1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Frontend/CompilerInstance.h" 10 #include "clang/AST/ASTConsumer.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/Decl.h" 13 #include "clang/Basic/CharInfo.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/DiagnosticOptions.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/LangStandard.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/Stack.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Basic/Version.h" 22 #include "clang/Config/config.h" 23 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 24 #include "clang/Frontend/FrontendAction.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/LogDiagnosticPrinter.h" 29 #include "clang/Frontend/SARIFDiagnosticPrinter.h" 30 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 31 #include "clang/Frontend/TextDiagnosticPrinter.h" 32 #include "clang/Frontend/Utils.h" 33 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 34 #include "clang/Lex/HeaderSearch.h" 35 #include "clang/Lex/Preprocessor.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "clang/Sema/CodeCompleteConsumer.h" 38 #include "clang/Sema/Sema.h" 39 #include "clang/Serialization/ASTReader.h" 40 #include "clang/Serialization/GlobalModuleIndex.h" 41 #include "clang/Serialization/InMemoryModuleCache.h" 42 #include "llvm/ADT/STLExtras.h" 43 #include "llvm/ADT/ScopeExit.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/Support/BuryPointer.h" 47 #include "llvm/Support/CrashRecoveryContext.h" 48 #include "llvm/Support/Errc.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/LockFileManager.h" 51 #include "llvm/Support/MemoryBuffer.h" 52 #include "llvm/Support/Path.h" 53 #include "llvm/Support/Program.h" 54 #include "llvm/Support/Signals.h" 55 #include "llvm/Support/TimeProfiler.h" 56 #include "llvm/Support/Timer.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/TargetParser/Host.h" 59 #include <optional> 60 #include <time.h> 61 #include <utility> 62 63 using namespace clang; 64 65 CompilerInstance::CompilerInstance( 66 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 67 InMemoryModuleCache *SharedModuleCache) 68 : ModuleLoader(/* BuildingModule = */ SharedModuleCache), 69 Invocation(new CompilerInvocation()), 70 ModuleCache(SharedModuleCache ? SharedModuleCache 71 : new InMemoryModuleCache), 72 ThePCHContainerOperations(std::move(PCHContainerOps)) {} 73 74 CompilerInstance::~CompilerInstance() { 75 assert(OutputFiles.empty() && "Still output files in flight?"); 76 } 77 78 void CompilerInstance::setInvocation( 79 std::shared_ptr<CompilerInvocation> Value) { 80 Invocation = std::move(Value); 81 } 82 83 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 84 return (BuildGlobalModuleIndex || 85 (TheASTReader && TheASTReader->isGlobalIndexUnavailable() && 86 getFrontendOpts().GenerateGlobalModuleIndex)) && 87 !DisableGeneratingGlobalModuleIndex; 88 } 89 90 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 91 Diagnostics = Value; 92 } 93 94 void CompilerInstance::setVerboseOutputStream(raw_ostream &Value) { 95 OwnedVerboseOutputStream.reset(); 96 VerboseOutputStream = &Value; 97 } 98 99 void CompilerInstance::setVerboseOutputStream(std::unique_ptr<raw_ostream> Value) { 100 OwnedVerboseOutputStream.swap(Value); 101 VerboseOutputStream = OwnedVerboseOutputStream.get(); 102 } 103 104 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 105 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 106 107 bool CompilerInstance::createTarget() { 108 // Create the target instance. 109 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 110 getInvocation().TargetOpts)); 111 if (!hasTarget()) 112 return false; 113 114 // Check whether AuxTarget exists, if not, then create TargetInfo for the 115 // other side of CUDA/OpenMP/SYCL compilation. 116 if (!getAuxTarget() && 117 (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice || 118 getLangOpts().SYCLIsDevice) && 119 !getFrontendOpts().AuxTriple.empty()) { 120 auto TO = std::make_shared<TargetOptions>(); 121 TO->Triple = llvm::Triple::normalize(getFrontendOpts().AuxTriple); 122 if (getFrontendOpts().AuxTargetCPU) 123 TO->CPU = *getFrontendOpts().AuxTargetCPU; 124 if (getFrontendOpts().AuxTargetFeatures) 125 TO->FeaturesAsWritten = *getFrontendOpts().AuxTargetFeatures; 126 TO->HostTriple = getTarget().getTriple().str(); 127 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 128 } 129 130 if (!getTarget().hasStrictFP() && !getLangOpts().ExpStrictFP) { 131 if (getLangOpts().RoundingMath) { 132 getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_rounding); 133 getLangOpts().RoundingMath = false; 134 } 135 auto FPExc = getLangOpts().getFPExceptionMode(); 136 if (FPExc != LangOptions::FPE_Default && FPExc != LangOptions::FPE_Ignore) { 137 getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_exceptions); 138 getLangOpts().setFPExceptionMode(LangOptions::FPE_Ignore); 139 } 140 // FIXME: can we disable FEnvAccess? 141 } 142 143 // We should do it here because target knows nothing about 144 // language options when it's being created. 145 if (getLangOpts().OpenCL && 146 !getTarget().validateOpenCLTarget(getLangOpts(), getDiagnostics())) 147 return false; 148 149 // Inform the target of the language options. 150 // FIXME: We shouldn't need to do this, the target should be immutable once 151 // created. This complexity should be lifted elsewhere. 152 getTarget().adjust(getDiagnostics(), getLangOpts()); 153 154 if (auto *Aux = getAuxTarget()) 155 getTarget().setAuxTarget(Aux); 156 157 return true; 158 } 159 160 llvm::vfs::FileSystem &CompilerInstance::getVirtualFileSystem() const { 161 return getFileManager().getVirtualFileSystem(); 162 } 163 164 void CompilerInstance::setFileManager(FileManager *Value) { 165 FileMgr = Value; 166 } 167 168 void CompilerInstance::setSourceManager(SourceManager *Value) { 169 SourceMgr = Value; 170 } 171 172 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 173 PP = std::move(Value); 174 } 175 176 void CompilerInstance::setASTContext(ASTContext *Value) { 177 Context = Value; 178 179 if (Context && Consumer) 180 getASTConsumer().Initialize(getASTContext()); 181 } 182 183 void CompilerInstance::setSema(Sema *S) { 184 TheSema.reset(S); 185 } 186 187 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 188 Consumer = std::move(Value); 189 190 if (Context && Consumer) 191 getASTConsumer().Initialize(getASTContext()); 192 } 193 194 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 195 CompletionConsumer.reset(Value); 196 } 197 198 std::unique_ptr<Sema> CompilerInstance::takeSema() { 199 return std::move(TheSema); 200 } 201 202 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getASTReader() const { 203 return TheASTReader; 204 } 205 void CompilerInstance::setASTReader(IntrusiveRefCntPtr<ASTReader> Reader) { 206 assert(ModuleCache.get() == &Reader->getModuleManager().getModuleCache() && 207 "Expected ASTReader to use the same PCM cache"); 208 TheASTReader = std::move(Reader); 209 } 210 211 std::shared_ptr<ModuleDependencyCollector> 212 CompilerInstance::getModuleDepCollector() const { 213 return ModuleDepCollector; 214 } 215 216 void CompilerInstance::setModuleDepCollector( 217 std::shared_ptr<ModuleDependencyCollector> Collector) { 218 ModuleDepCollector = std::move(Collector); 219 } 220 221 static void collectHeaderMaps(const HeaderSearch &HS, 222 std::shared_ptr<ModuleDependencyCollector> MDC) { 223 SmallVector<std::string, 4> HeaderMapFileNames; 224 HS.getHeaderMapFileNames(HeaderMapFileNames); 225 for (auto &Name : HeaderMapFileNames) 226 MDC->addFile(Name); 227 } 228 229 static void collectIncludePCH(CompilerInstance &CI, 230 std::shared_ptr<ModuleDependencyCollector> MDC) { 231 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 232 if (PPOpts.ImplicitPCHInclude.empty()) 233 return; 234 235 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 236 FileManager &FileMgr = CI.getFileManager(); 237 auto PCHDir = FileMgr.getOptionalDirectoryRef(PCHInclude); 238 if (!PCHDir) { 239 MDC->addFile(PCHInclude); 240 return; 241 } 242 243 std::error_code EC; 244 SmallString<128> DirNative; 245 llvm::sys::path::native(PCHDir->getName(), DirNative); 246 llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem(); 247 SimpleASTReaderListener Validator(CI.getPreprocessor()); 248 for (llvm::vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 249 Dir != DirEnd && !EC; Dir.increment(EC)) { 250 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 251 // used here since we're not interested in validating the PCH at this time, 252 // but only to check whether this is a file containing an AST. 253 if (!ASTReader::readASTFileControlBlock( 254 Dir->path(), FileMgr, CI.getModuleCache(), 255 CI.getPCHContainerReader(), 256 /*FindModuleFileExtensions=*/false, Validator, 257 /*ValidateDiagnosticOptions=*/false)) 258 MDC->addFile(Dir->path()); 259 } 260 } 261 262 static void collectVFSEntries(CompilerInstance &CI, 263 std::shared_ptr<ModuleDependencyCollector> MDC) { 264 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 265 return; 266 267 // Collect all VFS found. 268 SmallVector<llvm::vfs::YAMLVFSEntry, 16> VFSEntries; 269 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 270 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 271 llvm::MemoryBuffer::getFile(VFSFile); 272 if (!Buffer) 273 return; 274 llvm::vfs::collectVFSFromYAML(std::move(Buffer.get()), 275 /*DiagHandler*/ nullptr, VFSFile, VFSEntries); 276 } 277 278 for (auto &E : VFSEntries) 279 MDC->addFile(E.VPath, E.RPath); 280 } 281 282 // Diagnostics 283 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 284 const CodeGenOptions *CodeGenOpts, 285 DiagnosticsEngine &Diags) { 286 std::error_code EC; 287 std::unique_ptr<raw_ostream> StreamOwner; 288 raw_ostream *OS = &llvm::errs(); 289 if (DiagOpts->DiagnosticLogFile != "-") { 290 // Create the output stream. 291 auto FileOS = std::make_unique<llvm::raw_fd_ostream>( 292 DiagOpts->DiagnosticLogFile, EC, 293 llvm::sys::fs::OF_Append | llvm::sys::fs::OF_TextWithCRLF); 294 if (EC) { 295 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 296 << DiagOpts->DiagnosticLogFile << EC.message(); 297 } else { 298 FileOS->SetUnbuffered(); 299 OS = FileOS.get(); 300 StreamOwner = std::move(FileOS); 301 } 302 } 303 304 // Chain in the diagnostic client which will log the diagnostics. 305 auto Logger = std::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 306 std::move(StreamOwner)); 307 if (CodeGenOpts) 308 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 309 if (Diags.ownsClient()) { 310 Diags.setClient( 311 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 312 } else { 313 Diags.setClient( 314 new ChainedDiagnosticConsumer(Diags.getClient(), std::move(Logger))); 315 } 316 } 317 318 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 319 DiagnosticsEngine &Diags, 320 StringRef OutputFile) { 321 auto SerializedConsumer = 322 clang::serialized_diags::create(OutputFile, DiagOpts); 323 324 if (Diags.ownsClient()) { 325 Diags.setClient(new ChainedDiagnosticConsumer( 326 Diags.takeClient(), std::move(SerializedConsumer))); 327 } else { 328 Diags.setClient(new ChainedDiagnosticConsumer( 329 Diags.getClient(), std::move(SerializedConsumer))); 330 } 331 } 332 333 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 334 bool ShouldOwnClient) { 335 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 336 ShouldOwnClient, &getCodeGenOpts()); 337 } 338 339 IntrusiveRefCntPtr<DiagnosticsEngine> 340 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 341 DiagnosticConsumer *Client, 342 bool ShouldOwnClient, 343 const CodeGenOptions *CodeGenOpts) { 344 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 345 IntrusiveRefCntPtr<DiagnosticsEngine> 346 Diags(new DiagnosticsEngine(DiagID, Opts)); 347 348 // Create the diagnostic client for reporting errors or for 349 // implementing -verify. 350 if (Client) { 351 Diags->setClient(Client, ShouldOwnClient); 352 } else if (Opts->getFormat() == DiagnosticOptions::SARIF) { 353 Diags->setClient(new SARIFDiagnosticPrinter(llvm::errs(), Opts)); 354 } else 355 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 356 357 // Chain in -verify checker, if requested. 358 if (Opts->VerifyDiagnostics) 359 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 360 361 // Chain in -diagnostic-log-file dumper, if requested. 362 if (!Opts->DiagnosticLogFile.empty()) 363 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 364 365 if (!Opts->DiagnosticSerializationFile.empty()) 366 SetupSerializedDiagnostics(Opts, *Diags, 367 Opts->DiagnosticSerializationFile); 368 369 // Configure our handling of diagnostics. 370 ProcessWarningOptions(*Diags, *Opts); 371 372 return Diags; 373 } 374 375 // File Manager 376 377 FileManager *CompilerInstance::createFileManager( 378 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) { 379 if (!VFS) 380 VFS = FileMgr ? &FileMgr->getVirtualFileSystem() 381 : createVFSFromCompilerInvocation(getInvocation(), 382 getDiagnostics()); 383 assert(VFS && "FileManager has no VFS?"); 384 if (getFrontendOpts().ShowStats) 385 VFS = 386 llvm::makeIntrusiveRefCnt<llvm::vfs::TracingFileSystem>(std::move(VFS)); 387 FileMgr = new FileManager(getFileSystemOpts(), std::move(VFS)); 388 return FileMgr.get(); 389 } 390 391 // Source Manager 392 393 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 394 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 395 } 396 397 // Initialize the remapping of files to alternative contents, e.g., 398 // those specified through other files. 399 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 400 SourceManager &SourceMgr, 401 FileManager &FileMgr, 402 const PreprocessorOptions &InitOpts) { 403 // Remap files in the source manager (with buffers). 404 for (const auto &RB : InitOpts.RemappedFileBuffers) { 405 // Create the file entry for the file that we're mapping from. 406 FileEntryRef FromFile = 407 FileMgr.getVirtualFileRef(RB.first, RB.second->getBufferSize(), 0); 408 409 // Override the contents of the "from" file with the contents of the 410 // "to" file. If the caller owns the buffers, then pass a MemoryBufferRef; 411 // otherwise, pass as a std::unique_ptr<MemoryBuffer> to transfer ownership 412 // to the SourceManager. 413 if (InitOpts.RetainRemappedFileBuffers) 414 SourceMgr.overrideFileContents(FromFile, RB.second->getMemBufferRef()); 415 else 416 SourceMgr.overrideFileContents( 417 FromFile, std::unique_ptr<llvm::MemoryBuffer>(RB.second)); 418 } 419 420 // Remap files in the source manager (with other files). 421 for (const auto &RF : InitOpts.RemappedFiles) { 422 // Find the file that we're mapping to. 423 OptionalFileEntryRef ToFile = FileMgr.getOptionalFileRef(RF.second); 424 if (!ToFile) { 425 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 426 continue; 427 } 428 429 // Create the file entry for the file that we're mapping from. 430 FileEntryRef FromFile = 431 FileMgr.getVirtualFileRef(RF.first, ToFile->getSize(), 0); 432 433 // Override the contents of the "from" file with the contents of 434 // the "to" file. 435 SourceMgr.overrideFileContents(FromFile, *ToFile); 436 } 437 438 SourceMgr.setOverridenFilesKeepOriginalName( 439 InitOpts.RemappedFilesKeepOriginalName); 440 } 441 442 // Preprocessor 443 444 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 445 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 446 447 // The AST reader holds a reference to the old preprocessor (if any). 448 TheASTReader.reset(); 449 450 // Create the Preprocessor. 451 HeaderSearch *HeaderInfo = 452 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 453 getDiagnostics(), getLangOpts(), &getTarget()); 454 PP = std::make_shared<Preprocessor>(Invocation->getPreprocessorOptsPtr(), 455 getDiagnostics(), getLangOpts(), 456 getSourceManager(), *HeaderInfo, *this, 457 /*IdentifierInfoLookup=*/nullptr, 458 /*OwnsHeaderSearch=*/true, TUKind); 459 getTarget().adjust(getDiagnostics(), getLangOpts()); 460 PP->Initialize(getTarget(), getAuxTarget()); 461 462 if (PPOpts.DetailedRecord) 463 PP->createPreprocessingRecord(); 464 465 // Apply remappings to the source manager. 466 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 467 PP->getFileManager(), PPOpts); 468 469 // Predefine macros and configure the preprocessor. 470 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 471 getFrontendOpts(), getCodeGenOpts()); 472 473 // Initialize the header search object. In CUDA compilations, we use the aux 474 // triple (the host triple) to initialize our header search, since we need to 475 // find the host headers in order to compile the CUDA code. 476 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 477 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 478 PP->getAuxTargetInfo()) 479 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 480 481 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 482 PP->getLangOpts(), *HeaderSearchTriple); 483 484 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 485 486 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) { 487 std::string ModuleHash = getInvocation().getModuleHash(); 488 PP->getHeaderSearchInfo().setModuleHash(ModuleHash); 489 PP->getHeaderSearchInfo().setModuleCachePath( 490 getSpecificModuleCachePath(ModuleHash)); 491 } 492 493 // Handle generating dependencies, if requested. 494 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 495 if (!DepOpts.OutputFile.empty()) 496 addDependencyCollector(std::make_shared<DependencyFileGenerator>(DepOpts)); 497 if (!DepOpts.DOTOutputFile.empty()) 498 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 499 getHeaderSearchOpts().Sysroot); 500 501 // If we don't have a collector, but we are collecting module dependencies, 502 // then we're the top level compiler instance and need to create one. 503 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 504 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 505 DepOpts.ModuleDependencyOutputDir); 506 } 507 508 // If there is a module dep collector, register with other dep collectors 509 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 510 if (ModuleDepCollector) { 511 addDependencyCollector(ModuleDepCollector); 512 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 513 collectIncludePCH(*this, ModuleDepCollector); 514 collectVFSEntries(*this, ModuleDepCollector); 515 } 516 517 for (auto &Listener : DependencyCollectors) 518 Listener->attachToPreprocessor(*PP); 519 520 // Handle generating header include information, if requested. 521 if (DepOpts.ShowHeaderIncludes) 522 AttachHeaderIncludeGen(*PP, DepOpts); 523 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 524 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 525 if (OutputPath == "-") 526 OutputPath = ""; 527 AttachHeaderIncludeGen(*PP, DepOpts, 528 /*ShowAllHeaders=*/true, OutputPath, 529 /*ShowDepth=*/false); 530 } 531 532 if (DepOpts.ShowIncludesDest != ShowIncludesDestination::None) { 533 AttachHeaderIncludeGen(*PP, DepOpts, 534 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 535 /*ShowDepth=*/true, /*MSStyle=*/true); 536 } 537 } 538 539 std::string CompilerInstance::getSpecificModuleCachePath(StringRef ModuleHash) { 540 // Set up the module path, including the hash for the module-creation options. 541 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 542 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 543 llvm::sys::path::append(SpecificModuleCache, ModuleHash); 544 return std::string(SpecificModuleCache); 545 } 546 547 // ASTContext 548 549 void CompilerInstance::createASTContext() { 550 Preprocessor &PP = getPreprocessor(); 551 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 552 PP.getIdentifierTable(), PP.getSelectorTable(), 553 PP.getBuiltinInfo(), PP.TUKind); 554 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 555 setASTContext(Context); 556 } 557 558 // ExternalASTSource 559 560 namespace { 561 // Helper to recursively read the module names for all modules we're adding. 562 // We mark these as known and redirect any attempt to load that module to 563 // the files we were handed. 564 struct ReadModuleNames : ASTReaderListener { 565 Preprocessor &PP; 566 llvm::SmallVector<std::string, 8> LoadedModules; 567 568 ReadModuleNames(Preprocessor &PP) : PP(PP) {} 569 570 void ReadModuleName(StringRef ModuleName) override { 571 // Keep the module name as a string for now. It's not safe to create a new 572 // IdentifierInfo from an ASTReader callback. 573 LoadedModules.push_back(ModuleName.str()); 574 } 575 576 void registerAll() { 577 ModuleMap &MM = PP.getHeaderSearchInfo().getModuleMap(); 578 for (const std::string &LoadedModule : LoadedModules) 579 MM.cacheModuleLoad(*PP.getIdentifierInfo(LoadedModule), 580 MM.findModule(LoadedModule)); 581 LoadedModules.clear(); 582 } 583 584 void markAllUnavailable() { 585 for (const std::string &LoadedModule : LoadedModules) { 586 if (Module *M = PP.getHeaderSearchInfo().getModuleMap().findModule( 587 LoadedModule)) { 588 M->HasIncompatibleModuleFile = true; 589 590 // Mark module as available if the only reason it was unavailable 591 // was missing headers. 592 SmallVector<Module *, 2> Stack; 593 Stack.push_back(M); 594 while (!Stack.empty()) { 595 Module *Current = Stack.pop_back_val(); 596 if (Current->IsUnimportable) continue; 597 Current->IsAvailable = true; 598 auto SubmodulesRange = Current->submodules(); 599 Stack.insert(Stack.end(), SubmodulesRange.begin(), 600 SubmodulesRange.end()); 601 } 602 } 603 } 604 LoadedModules.clear(); 605 } 606 }; 607 } // namespace 608 609 void CompilerInstance::createPCHExternalASTSource( 610 StringRef Path, DisableValidationForModuleKind DisableValidation, 611 bool AllowPCHWithCompilerErrors, void *DeserializationListener, 612 bool OwnDeserializationListener) { 613 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 614 TheASTReader = createPCHExternalASTSource( 615 Path, getHeaderSearchOpts().Sysroot, DisableValidation, 616 AllowPCHWithCompilerErrors, getPreprocessor(), getModuleCache(), 617 getASTContext(), getPCHContainerReader(), 618 getFrontendOpts().ModuleFileExtensions, DependencyCollectors, 619 DeserializationListener, OwnDeserializationListener, Preamble, 620 getFrontendOpts().UseGlobalModuleIndex); 621 } 622 623 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 624 StringRef Path, StringRef Sysroot, 625 DisableValidationForModuleKind DisableValidation, 626 bool AllowPCHWithCompilerErrors, Preprocessor &PP, 627 InMemoryModuleCache &ModuleCache, ASTContext &Context, 628 const PCHContainerReader &PCHContainerRdr, 629 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 630 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 631 void *DeserializationListener, bool OwnDeserializationListener, 632 bool Preamble, bool UseGlobalModuleIndex) { 633 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 634 635 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 636 PP, ModuleCache, &Context, PCHContainerRdr, Extensions, 637 Sysroot.empty() ? "" : Sysroot.data(), DisableValidation, 638 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 639 HSOpts.ModulesValidateSystemHeaders, HSOpts.ValidateASTInputFilesContent, 640 UseGlobalModuleIndex)); 641 642 // We need the external source to be set up before we read the AST, because 643 // eagerly-deserialized declarations may use it. 644 Context.setExternalSource(Reader.get()); 645 646 Reader->setDeserializationListener( 647 static_cast<ASTDeserializationListener *>(DeserializationListener), 648 /*TakeOwnership=*/OwnDeserializationListener); 649 650 for (auto &Listener : DependencyCollectors) 651 Listener->attachToASTReader(*Reader); 652 653 auto Listener = std::make_unique<ReadModuleNames>(PP); 654 auto &ListenerRef = *Listener; 655 ASTReader::ListenerScope ReadModuleNamesListener(*Reader, 656 std::move(Listener)); 657 658 switch (Reader->ReadAST(Path, 659 Preamble ? serialization::MK_Preamble 660 : serialization::MK_PCH, 661 SourceLocation(), 662 ASTReader::ARR_None)) { 663 case ASTReader::Success: 664 // Set the predefines buffer as suggested by the PCH reader. Typically, the 665 // predefines buffer will be empty. 666 PP.setPredefines(Reader->getSuggestedPredefines()); 667 ListenerRef.registerAll(); 668 return Reader; 669 670 case ASTReader::Failure: 671 // Unrecoverable failure: don't even try to process the input file. 672 break; 673 674 case ASTReader::Missing: 675 case ASTReader::OutOfDate: 676 case ASTReader::VersionMismatch: 677 case ASTReader::ConfigurationMismatch: 678 case ASTReader::HadErrors: 679 // No suitable PCH file could be found. Return an error. 680 break; 681 } 682 683 ListenerRef.markAllUnavailable(); 684 Context.setExternalSource(nullptr); 685 return nullptr; 686 } 687 688 // Code Completion 689 690 static bool EnableCodeCompletion(Preprocessor &PP, 691 StringRef Filename, 692 unsigned Line, 693 unsigned Column) { 694 // Tell the source manager to chop off the given file at a specific 695 // line and column. 696 auto Entry = PP.getFileManager().getOptionalFileRef(Filename); 697 if (!Entry) { 698 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 699 << Filename; 700 return true; 701 } 702 703 // Truncate the named file at the given line/column. 704 PP.SetCodeCompletionPoint(*Entry, Line, Column); 705 return false; 706 } 707 708 void CompilerInstance::createCodeCompletionConsumer() { 709 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 710 if (!CompletionConsumer) { 711 setCodeCompletionConsumer(createCodeCompletionConsumer( 712 getPreprocessor(), Loc.FileName, Loc.Line, Loc.Column, 713 getFrontendOpts().CodeCompleteOpts, llvm::outs())); 714 return; 715 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 716 Loc.Line, Loc.Column)) { 717 setCodeCompletionConsumer(nullptr); 718 return; 719 } 720 } 721 722 void CompilerInstance::createFrontendTimer() { 723 FrontendTimerGroup.reset( 724 new llvm::TimerGroup("frontend", "Clang front-end time report")); 725 FrontendTimer.reset( 726 new llvm::Timer("frontend", "Clang front-end timer", 727 *FrontendTimerGroup)); 728 } 729 730 CodeCompleteConsumer * 731 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 732 StringRef Filename, 733 unsigned Line, 734 unsigned Column, 735 const CodeCompleteOptions &Opts, 736 raw_ostream &OS) { 737 if (EnableCodeCompletion(PP, Filename, Line, Column)) 738 return nullptr; 739 740 // Set up the creation routine for code-completion. 741 return new PrintingCodeCompleteConsumer(Opts, OS); 742 } 743 744 void CompilerInstance::createSema(TranslationUnitKind TUKind, 745 CodeCompleteConsumer *CompletionConsumer) { 746 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 747 TUKind, CompletionConsumer)); 748 749 // Set up API notes. 750 TheSema->APINotes.setSwiftVersion(getAPINotesOpts().SwiftVersion); 751 752 // Attach the external sema source if there is any. 753 if (ExternalSemaSrc) { 754 TheSema->addExternalSource(ExternalSemaSrc.get()); 755 ExternalSemaSrc->InitializeSema(*TheSema); 756 } 757 758 // If we're building a module and are supposed to load API notes, 759 // notify the API notes manager. 760 if (auto *currentModule = getPreprocessor().getCurrentModule()) { 761 (void)TheSema->APINotes.loadCurrentModuleAPINotes( 762 currentModule, getLangOpts().APINotesModules, 763 getAPINotesOpts().ModuleSearchPaths); 764 } 765 } 766 767 // Output Files 768 769 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 770 // The ASTConsumer can own streams that write to the output files. 771 assert(!hasASTConsumer() && "ASTConsumer should be reset"); 772 // Ignore errors that occur when trying to discard the temp file. 773 for (OutputFile &OF : OutputFiles) { 774 if (EraseFiles) { 775 if (OF.File) 776 consumeError(OF.File->discard()); 777 if (!OF.Filename.empty()) 778 llvm::sys::fs::remove(OF.Filename); 779 continue; 780 } 781 782 if (!OF.File) 783 continue; 784 785 if (OF.File->TmpName.empty()) { 786 consumeError(OF.File->discard()); 787 continue; 788 } 789 790 llvm::Error E = OF.File->keep(OF.Filename); 791 if (!E) 792 continue; 793 794 getDiagnostics().Report(diag::err_unable_to_rename_temp) 795 << OF.File->TmpName << OF.Filename << std::move(E); 796 797 llvm::sys::fs::remove(OF.File->TmpName); 798 } 799 OutputFiles.clear(); 800 if (DeleteBuiltModules) { 801 for (auto &Module : BuiltModules) 802 llvm::sys::fs::remove(Module.second); 803 BuiltModules.clear(); 804 } 805 } 806 807 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createDefaultOutputFile( 808 bool Binary, StringRef InFile, StringRef Extension, bool RemoveFileOnSignal, 809 bool CreateMissingDirectories, bool ForceUseTemporary) { 810 StringRef OutputPath = getFrontendOpts().OutputFile; 811 std::optional<SmallString<128>> PathStorage; 812 if (OutputPath.empty()) { 813 if (InFile == "-" || Extension.empty()) { 814 OutputPath = "-"; 815 } else { 816 PathStorage.emplace(InFile); 817 llvm::sys::path::replace_extension(*PathStorage, Extension); 818 OutputPath = *PathStorage; 819 } 820 } 821 822 return createOutputFile(OutputPath, Binary, RemoveFileOnSignal, 823 getFrontendOpts().UseTemporary || ForceUseTemporary, 824 CreateMissingDirectories); 825 } 826 827 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 828 return std::make_unique<llvm::raw_null_ostream>(); 829 } 830 831 std::unique_ptr<raw_pwrite_stream> 832 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 833 bool RemoveFileOnSignal, bool UseTemporary, 834 bool CreateMissingDirectories) { 835 Expected<std::unique_ptr<raw_pwrite_stream>> OS = 836 createOutputFileImpl(OutputPath, Binary, RemoveFileOnSignal, UseTemporary, 837 CreateMissingDirectories); 838 if (OS) 839 return std::move(*OS); 840 getDiagnostics().Report(diag::err_fe_unable_to_open_output) 841 << OutputPath << errorToErrorCode(OS.takeError()).message(); 842 return nullptr; 843 } 844 845 Expected<std::unique_ptr<llvm::raw_pwrite_stream>> 846 CompilerInstance::createOutputFileImpl(StringRef OutputPath, bool Binary, 847 bool RemoveFileOnSignal, 848 bool UseTemporary, 849 bool CreateMissingDirectories) { 850 assert((!CreateMissingDirectories || UseTemporary) && 851 "CreateMissingDirectories is only allowed when using temporary files"); 852 853 // If '-working-directory' was passed, the output filename should be 854 // relative to that. 855 std::optional<SmallString<128>> AbsPath; 856 if (OutputPath != "-" && !llvm::sys::path::is_absolute(OutputPath)) { 857 assert(hasFileManager() && 858 "File Manager is required to fix up relative path.\n"); 859 860 AbsPath.emplace(OutputPath); 861 FileMgr->FixupRelativePath(*AbsPath); 862 OutputPath = *AbsPath; 863 } 864 865 std::unique_ptr<llvm::raw_fd_ostream> OS; 866 std::optional<StringRef> OSFile; 867 868 if (UseTemporary) { 869 if (OutputPath == "-") 870 UseTemporary = false; 871 else { 872 llvm::sys::fs::file_status Status; 873 llvm::sys::fs::status(OutputPath, Status); 874 if (llvm::sys::fs::exists(Status)) { 875 // Fail early if we can't write to the final destination. 876 if (!llvm::sys::fs::can_write(OutputPath)) 877 return llvm::errorCodeToError( 878 make_error_code(llvm::errc::operation_not_permitted)); 879 880 // Don't use a temporary if the output is a special file. This handles 881 // things like '-o /dev/null' 882 if (!llvm::sys::fs::is_regular_file(Status)) 883 UseTemporary = false; 884 } 885 } 886 } 887 888 std::optional<llvm::sys::fs::TempFile> Temp; 889 if (UseTemporary) { 890 // Create a temporary file. 891 // Insert -%%%%%%%% before the extension (if any), and because some tools 892 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 893 // artifacts, also append .tmp. 894 StringRef OutputExtension = llvm::sys::path::extension(OutputPath); 895 SmallString<128> TempPath = 896 StringRef(OutputPath).drop_back(OutputExtension.size()); 897 TempPath += "-%%%%%%%%"; 898 TempPath += OutputExtension; 899 TempPath += ".tmp"; 900 llvm::sys::fs::OpenFlags BinaryFlags = 901 Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_Text; 902 Expected<llvm::sys::fs::TempFile> ExpectedFile = 903 llvm::sys::fs::TempFile::create( 904 TempPath, llvm::sys::fs::all_read | llvm::sys::fs::all_write, 905 BinaryFlags); 906 907 llvm::Error E = handleErrors( 908 ExpectedFile.takeError(), [&](const llvm::ECError &E) -> llvm::Error { 909 std::error_code EC = E.convertToErrorCode(); 910 if (CreateMissingDirectories && 911 EC == llvm::errc::no_such_file_or_directory) { 912 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 913 EC = llvm::sys::fs::create_directories(Parent); 914 if (!EC) { 915 ExpectedFile = llvm::sys::fs::TempFile::create( 916 TempPath, llvm::sys::fs::all_read | llvm::sys::fs::all_write, 917 BinaryFlags); 918 if (!ExpectedFile) 919 return llvm::errorCodeToError( 920 llvm::errc::no_such_file_or_directory); 921 } 922 } 923 return llvm::errorCodeToError(EC); 924 }); 925 926 if (E) { 927 consumeError(std::move(E)); 928 } else { 929 Temp = std::move(ExpectedFile.get()); 930 OS.reset(new llvm::raw_fd_ostream(Temp->FD, /*shouldClose=*/false)); 931 OSFile = Temp->TmpName; 932 } 933 // If we failed to create the temporary, fallback to writing to the file 934 // directly. This handles the corner case where we cannot write to the 935 // directory, but can write to the file. 936 } 937 938 if (!OS) { 939 OSFile = OutputPath; 940 std::error_code EC; 941 OS.reset(new llvm::raw_fd_ostream( 942 *OSFile, EC, 943 (Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_TextWithCRLF))); 944 if (EC) 945 return llvm::errorCodeToError(EC); 946 } 947 948 // Add the output file -- but don't try to remove "-", since this means we are 949 // using stdin. 950 OutputFiles.emplace_back(((OutputPath != "-") ? OutputPath : "").str(), 951 std::move(Temp)); 952 953 if (!Binary || OS->supportsSeeking()) 954 return std::move(OS); 955 956 return std::make_unique<llvm::buffer_unique_ostream>(std::move(OS)); 957 } 958 959 // Initialization Utilities 960 961 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 962 return InitializeSourceManager(Input, getDiagnostics(), getFileManager(), 963 getSourceManager()); 964 } 965 966 // static 967 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input, 968 DiagnosticsEngine &Diags, 969 FileManager &FileMgr, 970 SourceManager &SourceMgr) { 971 SrcMgr::CharacteristicKind Kind = 972 Input.getKind().getFormat() == InputKind::ModuleMap 973 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 974 : SrcMgr::C_User_ModuleMap 975 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 976 977 if (Input.isBuffer()) { 978 SourceMgr.setMainFileID(SourceMgr.createFileID(Input.getBuffer(), Kind)); 979 assert(SourceMgr.getMainFileID().isValid() && 980 "Couldn't establish MainFileID!"); 981 return true; 982 } 983 984 StringRef InputFile = Input.getFile(); 985 986 // Figure out where to get and map in the main file. 987 auto FileOrErr = InputFile == "-" 988 ? FileMgr.getSTDIN() 989 : FileMgr.getFileRef(InputFile, /*OpenFile=*/true); 990 if (!FileOrErr) { 991 auto EC = llvm::errorToErrorCode(FileOrErr.takeError()); 992 if (InputFile != "-") 993 Diags.Report(diag::err_fe_error_reading) << InputFile << EC.message(); 994 else 995 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 996 return false; 997 } 998 999 SourceMgr.setMainFileID( 1000 SourceMgr.createFileID(*FileOrErr, SourceLocation(), Kind)); 1001 1002 assert(SourceMgr.getMainFileID().isValid() && 1003 "Couldn't establish MainFileID!"); 1004 return true; 1005 } 1006 1007 // High-Level Operations 1008 1009 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 1010 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 1011 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 1012 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 1013 1014 // Mark this point as the bottom of the stack if we don't have somewhere 1015 // better. We generally expect frontend actions to be invoked with (nearly) 1016 // DesiredStackSpace available. 1017 noteBottomOfStack(); 1018 1019 auto FinishDiagnosticClient = llvm::make_scope_exit([&]() { 1020 // Notify the diagnostic client that all files were processed. 1021 getDiagnosticClient().finish(); 1022 }); 1023 1024 raw_ostream &OS = getVerboseOutputStream(); 1025 1026 if (!Act.PrepareToExecute(*this)) 1027 return false; 1028 1029 if (!createTarget()) 1030 return false; 1031 1032 // rewriter project will change target built-in bool type from its default. 1033 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 1034 getTarget().noSignedCharForObjCBool(); 1035 1036 // Validate/process some options. 1037 if (getHeaderSearchOpts().Verbose) 1038 OS << "clang -cc1 version " CLANG_VERSION_STRING << " based upon LLVM " 1039 << LLVM_VERSION_STRING << " default target " 1040 << llvm::sys::getDefaultTargetTriple() << "\n"; 1041 1042 if (getCodeGenOpts().TimePasses) 1043 createFrontendTimer(); 1044 1045 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 1046 llvm::EnableStatistics(false); 1047 1048 // Sort vectors containing toc data and no toc data variables to facilitate 1049 // binary search later. 1050 llvm::sort(getCodeGenOpts().TocDataVarsUserSpecified); 1051 llvm::sort(getCodeGenOpts().NoTocDataVars); 1052 1053 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 1054 // Reset the ID tables if we are reusing the SourceManager and parsing 1055 // regular files. 1056 if (hasSourceManager() && !Act.isModelParsingAction()) 1057 getSourceManager().clearIDTables(); 1058 1059 if (Act.BeginSourceFile(*this, FIF)) { 1060 if (llvm::Error Err = Act.Execute()) { 1061 consumeError(std::move(Err)); // FIXME this drops errors on the floor. 1062 } 1063 Act.EndSourceFile(); 1064 } 1065 } 1066 1067 printDiagnosticStats(); 1068 1069 if (getFrontendOpts().ShowStats) { 1070 if (hasFileManager()) { 1071 getFileManager().PrintStats(); 1072 OS << '\n'; 1073 } 1074 llvm::PrintStatistics(OS); 1075 } 1076 StringRef StatsFile = getFrontendOpts().StatsFile; 1077 if (!StatsFile.empty()) { 1078 llvm::sys::fs::OpenFlags FileFlags = llvm::sys::fs::OF_TextWithCRLF; 1079 if (getFrontendOpts().AppendStats) 1080 FileFlags |= llvm::sys::fs::OF_Append; 1081 std::error_code EC; 1082 auto StatS = 1083 std::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, FileFlags); 1084 if (EC) { 1085 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1086 << StatsFile << EC.message(); 1087 } else { 1088 llvm::PrintStatisticsJSON(*StatS); 1089 } 1090 } 1091 1092 return !getDiagnostics().getClient()->getNumErrors(); 1093 } 1094 1095 void CompilerInstance::printDiagnosticStats() { 1096 if (!getDiagnosticOpts().ShowCarets) 1097 return; 1098 1099 raw_ostream &OS = getVerboseOutputStream(); 1100 1101 // We can have multiple diagnostics sharing one diagnostic client. 1102 // Get the total number of warnings/errors from the client. 1103 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 1104 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 1105 1106 if (NumWarnings) 1107 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 1108 if (NumWarnings && NumErrors) 1109 OS << " and "; 1110 if (NumErrors) 1111 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 1112 if (NumWarnings || NumErrors) { 1113 OS << " generated"; 1114 if (getLangOpts().CUDA) { 1115 if (!getLangOpts().CUDAIsDevice) { 1116 OS << " when compiling for host"; 1117 } else { 1118 OS << " when compiling for " << getTargetOpts().CPU; 1119 } 1120 } 1121 OS << ".\n"; 1122 } 1123 } 1124 1125 void CompilerInstance::LoadRequestedPlugins() { 1126 // Load any requested plugins. 1127 for (const std::string &Path : getFrontendOpts().Plugins) { 1128 std::string Error; 1129 if (llvm::sys::DynamicLibrary::LoadLibraryPermanently(Path.c_str(), &Error)) 1130 getDiagnostics().Report(diag::err_fe_unable_to_load_plugin) 1131 << Path << Error; 1132 } 1133 1134 // Check if any of the loaded plugins replaces the main AST action 1135 for (const FrontendPluginRegistry::entry &Plugin : 1136 FrontendPluginRegistry::entries()) { 1137 std::unique_ptr<PluginASTAction> P(Plugin.instantiate()); 1138 if (P->getActionType() == PluginASTAction::ReplaceAction) { 1139 getFrontendOpts().ProgramAction = clang::frontend::PluginAction; 1140 getFrontendOpts().ActionName = Plugin.getName().str(); 1141 break; 1142 } 1143 } 1144 } 1145 1146 /// Determine the appropriate source input kind based on language 1147 /// options. 1148 static Language getLanguageFromOptions(const LangOptions &LangOpts) { 1149 if (LangOpts.OpenCL) 1150 return Language::OpenCL; 1151 if (LangOpts.CUDA) 1152 return Language::CUDA; 1153 if (LangOpts.ObjC) 1154 return LangOpts.CPlusPlus ? Language::ObjCXX : Language::ObjC; 1155 return LangOpts.CPlusPlus ? Language::CXX : Language::C; 1156 } 1157 1158 /// Compile a module file for the given module, using the options 1159 /// provided by the importing compiler instance. Returns true if the module 1160 /// was built without errors. 1161 static bool 1162 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1163 StringRef ModuleName, FrontendInputFile Input, 1164 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1165 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1166 [](CompilerInstance &) {}, 1167 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1168 [](CompilerInstance &) {}) { 1169 llvm::TimeTraceScope TimeScope("Module Compile", ModuleName); 1170 1171 // Never compile a module that's already finalized - this would cause the 1172 // existing module to be freed, causing crashes if it is later referenced 1173 if (ImportingInstance.getModuleCache().isPCMFinal(ModuleFileName)) { 1174 ImportingInstance.getDiagnostics().Report( 1175 ImportLoc, diag::err_module_rebuild_finalized) 1176 << ModuleName; 1177 return false; 1178 } 1179 1180 // Construct a compiler invocation for creating this module. 1181 auto Invocation = 1182 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1183 1184 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1185 1186 // For any options that aren't intended to affect how a module is built, 1187 // reset them to their default values. 1188 Invocation->resetNonModularOptions(); 1189 1190 // Remove any macro definitions that are explicitly ignored by the module. 1191 // They aren't supposed to affect how the module is built anyway. 1192 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1193 llvm::erase_if(PPOpts.Macros, 1194 [&HSOpts](const std::pair<std::string, bool> &def) { 1195 StringRef MacroDef = def.first; 1196 return HSOpts.ModulesIgnoreMacros.contains( 1197 llvm::CachedHashString(MacroDef.split('=').first)); 1198 }); 1199 1200 // If the original compiler invocation had -fmodule-name, pass it through. 1201 Invocation->getLangOpts().ModuleName = 1202 ImportingInstance.getInvocation().getLangOpts().ModuleName; 1203 1204 // Note the name of the module we're building. 1205 Invocation->getLangOpts().CurrentModule = std::string(ModuleName); 1206 1207 // If there is a module map file, build the module using the module map. 1208 // Set up the inputs/outputs so that we build the module from its umbrella 1209 // header. 1210 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1211 FrontendOpts.OutputFile = ModuleFileName.str(); 1212 FrontendOpts.DisableFree = false; 1213 FrontendOpts.GenerateGlobalModuleIndex = false; 1214 FrontendOpts.BuildingImplicitModule = true; 1215 FrontendOpts.OriginalModuleMap = std::string(OriginalModuleMapFile); 1216 // Force implicitly-built modules to hash the content of the module file. 1217 HSOpts.ModulesHashContent = true; 1218 FrontendOpts.Inputs = {Input}; 1219 1220 // Don't free the remapped file buffers; they are owned by our caller. 1221 PPOpts.RetainRemappedFileBuffers = true; 1222 1223 DiagnosticOptions &DiagOpts = Invocation->getDiagnosticOpts(); 1224 1225 DiagOpts.VerifyDiagnostics = 0; 1226 assert(ImportingInstance.getInvocation().getModuleHash() == 1227 Invocation->getModuleHash() && "Module hash mismatch!"); 1228 1229 // Construct a compiler instance that will be used to actually create the 1230 // module. Since we're sharing an in-memory module cache, 1231 // CompilerInstance::CompilerInstance is responsible for finalizing the 1232 // buffers to prevent use-after-frees. 1233 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1234 &ImportingInstance.getModuleCache()); 1235 auto &Inv = *Invocation; 1236 Instance.setInvocation(std::move(Invocation)); 1237 1238 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1239 ImportingInstance.getDiagnosticClient()), 1240 /*ShouldOwnClient=*/true); 1241 1242 if (llvm::is_contained(DiagOpts.SystemHeaderWarningsModules, ModuleName)) 1243 Instance.getDiagnostics().setSuppressSystemWarnings(false); 1244 1245 if (FrontendOpts.ModulesShareFileManager) { 1246 Instance.setFileManager(&ImportingInstance.getFileManager()); 1247 } else { 1248 Instance.createFileManager(&ImportingInstance.getVirtualFileSystem()); 1249 } 1250 Instance.createSourceManager(Instance.getFileManager()); 1251 SourceManager &SourceMgr = Instance.getSourceManager(); 1252 1253 // Note that this module is part of the module build stack, so that we 1254 // can detect cycles in the module graph. 1255 SourceMgr.setModuleBuildStack( 1256 ImportingInstance.getSourceManager().getModuleBuildStack()); 1257 SourceMgr.pushModuleBuildStack(ModuleName, 1258 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1259 1260 // Make sure that the failed-module structure has been allocated in 1261 // the importing instance, and propagate the pointer to the newly-created 1262 // instance. 1263 if (!ImportingInstance.hasFailedModulesSet()) 1264 ImportingInstance.createFailedModulesSet(); 1265 Instance.setFailedModulesSet(ImportingInstance.getFailedModulesSetPtr()); 1266 1267 // If we're collecting module dependencies, we need to share a collector 1268 // between all of the module CompilerInstances. Other than that, we don't 1269 // want to produce any dependency output from the module build. 1270 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1271 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1272 1273 ImportingInstance.getDiagnostics().Report(ImportLoc, 1274 diag::remark_module_build) 1275 << ModuleName << ModuleFileName; 1276 1277 PreBuildStep(Instance); 1278 1279 // Execute the action to actually build the module in-place. Use a separate 1280 // thread so that we get a stack large enough. 1281 bool Crashed = !llvm::CrashRecoveryContext().RunSafelyOnThread( 1282 [&]() { 1283 GenerateModuleFromModuleMapAction Action; 1284 Instance.ExecuteAction(Action); 1285 }, 1286 DesiredStackSize); 1287 1288 PostBuildStep(Instance); 1289 1290 ImportingInstance.getDiagnostics().Report(ImportLoc, 1291 diag::remark_module_build_done) 1292 << ModuleName; 1293 1294 // Propagate the statistics to the parent FileManager. 1295 if (!FrontendOpts.ModulesShareFileManager) 1296 ImportingInstance.getFileManager().AddStats(Instance.getFileManager()); 1297 1298 if (Crashed) { 1299 // Clear the ASTConsumer if it hasn't been already, in case it owns streams 1300 // that must be closed before clearing output files. 1301 Instance.setSema(nullptr); 1302 Instance.setASTConsumer(nullptr); 1303 1304 // Delete any remaining temporary files related to Instance. 1305 Instance.clearOutputFiles(/*EraseFiles=*/true); 1306 } 1307 1308 // If \p AllowPCMWithCompilerErrors is set return 'success' even if errors 1309 // occurred. 1310 return !Instance.getDiagnostics().hasErrorOccurred() || 1311 Instance.getFrontendOpts().AllowPCMWithCompilerErrors; 1312 } 1313 1314 static OptionalFileEntryRef getPublicModuleMap(FileEntryRef File, 1315 FileManager &FileMgr) { 1316 StringRef Filename = llvm::sys::path::filename(File.getName()); 1317 SmallString<128> PublicFilename(File.getDir().getName()); 1318 if (Filename == "module_private.map") 1319 llvm::sys::path::append(PublicFilename, "module.map"); 1320 else if (Filename == "module.private.modulemap") 1321 llvm::sys::path::append(PublicFilename, "module.modulemap"); 1322 else 1323 return std::nullopt; 1324 return FileMgr.getOptionalFileRef(PublicFilename); 1325 } 1326 1327 /// Compile a module file for the given module in a separate compiler instance, 1328 /// using the options provided by the importing compiler instance. Returns true 1329 /// if the module was built without errors. 1330 static bool compileModule(CompilerInstance &ImportingInstance, 1331 SourceLocation ImportLoc, Module *Module, 1332 StringRef ModuleFileName) { 1333 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1334 InputKind::ModuleMap); 1335 1336 // Get or create the module map that we'll use to build this module. 1337 ModuleMap &ModMap 1338 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1339 SourceManager &SourceMgr = ImportingInstance.getSourceManager(); 1340 bool Result; 1341 if (FileID ModuleMapFID = ModMap.getContainingModuleMapFileID(Module); 1342 ModuleMapFID.isValid()) { 1343 // We want to use the top-level module map. If we don't, the compiling 1344 // instance may think the containing module map is a top-level one, while 1345 // the importing instance knows it's included from a parent module map via 1346 // the extern directive. This mismatch could bite us later. 1347 SourceLocation Loc = SourceMgr.getIncludeLoc(ModuleMapFID); 1348 while (Loc.isValid() && isModuleMap(SourceMgr.getFileCharacteristic(Loc))) { 1349 ModuleMapFID = SourceMgr.getFileID(Loc); 1350 Loc = SourceMgr.getIncludeLoc(ModuleMapFID); 1351 } 1352 1353 OptionalFileEntryRef ModuleMapFile = 1354 SourceMgr.getFileEntryRefForID(ModuleMapFID); 1355 assert(ModuleMapFile && "Top-level module map with no FileID"); 1356 1357 // Canonicalize compilation to start with the public module map. This is 1358 // vital for submodules declarations in the private module maps to be 1359 // correctly parsed when depending on a top level module in the public one. 1360 if (OptionalFileEntryRef PublicMMFile = getPublicModuleMap( 1361 *ModuleMapFile, ImportingInstance.getFileManager())) 1362 ModuleMapFile = PublicMMFile; 1363 1364 StringRef ModuleMapFilePath = ModuleMapFile->getNameAsRequested(); 1365 1366 // Use the module map where this module resides. 1367 Result = compileModuleImpl( 1368 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1369 FrontendInputFile(ModuleMapFilePath, IK, +Module->IsSystem), 1370 ModMap.getModuleMapFileForUniquing(Module)->getName(), ModuleFileName); 1371 } else { 1372 // FIXME: We only need to fake up an input file here as a way of 1373 // transporting the module's directory to the module map parser. We should 1374 // be able to do that more directly, and parse from a memory buffer without 1375 // inventing this file. 1376 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1377 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1378 1379 std::string InferredModuleMapContent; 1380 llvm::raw_string_ostream OS(InferredModuleMapContent); 1381 Module->print(OS); 1382 1383 Result = compileModuleImpl( 1384 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1385 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1386 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1387 ModuleFileName, 1388 [&](CompilerInstance &Instance) { 1389 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1390 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1391 FileEntryRef ModuleMapFile = Instance.getFileManager().getVirtualFileRef( 1392 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1393 Instance.getSourceManager().overrideFileContents( 1394 ModuleMapFile, std::move(ModuleMapBuffer)); 1395 }); 1396 } 1397 1398 // We've rebuilt a module. If we're allowed to generate or update the global 1399 // module index, record that fact in the importing compiler instance. 1400 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1401 ImportingInstance.setBuildGlobalModuleIndex(true); 1402 } 1403 1404 return Result; 1405 } 1406 1407 /// Read the AST right after compiling the module. 1408 static bool readASTAfterCompileModule(CompilerInstance &ImportingInstance, 1409 SourceLocation ImportLoc, 1410 SourceLocation ModuleNameLoc, 1411 Module *Module, StringRef ModuleFileName, 1412 bool *OutOfDate) { 1413 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1414 1415 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1416 if (OutOfDate) 1417 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1418 1419 // Try to read the module file, now that we've compiled it. 1420 ASTReader::ASTReadResult ReadResult = 1421 ImportingInstance.getASTReader()->ReadAST( 1422 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1423 ModuleLoadCapabilities); 1424 if (ReadResult == ASTReader::Success) 1425 return true; 1426 1427 // The caller wants to handle out-of-date failures. 1428 if (OutOfDate && ReadResult == ASTReader::OutOfDate) { 1429 *OutOfDate = true; 1430 return false; 1431 } 1432 1433 // The ASTReader didn't diagnose the error, so conservatively report it. 1434 if (ReadResult == ASTReader::Missing || !Diags.hasErrorOccurred()) 1435 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1436 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1437 1438 return false; 1439 } 1440 1441 /// Compile a module in a separate compiler instance and read the AST, 1442 /// returning true if the module compiles without errors. 1443 static bool compileModuleAndReadASTImpl(CompilerInstance &ImportingInstance, 1444 SourceLocation ImportLoc, 1445 SourceLocation ModuleNameLoc, 1446 Module *Module, 1447 StringRef ModuleFileName) { 1448 if (!compileModule(ImportingInstance, ModuleNameLoc, Module, 1449 ModuleFileName)) { 1450 ImportingInstance.getDiagnostics().Report(ModuleNameLoc, 1451 diag::err_module_not_built) 1452 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1453 return false; 1454 } 1455 1456 return readASTAfterCompileModule(ImportingInstance, ImportLoc, ModuleNameLoc, 1457 Module, ModuleFileName, 1458 /*OutOfDate=*/nullptr); 1459 } 1460 1461 /// Compile a module in a separate compiler instance and read the AST, 1462 /// returning true if the module compiles without errors, using a lock manager 1463 /// to avoid building the same module in multiple compiler instances. 1464 /// 1465 /// Uses a lock file manager and exponential backoff to reduce the chances that 1466 /// multiple instances will compete to create the same module. On timeout, 1467 /// deletes the lock file in order to avoid deadlock from crashing processes or 1468 /// bugs in the lock file manager. 1469 static bool compileModuleAndReadASTBehindLock( 1470 CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1471 SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName) { 1472 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1473 1474 Diags.Report(ModuleNameLoc, diag::remark_module_lock) 1475 << ModuleFileName << Module->Name; 1476 1477 // FIXME: have LockFileManager return an error_code so that we can 1478 // avoid the mkdir when the directory already exists. 1479 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1480 llvm::sys::fs::create_directories(Dir); 1481 1482 while (true) { 1483 llvm::LockFileManager Locked(ModuleFileName); 1484 switch (Locked) { 1485 case llvm::LockFileManager::LFS_Error: 1486 // ModuleCache takes care of correctness and locks are only necessary for 1487 // performance. Fallback to building the module in case of any lock 1488 // related errors. 1489 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1490 << Module->Name << Locked.getErrorMessage(); 1491 // Clear out any potential leftover. 1492 Locked.unsafeRemoveLockFile(); 1493 [[fallthrough]]; 1494 case llvm::LockFileManager::LFS_Owned: 1495 // We're responsible for building the module ourselves. 1496 return compileModuleAndReadASTImpl(ImportingInstance, ImportLoc, 1497 ModuleNameLoc, Module, ModuleFileName); 1498 1499 case llvm::LockFileManager::LFS_Shared: 1500 break; // The interesting case. 1501 } 1502 1503 // Someone else is responsible for building the module. Wait for them to 1504 // finish. 1505 switch (Locked.waitForUnlock()) { 1506 case llvm::LockFileManager::Res_Success: 1507 break; // The interesting case. 1508 case llvm::LockFileManager::Res_OwnerDied: 1509 continue; // try again to get the lock. 1510 case llvm::LockFileManager::Res_Timeout: 1511 // Since ModuleCache takes care of correctness, we try waiting for 1512 // another process to complete the build so clang does not do it done 1513 // twice. If case of timeout, build it ourselves. 1514 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1515 << Module->Name; 1516 // Clear the lock file so that future invocations can make progress. 1517 Locked.unsafeRemoveLockFile(); 1518 continue; 1519 } 1520 1521 // Read the module that was just written by someone else. 1522 bool OutOfDate = false; 1523 if (readASTAfterCompileModule(ImportingInstance, ImportLoc, ModuleNameLoc, 1524 Module, ModuleFileName, &OutOfDate)) 1525 return true; 1526 if (!OutOfDate) 1527 return false; 1528 1529 // The module may be out of date in the presence of file system races, 1530 // or if one of its imports depends on header search paths that are not 1531 // consistent with this ImportingInstance. Try again... 1532 } 1533 } 1534 1535 /// Compile a module in a separate compiler instance and read the AST, 1536 /// returning true if the module compiles without errors, potentially using a 1537 /// lock manager to avoid building the same module in multiple compiler 1538 /// instances. 1539 static bool compileModuleAndReadAST(CompilerInstance &ImportingInstance, 1540 SourceLocation ImportLoc, 1541 SourceLocation ModuleNameLoc, 1542 Module *Module, StringRef ModuleFileName) { 1543 return ImportingInstance.getInvocation() 1544 .getFrontendOpts() 1545 .BuildingImplicitModuleUsesLock 1546 ? compileModuleAndReadASTBehindLock(ImportingInstance, ImportLoc, 1547 ModuleNameLoc, Module, 1548 ModuleFileName) 1549 : compileModuleAndReadASTImpl(ImportingInstance, ImportLoc, 1550 ModuleNameLoc, Module, 1551 ModuleFileName); 1552 } 1553 1554 /// Diagnose differences between the current definition of the given 1555 /// configuration macro and the definition provided on the command line. 1556 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1557 Module *Mod, SourceLocation ImportLoc) { 1558 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1559 SourceManager &SourceMgr = PP.getSourceManager(); 1560 1561 // If this identifier has never had a macro definition, then it could 1562 // not have changed. 1563 if (!Id->hadMacroDefinition()) 1564 return; 1565 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1566 1567 // Find the macro definition from the command line. 1568 MacroInfo *CmdLineDefinition = nullptr; 1569 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1570 // We only care about the predefines buffer. 1571 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1572 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1573 continue; 1574 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1575 CmdLineDefinition = DMD->getMacroInfo(); 1576 break; 1577 } 1578 1579 auto *CurrentDefinition = PP.getMacroInfo(Id); 1580 if (CurrentDefinition == CmdLineDefinition) { 1581 // Macro matches. Nothing to do. 1582 } else if (!CurrentDefinition) { 1583 // This macro was defined on the command line, then #undef'd later. 1584 // Complain. 1585 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1586 << true << ConfigMacro << Mod->getFullModuleName(); 1587 auto LatestDef = LatestLocalMD->getDefinition(); 1588 assert(LatestDef.isUndefined() && 1589 "predefined macro went away with no #undef?"); 1590 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1591 << true; 1592 return; 1593 } else if (!CmdLineDefinition) { 1594 // There was no definition for this macro in the predefines buffer, 1595 // but there was a local definition. Complain. 1596 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1597 << false << ConfigMacro << Mod->getFullModuleName(); 1598 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1599 diag::note_module_def_undef_here) 1600 << false; 1601 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1602 /*Syntactically=*/true)) { 1603 // The macro definitions differ. 1604 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1605 << false << ConfigMacro << Mod->getFullModuleName(); 1606 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1607 diag::note_module_def_undef_here) 1608 << false; 1609 } 1610 } 1611 1612 static void checkConfigMacros(Preprocessor &PP, Module *M, 1613 SourceLocation ImportLoc) { 1614 clang::Module *TopModule = M->getTopLevelModule(); 1615 for (const StringRef ConMacro : TopModule->ConfigMacros) { 1616 checkConfigMacro(PP, ConMacro, M, ImportLoc); 1617 } 1618 } 1619 1620 /// Write a new timestamp file with the given path. 1621 static void writeTimestampFile(StringRef TimestampFile) { 1622 std::error_code EC; 1623 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::OF_None); 1624 } 1625 1626 /// Prune the module cache of modules that haven't been accessed in 1627 /// a long time. 1628 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1629 llvm::sys::fs::file_status StatBuf; 1630 llvm::SmallString<128> TimestampFile; 1631 TimestampFile = HSOpts.ModuleCachePath; 1632 assert(!TimestampFile.empty()); 1633 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1634 1635 // Try to stat() the timestamp file. 1636 if (std::error_code EC = llvm::sys::fs::status(TimestampFile, StatBuf)) { 1637 // If the timestamp file wasn't there, create one now. 1638 if (EC == std::errc::no_such_file_or_directory) { 1639 writeTimestampFile(TimestampFile); 1640 } 1641 return; 1642 } 1643 1644 // Check whether the time stamp is older than our pruning interval. 1645 // If not, do nothing. 1646 time_t TimeStampModTime = 1647 llvm::sys::toTimeT(StatBuf.getLastModificationTime()); 1648 time_t CurrentTime = time(nullptr); 1649 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1650 return; 1651 1652 // Write a new timestamp file so that nobody else attempts to prune. 1653 // There is a benign race condition here, if two Clang instances happen to 1654 // notice at the same time that the timestamp is out-of-date. 1655 writeTimestampFile(TimestampFile); 1656 1657 // Walk the entire module cache, looking for unused module files and module 1658 // indices. 1659 std::error_code EC; 1660 for (llvm::sys::fs::directory_iterator Dir(HSOpts.ModuleCachePath, EC), 1661 DirEnd; 1662 Dir != DirEnd && !EC; Dir.increment(EC)) { 1663 // If we don't have a directory, there's nothing to look into. 1664 if (!llvm::sys::fs::is_directory(Dir->path())) 1665 continue; 1666 1667 // Walk all of the files within this directory. 1668 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1669 File != FileEnd && !EC; File.increment(EC)) { 1670 // We only care about module and global module index files. 1671 StringRef Extension = llvm::sys::path::extension(File->path()); 1672 if (Extension != ".pcm" && Extension != ".timestamp" && 1673 llvm::sys::path::filename(File->path()) != "modules.idx") 1674 continue; 1675 1676 // Look at this file. If we can't stat it, there's nothing interesting 1677 // there. 1678 if (llvm::sys::fs::status(File->path(), StatBuf)) 1679 continue; 1680 1681 // If the file has been used recently enough, leave it there. 1682 time_t FileAccessTime = llvm::sys::toTimeT(StatBuf.getLastAccessedTime()); 1683 if (CurrentTime - FileAccessTime <= 1684 time_t(HSOpts.ModuleCachePruneAfter)) { 1685 continue; 1686 } 1687 1688 // Remove the file. 1689 llvm::sys::fs::remove(File->path()); 1690 1691 // Remove the timestamp file. 1692 std::string TimpestampFilename = File->path() + ".timestamp"; 1693 llvm::sys::fs::remove(TimpestampFilename); 1694 } 1695 1696 // If we removed all of the files in the directory, remove the directory 1697 // itself. 1698 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1699 llvm::sys::fs::directory_iterator() && !EC) 1700 llvm::sys::fs::remove(Dir->path()); 1701 } 1702 } 1703 1704 void CompilerInstance::createASTReader() { 1705 if (TheASTReader) 1706 return; 1707 1708 if (!hasASTContext()) 1709 createASTContext(); 1710 1711 // If we're implicitly building modules but not currently recursively 1712 // building a module, check whether we need to prune the module cache. 1713 if (getSourceManager().getModuleBuildStack().empty() && 1714 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1715 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1716 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1717 pruneModuleCache(getHeaderSearchOpts()); 1718 } 1719 1720 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1721 std::string Sysroot = HSOpts.Sysroot; 1722 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1723 const FrontendOptions &FEOpts = getFrontendOpts(); 1724 std::unique_ptr<llvm::Timer> ReadTimer; 1725 1726 if (FrontendTimerGroup) 1727 ReadTimer = std::make_unique<llvm::Timer>("reading_modules", 1728 "Reading modules", 1729 *FrontendTimerGroup); 1730 TheASTReader = new ASTReader( 1731 getPreprocessor(), getModuleCache(), &getASTContext(), 1732 getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, 1733 Sysroot.empty() ? "" : Sysroot.c_str(), 1734 PPOpts.DisablePCHOrModuleValidation, 1735 /*AllowASTWithCompilerErrors=*/FEOpts.AllowPCMWithCompilerErrors, 1736 /*AllowConfigurationMismatch=*/false, HSOpts.ModulesValidateSystemHeaders, 1737 HSOpts.ValidateASTInputFilesContent, 1738 getFrontendOpts().UseGlobalModuleIndex, std::move(ReadTimer)); 1739 if (hasASTConsumer()) { 1740 TheASTReader->setDeserializationListener( 1741 getASTConsumer().GetASTDeserializationListener()); 1742 getASTContext().setASTMutationListener( 1743 getASTConsumer().GetASTMutationListener()); 1744 } 1745 getASTContext().setExternalSource(TheASTReader); 1746 if (hasSema()) 1747 TheASTReader->InitializeSema(getSema()); 1748 if (hasASTConsumer()) 1749 TheASTReader->StartTranslationUnit(&getASTConsumer()); 1750 1751 for (auto &Listener : DependencyCollectors) 1752 Listener->attachToASTReader(*TheASTReader); 1753 } 1754 1755 bool CompilerInstance::loadModuleFile( 1756 StringRef FileName, serialization::ModuleFile *&LoadedModuleFile) { 1757 llvm::Timer Timer; 1758 if (FrontendTimerGroup) 1759 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1760 *FrontendTimerGroup); 1761 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1762 1763 // If we don't already have an ASTReader, create one now. 1764 if (!TheASTReader) 1765 createASTReader(); 1766 1767 // If -Wmodule-file-config-mismatch is mapped as an error or worse, allow the 1768 // ASTReader to diagnose it, since it can produce better errors that we can. 1769 bool ConfigMismatchIsRecoverable = 1770 getDiagnostics().getDiagnosticLevel(diag::warn_module_config_mismatch, 1771 SourceLocation()) 1772 <= DiagnosticsEngine::Warning; 1773 1774 auto Listener = std::make_unique<ReadModuleNames>(*PP); 1775 auto &ListenerRef = *Listener; 1776 ASTReader::ListenerScope ReadModuleNamesListener(*TheASTReader, 1777 std::move(Listener)); 1778 1779 // Try to load the module file. 1780 switch (TheASTReader->ReadAST( 1781 FileName, serialization::MK_ExplicitModule, SourceLocation(), 1782 ConfigMismatchIsRecoverable ? ASTReader::ARR_ConfigurationMismatch : 0, 1783 &LoadedModuleFile)) { 1784 case ASTReader::Success: 1785 // We successfully loaded the module file; remember the set of provided 1786 // modules so that we don't try to load implicit modules for them. 1787 ListenerRef.registerAll(); 1788 return true; 1789 1790 case ASTReader::ConfigurationMismatch: 1791 // Ignore unusable module files. 1792 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1793 << FileName; 1794 // All modules provided by any files we tried and failed to load are now 1795 // unavailable; includes of those modules should now be handled textually. 1796 ListenerRef.markAllUnavailable(); 1797 return true; 1798 1799 default: 1800 return false; 1801 } 1802 } 1803 1804 namespace { 1805 enum ModuleSource { 1806 MS_ModuleNotFound, 1807 MS_ModuleCache, 1808 MS_PrebuiltModulePath, 1809 MS_ModuleBuildPragma 1810 }; 1811 } // end namespace 1812 1813 /// Select a source for loading the named module and compute the filename to 1814 /// load it from. 1815 static ModuleSource selectModuleSource( 1816 Module *M, StringRef ModuleName, std::string &ModuleFilename, 1817 const std::map<std::string, std::string, std::less<>> &BuiltModules, 1818 HeaderSearch &HS) { 1819 assert(ModuleFilename.empty() && "Already has a module source?"); 1820 1821 // Check to see if the module has been built as part of this compilation 1822 // via a module build pragma. 1823 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1824 if (BuiltModuleIt != BuiltModules.end()) { 1825 ModuleFilename = BuiltModuleIt->second; 1826 return MS_ModuleBuildPragma; 1827 } 1828 1829 // Try to load the module from the prebuilt module path. 1830 const HeaderSearchOptions &HSOpts = HS.getHeaderSearchOpts(); 1831 if (!HSOpts.PrebuiltModuleFiles.empty() || 1832 !HSOpts.PrebuiltModulePaths.empty()) { 1833 ModuleFilename = HS.getPrebuiltModuleFileName(ModuleName); 1834 if (HSOpts.EnablePrebuiltImplicitModules && ModuleFilename.empty()) 1835 ModuleFilename = HS.getPrebuiltImplicitModuleFileName(M); 1836 if (!ModuleFilename.empty()) 1837 return MS_PrebuiltModulePath; 1838 } 1839 1840 // Try to load the module from the module cache. 1841 if (M) { 1842 ModuleFilename = HS.getCachedModuleFileName(M); 1843 return MS_ModuleCache; 1844 } 1845 1846 return MS_ModuleNotFound; 1847 } 1848 1849 ModuleLoadResult CompilerInstance::findOrCompileModuleAndReadAST( 1850 StringRef ModuleName, SourceLocation ImportLoc, 1851 SourceLocation ModuleNameLoc, bool IsInclusionDirective) { 1852 // Search for a module with the given name. 1853 HeaderSearch &HS = PP->getHeaderSearchInfo(); 1854 Module *M = 1855 HS.lookupModule(ModuleName, ImportLoc, true, !IsInclusionDirective); 1856 1857 // Check for any configuration macros that have changed. This is done 1858 // immediately before potentially building a module in case this module 1859 // depends on having one of its configuration macros defined to successfully 1860 // build. If this is not done the user will never see the warning. 1861 if (M) 1862 checkConfigMacros(getPreprocessor(), M, ImportLoc); 1863 1864 // Select the source and filename for loading the named module. 1865 std::string ModuleFilename; 1866 ModuleSource Source = 1867 selectModuleSource(M, ModuleName, ModuleFilename, BuiltModules, HS); 1868 if (Source == MS_ModuleNotFound) { 1869 // We can't find a module, error out here. 1870 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1871 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1872 return nullptr; 1873 } 1874 if (ModuleFilename.empty()) { 1875 if (M && M->HasIncompatibleModuleFile) { 1876 // We tried and failed to load a module file for this module. Fall 1877 // back to textual inclusion for its headers. 1878 return ModuleLoadResult::ConfigMismatch; 1879 } 1880 1881 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1882 << ModuleName; 1883 return nullptr; 1884 } 1885 1886 // Create an ASTReader on demand. 1887 if (!getASTReader()) 1888 createASTReader(); 1889 1890 // Time how long it takes to load the module. 1891 llvm::Timer Timer; 1892 if (FrontendTimerGroup) 1893 Timer.init("loading." + ModuleFilename, "Loading " + ModuleFilename, 1894 *FrontendTimerGroup); 1895 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1896 llvm::TimeTraceScope TimeScope("Module Load", ModuleName); 1897 1898 // Try to load the module file. If we are not trying to load from the 1899 // module cache, we don't know how to rebuild modules. 1900 unsigned ARRFlags = Source == MS_ModuleCache 1901 ? ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing | 1902 ASTReader::ARR_TreatModuleWithErrorsAsOutOfDate 1903 : Source == MS_PrebuiltModulePath 1904 ? 0 1905 : ASTReader::ARR_ConfigurationMismatch; 1906 switch (getASTReader()->ReadAST(ModuleFilename, 1907 Source == MS_PrebuiltModulePath 1908 ? serialization::MK_PrebuiltModule 1909 : Source == MS_ModuleBuildPragma 1910 ? serialization::MK_ExplicitModule 1911 : serialization::MK_ImplicitModule, 1912 ImportLoc, ARRFlags)) { 1913 case ASTReader::Success: { 1914 if (M) 1915 return M; 1916 assert(Source != MS_ModuleCache && 1917 "missing module, but file loaded from cache"); 1918 1919 // A prebuilt module is indexed as a ModuleFile; the Module does not exist 1920 // until the first call to ReadAST. Look it up now. 1921 M = HS.lookupModule(ModuleName, ImportLoc, true, !IsInclusionDirective); 1922 1923 // Check whether M refers to the file in the prebuilt module path. 1924 if (M && M->getASTFile()) 1925 if (auto ModuleFile = FileMgr->getOptionalFileRef(ModuleFilename)) 1926 if (*ModuleFile == M->getASTFile()) 1927 return M; 1928 1929 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1930 << ModuleName; 1931 return ModuleLoadResult(); 1932 } 1933 1934 case ASTReader::OutOfDate: 1935 case ASTReader::Missing: 1936 // The most interesting case. 1937 break; 1938 1939 case ASTReader::ConfigurationMismatch: 1940 if (Source == MS_PrebuiltModulePath) 1941 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1942 // produce a warning here! 1943 getDiagnostics().Report(SourceLocation(), 1944 diag::warn_module_config_mismatch) 1945 << ModuleFilename; 1946 // Fall through to error out. 1947 [[fallthrough]]; 1948 case ASTReader::VersionMismatch: 1949 case ASTReader::HadErrors: 1950 ModuleLoader::HadFatalFailure = true; 1951 // FIXME: The ASTReader will already have complained, but can we shoehorn 1952 // that diagnostic information into a more useful form? 1953 return ModuleLoadResult(); 1954 1955 case ASTReader::Failure: 1956 ModuleLoader::HadFatalFailure = true; 1957 return ModuleLoadResult(); 1958 } 1959 1960 // ReadAST returned Missing or OutOfDate. 1961 if (Source != MS_ModuleCache) { 1962 // We don't know the desired configuration for this module and don't 1963 // necessarily even have a module map. Since ReadAST already produces 1964 // diagnostics for these two cases, we simply error out here. 1965 return ModuleLoadResult(); 1966 } 1967 1968 // The module file is missing or out-of-date. Build it. 1969 assert(M && "missing module, but trying to compile for cache"); 1970 1971 // Check whether there is a cycle in the module graph. 1972 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1973 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1974 for (; Pos != PosEnd; ++Pos) { 1975 if (Pos->first == ModuleName) 1976 break; 1977 } 1978 1979 if (Pos != PosEnd) { 1980 SmallString<256> CyclePath; 1981 for (; Pos != PosEnd; ++Pos) { 1982 CyclePath += Pos->first; 1983 CyclePath += " -> "; 1984 } 1985 CyclePath += ModuleName; 1986 1987 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1988 << ModuleName << CyclePath; 1989 return nullptr; 1990 } 1991 1992 // Check whether we have already attempted to build this module (but failed). 1993 if (FailedModules && FailedModules->hasAlreadyFailed(ModuleName)) { 1994 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1995 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1996 return nullptr; 1997 } 1998 1999 // Try to compile and then read the AST. 2000 if (!compileModuleAndReadAST(*this, ImportLoc, ModuleNameLoc, M, 2001 ModuleFilename)) { 2002 assert(getDiagnostics().hasErrorOccurred() && 2003 "undiagnosed error in compileModuleAndReadAST"); 2004 if (FailedModules) 2005 FailedModules->addFailed(ModuleName); 2006 return nullptr; 2007 } 2008 2009 // Okay, we've rebuilt and now loaded the module. 2010 return M; 2011 } 2012 2013 ModuleLoadResult 2014 CompilerInstance::loadModule(SourceLocation ImportLoc, 2015 ModuleIdPath Path, 2016 Module::NameVisibilityKind Visibility, 2017 bool IsInclusionDirective) { 2018 // Determine what file we're searching from. 2019 StringRef ModuleName = Path[0].first->getName(); 2020 SourceLocation ModuleNameLoc = Path[0].second; 2021 2022 // If we've already handled this import, just return the cached result. 2023 // This one-element cache is important to eliminate redundant diagnostics 2024 // when both the preprocessor and parser see the same import declaration. 2025 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 2026 // Make the named module visible. 2027 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 2028 TheASTReader->makeModuleVisible(LastModuleImportResult, Visibility, 2029 ImportLoc); 2030 return LastModuleImportResult; 2031 } 2032 2033 // If we don't already have information on this module, load the module now. 2034 Module *Module = nullptr; 2035 ModuleMap &MM = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2036 if (auto MaybeModule = MM.getCachedModuleLoad(*Path[0].first)) { 2037 // Use the cached result, which may be nullptr. 2038 Module = *MaybeModule; 2039 // Config macros are already checked before building a module, but they need 2040 // to be checked at each import location in case any of the config macros 2041 // have a new value at the current `ImportLoc`. 2042 if (Module) 2043 checkConfigMacros(getPreprocessor(), Module, ImportLoc); 2044 } else if (ModuleName == getLangOpts().CurrentModule) { 2045 // This is the module we're building. 2046 Module = PP->getHeaderSearchInfo().lookupModule( 2047 ModuleName, ImportLoc, /*AllowSearch*/ true, 2048 /*AllowExtraModuleMapSearch*/ !IsInclusionDirective); 2049 2050 // Config macros do not need to be checked here for two reasons. 2051 // * This will always be textual inclusion, and thus the config macros 2052 // actually do impact the content of the header. 2053 // * `Preprocessor::HandleHeaderIncludeOrImport` will never call this 2054 // function as the `#include` or `#import` is textual. 2055 2056 MM.cacheModuleLoad(*Path[0].first, Module); 2057 } else { 2058 ModuleLoadResult Result = findOrCompileModuleAndReadAST( 2059 ModuleName, ImportLoc, ModuleNameLoc, IsInclusionDirective); 2060 if (!Result.isNormal()) 2061 return Result; 2062 if (!Result) 2063 DisableGeneratingGlobalModuleIndex = true; 2064 Module = Result; 2065 MM.cacheModuleLoad(*Path[0].first, Module); 2066 } 2067 2068 // If we never found the module, fail. Otherwise, verify the module and link 2069 // it up. 2070 if (!Module) 2071 return ModuleLoadResult(); 2072 2073 // Verify that the rest of the module path actually corresponds to 2074 // a submodule. 2075 bool MapPrivateSubModToTopLevel = false; 2076 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 2077 StringRef Name = Path[I].first->getName(); 2078 clang::Module *Sub = Module->findSubmodule(Name); 2079 2080 // If the user is requesting Foo.Private and it doesn't exist, try to 2081 // match Foo_Private and emit a warning asking for the user to write 2082 // @import Foo_Private instead. FIXME: remove this when existing clients 2083 // migrate off of Foo.Private syntax. 2084 if (!Sub && Name == "Private" && Module == Module->getTopLevelModule()) { 2085 SmallString<128> PrivateModule(Module->Name); 2086 PrivateModule.append("_Private"); 2087 2088 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath; 2089 auto &II = PP->getIdentifierTable().get( 2090 PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID()); 2091 PrivPath.push_back(std::make_pair(&II, Path[0].second)); 2092 2093 std::string FileName; 2094 // If there is a modulemap module or prebuilt module, load it. 2095 if (PP->getHeaderSearchInfo().lookupModule(PrivateModule, ImportLoc, true, 2096 !IsInclusionDirective) || 2097 selectModuleSource(nullptr, PrivateModule, FileName, BuiltModules, 2098 PP->getHeaderSearchInfo()) != MS_ModuleNotFound) 2099 Sub = loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective); 2100 if (Sub) { 2101 MapPrivateSubModToTopLevel = true; 2102 PP->markClangModuleAsAffecting(Module); 2103 if (!getDiagnostics().isIgnored( 2104 diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) { 2105 getDiagnostics().Report(Path[I].second, 2106 diag::warn_no_priv_submodule_use_toplevel) 2107 << Path[I].first << Module->getFullModuleName() << PrivateModule 2108 << SourceRange(Path[0].second, Path[I].second) 2109 << FixItHint::CreateReplacement(SourceRange(Path[0].second), 2110 PrivateModule); 2111 getDiagnostics().Report(Sub->DefinitionLoc, 2112 diag::note_private_top_level_defined); 2113 } 2114 } 2115 } 2116 2117 if (!Sub) { 2118 // Attempt to perform typo correction to find a module name that works. 2119 SmallVector<StringRef, 2> Best; 2120 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 2121 2122 for (class Module *SubModule : Module->submodules()) { 2123 unsigned ED = 2124 Name.edit_distance(SubModule->Name, 2125 /*AllowReplacements=*/true, BestEditDistance); 2126 if (ED <= BestEditDistance) { 2127 if (ED < BestEditDistance) { 2128 Best.clear(); 2129 BestEditDistance = ED; 2130 } 2131 2132 Best.push_back(SubModule->Name); 2133 } 2134 } 2135 2136 // If there was a clear winner, user it. 2137 if (Best.size() == 1) { 2138 getDiagnostics().Report(Path[I].second, diag::err_no_submodule_suggest) 2139 << Path[I].first << Module->getFullModuleName() << Best[0] 2140 << SourceRange(Path[0].second, Path[I - 1].second) 2141 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 2142 Best[0]); 2143 2144 Sub = Module->findSubmodule(Best[0]); 2145 } 2146 } 2147 2148 if (!Sub) { 2149 // No submodule by this name. Complain, and don't look for further 2150 // submodules. 2151 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 2152 << Path[I].first << Module->getFullModuleName() 2153 << SourceRange(Path[0].second, Path[I - 1].second); 2154 break; 2155 } 2156 2157 Module = Sub; 2158 } 2159 2160 // Make the named module visible, if it's not already part of the module 2161 // we are parsing. 2162 if (ModuleName != getLangOpts().CurrentModule) { 2163 if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) { 2164 // We have an umbrella header or directory that doesn't actually include 2165 // all of the headers within the directory it covers. Complain about 2166 // this missing submodule and recover by forgetting that we ever saw 2167 // this submodule. 2168 // FIXME: Should we detect this at module load time? It seems fairly 2169 // expensive (and rare). 2170 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 2171 << Module->getFullModuleName() 2172 << SourceRange(Path.front().second, Path.back().second); 2173 2174 return ModuleLoadResult(Module, ModuleLoadResult::MissingExpected); 2175 } 2176 2177 // Check whether this module is available. 2178 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 2179 *Module, getDiagnostics())) { 2180 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 2181 << SourceRange(Path.front().second, Path.back().second); 2182 LastModuleImportLoc = ImportLoc; 2183 LastModuleImportResult = ModuleLoadResult(); 2184 return ModuleLoadResult(); 2185 } 2186 2187 TheASTReader->makeModuleVisible(Module, Visibility, ImportLoc); 2188 } 2189 2190 // Resolve any remaining module using export_as for this one. 2191 getPreprocessor() 2192 .getHeaderSearchInfo() 2193 .getModuleMap() 2194 .resolveLinkAsDependencies(Module->getTopLevelModule()); 2195 2196 LastModuleImportLoc = ImportLoc; 2197 LastModuleImportResult = ModuleLoadResult(Module); 2198 return LastModuleImportResult; 2199 } 2200 2201 void CompilerInstance::createModuleFromSource(SourceLocation ImportLoc, 2202 StringRef ModuleName, 2203 StringRef Source) { 2204 // Avoid creating filenames with special characters. 2205 SmallString<128> CleanModuleName(ModuleName); 2206 for (auto &C : CleanModuleName) 2207 if (!isAlphanumeric(C)) 2208 C = '_'; 2209 2210 // FIXME: Using a randomized filename here means that our intermediate .pcm 2211 // output is nondeterministic (as .pcm files refer to each other by name). 2212 // Can this affect the output in any way? 2213 SmallString<128> ModuleFileName; 2214 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 2215 CleanModuleName, "pcm", ModuleFileName)) { 2216 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 2217 << ModuleFileName << EC.message(); 2218 return; 2219 } 2220 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 2221 2222 FrontendInputFile Input( 2223 ModuleMapFileName, 2224 InputKind(getLanguageFromOptions(Invocation->getLangOpts()), 2225 InputKind::ModuleMap, /*Preprocessed*/true)); 2226 2227 std::string NullTerminatedSource(Source.str()); 2228 2229 auto PreBuildStep = [&](CompilerInstance &Other) { 2230 // Create a virtual file containing our desired source. 2231 // FIXME: We shouldn't need to do this. 2232 FileEntryRef ModuleMapFile = Other.getFileManager().getVirtualFileRef( 2233 ModuleMapFileName, NullTerminatedSource.size(), 0); 2234 Other.getSourceManager().overrideFileContents( 2235 ModuleMapFile, llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource)); 2236 2237 Other.BuiltModules = std::move(BuiltModules); 2238 Other.DeleteBuiltModules = false; 2239 }; 2240 2241 auto PostBuildStep = [this](CompilerInstance &Other) { 2242 BuiltModules = std::move(Other.BuiltModules); 2243 }; 2244 2245 // Build the module, inheriting any modules that we've built locally. 2246 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 2247 ModuleFileName, PreBuildStep, PostBuildStep)) { 2248 BuiltModules[std::string(ModuleName)] = std::string(ModuleFileName); 2249 llvm::sys::RemoveFileOnSignal(ModuleFileName); 2250 } 2251 } 2252 2253 void CompilerInstance::makeModuleVisible(Module *Mod, 2254 Module::NameVisibilityKind Visibility, 2255 SourceLocation ImportLoc) { 2256 if (!TheASTReader) 2257 createASTReader(); 2258 if (!TheASTReader) 2259 return; 2260 2261 TheASTReader->makeModuleVisible(Mod, Visibility, ImportLoc); 2262 } 2263 2264 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2265 SourceLocation TriggerLoc) { 2266 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2267 return nullptr; 2268 if (!TheASTReader) 2269 createASTReader(); 2270 // Can't do anything if we don't have the module manager. 2271 if (!TheASTReader) 2272 return nullptr; 2273 // Get an existing global index. This loads it if not already 2274 // loaded. 2275 TheASTReader->loadGlobalIndex(); 2276 GlobalModuleIndex *GlobalIndex = TheASTReader->getGlobalIndex(); 2277 // If the global index doesn't exist, create it. 2278 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2279 hasPreprocessor()) { 2280 llvm::sys::fs::create_directories( 2281 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2282 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2283 getFileManager(), getPCHContainerReader(), 2284 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2285 // FIXME this drops the error on the floor. This code is only used for 2286 // typo correction and drops more than just this one source of errors 2287 // (such as the directory creation failure above). It should handle the 2288 // error. 2289 consumeError(std::move(Err)); 2290 return nullptr; 2291 } 2292 TheASTReader->resetForReload(); 2293 TheASTReader->loadGlobalIndex(); 2294 GlobalIndex = TheASTReader->getGlobalIndex(); 2295 } 2296 // For finding modules needing to be imported for fixit messages, 2297 // we need to make the global index cover all modules, so we do that here. 2298 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2299 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2300 bool RecreateIndex = false; 2301 for (ModuleMap::module_iterator I = MMap.module_begin(), 2302 E = MMap.module_end(); I != E; ++I) { 2303 Module *TheModule = I->second; 2304 OptionalFileEntryRef Entry = TheModule->getASTFile(); 2305 if (!Entry) { 2306 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2307 Path.push_back(std::make_pair( 2308 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2309 std::reverse(Path.begin(), Path.end()); 2310 // Load a module as hidden. This also adds it to the global index. 2311 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2312 RecreateIndex = true; 2313 } 2314 } 2315 if (RecreateIndex) { 2316 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2317 getFileManager(), getPCHContainerReader(), 2318 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2319 // FIXME As above, this drops the error on the floor. 2320 consumeError(std::move(Err)); 2321 return nullptr; 2322 } 2323 TheASTReader->resetForReload(); 2324 TheASTReader->loadGlobalIndex(); 2325 GlobalIndex = TheASTReader->getGlobalIndex(); 2326 } 2327 HaveFullGlobalModuleIndex = true; 2328 } 2329 return GlobalIndex; 2330 } 2331 2332 // Check global module index for missing imports. 2333 bool 2334 CompilerInstance::lookupMissingImports(StringRef Name, 2335 SourceLocation TriggerLoc) { 2336 // Look for the symbol in non-imported modules, but only if an error 2337 // actually occurred. 2338 if (!buildingModule()) { 2339 // Load global module index, or retrieve a previously loaded one. 2340 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2341 TriggerLoc); 2342 2343 // Only if we have a global index. 2344 if (GlobalIndex) { 2345 GlobalModuleIndex::HitSet FoundModules; 2346 2347 // Find the modules that reference the identifier. 2348 // Note that this only finds top-level modules. 2349 // We'll let diagnoseTypo find the actual declaration module. 2350 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2351 return true; 2352 } 2353 } 2354 2355 return false; 2356 } 2357 void CompilerInstance::resetAndLeakSema() { llvm::BuryPointer(takeSema()); } 2358 2359 void CompilerInstance::setExternalSemaSource( 2360 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2361 ExternalSemaSrc = std::move(ESS); 2362 } 2363