xref: /llvm-project/clang/lib/Frontend/CompilerInstance.cpp (revision 970b2819122c1c79cc17033b679e7bf9dd479703)
1 //===--- CompilerInstance.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Frontend/CompilerInstance.h"
11 #include "clang/AST/ASTConsumer.h"
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/Basic/CharInfo.h"
15 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/MemoryBufferCache.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Basic/Version.h"
21 #include "clang/Config/config.h"
22 #include "clang/Frontend/ChainedDiagnosticConsumer.h"
23 #include "clang/Frontend/FrontendAction.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/LogDiagnosticPrinter.h"
27 #include "clang/Frontend/SerializedDiagnosticPrinter.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Frontend/Utils.h"
30 #include "clang/Frontend/VerifyDiagnosticConsumer.h"
31 #include "clang/Lex/HeaderSearch.h"
32 #include "clang/Lex/PTHManager.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Sema/CodeCompleteConsumer.h"
36 #include "clang/Sema/Sema.h"
37 #include "clang/Serialization/ASTReader.h"
38 #include "clang/Serialization/GlobalModuleIndex.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Errc.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Host.h"
44 #include "llvm/Support/LockFileManager.h"
45 #include "llvm/Support/MemoryBuffer.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/Program.h"
48 #include "llvm/Support/Signals.h"
49 #include "llvm/Support/Timer.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <sys/stat.h>
52 #include <system_error>
53 #include <time.h>
54 #include <utility>
55 
56 using namespace clang;
57 
58 CompilerInstance::CompilerInstance(
59     std::shared_ptr<PCHContainerOperations> PCHContainerOps,
60     MemoryBufferCache *SharedPCMCache)
61     : ModuleLoader(/* BuildingModule = */ SharedPCMCache),
62       Invocation(new CompilerInvocation()),
63       PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache),
64       ThePCHContainerOperations(std::move(PCHContainerOps)) {
65   // Don't allow this to invalidate buffers in use by others.
66   if (SharedPCMCache)
67     getPCMCache().finalizeCurrentBuffers();
68 }
69 
70 CompilerInstance::~CompilerInstance() {
71   assert(OutputFiles.empty() && "Still output files in flight?");
72 }
73 
74 void CompilerInstance::setInvocation(
75     std::shared_ptr<CompilerInvocation> Value) {
76   Invocation = std::move(Value);
77 }
78 
79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
80   return (BuildGlobalModuleIndex ||
81           (ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
82            getFrontendOpts().GenerateGlobalModuleIndex)) &&
83          !ModuleBuildFailed;
84 }
85 
86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
87   Diagnostics = Value;
88 }
89 
90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; }
91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; }
92 
93 void CompilerInstance::setFileManager(FileManager *Value) {
94   FileMgr = Value;
95   if (Value)
96     VirtualFileSystem = Value->getVirtualFileSystem();
97   else
98     VirtualFileSystem.reset();
99 }
100 
101 void CompilerInstance::setSourceManager(SourceManager *Value) {
102   SourceMgr = Value;
103 }
104 
105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) {
106   PP = std::move(Value);
107 }
108 
109 void CompilerInstance::setASTContext(ASTContext *Value) {
110   Context = Value;
111 
112   if (Context && Consumer)
113     getASTConsumer().Initialize(getASTContext());
114 }
115 
116 void CompilerInstance::setSema(Sema *S) {
117   TheSema.reset(S);
118 }
119 
120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
121   Consumer = std::move(Value);
122 
123   if (Context && Consumer)
124     getASTConsumer().Initialize(getASTContext());
125 }
126 
127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
128   CompletionConsumer.reset(Value);
129 }
130 
131 std::unique_ptr<Sema> CompilerInstance::takeSema() {
132   return std::move(TheSema);
133 }
134 
135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
136   return ModuleManager;
137 }
138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
139   assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() &&
140          "Expected ASTReader to use the same PCM cache");
141   ModuleManager = std::move(Reader);
142 }
143 
144 std::shared_ptr<ModuleDependencyCollector>
145 CompilerInstance::getModuleDepCollector() const {
146   return ModuleDepCollector;
147 }
148 
149 void CompilerInstance::setModuleDepCollector(
150     std::shared_ptr<ModuleDependencyCollector> Collector) {
151   ModuleDepCollector = std::move(Collector);
152 }
153 
154 static void collectHeaderMaps(const HeaderSearch &HS,
155                               std::shared_ptr<ModuleDependencyCollector> MDC) {
156   SmallVector<std::string, 4> HeaderMapFileNames;
157   HS.getHeaderMapFileNames(HeaderMapFileNames);
158   for (auto &Name : HeaderMapFileNames)
159     MDC->addFile(Name);
160 }
161 
162 static void collectIncludePCH(CompilerInstance &CI,
163                               std::shared_ptr<ModuleDependencyCollector> MDC) {
164   const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
165   if (PPOpts.ImplicitPCHInclude.empty())
166     return;
167 
168   StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
169   FileManager &FileMgr = CI.getFileManager();
170   const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude);
171   if (!PCHDir) {
172     MDC->addFile(PCHInclude);
173     return;
174   }
175 
176   std::error_code EC;
177   SmallString<128> DirNative;
178   llvm::sys::path::native(PCHDir->getName(), DirNative);
179   vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem();
180   SimpleASTReaderListener Validator(CI.getPreprocessor());
181   for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd;
182        Dir != DirEnd && !EC; Dir.increment(EC)) {
183     // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not
184     // used here since we're not interested in validating the PCH at this time,
185     // but only to check whether this is a file containing an AST.
186     if (!ASTReader::readASTFileControlBlock(
187             Dir->getName(), FileMgr, CI.getPCHContainerReader(),
188             /*FindModuleFileExtensions=*/false, Validator,
189             /*ValidateDiagnosticOptions=*/false))
190       MDC->addFile(Dir->getName());
191   }
192 }
193 
194 static void collectVFSEntries(CompilerInstance &CI,
195                               std::shared_ptr<ModuleDependencyCollector> MDC) {
196   if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
197     return;
198 
199   // Collect all VFS found.
200   SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries;
201   for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) {
202     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
203         llvm::MemoryBuffer::getFile(VFSFile);
204     if (!Buffer)
205       return;
206     vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr,
207                             VFSFile, VFSEntries);
208   }
209 
210   for (auto &E : VFSEntries)
211     MDC->addFile(E.VPath, E.RPath);
212 }
213 
214 // Diagnostics
215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
216                                const CodeGenOptions *CodeGenOpts,
217                                DiagnosticsEngine &Diags) {
218   std::error_code EC;
219   std::unique_ptr<raw_ostream> StreamOwner;
220   raw_ostream *OS = &llvm::errs();
221   if (DiagOpts->DiagnosticLogFile != "-") {
222     // Create the output stream.
223     auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
224         DiagOpts->DiagnosticLogFile, EC,
225         llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
226     if (EC) {
227       Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
228           << DiagOpts->DiagnosticLogFile << EC.message();
229     } else {
230       FileOS->SetUnbuffered();
231       OS = FileOS.get();
232       StreamOwner = std::move(FileOS);
233     }
234   }
235 
236   // Chain in the diagnostic client which will log the diagnostics.
237   auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
238                                                         std::move(StreamOwner));
239   if (CodeGenOpts)
240     Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
241   assert(Diags.ownsClient());
242   Diags.setClient(
243       new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
244 }
245 
246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
247                                        DiagnosticsEngine &Diags,
248                                        StringRef OutputFile) {
249   auto SerializedConsumer =
250       clang::serialized_diags::create(OutputFile, DiagOpts);
251 
252   if (Diags.ownsClient()) {
253     Diags.setClient(new ChainedDiagnosticConsumer(
254         Diags.takeClient(), std::move(SerializedConsumer)));
255   } else {
256     Diags.setClient(new ChainedDiagnosticConsumer(
257         Diags.getClient(), std::move(SerializedConsumer)));
258   }
259 }
260 
261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
262                                          bool ShouldOwnClient) {
263   Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
264                                   ShouldOwnClient, &getCodeGenOpts());
265 }
266 
267 IntrusiveRefCntPtr<DiagnosticsEngine>
268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
269                                     DiagnosticConsumer *Client,
270                                     bool ShouldOwnClient,
271                                     const CodeGenOptions *CodeGenOpts) {
272   IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
273   IntrusiveRefCntPtr<DiagnosticsEngine>
274       Diags(new DiagnosticsEngine(DiagID, Opts));
275 
276   // Create the diagnostic client for reporting errors or for
277   // implementing -verify.
278   if (Client) {
279     Diags->setClient(Client, ShouldOwnClient);
280   } else
281     Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
282 
283   // Chain in -verify checker, if requested.
284   if (Opts->VerifyDiagnostics)
285     Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
286 
287   // Chain in -diagnostic-log-file dumper, if requested.
288   if (!Opts->DiagnosticLogFile.empty())
289     SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
290 
291   if (!Opts->DiagnosticSerializationFile.empty())
292     SetupSerializedDiagnostics(Opts, *Diags,
293                                Opts->DiagnosticSerializationFile);
294 
295   // Configure our handling of diagnostics.
296   ProcessWarningOptions(*Diags, *Opts);
297 
298   return Diags;
299 }
300 
301 // File Manager
302 
303 FileManager *CompilerInstance::createFileManager() {
304   if (!hasVirtualFileSystem()) {
305     if (IntrusiveRefCntPtr<vfs::FileSystem> VFS =
306             createVFSFromCompilerInvocation(getInvocation(), getDiagnostics()))
307       setVirtualFileSystem(VFS);
308     else
309       return nullptr;
310   }
311   FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
312   return FileMgr.get();
313 }
314 
315 // Source Manager
316 
317 void CompilerInstance::createSourceManager(FileManager &FileMgr) {
318   SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
319 }
320 
321 // Initialize the remapping of files to alternative contents, e.g.,
322 // those specified through other files.
323 static void InitializeFileRemapping(DiagnosticsEngine &Diags,
324                                     SourceManager &SourceMgr,
325                                     FileManager &FileMgr,
326                                     const PreprocessorOptions &InitOpts) {
327   // Remap files in the source manager (with buffers).
328   for (const auto &RB : InitOpts.RemappedFileBuffers) {
329     // Create the file entry for the file that we're mapping from.
330     const FileEntry *FromFile =
331         FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
332     if (!FromFile) {
333       Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
334       if (!InitOpts.RetainRemappedFileBuffers)
335         delete RB.second;
336       continue;
337     }
338 
339     // Override the contents of the "from" file with the contents of
340     // the "to" file.
341     SourceMgr.overrideFileContents(FromFile, RB.second,
342                                    InitOpts.RetainRemappedFileBuffers);
343   }
344 
345   // Remap files in the source manager (with other files).
346   for (const auto &RF : InitOpts.RemappedFiles) {
347     // Find the file that we're mapping to.
348     const FileEntry *ToFile = FileMgr.getFile(RF.second);
349     if (!ToFile) {
350       Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
351       continue;
352     }
353 
354     // Create the file entry for the file that we're mapping from.
355     const FileEntry *FromFile =
356         FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
357     if (!FromFile) {
358       Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
359       continue;
360     }
361 
362     // Override the contents of the "from" file with the contents of
363     // the "to" file.
364     SourceMgr.overrideFileContents(FromFile, ToFile);
365   }
366 
367   SourceMgr.setOverridenFilesKeepOriginalName(
368       InitOpts.RemappedFilesKeepOriginalName);
369 }
370 
371 // Preprocessor
372 
373 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
374   const PreprocessorOptions &PPOpts = getPreprocessorOpts();
375 
376   // Create a PTH manager if we are using some form of a token cache.
377   PTHManager *PTHMgr = nullptr;
378   if (!PPOpts.TokenCache.empty())
379     PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
380 
381   // Create the Preprocessor.
382   HeaderSearch *HeaderInfo =
383       new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(),
384                        getDiagnostics(), getLangOpts(), &getTarget());
385   PP = std::make_shared<Preprocessor>(
386       Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(),
387       getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr,
388       /*OwnsHeaderSearch=*/true, TUKind);
389   getTarget().adjust(getLangOpts());
390   PP->Initialize(getTarget(), getAuxTarget());
391 
392   // Note that this is different then passing PTHMgr to Preprocessor's ctor.
393   // That argument is used as the IdentifierInfoLookup argument to
394   // IdentifierTable's ctor.
395   if (PTHMgr) {
396     PTHMgr->setPreprocessor(&*PP);
397     PP->setPTHManager(PTHMgr);
398   }
399 
400   if (PPOpts.DetailedRecord)
401     PP->createPreprocessingRecord();
402 
403   // Apply remappings to the source manager.
404   InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
405                           PP->getFileManager(), PPOpts);
406 
407   // Predefine macros and configure the preprocessor.
408   InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(),
409                          getFrontendOpts());
410 
411   // Initialize the header search object.  In CUDA compilations, we use the aux
412   // triple (the host triple) to initialize our header search, since we need to
413   // find the host headers in order to compile the CUDA code.
414   const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple();
415   if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA &&
416       PP->getAuxTargetInfo())
417     HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple();
418 
419   ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
420                            PP->getLangOpts(), *HeaderSearchTriple);
421 
422   PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
423 
424   if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules)
425     PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
426 
427   // Handle generating dependencies, if requested.
428   const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
429   if (!DepOpts.OutputFile.empty())
430     TheDependencyFileGenerator.reset(
431         DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
432   if (!DepOpts.DOTOutputFile.empty())
433     AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
434                              getHeaderSearchOpts().Sysroot);
435 
436   // If we don't have a collector, but we are collecting module dependencies,
437   // then we're the top level compiler instance and need to create one.
438   if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) {
439     ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
440         DepOpts.ModuleDependencyOutputDir);
441   }
442 
443   // If there is a module dep collector, register with other dep collectors
444   // and also (a) collect header maps and (b) TODO: input vfs overlay files.
445   if (ModuleDepCollector) {
446     addDependencyCollector(ModuleDepCollector);
447     collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector);
448     collectIncludePCH(*this, ModuleDepCollector);
449     collectVFSEntries(*this, ModuleDepCollector);
450   }
451 
452   for (auto &Listener : DependencyCollectors)
453     Listener->attachToPreprocessor(*PP);
454 
455   // Handle generating header include information, if requested.
456   if (DepOpts.ShowHeaderIncludes)
457     AttachHeaderIncludeGen(*PP, DepOpts);
458   if (!DepOpts.HeaderIncludeOutputFile.empty()) {
459     StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
460     if (OutputPath == "-")
461       OutputPath = "";
462     AttachHeaderIncludeGen(*PP, DepOpts,
463                            /*ShowAllHeaders=*/true, OutputPath,
464                            /*ShowDepth=*/false);
465   }
466 
467   if (DepOpts.PrintShowIncludes) {
468     AttachHeaderIncludeGen(*PP, DepOpts,
469                            /*ShowAllHeaders=*/true, /*OutputPath=*/"",
470                            /*ShowDepth=*/true, /*MSStyle=*/true);
471   }
472 }
473 
474 std::string CompilerInstance::getSpecificModuleCachePath() {
475   // Set up the module path, including the hash for the
476   // module-creation options.
477   SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath);
478   if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash)
479     llvm::sys::path::append(SpecificModuleCache,
480                             getInvocation().getModuleHash());
481   return SpecificModuleCache.str();
482 }
483 
484 // ASTContext
485 
486 void CompilerInstance::createASTContext() {
487   Preprocessor &PP = getPreprocessor();
488   auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
489                                  PP.getIdentifierTable(), PP.getSelectorTable(),
490                                  PP.getBuiltinInfo());
491   Context->InitBuiltinTypes(getTarget(), getAuxTarget());
492   setASTContext(Context);
493 }
494 
495 // ExternalASTSource
496 
497 void CompilerInstance::createPCHExternalASTSource(
498     StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
499     void *DeserializationListener, bool OwnDeserializationListener) {
500   bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
501   ModuleManager = createPCHExternalASTSource(
502       Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
503       AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
504       getPCHContainerReader(),
505       getFrontendOpts().ModuleFileExtensions,
506       TheDependencyFileGenerator.get(),
507       DependencyCollectors,
508       DeserializationListener,
509       OwnDeserializationListener, Preamble,
510       getFrontendOpts().UseGlobalModuleIndex);
511 }
512 
513 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
514     StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
515     bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
516     const PCHContainerReader &PCHContainerRdr,
517     ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
518     DependencyFileGenerator *DependencyFile,
519     ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors,
520     void *DeserializationListener, bool OwnDeserializationListener,
521     bool Preamble, bool UseGlobalModuleIndex) {
522   HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
523 
524   IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader(
525       PP, &Context, PCHContainerRdr, Extensions,
526       Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation,
527       AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false,
528       HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
529 
530   // We need the external source to be set up before we read the AST, because
531   // eagerly-deserialized declarations may use it.
532   Context.setExternalSource(Reader.get());
533 
534   Reader->setDeserializationListener(
535       static_cast<ASTDeserializationListener *>(DeserializationListener),
536       /*TakeOwnership=*/OwnDeserializationListener);
537 
538   if (DependencyFile)
539     DependencyFile->AttachToASTReader(*Reader);
540   for (auto &Listener : DependencyCollectors)
541     Listener->attachToASTReader(*Reader);
542 
543   switch (Reader->ReadAST(Path,
544                           Preamble ? serialization::MK_Preamble
545                                    : serialization::MK_PCH,
546                           SourceLocation(),
547                           ASTReader::ARR_None)) {
548   case ASTReader::Success:
549     // Set the predefines buffer as suggested by the PCH reader. Typically, the
550     // predefines buffer will be empty.
551     PP.setPredefines(Reader->getSuggestedPredefines());
552     return Reader;
553 
554   case ASTReader::Failure:
555     // Unrecoverable failure: don't even try to process the input file.
556     break;
557 
558   case ASTReader::Missing:
559   case ASTReader::OutOfDate:
560   case ASTReader::VersionMismatch:
561   case ASTReader::ConfigurationMismatch:
562   case ASTReader::HadErrors:
563     // No suitable PCH file could be found. Return an error.
564     break;
565   }
566 
567   Context.setExternalSource(nullptr);
568   return nullptr;
569 }
570 
571 // Code Completion
572 
573 static bool EnableCodeCompletion(Preprocessor &PP,
574                                  StringRef Filename,
575                                  unsigned Line,
576                                  unsigned Column) {
577   // Tell the source manager to chop off the given file at a specific
578   // line and column.
579   const FileEntry *Entry = PP.getFileManager().getFile(Filename);
580   if (!Entry) {
581     PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
582       << Filename;
583     return true;
584   }
585 
586   // Truncate the named file at the given line/column.
587   PP.SetCodeCompletionPoint(Entry, Line, Column);
588   return false;
589 }
590 
591 void CompilerInstance::createCodeCompletionConsumer() {
592   const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
593   if (!CompletionConsumer) {
594     setCodeCompletionConsumer(
595       createCodeCompletionConsumer(getPreprocessor(),
596                                    Loc.FileName, Loc.Line, Loc.Column,
597                                    getFrontendOpts().CodeCompleteOpts,
598                                    llvm::outs()));
599     if (!CompletionConsumer)
600       return;
601   } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
602                                   Loc.Line, Loc.Column)) {
603     setCodeCompletionConsumer(nullptr);
604     return;
605   }
606 
607   if (CompletionConsumer->isOutputBinary() &&
608       llvm::sys::ChangeStdoutToBinary()) {
609     getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
610     setCodeCompletionConsumer(nullptr);
611   }
612 }
613 
614 void CompilerInstance::createFrontendTimer() {
615   FrontendTimerGroup.reset(
616       new llvm::TimerGroup("frontend", "Clang front-end time report"));
617   FrontendTimer.reset(
618       new llvm::Timer("frontend", "Clang front-end timer",
619                       *FrontendTimerGroup));
620 }
621 
622 CodeCompleteConsumer *
623 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
624                                                StringRef Filename,
625                                                unsigned Line,
626                                                unsigned Column,
627                                                const CodeCompleteOptions &Opts,
628                                                raw_ostream &OS) {
629   if (EnableCodeCompletion(PP, Filename, Line, Column))
630     return nullptr;
631 
632   // Set up the creation routine for code-completion.
633   return new PrintingCodeCompleteConsumer(Opts, OS);
634 }
635 
636 void CompilerInstance::createSema(TranslationUnitKind TUKind,
637                                   CodeCompleteConsumer *CompletionConsumer) {
638   TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
639                          TUKind, CompletionConsumer));
640   // Attach the external sema source if there is any.
641   if (ExternalSemaSrc) {
642     TheSema->addExternalSource(ExternalSemaSrc.get());
643     ExternalSemaSrc->InitializeSema(*TheSema);
644   }
645 }
646 
647 // Output Files
648 
649 void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
650   OutputFiles.push_back(std::move(OutFile));
651 }
652 
653 void CompilerInstance::clearOutputFiles(bool EraseFiles) {
654   for (OutputFile &OF : OutputFiles) {
655     if (!OF.TempFilename.empty()) {
656       if (EraseFiles) {
657         llvm::sys::fs::remove(OF.TempFilename);
658       } else {
659         SmallString<128> NewOutFile(OF.Filename);
660 
661         // If '-working-directory' was passed, the output filename should be
662         // relative to that.
663         FileMgr->FixupRelativePath(NewOutFile);
664         if (std::error_code ec =
665                 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
666           getDiagnostics().Report(diag::err_unable_to_rename_temp)
667             << OF.TempFilename << OF.Filename << ec.message();
668 
669           llvm::sys::fs::remove(OF.TempFilename);
670         }
671       }
672     } else if (!OF.Filename.empty() && EraseFiles)
673       llvm::sys::fs::remove(OF.Filename);
674   }
675   OutputFiles.clear();
676   if (DeleteBuiltModules) {
677     for (auto &Module : BuiltModules)
678       llvm::sys::fs::remove(Module.second);
679     BuiltModules.clear();
680   }
681   NonSeekStream.reset();
682 }
683 
684 std::unique_ptr<raw_pwrite_stream>
685 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
686                                           StringRef Extension) {
687   return createOutputFile(getFrontendOpts().OutputFile, Binary,
688                           /*RemoveFileOnSignal=*/true, InFile, Extension,
689                           /*UseTemporary=*/true);
690 }
691 
692 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() {
693   return llvm::make_unique<llvm::raw_null_ostream>();
694 }
695 
696 std::unique_ptr<raw_pwrite_stream>
697 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
698                                    bool RemoveFileOnSignal, StringRef InFile,
699                                    StringRef Extension, bool UseTemporary,
700                                    bool CreateMissingDirectories) {
701   std::string OutputPathName, TempPathName;
702   std::error_code EC;
703   std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
704       OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
705       UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
706   if (!OS) {
707     getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
708                                                                 << EC.message();
709     return nullptr;
710   }
711 
712   // Add the output file -- but don't try to remove "-", since this means we are
713   // using stdin.
714   addOutputFile(
715       OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName));
716 
717   return OS;
718 }
719 
720 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
721     StringRef OutputPath, std::error_code &Error, bool Binary,
722     bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
723     bool UseTemporary, bool CreateMissingDirectories,
724     std::string *ResultPathName, std::string *TempPathName) {
725   assert((!CreateMissingDirectories || UseTemporary) &&
726          "CreateMissingDirectories is only allowed when using temporary files");
727 
728   std::string OutFile, TempFile;
729   if (!OutputPath.empty()) {
730     OutFile = OutputPath;
731   } else if (InFile == "-") {
732     OutFile = "-";
733   } else if (!Extension.empty()) {
734     SmallString<128> Path(InFile);
735     llvm::sys::path::replace_extension(Path, Extension);
736     OutFile = Path.str();
737   } else {
738     OutFile = "-";
739   }
740 
741   std::unique_ptr<llvm::raw_fd_ostream> OS;
742   std::string OSFile;
743 
744   if (UseTemporary) {
745     if (OutFile == "-")
746       UseTemporary = false;
747     else {
748       llvm::sys::fs::file_status Status;
749       llvm::sys::fs::status(OutputPath, Status);
750       if (llvm::sys::fs::exists(Status)) {
751         // Fail early if we can't write to the final destination.
752         if (!llvm::sys::fs::can_write(OutputPath)) {
753           Error = make_error_code(llvm::errc::operation_not_permitted);
754           return nullptr;
755         }
756 
757         // Don't use a temporary if the output is a special file. This handles
758         // things like '-o /dev/null'
759         if (!llvm::sys::fs::is_regular_file(Status))
760           UseTemporary = false;
761       }
762     }
763   }
764 
765   if (UseTemporary) {
766     // Create a temporary file.
767     // Insert -%%%%%%%% before the extension (if any), and because some tools
768     // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build
769     // artifacts, also append .tmp.
770     StringRef OutputExtension = llvm::sys::path::extension(OutFile);
771     SmallString<128> TempPath =
772         StringRef(OutFile).drop_back(OutputExtension.size());
773     TempPath += "-%%%%%%%%";
774     TempPath += OutputExtension;
775     TempPath += ".tmp";
776     int fd;
777     std::error_code EC =
778         llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
779 
780     if (CreateMissingDirectories &&
781         EC == llvm::errc::no_such_file_or_directory) {
782       StringRef Parent = llvm::sys::path::parent_path(OutputPath);
783       EC = llvm::sys::fs::create_directories(Parent);
784       if (!EC) {
785         EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
786       }
787     }
788 
789     if (!EC) {
790       OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
791       OSFile = TempFile = TempPath.str();
792     }
793     // If we failed to create the temporary, fallback to writing to the file
794     // directly. This handles the corner case where we cannot write to the
795     // directory, but can write to the file.
796   }
797 
798   if (!OS) {
799     OSFile = OutFile;
800     OS.reset(new llvm::raw_fd_ostream(
801         OSFile, Error,
802         (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
803     if (Error)
804       return nullptr;
805   }
806 
807   // Make sure the out stream file gets removed if we crash.
808   if (RemoveFileOnSignal)
809     llvm::sys::RemoveFileOnSignal(OSFile);
810 
811   if (ResultPathName)
812     *ResultPathName = OutFile;
813   if (TempPathName)
814     *TempPathName = TempFile;
815 
816   if (!Binary || OS->supportsSeeking())
817     return std::move(OS);
818 
819   auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
820   assert(!NonSeekStream);
821   NonSeekStream = std::move(OS);
822   return std::move(B);
823 }
824 
825 // Initialization Utilities
826 
827 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
828   return InitializeSourceManager(
829       Input, getDiagnostics(), getFileManager(), getSourceManager(),
830       hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr,
831       getDependencyOutputOpts(), getFrontendOpts());
832 }
833 
834 // static
835 bool CompilerInstance::InitializeSourceManager(
836     const FrontendInputFile &Input, DiagnosticsEngine &Diags,
837     FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS,
838     DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) {
839   SrcMgr::CharacteristicKind Kind =
840       Input.getKind().getFormat() == InputKind::ModuleMap
841           ? Input.isSystem() ? SrcMgr::C_System_ModuleMap
842                              : SrcMgr::C_User_ModuleMap
843           : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
844 
845   if (Input.isBuffer()) {
846     SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned,
847                                                    Input.getBuffer(), Kind));
848     assert(SourceMgr.getMainFileID().isValid() &&
849            "Couldn't establish MainFileID!");
850     return true;
851   }
852 
853   StringRef InputFile = Input.getFile();
854 
855   // Figure out where to get and map in the main file.
856   if (InputFile != "-") {
857     const FileEntry *File;
858     if (Opts.FindPchSource.empty()) {
859       File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
860     } else {
861       // When building a pch file in clang-cl mode, the .h file is built as if
862       // it was included by a cc file.  Since the driver doesn't know about
863       // all include search directories, the frontend must search the input
864       // file through HeaderSearch here, as if it had been included by the
865       // cc file at Opts.FindPchSource.
866       const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource);
867       if (!FindFile) {
868         Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource;
869         return false;
870       }
871       const DirectoryLookup *UnusedCurDir;
872       SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16>
873           Includers;
874       Includers.push_back(std::make_pair(FindFile, FindFile->getDir()));
875       File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false,
876                             /*FromDir=*/nullptr,
877                             /*CurDir=*/UnusedCurDir, Includers,
878                             /*SearchPath=*/nullptr,
879                             /*RelativePath=*/nullptr,
880                             /*RequestingModule=*/nullptr,
881                             /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
882                             /*SkipCache=*/true);
883       // Also add the header to /showIncludes output.
884       if (File)
885         DepOpts.ShowIncludesPretendHeader = File->getName();
886     }
887     if (!File) {
888       Diags.Report(diag::err_fe_error_reading) << InputFile;
889       return false;
890     }
891 
892     // The natural SourceManager infrastructure can't currently handle named
893     // pipes, but we would at least like to accept them for the main
894     // file. Detect them here, read them with the volatile flag so FileMgr will
895     // pick up the correct size, and simply override their contents as we do for
896     // STDIN.
897     if (File->isNamedPipe()) {
898       auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
899       if (MB) {
900         // Create a new virtual file that will have the correct size.
901         File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
902         SourceMgr.overrideFileContents(File, std::move(*MB));
903       } else {
904         Diags.Report(diag::err_cannot_open_file) << InputFile
905                                                  << MB.getError().message();
906         return false;
907       }
908     }
909 
910     SourceMgr.setMainFileID(
911         SourceMgr.createFileID(File, SourceLocation(), Kind));
912   } else {
913     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
914         llvm::MemoryBuffer::getSTDIN();
915     if (std::error_code EC = SBOrErr.getError()) {
916       Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
917       return false;
918     }
919     std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
920 
921     const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
922                                                    SB->getBufferSize(), 0);
923     SourceMgr.setMainFileID(
924         SourceMgr.createFileID(File, SourceLocation(), Kind));
925     SourceMgr.overrideFileContents(File, std::move(SB));
926   }
927 
928   assert(SourceMgr.getMainFileID().isValid() &&
929          "Couldn't establish MainFileID!");
930   return true;
931 }
932 
933 // High-Level Operations
934 
935 bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
936   assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
937   assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
938   assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
939 
940   // FIXME: Take this as an argument, once all the APIs we used have moved to
941   // taking it as an input instead of hard-coding llvm::errs.
942   raw_ostream &OS = llvm::errs();
943 
944   // Create the target instance.
945   setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
946                                          getInvocation().TargetOpts));
947   if (!hasTarget())
948     return false;
949 
950   // Create TargetInfo for the other side of CUDA and OpenMP compilation.
951   if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) &&
952       !getFrontendOpts().AuxTriple.empty()) {
953     auto TO = std::make_shared<TargetOptions>();
954     TO->Triple = getFrontendOpts().AuxTriple;
955     TO->HostTriple = getTarget().getTriple().str();
956     setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO));
957   }
958 
959   // Inform the target of the language options.
960   //
961   // FIXME: We shouldn't need to do this, the target should be immutable once
962   // created. This complexity should be lifted elsewhere.
963   getTarget().adjust(getLangOpts());
964 
965   // Adjust target options based on codegen options.
966   getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts());
967 
968   // rewriter project will change target built-in bool type from its default.
969   if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
970     getTarget().noSignedCharForObjCBool();
971 
972   // Validate/process some options.
973   if (getHeaderSearchOpts().Verbose)
974     OS << "clang -cc1 version " CLANG_VERSION_STRING
975        << " based upon " << BACKEND_PACKAGE_STRING
976        << " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
977 
978   if (getFrontendOpts().ShowTimers)
979     createFrontendTimer();
980 
981   if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty())
982     llvm::EnableStatistics(false);
983 
984   for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) {
985     // Reset the ID tables if we are reusing the SourceManager and parsing
986     // regular files.
987     if (hasSourceManager() && !Act.isModelParsingAction())
988       getSourceManager().clearIDTables();
989 
990     if (Act.BeginSourceFile(*this, FIF)) {
991       Act.Execute();
992       Act.EndSourceFile();
993     }
994   }
995 
996   // Notify the diagnostic client that all files were processed.
997   getDiagnostics().getClient()->finish();
998 
999   if (getDiagnosticOpts().ShowCarets) {
1000     // We can have multiple diagnostics sharing one diagnostic client.
1001     // Get the total number of warnings/errors from the client.
1002     unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
1003     unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
1004 
1005     if (NumWarnings)
1006       OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
1007     if (NumWarnings && NumErrors)
1008       OS << " and ";
1009     if (NumErrors)
1010       OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
1011     if (NumWarnings || NumErrors) {
1012       OS << " generated";
1013       if (getLangOpts().CUDA) {
1014         if (!getLangOpts().CUDAIsDevice) {
1015           OS << " when compiling for host";
1016         } else {
1017           OS << " when compiling for " << getTargetOpts().CPU;
1018         }
1019       }
1020       OS << ".\n";
1021     }
1022   }
1023 
1024   if (getFrontendOpts().ShowStats) {
1025     if (hasFileManager()) {
1026       getFileManager().PrintStats();
1027       OS << '\n';
1028     }
1029     llvm::PrintStatistics(OS);
1030   }
1031   StringRef StatsFile = getFrontendOpts().StatsFile;
1032   if (!StatsFile.empty()) {
1033     std::error_code EC;
1034     auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC,
1035                                                          llvm::sys::fs::F_Text);
1036     if (EC) {
1037       getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file)
1038           << StatsFile << EC.message();
1039     } else {
1040       llvm::PrintStatisticsJSON(*StatS);
1041     }
1042   }
1043 
1044   return !getDiagnostics().getClient()->getNumErrors();
1045 }
1046 
1047 /// \brief Determine the appropriate source input kind based on language
1048 /// options.
1049 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) {
1050   if (LangOpts.OpenCL)
1051     return InputKind::OpenCL;
1052   if (LangOpts.CUDA)
1053     return InputKind::CUDA;
1054   if (LangOpts.ObjC1)
1055     return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC;
1056   return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C;
1057 }
1058 
1059 /// \brief Compile a module file for the given module, using the options
1060 /// provided by the importing compiler instance. Returns true if the module
1061 /// was built without errors.
1062 static bool
1063 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc,
1064                   StringRef ModuleName, FrontendInputFile Input,
1065                   StringRef OriginalModuleMapFile, StringRef ModuleFileName,
1066                   llvm::function_ref<void(CompilerInstance &)> PreBuildStep =
1067                       [](CompilerInstance &) {},
1068                   llvm::function_ref<void(CompilerInstance &)> PostBuildStep =
1069                       [](CompilerInstance &) {}) {
1070   // Construct a compiler invocation for creating this module.
1071   auto Invocation =
1072       std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation());
1073 
1074   PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
1075 
1076   // For any options that aren't intended to affect how a module is built,
1077   // reset them to their default values.
1078   Invocation->getLangOpts()->resetNonModularOptions();
1079   PPOpts.resetNonModularOptions();
1080 
1081   // Remove any macro definitions that are explicitly ignored by the module.
1082   // They aren't supposed to affect how the module is built anyway.
1083   HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
1084   PPOpts.Macros.erase(
1085       std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
1086                      [&HSOpts](const std::pair<std::string, bool> &def) {
1087         StringRef MacroDef = def.first;
1088         return HSOpts.ModulesIgnoreMacros.count(
1089                    llvm::CachedHashString(MacroDef.split('=').first)) > 0;
1090       }),
1091       PPOpts.Macros.end());
1092 
1093   // If the original compiler invocation had -fmodule-name, pass it through.
1094   Invocation->getLangOpts()->ModuleName =
1095       ImportingInstance.getInvocation().getLangOpts()->ModuleName;
1096 
1097   // Note the name of the module we're building.
1098   Invocation->getLangOpts()->CurrentModule = ModuleName;
1099 
1100   // Make sure that the failed-module structure has been allocated in
1101   // the importing instance, and propagate the pointer to the newly-created
1102   // instance.
1103   PreprocessorOptions &ImportingPPOpts
1104     = ImportingInstance.getInvocation().getPreprocessorOpts();
1105   if (!ImportingPPOpts.FailedModules)
1106     ImportingPPOpts.FailedModules =
1107         std::make_shared<PreprocessorOptions::FailedModulesSet>();
1108   PPOpts.FailedModules = ImportingPPOpts.FailedModules;
1109 
1110   // If there is a module map file, build the module using the module map.
1111   // Set up the inputs/outputs so that we build the module from its umbrella
1112   // header.
1113   FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
1114   FrontendOpts.OutputFile = ModuleFileName.str();
1115   FrontendOpts.DisableFree = false;
1116   FrontendOpts.GenerateGlobalModuleIndex = false;
1117   FrontendOpts.BuildingImplicitModule = true;
1118   FrontendOpts.OriginalModuleMap = OriginalModuleMapFile;
1119   // Force implicitly-built modules to hash the content of the module file.
1120   HSOpts.ModulesHashContent = true;
1121   FrontendOpts.Inputs = {Input};
1122 
1123   // Don't free the remapped file buffers; they are owned by our caller.
1124   PPOpts.RetainRemappedFileBuffers = true;
1125 
1126   Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
1127   assert(ImportingInstance.getInvocation().getModuleHash() ==
1128          Invocation->getModuleHash() && "Module hash mismatch!");
1129 
1130   // Construct a compiler instance that will be used to actually create the
1131   // module.  Since we're sharing a PCMCache,
1132   // CompilerInstance::CompilerInstance is responsible for finalizing the
1133   // buffers to prevent use-after-frees.
1134   CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(),
1135                             &ImportingInstance.getPreprocessor().getPCMCache());
1136   auto &Inv = *Invocation;
1137   Instance.setInvocation(std::move(Invocation));
1138 
1139   Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
1140                                    ImportingInstance.getDiagnosticClient()),
1141                              /*ShouldOwnClient=*/true);
1142 
1143   Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
1144 
1145   // Note that this module is part of the module build stack, so that we
1146   // can detect cycles in the module graph.
1147   Instance.setFileManager(&ImportingInstance.getFileManager());
1148   Instance.createSourceManager(Instance.getFileManager());
1149   SourceManager &SourceMgr = Instance.getSourceManager();
1150   SourceMgr.setModuleBuildStack(
1151     ImportingInstance.getSourceManager().getModuleBuildStack());
1152   SourceMgr.pushModuleBuildStack(ModuleName,
1153     FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
1154 
1155   // If we're collecting module dependencies, we need to share a collector
1156   // between all of the module CompilerInstances. Other than that, we don't
1157   // want to produce any dependency output from the module build.
1158   Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
1159   Inv.getDependencyOutputOpts() = DependencyOutputOptions();
1160 
1161   ImportingInstance.getDiagnostics().Report(ImportLoc,
1162                                             diag::remark_module_build)
1163     << ModuleName << ModuleFileName;
1164 
1165   PreBuildStep(Instance);
1166 
1167   // Execute the action to actually build the module in-place. Use a separate
1168   // thread so that we get a stack large enough.
1169   const unsigned ThreadStackSize = 8 << 20;
1170   llvm::CrashRecoveryContext CRC;
1171   CRC.RunSafelyOnThread(
1172       [&]() {
1173         GenerateModuleFromModuleMapAction Action;
1174         Instance.ExecuteAction(Action);
1175       },
1176       ThreadStackSize);
1177 
1178   PostBuildStep(Instance);
1179 
1180   ImportingInstance.getDiagnostics().Report(ImportLoc,
1181                                             diag::remark_module_build_done)
1182     << ModuleName;
1183 
1184   // Delete the temporary module map file.
1185   // FIXME: Even though we're executing under crash protection, it would still
1186   // be nice to do this with RemoveFileOnSignal when we can. However, that
1187   // doesn't make sense for all clients, so clean this up manually.
1188   Instance.clearOutputFiles(/*EraseFiles=*/true);
1189 
1190   return !Instance.getDiagnostics().hasErrorOccurred();
1191 }
1192 
1193 /// \brief Compile a module file for the given module, using the options
1194 /// provided by the importing compiler instance. Returns true if the module
1195 /// was built without errors.
1196 static bool compileModuleImpl(CompilerInstance &ImportingInstance,
1197                               SourceLocation ImportLoc,
1198                               Module *Module,
1199                               StringRef ModuleFileName) {
1200   InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()),
1201                InputKind::ModuleMap);
1202 
1203   // Get or create the module map that we'll use to build this module.
1204   ModuleMap &ModMap
1205     = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
1206   bool Result;
1207   if (const FileEntry *ModuleMapFile =
1208           ModMap.getContainingModuleMapFile(Module)) {
1209     // Use the module map where this module resides.
1210     Result = compileModuleImpl(
1211         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1212         FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem),
1213         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1214         ModuleFileName);
1215   } else {
1216     // FIXME: We only need to fake up an input file here as a way of
1217     // transporting the module's directory to the module map parser. We should
1218     // be able to do that more directly, and parse from a memory buffer without
1219     // inventing this file.
1220     SmallString<128> FakeModuleMapFile(Module->Directory->getName());
1221     llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
1222 
1223     std::string InferredModuleMapContent;
1224     llvm::raw_string_ostream OS(InferredModuleMapContent);
1225     Module->print(OS);
1226     OS.flush();
1227 
1228     Result = compileModuleImpl(
1229         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1230         FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem),
1231         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1232         ModuleFileName,
1233         [&](CompilerInstance &Instance) {
1234       std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
1235           llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
1236       ModuleMapFile = Instance.getFileManager().getVirtualFile(
1237           FakeModuleMapFile, InferredModuleMapContent.size(), 0);
1238       Instance.getSourceManager().overrideFileContents(
1239           ModuleMapFile, std::move(ModuleMapBuffer));
1240     });
1241   }
1242 
1243   // We've rebuilt a module. If we're allowed to generate or update the global
1244   // module index, record that fact in the importing compiler instance.
1245   if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
1246     ImportingInstance.setBuildGlobalModuleIndex(true);
1247   }
1248 
1249   return Result;
1250 }
1251 
1252 static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
1253                                  SourceLocation ImportLoc,
1254                                  SourceLocation ModuleNameLoc, Module *Module,
1255                                  StringRef ModuleFileName) {
1256   DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
1257 
1258   auto diagnoseBuildFailure = [&] {
1259     Diags.Report(ModuleNameLoc, diag::err_module_not_built)
1260         << Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
1261   };
1262 
1263   // FIXME: have LockFileManager return an error_code so that we can
1264   // avoid the mkdir when the directory already exists.
1265   StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
1266   llvm::sys::fs::create_directories(Dir);
1267 
1268   while (1) {
1269     unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
1270     llvm::LockFileManager Locked(ModuleFileName);
1271     switch (Locked) {
1272     case llvm::LockFileManager::LFS_Error:
1273       // PCMCache takes care of correctness and locks are only necessary for
1274       // performance. Fallback to building the module in case of any lock
1275       // related errors.
1276       Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure)
1277           << Module->Name << Locked.getErrorMessage();
1278       // Clear out any potential leftover.
1279       Locked.unsafeRemoveLockFile();
1280       // FALLTHROUGH
1281     case llvm::LockFileManager::LFS_Owned:
1282       // We're responsible for building the module ourselves.
1283       if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
1284                              ModuleFileName)) {
1285         diagnoseBuildFailure();
1286         return false;
1287       }
1288       break;
1289 
1290     case llvm::LockFileManager::LFS_Shared:
1291       // Someone else is responsible for building the module. Wait for them to
1292       // finish.
1293       switch (Locked.waitForUnlock()) {
1294       case llvm::LockFileManager::Res_Success:
1295         ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
1296         break;
1297       case llvm::LockFileManager::Res_OwnerDied:
1298         continue; // try again to get the lock.
1299       case llvm::LockFileManager::Res_Timeout:
1300         // Since PCMCache takes care of correctness, we try waiting for another
1301         // process to complete the build so clang does not do it done twice. If
1302         // case of timeout, build it ourselves.
1303         Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout)
1304             << Module->Name;
1305         // Clear the lock file so that future invokations can make progress.
1306         Locked.unsafeRemoveLockFile();
1307         continue;
1308       }
1309       break;
1310     }
1311 
1312     // Try to read the module file, now that we've compiled it.
1313     ASTReader::ASTReadResult ReadResult =
1314         ImportingInstance.getModuleManager()->ReadAST(
1315             ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
1316             ModuleLoadCapabilities);
1317 
1318     if (ReadResult == ASTReader::OutOfDate &&
1319         Locked == llvm::LockFileManager::LFS_Shared) {
1320       // The module may be out of date in the presence of file system races,
1321       // or if one of its imports depends on header search paths that are not
1322       // consistent with this ImportingInstance.  Try again...
1323       continue;
1324     } else if (ReadResult == ASTReader::Missing) {
1325       diagnoseBuildFailure();
1326     } else if (ReadResult != ASTReader::Success &&
1327                !Diags.hasErrorOccurred()) {
1328       // The ASTReader didn't diagnose the error, so conservatively report it.
1329       diagnoseBuildFailure();
1330     }
1331     return ReadResult == ASTReader::Success;
1332   }
1333 }
1334 
1335 /// \brief Diagnose differences between the current definition of the given
1336 /// configuration macro and the definition provided on the command line.
1337 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
1338                              Module *Mod, SourceLocation ImportLoc) {
1339   IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
1340   SourceManager &SourceMgr = PP.getSourceManager();
1341 
1342   // If this identifier has never had a macro definition, then it could
1343   // not have changed.
1344   if (!Id->hadMacroDefinition())
1345     return;
1346   auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
1347 
1348   // Find the macro definition from the command line.
1349   MacroInfo *CmdLineDefinition = nullptr;
1350   for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
1351     // We only care about the predefines buffer.
1352     FileID FID = SourceMgr.getFileID(MD->getLocation());
1353     if (FID.isInvalid() || FID != PP.getPredefinesFileID())
1354       continue;
1355     if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
1356       CmdLineDefinition = DMD->getMacroInfo();
1357     break;
1358   }
1359 
1360   auto *CurrentDefinition = PP.getMacroInfo(Id);
1361   if (CurrentDefinition == CmdLineDefinition) {
1362     // Macro matches. Nothing to do.
1363   } else if (!CurrentDefinition) {
1364     // This macro was defined on the command line, then #undef'd later.
1365     // Complain.
1366     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1367       << true << ConfigMacro << Mod->getFullModuleName();
1368     auto LatestDef = LatestLocalMD->getDefinition();
1369     assert(LatestDef.isUndefined() &&
1370            "predefined macro went away with no #undef?");
1371     PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
1372       << true;
1373     return;
1374   } else if (!CmdLineDefinition) {
1375     // There was no definition for this macro in the predefines buffer,
1376     // but there was a local definition. Complain.
1377     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1378       << false << ConfigMacro << Mod->getFullModuleName();
1379     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1380             diag::note_module_def_undef_here)
1381       << false;
1382   } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
1383                                                /*Syntactically=*/true)) {
1384     // The macro definitions differ.
1385     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1386       << false << ConfigMacro << Mod->getFullModuleName();
1387     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1388             diag::note_module_def_undef_here)
1389       << false;
1390   }
1391 }
1392 
1393 /// \brief Write a new timestamp file with the given path.
1394 static void writeTimestampFile(StringRef TimestampFile) {
1395   std::error_code EC;
1396   llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
1397 }
1398 
1399 /// \brief Prune the module cache of modules that haven't been accessed in
1400 /// a long time.
1401 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
1402   struct stat StatBuf;
1403   llvm::SmallString<128> TimestampFile;
1404   TimestampFile = HSOpts.ModuleCachePath;
1405   assert(!TimestampFile.empty());
1406   llvm::sys::path::append(TimestampFile, "modules.timestamp");
1407 
1408   // Try to stat() the timestamp file.
1409   if (::stat(TimestampFile.c_str(), &StatBuf)) {
1410     // If the timestamp file wasn't there, create one now.
1411     if (errno == ENOENT) {
1412       writeTimestampFile(TimestampFile);
1413     }
1414     return;
1415   }
1416 
1417   // Check whether the time stamp is older than our pruning interval.
1418   // If not, do nothing.
1419   time_t TimeStampModTime = StatBuf.st_mtime;
1420   time_t CurrentTime = time(nullptr);
1421   if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
1422     return;
1423 
1424   // Write a new timestamp file so that nobody else attempts to prune.
1425   // There is a benign race condition here, if two Clang instances happen to
1426   // notice at the same time that the timestamp is out-of-date.
1427   writeTimestampFile(TimestampFile);
1428 
1429   // Walk the entire module cache, looking for unused module files and module
1430   // indices.
1431   std::error_code EC;
1432   SmallString<128> ModuleCachePathNative;
1433   llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
1434   for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
1435        Dir != DirEnd && !EC; Dir.increment(EC)) {
1436     // If we don't have a directory, there's nothing to look into.
1437     if (!llvm::sys::fs::is_directory(Dir->path()))
1438       continue;
1439 
1440     // Walk all of the files within this directory.
1441     for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
1442          File != FileEnd && !EC; File.increment(EC)) {
1443       // We only care about module and global module index files.
1444       StringRef Extension = llvm::sys::path::extension(File->path());
1445       if (Extension != ".pcm" && Extension != ".timestamp" &&
1446           llvm::sys::path::filename(File->path()) != "modules.idx")
1447         continue;
1448 
1449       // Look at this file. If we can't stat it, there's nothing interesting
1450       // there.
1451       if (::stat(File->path().c_str(), &StatBuf))
1452         continue;
1453 
1454       // If the file has been used recently enough, leave it there.
1455       time_t FileAccessTime = StatBuf.st_atime;
1456       if (CurrentTime - FileAccessTime <=
1457               time_t(HSOpts.ModuleCachePruneAfter)) {
1458         continue;
1459       }
1460 
1461       // Remove the file.
1462       llvm::sys::fs::remove(File->path());
1463 
1464       // Remove the timestamp file.
1465       std::string TimpestampFilename = File->path() + ".timestamp";
1466       llvm::sys::fs::remove(TimpestampFilename);
1467     }
1468 
1469     // If we removed all of the files in the directory, remove the directory
1470     // itself.
1471     if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
1472             llvm::sys::fs::directory_iterator() && !EC)
1473       llvm::sys::fs::remove(Dir->path());
1474   }
1475 }
1476 
1477 void CompilerInstance::createModuleManager() {
1478   if (!ModuleManager) {
1479     if (!hasASTContext())
1480       createASTContext();
1481 
1482     // If we're implicitly building modules but not currently recursively
1483     // building a module, check whether we need to prune the module cache.
1484     if (getSourceManager().getModuleBuildStack().empty() &&
1485         !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() &&
1486         getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
1487         getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
1488       pruneModuleCache(getHeaderSearchOpts());
1489     }
1490 
1491     HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
1492     std::string Sysroot = HSOpts.Sysroot;
1493     const PreprocessorOptions &PPOpts = getPreprocessorOpts();
1494     std::unique_ptr<llvm::Timer> ReadTimer;
1495     if (FrontendTimerGroup)
1496       ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules",
1497                                                  "Reading modules",
1498                                                  *FrontendTimerGroup);
1499     ModuleManager = new ASTReader(
1500         getPreprocessor(), &getASTContext(), getPCHContainerReader(),
1501         getFrontendOpts().ModuleFileExtensions,
1502         Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation,
1503         /*AllowASTWithCompilerErrors=*/false,
1504         /*AllowConfigurationMismatch=*/false,
1505         HSOpts.ModulesValidateSystemHeaders,
1506         getFrontendOpts().UseGlobalModuleIndex,
1507         std::move(ReadTimer));
1508     if (hasASTConsumer()) {
1509       ModuleManager->setDeserializationListener(
1510         getASTConsumer().GetASTDeserializationListener());
1511       getASTContext().setASTMutationListener(
1512         getASTConsumer().GetASTMutationListener());
1513     }
1514     getASTContext().setExternalSource(ModuleManager);
1515     if (hasSema())
1516       ModuleManager->InitializeSema(getSema());
1517     if (hasASTConsumer())
1518       ModuleManager->StartTranslationUnit(&getASTConsumer());
1519 
1520     if (TheDependencyFileGenerator)
1521       TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
1522     for (auto &Listener : DependencyCollectors)
1523       Listener->attachToASTReader(*ModuleManager);
1524   }
1525 }
1526 
1527 bool CompilerInstance::loadModuleFile(StringRef FileName) {
1528   llvm::Timer Timer;
1529   if (FrontendTimerGroup)
1530     Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(),
1531                *FrontendTimerGroup);
1532   llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1533 
1534   // Helper to recursively read the module names for all modules we're adding.
1535   // We mark these as known and redirect any attempt to load that module to
1536   // the files we were handed.
1537   struct ReadModuleNames : ASTReaderListener {
1538     CompilerInstance &CI;
1539     llvm::SmallVector<IdentifierInfo*, 8> LoadedModules;
1540 
1541     ReadModuleNames(CompilerInstance &CI) : CI(CI) {}
1542 
1543     void ReadModuleName(StringRef ModuleName) override {
1544       LoadedModules.push_back(
1545           CI.getPreprocessor().getIdentifierInfo(ModuleName));
1546     }
1547 
1548     void registerAll() {
1549       for (auto *II : LoadedModules) {
1550         CI.KnownModules[II] = CI.getPreprocessor()
1551                                   .getHeaderSearchInfo()
1552                                   .getModuleMap()
1553                                   .findModule(II->getName());
1554       }
1555       LoadedModules.clear();
1556     }
1557 
1558     void markAllUnavailable() {
1559       for (auto *II : LoadedModules) {
1560         if (Module *M = CI.getPreprocessor()
1561                             .getHeaderSearchInfo()
1562                             .getModuleMap()
1563                             .findModule(II->getName())) {
1564           M->HasIncompatibleModuleFile = true;
1565 
1566           // Mark module as available if the only reason it was unavailable
1567           // was missing headers.
1568           SmallVector<Module *, 2> Stack;
1569           Stack.push_back(M);
1570           while (!Stack.empty()) {
1571             Module *Current = Stack.pop_back_val();
1572             if (Current->IsMissingRequirement) continue;
1573             Current->IsAvailable = true;
1574             Stack.insert(Stack.end(),
1575                          Current->submodule_begin(), Current->submodule_end());
1576           }
1577         }
1578       }
1579       LoadedModules.clear();
1580     }
1581   };
1582 
1583   // If we don't already have an ASTReader, create one now.
1584   if (!ModuleManager)
1585     createModuleManager();
1586 
1587   auto Listener = llvm::make_unique<ReadModuleNames>(*this);
1588   auto &ListenerRef = *Listener;
1589   ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager,
1590                                                    std::move(Listener));
1591 
1592   // Try to load the module file.
1593   switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule,
1594                                  SourceLocation(),
1595                                  ASTReader::ARR_ConfigurationMismatch)) {
1596   case ASTReader::Success:
1597     // We successfully loaded the module file; remember the set of provided
1598     // modules so that we don't try to load implicit modules for them.
1599     ListenerRef.registerAll();
1600     return true;
1601 
1602   case ASTReader::ConfigurationMismatch:
1603     // Ignore unusable module files.
1604     getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch)
1605         << FileName;
1606     // All modules provided by any files we tried and failed to load are now
1607     // unavailable; includes of those modules should now be handled textually.
1608     ListenerRef.markAllUnavailable();
1609     return true;
1610 
1611   default:
1612     return false;
1613   }
1614 }
1615 
1616 ModuleLoadResult
1617 CompilerInstance::loadModule(SourceLocation ImportLoc,
1618                              ModuleIdPath Path,
1619                              Module::NameVisibilityKind Visibility,
1620                              bool IsInclusionDirective) {
1621   // Determine what file we're searching from.
1622   // FIXME: Should we be deciding whether this is a submodule (here and
1623   // below) based on -fmodules-ts or should we pass a flag and make the
1624   // caller decide?
1625   std::string ModuleName;
1626   if (getLangOpts().ModulesTS) {
1627     // FIXME: Same code as Sema::ActOnModuleDecl() so there is probably a
1628     // better place/way to do this.
1629     for (auto &Piece : Path) {
1630       if (!ModuleName.empty())
1631         ModuleName += ".";
1632       ModuleName += Piece.first->getName();
1633     }
1634   }
1635   else
1636     ModuleName = Path[0].first->getName();
1637 
1638   SourceLocation ModuleNameLoc = Path[0].second;
1639 
1640   // If we've already handled this import, just return the cached result.
1641   // This one-element cache is important to eliminate redundant diagnostics
1642   // when both the preprocessor and parser see the same import declaration.
1643   if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) {
1644     // Make the named module visible.
1645     if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule)
1646       ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
1647                                        ImportLoc);
1648     return LastModuleImportResult;
1649   }
1650 
1651   clang::Module *Module = nullptr;
1652 
1653   // If we don't already have information on this module, load the module now.
1654   llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
1655     = KnownModules.find(Path[0].first);
1656   if (Known != KnownModules.end()) {
1657     // Retrieve the cached top-level module.
1658     Module = Known->second;
1659   } else if (ModuleName == getLangOpts().CurrentModule) {
1660     // This is the module we're building.
1661     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1662     /// FIXME: perhaps we should (a) look for a module using the module name
1663     //  to file map (PrebuiltModuleFiles) and (b) diagnose if still not found?
1664     //if (Module == nullptr) {
1665     //  getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1666     //    << ModuleName;
1667     //  ModuleBuildFailed = true;
1668     //  return ModuleLoadResult();
1669     //}
1670     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1671   } else {
1672     // Search for a module with the given name.
1673     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1674     HeaderSearchOptions &HSOpts =
1675         PP->getHeaderSearchInfo().getHeaderSearchOpts();
1676 
1677     std::string ModuleFileName;
1678     enum ModuleSource {
1679       ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma
1680     } Source = ModuleNotFound;
1681 
1682     // Check to see if the module has been built as part of this compilation
1683     // via a module build pragma.
1684     auto BuiltModuleIt = BuiltModules.find(ModuleName);
1685     if (BuiltModuleIt != BuiltModules.end()) {
1686       ModuleFileName = BuiltModuleIt->second;
1687       Source = ModuleBuildPragma;
1688     }
1689 
1690     // Try to load the module from the prebuilt module path.
1691     if (Source == ModuleNotFound && (!HSOpts.PrebuiltModuleFiles.empty() ||
1692                                      !HSOpts.PrebuiltModulePaths.empty())) {
1693       ModuleFileName =
1694         PP->getHeaderSearchInfo().getPrebuiltModuleFileName(ModuleName);
1695       if (!ModuleFileName.empty())
1696         Source = PrebuiltModulePath;
1697     }
1698 
1699     // Try to load the module from the module cache.
1700     if (Source == ModuleNotFound && Module) {
1701       ModuleFileName = PP->getHeaderSearchInfo().getCachedModuleFileName(Module);
1702       Source = ModuleCache;
1703     }
1704 
1705     if (Source == ModuleNotFound) {
1706       // We can't find a module, error out here.
1707       getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1708           << ModuleName << SourceRange(ImportLoc, ModuleNameLoc);
1709       ModuleBuildFailed = true;
1710       return ModuleLoadResult();
1711     }
1712 
1713     if (ModuleFileName.empty()) {
1714       if (Module && Module->HasIncompatibleModuleFile) {
1715         // We tried and failed to load a module file for this module. Fall
1716         // back to textual inclusion for its headers.
1717         return ModuleLoadResult::ConfigMismatch;
1718       }
1719 
1720       getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
1721           << ModuleName;
1722       ModuleBuildFailed = true;
1723       return ModuleLoadResult();
1724     }
1725 
1726     // If we don't already have an ASTReader, create one now.
1727     if (!ModuleManager)
1728       createModuleManager();
1729 
1730     llvm::Timer Timer;
1731     if (FrontendTimerGroup)
1732       Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName,
1733                  *FrontendTimerGroup);
1734     llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1735 
1736     // Try to load the module file. If we are not trying to load from the
1737     // module cache, we don't know how to rebuild modules.
1738     unsigned ARRFlags = Source == ModuleCache ?
1739                         ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing :
1740                         ASTReader::ARR_ConfigurationMismatch;
1741     switch (ModuleManager->ReadAST(ModuleFileName,
1742                                    Source == PrebuiltModulePath
1743                                        ? serialization::MK_PrebuiltModule
1744                                        : Source == ModuleBuildPragma
1745                                              ? serialization::MK_ExplicitModule
1746                                              : serialization::MK_ImplicitModule,
1747                                    ImportLoc, ARRFlags)) {
1748     case ASTReader::Success: {
1749       if (Source != ModuleCache && !Module) {
1750         Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1751         if (!Module || !Module->getASTFile() ||
1752             FileMgr->getFile(ModuleFileName) != Module->getASTFile()) {
1753           // Error out if Module does not refer to the file in the prebuilt
1754           // module path.
1755           getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt)
1756               << ModuleName;
1757           ModuleBuildFailed = true;
1758           KnownModules[Path[0].first] = nullptr;
1759           return ModuleLoadResult();
1760         }
1761       }
1762       break;
1763     }
1764 
1765     case ASTReader::OutOfDate:
1766     case ASTReader::Missing: {
1767       if (Source != ModuleCache) {
1768         // We don't know the desired configuration for this module and don't
1769         // necessarily even have a module map. Since ReadAST already produces
1770         // diagnostics for these two cases, we simply error out here.
1771         ModuleBuildFailed = true;
1772         KnownModules[Path[0].first] = nullptr;
1773         return ModuleLoadResult();
1774       }
1775 
1776       // The module file is missing or out-of-date. Build it.
1777       assert(Module && "missing module file");
1778       // Check whether there is a cycle in the module graph.
1779       ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
1780       ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
1781       for (; Pos != PosEnd; ++Pos) {
1782         if (Pos->first == ModuleName)
1783           break;
1784       }
1785 
1786       if (Pos != PosEnd) {
1787         SmallString<256> CyclePath;
1788         for (; Pos != PosEnd; ++Pos) {
1789           CyclePath += Pos->first;
1790           CyclePath += " -> ";
1791         }
1792         CyclePath += ModuleName;
1793 
1794         getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
1795           << ModuleName << CyclePath;
1796         return ModuleLoadResult();
1797       }
1798 
1799       // Check whether we have already attempted to build this module (but
1800       // failed).
1801       if (getPreprocessorOpts().FailedModules &&
1802           getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
1803         getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
1804           << ModuleName
1805           << SourceRange(ImportLoc, ModuleNameLoc);
1806         ModuleBuildFailed = true;
1807         return ModuleLoadResult();
1808       }
1809 
1810       // Try to compile and then load the module.
1811       if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
1812                                 ModuleFileName)) {
1813         assert(getDiagnostics().hasErrorOccurred() &&
1814                "undiagnosed error in compileAndLoadModule");
1815         if (getPreprocessorOpts().FailedModules)
1816           getPreprocessorOpts().FailedModules->addFailed(ModuleName);
1817         KnownModules[Path[0].first] = nullptr;
1818         ModuleBuildFailed = true;
1819         return ModuleLoadResult();
1820       }
1821 
1822       // Okay, we've rebuilt and now loaded the module.
1823       break;
1824     }
1825 
1826     case ASTReader::ConfigurationMismatch:
1827       if (Source == PrebuiltModulePath)
1828         // FIXME: We shouldn't be setting HadFatalFailure below if we only
1829         // produce a warning here!
1830         getDiagnostics().Report(SourceLocation(),
1831                                 diag::warn_module_config_mismatch)
1832             << ModuleFileName;
1833       // Fall through to error out.
1834       LLVM_FALLTHROUGH;
1835     case ASTReader::VersionMismatch:
1836     case ASTReader::HadErrors:
1837       ModuleLoader::HadFatalFailure = true;
1838       // FIXME: The ASTReader will already have complained, but can we shoehorn
1839       // that diagnostic information into a more useful form?
1840       KnownModules[Path[0].first] = nullptr;
1841       return ModuleLoadResult();
1842 
1843     case ASTReader::Failure:
1844       ModuleLoader::HadFatalFailure = true;
1845       // Already complained, but note now that we failed.
1846       KnownModules[Path[0].first] = nullptr;
1847       ModuleBuildFailed = true;
1848       return ModuleLoadResult();
1849     }
1850 
1851     // Cache the result of this top-level module lookup for later.
1852     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1853   }
1854 
1855   // If we never found the module, fail.
1856   if (!Module)
1857     return ModuleLoadResult();
1858 
1859   // Verify that the rest of the module path actually corresponds to
1860   // a submodule.
1861   bool MapPrivateSubModToTopLevel = false;
1862   if (!getLangOpts().ModulesTS && Path.size() > 1) {
1863     for (unsigned I = 1, N = Path.size(); I != N; ++I) {
1864       StringRef Name = Path[I].first->getName();
1865       clang::Module *Sub = Module->findSubmodule(Name);
1866 
1867       // If the user is requesting Foo.Private and it doesn't exist, try to
1868       // match Foo_Private and emit a warning asking for the user to write
1869       // @import Foo_Private instead. FIXME: remove this when existing clients
1870       // migrate off of Foo.Private syntax.
1871       if (!Sub && PP->getLangOpts().ImplicitModules && Name == "Private" &&
1872           Module == Module->getTopLevelModule()) {
1873         SmallString<128> PrivateModule(Module->Name);
1874         PrivateModule.append("_Private");
1875 
1876         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath;
1877         auto &II = PP->getIdentifierTable().get(
1878             PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID());
1879         PrivPath.push_back(std::make_pair(&II, Path[0].second));
1880 
1881         if (PP->getHeaderSearchInfo().lookupModule(PrivateModule))
1882           Sub =
1883               loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective);
1884         if (Sub) {
1885           MapPrivateSubModToTopLevel = true;
1886           if (!getDiagnostics().isIgnored(
1887                   diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) {
1888             getDiagnostics().Report(Path[I].second,
1889                                     diag::warn_no_priv_submodule_use_toplevel)
1890                 << Path[I].first << Module->getFullModuleName() << PrivateModule
1891                 << SourceRange(Path[0].second, Path[I].second)
1892                 << FixItHint::CreateReplacement(SourceRange(Path[0].second),
1893                                                 PrivateModule);
1894             getDiagnostics().Report(Sub->DefinitionLoc,
1895                                     diag::note_private_top_level_defined);
1896           }
1897         }
1898       }
1899 
1900       if (!Sub) {
1901         // Attempt to perform typo correction to find a module name that works.
1902         SmallVector<StringRef, 2> Best;
1903         unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
1904 
1905         for (clang::Module::submodule_iterator J = Module->submodule_begin(),
1906                                             JEnd = Module->submodule_end();
1907              J != JEnd; ++J) {
1908           unsigned ED = Name.edit_distance((*J)->Name,
1909                                            /*AllowReplacements=*/true,
1910                                            BestEditDistance);
1911           if (ED <= BestEditDistance) {
1912             if (ED < BestEditDistance) {
1913               Best.clear();
1914               BestEditDistance = ED;
1915             }
1916 
1917             Best.push_back((*J)->Name);
1918           }
1919         }
1920 
1921         // If there was a clear winner, user it.
1922         if (Best.size() == 1) {
1923           getDiagnostics().Report(Path[I].second,
1924                                   diag::err_no_submodule_suggest)
1925             << Path[I].first << Module->getFullModuleName() << Best[0]
1926             << SourceRange(Path[0].second, Path[I-1].second)
1927             << FixItHint::CreateReplacement(SourceRange(Path[I].second),
1928                                             Best[0]);
1929 
1930           Sub = Module->findSubmodule(Best[0]);
1931         }
1932       }
1933 
1934       if (!Sub) {
1935         // No submodule by this name. Complain, and don't look for further
1936         // submodules.
1937         getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
1938           << Path[I].first << Module->getFullModuleName()
1939           << SourceRange(Path[0].second, Path[I-1].second);
1940         break;
1941       }
1942 
1943       Module = Sub;
1944     }
1945   }
1946 
1947   // Make the named module visible, if it's not already part of the module
1948   // we are parsing.
1949   if (ModuleName != getLangOpts().CurrentModule) {
1950     if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) {
1951       // We have an umbrella header or directory that doesn't actually include
1952       // all of the headers within the directory it covers. Complain about
1953       // this missing submodule and recover by forgetting that we ever saw
1954       // this submodule.
1955       // FIXME: Should we detect this at module load time? It seems fairly
1956       // expensive (and rare).
1957       getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
1958         << Module->getFullModuleName()
1959         << SourceRange(Path.front().second, Path.back().second);
1960 
1961       return ModuleLoadResult::MissingExpected;
1962     }
1963 
1964     // Check whether this module is available.
1965     if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(),
1966                                              getDiagnostics(), Module)) {
1967       getDiagnostics().Report(ImportLoc, diag::note_module_import_here)
1968         << SourceRange(Path.front().second, Path.back().second);
1969       LastModuleImportLoc = ImportLoc;
1970       LastModuleImportResult = ModuleLoadResult();
1971       return ModuleLoadResult();
1972     }
1973 
1974     ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
1975   }
1976 
1977   // Check for any configuration macros that have changed.
1978   clang::Module *TopModule = Module->getTopLevelModule();
1979   for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
1980     checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
1981                      Module, ImportLoc);
1982   }
1983 
1984   LastModuleImportLoc = ImportLoc;
1985   LastModuleImportResult = ModuleLoadResult(Module);
1986   return LastModuleImportResult;
1987 }
1988 
1989 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc,
1990                                             StringRef ModuleName,
1991                                             StringRef Source) {
1992   // Avoid creating filenames with special characters.
1993   SmallString<128> CleanModuleName(ModuleName);
1994   for (auto &C : CleanModuleName)
1995     if (!isAlphanumeric(C))
1996       C = '_';
1997 
1998   // FIXME: Using a randomized filename here means that our intermediate .pcm
1999   // output is nondeterministic (as .pcm files refer to each other by name).
2000   // Can this affect the output in any way?
2001   SmallString<128> ModuleFileName;
2002   if (std::error_code EC = llvm::sys::fs::createTemporaryFile(
2003           CleanModuleName, "pcm", ModuleFileName)) {
2004     getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output)
2005         << ModuleFileName << EC.message();
2006     return;
2007   }
2008   std::string ModuleMapFileName = (CleanModuleName + ".map").str();
2009 
2010   FrontendInputFile Input(
2011       ModuleMapFileName,
2012       InputKind(getLanguageFromOptions(*Invocation->getLangOpts()),
2013                 InputKind::ModuleMap, /*Preprocessed*/true));
2014 
2015   std::string NullTerminatedSource(Source.str());
2016 
2017   auto PreBuildStep = [&](CompilerInstance &Other) {
2018     // Create a virtual file containing our desired source.
2019     // FIXME: We shouldn't need to do this.
2020     const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile(
2021         ModuleMapFileName, NullTerminatedSource.size(), 0);
2022     Other.getSourceManager().overrideFileContents(
2023         ModuleMapFile,
2024         llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str()));
2025 
2026     Other.BuiltModules = std::move(BuiltModules);
2027     Other.DeleteBuiltModules = false;
2028   };
2029 
2030   auto PostBuildStep = [this](CompilerInstance &Other) {
2031     BuiltModules = std::move(Other.BuiltModules);
2032   };
2033 
2034   // Build the module, inheriting any modules that we've built locally.
2035   if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(),
2036                         ModuleFileName, PreBuildStep, PostBuildStep)) {
2037     BuiltModules[ModuleName] = ModuleFileName.str();
2038     llvm::sys::RemoveFileOnSignal(ModuleFileName);
2039   }
2040 }
2041 
2042 void CompilerInstance::makeModuleVisible(Module *Mod,
2043                                          Module::NameVisibilityKind Visibility,
2044                                          SourceLocation ImportLoc) {
2045   if (!ModuleManager)
2046     createModuleManager();
2047   if (!ModuleManager)
2048     return;
2049 
2050   ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
2051 }
2052 
2053 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
2054     SourceLocation TriggerLoc) {
2055   if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty())
2056     return nullptr;
2057   if (!ModuleManager)
2058     createModuleManager();
2059   // Can't do anything if we don't have the module manager.
2060   if (!ModuleManager)
2061     return nullptr;
2062   // Get an existing global index.  This loads it if not already
2063   // loaded.
2064   ModuleManager->loadGlobalIndex();
2065   GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
2066   // If the global index doesn't exist, create it.
2067   if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
2068       hasPreprocessor()) {
2069     llvm::sys::fs::create_directories(
2070       getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2071     GlobalModuleIndex::writeIndex(
2072         getFileManager(), getPCHContainerReader(),
2073         getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2074     ModuleManager->resetForReload();
2075     ModuleManager->loadGlobalIndex();
2076     GlobalIndex = ModuleManager->getGlobalIndex();
2077   }
2078   // For finding modules needing to be imported for fixit messages,
2079   // we need to make the global index cover all modules, so we do that here.
2080   if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
2081     ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
2082     bool RecreateIndex = false;
2083     for (ModuleMap::module_iterator I = MMap.module_begin(),
2084         E = MMap.module_end(); I != E; ++I) {
2085       Module *TheModule = I->second;
2086       const FileEntry *Entry = TheModule->getASTFile();
2087       if (!Entry) {
2088         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
2089         Path.push_back(std::make_pair(
2090             getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
2091         std::reverse(Path.begin(), Path.end());
2092         // Load a module as hidden.  This also adds it to the global index.
2093         loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false);
2094         RecreateIndex = true;
2095       }
2096     }
2097     if (RecreateIndex) {
2098       GlobalModuleIndex::writeIndex(
2099           getFileManager(), getPCHContainerReader(),
2100           getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2101       ModuleManager->resetForReload();
2102       ModuleManager->loadGlobalIndex();
2103       GlobalIndex = ModuleManager->getGlobalIndex();
2104     }
2105     HaveFullGlobalModuleIndex = true;
2106   }
2107   return GlobalIndex;
2108 }
2109 
2110 // Check global module index for missing imports.
2111 bool
2112 CompilerInstance::lookupMissingImports(StringRef Name,
2113                                        SourceLocation TriggerLoc) {
2114   // Look for the symbol in non-imported modules, but only if an error
2115   // actually occurred.
2116   if (!buildingModule()) {
2117     // Load global module index, or retrieve a previously loaded one.
2118     GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
2119       TriggerLoc);
2120 
2121     // Only if we have a global index.
2122     if (GlobalIndex) {
2123       GlobalModuleIndex::HitSet FoundModules;
2124 
2125       // Find the modules that reference the identifier.
2126       // Note that this only finds top-level modules.
2127       // We'll let diagnoseTypo find the actual declaration module.
2128       if (GlobalIndex->lookupIdentifier(Name, FoundModules))
2129         return true;
2130     }
2131   }
2132 
2133   return false;
2134 }
2135 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }
2136 
2137 void CompilerInstance::setExternalSemaSource(
2138     IntrusiveRefCntPtr<ExternalSemaSource> ESS) {
2139   ExternalSemaSrc = std::move(ESS);
2140 }
2141