1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/SourceManager.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Basic/Version.h" 19 #include "clang/Config/config.h" 20 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 21 #include "clang/Frontend/FrontendAction.h" 22 #include "clang/Frontend/FrontendActions.h" 23 #include "clang/Frontend/FrontendDiagnostic.h" 24 #include "clang/Frontend/LogDiagnosticPrinter.h" 25 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 26 #include "clang/Frontend/TextDiagnosticPrinter.h" 27 #include "clang/Frontend/Utils.h" 28 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 29 #include "clang/Lex/HeaderSearch.h" 30 #include "clang/Lex/PTHManager.h" 31 #include "clang/Lex/Preprocessor.h" 32 #include "clang/Lex/PreprocessorOptions.h" 33 #include "clang/Sema/CodeCompleteConsumer.h" 34 #include "clang/Sema/Sema.h" 35 #include "clang/Serialization/ASTReader.h" 36 #include "clang/Serialization/GlobalModuleIndex.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Support/CrashRecoveryContext.h" 39 #include "llvm/Support/Errc.h" 40 #include "llvm/Support/FileSystem.h" 41 #include "llvm/Support/Host.h" 42 #include "llvm/Support/LockFileManager.h" 43 #include "llvm/Support/MemoryBuffer.h" 44 #include "llvm/Support/Path.h" 45 #include "llvm/Support/Program.h" 46 #include "llvm/Support/Signals.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <sys/stat.h> 50 #include <system_error> 51 #include <time.h> 52 #include <utility> 53 54 using namespace clang; 55 56 CompilerInstance::CompilerInstance( 57 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 58 bool BuildingModule) 59 : ModuleLoader(BuildingModule), Invocation(new CompilerInvocation()), 60 ModuleManager(nullptr), 61 ThePCHContainerOperations(std::move(PCHContainerOps)), 62 BuildGlobalModuleIndex(false), HaveFullGlobalModuleIndex(false), 63 ModuleBuildFailed(false) {} 64 65 CompilerInstance::~CompilerInstance() { 66 assert(OutputFiles.empty() && "Still output files in flight?"); 67 } 68 69 void CompilerInstance::setInvocation(CompilerInvocation *Value) { 70 Invocation = Value; 71 } 72 73 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 74 return (BuildGlobalModuleIndex || 75 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 76 getFrontendOpts().GenerateGlobalModuleIndex)) && 77 !ModuleBuildFailed; 78 } 79 80 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 81 Diagnostics = Value; 82 } 83 84 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 85 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 86 87 void CompilerInstance::setFileManager(FileManager *Value) { 88 FileMgr = Value; 89 if (Value) 90 VirtualFileSystem = Value->getVirtualFileSystem(); 91 else 92 VirtualFileSystem.reset(); 93 } 94 95 void CompilerInstance::setSourceManager(SourceManager *Value) { 96 SourceMgr = Value; 97 } 98 99 void CompilerInstance::setPreprocessor(Preprocessor *Value) { PP = Value; } 100 101 void CompilerInstance::setASTContext(ASTContext *Value) { 102 Context = Value; 103 104 if (Context && Consumer) 105 getASTConsumer().Initialize(getASTContext()); 106 } 107 108 void CompilerInstance::setSema(Sema *S) { 109 TheSema.reset(S); 110 } 111 112 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 113 Consumer = std::move(Value); 114 115 if (Context && Consumer) 116 getASTConsumer().Initialize(getASTContext()); 117 } 118 119 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 120 CompletionConsumer.reset(Value); 121 } 122 123 std::unique_ptr<Sema> CompilerInstance::takeSema() { 124 return std::move(TheSema); 125 } 126 127 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 128 return ModuleManager; 129 } 130 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 131 ModuleManager = std::move(Reader); 132 } 133 134 std::shared_ptr<ModuleDependencyCollector> 135 CompilerInstance::getModuleDepCollector() const { 136 return ModuleDepCollector; 137 } 138 139 void CompilerInstance::setModuleDepCollector( 140 std::shared_ptr<ModuleDependencyCollector> Collector) { 141 ModuleDepCollector = std::move(Collector); 142 } 143 144 static void collectHeaderMaps(const HeaderSearch &HS, 145 std::shared_ptr<ModuleDependencyCollector> MDC) { 146 SmallVector<std::string, 4> HeaderMapFileNames; 147 HS.getHeaderMapFileNames(HeaderMapFileNames); 148 for (auto &Name : HeaderMapFileNames) 149 MDC->addFile(Name); 150 } 151 152 static void collectIncludePCH(CompilerInstance &CI, 153 std::shared_ptr<ModuleDependencyCollector> MDC) { 154 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 155 if (PPOpts.ImplicitPCHInclude.empty()) 156 return; 157 158 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 159 FileManager &FileMgr = CI.getFileManager(); 160 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 161 if (!PCHDir) { 162 MDC->addFile(PCHInclude); 163 return; 164 } 165 166 std::error_code EC; 167 SmallString<128> DirNative; 168 llvm::sys::path::native(PCHDir->getName(), DirNative); 169 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 170 SimpleASTReaderListener Validator(CI.getPreprocessor()); 171 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 172 Dir != DirEnd && !EC; Dir.increment(EC)) { 173 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 174 // used here since we're not interested in validating the PCH at this time, 175 // but only to check whether this is a file containing an AST. 176 if (!ASTReader::readASTFileControlBlock( 177 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 178 /*FindModuleFileExtensions=*/false, Validator, 179 /*ValidateDiagnosticOptions=*/false)) 180 MDC->addFile(Dir->getName()); 181 } 182 } 183 184 static void collectVFSEntries(CompilerInstance &CI, 185 std::shared_ptr<ModuleDependencyCollector> MDC) { 186 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 187 return; 188 189 // Collect all VFS found. 190 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 191 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 192 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 193 llvm::MemoryBuffer::getFile(VFSFile); 194 if (!Buffer) 195 return; 196 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 197 VFSFile, VFSEntries); 198 } 199 200 for (auto &E : VFSEntries) 201 MDC->addFile(E.VPath, E.RPath); 202 } 203 204 // Diagnostics 205 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 206 const CodeGenOptions *CodeGenOpts, 207 DiagnosticsEngine &Diags) { 208 std::error_code EC; 209 std::unique_ptr<raw_ostream> StreamOwner; 210 raw_ostream *OS = &llvm::errs(); 211 if (DiagOpts->DiagnosticLogFile != "-") { 212 // Create the output stream. 213 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 214 DiagOpts->DiagnosticLogFile, EC, 215 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 216 if (EC) { 217 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 218 << DiagOpts->DiagnosticLogFile << EC.message(); 219 } else { 220 FileOS->SetUnbuffered(); 221 OS = FileOS.get(); 222 StreamOwner = std::move(FileOS); 223 } 224 } 225 226 // Chain in the diagnostic client which will log the diagnostics. 227 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 228 std::move(StreamOwner)); 229 if (CodeGenOpts) 230 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 231 assert(Diags.ownsClient()); 232 Diags.setClient( 233 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 234 } 235 236 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 237 DiagnosticsEngine &Diags, 238 StringRef OutputFile) { 239 auto SerializedConsumer = 240 clang::serialized_diags::create(OutputFile, DiagOpts); 241 242 if (Diags.ownsClient()) { 243 Diags.setClient(new ChainedDiagnosticConsumer( 244 Diags.takeClient(), std::move(SerializedConsumer))); 245 } else { 246 Diags.setClient(new ChainedDiagnosticConsumer( 247 Diags.getClient(), std::move(SerializedConsumer))); 248 } 249 } 250 251 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 252 bool ShouldOwnClient) { 253 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 254 ShouldOwnClient, &getCodeGenOpts()); 255 } 256 257 IntrusiveRefCntPtr<DiagnosticsEngine> 258 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 259 DiagnosticConsumer *Client, 260 bool ShouldOwnClient, 261 const CodeGenOptions *CodeGenOpts) { 262 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 263 IntrusiveRefCntPtr<DiagnosticsEngine> 264 Diags(new DiagnosticsEngine(DiagID, Opts)); 265 266 // Create the diagnostic client for reporting errors or for 267 // implementing -verify. 268 if (Client) { 269 Diags->setClient(Client, ShouldOwnClient); 270 } else 271 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 272 273 // Chain in -verify checker, if requested. 274 if (Opts->VerifyDiagnostics) 275 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 276 277 // Chain in -diagnostic-log-file dumper, if requested. 278 if (!Opts->DiagnosticLogFile.empty()) 279 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 280 281 if (!Opts->DiagnosticSerializationFile.empty()) 282 SetupSerializedDiagnostics(Opts, *Diags, 283 Opts->DiagnosticSerializationFile); 284 285 // Configure our handling of diagnostics. 286 ProcessWarningOptions(*Diags, *Opts); 287 288 return Diags; 289 } 290 291 // File Manager 292 293 void CompilerInstance::createFileManager() { 294 if (!hasVirtualFileSystem()) { 295 // TODO: choose the virtual file system based on the CompilerInvocation. 296 setVirtualFileSystem(vfs::getRealFileSystem()); 297 } 298 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 299 } 300 301 // Source Manager 302 303 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 304 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 305 } 306 307 // Initialize the remapping of files to alternative contents, e.g., 308 // those specified through other files. 309 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 310 SourceManager &SourceMgr, 311 FileManager &FileMgr, 312 const PreprocessorOptions &InitOpts) { 313 // Remap files in the source manager (with buffers). 314 for (const auto &RB : InitOpts.RemappedFileBuffers) { 315 // Create the file entry for the file that we're mapping from. 316 const FileEntry *FromFile = 317 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 318 if (!FromFile) { 319 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 320 if (!InitOpts.RetainRemappedFileBuffers) 321 delete RB.second; 322 continue; 323 } 324 325 // Override the contents of the "from" file with the contents of 326 // the "to" file. 327 SourceMgr.overrideFileContents(FromFile, RB.second, 328 InitOpts.RetainRemappedFileBuffers); 329 } 330 331 // Remap files in the source manager (with other files). 332 for (const auto &RF : InitOpts.RemappedFiles) { 333 // Find the file that we're mapping to. 334 const FileEntry *ToFile = FileMgr.getFile(RF.second); 335 if (!ToFile) { 336 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 337 continue; 338 } 339 340 // Create the file entry for the file that we're mapping from. 341 const FileEntry *FromFile = 342 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 343 if (!FromFile) { 344 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 345 continue; 346 } 347 348 // Override the contents of the "from" file with the contents of 349 // the "to" file. 350 SourceMgr.overrideFileContents(FromFile, ToFile); 351 } 352 353 SourceMgr.setOverridenFilesKeepOriginalName( 354 InitOpts.RemappedFilesKeepOriginalName); 355 } 356 357 // Preprocessor 358 359 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 360 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 361 362 // Create a PTH manager if we are using some form of a token cache. 363 PTHManager *PTHMgr = nullptr; 364 if (!PPOpts.TokenCache.empty()) 365 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 366 367 // Create the Preprocessor. 368 HeaderSearch *HeaderInfo = new HeaderSearch(&getHeaderSearchOpts(), 369 getSourceManager(), 370 getDiagnostics(), 371 getLangOpts(), 372 &getTarget()); 373 PP = new Preprocessor(&getPreprocessorOpts(), getDiagnostics(), getLangOpts(), 374 getSourceManager(), *HeaderInfo, *this, PTHMgr, 375 /*OwnsHeaderSearch=*/true, TUKind); 376 PP->Initialize(getTarget(), getAuxTarget()); 377 378 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 379 // That argument is used as the IdentifierInfoLookup argument to 380 // IdentifierTable's ctor. 381 if (PTHMgr) { 382 PTHMgr->setPreprocessor(&*PP); 383 PP->setPTHManager(PTHMgr); 384 } 385 386 if (PPOpts.DetailedRecord) 387 PP->createPreprocessingRecord(); 388 389 // Apply remappings to the source manager. 390 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 391 PP->getFileManager(), PPOpts); 392 393 // Predefine macros and configure the preprocessor. 394 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 395 getFrontendOpts()); 396 397 // Initialize the header search object. In CUDA compilations, we use the aux 398 // triple (the host triple) to initialize our header search, since we need to 399 // find the host headers in order to compile the CUDA code. 400 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 401 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 402 PP->getAuxTargetInfo()) 403 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 404 405 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 406 PP->getLangOpts(), *HeaderSearchTriple); 407 408 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 409 410 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 411 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 412 413 // Handle generating dependencies, if requested. 414 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 415 if (!DepOpts.OutputFile.empty()) 416 TheDependencyFileGenerator.reset( 417 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 418 if (!DepOpts.DOTOutputFile.empty()) 419 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 420 getHeaderSearchOpts().Sysroot); 421 422 // If we don't have a collector, but we are collecting module dependencies, 423 // then we're the top level compiler instance and need to create one. 424 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 425 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 426 DepOpts.ModuleDependencyOutputDir); 427 } 428 429 // If there is a module dep collector, register with other dep collectors 430 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 431 if (ModuleDepCollector) { 432 addDependencyCollector(ModuleDepCollector); 433 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 434 collectIncludePCH(*this, ModuleDepCollector); 435 collectVFSEntries(*this, ModuleDepCollector); 436 } 437 438 for (auto &Listener : DependencyCollectors) 439 Listener->attachToPreprocessor(*PP); 440 441 // Handle generating header include information, if requested. 442 if (DepOpts.ShowHeaderIncludes) 443 AttachHeaderIncludeGen(*PP, DepOpts); 444 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 445 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 446 if (OutputPath == "-") 447 OutputPath = ""; 448 AttachHeaderIncludeGen(*PP, DepOpts, 449 /*ShowAllHeaders=*/true, OutputPath, 450 /*ShowDepth=*/false); 451 } 452 453 if (DepOpts.PrintShowIncludes) { 454 AttachHeaderIncludeGen(*PP, DepOpts, 455 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 456 /*ShowDepth=*/true, /*MSStyle=*/true); 457 } 458 } 459 460 std::string CompilerInstance::getSpecificModuleCachePath() { 461 // Set up the module path, including the hash for the 462 // module-creation options. 463 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 464 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 465 llvm::sys::path::append(SpecificModuleCache, 466 getInvocation().getModuleHash()); 467 return SpecificModuleCache.str(); 468 } 469 470 // ASTContext 471 472 void CompilerInstance::createASTContext() { 473 Preprocessor &PP = getPreprocessor(); 474 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 475 PP.getIdentifierTable(), PP.getSelectorTable(), 476 PP.getBuiltinInfo()); 477 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 478 setASTContext(Context); 479 } 480 481 // ExternalASTSource 482 483 void CompilerInstance::createPCHExternalASTSource( 484 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 485 void *DeserializationListener, bool OwnDeserializationListener) { 486 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 487 ModuleManager = createPCHExternalASTSource( 488 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 489 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 490 getPCHContainerReader(), 491 getFrontendOpts().ModuleFileExtensions, 492 DeserializationListener, 493 OwnDeserializationListener, Preamble, 494 getFrontendOpts().UseGlobalModuleIndex); 495 } 496 497 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 498 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 499 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 500 const PCHContainerReader &PCHContainerRdr, 501 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 502 void *DeserializationListener, bool OwnDeserializationListener, 503 bool Preamble, bool UseGlobalModuleIndex) { 504 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 505 506 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 507 PP, Context, PCHContainerRdr, Extensions, 508 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 509 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 510 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 511 512 // We need the external source to be set up before we read the AST, because 513 // eagerly-deserialized declarations may use it. 514 Context.setExternalSource(Reader.get()); 515 516 Reader->setDeserializationListener( 517 static_cast<ASTDeserializationListener *>(DeserializationListener), 518 /*TakeOwnership=*/OwnDeserializationListener); 519 switch (Reader->ReadAST(Path, 520 Preamble ? serialization::MK_Preamble 521 : serialization::MK_PCH, 522 SourceLocation(), 523 ASTReader::ARR_None)) { 524 case ASTReader::Success: 525 // Set the predefines buffer as suggested by the PCH reader. Typically, the 526 // predefines buffer will be empty. 527 PP.setPredefines(Reader->getSuggestedPredefines()); 528 return Reader; 529 530 case ASTReader::Failure: 531 // Unrecoverable failure: don't even try to process the input file. 532 break; 533 534 case ASTReader::Missing: 535 case ASTReader::OutOfDate: 536 case ASTReader::VersionMismatch: 537 case ASTReader::ConfigurationMismatch: 538 case ASTReader::HadErrors: 539 // No suitable PCH file could be found. Return an error. 540 break; 541 } 542 543 Context.setExternalSource(nullptr); 544 return nullptr; 545 } 546 547 // Code Completion 548 549 static bool EnableCodeCompletion(Preprocessor &PP, 550 StringRef Filename, 551 unsigned Line, 552 unsigned Column) { 553 // Tell the source manager to chop off the given file at a specific 554 // line and column. 555 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 556 if (!Entry) { 557 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 558 << Filename; 559 return true; 560 } 561 562 // Truncate the named file at the given line/column. 563 PP.SetCodeCompletionPoint(Entry, Line, Column); 564 return false; 565 } 566 567 void CompilerInstance::createCodeCompletionConsumer() { 568 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 569 if (!CompletionConsumer) { 570 setCodeCompletionConsumer( 571 createCodeCompletionConsumer(getPreprocessor(), 572 Loc.FileName, Loc.Line, Loc.Column, 573 getFrontendOpts().CodeCompleteOpts, 574 llvm::outs())); 575 if (!CompletionConsumer) 576 return; 577 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 578 Loc.Line, Loc.Column)) { 579 setCodeCompletionConsumer(nullptr); 580 return; 581 } 582 583 if (CompletionConsumer->isOutputBinary() && 584 llvm::sys::ChangeStdoutToBinary()) { 585 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 586 setCodeCompletionConsumer(nullptr); 587 } 588 } 589 590 void CompilerInstance::createFrontendTimer() { 591 FrontendTimerGroup.reset( 592 new llvm::TimerGroup("frontend", "Clang front-end time report")); 593 FrontendTimer.reset( 594 new llvm::Timer("frontend", "Clang front-end timer", 595 *FrontendTimerGroup)); 596 } 597 598 CodeCompleteConsumer * 599 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 600 StringRef Filename, 601 unsigned Line, 602 unsigned Column, 603 const CodeCompleteOptions &Opts, 604 raw_ostream &OS) { 605 if (EnableCodeCompletion(PP, Filename, Line, Column)) 606 return nullptr; 607 608 // Set up the creation routine for code-completion. 609 return new PrintingCodeCompleteConsumer(Opts, OS); 610 } 611 612 void CompilerInstance::createSema(TranslationUnitKind TUKind, 613 CodeCompleteConsumer *CompletionConsumer) { 614 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 615 TUKind, CompletionConsumer)); 616 // Attach the external sema source if there is any. 617 if (ExternalSemaSrc) { 618 TheSema->addExternalSource(ExternalSemaSrc.get()); 619 ExternalSemaSrc->InitializeSema(*TheSema); 620 } 621 } 622 623 // Output Files 624 625 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 626 OutputFiles.push_back(std::move(OutFile)); 627 } 628 629 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 630 for (OutputFile &OF : OutputFiles) { 631 if (!OF.TempFilename.empty()) { 632 if (EraseFiles) { 633 llvm::sys::fs::remove(OF.TempFilename); 634 } else { 635 SmallString<128> NewOutFile(OF.Filename); 636 637 // If '-working-directory' was passed, the output filename should be 638 // relative to that. 639 FileMgr->FixupRelativePath(NewOutFile); 640 if (std::error_code ec = 641 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 642 getDiagnostics().Report(diag::err_unable_to_rename_temp) 643 << OF.TempFilename << OF.Filename << ec.message(); 644 645 llvm::sys::fs::remove(OF.TempFilename); 646 } 647 } 648 } else if (!OF.Filename.empty() && EraseFiles) 649 llvm::sys::fs::remove(OF.Filename); 650 } 651 OutputFiles.clear(); 652 NonSeekStream.reset(); 653 } 654 655 std::unique_ptr<raw_pwrite_stream> 656 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 657 StringRef Extension) { 658 return createOutputFile(getFrontendOpts().OutputFile, Binary, 659 /*RemoveFileOnSignal=*/true, InFile, Extension, 660 /*UseTemporary=*/true); 661 } 662 663 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 664 return llvm::make_unique<llvm::raw_null_ostream>(); 665 } 666 667 std::unique_ptr<raw_pwrite_stream> 668 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 669 bool RemoveFileOnSignal, StringRef InFile, 670 StringRef Extension, bool UseTemporary, 671 bool CreateMissingDirectories) { 672 std::string OutputPathName, TempPathName; 673 std::error_code EC; 674 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 675 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 676 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 677 if (!OS) { 678 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 679 << EC.message(); 680 return nullptr; 681 } 682 683 // Add the output file -- but don't try to remove "-", since this means we are 684 // using stdin. 685 addOutputFile( 686 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 687 688 return OS; 689 } 690 691 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 692 StringRef OutputPath, std::error_code &Error, bool Binary, 693 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 694 bool UseTemporary, bool CreateMissingDirectories, 695 std::string *ResultPathName, std::string *TempPathName) { 696 assert((!CreateMissingDirectories || UseTemporary) && 697 "CreateMissingDirectories is only allowed when using temporary files"); 698 699 std::string OutFile, TempFile; 700 if (!OutputPath.empty()) { 701 OutFile = OutputPath; 702 } else if (InFile == "-") { 703 OutFile = "-"; 704 } else if (!Extension.empty()) { 705 SmallString<128> Path(InFile); 706 llvm::sys::path::replace_extension(Path, Extension); 707 OutFile = Path.str(); 708 } else { 709 OutFile = "-"; 710 } 711 712 std::unique_ptr<llvm::raw_fd_ostream> OS; 713 std::string OSFile; 714 715 if (UseTemporary) { 716 if (OutFile == "-") 717 UseTemporary = false; 718 else { 719 llvm::sys::fs::file_status Status; 720 llvm::sys::fs::status(OutputPath, Status); 721 if (llvm::sys::fs::exists(Status)) { 722 // Fail early if we can't write to the final destination. 723 if (!llvm::sys::fs::can_write(OutputPath)) { 724 Error = make_error_code(llvm::errc::operation_not_permitted); 725 return nullptr; 726 } 727 728 // Don't use a temporary if the output is a special file. This handles 729 // things like '-o /dev/null' 730 if (!llvm::sys::fs::is_regular_file(Status)) 731 UseTemporary = false; 732 } 733 } 734 } 735 736 if (UseTemporary) { 737 // Create a temporary file. 738 SmallString<128> TempPath; 739 TempPath = OutFile; 740 TempPath += "-%%%%%%%%"; 741 int fd; 742 std::error_code EC = 743 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 744 745 if (CreateMissingDirectories && 746 EC == llvm::errc::no_such_file_or_directory) { 747 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 748 EC = llvm::sys::fs::create_directories(Parent); 749 if (!EC) { 750 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 751 } 752 } 753 754 if (!EC) { 755 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 756 OSFile = TempFile = TempPath.str(); 757 } 758 // If we failed to create the temporary, fallback to writing to the file 759 // directly. This handles the corner case where we cannot write to the 760 // directory, but can write to the file. 761 } 762 763 if (!OS) { 764 OSFile = OutFile; 765 OS.reset(new llvm::raw_fd_ostream( 766 OSFile, Error, 767 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 768 if (Error) 769 return nullptr; 770 } 771 772 // Make sure the out stream file gets removed if we crash. 773 if (RemoveFileOnSignal) 774 llvm::sys::RemoveFileOnSignal(OSFile); 775 776 if (ResultPathName) 777 *ResultPathName = OutFile; 778 if (TempPathName) 779 *TempPathName = TempFile; 780 781 if (!Binary || OS->supportsSeeking()) 782 return std::move(OS); 783 784 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 785 assert(!NonSeekStream); 786 NonSeekStream = std::move(OS); 787 return std::move(B); 788 } 789 790 // Initialization Utilities 791 792 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 793 return InitializeSourceManager( 794 Input, getDiagnostics(), getFileManager(), getSourceManager(), 795 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 796 getDependencyOutputOpts(), getFrontendOpts()); 797 } 798 799 // static 800 bool CompilerInstance::InitializeSourceManager( 801 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 802 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 803 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 804 SrcMgr::CharacteristicKind 805 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 806 807 if (Input.isBuffer()) { 808 SourceMgr.setMainFileID(SourceMgr.createFileID( 809 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 810 assert(SourceMgr.getMainFileID().isValid() && 811 "Couldn't establish MainFileID!"); 812 return true; 813 } 814 815 StringRef InputFile = Input.getFile(); 816 817 // Figure out where to get and map in the main file. 818 if (InputFile != "-") { 819 const FileEntry *File; 820 if (Opts.FindPchSource.empty()) { 821 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 822 } else { 823 // When building a pch file in clang-cl mode, the .h file is built as if 824 // it was included by a cc file. Since the driver doesn't know about 825 // all include search directories, the frontend must search the input 826 // file through HeaderSearch here, as if it had been included by the 827 // cc file at Opts.FindPchSource. 828 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 829 if (!FindFile) { 830 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 831 return false; 832 } 833 const DirectoryLookup *UnusedCurDir; 834 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 835 Includers; 836 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 837 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 838 /*FromDir=*/nullptr, 839 /*CurDir=*/UnusedCurDir, Includers, 840 /*SearchPath=*/nullptr, 841 /*RelativePath=*/nullptr, 842 /*RequestingModule=*/nullptr, 843 /*SuggestedModule=*/nullptr, /*SkipCache=*/true); 844 // Also add the header to /showIncludes output. 845 if (File) 846 DepOpts.ShowIncludesPretendHeader = File->getName(); 847 } 848 if (!File) { 849 Diags.Report(diag::err_fe_error_reading) << InputFile; 850 return false; 851 } 852 853 // The natural SourceManager infrastructure can't currently handle named 854 // pipes, but we would at least like to accept them for the main 855 // file. Detect them here, read them with the volatile flag so FileMgr will 856 // pick up the correct size, and simply override their contents as we do for 857 // STDIN. 858 if (File->isNamedPipe()) { 859 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 860 if (MB) { 861 // Create a new virtual file that will have the correct size. 862 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 863 SourceMgr.overrideFileContents(File, std::move(*MB)); 864 } else { 865 Diags.Report(diag::err_cannot_open_file) << InputFile 866 << MB.getError().message(); 867 return false; 868 } 869 } 870 871 SourceMgr.setMainFileID( 872 SourceMgr.createFileID(File, SourceLocation(), Kind)); 873 } else { 874 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 875 llvm::MemoryBuffer::getSTDIN(); 876 if (std::error_code EC = SBOrErr.getError()) { 877 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 878 return false; 879 } 880 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 881 882 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 883 SB->getBufferSize(), 0); 884 SourceMgr.setMainFileID( 885 SourceMgr.createFileID(File, SourceLocation(), Kind)); 886 SourceMgr.overrideFileContents(File, std::move(SB)); 887 } 888 889 assert(SourceMgr.getMainFileID().isValid() && 890 "Couldn't establish MainFileID!"); 891 return true; 892 } 893 894 // High-Level Operations 895 896 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 897 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 898 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 899 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 900 901 // FIXME: Take this as an argument, once all the APIs we used have moved to 902 // taking it as an input instead of hard-coding llvm::errs. 903 raw_ostream &OS = llvm::errs(); 904 905 // Create the target instance. 906 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 907 getInvocation().TargetOpts)); 908 if (!hasTarget()) 909 return false; 910 911 // Create TargetInfo for the other side of CUDA compilation. 912 if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) { 913 auto TO = std::make_shared<TargetOptions>(); 914 TO->Triple = getFrontendOpts().AuxTriple; 915 TO->HostTriple = getTarget().getTriple().str(); 916 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 917 } 918 919 // Inform the target of the language options. 920 // 921 // FIXME: We shouldn't need to do this, the target should be immutable once 922 // created. This complexity should be lifted elsewhere. 923 getTarget().adjust(getLangOpts()); 924 925 // Adjust target options based on codegen options. 926 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 927 928 // rewriter project will change target built-in bool type from its default. 929 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 930 getTarget().noSignedCharForObjCBool(); 931 932 // Validate/process some options. 933 if (getHeaderSearchOpts().Verbose) 934 OS << "clang -cc1 version " CLANG_VERSION_STRING 935 << " based upon " << BACKEND_PACKAGE_STRING 936 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 937 938 if (getFrontendOpts().ShowTimers) 939 createFrontendTimer(); 940 941 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 942 llvm::EnableStatistics(false); 943 944 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 945 // Reset the ID tables if we are reusing the SourceManager and parsing 946 // regular files. 947 if (hasSourceManager() && !Act.isModelParsingAction()) 948 getSourceManager().clearIDTables(); 949 950 if (Act.BeginSourceFile(*this, FIF)) { 951 Act.Execute(); 952 Act.EndSourceFile(); 953 } 954 } 955 956 // Notify the diagnostic client that all files were processed. 957 getDiagnostics().getClient()->finish(); 958 959 if (getDiagnosticOpts().ShowCarets) { 960 // We can have multiple diagnostics sharing one diagnostic client. 961 // Get the total number of warnings/errors from the client. 962 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 963 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 964 965 if (NumWarnings) 966 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 967 if (NumWarnings && NumErrors) 968 OS << " and "; 969 if (NumErrors) 970 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 971 if (NumWarnings || NumErrors) 972 OS << " generated.\n"; 973 } 974 975 if (getFrontendOpts().ShowStats) { 976 if (hasFileManager()) { 977 getFileManager().PrintStats(); 978 OS << '\n'; 979 } 980 llvm::PrintStatistics(OS); 981 } 982 StringRef StatsFile = getFrontendOpts().StatsFile; 983 if (!StatsFile.empty()) { 984 std::error_code EC; 985 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 986 llvm::sys::fs::F_Text); 987 if (EC) { 988 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 989 << StatsFile << EC.message(); 990 } else { 991 llvm::PrintStatisticsJSON(*StatS); 992 } 993 } 994 995 return !getDiagnostics().getClient()->getNumErrors(); 996 } 997 998 /// \brief Determine the appropriate source input kind based on language 999 /// options. 1000 static InputKind getSourceInputKindFromOptions(const LangOptions &LangOpts) { 1001 if (LangOpts.OpenCL) 1002 return IK_OpenCL; 1003 if (LangOpts.CUDA) 1004 return IK_CUDA; 1005 if (LangOpts.ObjC1) 1006 return LangOpts.CPlusPlus? IK_ObjCXX : IK_ObjC; 1007 return LangOpts.CPlusPlus? IK_CXX : IK_C; 1008 } 1009 1010 /// \brief Compile a module file for the given module, using the options 1011 /// provided by the importing compiler instance. Returns true if the module 1012 /// was built without errors. 1013 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1014 SourceLocation ImportLoc, 1015 Module *Module, 1016 StringRef ModuleFileName) { 1017 ModuleMap &ModMap 1018 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1019 1020 // Construct a compiler invocation for creating this module. 1021 IntrusiveRefCntPtr<CompilerInvocation> Invocation 1022 (new CompilerInvocation(ImportingInstance.getInvocation())); 1023 1024 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1025 1026 // For any options that aren't intended to affect how a module is built, 1027 // reset them to their default values. 1028 Invocation->getLangOpts()->resetNonModularOptions(); 1029 PPOpts.resetNonModularOptions(); 1030 1031 // Remove any macro definitions that are explicitly ignored by the module. 1032 // They aren't supposed to affect how the module is built anyway. 1033 const HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1034 PPOpts.Macros.erase( 1035 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1036 [&HSOpts](const std::pair<std::string, bool> &def) { 1037 StringRef MacroDef = def.first; 1038 return HSOpts.ModulesIgnoreMacros.count( 1039 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1040 }), 1041 PPOpts.Macros.end()); 1042 1043 // Note the name of the module we're building. 1044 Invocation->getLangOpts()->CurrentModule = Module->getTopLevelModuleName(); 1045 1046 // Make sure that the failed-module structure has been allocated in 1047 // the importing instance, and propagate the pointer to the newly-created 1048 // instance. 1049 PreprocessorOptions &ImportingPPOpts 1050 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1051 if (!ImportingPPOpts.FailedModules) 1052 ImportingPPOpts.FailedModules = 1053 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1054 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1055 1056 // If there is a module map file, build the module using the module map. 1057 // Set up the inputs/outputs so that we build the module from its umbrella 1058 // header. 1059 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1060 FrontendOpts.OutputFile = ModuleFileName.str(); 1061 FrontendOpts.DisableFree = false; 1062 FrontendOpts.GenerateGlobalModuleIndex = false; 1063 FrontendOpts.BuildingImplicitModule = true; 1064 FrontendOpts.Inputs.clear(); 1065 InputKind IK = getSourceInputKindFromOptions(*Invocation->getLangOpts()); 1066 1067 // Don't free the remapped file buffers; they are owned by our caller. 1068 PPOpts.RetainRemappedFileBuffers = true; 1069 1070 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1071 assert(ImportingInstance.getInvocation().getModuleHash() == 1072 Invocation->getModuleHash() && "Module hash mismatch!"); 1073 1074 // Construct a compiler instance that will be used to actually create the 1075 // module. 1076 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1077 /*BuildingModule=*/true); 1078 Instance.setInvocation(&*Invocation); 1079 1080 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1081 ImportingInstance.getDiagnosticClient()), 1082 /*ShouldOwnClient=*/true); 1083 1084 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1085 1086 // Note that this module is part of the module build stack, so that we 1087 // can detect cycles in the module graph. 1088 Instance.setFileManager(&ImportingInstance.getFileManager()); 1089 Instance.createSourceManager(Instance.getFileManager()); 1090 SourceManager &SourceMgr = Instance.getSourceManager(); 1091 SourceMgr.setModuleBuildStack( 1092 ImportingInstance.getSourceManager().getModuleBuildStack()); 1093 SourceMgr.pushModuleBuildStack(Module->getTopLevelModuleName(), 1094 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1095 1096 // If we're collecting module dependencies, we need to share a collector 1097 // between all of the module CompilerInstances. Other than that, we don't 1098 // want to produce any dependency output from the module build. 1099 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1100 Invocation->getDependencyOutputOpts() = DependencyOutputOptions(); 1101 1102 // Get or create the module map that we'll use to build this module. 1103 std::string InferredModuleMapContent; 1104 if (const FileEntry *ModuleMapFile = 1105 ModMap.getContainingModuleMapFile(Module)) { 1106 // Use the module map where this module resides. 1107 FrontendOpts.Inputs.emplace_back(ModuleMapFile->getName(), IK); 1108 } else { 1109 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1110 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1111 FrontendOpts.Inputs.emplace_back(FakeModuleMapFile, IK); 1112 1113 llvm::raw_string_ostream OS(InferredModuleMapContent); 1114 Module->print(OS); 1115 OS.flush(); 1116 1117 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1118 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1119 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1120 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1121 SourceMgr.overrideFileContents(ModuleMapFile, std::move(ModuleMapBuffer)); 1122 } 1123 1124 // Construct a module-generating action. Passing through the module map is 1125 // safe because the FileManager is shared between the compiler instances. 1126 GenerateModuleFromModuleMapAction CreateModuleAction( 1127 ModMap.getModuleMapFileForUniquing(Module), Module->IsSystem); 1128 1129 ImportingInstance.getDiagnostics().Report(ImportLoc, 1130 diag::remark_module_build) 1131 << Module->Name << ModuleFileName; 1132 1133 // Execute the action to actually build the module in-place. Use a separate 1134 // thread so that we get a stack large enough. 1135 const unsigned ThreadStackSize = 8 << 20; 1136 llvm::CrashRecoveryContext CRC; 1137 CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(CreateModuleAction); }, 1138 ThreadStackSize); 1139 1140 ImportingInstance.getDiagnostics().Report(ImportLoc, 1141 diag::remark_module_build_done) 1142 << Module->Name; 1143 1144 // Delete the temporary module map file. 1145 // FIXME: Even though we're executing under crash protection, it would still 1146 // be nice to do this with RemoveFileOnSignal when we can. However, that 1147 // doesn't make sense for all clients, so clean this up manually. 1148 Instance.clearOutputFiles(/*EraseFiles=*/true); 1149 1150 // We've rebuilt a module. If we're allowed to generate or update the global 1151 // module index, record that fact in the importing compiler instance. 1152 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1153 ImportingInstance.setBuildGlobalModuleIndex(true); 1154 } 1155 1156 return !Instance.getDiagnostics().hasErrorOccurred(); 1157 } 1158 1159 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1160 SourceLocation ImportLoc, 1161 SourceLocation ModuleNameLoc, Module *Module, 1162 StringRef ModuleFileName) { 1163 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1164 1165 auto diagnoseBuildFailure = [&] { 1166 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1167 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1168 }; 1169 1170 // FIXME: have LockFileManager return an error_code so that we can 1171 // avoid the mkdir when the directory already exists. 1172 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1173 llvm::sys::fs::create_directories(Dir); 1174 1175 while (1) { 1176 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1177 llvm::LockFileManager Locked(ModuleFileName); 1178 switch (Locked) { 1179 case llvm::LockFileManager::LFS_Error: 1180 Diags.Report(ModuleNameLoc, diag::err_module_lock_failure) 1181 << Module->Name << Locked.getErrorMessage(); 1182 return false; 1183 1184 case llvm::LockFileManager::LFS_Owned: 1185 // We're responsible for building the module ourselves. 1186 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1187 ModuleFileName)) { 1188 diagnoseBuildFailure(); 1189 return false; 1190 } 1191 break; 1192 1193 case llvm::LockFileManager::LFS_Shared: 1194 // Someone else is responsible for building the module. Wait for them to 1195 // finish. 1196 switch (Locked.waitForUnlock()) { 1197 case llvm::LockFileManager::Res_Success: 1198 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1199 break; 1200 case llvm::LockFileManager::Res_OwnerDied: 1201 continue; // try again to get the lock. 1202 case llvm::LockFileManager::Res_Timeout: 1203 Diags.Report(ModuleNameLoc, diag::err_module_lock_timeout) 1204 << Module->Name; 1205 // Clear the lock file so that future invokations can make progress. 1206 Locked.unsafeRemoveLockFile(); 1207 return false; 1208 } 1209 break; 1210 } 1211 1212 // Try to read the module file, now that we've compiled it. 1213 ASTReader::ASTReadResult ReadResult = 1214 ImportingInstance.getModuleManager()->ReadAST( 1215 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1216 ModuleLoadCapabilities); 1217 1218 if (ReadResult == ASTReader::OutOfDate && 1219 Locked == llvm::LockFileManager::LFS_Shared) { 1220 // The module may be out of date in the presence of file system races, 1221 // or if one of its imports depends on header search paths that are not 1222 // consistent with this ImportingInstance. Try again... 1223 continue; 1224 } else if (ReadResult == ASTReader::Missing) { 1225 diagnoseBuildFailure(); 1226 } else if (ReadResult != ASTReader::Success && 1227 !Diags.hasErrorOccurred()) { 1228 // The ASTReader didn't diagnose the error, so conservatively report it. 1229 diagnoseBuildFailure(); 1230 } 1231 return ReadResult == ASTReader::Success; 1232 } 1233 } 1234 1235 /// \brief Diagnose differences between the current definition of the given 1236 /// configuration macro and the definition provided on the command line. 1237 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1238 Module *Mod, SourceLocation ImportLoc) { 1239 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1240 SourceManager &SourceMgr = PP.getSourceManager(); 1241 1242 // If this identifier has never had a macro definition, then it could 1243 // not have changed. 1244 if (!Id->hadMacroDefinition()) 1245 return; 1246 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1247 1248 // Find the macro definition from the command line. 1249 MacroInfo *CmdLineDefinition = nullptr; 1250 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1251 // We only care about the predefines buffer. 1252 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1253 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1254 continue; 1255 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1256 CmdLineDefinition = DMD->getMacroInfo(); 1257 break; 1258 } 1259 1260 auto *CurrentDefinition = PP.getMacroInfo(Id); 1261 if (CurrentDefinition == CmdLineDefinition) { 1262 // Macro matches. Nothing to do. 1263 } else if (!CurrentDefinition) { 1264 // This macro was defined on the command line, then #undef'd later. 1265 // Complain. 1266 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1267 << true << ConfigMacro << Mod->getFullModuleName(); 1268 auto LatestDef = LatestLocalMD->getDefinition(); 1269 assert(LatestDef.isUndefined() && 1270 "predefined macro went away with no #undef?"); 1271 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1272 << true; 1273 return; 1274 } else if (!CmdLineDefinition) { 1275 // There was no definition for this macro in the predefines buffer, 1276 // but there was a local definition. Complain. 1277 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1278 << false << ConfigMacro << Mod->getFullModuleName(); 1279 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1280 diag::note_module_def_undef_here) 1281 << false; 1282 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1283 /*Syntactically=*/true)) { 1284 // The macro definitions differ. 1285 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1286 << false << ConfigMacro << Mod->getFullModuleName(); 1287 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1288 diag::note_module_def_undef_here) 1289 << false; 1290 } 1291 } 1292 1293 /// \brief Write a new timestamp file with the given path. 1294 static void writeTimestampFile(StringRef TimestampFile) { 1295 std::error_code EC; 1296 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1297 } 1298 1299 /// \brief Prune the module cache of modules that haven't been accessed in 1300 /// a long time. 1301 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1302 struct stat StatBuf; 1303 llvm::SmallString<128> TimestampFile; 1304 TimestampFile = HSOpts.ModuleCachePath; 1305 assert(!TimestampFile.empty()); 1306 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1307 1308 // Try to stat() the timestamp file. 1309 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1310 // If the timestamp file wasn't there, create one now. 1311 if (errno == ENOENT) { 1312 writeTimestampFile(TimestampFile); 1313 } 1314 return; 1315 } 1316 1317 // Check whether the time stamp is older than our pruning interval. 1318 // If not, do nothing. 1319 time_t TimeStampModTime = StatBuf.st_mtime; 1320 time_t CurrentTime = time(nullptr); 1321 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1322 return; 1323 1324 // Write a new timestamp file so that nobody else attempts to prune. 1325 // There is a benign race condition here, if two Clang instances happen to 1326 // notice at the same time that the timestamp is out-of-date. 1327 writeTimestampFile(TimestampFile); 1328 1329 // Walk the entire module cache, looking for unused module files and module 1330 // indices. 1331 std::error_code EC; 1332 SmallString<128> ModuleCachePathNative; 1333 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1334 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1335 Dir != DirEnd && !EC; Dir.increment(EC)) { 1336 // If we don't have a directory, there's nothing to look into. 1337 if (!llvm::sys::fs::is_directory(Dir->path())) 1338 continue; 1339 1340 // Walk all of the files within this directory. 1341 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1342 File != FileEnd && !EC; File.increment(EC)) { 1343 // We only care about module and global module index files. 1344 StringRef Extension = llvm::sys::path::extension(File->path()); 1345 if (Extension != ".pcm" && Extension != ".timestamp" && 1346 llvm::sys::path::filename(File->path()) != "modules.idx") 1347 continue; 1348 1349 // Look at this file. If we can't stat it, there's nothing interesting 1350 // there. 1351 if (::stat(File->path().c_str(), &StatBuf)) 1352 continue; 1353 1354 // If the file has been used recently enough, leave it there. 1355 time_t FileAccessTime = StatBuf.st_atime; 1356 if (CurrentTime - FileAccessTime <= 1357 time_t(HSOpts.ModuleCachePruneAfter)) { 1358 continue; 1359 } 1360 1361 // Remove the file. 1362 llvm::sys::fs::remove(File->path()); 1363 1364 // Remove the timestamp file. 1365 std::string TimpestampFilename = File->path() + ".timestamp"; 1366 llvm::sys::fs::remove(TimpestampFilename); 1367 } 1368 1369 // If we removed all of the files in the directory, remove the directory 1370 // itself. 1371 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1372 llvm::sys::fs::directory_iterator() && !EC) 1373 llvm::sys::fs::remove(Dir->path()); 1374 } 1375 } 1376 1377 void CompilerInstance::createModuleManager() { 1378 if (!ModuleManager) { 1379 if (!hasASTContext()) 1380 createASTContext(); 1381 1382 // If we're implicitly building modules but not currently recursively 1383 // building a module, check whether we need to prune the module cache. 1384 if (getSourceManager().getModuleBuildStack().empty() && 1385 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1386 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1387 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1388 pruneModuleCache(getHeaderSearchOpts()); 1389 } 1390 1391 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1392 std::string Sysroot = HSOpts.Sysroot; 1393 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1394 std::unique_ptr<llvm::Timer> ReadTimer; 1395 if (FrontendTimerGroup) 1396 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1397 "Reading modules", 1398 *FrontendTimerGroup); 1399 ModuleManager = new ASTReader( 1400 getPreprocessor(), getASTContext(), getPCHContainerReader(), 1401 getFrontendOpts().ModuleFileExtensions, 1402 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1403 /*AllowASTWithCompilerErrors=*/false, 1404 /*AllowConfigurationMismatch=*/false, 1405 HSOpts.ModulesValidateSystemHeaders, 1406 getFrontendOpts().UseGlobalModuleIndex, 1407 std::move(ReadTimer)); 1408 if (hasASTConsumer()) { 1409 ModuleManager->setDeserializationListener( 1410 getASTConsumer().GetASTDeserializationListener()); 1411 getASTContext().setASTMutationListener( 1412 getASTConsumer().GetASTMutationListener()); 1413 } 1414 getASTContext().setExternalSource(ModuleManager); 1415 if (hasSema()) 1416 ModuleManager->InitializeSema(getSema()); 1417 if (hasASTConsumer()) 1418 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1419 1420 if (TheDependencyFileGenerator) 1421 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1422 for (auto &Listener : DependencyCollectors) 1423 Listener->attachToASTReader(*ModuleManager); 1424 } 1425 } 1426 1427 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1428 llvm::Timer Timer; 1429 if (FrontendTimerGroup) 1430 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1431 *FrontendTimerGroup); 1432 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1433 1434 // Helper to recursively read the module names for all modules we're adding. 1435 // We mark these as known and redirect any attempt to load that module to 1436 // the files we were handed. 1437 struct ReadModuleNames : ASTReaderListener { 1438 CompilerInstance &CI; 1439 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1440 1441 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1442 1443 void ReadModuleName(StringRef ModuleName) override { 1444 LoadedModules.push_back( 1445 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1446 } 1447 1448 void registerAll() { 1449 for (auto *II : LoadedModules) { 1450 CI.KnownModules[II] = CI.getPreprocessor() 1451 .getHeaderSearchInfo() 1452 .getModuleMap() 1453 .findModule(II->getName()); 1454 } 1455 LoadedModules.clear(); 1456 } 1457 1458 void markAllUnavailable() { 1459 for (auto *II : LoadedModules) { 1460 if (Module *M = CI.getPreprocessor() 1461 .getHeaderSearchInfo() 1462 .getModuleMap() 1463 .findModule(II->getName())) { 1464 M->HasIncompatibleModuleFile = true; 1465 1466 // Mark module as available if the only reason it was unavailable 1467 // was missing headers. 1468 SmallVector<Module *, 2> Stack; 1469 Stack.push_back(M); 1470 while (!Stack.empty()) { 1471 Module *Current = Stack.pop_back_val(); 1472 if (Current->IsMissingRequirement) continue; 1473 Current->IsAvailable = true; 1474 Stack.insert(Stack.end(), 1475 Current->submodule_begin(), Current->submodule_end()); 1476 } 1477 } 1478 } 1479 LoadedModules.clear(); 1480 } 1481 }; 1482 1483 // If we don't already have an ASTReader, create one now. 1484 if (!ModuleManager) 1485 createModuleManager(); 1486 1487 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1488 auto &ListenerRef = *Listener; 1489 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1490 std::move(Listener)); 1491 1492 // Try to load the module file. 1493 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1494 SourceLocation(), 1495 ASTReader::ARR_ConfigurationMismatch)) { 1496 case ASTReader::Success: 1497 // We successfully loaded the module file; remember the set of provided 1498 // modules so that we don't try to load implicit modules for them. 1499 ListenerRef.registerAll(); 1500 return true; 1501 1502 case ASTReader::ConfigurationMismatch: 1503 // Ignore unusable module files. 1504 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1505 << FileName; 1506 // All modules provided by any files we tried and failed to load are now 1507 // unavailable; includes of those modules should now be handled textually. 1508 ListenerRef.markAllUnavailable(); 1509 return true; 1510 1511 default: 1512 return false; 1513 } 1514 } 1515 1516 ModuleLoadResult 1517 CompilerInstance::loadModule(SourceLocation ImportLoc, 1518 ModuleIdPath Path, 1519 Module::NameVisibilityKind Visibility, 1520 bool IsInclusionDirective) { 1521 // Determine what file we're searching from. 1522 StringRef ModuleName = Path[0].first->getName(); 1523 SourceLocation ModuleNameLoc = Path[0].second; 1524 1525 // If we've already handled this import, just return the cached result. 1526 // This one-element cache is important to eliminate redundant diagnostics 1527 // when both the preprocessor and parser see the same import declaration. 1528 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1529 // Make the named module visible. 1530 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1531 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1532 ImportLoc); 1533 return LastModuleImportResult; 1534 } 1535 1536 clang::Module *Module = nullptr; 1537 1538 // If we don't already have information on this module, load the module now. 1539 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1540 = KnownModules.find(Path[0].first); 1541 if (Known != KnownModules.end()) { 1542 // Retrieve the cached top-level module. 1543 Module = Known->second; 1544 } else if (ModuleName == getLangOpts().CurrentModule) { 1545 // This is the module we're building. 1546 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1547 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1548 } else { 1549 // Search for a module with the given name. 1550 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1551 HeaderSearchOptions &HSOpts = 1552 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1553 1554 std::string ModuleFileName; 1555 bool LoadFromPrebuiltModulePath = false; 1556 // We try to load the module from the prebuilt module paths. If not 1557 // successful, we then try to find it in the module cache. 1558 if (!HSOpts.PrebuiltModulePaths.empty()) { 1559 // Load the module from the prebuilt module path. 1560 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( 1561 ModuleName, "", /*UsePrebuiltPath*/ true); 1562 if (!ModuleFileName.empty()) 1563 LoadFromPrebuiltModulePath = true; 1564 } 1565 if (!LoadFromPrebuiltModulePath && Module) { 1566 // Load the module from the module cache. 1567 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); 1568 } else if (!LoadFromPrebuiltModulePath) { 1569 // We can't find a module, error out here. 1570 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1571 << ModuleName 1572 << SourceRange(ImportLoc, ModuleNameLoc); 1573 ModuleBuildFailed = true; 1574 return ModuleLoadResult(); 1575 } 1576 1577 if (ModuleFileName.empty()) { 1578 if (Module && Module->HasIncompatibleModuleFile) { 1579 // We tried and failed to load a module file for this module. Fall 1580 // back to textual inclusion for its headers. 1581 return ModuleLoadResult::ConfigMismatch; 1582 } 1583 1584 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1585 << ModuleName; 1586 ModuleBuildFailed = true; 1587 return ModuleLoadResult(); 1588 } 1589 1590 // If we don't already have an ASTReader, create one now. 1591 if (!ModuleManager) 1592 createModuleManager(); 1593 1594 llvm::Timer Timer; 1595 if (FrontendTimerGroup) 1596 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1597 *FrontendTimerGroup); 1598 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1599 1600 // Try to load the module file. If we are trying to load from the prebuilt 1601 // module path, we don't have the module map files and don't know how to 1602 // rebuild modules. 1603 unsigned ARRFlags = LoadFromPrebuiltModulePath ? 1604 ASTReader::ARR_ConfigurationMismatch : 1605 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing; 1606 switch (ModuleManager->ReadAST(ModuleFileName, 1607 LoadFromPrebuiltModulePath ? 1608 serialization::MK_PrebuiltModule : 1609 serialization::MK_ImplicitModule, 1610 ImportLoc, 1611 ARRFlags)) { 1612 case ASTReader::Success: { 1613 if (LoadFromPrebuiltModulePath && !Module) { 1614 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1615 if (!Module || !Module->getASTFile() || 1616 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1617 // Error out if Module does not refer to the file in the prebuilt 1618 // module path. 1619 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1620 << ModuleName; 1621 ModuleBuildFailed = true; 1622 KnownModules[Path[0].first] = nullptr; 1623 return ModuleLoadResult(); 1624 } 1625 } 1626 break; 1627 } 1628 1629 case ASTReader::OutOfDate: 1630 case ASTReader::Missing: { 1631 if (LoadFromPrebuiltModulePath) { 1632 // We can't rebuild the module without a module map. Since ReadAST 1633 // already produces diagnostics for these two cases, we simply 1634 // error out here. 1635 ModuleBuildFailed = true; 1636 KnownModules[Path[0].first] = nullptr; 1637 return ModuleLoadResult(); 1638 } 1639 1640 // The module file is missing or out-of-date. Build it. 1641 assert(Module && "missing module file"); 1642 // Check whether there is a cycle in the module graph. 1643 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1644 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1645 for (; Pos != PosEnd; ++Pos) { 1646 if (Pos->first == ModuleName) 1647 break; 1648 } 1649 1650 if (Pos != PosEnd) { 1651 SmallString<256> CyclePath; 1652 for (; Pos != PosEnd; ++Pos) { 1653 CyclePath += Pos->first; 1654 CyclePath += " -> "; 1655 } 1656 CyclePath += ModuleName; 1657 1658 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1659 << ModuleName << CyclePath; 1660 return ModuleLoadResult(); 1661 } 1662 1663 // Check whether we have already attempted to build this module (but 1664 // failed). 1665 if (getPreprocessorOpts().FailedModules && 1666 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1667 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1668 << ModuleName 1669 << SourceRange(ImportLoc, ModuleNameLoc); 1670 ModuleBuildFailed = true; 1671 return ModuleLoadResult(); 1672 } 1673 1674 // Try to compile and then load the module. 1675 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1676 ModuleFileName)) { 1677 assert(getDiagnostics().hasErrorOccurred() && 1678 "undiagnosed error in compileAndLoadModule"); 1679 if (getPreprocessorOpts().FailedModules) 1680 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1681 KnownModules[Path[0].first] = nullptr; 1682 ModuleBuildFailed = true; 1683 return ModuleLoadResult(); 1684 } 1685 1686 // Okay, we've rebuilt and now loaded the module. 1687 break; 1688 } 1689 1690 case ASTReader::ConfigurationMismatch: 1691 if (LoadFromPrebuiltModulePath) 1692 getDiagnostics().Report(SourceLocation(), 1693 diag::warn_module_config_mismatch) 1694 << ModuleFileName; 1695 // Fall through to error out. 1696 case ASTReader::VersionMismatch: 1697 case ASTReader::HadErrors: 1698 ModuleLoader::HadFatalFailure = true; 1699 // FIXME: The ASTReader will already have complained, but can we shoehorn 1700 // that diagnostic information into a more useful form? 1701 KnownModules[Path[0].first] = nullptr; 1702 return ModuleLoadResult(); 1703 1704 case ASTReader::Failure: 1705 ModuleLoader::HadFatalFailure = true; 1706 // Already complained, but note now that we failed. 1707 KnownModules[Path[0].first] = nullptr; 1708 ModuleBuildFailed = true; 1709 return ModuleLoadResult(); 1710 } 1711 1712 // Cache the result of this top-level module lookup for later. 1713 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1714 } 1715 1716 // If we never found the module, fail. 1717 if (!Module) 1718 return ModuleLoadResult(); 1719 1720 // Verify that the rest of the module path actually corresponds to 1721 // a submodule. 1722 if (Path.size() > 1) { 1723 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1724 StringRef Name = Path[I].first->getName(); 1725 clang::Module *Sub = Module->findSubmodule(Name); 1726 1727 if (!Sub) { 1728 // Attempt to perform typo correction to find a module name that works. 1729 SmallVector<StringRef, 2> Best; 1730 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1731 1732 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1733 JEnd = Module->submodule_end(); 1734 J != JEnd; ++J) { 1735 unsigned ED = Name.edit_distance((*J)->Name, 1736 /*AllowReplacements=*/true, 1737 BestEditDistance); 1738 if (ED <= BestEditDistance) { 1739 if (ED < BestEditDistance) { 1740 Best.clear(); 1741 BestEditDistance = ED; 1742 } 1743 1744 Best.push_back((*J)->Name); 1745 } 1746 } 1747 1748 // If there was a clear winner, user it. 1749 if (Best.size() == 1) { 1750 getDiagnostics().Report(Path[I].second, 1751 diag::err_no_submodule_suggest) 1752 << Path[I].first << Module->getFullModuleName() << Best[0] 1753 << SourceRange(Path[0].second, Path[I-1].second) 1754 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1755 Best[0]); 1756 1757 Sub = Module->findSubmodule(Best[0]); 1758 } 1759 } 1760 1761 if (!Sub) { 1762 // No submodule by this name. Complain, and don't look for further 1763 // submodules. 1764 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1765 << Path[I].first << Module->getFullModuleName() 1766 << SourceRange(Path[0].second, Path[I-1].second); 1767 break; 1768 } 1769 1770 Module = Sub; 1771 } 1772 } 1773 1774 // Make the named module visible, if it's not already part of the module 1775 // we are parsing. 1776 if (ModuleName != getLangOpts().CurrentModule) { 1777 if (!Module->IsFromModuleFile) { 1778 // We have an umbrella header or directory that doesn't actually include 1779 // all of the headers within the directory it covers. Complain about 1780 // this missing submodule and recover by forgetting that we ever saw 1781 // this submodule. 1782 // FIXME: Should we detect this at module load time? It seems fairly 1783 // expensive (and rare). 1784 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1785 << Module->getFullModuleName() 1786 << SourceRange(Path.front().second, Path.back().second); 1787 1788 return ModuleLoadResult::MissingExpected; 1789 } 1790 1791 // Check whether this module is available. 1792 clang::Module::Requirement Requirement; 1793 clang::Module::UnresolvedHeaderDirective MissingHeader; 1794 if (!Module->isAvailable(getLangOpts(), getTarget(), Requirement, 1795 MissingHeader)) { 1796 if (MissingHeader.FileNameLoc.isValid()) { 1797 getDiagnostics().Report(MissingHeader.FileNameLoc, 1798 diag::err_module_header_missing) 1799 << MissingHeader.IsUmbrella << MissingHeader.FileName; 1800 } else { 1801 getDiagnostics().Report(ImportLoc, diag::err_module_unavailable) 1802 << Module->getFullModuleName() 1803 << Requirement.second << Requirement.first 1804 << SourceRange(Path.front().second, Path.back().second); 1805 } 1806 LastModuleImportLoc = ImportLoc; 1807 LastModuleImportResult = ModuleLoadResult(); 1808 return ModuleLoadResult(); 1809 } 1810 1811 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1812 } 1813 1814 // Check for any configuration macros that have changed. 1815 clang::Module *TopModule = Module->getTopLevelModule(); 1816 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1817 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1818 Module, ImportLoc); 1819 } 1820 1821 LastModuleImportLoc = ImportLoc; 1822 LastModuleImportResult = ModuleLoadResult(Module); 1823 return LastModuleImportResult; 1824 } 1825 1826 void CompilerInstance::makeModuleVisible(Module *Mod, 1827 Module::NameVisibilityKind Visibility, 1828 SourceLocation ImportLoc) { 1829 if (!ModuleManager) 1830 createModuleManager(); 1831 if (!ModuleManager) 1832 return; 1833 1834 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 1835 } 1836 1837 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1838 SourceLocation TriggerLoc) { 1839 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 1840 return nullptr; 1841 if (!ModuleManager) 1842 createModuleManager(); 1843 // Can't do anything if we don't have the module manager. 1844 if (!ModuleManager) 1845 return nullptr; 1846 // Get an existing global index. This loads it if not already 1847 // loaded. 1848 ModuleManager->loadGlobalIndex(); 1849 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1850 // If the global index doesn't exist, create it. 1851 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1852 hasPreprocessor()) { 1853 llvm::sys::fs::create_directories( 1854 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1855 GlobalModuleIndex::writeIndex( 1856 getFileManager(), getPCHContainerReader(), 1857 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1858 ModuleManager->resetForReload(); 1859 ModuleManager->loadGlobalIndex(); 1860 GlobalIndex = ModuleManager->getGlobalIndex(); 1861 } 1862 // For finding modules needing to be imported for fixit messages, 1863 // we need to make the global index cover all modules, so we do that here. 1864 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1865 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1866 bool RecreateIndex = false; 1867 for (ModuleMap::module_iterator I = MMap.module_begin(), 1868 E = MMap.module_end(); I != E; ++I) { 1869 Module *TheModule = I->second; 1870 const FileEntry *Entry = TheModule->getASTFile(); 1871 if (!Entry) { 1872 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 1873 Path.push_back(std::make_pair( 1874 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 1875 std::reverse(Path.begin(), Path.end()); 1876 // Load a module as hidden. This also adds it to the global index. 1877 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 1878 RecreateIndex = true; 1879 } 1880 } 1881 if (RecreateIndex) { 1882 GlobalModuleIndex::writeIndex( 1883 getFileManager(), getPCHContainerReader(), 1884 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1885 ModuleManager->resetForReload(); 1886 ModuleManager->loadGlobalIndex(); 1887 GlobalIndex = ModuleManager->getGlobalIndex(); 1888 } 1889 HaveFullGlobalModuleIndex = true; 1890 } 1891 return GlobalIndex; 1892 } 1893 1894 // Check global module index for missing imports. 1895 bool 1896 CompilerInstance::lookupMissingImports(StringRef Name, 1897 SourceLocation TriggerLoc) { 1898 // Look for the symbol in non-imported modules, but only if an error 1899 // actually occurred. 1900 if (!buildingModule()) { 1901 // Load global module index, or retrieve a previously loaded one. 1902 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 1903 TriggerLoc); 1904 1905 // Only if we have a global index. 1906 if (GlobalIndex) { 1907 GlobalModuleIndex::HitSet FoundModules; 1908 1909 // Find the modules that reference the identifier. 1910 // Note that this only finds top-level modules. 1911 // We'll let diagnoseTypo find the actual declaration module. 1912 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 1913 return true; 1914 } 1915 } 1916 1917 return false; 1918 } 1919 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 1920 1921 void CompilerInstance::setExternalSemaSource( 1922 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 1923 ExternalSemaSrc = std::move(ESS); 1924 } 1925