1 //===------ Interpreter.cpp - Incremental Compilation and Execution -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the component which performs incremental code 10 // compilation and execution. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DeviceOffload.h" 15 #include "IncrementalExecutor.h" 16 #include "IncrementalParser.h" 17 #include "InterpreterUtils.h" 18 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Mangle.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/DiagnosticSema.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CodeGenAction.h" 25 #include "clang/CodeGen/ModuleBuilder.h" 26 #include "clang/CodeGen/ObjectFilePCHContainerOperations.h" 27 #include "clang/Driver/Compilation.h" 28 #include "clang/Driver/Driver.h" 29 #include "clang/Driver/Job.h" 30 #include "clang/Driver/Options.h" 31 #include "clang/Driver/Tool.h" 32 #include "clang/Frontend/CompilerInstance.h" 33 #include "clang/Frontend/TextDiagnosticBuffer.h" 34 #include "clang/Interpreter/Interpreter.h" 35 #include "clang/Interpreter/Value.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "clang/Sema/Lookup.h" 38 #include "llvm/ExecutionEngine/JITSymbol.h" 39 #include "llvm/ExecutionEngine/Orc/LLJIT.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/TargetParser/Host.h" 45 using namespace clang; 46 47 // FIXME: Figure out how to unify with namespace init_convenience from 48 // tools/clang-import-test/clang-import-test.cpp 49 namespace { 50 /// Retrieves the clang CC1 specific flags out of the compilation's jobs. 51 /// \returns NULL on error. 52 static llvm::Expected<const llvm::opt::ArgStringList *> 53 GetCC1Arguments(DiagnosticsEngine *Diagnostics, 54 driver::Compilation *Compilation) { 55 // We expect to get back exactly one Command job, if we didn't something 56 // failed. Extract that job from the Compilation. 57 const driver::JobList &Jobs = Compilation->getJobs(); 58 if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin())) 59 return llvm::createStringError(llvm::errc::not_supported, 60 "Driver initialization failed. " 61 "Unable to create a driver job"); 62 63 // The one job we find should be to invoke clang again. 64 const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin())); 65 if (llvm::StringRef(Cmd->getCreator().getName()) != "clang") 66 return llvm::createStringError(llvm::errc::not_supported, 67 "Driver initialization failed"); 68 69 return &Cmd->getArguments(); 70 } 71 72 static llvm::Expected<std::unique_ptr<CompilerInstance>> 73 CreateCI(const llvm::opt::ArgStringList &Argv) { 74 std::unique_ptr<CompilerInstance> Clang(new CompilerInstance()); 75 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 76 77 // Register the support for object-file-wrapped Clang modules. 78 // FIXME: Clang should register these container operations automatically. 79 auto PCHOps = Clang->getPCHContainerOperations(); 80 PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>()); 81 PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>()); 82 83 // Buffer diagnostics from argument parsing so that we can output them using 84 // a well formed diagnostic object. 85 IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions(); 86 TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; 87 DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); 88 bool Success = CompilerInvocation::CreateFromArgs( 89 Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags); 90 91 // Infer the builtin include path if unspecified. 92 if (Clang->getHeaderSearchOpts().UseBuiltinIncludes && 93 Clang->getHeaderSearchOpts().ResourceDir.empty()) 94 Clang->getHeaderSearchOpts().ResourceDir = 95 CompilerInvocation::GetResourcesPath(Argv[0], nullptr); 96 97 // Create the actual diagnostics engine. 98 Clang->createDiagnostics(); 99 if (!Clang->hasDiagnostics()) 100 return llvm::createStringError(llvm::errc::not_supported, 101 "Initialization failed. " 102 "Unable to create diagnostics engine"); 103 104 DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics()); 105 if (!Success) 106 return llvm::createStringError(llvm::errc::not_supported, 107 "Initialization failed. " 108 "Unable to flush diagnostics"); 109 110 // FIXME: Merge with CompilerInstance::ExecuteAction. 111 llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release(); 112 Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB); 113 114 Clang->setTarget(TargetInfo::CreateTargetInfo( 115 Clang->getDiagnostics(), Clang->getInvocation().TargetOpts)); 116 if (!Clang->hasTarget()) 117 return llvm::createStringError(llvm::errc::not_supported, 118 "Initialization failed. " 119 "Target is missing"); 120 121 Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts()); 122 123 // Don't clear the AST before backend codegen since we do codegen multiple 124 // times, reusing the same AST. 125 Clang->getCodeGenOpts().ClearASTBeforeBackend = false; 126 127 Clang->getFrontendOpts().DisableFree = false; 128 Clang->getCodeGenOpts().DisableFree = false; 129 return std::move(Clang); 130 } 131 132 } // anonymous namespace 133 134 llvm::Expected<std::unique_ptr<CompilerInstance>> 135 IncrementalCompilerBuilder::create(std::string TT, 136 std::vector<const char *> &ClangArgv) { 137 138 // If we don't know ClangArgv0 or the address of main() at this point, try 139 // to guess it anyway (it's possible on some platforms). 140 std::string MainExecutableName = 141 llvm::sys::fs::getMainExecutable(nullptr, nullptr); 142 143 ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str()); 144 145 // Prepending -c to force the driver to do something if no action was 146 // specified. By prepending we allow users to override the default 147 // action and use other actions in incremental mode. 148 // FIXME: Print proper driver diagnostics if the driver flags are wrong. 149 // We do C++ by default; append right after argv[0] if no "-x" given 150 ClangArgv.insert(ClangArgv.end(), "-Xclang"); 151 ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions"); 152 ClangArgv.insert(ClangArgv.end(), "-c"); 153 154 // Put a dummy C++ file on to ensure there's at least one compile job for the 155 // driver to construct. 156 ClangArgv.push_back("<<< inputs >>>"); 157 158 // Buffer diagnostics from argument parsing so that we can output them using a 159 // well formed diagnostic object. 160 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 161 IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = 162 CreateAndPopulateDiagOpts(ClangArgv); 163 TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; 164 DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); 165 166 driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags); 167 Driver.setCheckInputsExist(false); // the input comes from mem buffers 168 llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv); 169 std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF)); 170 171 if (Compilation->getArgs().hasArg(driver::options::OPT_v)) 172 Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false); 173 174 auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get()); 175 if (auto Err = ErrOrCC1Args.takeError()) 176 return std::move(Err); 177 178 return CreateCI(**ErrOrCC1Args); 179 } 180 181 llvm::Expected<std::unique_ptr<CompilerInstance>> 182 IncrementalCompilerBuilder::CreateCpp() { 183 std::vector<const char *> Argv; 184 Argv.reserve(5 + 1 + UserArgs.size()); 185 Argv.push_back("-xc++"); 186 Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end()); 187 188 std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple(); 189 return IncrementalCompilerBuilder::create(TT, Argv); 190 } 191 192 llvm::Expected<std::unique_ptr<CompilerInstance>> 193 IncrementalCompilerBuilder::createCuda(bool device) { 194 std::vector<const char *> Argv; 195 Argv.reserve(5 + 4 + UserArgs.size()); 196 197 Argv.push_back("-xcuda"); 198 if (device) 199 Argv.push_back("--cuda-device-only"); 200 else 201 Argv.push_back("--cuda-host-only"); 202 203 std::string SDKPathArg = "--cuda-path="; 204 if (!CudaSDKPath.empty()) { 205 SDKPathArg += CudaSDKPath; 206 Argv.push_back(SDKPathArg.c_str()); 207 } 208 209 std::string ArchArg = "--offload-arch="; 210 if (!OffloadArch.empty()) { 211 ArchArg += OffloadArch; 212 Argv.push_back(ArchArg.c_str()); 213 } 214 215 Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end()); 216 217 std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple(); 218 return IncrementalCompilerBuilder::create(TT, Argv); 219 } 220 221 llvm::Expected<std::unique_ptr<CompilerInstance>> 222 IncrementalCompilerBuilder::CreateCudaDevice() { 223 return IncrementalCompilerBuilder::createCuda(true); 224 } 225 226 llvm::Expected<std::unique_ptr<CompilerInstance>> 227 IncrementalCompilerBuilder::CreateCudaHost() { 228 return IncrementalCompilerBuilder::createCuda(false); 229 } 230 231 Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI, 232 llvm::Error &Err) { 233 llvm::ErrorAsOutParameter EAO(&Err); 234 auto LLVMCtx = std::make_unique<llvm::LLVMContext>(); 235 TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx)); 236 IncrParser = std::make_unique<IncrementalParser>(*this, std::move(CI), 237 *TSCtx->getContext(), Err); 238 } 239 240 Interpreter::~Interpreter() { 241 if (IncrExecutor) { 242 if (llvm::Error Err = IncrExecutor->cleanUp()) 243 llvm::report_fatal_error( 244 llvm::Twine("Failed to clean up IncrementalExecutor: ") + 245 toString(std::move(Err))); 246 } 247 } 248 249 // These better to put in a runtime header but we can't. This is because we 250 // can't find the precise resource directory in unittests so we have to hard 251 // code them. 252 const char *const Runtimes = R"( 253 #ifdef __cplusplus 254 void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*); 255 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*); 256 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, void*); 257 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, float); 258 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, double); 259 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, long double); 260 void __clang_Interpreter_SetValueNoAlloc(void*,void*,void*,unsigned long long); 261 struct __clang_Interpreter_NewTag{} __ci_newtag; 262 void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept; 263 template <class T, class = T (*)() /*disable for arrays*/> 264 void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) { 265 for (auto Idx = 0; Idx < Size; ++Idx) 266 new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]); 267 } 268 template <class T, unsigned long N> 269 void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) { 270 __clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size); 271 } 272 #endif // __cplusplus 273 )"; 274 275 llvm::Expected<std::unique_ptr<Interpreter>> 276 Interpreter::create(std::unique_ptr<CompilerInstance> CI) { 277 llvm::Error Err = llvm::Error::success(); 278 auto Interp = 279 std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err)); 280 if (Err) 281 return std::move(Err); 282 283 // Add runtime code and set a marker to hide it from user code. Undo will not 284 // go through that. 285 auto PTU = Interp->Parse(Runtimes); 286 if (!PTU) 287 return PTU.takeError(); 288 Interp->markUserCodeStart(); 289 290 Interp->ValuePrintingInfo.resize(4); 291 return std::move(Interp); 292 } 293 294 llvm::Expected<std::unique_ptr<Interpreter>> 295 Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI, 296 std::unique_ptr<CompilerInstance> DCI) { 297 // avoid writing fat binary to disk using an in-memory virtual file system 298 llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS = 299 std::make_unique<llvm::vfs::InMemoryFileSystem>(); 300 llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS = 301 std::make_unique<llvm::vfs::OverlayFileSystem>( 302 llvm::vfs::getRealFileSystem()); 303 OverlayVFS->pushOverlay(IMVFS); 304 CI->createFileManager(OverlayVFS); 305 306 auto Interp = Interpreter::create(std::move(CI)); 307 if (auto E = Interp.takeError()) 308 return std::move(E); 309 310 llvm::Error Err = llvm::Error::success(); 311 auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>( 312 **Interp, std::move(DCI), *(*Interp)->IncrParser.get(), 313 *(*Interp)->TSCtx->getContext(), IMVFS, Err); 314 if (Err) 315 return std::move(Err); 316 317 (*Interp)->DeviceParser = std::move(DeviceParser); 318 319 return Interp; 320 } 321 322 const CompilerInstance *Interpreter::getCompilerInstance() const { 323 return IncrParser->getCI(); 324 } 325 326 CompilerInstance *Interpreter::getCompilerInstance() { 327 return IncrParser->getCI(); 328 } 329 330 llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() { 331 if (!IncrExecutor) { 332 if (auto Err = CreateExecutor()) 333 return std::move(Err); 334 } 335 336 return IncrExecutor->GetExecutionEngine(); 337 } 338 339 ASTContext &Interpreter::getASTContext() { 340 return getCompilerInstance()->getASTContext(); 341 } 342 343 const ASTContext &Interpreter::getASTContext() const { 344 return getCompilerInstance()->getASTContext(); 345 } 346 347 void Interpreter::markUserCodeStart() { 348 assert(!InitPTUSize && "We only do this once"); 349 InitPTUSize = IncrParser->getPTUs().size(); 350 } 351 352 size_t Interpreter::getEffectivePTUSize() const { 353 std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs(); 354 assert(PTUs.size() >= InitPTUSize && "empty PTU list?"); 355 return PTUs.size() - InitPTUSize; 356 } 357 358 llvm::Expected<PartialTranslationUnit &> 359 Interpreter::Parse(llvm::StringRef Code) { 360 // If we have a device parser, parse it first. 361 // The generated code will be included in the host compilation 362 if (DeviceParser) { 363 auto DevicePTU = DeviceParser->Parse(Code); 364 if (auto E = DevicePTU.takeError()) 365 return std::move(E); 366 } 367 368 // Tell the interpreter sliently ignore unused expressions since value 369 // printing could cause it. 370 getCompilerInstance()->getDiagnostics().setSeverity( 371 clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation()); 372 return IncrParser->Parse(Code); 373 } 374 375 llvm::Error Interpreter::CreateExecutor() { 376 const clang::TargetInfo &TI = 377 getCompilerInstance()->getASTContext().getTargetInfo(); 378 llvm::Error Err = llvm::Error::success(); 379 auto Executor = std::make_unique<IncrementalExecutor>(*TSCtx, Err, TI); 380 if (!Err) 381 IncrExecutor = std::move(Executor); 382 383 return Err; 384 } 385 386 llvm::Error Interpreter::Execute(PartialTranslationUnit &T) { 387 assert(T.TheModule); 388 if (!IncrExecutor) { 389 auto Err = CreateExecutor(); 390 if (Err) 391 return Err; 392 } 393 // FIXME: Add a callback to retain the llvm::Module once the JIT is done. 394 if (auto Err = IncrExecutor->addModule(T)) 395 return Err; 396 397 if (auto Err = IncrExecutor->runCtors()) 398 return Err; 399 400 return llvm::Error::success(); 401 } 402 403 llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) { 404 405 auto PTU = Parse(Code); 406 if (!PTU) 407 return PTU.takeError(); 408 if (PTU->TheModule) 409 if (llvm::Error Err = Execute(*PTU)) 410 return Err; 411 412 if (LastValue.isValid()) { 413 if (!V) { 414 LastValue.dump(); 415 LastValue.clear(); 416 } else 417 *V = std::move(LastValue); 418 } 419 return llvm::Error::success(); 420 } 421 422 llvm::Expected<llvm::orc::ExecutorAddr> 423 Interpreter::getSymbolAddress(GlobalDecl GD) const { 424 if (!IncrExecutor) 425 return llvm::make_error<llvm::StringError>("Operation failed. " 426 "No execution engine", 427 std::error_code()); 428 llvm::StringRef MangledName = IncrParser->GetMangledName(GD); 429 return getSymbolAddress(MangledName); 430 } 431 432 llvm::Expected<llvm::orc::ExecutorAddr> 433 Interpreter::getSymbolAddress(llvm::StringRef IRName) const { 434 if (!IncrExecutor) 435 return llvm::make_error<llvm::StringError>("Operation failed. " 436 "No execution engine", 437 std::error_code()); 438 439 return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName); 440 } 441 442 llvm::Expected<llvm::orc::ExecutorAddr> 443 Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const { 444 if (!IncrExecutor) 445 return llvm::make_error<llvm::StringError>("Operation failed. " 446 "No execution engine", 447 std::error_code()); 448 449 return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName); 450 } 451 452 llvm::Error Interpreter::Undo(unsigned N) { 453 454 std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs(); 455 if (N > getEffectivePTUSize()) 456 return llvm::make_error<llvm::StringError>("Operation failed. " 457 "Too many undos", 458 std::error_code()); 459 for (unsigned I = 0; I < N; I++) { 460 if (IncrExecutor) { 461 if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back())) 462 return Err; 463 } 464 465 IncrParser->CleanUpPTU(PTUs.back()); 466 PTUs.pop_back(); 467 } 468 return llvm::Error::success(); 469 } 470 471 llvm::Error Interpreter::LoadDynamicLibrary(const char *name) { 472 auto EE = getExecutionEngine(); 473 if (!EE) 474 return EE.takeError(); 475 476 auto &DL = EE->getDataLayout(); 477 478 if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load( 479 name, DL.getGlobalPrefix())) 480 EE->getMainJITDylib().addGenerator(std::move(*DLSG)); 481 else 482 return DLSG.takeError(); 483 484 return llvm::Error::success(); 485 } 486 487 llvm::Expected<llvm::orc::ExecutorAddr> 488 Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) { 489 assert(CXXRD && "Cannot compile a destructor for a nullptr"); 490 if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end()) 491 return Dtor->getSecond(); 492 493 if (CXXRD->hasIrrelevantDestructor()) 494 return llvm::orc::ExecutorAddr{}; 495 496 CXXDestructorDecl *DtorRD = 497 getCompilerInstance()->getSema().LookupDestructor(CXXRD); 498 499 llvm::StringRef Name = 500 IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base)); 501 auto AddrOrErr = getSymbolAddress(Name); 502 if (!AddrOrErr) 503 return AddrOrErr.takeError(); 504 505 Dtors[CXXRD] = *AddrOrErr; 506 return AddrOrErr; 507 } 508 509 static constexpr llvm::StringRef MagicRuntimeInterface[] = { 510 "__clang_Interpreter_SetValueNoAlloc", 511 "__clang_Interpreter_SetValueWithAlloc", 512 "__clang_Interpreter_SetValueCopyArr", "__ci_newtag"}; 513 514 static std::unique_ptr<RuntimeInterfaceBuilder> 515 createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx, 516 Sema &S); 517 518 std::unique_ptr<RuntimeInterfaceBuilder> Interpreter::FindRuntimeInterface() { 519 if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; })) 520 return nullptr; 521 522 Sema &S = getCompilerInstance()->getSema(); 523 ASTContext &Ctx = S.getASTContext(); 524 525 auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) { 526 LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), 527 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 528 S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl()); 529 if (R.empty()) 530 return false; 531 532 CXXScopeSpec CSS; 533 Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get(); 534 return true; 535 }; 536 537 if (!LookupInterface(ValuePrintingInfo[NoAlloc], 538 MagicRuntimeInterface[NoAlloc])) 539 return nullptr; 540 if (!LookupInterface(ValuePrintingInfo[WithAlloc], 541 MagicRuntimeInterface[WithAlloc])) 542 return nullptr; 543 if (!LookupInterface(ValuePrintingInfo[CopyArray], 544 MagicRuntimeInterface[CopyArray])) 545 return nullptr; 546 if (!LookupInterface(ValuePrintingInfo[NewTag], 547 MagicRuntimeInterface[NewTag])) 548 return nullptr; 549 550 return createInProcessRuntimeInterfaceBuilder(*this, Ctx, S); 551 } 552 553 namespace { 554 555 class InterfaceKindVisitor 556 : public TypeVisitor<InterfaceKindVisitor, Interpreter::InterfaceKind> { 557 friend class InProcessRuntimeInterfaceBuilder; 558 559 ASTContext &Ctx; 560 Sema &S; 561 Expr *E; 562 llvm::SmallVector<Expr *, 3> Args; 563 564 public: 565 InterfaceKindVisitor(ASTContext &Ctx, Sema &S, Expr *E) 566 : Ctx(Ctx), S(S), E(E) {} 567 568 Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) { 569 return Interpreter::InterfaceKind::WithAlloc; 570 } 571 572 Interpreter::InterfaceKind 573 VisitMemberPointerType(const MemberPointerType *Ty) { 574 return Interpreter::InterfaceKind::WithAlloc; 575 } 576 577 Interpreter::InterfaceKind 578 VisitConstantArrayType(const ConstantArrayType *Ty) { 579 return Interpreter::InterfaceKind::CopyArray; 580 } 581 582 Interpreter::InterfaceKind 583 VisitFunctionProtoType(const FunctionProtoType *Ty) { 584 HandlePtrType(Ty); 585 return Interpreter::InterfaceKind::NoAlloc; 586 } 587 588 Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) { 589 HandlePtrType(Ty); 590 return Interpreter::InterfaceKind::NoAlloc; 591 } 592 593 Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) { 594 ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E); 595 assert(!AddrOfE.isInvalid() && "Can not create unary expression"); 596 Args.push_back(AddrOfE.get()); 597 return Interpreter::InterfaceKind::NoAlloc; 598 } 599 600 Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { 601 if (Ty->isNullPtrType()) 602 Args.push_back(E); 603 else if (Ty->isFloatingType()) 604 Args.push_back(E); 605 else if (Ty->isIntegralOrEnumerationType()) 606 HandleIntegralOrEnumType(Ty); 607 else if (Ty->isVoidType()) { 608 // Do we need to still run `E`? 609 } 610 611 return Interpreter::InterfaceKind::NoAlloc; 612 } 613 614 Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) { 615 HandleIntegralOrEnumType(Ty); 616 return Interpreter::InterfaceKind::NoAlloc; 617 } 618 619 private: 620 // Force cast these types to uint64 to reduce the number of overloads of 621 // `__clang_Interpreter_SetValueNoAlloc`. 622 void HandleIntegralOrEnumType(const Type *Ty) { 623 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.UnsignedLongLongTy); 624 ExprResult CastedExpr = 625 S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); 626 assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr"); 627 Args.push_back(CastedExpr.get()); 628 } 629 630 void HandlePtrType(const Type *Ty) { 631 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy); 632 ExprResult CastedExpr = 633 S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); 634 assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression"); 635 Args.push_back(CastedExpr.get()); 636 } 637 }; 638 639 class InProcessRuntimeInterfaceBuilder : public RuntimeInterfaceBuilder { 640 Interpreter &Interp; 641 ASTContext &Ctx; 642 Sema &S; 643 644 public: 645 InProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &C, Sema &S) 646 : Interp(Interp), Ctx(C), S(S) {} 647 648 TransformExprFunction *getPrintValueTransformer() override { 649 return &transformForValuePrinting; 650 } 651 652 private: 653 static ExprResult transformForValuePrinting(RuntimeInterfaceBuilder *Builder, 654 Expr *E, 655 ArrayRef<Expr *> FixedArgs) { 656 auto *B = static_cast<InProcessRuntimeInterfaceBuilder *>(Builder); 657 658 // Get rid of ExprWithCleanups. 659 if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E)) 660 E = EWC->getSubExpr(); 661 662 InterfaceKindVisitor Visitor(B->Ctx, B->S, E); 663 664 // The Interpreter* parameter and the out parameter `OutVal`. 665 for (Expr *E : FixedArgs) 666 Visitor.Args.push_back(E); 667 668 QualType Ty = E->getType(); 669 QualType DesugaredTy = Ty.getDesugaredType(B->Ctx); 670 671 // For lvalue struct, we treat it as a reference. 672 if (DesugaredTy->isRecordType() && E->isLValue()) { 673 DesugaredTy = B->Ctx.getLValueReferenceType(DesugaredTy); 674 Ty = B->Ctx.getLValueReferenceType(Ty); 675 } 676 677 Expr *TypeArg = CStyleCastPtrExpr(B->S, B->Ctx.VoidPtrTy, 678 (uintptr_t)Ty.getAsOpaquePtr()); 679 // The QualType parameter `OpaqueType`, represented as `void*`. 680 Visitor.Args.push_back(TypeArg); 681 682 // We push the last parameter based on the type of the Expr. Note we need 683 // special care for rvalue struct. 684 Interpreter::InterfaceKind Kind = Visitor.Visit(&*DesugaredTy); 685 switch (Kind) { 686 case Interpreter::InterfaceKind::WithAlloc: 687 case Interpreter::InterfaceKind::CopyArray: { 688 // __clang_Interpreter_SetValueWithAlloc. 689 ExprResult AllocCall = B->S.ActOnCallExpr( 690 /*Scope=*/nullptr, 691 B->Interp 692 .getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc], 693 E->getBeginLoc(), Visitor.Args, E->getEndLoc()); 694 assert(!AllocCall.isInvalid() && "Can't create runtime interface call!"); 695 696 TypeSourceInfo *TSI = 697 B->Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation()); 698 699 // Force CodeGen to emit destructor. 700 if (auto *RD = Ty->getAsCXXRecordDecl()) { 701 auto *Dtor = B->S.LookupDestructor(RD); 702 Dtor->addAttr(UsedAttr::CreateImplicit(B->Ctx)); 703 B->Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( 704 DeclGroupRef(Dtor)); 705 } 706 707 // __clang_Interpreter_SetValueCopyArr. 708 if (Kind == Interpreter::InterfaceKind::CopyArray) { 709 const auto *ConstantArrTy = 710 cast<ConstantArrayType>(DesugaredTy.getTypePtr()); 711 size_t ArrSize = B->Ctx.getConstantArrayElementCount(ConstantArrTy); 712 Expr *ArrSizeExpr = IntegerLiteralExpr(B->Ctx, ArrSize); 713 Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; 714 return B->S.ActOnCallExpr( 715 /*Scope *=*/nullptr, 716 B->Interp 717 .getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray], 718 SourceLocation(), Args, SourceLocation()); 719 } 720 Expr *Args[] = { 721 AllocCall.get(), 722 B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NewTag]}; 723 ExprResult CXXNewCall = B->S.BuildCXXNew( 724 E->getSourceRange(), 725 /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args, 726 /*PlacementRParen=*/SourceLocation(), 727 /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt, 728 E->getSourceRange(), E); 729 730 assert(!CXXNewCall.isInvalid() && 731 "Can't create runtime placement new call!"); 732 733 return B->S.ActOnFinishFullExpr(CXXNewCall.get(), 734 /*DiscardedValue=*/false); 735 } 736 // __clang_Interpreter_SetValueNoAlloc. 737 case Interpreter::InterfaceKind::NoAlloc: { 738 return B->S.ActOnCallExpr( 739 /*Scope=*/nullptr, 740 B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc], 741 E->getBeginLoc(), Visitor.Args, E->getEndLoc()); 742 } 743 default: 744 llvm_unreachable("Unhandled Interpreter::InterfaceKind"); 745 } 746 } 747 }; 748 } // namespace 749 750 static std::unique_ptr<RuntimeInterfaceBuilder> 751 createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx, 752 Sema &S) { 753 return std::make_unique<InProcessRuntimeInterfaceBuilder>(Interp, Ctx, S); 754 } 755 756 // This synthesizes a call expression to a speciall 757 // function that is responsible for generating the Value. 758 // In general, we transform: 759 // clang-repl> x 760 // To: 761 // // 1. If x is a built-in type like int, float. 762 // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); 763 // // 2. If x is a struct, and a lvalue. 764 // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, 765 // &x); 766 // // 3. If x is a struct, but a rvalue. 767 // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, 768 // xQualType)) (x); 769 770 Expr *Interpreter::SynthesizeExpr(Expr *E) { 771 Sema &S = getCompilerInstance()->getSema(); 772 ASTContext &Ctx = S.getASTContext(); 773 774 if (!RuntimeIB) { 775 RuntimeIB = FindRuntimeInterface(); 776 AddPrintValueCall = RuntimeIB->getPrintValueTransformer(); 777 } 778 779 assert(AddPrintValueCall && 780 "We don't have a runtime interface for pretty print!"); 781 782 // Create parameter `ThisInterp`. 783 auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this); 784 785 // Create parameter `OutVal`. 786 auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue); 787 788 // Build `__clang_Interpreter_SetValue*` call. 789 ExprResult Result = 790 AddPrintValueCall(RuntimeIB.get(), E, {ThisInterp, OutValue}); 791 792 // It could fail, like printing an array type in C. (not supported) 793 if (Result.isInvalid()) 794 return E; 795 return Result.get(); 796 } 797 798 // Temporary rvalue struct that need special care. 799 REPL_EXTERNAL_VISIBILITY void * 800 __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, 801 void *OpaqueType) { 802 Value &VRef = *(Value *)OutVal; 803 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 804 return VRef.getPtr(); 805 } 806 807 // Pointers, lvalue struct that can take as a reference. 808 REPL_EXTERNAL_VISIBILITY void 809 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 810 void *Val) { 811 Value &VRef = *(Value *)OutVal; 812 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 813 VRef.setPtr(Val); 814 } 815 816 REPL_EXTERNAL_VISIBILITY void 817 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, 818 void *OpaqueType) { 819 Value &VRef = *(Value *)OutVal; 820 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 821 } 822 823 static void SetValueDataBasedOnQualType(Value &V, unsigned long long Data) { 824 QualType QT = V.getType(); 825 if (const auto *ET = QT->getAs<EnumType>()) 826 QT = ET->getDecl()->getIntegerType(); 827 828 switch (QT->castAs<BuiltinType>()->getKind()) { 829 default: 830 llvm_unreachable("unknown type kind!"); 831 #define X(type, name) \ 832 case BuiltinType::name: \ 833 V.set##name(Data); \ 834 break; 835 REPL_BUILTIN_TYPES 836 #undef X 837 } 838 } 839 840 REPL_EXTERNAL_VISIBILITY void 841 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 842 unsigned long long Val) { 843 Value &VRef = *(Value *)OutVal; 844 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 845 SetValueDataBasedOnQualType(VRef, Val); 846 } 847 848 REPL_EXTERNAL_VISIBILITY void 849 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 850 float Val) { 851 Value &VRef = *(Value *)OutVal; 852 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 853 VRef.setFloat(Val); 854 } 855 856 REPL_EXTERNAL_VISIBILITY void 857 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 858 double Val) { 859 Value &VRef = *(Value *)OutVal; 860 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 861 VRef.setDouble(Val); 862 } 863 864 REPL_EXTERNAL_VISIBILITY void 865 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 866 long double Val) { 867 Value &VRef = *(Value *)OutVal; 868 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 869 VRef.setLongDouble(Val); 870 } 871 872 // A trampoline to work around the fact that operator placement new cannot 873 // really be forward declared due to libc++ and libstdc++ declaration mismatch. 874 // FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same 875 // definition in the interpreter runtime. We should move it in a runtime header 876 // which gets included by the interpreter and here. 877 struct __clang_Interpreter_NewTag {}; 878 REPL_EXTERNAL_VISIBILITY void * 879 operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept { 880 // Just forward to the standard operator placement new. 881 return operator new(__sz, __p); 882 } 883