     break;
4070   case '%':
4071     Char = getCharAndSize(CurPtr, SizeTmp);
4072     if (Char == '=') {
4073       Kind = tok::percentequal;
4074       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4075     } else if (LangOpts.Digraphs && Char == '>') {
4076       Kind = tok::r_brace;                             // '%>' -> '}'
4077       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4078     } else if (LangOpts.Digraphs && Char == ':') {
4079       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4080       Char = getCharAndSize(CurPtr, SizeTmp);
4081       if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
4082         Kind = tok::hashhash;                          // '%:%:' -> '##'
4083         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4084                              SizeTmp2, Result);
4085       } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
4086         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4087         if (!isLexingRawMode())
4088           Diag(BufferPtr, diag::ext_charize_microsoft);
4089         Kind = tok::hashat;
4090       } else {                                         // '%:' -> '#'
4091         // We parsed a # character.  If this occurs at the start of the line,
4092         // it's actually the start of a preprocessing directive.  Callback to
4093         // the preprocessor to handle it.
4094         // TODO: -fpreprocessed mode??
4095         if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4096           goto HandleDirective;
4097 
4098         Kind = tok::hash;
4099       }
4100     } else {
4101       Kind = tok::percent;
4102     }
4103     break;
4104   case '<':
4105     Char = getCharAndSize(CurPtr, SizeTmp);
4106     if (ParsingFilename) {
4107       return LexAngledStringLiteral(Result, CurPtr);
4108     } else if (Char == '<') {
4109       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4110       if (After == '=') {
4111         Kind = tok::lesslessequal;
4112         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4113                              SizeTmp2, Result);
4114       } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
4115         // If this is actually a '<<<<<<<' version control conflict marker,
4116         // recognize it as such and recover nicely.
4117         goto LexNextToken;
4118       } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
4119         // If this is '<<<<' and we're in a Perforce-style conflict marker,
4120         // ignore it.
4121         goto LexNextToken;
4122       } else if (LangOpts.CUDA && After == '<') {
4123         Kind = tok::lesslessless;
4124         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4125                              SizeTmp2, Result);
4126       } else {
4127         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4128         Kind = tok::lessless;
4129       }
4130     } else if (Char == '=') {
4131       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4132       if (After == '>') {
4133         if (LangOpts.CPlusPlus20) {
4134           if (!isLexingRawMode())
4135             Diag(BufferPtr, diag::warn_cxx17_compat_spaceship);
4136           CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4137                                SizeTmp2, Result);
4138           Kind = tok::spaceship;
4139           break;
4140         }
4141         // Suggest adding a space between the '<=' and the '>' to avoid a
4142         // change in semantics if this turns up in C++ <=17 mode.
4143         if (LangOpts.CPlusPlus && !isLexingRawMode()) {
4144           Diag(BufferPtr, diag::warn_cxx20_compat_spaceship)
4145             << FixItHint::CreateInsertion(
4146                    getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " ");
4147         }
4148       }
4149       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4150       Kind = tok::lessequal;
4151     } else if (LangOpts.Digraphs && Char == ':') {     // '<:' -> '['
4152       if (LangOpts.CPlusPlus11 &&
4153           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
4154         // C++0x [lex.pptoken]p3:
4155         //  Otherwise, if the next three characters are <:: and the subsequent
4156         //  character is neither : nor >, the < is treated as a preprocessor
4157         //  token by itself and not as the first character of the alternative
4158         //  token <:.
4159         unsigned SizeTmp3;
4160         char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
4161         if (After != ':' && After != '>') {
4162           Kind = tok::less;
4163           if (!isLexingRawMode())
4164             Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
4165           break;
4166         }
4167       }
4168 
4169       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4170       Kind = tok::l_square;
4171     } else if (LangOpts.Digraphs && Char == '%') {     // '<%' -> '{'
4172       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4173       Kind = tok::l_brace;
4174     } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 &&
4175                lexEditorPlaceholder(Result, CurPtr)) {
4176       return true;
4177     } else {
4178       Kind = tok::less;
4179     }
4180     break;
4181   case '>':
4182     Char = getCharAndSize(CurPtr, SizeTmp);
4183     if (Char == '=') {
4184       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4185       Kind = tok::greaterequal;
4186     } else if (Char == '>') {
4187       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4188       if (After == '=') {
4189         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4190                              SizeTmp2, Result);
4191         Kind = tok::greatergreaterequal;
4192       } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
4193         // If this is actually a '>>>>' conflict marker, recognize it as such
4194         // and recover nicely.
4195         goto LexNextToken;
4196       } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
4197         // If this is '>>>>>>>' and we're in a conflict marker, ignore it.
4198         goto LexNextToken;
4199       } else if (LangOpts.CUDA && After == '>') {
4200         Kind = tok::greatergreatergreater;
4201         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4202                              SizeTmp2, Result);
4203       } else {
4204         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4205         Kind = tok::greatergreater;
4206       }
4207     } else {
4208       Kind = tok::greater;
4209     }
4210     break;
4211   case '^':
4212     Char = getCharAndSize(CurPtr, SizeTmp);
4213     if (Char == '=') {
4214       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4215       Kind = tok::caretequal;
4216     } else if (LangOpts.OpenCL && Char == '^') {
4217       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4218       Kind = tok::caretcaret;
4219     } else {
4220       Kind = tok::caret;
4221     }
4222     break;
4223   case '|':
4224     Char = getCharAndSize(CurPtr, SizeTmp);
4225     if (Char == '=') {
4226       Kind = tok::pipeequal;
4227       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4228     } else if (Char == '|') {
4229       // If this is '|||||||' and we're in a conflict marker, ignore it.
4230       if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
4231         goto LexNextToken;
4232       Kind = tok::pipepipe;
4233       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4234     } else {
4235       Kind = tok::pipe;
4236     }
4237     break;
4238   case ':':
4239     Char = getCharAndSize(CurPtr, SizeTmp);
4240     if (LangOpts.Digraphs && Char == '>') {
4241       Kind = tok::r_square; // ':>' -> ']'
4242       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4243     } else if (Char == ':') {
4244       Kind = tok::coloncolon;
4245       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4246     } else {
4247       Kind = tok::colon;
4248     }
4249     break;
4250   case ';':
4251     Kind = tok::semi;
4252     break;
4253   case '=':
4254     Char = getCharAndSize(CurPtr, SizeTmp);
4255     if (Char == '=') {
4256       // If this is '====' and we're in a conflict marker, ignore it.
4257       if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
4258         goto LexNextToken;
4259 
4260       Kind = tok::equalequal;
4261       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4262     } else {
4263       Kind = tok::equal;
4264     }
4265     break;
4266   case ',':
4267     Kind = tok::comma;
4268     break;
4269   case '#':
4270     Char = getCharAndSize(CurPtr, SizeTmp);
4271     if (Char == '#') {
4272       Kind = tok::hashhash;
4273       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4274     } else if (Char == '@' && LangOpts.MicrosoftExt) {  // #@ -> Charize
4275       Kind = tok::hashat;
4276       if (!isLexingRawMode())
4277         Diag(BufferPtr, diag::ext_charize_microsoft);
4278       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4279     } else {
4280       // We parsed a # character.  If this occurs at the start of the line,
4281       // it's actually the start of a preprocessing directive.  Callback to
4282       // the preprocessor to handle it.
4283       // TODO: -fpreprocessed mode??
4284       if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4285         goto HandleDirective;
4286 
4287       Kind = tok::hash;
4288     }
4289     break;
4290 
4291   case '@':
4292     // Objective C support.
4293     if (CurPtr[-1] == '@' && LangOpts.ObjC)
4294       Kind = tok::at;
4295     else
4296       Kind = tok::unknown;
4297     break;
4298 
4299   // UCNs (C99 6.4.3, C++11 [lex.charset]p2)
4300   case '\\':
4301     if (!LangOpts.AsmPreprocessor) {
4302       if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
4303         if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4304           if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4305             return true; // KeepWhitespaceMode
4306 
4307           // We only saw whitespace, so just try again with this lexer.
4308           // (We manually eliminate the tail call to avoid recursion.)
4309           goto LexNextToken;
4310         }
4311 
4312         return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4313       }
4314     }
4315 
4316     Kind = tok::unknown;
4317     break;
4318 
4319   default: {
4320     if (isASCII(Char)) {
4321       Kind = tok::unknown;
4322       break;
4323     }
4324 
4325     llvm::UTF32 CodePoint;
4326 
4327     // We can't just reset CurPtr to BufferPtr because BufferPtr may point to
4328     // an escaped newline.
4329     --CurPtr;
4330     llvm::ConversionResult Status =
4331         llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr,
4332                                   (const llvm::UTF8 *)BufferEnd,
4333                                   &CodePoint,
4334                                   llvm::strictConversion);
4335     if (Status == llvm::conversionOK) {
4336       if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4337         if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4338           return true; // KeepWhitespaceMode
4339 
4340         // We only saw whitespace, so just try again with this lexer.
4341         // (We manually eliminate the tail call to avoid recursion.)
4342         goto LexNextToken;
4343       }
4344       return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4345     }
4346 
4347     if (isLexingRawMode() || ParsingPreprocessorDirective ||
4348         PP->isPreprocessedOutput()) {
4349       ++CurPtr;
4350       Kind = tok::unknown;
4351       break;
4352     }
4353 
4354     // Non-ASCII characters tend to creep into source code unintentionally.
4355     // Instead of letting the parser complain about the unknown token,
4356     // just diagnose the invalid UTF-8, then drop the character.
4357     Diag(CurPtr, diag::err_invalid_utf8);
4358 
4359     BufferPtr = CurPtr+1;
4360     // We're pretending the character didn't exist, so just try again with
4361     // this lexer.
4362     // (We manually eliminate the tail call to avoid recursion.)
4363     goto LexNextToken;
4364   }
4365   }
4366 
4367   // Notify MIOpt that we read a non-whitespace/non-comment token.
4368   MIOpt.ReadToken();
4369 
4370   // Update the location of token as well as BufferPtr.
4371   FormTokenWithChars(Result, CurPtr, Kind);
4372   return true;
4373 
4374 HandleDirective:
4375   // We parsed a # character and it's the start of a preprocessing directive.
4376 
4377   FormTokenWithChars(Result, CurPtr, tok::hash);
4378   PP->HandleDirective(Result);
4379 
4380   if (PP->hadModuleLoaderFatalFailure())
4381     // With a fatal failure in the module loader, we abort parsing.
4382     return true;
4383 
4384   // We parsed the directive; lex a token with the new state.
4385   return false;
4386 
4387 LexNextToken:
4388   Result.clearFlag(Token::NeedsCleaning);
4389   goto LexStart;
4390 }
4391 
4392 const char *Lexer::convertDependencyDirectiveToken(
4393     const dependency_directives_scan::Token &DDTok, Token &Result) {
4394   const char *TokPtr = BufferStart + DDTok.Offset;
4395   Result.startToken();
4396   Result.setLocation(getSourceLocation(TokPtr));
4397   Result.setKind(DDTok.Kind);
4398   Result.setFlag((Token::TokenFlags)DDTok.Flags);
4399   Result.setLength(DDTok.Length);
4400   BufferPtr = TokPtr + DDTok.Length;
4401   return TokPtr;
4402 }
4403 
4404 bool Lexer::LexDependencyDirectiveToken(Token &Result) {
4405   assert(isDependencyDirectivesLexer());
4406 
4407   using namespace dependency_directives_scan;
4408 
4409   while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) {
4410     if (DepDirectives.front().Kind == pp_eof)
4411       return LexEndOfFile(Result, BufferEnd);
4412     if (DepDirectives.front().Kind == tokens_present_before_eof)
4413       MIOpt.ReadToken();
4414     NextDepDirectiveTokenIndex = 0;
4415     DepDirectives = DepDirectives.drop_front();
4416   }
4417 
4418   const dependency_directives_scan::Token &DDTok =
4419       DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++];
4420   if (NextDepDirectiveTokenIndex > 1 || DDTok.Kind != tok::hash) {
4421     // Read something other than a preprocessor directive hash.
4422     MIOpt.ReadToken();
4423   }
4424 
4425   if (ParsingFilename && DDTok.is(tok::less)) {
4426     BufferPtr = BufferStart + DDTok.Offset;
4427     LexAngledStringLiteral(Result, BufferPtr + 1);
4428     if (Result.isNot(tok::header_name))
4429       return true;
4430     // Advance the index of lexed tokens.
4431     while (true) {
4432       const dependency_directives_scan::Token &NextTok =
4433           DepDirectives.front().Tokens[NextDepDirectiveTokenIndex];
4434       if (BufferStart + NextTok.Offset >= BufferPtr)
4435         break;
4436       ++NextDepDirectiveTokenIndex;
4437     }
4438     return true;
4439   }
4440 
4441   const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result);
4442 
4443   if (Result.is(tok::hash) && Result.isAtStartOfLine()) {
4444     PP->HandleDirective(Result);
4445     return false;
4446   }
4447   if (Result.is(tok::raw_identifier)) {
4448     Result.setRawIdentifierData(TokPtr);
4449     if (!isLexingRawMode()) {
4450       IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
4451       if (II->isHandleIdentifierCase())
4452         return PP->HandleIdentifier(Result);
4453     }
4454     return true;
4455   }
4456   if (Result.isLiteral()) {
4457     Result.setLiteralData(TokPtr);
4458     return true;
4459   }
4460   if (Result.is(tok::colon)) {
4461     // Convert consecutive colons to 'tok::coloncolon'.
4462     if (*BufferPtr == ':') {
4463       assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
4464           tok::colon));
4465       ++NextDepDirectiveTokenIndex;
4466       Result.setKind(tok::coloncolon);
4467     }
4468     return true;
4469   }
4470   if (Result.is(tok::eod))
4471     ParsingPreprocessorDirective = false;
4472 
4473   return true;
4474 }
4475 
4476 bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) {
4477   assert(isDependencyDirectivesLexer());
4478 
4479   using namespace dependency_directives_scan;
4480 
4481   bool Stop = false;
4482   unsigned NestedIfs = 0;
4483   do {
4484     DepDirectives = DepDirectives.drop_front();
4485     switch (DepDirectives.front().Kind) {
4486     case pp_none:
4487       llvm_unreachable("unexpected 'pp_none'");
4488     case pp_include:
4489     case pp___include_macros:
4490     case pp_define:
4491     case pp_undef:
4492     case pp_import:
4493     case pp_pragma_import:
4494     case pp_pragma_once:
4495     case pp_pragma_push_macro:
4496     case pp_pragma_pop_macro:
4497     case pp_pragma_include_alias:
4498     case pp_pragma_system_header:
4499     case pp_include_next:
4500     case decl_at_import:
4501     case cxx_module_decl:
4502     case cxx_import_decl:
4503     case cxx_export_module_decl:
4504     case cxx_export_import_decl:
4505     case tokens_present_before_eof:
4506       break;
4507     case pp_if:
4508     case pp_ifdef:
4509     case pp_ifndef:
4510       ++NestedIfs;
4511       break;
4512     case pp_elif:
4513     case pp_elifdef:
4514     case pp_elifndef:
4515     case pp_else:
4516       if (!NestedIfs) {
4517         Stop = true;
4518       }
4519       break;
4520     case pp_endif:
4521       if (!NestedIfs) {
4522         Stop = true;
4523       } else {
4524         --NestedIfs;
4525       }
4526       break;
4527     case pp_eof:
4528       NextDepDirectiveTokenIndex = 0;
4529       return LexEndOfFile(Result, BufferEnd);
4530     }
4531   } while (!Stop);
4532 
4533   const dependency_directives_scan::Token &DDTok =
4534       DepDirectives.front().Tokens.front();
4535   assert(DDTok.is(tok::hash));
4536   NextDepDirectiveTokenIndex = 1;
4537 
4538   convertDependencyDirectiveToken(DDTok, Result);
4539   return false;
4540 }
4541