xref: /llvm-project/clang/lib/Frontend/CompilerInstance.cpp (revision d6509cf21dd017392f82da0eb9b0345fbfc8970b)
1 //===--- CompilerInstance.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Frontend/CompilerInstance.h"
11 #include "clang/AST/ASTConsumer.h"
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/Basic/CharInfo.h"
15 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/MemoryBufferCache.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/Stack.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Basic/Version.h"
22 #include "clang/Config/config.h"
23 #include "clang/Frontend/ChainedDiagnosticConsumer.h"
24 #include "clang/Frontend/FrontendAction.h"
25 #include "clang/Frontend/FrontendActions.h"
26 #include "clang/Frontend/FrontendDiagnostic.h"
27 #include "clang/Frontend/LogDiagnosticPrinter.h"
28 #include "clang/Frontend/SerializedDiagnosticPrinter.h"
29 #include "clang/Frontend/TextDiagnosticPrinter.h"
30 #include "clang/Frontend/Utils.h"
31 #include "clang/Frontend/VerifyDiagnosticConsumer.h"
32 #include "clang/Lex/HeaderSearch.h"
33 #include "clang/Lex/PTHManager.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "clang/Lex/PreprocessorOptions.h"
36 #include "clang/Sema/CodeCompleteConsumer.h"
37 #include "clang/Sema/Sema.h"
38 #include "clang/Serialization/ASTReader.h"
39 #include "clang/Serialization/GlobalModuleIndex.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Support/CrashRecoveryContext.h"
42 #include "llvm/Support/Errc.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/Host.h"
45 #include "llvm/Support/LockFileManager.h"
46 #include "llvm/Support/MemoryBuffer.h"
47 #include "llvm/Support/Path.h"
48 #include "llvm/Support/Program.h"
49 #include "llvm/Support/Signals.h"
50 #include "llvm/Support/Timer.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <sys/stat.h>
53 #include <system_error>
54 #include <time.h>
55 #include <utility>
56 
57 using namespace clang;
58 
59 CompilerInstance::CompilerInstance(
60     std::shared_ptr<PCHContainerOperations> PCHContainerOps,
61     MemoryBufferCache *SharedPCMCache)
62     : ModuleLoader(/* BuildingModule = */ SharedPCMCache),
63       Invocation(new CompilerInvocation()),
64       PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache),
65       ThePCHContainerOperations(std::move(PCHContainerOps)) {
66   // Don't allow this to invalidate buffers in use by others.
67   if (SharedPCMCache)
68     getPCMCache().finalizeCurrentBuffers();
69 }
70 
71 CompilerInstance::~CompilerInstance() {
72   assert(OutputFiles.empty() && "Still output files in flight?");
73 }
74 
75 void CompilerInstance::setInvocation(
76     std::shared_ptr<CompilerInvocation> Value) {
77   Invocation = std::move(Value);
78 }
79 
80 bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
81   return (BuildGlobalModuleIndex ||
82           (ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
83            getFrontendOpts().GenerateGlobalModuleIndex)) &&
84          !ModuleBuildFailed;
85 }
86 
87 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
88   Diagnostics = Value;
89 }
90 
91 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; }
92 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; }
93 
94 void CompilerInstance::setFileManager(FileManager *Value) {
95   FileMgr = Value;
96   if (Value)
97     VirtualFileSystem = Value->getVirtualFileSystem();
98   else
99     VirtualFileSystem.reset();
100 }
101 
102 void CompilerInstance::setSourceManager(SourceManager *Value) {
103   SourceMgr = Value;
104 }
105 
106 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) {
107   PP = std::move(Value);
108 }
109 
110 void CompilerInstance::setASTContext(ASTContext *Value) {
111   Context = Value;
112 
113   if (Context && Consumer)
114     getASTConsumer().Initialize(getASTContext());
115 }
116 
117 void CompilerInstance::setSema(Sema *S) {
118   TheSema.reset(S);
119 }
120 
121 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
122   Consumer = std::move(Value);
123 
124   if (Context && Consumer)
125     getASTConsumer().Initialize(getASTContext());
126 }
127 
128 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
129   CompletionConsumer.reset(Value);
130 }
131 
132 std::unique_ptr<Sema> CompilerInstance::takeSema() {
133   return std::move(TheSema);
134 }
135 
136 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
137   return ModuleManager;
138 }
139 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
140   assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() &&
141          "Expected ASTReader to use the same PCM cache");
142   ModuleManager = std::move(Reader);
143 }
144 
145 std::shared_ptr<ModuleDependencyCollector>
146 CompilerInstance::getModuleDepCollector() const {
147   return ModuleDepCollector;
148 }
149 
150 void CompilerInstance::setModuleDepCollector(
151     std::shared_ptr<ModuleDependencyCollector> Collector) {
152   ModuleDepCollector = std::move(Collector);
153 }
154 
155 static void collectHeaderMaps(const HeaderSearch &HS,
156                               std::shared_ptr<ModuleDependencyCollector> MDC) {
157   SmallVector<std::string, 4> HeaderMapFileNames;
158   HS.getHeaderMapFileNames(HeaderMapFileNames);
159   for (auto &Name : HeaderMapFileNames)
160     MDC->addFile(Name);
161 }
162 
163 static void collectIncludePCH(CompilerInstance &CI,
164                               std::shared_ptr<ModuleDependencyCollector> MDC) {
165   const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
166   if (PPOpts.ImplicitPCHInclude.empty())
167     return;
168 
169   StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
170   FileManager &FileMgr = CI.getFileManager();
171   const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude);
172   if (!PCHDir) {
173     MDC->addFile(PCHInclude);
174     return;
175   }
176 
177   std::error_code EC;
178   SmallString<128> DirNative;
179   llvm::sys::path::native(PCHDir->getName(), DirNative);
180   vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem();
181   SimpleASTReaderListener Validator(CI.getPreprocessor());
182   for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd;
183        Dir != DirEnd && !EC; Dir.increment(EC)) {
184     // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not
185     // used here since we're not interested in validating the PCH at this time,
186     // but only to check whether this is a file containing an AST.
187     if (!ASTReader::readASTFileControlBlock(
188             Dir->path(), FileMgr, CI.getPCHContainerReader(),
189             /*FindModuleFileExtensions=*/false, Validator,
190             /*ValidateDiagnosticOptions=*/false))
191       MDC->addFile(Dir->path());
192   }
193 }
194 
195 static void collectVFSEntries(CompilerInstance &CI,
196                               std::shared_ptr<ModuleDependencyCollector> MDC) {
197   if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
198     return;
199 
200   // Collect all VFS found.
201   SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries;
202   for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) {
203     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
204         llvm::MemoryBuffer::getFile(VFSFile);
205     if (!Buffer)
206       return;
207     vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr,
208                             VFSFile, VFSEntries);
209   }
210 
211   for (auto &E : VFSEntries)
212     MDC->addFile(E.VPath, E.RPath);
213 }
214 
215 // Diagnostics
216 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
217                                const CodeGenOptions *CodeGenOpts,
218                                DiagnosticsEngine &Diags) {
219   std::error_code EC;
220   std::unique_ptr<raw_ostream> StreamOwner;
221   raw_ostream *OS = &llvm::errs();
222   if (DiagOpts->DiagnosticLogFile != "-") {
223     // Create the output stream.
224     auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
225         DiagOpts->DiagnosticLogFile, EC,
226         llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
227     if (EC) {
228       Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
229           << DiagOpts->DiagnosticLogFile << EC.message();
230     } else {
231       FileOS->SetUnbuffered();
232       OS = FileOS.get();
233       StreamOwner = std::move(FileOS);
234     }
235   }
236 
237   // Chain in the diagnostic client which will log the diagnostics.
238   auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
239                                                         std::move(StreamOwner));
240   if (CodeGenOpts)
241     Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
242   assert(Diags.ownsClient());
243   Diags.setClient(
244       new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
245 }
246 
247 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
248                                        DiagnosticsEngine &Diags,
249                                        StringRef OutputFile) {
250   auto SerializedConsumer =
251       clang::serialized_diags::create(OutputFile, DiagOpts);
252 
253   if (Diags.ownsClient()) {
254     Diags.setClient(new ChainedDiagnosticConsumer(
255         Diags.takeClient(), std::move(SerializedConsumer)));
256   } else {
257     Diags.setClient(new ChainedDiagnosticConsumer(
258         Diags.getClient(), std::move(SerializedConsumer)));
259   }
260 }
261 
262 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
263                                          bool ShouldOwnClient) {
264   Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
265                                   ShouldOwnClient, &getCodeGenOpts());
266 }
267 
268 IntrusiveRefCntPtr<DiagnosticsEngine>
269 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
270                                     DiagnosticConsumer *Client,
271                                     bool ShouldOwnClient,
272                                     const CodeGenOptions *CodeGenOpts) {
273   IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
274   IntrusiveRefCntPtr<DiagnosticsEngine>
275       Diags(new DiagnosticsEngine(DiagID, Opts));
276 
277   // Create the diagnostic client for reporting errors or for
278   // implementing -verify.
279   if (Client) {
280     Diags->setClient(Client, ShouldOwnClient);
281   } else
282     Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
283 
284   // Chain in -verify checker, if requested.
285   if (Opts->VerifyDiagnostics)
286     Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
287 
288   // Chain in -diagnostic-log-file dumper, if requested.
289   if (!Opts->DiagnosticLogFile.empty())
290     SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
291 
292   if (!Opts->DiagnosticSerializationFile.empty())
293     SetupSerializedDiagnostics(Opts, *Diags,
294                                Opts->DiagnosticSerializationFile);
295 
296   // Configure our handling of diagnostics.
297   ProcessWarningOptions(*Diags, *Opts);
298 
299   return Diags;
300 }
301 
302 // File Manager
303 
304 FileManager *CompilerInstance::createFileManager() {
305   if (!hasVirtualFileSystem()) {
306     IntrusiveRefCntPtr<vfs::FileSystem> VFS =
307         createVFSFromCompilerInvocation(getInvocation(), getDiagnostics());
308     setVirtualFileSystem(VFS);
309   }
310   FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
311   return FileMgr.get();
312 }
313 
314 // Source Manager
315 
316 void CompilerInstance::createSourceManager(FileManager &FileMgr) {
317   SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
318 }
319 
320 // Initialize the remapping of files to alternative contents, e.g.,
321 // those specified through other files.
322 static void InitializeFileRemapping(DiagnosticsEngine &Diags,
323                                     SourceManager &SourceMgr,
324                                     FileManager &FileMgr,
325                                     const PreprocessorOptions &InitOpts) {
326   // Remap files in the source manager (with buffers).
327   for (const auto &RB : InitOpts.RemappedFileBuffers) {
328     // Create the file entry for the file that we're mapping from.
329     const FileEntry *FromFile =
330         FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
331     if (!FromFile) {
332       Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
333       if (!InitOpts.RetainRemappedFileBuffers)
334         delete RB.second;
335       continue;
336     }
337 
338     // Override the contents of the "from" file with the contents of
339     // the "to" file.
340     SourceMgr.overrideFileContents(FromFile, RB.second,
341                                    InitOpts.RetainRemappedFileBuffers);
342   }
343 
344   // Remap files in the source manager (with other files).
345   for (const auto &RF : InitOpts.RemappedFiles) {
346     // Find the file that we're mapping to.
347     const FileEntry *ToFile = FileMgr.getFile(RF.second);
348     if (!ToFile) {
349       Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
350       continue;
351     }
352 
353     // Create the file entry for the file that we're mapping from.
354     const FileEntry *FromFile =
355         FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
356     if (!FromFile) {
357       Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
358       continue;
359     }
360 
361     // Override the contents of the "from" file with the contents of
362     // the "to" file.
363     SourceMgr.overrideFileContents(FromFile, ToFile);
364   }
365 
366   SourceMgr.setOverridenFilesKeepOriginalName(
367       InitOpts.RemappedFilesKeepOriginalName);
368 }
369 
370 // Preprocessor
371 
372 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
373   const PreprocessorOptions &PPOpts = getPreprocessorOpts();
374 
375   // Create a PTH manager if we are using some form of a token cache.
376   PTHManager *PTHMgr = nullptr;
377   if (!PPOpts.TokenCache.empty())
378     PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
379 
380   // Create the Preprocessor.
381   HeaderSearch *HeaderInfo =
382       new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(),
383                        getDiagnostics(), getLangOpts(), &getTarget());
384   PP = std::make_shared<Preprocessor>(
385       Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(),
386       getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr,
387       /*OwnsHeaderSearch=*/true, TUKind);
388   getTarget().adjust(getLangOpts());
389   PP->Initialize(getTarget(), getAuxTarget());
390 
391   // Note that this is different then passing PTHMgr to Preprocessor's ctor.
392   // That argument is used as the IdentifierInfoLookup argument to
393   // IdentifierTable's ctor.
394   if (PTHMgr) {
395     PTHMgr->setPreprocessor(&*PP);
396     PP->setPTHManager(PTHMgr);
397   }
398 
399   if (PPOpts.DetailedRecord)
400     PP->createPreprocessingRecord();
401 
402   // Apply remappings to the source manager.
403   InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
404                           PP->getFileManager(), PPOpts);
405 
406   // Predefine macros and configure the preprocessor.
407   InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(),
408                          getFrontendOpts());
409 
410   // Initialize the header search object.  In CUDA compilations, we use the aux
411   // triple (the host triple) to initialize our header search, since we need to
412   // find the host headers in order to compile the CUDA code.
413   const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple();
414   if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA &&
415       PP->getAuxTargetInfo())
416     HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple();
417 
418   ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
419                            PP->getLangOpts(), *HeaderSearchTriple);
420 
421   PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
422 
423   if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules)
424     PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
425 
426   // Handle generating dependencies, if requested.
427   const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
428   if (!DepOpts.OutputFile.empty())
429     TheDependencyFileGenerator.reset(
430         DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
431   if (!DepOpts.DOTOutputFile.empty())
432     AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
433                              getHeaderSearchOpts().Sysroot);
434 
435   // If we don't have a collector, but we are collecting module dependencies,
436   // then we're the top level compiler instance and need to create one.
437   if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) {
438     ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
439         DepOpts.ModuleDependencyOutputDir);
440   }
441 
442   // If there is a module dep collector, register with other dep collectors
443   // and also (a) collect header maps and (b) TODO: input vfs overlay files.
444   if (ModuleDepCollector) {
445     addDependencyCollector(ModuleDepCollector);
446     collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector);
447     collectIncludePCH(*this, ModuleDepCollector);
448     collectVFSEntries(*this, ModuleDepCollector);
449   }
450 
451   for (auto &Listener : DependencyCollectors)
452     Listener->attachToPreprocessor(*PP);
453 
454   // Handle generating header include information, if requested.
455   if (DepOpts.ShowHeaderIncludes)
456     AttachHeaderIncludeGen(*PP, DepOpts);
457   if (!DepOpts.HeaderIncludeOutputFile.empty()) {
458     StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
459     if (OutputPath == "-")
460       OutputPath = "";
461     AttachHeaderIncludeGen(*PP, DepOpts,
462                            /*ShowAllHeaders=*/true, OutputPath,
463                            /*ShowDepth=*/false);
464   }
465 
466   if (DepOpts.ShowIncludesDest != ShowIncludesDestination::None) {
467     AttachHeaderIncludeGen(*PP, DepOpts,
468                            /*ShowAllHeaders=*/true, /*OutputPath=*/"",
469                            /*ShowDepth=*/true, /*MSStyle=*/true);
470   }
471 }
472 
473 std::string CompilerInstance::getSpecificModuleCachePath() {
474   // Set up the module path, including the hash for the
475   // module-creation options.
476   SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath);
477   if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash)
478     llvm::sys::path::append(SpecificModuleCache,
479                             getInvocation().getModuleHash());
480   return SpecificModuleCache.str();
481 }
482 
483 // ASTContext
484 
485 void CompilerInstance::createASTContext() {
486   Preprocessor &PP = getPreprocessor();
487   auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
488                                  PP.getIdentifierTable(), PP.getSelectorTable(),
489                                  PP.getBuiltinInfo());
490   Context->InitBuiltinTypes(getTarget(), getAuxTarget());
491   setASTContext(Context);
492 }
493 
494 // ExternalASTSource
495 
496 void CompilerInstance::createPCHExternalASTSource(
497     StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
498     void *DeserializationListener, bool OwnDeserializationListener) {
499   bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
500   ModuleManager = createPCHExternalASTSource(
501       Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
502       AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
503       getPCHContainerReader(),
504       getFrontendOpts().ModuleFileExtensions,
505       TheDependencyFileGenerator.get(),
506       DependencyCollectors,
507       DeserializationListener,
508       OwnDeserializationListener, Preamble,
509       getFrontendOpts().UseGlobalModuleIndex);
510 }
511 
512 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
513     StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
514     bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
515     const PCHContainerReader &PCHContainerRdr,
516     ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
517     DependencyFileGenerator *DependencyFile,
518     ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors,
519     void *DeserializationListener, bool OwnDeserializationListener,
520     bool Preamble, bool UseGlobalModuleIndex) {
521   HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
522 
523   IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader(
524       PP, &Context, PCHContainerRdr, Extensions,
525       Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation,
526       AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false,
527       HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
528 
529   // We need the external source to be set up before we read the AST, because
530   // eagerly-deserialized declarations may use it.
531   Context.setExternalSource(Reader.get());
532 
533   Reader->setDeserializationListener(
534       static_cast<ASTDeserializationListener *>(DeserializationListener),
535       /*TakeOwnership=*/OwnDeserializationListener);
536 
537   if (DependencyFile)
538     DependencyFile->AttachToASTReader(*Reader);
539   for (auto &Listener : DependencyCollectors)
540     Listener->attachToASTReader(*Reader);
541 
542   switch (Reader->ReadAST(Path,
543                           Preamble ? serialization::MK_Preamble
544                                    : serialization::MK_PCH,
545                           SourceLocation(),
546                           ASTReader::ARR_None)) {
547   case ASTReader::Success:
548     // Set the predefines buffer as suggested by the PCH reader. Typically, the
549     // predefines buffer will be empty.
550     PP.setPredefines(Reader->getSuggestedPredefines());
551     return Reader;
552 
553   case ASTReader::Failure:
554     // Unrecoverable failure: don't even try to process the input file.
555     break;
556 
557   case ASTReader::Missing:
558   case ASTReader::OutOfDate:
559   case ASTReader::VersionMismatch:
560   case ASTReader::ConfigurationMismatch:
561   case ASTReader::HadErrors:
562     // No suitable PCH file could be found. Return an error.
563     break;
564   }
565 
566   Context.setExternalSource(nullptr);
567   return nullptr;
568 }
569 
570 // Code Completion
571 
572 static bool EnableCodeCompletion(Preprocessor &PP,
573                                  StringRef Filename,
574                                  unsigned Line,
575                                  unsigned Column) {
576   // Tell the source manager to chop off the given file at a specific
577   // line and column.
578   const FileEntry *Entry = PP.getFileManager().getFile(Filename);
579   if (!Entry) {
580     PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
581       << Filename;
582     return true;
583   }
584 
585   // Truncate the named file at the given line/column.
586   PP.SetCodeCompletionPoint(Entry, Line, Column);
587   return false;
588 }
589 
590 void CompilerInstance::createCodeCompletionConsumer() {
591   const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
592   if (!CompletionConsumer) {
593     setCodeCompletionConsumer(
594       createCodeCompletionConsumer(getPreprocessor(),
595                                    Loc.FileName, Loc.Line, Loc.Column,
596                                    getFrontendOpts().CodeCompleteOpts,
597                                    llvm::outs()));
598     if (!CompletionConsumer)
599       return;
600   } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
601                                   Loc.Line, Loc.Column)) {
602     setCodeCompletionConsumer(nullptr);
603     return;
604   }
605 
606   if (CompletionConsumer->isOutputBinary() &&
607       llvm::sys::ChangeStdoutToBinary()) {
608     getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
609     setCodeCompletionConsumer(nullptr);
610   }
611 }
612 
613 void CompilerInstance::createFrontendTimer() {
614   FrontendTimerGroup.reset(
615       new llvm::TimerGroup("frontend", "Clang front-end time report"));
616   FrontendTimer.reset(
617       new llvm::Timer("frontend", "Clang front-end timer",
618                       *FrontendTimerGroup));
619 }
620 
621 CodeCompleteConsumer *
622 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
623                                                StringRef Filename,
624                                                unsigned Line,
625                                                unsigned Column,
626                                                const CodeCompleteOptions &Opts,
627                                                raw_ostream &OS) {
628   if (EnableCodeCompletion(PP, Filename, Line, Column))
629     return nullptr;
630 
631   // Set up the creation routine for code-completion.
632   return new PrintingCodeCompleteConsumer(Opts, OS);
633 }
634 
635 void CompilerInstance::createSema(TranslationUnitKind TUKind,
636                                   CodeCompleteConsumer *CompletionConsumer) {
637   TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
638                          TUKind, CompletionConsumer));
639   // Attach the external sema source if there is any.
640   if (ExternalSemaSrc) {
641     TheSema->addExternalSource(ExternalSemaSrc.get());
642     ExternalSemaSrc->InitializeSema(*TheSema);
643   }
644 }
645 
646 // Output Files
647 
648 void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
649   OutputFiles.push_back(std::move(OutFile));
650 }
651 
652 void CompilerInstance::clearOutputFiles(bool EraseFiles) {
653   for (OutputFile &OF : OutputFiles) {
654     if (!OF.TempFilename.empty()) {
655       if (EraseFiles) {
656         llvm::sys::fs::remove(OF.TempFilename);
657       } else {
658         SmallString<128> NewOutFile(OF.Filename);
659 
660         // If '-working-directory' was passed, the output filename should be
661         // relative to that.
662         FileMgr->FixupRelativePath(NewOutFile);
663         if (std::error_code ec =
664                 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
665           getDiagnostics().Report(diag::err_unable_to_rename_temp)
666             << OF.TempFilename << OF.Filename << ec.message();
667 
668           llvm::sys::fs::remove(OF.TempFilename);
669         }
670       }
671     } else if (!OF.Filename.empty() && EraseFiles)
672       llvm::sys::fs::remove(OF.Filename);
673   }
674   OutputFiles.clear();
675   if (DeleteBuiltModules) {
676     for (auto &Module : BuiltModules)
677       llvm::sys::fs::remove(Module.second);
678     BuiltModules.clear();
679   }
680   NonSeekStream.reset();
681 }
682 
683 std::unique_ptr<raw_pwrite_stream>
684 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
685                                           StringRef Extension) {
686   return createOutputFile(getFrontendOpts().OutputFile, Binary,
687                           /*RemoveFileOnSignal=*/true, InFile, Extension,
688                           /*UseTemporary=*/true);
689 }
690 
691 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() {
692   return llvm::make_unique<llvm::raw_null_ostream>();
693 }
694 
695 std::unique_ptr<raw_pwrite_stream>
696 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
697                                    bool RemoveFileOnSignal, StringRef InFile,
698                                    StringRef Extension, bool UseTemporary,
699                                    bool CreateMissingDirectories) {
700   std::string OutputPathName, TempPathName;
701   std::error_code EC;
702   std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
703       OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
704       UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
705   if (!OS) {
706     getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
707                                                                 << EC.message();
708     return nullptr;
709   }
710 
711   // Add the output file -- but don't try to remove "-", since this means we are
712   // using stdin.
713   addOutputFile(
714       OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName));
715 
716   return OS;
717 }
718 
719 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
720     StringRef OutputPath, std::error_code &Error, bool Binary,
721     bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
722     bool UseTemporary, bool CreateMissingDirectories,
723     std::string *ResultPathName, std::string *TempPathName) {
724   assert((!CreateMissingDirectories || UseTemporary) &&
725          "CreateMissingDirectories is only allowed when using temporary files");
726 
727   std::string OutFile, TempFile;
728   if (!OutputPath.empty()) {
729     OutFile = OutputPath;
730   } else if (InFile == "-") {
731     OutFile = "-";
732   } else if (!Extension.empty()) {
733     SmallString<128> Path(InFile);
734     llvm::sys::path::replace_extension(Path, Extension);
735     OutFile = Path.str();
736   } else {
737     OutFile = "-";
738   }
739 
740   std::unique_ptr<llvm::raw_fd_ostream> OS;
741   std::string OSFile;
742 
743   if (UseTemporary) {
744     if (OutFile == "-")
745       UseTemporary = false;
746     else {
747       llvm::sys::fs::file_status Status;
748       llvm::sys::fs::status(OutputPath, Status);
749       if (llvm::sys::fs::exists(Status)) {
750         // Fail early if we can't write to the final destination.
751         if (!llvm::sys::fs::can_write(OutputPath)) {
752           Error = make_error_code(llvm::errc::operation_not_permitted);
753           return nullptr;
754         }
755 
756         // Don't use a temporary if the output is a special file. This handles
757         // things like '-o /dev/null'
758         if (!llvm::sys::fs::is_regular_file(Status))
759           UseTemporary = false;
760       }
761     }
762   }
763 
764   if (UseTemporary) {
765     // Create a temporary file.
766     // Insert -%%%%%%%% before the extension (if any), and because some tools
767     // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build
768     // artifacts, also append .tmp.
769     StringRef OutputExtension = llvm::sys::path::extension(OutFile);
770     SmallString<128> TempPath =
771         StringRef(OutFile).drop_back(OutputExtension.size());
772     TempPath += "-%%%%%%%%";
773     TempPath += OutputExtension;
774     TempPath += ".tmp";
775     int fd;
776     std::error_code EC =
777         llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
778 
779     if (CreateMissingDirectories &&
780         EC == llvm::errc::no_such_file_or_directory) {
781       StringRef Parent = llvm::sys::path::parent_path(OutputPath);
782       EC = llvm::sys::fs::create_directories(Parent);
783       if (!EC) {
784         EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
785       }
786     }
787 
788     if (!EC) {
789       OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
790       OSFile = TempFile = TempPath.str();
791     }
792     // If we failed to create the temporary, fallback to writing to the file
793     // directly. This handles the corner case where we cannot write to the
794     // directory, but can write to the file.
795   }
796 
797   if (!OS) {
798     OSFile = OutFile;
799     OS.reset(new llvm::raw_fd_ostream(
800         OSFile, Error,
801         (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
802     if (Error)
803       return nullptr;
804   }
805 
806   // Make sure the out stream file gets removed if we crash.
807   if (RemoveFileOnSignal)
808     llvm::sys::RemoveFileOnSignal(OSFile);
809 
810   if (ResultPathName)
811     *ResultPathName = OutFile;
812   if (TempPathName)
813     *TempPathName = TempFile;
814 
815   if (!Binary || OS->supportsSeeking())
816     return std::move(OS);
817 
818   auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
819   assert(!NonSeekStream);
820   NonSeekStream = std::move(OS);
821   return std::move(B);
822 }
823 
824 // Initialization Utilities
825 
826 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
827   return InitializeSourceManager(
828       Input, getDiagnostics(), getFileManager(), getSourceManager(),
829       hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr,
830       getDependencyOutputOpts(), getFrontendOpts());
831 }
832 
833 // static
834 bool CompilerInstance::InitializeSourceManager(
835     const FrontendInputFile &Input, DiagnosticsEngine &Diags,
836     FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS,
837     DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) {
838   SrcMgr::CharacteristicKind Kind =
839       Input.getKind().getFormat() == InputKind::ModuleMap
840           ? Input.isSystem() ? SrcMgr::C_System_ModuleMap
841                              : SrcMgr::C_User_ModuleMap
842           : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
843 
844   if (Input.isBuffer()) {
845     SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned,
846                                                    Input.getBuffer(), Kind));
847     assert(SourceMgr.getMainFileID().isValid() &&
848            "Couldn't establish MainFileID!");
849     return true;
850   }
851 
852   StringRef InputFile = Input.getFile();
853 
854   // Figure out where to get and map in the main file.
855   if (InputFile != "-") {
856     const FileEntry *File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
857     if (!File) {
858       Diags.Report(diag::err_fe_error_reading) << InputFile;
859       return false;
860     }
861 
862     // The natural SourceManager infrastructure can't currently handle named
863     // pipes, but we would at least like to accept them for the main
864     // file. Detect them here, read them with the volatile flag so FileMgr will
865     // pick up the correct size, and simply override their contents as we do for
866     // STDIN.
867     if (File->isNamedPipe()) {
868       auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
869       if (MB) {
870         // Create a new virtual file that will have the correct size.
871         File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
872         SourceMgr.overrideFileContents(File, std::move(*MB));
873       } else {
874         Diags.Report(diag::err_cannot_open_file) << InputFile
875                                                  << MB.getError().message();
876         return false;
877       }
878     }
879 
880     SourceMgr.setMainFileID(
881         SourceMgr.createFileID(File, SourceLocation(), Kind));
882   } else {
883     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
884         llvm::MemoryBuffer::getSTDIN();
885     if (std::error_code EC = SBOrErr.getError()) {
886       Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
887       return false;
888     }
889     std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
890 
891     const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
892                                                    SB->getBufferSize(), 0);
893     SourceMgr.setMainFileID(
894         SourceMgr.createFileID(File, SourceLocation(), Kind));
895     SourceMgr.overrideFileContents(File, std::move(SB));
896   }
897 
898   assert(SourceMgr.getMainFileID().isValid() &&
899          "Couldn't establish MainFileID!");
900   return true;
901 }
902 
903 // High-Level Operations
904 
905 bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
906   assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
907   assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
908   assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
909 
910   // FIXME: Take this as an argument, once all the APIs we used have moved to
911   // taking it as an input instead of hard-coding llvm::errs.
912   raw_ostream &OS = llvm::errs();
913 
914   if (!Act.PrepareToExecute(*this))
915     return false;
916 
917   // Create the target instance.
918   setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
919                                          getInvocation().TargetOpts));
920   if (!hasTarget())
921     return false;
922 
923   // Create TargetInfo for the other side of CUDA and OpenMP compilation.
924   if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) &&
925       !getFrontendOpts().AuxTriple.empty()) {
926     auto TO = std::make_shared<TargetOptions>();
927     TO->Triple = llvm::Triple::normalize(getFrontendOpts().AuxTriple);
928     TO->HostTriple = getTarget().getTriple().str();
929     setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO));
930   }
931 
932   // Inform the target of the language options.
933   //
934   // FIXME: We shouldn't need to do this, the target should be immutable once
935   // created. This complexity should be lifted elsewhere.
936   getTarget().adjust(getLangOpts());
937 
938   // Adjust target options based on codegen options.
939   getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts());
940 
941   // rewriter project will change target built-in bool type from its default.
942   if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
943     getTarget().noSignedCharForObjCBool();
944 
945   // Validate/process some options.
946   if (getHeaderSearchOpts().Verbose)
947     OS << "clang -cc1 version " CLANG_VERSION_STRING
948        << " based upon " << BACKEND_PACKAGE_STRING
949        << " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
950 
951   if (getFrontendOpts().ShowTimers)
952     createFrontendTimer();
953 
954   if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty())
955     llvm::EnableStatistics(false);
956 
957   for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) {
958     // Reset the ID tables if we are reusing the SourceManager and parsing
959     // regular files.
960     if (hasSourceManager() && !Act.isModelParsingAction())
961       getSourceManager().clearIDTables();
962 
963     if (Act.BeginSourceFile(*this, FIF)) {
964       Act.Execute();
965       Act.EndSourceFile();
966     }
967   }
968 
969   // Notify the diagnostic client that all files were processed.
970   getDiagnostics().getClient()->finish();
971 
972   if (getDiagnosticOpts().ShowCarets) {
973     // We can have multiple diagnostics sharing one diagnostic client.
974     // Get the total number of warnings/errors from the client.
975     unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
976     unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
977 
978     if (NumWarnings)
979       OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
980     if (NumWarnings && NumErrors)
981       OS << " and ";
982     if (NumErrors)
983       OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
984     if (NumWarnings || NumErrors) {
985       OS << " generated";
986       if (getLangOpts().CUDA) {
987         if (!getLangOpts().CUDAIsDevice) {
988           OS << " when compiling for host";
989         } else {
990           OS << " when compiling for " << getTargetOpts().CPU;
991         }
992       }
993       OS << ".\n";
994     }
995   }
996 
997   if (getFrontendOpts().ShowStats) {
998     if (hasFileManager()) {
999       getFileManager().PrintStats();
1000       OS << '\n';
1001     }
1002     llvm::PrintStatistics(OS);
1003   }
1004   StringRef StatsFile = getFrontendOpts().StatsFile;
1005   if (!StatsFile.empty()) {
1006     std::error_code EC;
1007     auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC,
1008                                                          llvm::sys::fs::F_Text);
1009     if (EC) {
1010       getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file)
1011           << StatsFile << EC.message();
1012     } else {
1013       llvm::PrintStatisticsJSON(*StatS);
1014     }
1015   }
1016 
1017   return !getDiagnostics().getClient()->getNumErrors();
1018 }
1019 
1020 /// Determine the appropriate source input kind based on language
1021 /// options.
1022 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) {
1023   if (LangOpts.OpenCL)
1024     return InputKind::OpenCL;
1025   if (LangOpts.CUDA)
1026     return InputKind::CUDA;
1027   if (LangOpts.ObjC1)
1028     return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC;
1029   return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C;
1030 }
1031 
1032 /// Compile a module file for the given module, using the options
1033 /// provided by the importing compiler instance. Returns true if the module
1034 /// was built without errors.
1035 static bool
1036 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc,
1037                   StringRef ModuleName, FrontendInputFile Input,
1038                   StringRef OriginalModuleMapFile, StringRef ModuleFileName,
1039                   llvm::function_ref<void(CompilerInstance &)> PreBuildStep =
1040                       [](CompilerInstance &) {},
1041                   llvm::function_ref<void(CompilerInstance &)> PostBuildStep =
1042                       [](CompilerInstance &) {}) {
1043   // Construct a compiler invocation for creating this module.
1044   auto Invocation =
1045       std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation());
1046 
1047   PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
1048 
1049   // For any options that aren't intended to affect how a module is built,
1050   // reset them to their default values.
1051   Invocation->getLangOpts()->resetNonModularOptions();
1052   PPOpts.resetNonModularOptions();
1053 
1054   // Remove any macro definitions that are explicitly ignored by the module.
1055   // They aren't supposed to affect how the module is built anyway.
1056   HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
1057   PPOpts.Macros.erase(
1058       std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
1059                      [&HSOpts](const std::pair<std::string, bool> &def) {
1060         StringRef MacroDef = def.first;
1061         return HSOpts.ModulesIgnoreMacros.count(
1062                    llvm::CachedHashString(MacroDef.split('=').first)) > 0;
1063       }),
1064       PPOpts.Macros.end());
1065 
1066   // If the original compiler invocation had -fmodule-name, pass it through.
1067   Invocation->getLangOpts()->ModuleName =
1068       ImportingInstance.getInvocation().getLangOpts()->ModuleName;
1069 
1070   // Note the name of the module we're building.
1071   Invocation->getLangOpts()->CurrentModule = ModuleName;
1072 
1073   // Make sure that the failed-module structure has been allocated in
1074   // the importing instance, and propagate the pointer to the newly-created
1075   // instance.
1076   PreprocessorOptions &ImportingPPOpts
1077     = ImportingInstance.getInvocation().getPreprocessorOpts();
1078   if (!ImportingPPOpts.FailedModules)
1079     ImportingPPOpts.FailedModules =
1080         std::make_shared<PreprocessorOptions::FailedModulesSet>();
1081   PPOpts.FailedModules = ImportingPPOpts.FailedModules;
1082 
1083   // If there is a module map file, build the module using the module map.
1084   // Set up the inputs/outputs so that we build the module from its umbrella
1085   // header.
1086   FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
1087   FrontendOpts.OutputFile = ModuleFileName.str();
1088   FrontendOpts.DisableFree = false;
1089   FrontendOpts.GenerateGlobalModuleIndex = false;
1090   FrontendOpts.BuildingImplicitModule = true;
1091   FrontendOpts.OriginalModuleMap = OriginalModuleMapFile;
1092   // Force implicitly-built modules to hash the content of the module file.
1093   HSOpts.ModulesHashContent = true;
1094   FrontendOpts.Inputs = {Input};
1095 
1096   // Don't free the remapped file buffers; they are owned by our caller.
1097   PPOpts.RetainRemappedFileBuffers = true;
1098 
1099   Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
1100   assert(ImportingInstance.getInvocation().getModuleHash() ==
1101          Invocation->getModuleHash() && "Module hash mismatch!");
1102 
1103   // Construct a compiler instance that will be used to actually create the
1104   // module.  Since we're sharing a PCMCache,
1105   // CompilerInstance::CompilerInstance is responsible for finalizing the
1106   // buffers to prevent use-after-frees.
1107   CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(),
1108                             &ImportingInstance.getPreprocessor().getPCMCache());
1109   auto &Inv = *Invocation;
1110   Instance.setInvocation(std::move(Invocation));
1111 
1112   Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
1113                                    ImportingInstance.getDiagnosticClient()),
1114                              /*ShouldOwnClient=*/true);
1115 
1116   Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
1117 
1118   // Note that this module is part of the module build stack, so that we
1119   // can detect cycles in the module graph.
1120   Instance.setFileManager(&ImportingInstance.getFileManager());
1121   Instance.createSourceManager(Instance.getFileManager());
1122   SourceManager &SourceMgr = Instance.getSourceManager();
1123   SourceMgr.setModuleBuildStack(
1124     ImportingInstance.getSourceManager().getModuleBuildStack());
1125   SourceMgr.pushModuleBuildStack(ModuleName,
1126     FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
1127 
1128   // If we're collecting module dependencies, we need to share a collector
1129   // between all of the module CompilerInstances. Other than that, we don't
1130   // want to produce any dependency output from the module build.
1131   Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
1132   Inv.getDependencyOutputOpts() = DependencyOutputOptions();
1133 
1134   ImportingInstance.getDiagnostics().Report(ImportLoc,
1135                                             diag::remark_module_build)
1136     << ModuleName << ModuleFileName;
1137 
1138   PreBuildStep(Instance);
1139 
1140   // Execute the action to actually build the module in-place. Use a separate
1141   // thread so that we get a stack large enough.
1142   llvm::CrashRecoveryContext CRC;
1143   CRC.RunSafelyOnThread(
1144       [&]() {
1145         GenerateModuleFromModuleMapAction Action;
1146         Instance.ExecuteAction(Action);
1147       },
1148       DesiredStackSize);
1149 
1150   PostBuildStep(Instance);
1151 
1152   ImportingInstance.getDiagnostics().Report(ImportLoc,
1153                                             diag::remark_module_build_done)
1154     << ModuleName;
1155 
1156   // Delete the temporary module map file.
1157   // FIXME: Even though we're executing under crash protection, it would still
1158   // be nice to do this with RemoveFileOnSignal when we can. However, that
1159   // doesn't make sense for all clients, so clean this up manually.
1160   Instance.clearOutputFiles(/*EraseFiles=*/true);
1161 
1162   return !Instance.getDiagnostics().hasErrorOccurred();
1163 }
1164 
1165 static const FileEntry *getPublicModuleMap(const FileEntry *File,
1166                                            FileManager &FileMgr) {
1167   StringRef Filename = llvm::sys::path::filename(File->getName());
1168   SmallString<128> PublicFilename(File->getDir()->getName());
1169   if (Filename == "module_private.map")
1170     llvm::sys::path::append(PublicFilename, "module.map");
1171   else if (Filename == "module.private.modulemap")
1172     llvm::sys::path::append(PublicFilename, "module.modulemap");
1173   else
1174     return nullptr;
1175   return FileMgr.getFile(PublicFilename);
1176 }
1177 
1178 /// Compile a module file for the given module, using the options
1179 /// provided by the importing compiler instance. Returns true if the module
1180 /// was built without errors.
1181 static bool compileModuleImpl(CompilerInstance &ImportingInstance,
1182                               SourceLocation ImportLoc,
1183                               Module *Module,
1184                               StringRef ModuleFileName) {
1185   InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()),
1186                InputKind::ModuleMap);
1187 
1188   // Get or create the module map that we'll use to build this module.
1189   ModuleMap &ModMap
1190     = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
1191   bool Result;
1192   if (const FileEntry *ModuleMapFile =
1193           ModMap.getContainingModuleMapFile(Module)) {
1194     // Canonicalize compilation to start with the public module map. This is
1195     // vital for submodules declarations in the private module maps to be
1196     // correctly parsed when depending on a top level module in the public one.
1197     if (const FileEntry *PublicMMFile = getPublicModuleMap(
1198             ModuleMapFile, ImportingInstance.getFileManager()))
1199       ModuleMapFile = PublicMMFile;
1200 
1201     // Use the module map where this module resides.
1202     Result = compileModuleImpl(
1203         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1204         FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem),
1205         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1206         ModuleFileName);
1207   } else {
1208     // FIXME: We only need to fake up an input file here as a way of
1209     // transporting the module's directory to the module map parser. We should
1210     // be able to do that more directly, and parse from a memory buffer without
1211     // inventing this file.
1212     SmallString<128> FakeModuleMapFile(Module->Directory->getName());
1213     llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
1214 
1215     std::string InferredModuleMapContent;
1216     llvm::raw_string_ostream OS(InferredModuleMapContent);
1217     Module->print(OS);
1218     OS.flush();
1219 
1220     Result = compileModuleImpl(
1221         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1222         FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem),
1223         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1224         ModuleFileName,
1225         [&](CompilerInstance &Instance) {
1226       std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
1227           llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
1228       ModuleMapFile = Instance.getFileManager().getVirtualFile(
1229           FakeModuleMapFile, InferredModuleMapContent.size(), 0);
1230       Instance.getSourceManager().overrideFileContents(
1231           ModuleMapFile, std::move(ModuleMapBuffer));
1232     });
1233   }
1234 
1235   // We've rebuilt a module. If we're allowed to generate or update the global
1236   // module index, record that fact in the importing compiler instance.
1237   if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
1238     ImportingInstance.setBuildGlobalModuleIndex(true);
1239   }
1240 
1241   return Result;
1242 }
1243 
1244 static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
1245                                  SourceLocation ImportLoc,
1246                                  SourceLocation ModuleNameLoc, Module *Module,
1247                                  StringRef ModuleFileName) {
1248   DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
1249 
1250   auto diagnoseBuildFailure = [&] {
1251     Diags.Report(ModuleNameLoc, diag::err_module_not_built)
1252         << Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
1253   };
1254 
1255   // FIXME: have LockFileManager return an error_code so that we can
1256   // avoid the mkdir when the directory already exists.
1257   StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
1258   llvm::sys::fs::create_directories(Dir);
1259 
1260   while (1) {
1261     unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
1262     llvm::LockFileManager Locked(ModuleFileName);
1263     switch (Locked) {
1264     case llvm::LockFileManager::LFS_Error:
1265       // PCMCache takes care of correctness and locks are only necessary for
1266       // performance. Fallback to building the module in case of any lock
1267       // related errors.
1268       Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure)
1269           << Module->Name << Locked.getErrorMessage();
1270       // Clear out any potential leftover.
1271       Locked.unsafeRemoveLockFile();
1272       // FALLTHROUGH
1273     case llvm::LockFileManager::LFS_Owned:
1274       // We're responsible for building the module ourselves.
1275       if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
1276                              ModuleFileName)) {
1277         diagnoseBuildFailure();
1278         return false;
1279       }
1280       break;
1281 
1282     case llvm::LockFileManager::LFS_Shared:
1283       // Someone else is responsible for building the module. Wait for them to
1284       // finish.
1285       switch (Locked.waitForUnlock()) {
1286       case llvm::LockFileManager::Res_Success:
1287         ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
1288         break;
1289       case llvm::LockFileManager::Res_OwnerDied:
1290         continue; // try again to get the lock.
1291       case llvm::LockFileManager::Res_Timeout:
1292         // Since PCMCache takes care of correctness, we try waiting for another
1293         // process to complete the build so clang does not do it done twice. If
1294         // case of timeout, build it ourselves.
1295         Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout)
1296             << Module->Name;
1297         // Clear the lock file so that future invocations can make progress.
1298         Locked.unsafeRemoveLockFile();
1299         continue;
1300       }
1301       break;
1302     }
1303 
1304     // Try to read the module file, now that we've compiled it.
1305     ASTReader::ASTReadResult ReadResult =
1306         ImportingInstance.getModuleManager()->ReadAST(
1307             ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
1308             ModuleLoadCapabilities);
1309 
1310     if (ReadResult == ASTReader::OutOfDate &&
1311         Locked == llvm::LockFileManager::LFS_Shared) {
1312       // The module may be out of date in the presence of file system races,
1313       // or if one of its imports depends on header search paths that are not
1314       // consistent with this ImportingInstance.  Try again...
1315       continue;
1316     } else if (ReadResult == ASTReader::Missing) {
1317       diagnoseBuildFailure();
1318     } else if (ReadResult != ASTReader::Success &&
1319                !Diags.hasErrorOccurred()) {
1320       // The ASTReader didn't diagnose the error, so conservatively report it.
1321       diagnoseBuildFailure();
1322     }
1323     return ReadResult == ASTReader::Success;
1324   }
1325 }
1326 
1327 /// Diagnose differences between the current definition of the given
1328 /// configuration macro and the definition provided on the command line.
1329 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
1330                              Module *Mod, SourceLocation ImportLoc) {
1331   IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
1332   SourceManager &SourceMgr = PP.getSourceManager();
1333 
1334   // If this identifier has never had a macro definition, then it could
1335   // not have changed.
1336   if (!Id->hadMacroDefinition())
1337     return;
1338   auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
1339 
1340   // Find the macro definition from the command line.
1341   MacroInfo *CmdLineDefinition = nullptr;
1342   for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
1343     // We only care about the predefines buffer.
1344     FileID FID = SourceMgr.getFileID(MD->getLocation());
1345     if (FID.isInvalid() || FID != PP.getPredefinesFileID())
1346       continue;
1347     if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
1348       CmdLineDefinition = DMD->getMacroInfo();
1349     break;
1350   }
1351 
1352   auto *CurrentDefinition = PP.getMacroInfo(Id);
1353   if (CurrentDefinition == CmdLineDefinition) {
1354     // Macro matches. Nothing to do.
1355   } else if (!CurrentDefinition) {
1356     // This macro was defined on the command line, then #undef'd later.
1357     // Complain.
1358     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1359       << true << ConfigMacro << Mod->getFullModuleName();
1360     auto LatestDef = LatestLocalMD->getDefinition();
1361     assert(LatestDef.isUndefined() &&
1362            "predefined macro went away with no #undef?");
1363     PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
1364       << true;
1365     return;
1366   } else if (!CmdLineDefinition) {
1367     // There was no definition for this macro in the predefines buffer,
1368     // but there was a local definition. Complain.
1369     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1370       << false << ConfigMacro << Mod->getFullModuleName();
1371     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1372             diag::note_module_def_undef_here)
1373       << false;
1374   } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
1375                                                /*Syntactically=*/true)) {
1376     // The macro definitions differ.
1377     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1378       << false << ConfigMacro << Mod->getFullModuleName();
1379     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1380             diag::note_module_def_undef_here)
1381       << false;
1382   }
1383 }
1384 
1385 /// Write a new timestamp file with the given path.
1386 static void writeTimestampFile(StringRef TimestampFile) {
1387   std::error_code EC;
1388   llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
1389 }
1390 
1391 /// Prune the module cache of modules that haven't been accessed in
1392 /// a long time.
1393 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
1394   struct stat StatBuf;
1395   llvm::SmallString<128> TimestampFile;
1396   TimestampFile = HSOpts.ModuleCachePath;
1397   assert(!TimestampFile.empty());
1398   llvm::sys::path::append(TimestampFile, "modules.timestamp");
1399 
1400   // Try to stat() the timestamp file.
1401   if (::stat(TimestampFile.c_str(), &StatBuf)) {
1402     // If the timestamp file wasn't there, create one now.
1403     if (errno == ENOENT) {
1404       writeTimestampFile(TimestampFile);
1405     }
1406     return;
1407   }
1408 
1409   // Check whether the time stamp is older than our pruning interval.
1410   // If not, do nothing.
1411   time_t TimeStampModTime = StatBuf.st_mtime;
1412   time_t CurrentTime = time(nullptr);
1413   if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
1414     return;
1415 
1416   // Write a new timestamp file so that nobody else attempts to prune.
1417   // There is a benign race condition here, if two Clang instances happen to
1418   // notice at the same time that the timestamp is out-of-date.
1419   writeTimestampFile(TimestampFile);
1420 
1421   // Walk the entire module cache, looking for unused module files and module
1422   // indices.
1423   std::error_code EC;
1424   SmallString<128> ModuleCachePathNative;
1425   llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
1426   for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
1427        Dir != DirEnd && !EC; Dir.increment(EC)) {
1428     // If we don't have a directory, there's nothing to look into.
1429     if (!llvm::sys::fs::is_directory(Dir->path()))
1430       continue;
1431 
1432     // Walk all of the files within this directory.
1433     for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
1434          File != FileEnd && !EC; File.increment(EC)) {
1435       // We only care about module and global module index files.
1436       StringRef Extension = llvm::sys::path::extension(File->path());
1437       if (Extension != ".pcm" && Extension != ".timestamp" &&
1438           llvm::sys::path::filename(File->path()) != "modules.idx")
1439         continue;
1440 
1441       // Look at this file. If we can't stat it, there's nothing interesting
1442       // there.
1443       if (::stat(File->path().c_str(), &StatBuf))
1444         continue;
1445 
1446       // If the file has been used recently enough, leave it there.
1447       time_t FileAccessTime = StatBuf.st_atime;
1448       if (CurrentTime - FileAccessTime <=
1449               time_t(HSOpts.ModuleCachePruneAfter)) {
1450         continue;
1451       }
1452 
1453       // Remove the file.
1454       llvm::sys::fs::remove(File->path());
1455 
1456       // Remove the timestamp file.
1457       std::string TimpestampFilename = File->path() + ".timestamp";
1458       llvm::sys::fs::remove(TimpestampFilename);
1459     }
1460 
1461     // If we removed all of the files in the directory, remove the directory
1462     // itself.
1463     if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
1464             llvm::sys::fs::directory_iterator() && !EC)
1465       llvm::sys::fs::remove(Dir->path());
1466   }
1467 }
1468 
1469 void CompilerInstance::createModuleManager() {
1470   if (!ModuleManager) {
1471     if (!hasASTContext())
1472       createASTContext();
1473 
1474     // If we're implicitly building modules but not currently recursively
1475     // building a module, check whether we need to prune the module cache.
1476     if (getSourceManager().getModuleBuildStack().empty() &&
1477         !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() &&
1478         getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
1479         getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
1480       pruneModuleCache(getHeaderSearchOpts());
1481     }
1482 
1483     HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
1484     std::string Sysroot = HSOpts.Sysroot;
1485     const PreprocessorOptions &PPOpts = getPreprocessorOpts();
1486     std::unique_ptr<llvm::Timer> ReadTimer;
1487     if (FrontendTimerGroup)
1488       ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules",
1489                                                  "Reading modules",
1490                                                  *FrontendTimerGroup);
1491     ModuleManager = new ASTReader(
1492         getPreprocessor(), &getASTContext(), getPCHContainerReader(),
1493         getFrontendOpts().ModuleFileExtensions,
1494         Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation,
1495         /*AllowASTWithCompilerErrors=*/false,
1496         /*AllowConfigurationMismatch=*/false,
1497         HSOpts.ModulesValidateSystemHeaders,
1498         getFrontendOpts().UseGlobalModuleIndex,
1499         std::move(ReadTimer));
1500     if (hasASTConsumer()) {
1501       ModuleManager->setDeserializationListener(
1502         getASTConsumer().GetASTDeserializationListener());
1503       getASTContext().setASTMutationListener(
1504         getASTConsumer().GetASTMutationListener());
1505     }
1506     getASTContext().setExternalSource(ModuleManager);
1507     if (hasSema())
1508       ModuleManager->InitializeSema(getSema());
1509     if (hasASTConsumer())
1510       ModuleManager->StartTranslationUnit(&getASTConsumer());
1511 
1512     if (TheDependencyFileGenerator)
1513       TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
1514     for (auto &Listener : DependencyCollectors)
1515       Listener->attachToASTReader(*ModuleManager);
1516   }
1517 }
1518 
1519 bool CompilerInstance::loadModuleFile(StringRef FileName) {
1520   llvm::Timer Timer;
1521   if (FrontendTimerGroup)
1522     Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(),
1523                *FrontendTimerGroup);
1524   llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1525 
1526   // Helper to recursively read the module names for all modules we're adding.
1527   // We mark these as known and redirect any attempt to load that module to
1528   // the files we were handed.
1529   struct ReadModuleNames : ASTReaderListener {
1530     CompilerInstance &CI;
1531     llvm::SmallVector<IdentifierInfo*, 8> LoadedModules;
1532 
1533     ReadModuleNames(CompilerInstance &CI) : CI(CI) {}
1534 
1535     void ReadModuleName(StringRef ModuleName) override {
1536       LoadedModules.push_back(
1537           CI.getPreprocessor().getIdentifierInfo(ModuleName));
1538     }
1539 
1540     void registerAll() {
1541       for (auto *II : LoadedModules) {
1542         CI.KnownModules[II] = CI.getPreprocessor()
1543                                   .getHeaderSearchInfo()
1544                                   .getModuleMap()
1545                                   .findModule(II->getName());
1546       }
1547       LoadedModules.clear();
1548     }
1549 
1550     void markAllUnavailable() {
1551       for (auto *II : LoadedModules) {
1552         if (Module *M = CI.getPreprocessor()
1553                             .getHeaderSearchInfo()
1554                             .getModuleMap()
1555                             .findModule(II->getName())) {
1556           M->HasIncompatibleModuleFile = true;
1557 
1558           // Mark module as available if the only reason it was unavailable
1559           // was missing headers.
1560           SmallVector<Module *, 2> Stack;
1561           Stack.push_back(M);
1562           while (!Stack.empty()) {
1563             Module *Current = Stack.pop_back_val();
1564             if (Current->IsMissingRequirement) continue;
1565             Current->IsAvailable = true;
1566             Stack.insert(Stack.end(),
1567                          Current->submodule_begin(), Current->submodule_end());
1568           }
1569         }
1570       }
1571       LoadedModules.clear();
1572     }
1573   };
1574 
1575   // If we don't already have an ASTReader, create one now.
1576   if (!ModuleManager)
1577     createModuleManager();
1578 
1579   // If -Wmodule-file-config-mismatch is mapped as an error or worse, allow the
1580   // ASTReader to diagnose it, since it can produce better errors that we can.
1581   bool ConfigMismatchIsRecoverable =
1582       getDiagnostics().getDiagnosticLevel(diag::warn_module_config_mismatch,
1583                                           SourceLocation())
1584         <= DiagnosticsEngine::Warning;
1585 
1586   auto Listener = llvm::make_unique<ReadModuleNames>(*this);
1587   auto &ListenerRef = *Listener;
1588   ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager,
1589                                                    std::move(Listener));
1590 
1591   // Try to load the module file.
1592   switch (ModuleManager->ReadAST(
1593       FileName, serialization::MK_ExplicitModule, SourceLocation(),
1594       ConfigMismatchIsRecoverable ? ASTReader::ARR_ConfigurationMismatch : 0)) {
1595   case ASTReader::Success:
1596     // We successfully loaded the module file; remember the set of provided
1597     // modules so that we don't try to load implicit modules for them.
1598     ListenerRef.registerAll();
1599     return true;
1600 
1601   case ASTReader::ConfigurationMismatch:
1602     // Ignore unusable module files.
1603     getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch)
1604         << FileName;
1605     // All modules provided by any files we tried and failed to load are now
1606     // unavailable; includes of those modules should now be handled textually.
1607     ListenerRef.markAllUnavailable();
1608     return true;
1609 
1610   default:
1611     return false;
1612   }
1613 }
1614 
1615 ModuleLoadResult
1616 CompilerInstance::loadModule(SourceLocation ImportLoc,
1617                              ModuleIdPath Path,
1618                              Module::NameVisibilityKind Visibility,
1619                              bool IsInclusionDirective) {
1620   // Determine what file we're searching from.
1621   StringRef ModuleName = Path[0].first->getName();
1622   SourceLocation ModuleNameLoc = Path[0].second;
1623 
1624   // If we've already handled this import, just return the cached result.
1625   // This one-element cache is important to eliminate redundant diagnostics
1626   // when both the preprocessor and parser see the same import declaration.
1627   if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) {
1628     // Make the named module visible.
1629     if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule)
1630       ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
1631                                        ImportLoc);
1632     return LastModuleImportResult;
1633   }
1634 
1635   clang::Module *Module = nullptr;
1636 
1637   // If we don't already have information on this module, load the module now.
1638   llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
1639     = KnownModules.find(Path[0].first);
1640   if (Known != KnownModules.end()) {
1641     // Retrieve the cached top-level module.
1642     Module = Known->second;
1643   } else if (ModuleName == getLangOpts().CurrentModule) {
1644     // This is the module we're building.
1645     Module = PP->getHeaderSearchInfo().lookupModule(
1646         ModuleName, /*AllowSearch*/ true,
1647         /*AllowExtraModuleMapSearch*/ !IsInclusionDirective);
1648     /// FIXME: perhaps we should (a) look for a module using the module name
1649     //  to file map (PrebuiltModuleFiles) and (b) diagnose if still not found?
1650     //if (Module == nullptr) {
1651     //  getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1652     //    << ModuleName;
1653     //  ModuleBuildFailed = true;
1654     //  return ModuleLoadResult();
1655     //}
1656     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1657   } else {
1658     // Search for a module with the given name.
1659     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName, true,
1660                                                     !IsInclusionDirective);
1661     HeaderSearchOptions &HSOpts =
1662         PP->getHeaderSearchInfo().getHeaderSearchOpts();
1663 
1664     std::string ModuleFileName;
1665     enum ModuleSource {
1666       ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma
1667     } Source = ModuleNotFound;
1668 
1669     // Check to see if the module has been built as part of this compilation
1670     // via a module build pragma.
1671     auto BuiltModuleIt = BuiltModules.find(ModuleName);
1672     if (BuiltModuleIt != BuiltModules.end()) {
1673       ModuleFileName = BuiltModuleIt->second;
1674       Source = ModuleBuildPragma;
1675     }
1676 
1677     // Try to load the module from the prebuilt module path.
1678     if (Source == ModuleNotFound && (!HSOpts.PrebuiltModuleFiles.empty() ||
1679                                      !HSOpts.PrebuiltModulePaths.empty())) {
1680       ModuleFileName =
1681         PP->getHeaderSearchInfo().getPrebuiltModuleFileName(ModuleName);
1682       if (!ModuleFileName.empty())
1683         Source = PrebuiltModulePath;
1684     }
1685 
1686     // Try to load the module from the module cache.
1687     if (Source == ModuleNotFound && Module) {
1688       ModuleFileName = PP->getHeaderSearchInfo().getCachedModuleFileName(Module);
1689       Source = ModuleCache;
1690     }
1691 
1692     if (Source == ModuleNotFound) {
1693       // We can't find a module, error out here.
1694       getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1695           << ModuleName << SourceRange(ImportLoc, ModuleNameLoc);
1696       ModuleBuildFailed = true;
1697       return ModuleLoadResult();
1698     }
1699 
1700     if (ModuleFileName.empty()) {
1701       if (Module && Module->HasIncompatibleModuleFile) {
1702         // We tried and failed to load a module file for this module. Fall
1703         // back to textual inclusion for its headers.
1704         return ModuleLoadResult::ConfigMismatch;
1705       }
1706 
1707       getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
1708           << ModuleName;
1709       ModuleBuildFailed = true;
1710       return ModuleLoadResult();
1711     }
1712 
1713     // If we don't already have an ASTReader, create one now.
1714     if (!ModuleManager)
1715       createModuleManager();
1716 
1717     llvm::Timer Timer;
1718     if (FrontendTimerGroup)
1719       Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName,
1720                  *FrontendTimerGroup);
1721     llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1722 
1723     // Try to load the module file. If we are not trying to load from the
1724     // module cache, we don't know how to rebuild modules.
1725     unsigned ARRFlags = Source == ModuleCache ?
1726                         ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing :
1727                         ASTReader::ARR_ConfigurationMismatch;
1728     switch (ModuleManager->ReadAST(ModuleFileName,
1729                                    Source == PrebuiltModulePath
1730                                        ? serialization::MK_PrebuiltModule
1731                                        : Source == ModuleBuildPragma
1732                                              ? serialization::MK_ExplicitModule
1733                                              : serialization::MK_ImplicitModule,
1734                                    ImportLoc, ARRFlags)) {
1735     case ASTReader::Success: {
1736       if (Source != ModuleCache && !Module) {
1737         Module = PP->getHeaderSearchInfo().lookupModule(ModuleName, true,
1738                                                         !IsInclusionDirective);
1739         if (!Module || !Module->getASTFile() ||
1740             FileMgr->getFile(ModuleFileName) != Module->getASTFile()) {
1741           // Error out if Module does not refer to the file in the prebuilt
1742           // module path.
1743           getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt)
1744               << ModuleName;
1745           ModuleBuildFailed = true;
1746           KnownModules[Path[0].first] = nullptr;
1747           return ModuleLoadResult();
1748         }
1749       }
1750       break;
1751     }
1752 
1753     case ASTReader::OutOfDate:
1754     case ASTReader::Missing: {
1755       if (Source != ModuleCache) {
1756         // We don't know the desired configuration for this module and don't
1757         // necessarily even have a module map. Since ReadAST already produces
1758         // diagnostics for these two cases, we simply error out here.
1759         ModuleBuildFailed = true;
1760         KnownModules[Path[0].first] = nullptr;
1761         return ModuleLoadResult();
1762       }
1763 
1764       // The module file is missing or out-of-date. Build it.
1765       assert(Module && "missing module file");
1766       // Check whether there is a cycle in the module graph.
1767       ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
1768       ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
1769       for (; Pos != PosEnd; ++Pos) {
1770         if (Pos->first == ModuleName)
1771           break;
1772       }
1773 
1774       if (Pos != PosEnd) {
1775         SmallString<256> CyclePath;
1776         for (; Pos != PosEnd; ++Pos) {
1777           CyclePath += Pos->first;
1778           CyclePath += " -> ";
1779         }
1780         CyclePath += ModuleName;
1781 
1782         getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
1783           << ModuleName << CyclePath;
1784         return ModuleLoadResult();
1785       }
1786 
1787       // Check whether we have already attempted to build this module (but
1788       // failed).
1789       if (getPreprocessorOpts().FailedModules &&
1790           getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
1791         getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
1792           << ModuleName
1793           << SourceRange(ImportLoc, ModuleNameLoc);
1794         ModuleBuildFailed = true;
1795         return ModuleLoadResult();
1796       }
1797 
1798       // Try to compile and then load the module.
1799       if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
1800                                 ModuleFileName)) {
1801         assert(getDiagnostics().hasErrorOccurred() &&
1802                "undiagnosed error in compileAndLoadModule");
1803         if (getPreprocessorOpts().FailedModules)
1804           getPreprocessorOpts().FailedModules->addFailed(ModuleName);
1805         KnownModules[Path[0].first] = nullptr;
1806         ModuleBuildFailed = true;
1807         return ModuleLoadResult();
1808       }
1809 
1810       // Okay, we've rebuilt and now loaded the module.
1811       break;
1812     }
1813 
1814     case ASTReader::ConfigurationMismatch:
1815       if (Source == PrebuiltModulePath)
1816         // FIXME: We shouldn't be setting HadFatalFailure below if we only
1817         // produce a warning here!
1818         getDiagnostics().Report(SourceLocation(),
1819                                 diag::warn_module_config_mismatch)
1820             << ModuleFileName;
1821       // Fall through to error out.
1822       LLVM_FALLTHROUGH;
1823     case ASTReader::VersionMismatch:
1824     case ASTReader::HadErrors:
1825       ModuleLoader::HadFatalFailure = true;
1826       // FIXME: The ASTReader will already have complained, but can we shoehorn
1827       // that diagnostic information into a more useful form?
1828       KnownModules[Path[0].first] = nullptr;
1829       return ModuleLoadResult();
1830 
1831     case ASTReader::Failure:
1832       ModuleLoader::HadFatalFailure = true;
1833       // Already complained, but note now that we failed.
1834       KnownModules[Path[0].first] = nullptr;
1835       ModuleBuildFailed = true;
1836       return ModuleLoadResult();
1837     }
1838 
1839     // Cache the result of this top-level module lookup for later.
1840     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1841   }
1842 
1843   // If we never found the module, fail.
1844   if (!Module)
1845     return ModuleLoadResult();
1846 
1847   // Verify that the rest of the module path actually corresponds to
1848   // a submodule.
1849   bool MapPrivateSubModToTopLevel = false;
1850   if (Path.size() > 1) {
1851     for (unsigned I = 1, N = Path.size(); I != N; ++I) {
1852       StringRef Name = Path[I].first->getName();
1853       clang::Module *Sub = Module->findSubmodule(Name);
1854 
1855       // If the user is requesting Foo.Private and it doesn't exist, try to
1856       // match Foo_Private and emit a warning asking for the user to write
1857       // @import Foo_Private instead. FIXME: remove this when existing clients
1858       // migrate off of Foo.Private syntax.
1859       if (!Sub && PP->getLangOpts().ImplicitModules && Name == "Private" &&
1860           Module == Module->getTopLevelModule()) {
1861         SmallString<128> PrivateModule(Module->Name);
1862         PrivateModule.append("_Private");
1863 
1864         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath;
1865         auto &II = PP->getIdentifierTable().get(
1866             PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID());
1867         PrivPath.push_back(std::make_pair(&II, Path[0].second));
1868 
1869         if (PP->getHeaderSearchInfo().lookupModule(PrivateModule, true,
1870                                                    !IsInclusionDirective))
1871           Sub =
1872               loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective);
1873         if (Sub) {
1874           MapPrivateSubModToTopLevel = true;
1875           if (!getDiagnostics().isIgnored(
1876                   diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) {
1877             getDiagnostics().Report(Path[I].second,
1878                                     diag::warn_no_priv_submodule_use_toplevel)
1879                 << Path[I].first << Module->getFullModuleName() << PrivateModule
1880                 << SourceRange(Path[0].second, Path[I].second)
1881                 << FixItHint::CreateReplacement(SourceRange(Path[0].second),
1882                                                 PrivateModule);
1883             getDiagnostics().Report(Sub->DefinitionLoc,
1884                                     diag::note_private_top_level_defined);
1885           }
1886         }
1887       }
1888 
1889       if (!Sub) {
1890         // Attempt to perform typo correction to find a module name that works.
1891         SmallVector<StringRef, 2> Best;
1892         unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
1893 
1894         for (clang::Module::submodule_iterator J = Module->submodule_begin(),
1895                                             JEnd = Module->submodule_end();
1896              J != JEnd; ++J) {
1897           unsigned ED = Name.edit_distance((*J)->Name,
1898                                            /*AllowReplacements=*/true,
1899                                            BestEditDistance);
1900           if (ED <= BestEditDistance) {
1901             if (ED < BestEditDistance) {
1902               Best.clear();
1903               BestEditDistance = ED;
1904             }
1905 
1906             Best.push_back((*J)->Name);
1907           }
1908         }
1909 
1910         // If there was a clear winner, user it.
1911         if (Best.size() == 1) {
1912           getDiagnostics().Report(Path[I].second,
1913                                   diag::err_no_submodule_suggest)
1914             << Path[I].first << Module->getFullModuleName() << Best[0]
1915             << SourceRange(Path[0].second, Path[I-1].second)
1916             << FixItHint::CreateReplacement(SourceRange(Path[I].second),
1917                                             Best[0]);
1918 
1919           Sub = Module->findSubmodule(Best[0]);
1920         }
1921       }
1922 
1923       if (!Sub) {
1924         // No submodule by this name. Complain, and don't look for further
1925         // submodules.
1926         getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
1927           << Path[I].first << Module->getFullModuleName()
1928           << SourceRange(Path[0].second, Path[I-1].second);
1929         break;
1930       }
1931 
1932       Module = Sub;
1933     }
1934   }
1935 
1936   // Make the named module visible, if it's not already part of the module
1937   // we are parsing.
1938   if (ModuleName != getLangOpts().CurrentModule) {
1939     if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) {
1940       // We have an umbrella header or directory that doesn't actually include
1941       // all of the headers within the directory it covers. Complain about
1942       // this missing submodule and recover by forgetting that we ever saw
1943       // this submodule.
1944       // FIXME: Should we detect this at module load time? It seems fairly
1945       // expensive (and rare).
1946       getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
1947         << Module->getFullModuleName()
1948         << SourceRange(Path.front().second, Path.back().second);
1949 
1950       return ModuleLoadResult::MissingExpected;
1951     }
1952 
1953     // Check whether this module is available.
1954     if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(),
1955                                              getDiagnostics(), Module)) {
1956       getDiagnostics().Report(ImportLoc, diag::note_module_import_here)
1957         << SourceRange(Path.front().second, Path.back().second);
1958       LastModuleImportLoc = ImportLoc;
1959       LastModuleImportResult = ModuleLoadResult();
1960       return ModuleLoadResult();
1961     }
1962 
1963     ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
1964   }
1965 
1966   // Check for any configuration macros that have changed.
1967   clang::Module *TopModule = Module->getTopLevelModule();
1968   for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
1969     checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
1970                      Module, ImportLoc);
1971   }
1972 
1973   // Resolve any remaining module using export_as for this one.
1974   getPreprocessor()
1975       .getHeaderSearchInfo()
1976       .getModuleMap()
1977       .resolveLinkAsDependencies(TopModule);
1978 
1979   LastModuleImportLoc = ImportLoc;
1980   LastModuleImportResult = ModuleLoadResult(Module);
1981   return LastModuleImportResult;
1982 }
1983 
1984 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc,
1985                                             StringRef ModuleName,
1986                                             StringRef Source) {
1987   // Avoid creating filenames with special characters.
1988   SmallString<128> CleanModuleName(ModuleName);
1989   for (auto &C : CleanModuleName)
1990     if (!isAlphanumeric(C))
1991       C = '_';
1992 
1993   // FIXME: Using a randomized filename here means that our intermediate .pcm
1994   // output is nondeterministic (as .pcm files refer to each other by name).
1995   // Can this affect the output in any way?
1996   SmallString<128> ModuleFileName;
1997   if (std::error_code EC = llvm::sys::fs::createTemporaryFile(
1998           CleanModuleName, "pcm", ModuleFileName)) {
1999     getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output)
2000         << ModuleFileName << EC.message();
2001     return;
2002   }
2003   std::string ModuleMapFileName = (CleanModuleName + ".map").str();
2004 
2005   FrontendInputFile Input(
2006       ModuleMapFileName,
2007       InputKind(getLanguageFromOptions(*Invocation->getLangOpts()),
2008                 InputKind::ModuleMap, /*Preprocessed*/true));
2009 
2010   std::string NullTerminatedSource(Source.str());
2011 
2012   auto PreBuildStep = [&](CompilerInstance &Other) {
2013     // Create a virtual file containing our desired source.
2014     // FIXME: We shouldn't need to do this.
2015     const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile(
2016         ModuleMapFileName, NullTerminatedSource.size(), 0);
2017     Other.getSourceManager().overrideFileContents(
2018         ModuleMapFile,
2019         llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str()));
2020 
2021     Other.BuiltModules = std::move(BuiltModules);
2022     Other.DeleteBuiltModules = false;
2023   };
2024 
2025   auto PostBuildStep = [this](CompilerInstance &Other) {
2026     BuiltModules = std::move(Other.BuiltModules);
2027   };
2028 
2029   // Build the module, inheriting any modules that we've built locally.
2030   if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(),
2031                         ModuleFileName, PreBuildStep, PostBuildStep)) {
2032     BuiltModules[ModuleName] = ModuleFileName.str();
2033     llvm::sys::RemoveFileOnSignal(ModuleFileName);
2034   }
2035 }
2036 
2037 void CompilerInstance::makeModuleVisible(Module *Mod,
2038                                          Module::NameVisibilityKind Visibility,
2039                                          SourceLocation ImportLoc) {
2040   if (!ModuleManager)
2041     createModuleManager();
2042   if (!ModuleManager)
2043     return;
2044 
2045   ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
2046 }
2047 
2048 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
2049     SourceLocation TriggerLoc) {
2050   if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty())
2051     return nullptr;
2052   if (!ModuleManager)
2053     createModuleManager();
2054   // Can't do anything if we don't have the module manager.
2055   if (!ModuleManager)
2056     return nullptr;
2057   // Get an existing global index.  This loads it if not already
2058   // loaded.
2059   ModuleManager->loadGlobalIndex();
2060   GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
2061   // If the global index doesn't exist, create it.
2062   if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
2063       hasPreprocessor()) {
2064     llvm::sys::fs::create_directories(
2065       getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2066     GlobalModuleIndex::writeIndex(
2067         getFileManager(), getPCHContainerReader(),
2068         getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2069     ModuleManager->resetForReload();
2070     ModuleManager->loadGlobalIndex();
2071     GlobalIndex = ModuleManager->getGlobalIndex();
2072   }
2073   // For finding modules needing to be imported for fixit messages,
2074   // we need to make the global index cover all modules, so we do that here.
2075   if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
2076     ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
2077     bool RecreateIndex = false;
2078     for (ModuleMap::module_iterator I = MMap.module_begin(),
2079         E = MMap.module_end(); I != E; ++I) {
2080       Module *TheModule = I->second;
2081       const FileEntry *Entry = TheModule->getASTFile();
2082       if (!Entry) {
2083         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
2084         Path.push_back(std::make_pair(
2085             getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
2086         std::reverse(Path.begin(), Path.end());
2087         // Load a module as hidden.  This also adds it to the global index.
2088         loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false);
2089         RecreateIndex = true;
2090       }
2091     }
2092     if (RecreateIndex) {
2093       GlobalModuleIndex::writeIndex(
2094           getFileManager(), getPCHContainerReader(),
2095           getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2096       ModuleManager->resetForReload();
2097       ModuleManager->loadGlobalIndex();
2098       GlobalIndex = ModuleManager->getGlobalIndex();
2099     }
2100     HaveFullGlobalModuleIndex = true;
2101   }
2102   return GlobalIndex;
2103 }
2104 
2105 // Check global module index for missing imports.
2106 bool
2107 CompilerInstance::lookupMissingImports(StringRef Name,
2108                                        SourceLocation TriggerLoc) {
2109   // Look for the symbol in non-imported modules, but only if an error
2110   // actually occurred.
2111   if (!buildingModule()) {
2112     // Load global module index, or retrieve a previously loaded one.
2113     GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
2114       TriggerLoc);
2115 
2116     // Only if we have a global index.
2117     if (GlobalIndex) {
2118       GlobalModuleIndex::HitSet FoundModules;
2119 
2120       // Find the modules that reference the identifier.
2121       // Note that this only finds top-level modules.
2122       // We'll let diagnoseTypo find the actual declaration module.
2123       if (GlobalIndex->lookupIdentifier(Name, FoundModules))
2124         return true;
2125     }
2126   }
2127 
2128   return false;
2129 }
2130 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }
2131 
2132 void CompilerInstance::setExternalSemaSource(
2133     IntrusiveRefCntPtr<ExternalSemaSource> ESS) {
2134   ExternalSemaSrc = std::move(ESS);
2135 }
2136