1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/CharInfo.h" 15 #include "clang/Basic/Diagnostic.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/MemoryBufferCache.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Basic/Version.h" 21 #include "clang/Config/config.h" 22 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 23 #include "clang/Frontend/FrontendAction.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/LogDiagnosticPrinter.h" 27 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Frontend/Utils.h" 30 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/PTHManager.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Sema/CodeCompleteConsumer.h" 36 #include "clang/Sema/Sema.h" 37 #include "clang/Serialization/ASTReader.h" 38 #include "clang/Serialization/GlobalModuleIndex.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Host.h" 44 #include "llvm/Support/LockFileManager.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/Program.h" 48 #include "llvm/Support/Signals.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <sys/stat.h> 52 #include <system_error> 53 #include <time.h> 54 #include <utility> 55 56 using namespace clang; 57 58 CompilerInstance::CompilerInstance( 59 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 60 MemoryBufferCache *SharedPCMCache) 61 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 62 Invocation(new CompilerInvocation()), 63 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 64 ThePCHContainerOperations(std::move(PCHContainerOps)) { 65 // Don't allow this to invalidate buffers in use by others. 66 if (SharedPCMCache) 67 getPCMCache().finalizeCurrentBuffers(); 68 } 69 70 CompilerInstance::~CompilerInstance() { 71 assert(OutputFiles.empty() && "Still output files in flight?"); 72 } 73 74 void CompilerInstance::setInvocation( 75 std::shared_ptr<CompilerInvocation> Value) { 76 Invocation = std::move(Value); 77 } 78 79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 80 return (BuildGlobalModuleIndex || 81 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 82 getFrontendOpts().GenerateGlobalModuleIndex)) && 83 !ModuleBuildFailed; 84 } 85 86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 87 Diagnostics = Value; 88 } 89 90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 92 93 void CompilerInstance::setFileManager(FileManager *Value) { 94 FileMgr = Value; 95 if (Value) 96 VirtualFileSystem = Value->getVirtualFileSystem(); 97 else 98 VirtualFileSystem.reset(); 99 } 100 101 void CompilerInstance::setSourceManager(SourceManager *Value) { 102 SourceMgr = Value; 103 } 104 105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 106 PP = std::move(Value); 107 } 108 109 void CompilerInstance::setASTContext(ASTContext *Value) { 110 Context = Value; 111 112 if (Context && Consumer) 113 getASTConsumer().Initialize(getASTContext()); 114 } 115 116 void CompilerInstance::setSema(Sema *S) { 117 TheSema.reset(S); 118 } 119 120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 121 Consumer = std::move(Value); 122 123 if (Context && Consumer) 124 getASTConsumer().Initialize(getASTContext()); 125 } 126 127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 128 CompletionConsumer.reset(Value); 129 } 130 131 std::unique_ptr<Sema> CompilerInstance::takeSema() { 132 return std::move(TheSema); 133 } 134 135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 136 return ModuleManager; 137 } 138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 139 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 140 "Expected ASTReader to use the same PCM cache"); 141 ModuleManager = std::move(Reader); 142 } 143 144 std::shared_ptr<ModuleDependencyCollector> 145 CompilerInstance::getModuleDepCollector() const { 146 return ModuleDepCollector; 147 } 148 149 void CompilerInstance::setModuleDepCollector( 150 std::shared_ptr<ModuleDependencyCollector> Collector) { 151 ModuleDepCollector = std::move(Collector); 152 } 153 154 static void collectHeaderMaps(const HeaderSearch &HS, 155 std::shared_ptr<ModuleDependencyCollector> MDC) { 156 SmallVector<std::string, 4> HeaderMapFileNames; 157 HS.getHeaderMapFileNames(HeaderMapFileNames); 158 for (auto &Name : HeaderMapFileNames) 159 MDC->addFile(Name); 160 } 161 162 static void collectIncludePCH(CompilerInstance &CI, 163 std::shared_ptr<ModuleDependencyCollector> MDC) { 164 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 165 if (PPOpts.ImplicitPCHInclude.empty()) 166 return; 167 168 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 169 FileManager &FileMgr = CI.getFileManager(); 170 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 171 if (!PCHDir) { 172 MDC->addFile(PCHInclude); 173 return; 174 } 175 176 std::error_code EC; 177 SmallString<128> DirNative; 178 llvm::sys::path::native(PCHDir->getName(), DirNative); 179 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 180 SimpleASTReaderListener Validator(CI.getPreprocessor()); 181 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 182 Dir != DirEnd && !EC; Dir.increment(EC)) { 183 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 184 // used here since we're not interested in validating the PCH at this time, 185 // but only to check whether this is a file containing an AST. 186 if (!ASTReader::readASTFileControlBlock( 187 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 188 /*FindModuleFileExtensions=*/false, Validator, 189 /*ValidateDiagnosticOptions=*/false)) 190 MDC->addFile(Dir->getName()); 191 } 192 } 193 194 static void collectVFSEntries(CompilerInstance &CI, 195 std::shared_ptr<ModuleDependencyCollector> MDC) { 196 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 197 return; 198 199 // Collect all VFS found. 200 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 201 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 202 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 203 llvm::MemoryBuffer::getFile(VFSFile); 204 if (!Buffer) 205 return; 206 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 207 VFSFile, VFSEntries); 208 } 209 210 for (auto &E : VFSEntries) 211 MDC->addFile(E.VPath, E.RPath); 212 } 213 214 // Diagnostics 215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 216 const CodeGenOptions *CodeGenOpts, 217 DiagnosticsEngine &Diags) { 218 std::error_code EC; 219 std::unique_ptr<raw_ostream> StreamOwner; 220 raw_ostream *OS = &llvm::errs(); 221 if (DiagOpts->DiagnosticLogFile != "-") { 222 // Create the output stream. 223 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 224 DiagOpts->DiagnosticLogFile, EC, 225 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 226 if (EC) { 227 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 228 << DiagOpts->DiagnosticLogFile << EC.message(); 229 } else { 230 FileOS->SetUnbuffered(); 231 OS = FileOS.get(); 232 StreamOwner = std::move(FileOS); 233 } 234 } 235 236 // Chain in the diagnostic client which will log the diagnostics. 237 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 238 std::move(StreamOwner)); 239 if (CodeGenOpts) 240 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 241 assert(Diags.ownsClient()); 242 Diags.setClient( 243 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 244 } 245 246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 247 DiagnosticsEngine &Diags, 248 StringRef OutputFile) { 249 auto SerializedConsumer = 250 clang::serialized_diags::create(OutputFile, DiagOpts); 251 252 if (Diags.ownsClient()) { 253 Diags.setClient(new ChainedDiagnosticConsumer( 254 Diags.takeClient(), std::move(SerializedConsumer))); 255 } else { 256 Diags.setClient(new ChainedDiagnosticConsumer( 257 Diags.getClient(), std::move(SerializedConsumer))); 258 } 259 } 260 261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 262 bool ShouldOwnClient) { 263 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 264 ShouldOwnClient, &getCodeGenOpts()); 265 } 266 267 IntrusiveRefCntPtr<DiagnosticsEngine> 268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 269 DiagnosticConsumer *Client, 270 bool ShouldOwnClient, 271 const CodeGenOptions *CodeGenOpts) { 272 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 273 IntrusiveRefCntPtr<DiagnosticsEngine> 274 Diags(new DiagnosticsEngine(DiagID, Opts)); 275 276 // Create the diagnostic client for reporting errors or for 277 // implementing -verify. 278 if (Client) { 279 Diags->setClient(Client, ShouldOwnClient); 280 } else 281 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 282 283 // Chain in -verify checker, if requested. 284 if (Opts->VerifyDiagnostics) 285 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 286 287 // Chain in -diagnostic-log-file dumper, if requested. 288 if (!Opts->DiagnosticLogFile.empty()) 289 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 290 291 if (!Opts->DiagnosticSerializationFile.empty()) 292 SetupSerializedDiagnostics(Opts, *Diags, 293 Opts->DiagnosticSerializationFile); 294 295 // Configure our handling of diagnostics. 296 ProcessWarningOptions(*Diags, *Opts); 297 298 return Diags; 299 } 300 301 // File Manager 302 303 void CompilerInstance::createFileManager() { 304 if (!hasVirtualFileSystem()) { 305 // TODO: choose the virtual file system based on the CompilerInvocation. 306 setVirtualFileSystem(vfs::getRealFileSystem()); 307 } 308 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 309 } 310 311 // Source Manager 312 313 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 314 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 315 } 316 317 // Initialize the remapping of files to alternative contents, e.g., 318 // those specified through other files. 319 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 320 SourceManager &SourceMgr, 321 FileManager &FileMgr, 322 const PreprocessorOptions &InitOpts) { 323 // Remap files in the source manager (with buffers). 324 for (const auto &RB : InitOpts.RemappedFileBuffers) { 325 // Create the file entry for the file that we're mapping from. 326 const FileEntry *FromFile = 327 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 328 if (!FromFile) { 329 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 330 if (!InitOpts.RetainRemappedFileBuffers) 331 delete RB.second; 332 continue; 333 } 334 335 // Override the contents of the "from" file with the contents of 336 // the "to" file. 337 SourceMgr.overrideFileContents(FromFile, RB.second, 338 InitOpts.RetainRemappedFileBuffers); 339 } 340 341 // Remap files in the source manager (with other files). 342 for (const auto &RF : InitOpts.RemappedFiles) { 343 // Find the file that we're mapping to. 344 const FileEntry *ToFile = FileMgr.getFile(RF.second); 345 if (!ToFile) { 346 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 347 continue; 348 } 349 350 // Create the file entry for the file that we're mapping from. 351 const FileEntry *FromFile = 352 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 353 if (!FromFile) { 354 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 355 continue; 356 } 357 358 // Override the contents of the "from" file with the contents of 359 // the "to" file. 360 SourceMgr.overrideFileContents(FromFile, ToFile); 361 } 362 363 SourceMgr.setOverridenFilesKeepOriginalName( 364 InitOpts.RemappedFilesKeepOriginalName); 365 } 366 367 // Preprocessor 368 369 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 370 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 371 372 // Create a PTH manager if we are using some form of a token cache. 373 PTHManager *PTHMgr = nullptr; 374 if (!PPOpts.TokenCache.empty()) 375 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 376 377 // Create the Preprocessor. 378 HeaderSearch *HeaderInfo = 379 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 380 getDiagnostics(), getLangOpts(), &getTarget()); 381 PP = std::make_shared<Preprocessor>( 382 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 383 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 384 /*OwnsHeaderSearch=*/true, TUKind); 385 PP->Initialize(getTarget(), getAuxTarget()); 386 387 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 388 // That argument is used as the IdentifierInfoLookup argument to 389 // IdentifierTable's ctor. 390 if (PTHMgr) { 391 PTHMgr->setPreprocessor(&*PP); 392 PP->setPTHManager(PTHMgr); 393 } 394 395 if (PPOpts.DetailedRecord) 396 PP->createPreprocessingRecord(); 397 398 // Apply remappings to the source manager. 399 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 400 PP->getFileManager(), PPOpts); 401 402 // Predefine macros and configure the preprocessor. 403 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 404 getFrontendOpts()); 405 406 // Initialize the header search object. In CUDA compilations, we use the aux 407 // triple (the host triple) to initialize our header search, since we need to 408 // find the host headers in order to compile the CUDA code. 409 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 410 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 411 PP->getAuxTargetInfo()) 412 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 413 414 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 415 PP->getLangOpts(), *HeaderSearchTriple); 416 417 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 418 419 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 420 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 421 422 // Handle generating dependencies, if requested. 423 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 424 if (!DepOpts.OutputFile.empty()) 425 TheDependencyFileGenerator.reset( 426 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 427 if (!DepOpts.DOTOutputFile.empty()) 428 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 429 getHeaderSearchOpts().Sysroot); 430 431 // If we don't have a collector, but we are collecting module dependencies, 432 // then we're the top level compiler instance and need to create one. 433 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 434 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 435 DepOpts.ModuleDependencyOutputDir); 436 } 437 438 // If there is a module dep collector, register with other dep collectors 439 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 440 if (ModuleDepCollector) { 441 addDependencyCollector(ModuleDepCollector); 442 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 443 collectIncludePCH(*this, ModuleDepCollector); 444 collectVFSEntries(*this, ModuleDepCollector); 445 } 446 447 for (auto &Listener : DependencyCollectors) 448 Listener->attachToPreprocessor(*PP); 449 450 // Handle generating header include information, if requested. 451 if (DepOpts.ShowHeaderIncludes) 452 AttachHeaderIncludeGen(*PP, DepOpts); 453 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 454 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 455 if (OutputPath == "-") 456 OutputPath = ""; 457 AttachHeaderIncludeGen(*PP, DepOpts, 458 /*ShowAllHeaders=*/true, OutputPath, 459 /*ShowDepth=*/false); 460 } 461 462 if (DepOpts.PrintShowIncludes) { 463 AttachHeaderIncludeGen(*PP, DepOpts, 464 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 465 /*ShowDepth=*/true, /*MSStyle=*/true); 466 } 467 } 468 469 std::string CompilerInstance::getSpecificModuleCachePath() { 470 // Set up the module path, including the hash for the 471 // module-creation options. 472 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 473 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 474 llvm::sys::path::append(SpecificModuleCache, 475 getInvocation().getModuleHash()); 476 return SpecificModuleCache.str(); 477 } 478 479 // ASTContext 480 481 void CompilerInstance::createASTContext() { 482 Preprocessor &PP = getPreprocessor(); 483 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 484 PP.getIdentifierTable(), PP.getSelectorTable(), 485 PP.getBuiltinInfo()); 486 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 487 setASTContext(Context); 488 } 489 490 // ExternalASTSource 491 492 void CompilerInstance::createPCHExternalASTSource( 493 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 494 void *DeserializationListener, bool OwnDeserializationListener) { 495 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 496 ModuleManager = createPCHExternalASTSource( 497 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 498 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 499 getPCHContainerReader(), 500 getFrontendOpts().ModuleFileExtensions, 501 TheDependencyFileGenerator.get(), 502 DependencyCollectors, 503 DeserializationListener, 504 OwnDeserializationListener, Preamble, 505 getFrontendOpts().UseGlobalModuleIndex); 506 } 507 508 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 509 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 510 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 511 const PCHContainerReader &PCHContainerRdr, 512 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 513 DependencyFileGenerator *DependencyFile, 514 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 515 void *DeserializationListener, bool OwnDeserializationListener, 516 bool Preamble, bool UseGlobalModuleIndex) { 517 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 518 519 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 520 PP, Context, PCHContainerRdr, Extensions, 521 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 522 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 523 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 524 525 // We need the external source to be set up before we read the AST, because 526 // eagerly-deserialized declarations may use it. 527 Context.setExternalSource(Reader.get()); 528 529 Reader->setDeserializationListener( 530 static_cast<ASTDeserializationListener *>(DeserializationListener), 531 /*TakeOwnership=*/OwnDeserializationListener); 532 533 if (DependencyFile) 534 DependencyFile->AttachToASTReader(*Reader); 535 for (auto &Listener : DependencyCollectors) 536 Listener->attachToASTReader(*Reader); 537 538 switch (Reader->ReadAST(Path, 539 Preamble ? serialization::MK_Preamble 540 : serialization::MK_PCH, 541 SourceLocation(), 542 ASTReader::ARR_None)) { 543 case ASTReader::Success: 544 // Set the predefines buffer as suggested by the PCH reader. Typically, the 545 // predefines buffer will be empty. 546 PP.setPredefines(Reader->getSuggestedPredefines()); 547 return Reader; 548 549 case ASTReader::Failure: 550 // Unrecoverable failure: don't even try to process the input file. 551 break; 552 553 case ASTReader::Missing: 554 case ASTReader::OutOfDate: 555 case ASTReader::VersionMismatch: 556 case ASTReader::ConfigurationMismatch: 557 case ASTReader::HadErrors: 558 // No suitable PCH file could be found. Return an error. 559 break; 560 } 561 562 Context.setExternalSource(nullptr); 563 return nullptr; 564 } 565 566 // Code Completion 567 568 static bool EnableCodeCompletion(Preprocessor &PP, 569 StringRef Filename, 570 unsigned Line, 571 unsigned Column) { 572 // Tell the source manager to chop off the given file at a specific 573 // line and column. 574 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 575 if (!Entry) { 576 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 577 << Filename; 578 return true; 579 } 580 581 // Truncate the named file at the given line/column. 582 PP.SetCodeCompletionPoint(Entry, Line, Column); 583 return false; 584 } 585 586 void CompilerInstance::createCodeCompletionConsumer() { 587 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 588 if (!CompletionConsumer) { 589 setCodeCompletionConsumer( 590 createCodeCompletionConsumer(getPreprocessor(), 591 Loc.FileName, Loc.Line, Loc.Column, 592 getFrontendOpts().CodeCompleteOpts, 593 llvm::outs())); 594 if (!CompletionConsumer) 595 return; 596 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 597 Loc.Line, Loc.Column)) { 598 setCodeCompletionConsumer(nullptr); 599 return; 600 } 601 602 if (CompletionConsumer->isOutputBinary() && 603 llvm::sys::ChangeStdoutToBinary()) { 604 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 605 setCodeCompletionConsumer(nullptr); 606 } 607 } 608 609 void CompilerInstance::createFrontendTimer() { 610 FrontendTimerGroup.reset( 611 new llvm::TimerGroup("frontend", "Clang front-end time report")); 612 FrontendTimer.reset( 613 new llvm::Timer("frontend", "Clang front-end timer", 614 *FrontendTimerGroup)); 615 } 616 617 CodeCompleteConsumer * 618 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 619 StringRef Filename, 620 unsigned Line, 621 unsigned Column, 622 const CodeCompleteOptions &Opts, 623 raw_ostream &OS) { 624 if (EnableCodeCompletion(PP, Filename, Line, Column)) 625 return nullptr; 626 627 // Set up the creation routine for code-completion. 628 return new PrintingCodeCompleteConsumer(Opts, OS); 629 } 630 631 void CompilerInstance::createSema(TranslationUnitKind TUKind, 632 CodeCompleteConsumer *CompletionConsumer) { 633 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 634 TUKind, CompletionConsumer)); 635 // Attach the external sema source if there is any. 636 if (ExternalSemaSrc) { 637 TheSema->addExternalSource(ExternalSemaSrc.get()); 638 ExternalSemaSrc->InitializeSema(*TheSema); 639 } 640 } 641 642 // Output Files 643 644 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 645 OutputFiles.push_back(std::move(OutFile)); 646 } 647 648 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 649 for (OutputFile &OF : OutputFiles) { 650 if (!OF.TempFilename.empty()) { 651 if (EraseFiles) { 652 llvm::sys::fs::remove(OF.TempFilename); 653 } else { 654 SmallString<128> NewOutFile(OF.Filename); 655 656 // If '-working-directory' was passed, the output filename should be 657 // relative to that. 658 FileMgr->FixupRelativePath(NewOutFile); 659 if (std::error_code ec = 660 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 661 getDiagnostics().Report(diag::err_unable_to_rename_temp) 662 << OF.TempFilename << OF.Filename << ec.message(); 663 664 llvm::sys::fs::remove(OF.TempFilename); 665 } 666 } 667 } else if (!OF.Filename.empty() && EraseFiles) 668 llvm::sys::fs::remove(OF.Filename); 669 } 670 OutputFiles.clear(); 671 if (DeleteBuiltModules) { 672 for (auto &Module : BuiltModules) 673 llvm::sys::fs::remove(Module.second); 674 BuiltModules.clear(); 675 } 676 NonSeekStream.reset(); 677 } 678 679 std::unique_ptr<raw_pwrite_stream> 680 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 681 StringRef Extension) { 682 return createOutputFile(getFrontendOpts().OutputFile, Binary, 683 /*RemoveFileOnSignal=*/true, InFile, Extension, 684 /*UseTemporary=*/true); 685 } 686 687 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 688 return llvm::make_unique<llvm::raw_null_ostream>(); 689 } 690 691 std::unique_ptr<raw_pwrite_stream> 692 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 693 bool RemoveFileOnSignal, StringRef InFile, 694 StringRef Extension, bool UseTemporary, 695 bool CreateMissingDirectories) { 696 std::string OutputPathName, TempPathName; 697 std::error_code EC; 698 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 699 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 700 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 701 if (!OS) { 702 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 703 << EC.message(); 704 return nullptr; 705 } 706 707 // Add the output file -- but don't try to remove "-", since this means we are 708 // using stdin. 709 addOutputFile( 710 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 711 712 return OS; 713 } 714 715 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 716 StringRef OutputPath, std::error_code &Error, bool Binary, 717 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 718 bool UseTemporary, bool CreateMissingDirectories, 719 std::string *ResultPathName, std::string *TempPathName) { 720 assert((!CreateMissingDirectories || UseTemporary) && 721 "CreateMissingDirectories is only allowed when using temporary files"); 722 723 std::string OutFile, TempFile; 724 if (!OutputPath.empty()) { 725 OutFile = OutputPath; 726 } else if (InFile == "-") { 727 OutFile = "-"; 728 } else if (!Extension.empty()) { 729 SmallString<128> Path(InFile); 730 llvm::sys::path::replace_extension(Path, Extension); 731 OutFile = Path.str(); 732 } else { 733 OutFile = "-"; 734 } 735 736 std::unique_ptr<llvm::raw_fd_ostream> OS; 737 std::string OSFile; 738 739 if (UseTemporary) { 740 if (OutFile == "-") 741 UseTemporary = false; 742 else { 743 llvm::sys::fs::file_status Status; 744 llvm::sys::fs::status(OutputPath, Status); 745 if (llvm::sys::fs::exists(Status)) { 746 // Fail early if we can't write to the final destination. 747 if (!llvm::sys::fs::can_write(OutputPath)) { 748 Error = make_error_code(llvm::errc::operation_not_permitted); 749 return nullptr; 750 } 751 752 // Don't use a temporary if the output is a special file. This handles 753 // things like '-o /dev/null' 754 if (!llvm::sys::fs::is_regular_file(Status)) 755 UseTemporary = false; 756 } 757 } 758 } 759 760 if (UseTemporary) { 761 // Create a temporary file. 762 SmallString<128> TempPath; 763 TempPath = OutFile; 764 TempPath += "-%%%%%%%%"; 765 int fd; 766 std::error_code EC = 767 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 768 769 if (CreateMissingDirectories && 770 EC == llvm::errc::no_such_file_or_directory) { 771 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 772 EC = llvm::sys::fs::create_directories(Parent); 773 if (!EC) { 774 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 775 } 776 } 777 778 if (!EC) { 779 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 780 OSFile = TempFile = TempPath.str(); 781 } 782 // If we failed to create the temporary, fallback to writing to the file 783 // directly. This handles the corner case where we cannot write to the 784 // directory, but can write to the file. 785 } 786 787 if (!OS) { 788 OSFile = OutFile; 789 OS.reset(new llvm::raw_fd_ostream( 790 OSFile, Error, 791 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 792 if (Error) 793 return nullptr; 794 } 795 796 // Make sure the out stream file gets removed if we crash. 797 if (RemoveFileOnSignal) 798 llvm::sys::RemoveFileOnSignal(OSFile); 799 800 if (ResultPathName) 801 *ResultPathName = OutFile; 802 if (TempPathName) 803 *TempPathName = TempFile; 804 805 if (!Binary || OS->supportsSeeking()) 806 return std::move(OS); 807 808 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 809 assert(!NonSeekStream); 810 NonSeekStream = std::move(OS); 811 return std::move(B); 812 } 813 814 // Initialization Utilities 815 816 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 817 return InitializeSourceManager( 818 Input, getDiagnostics(), getFileManager(), getSourceManager(), 819 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 820 getDependencyOutputOpts(), getFrontendOpts()); 821 } 822 823 // static 824 bool CompilerInstance::InitializeSourceManager( 825 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 826 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 827 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 828 SrcMgr::CharacteristicKind 829 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 830 831 if (Input.isBuffer()) { 832 SourceMgr.setMainFileID(SourceMgr.createFileID( 833 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 834 assert(SourceMgr.getMainFileID().isValid() && 835 "Couldn't establish MainFileID!"); 836 return true; 837 } 838 839 StringRef InputFile = Input.getFile(); 840 841 // Figure out where to get and map in the main file. 842 if (InputFile != "-") { 843 const FileEntry *File; 844 if (Opts.FindPchSource.empty()) { 845 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 846 } else { 847 // When building a pch file in clang-cl mode, the .h file is built as if 848 // it was included by a cc file. Since the driver doesn't know about 849 // all include search directories, the frontend must search the input 850 // file through HeaderSearch here, as if it had been included by the 851 // cc file at Opts.FindPchSource. 852 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 853 if (!FindFile) { 854 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 855 return false; 856 } 857 const DirectoryLookup *UnusedCurDir; 858 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 859 Includers; 860 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 861 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 862 /*FromDir=*/nullptr, 863 /*CurDir=*/UnusedCurDir, Includers, 864 /*SearchPath=*/nullptr, 865 /*RelativePath=*/nullptr, 866 /*RequestingModule=*/nullptr, 867 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 868 /*SkipCache=*/true); 869 // Also add the header to /showIncludes output. 870 if (File) 871 DepOpts.ShowIncludesPretendHeader = File->getName(); 872 } 873 if (!File) { 874 Diags.Report(diag::err_fe_error_reading) << InputFile; 875 return false; 876 } 877 878 // The natural SourceManager infrastructure can't currently handle named 879 // pipes, but we would at least like to accept them for the main 880 // file. Detect them here, read them with the volatile flag so FileMgr will 881 // pick up the correct size, and simply override their contents as we do for 882 // STDIN. 883 if (File->isNamedPipe()) { 884 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 885 if (MB) { 886 // Create a new virtual file that will have the correct size. 887 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 888 SourceMgr.overrideFileContents(File, std::move(*MB)); 889 } else { 890 Diags.Report(diag::err_cannot_open_file) << InputFile 891 << MB.getError().message(); 892 return false; 893 } 894 } 895 896 SourceMgr.setMainFileID( 897 SourceMgr.createFileID(File, SourceLocation(), Kind)); 898 } else { 899 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 900 llvm::MemoryBuffer::getSTDIN(); 901 if (std::error_code EC = SBOrErr.getError()) { 902 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 903 return false; 904 } 905 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 906 907 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 908 SB->getBufferSize(), 0); 909 SourceMgr.setMainFileID( 910 SourceMgr.createFileID(File, SourceLocation(), Kind)); 911 SourceMgr.overrideFileContents(File, std::move(SB)); 912 } 913 914 assert(SourceMgr.getMainFileID().isValid() && 915 "Couldn't establish MainFileID!"); 916 return true; 917 } 918 919 // High-Level Operations 920 921 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 922 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 923 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 924 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 925 926 // FIXME: Take this as an argument, once all the APIs we used have moved to 927 // taking it as an input instead of hard-coding llvm::errs. 928 raw_ostream &OS = llvm::errs(); 929 930 // Create the target instance. 931 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 932 getInvocation().TargetOpts)); 933 if (!hasTarget()) 934 return false; 935 936 // Create TargetInfo for the other side of CUDA compilation. 937 if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) { 938 auto TO = std::make_shared<TargetOptions>(); 939 TO->Triple = getFrontendOpts().AuxTriple; 940 TO->HostTriple = getTarget().getTriple().str(); 941 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 942 } 943 944 // Inform the target of the language options. 945 // 946 // FIXME: We shouldn't need to do this, the target should be immutable once 947 // created. This complexity should be lifted elsewhere. 948 getTarget().adjust(getLangOpts()); 949 950 // Adjust target options based on codegen options. 951 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 952 953 // rewriter project will change target built-in bool type from its default. 954 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 955 getTarget().noSignedCharForObjCBool(); 956 957 // Validate/process some options. 958 if (getHeaderSearchOpts().Verbose) 959 OS << "clang -cc1 version " CLANG_VERSION_STRING 960 << " based upon " << BACKEND_PACKAGE_STRING 961 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 962 963 if (getFrontendOpts().ShowTimers) 964 createFrontendTimer(); 965 966 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 967 llvm::EnableStatistics(false); 968 969 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 970 // Reset the ID tables if we are reusing the SourceManager and parsing 971 // regular files. 972 if (hasSourceManager() && !Act.isModelParsingAction()) 973 getSourceManager().clearIDTables(); 974 975 if (Act.BeginSourceFile(*this, FIF)) { 976 Act.Execute(); 977 Act.EndSourceFile(); 978 } 979 } 980 981 // Notify the diagnostic client that all files were processed. 982 getDiagnostics().getClient()->finish(); 983 984 if (getDiagnosticOpts().ShowCarets) { 985 // We can have multiple diagnostics sharing one diagnostic client. 986 // Get the total number of warnings/errors from the client. 987 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 988 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 989 990 if (NumWarnings) 991 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 992 if (NumWarnings && NumErrors) 993 OS << " and "; 994 if (NumErrors) 995 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 996 if (NumWarnings || NumErrors) 997 OS << " generated.\n"; 998 } 999 1000 if (getFrontendOpts().ShowStats) { 1001 if (hasFileManager()) { 1002 getFileManager().PrintStats(); 1003 OS << '\n'; 1004 } 1005 llvm::PrintStatistics(OS); 1006 } 1007 StringRef StatsFile = getFrontendOpts().StatsFile; 1008 if (!StatsFile.empty()) { 1009 std::error_code EC; 1010 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1011 llvm::sys::fs::F_Text); 1012 if (EC) { 1013 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1014 << StatsFile << EC.message(); 1015 } else { 1016 llvm::PrintStatisticsJSON(*StatS); 1017 } 1018 } 1019 1020 return !getDiagnostics().getClient()->getNumErrors(); 1021 } 1022 1023 /// \brief Determine the appropriate source input kind based on language 1024 /// options. 1025 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { 1026 if (LangOpts.OpenCL) 1027 return InputKind::OpenCL; 1028 if (LangOpts.CUDA) 1029 return InputKind::CUDA; 1030 if (LangOpts.ObjC1) 1031 return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; 1032 return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; 1033 } 1034 1035 /// \brief Compile a module file for the given module, using the options 1036 /// provided by the importing compiler instance. Returns true if the module 1037 /// was built without errors. 1038 static bool 1039 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1040 StringRef ModuleName, FrontendInputFile Input, 1041 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1042 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1043 [](CompilerInstance &) {}, 1044 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1045 [](CompilerInstance &) {}) { 1046 // Construct a compiler invocation for creating this module. 1047 auto Invocation = 1048 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1049 1050 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1051 1052 // For any options that aren't intended to affect how a module is built, 1053 // reset them to their default values. 1054 Invocation->getLangOpts()->resetNonModularOptions(); 1055 PPOpts.resetNonModularOptions(); 1056 1057 // Remove any macro definitions that are explicitly ignored by the module. 1058 // They aren't supposed to affect how the module is built anyway. 1059 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1060 PPOpts.Macros.erase( 1061 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1062 [&HSOpts](const std::pair<std::string, bool> &def) { 1063 StringRef MacroDef = def.first; 1064 return HSOpts.ModulesIgnoreMacros.count( 1065 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1066 }), 1067 PPOpts.Macros.end()); 1068 1069 // Note the name of the module we're building. 1070 Invocation->getLangOpts()->CurrentModule = ModuleName; 1071 1072 // Make sure that the failed-module structure has been allocated in 1073 // the importing instance, and propagate the pointer to the newly-created 1074 // instance. 1075 PreprocessorOptions &ImportingPPOpts 1076 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1077 if (!ImportingPPOpts.FailedModules) 1078 ImportingPPOpts.FailedModules = 1079 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1080 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1081 1082 // If there is a module map file, build the module using the module map. 1083 // Set up the inputs/outputs so that we build the module from its umbrella 1084 // header. 1085 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1086 FrontendOpts.OutputFile = ModuleFileName.str(); 1087 FrontendOpts.DisableFree = false; 1088 FrontendOpts.GenerateGlobalModuleIndex = false; 1089 FrontendOpts.BuildingImplicitModule = true; 1090 FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; 1091 // Force implicitly-built modules to hash the content of the module file. 1092 HSOpts.ModulesHashContent = true; 1093 FrontendOpts.Inputs = {Input}; 1094 1095 // Don't free the remapped file buffers; they are owned by our caller. 1096 PPOpts.RetainRemappedFileBuffers = true; 1097 1098 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1099 assert(ImportingInstance.getInvocation().getModuleHash() == 1100 Invocation->getModuleHash() && "Module hash mismatch!"); 1101 1102 // Construct a compiler instance that will be used to actually create the 1103 // module. Since we're sharing a PCMCache, 1104 // CompilerInstance::CompilerInstance is responsible for finalizing the 1105 // buffers to prevent use-after-frees. 1106 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1107 &ImportingInstance.getPreprocessor().getPCMCache()); 1108 auto &Inv = *Invocation; 1109 Instance.setInvocation(std::move(Invocation)); 1110 1111 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1112 ImportingInstance.getDiagnosticClient()), 1113 /*ShouldOwnClient=*/true); 1114 1115 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1116 1117 // Note that this module is part of the module build stack, so that we 1118 // can detect cycles in the module graph. 1119 Instance.setFileManager(&ImportingInstance.getFileManager()); 1120 Instance.createSourceManager(Instance.getFileManager()); 1121 SourceManager &SourceMgr = Instance.getSourceManager(); 1122 SourceMgr.setModuleBuildStack( 1123 ImportingInstance.getSourceManager().getModuleBuildStack()); 1124 SourceMgr.pushModuleBuildStack(ModuleName, 1125 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1126 1127 // If we're collecting module dependencies, we need to share a collector 1128 // between all of the module CompilerInstances. Other than that, we don't 1129 // want to produce any dependency output from the module build. 1130 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1131 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1132 1133 ImportingInstance.getDiagnostics().Report(ImportLoc, 1134 diag::remark_module_build) 1135 << ModuleName << ModuleFileName; 1136 1137 PreBuildStep(Instance); 1138 1139 // Execute the action to actually build the module in-place. Use a separate 1140 // thread so that we get a stack large enough. 1141 const unsigned ThreadStackSize = 8 << 20; 1142 llvm::CrashRecoveryContext CRC; 1143 CRC.RunSafelyOnThread( 1144 [&]() { 1145 GenerateModuleFromModuleMapAction Action; 1146 Instance.ExecuteAction(Action); 1147 }, 1148 ThreadStackSize); 1149 1150 PostBuildStep(Instance); 1151 1152 ImportingInstance.getDiagnostics().Report(ImportLoc, 1153 diag::remark_module_build_done) 1154 << ModuleName; 1155 1156 // Delete the temporary module map file. 1157 // FIXME: Even though we're executing under crash protection, it would still 1158 // be nice to do this with RemoveFileOnSignal when we can. However, that 1159 // doesn't make sense for all clients, so clean this up manually. 1160 Instance.clearOutputFiles(/*EraseFiles=*/true); 1161 1162 return !Instance.getDiagnostics().hasErrorOccurred(); 1163 } 1164 1165 /// \brief Compile a module file for the given module, using the options 1166 /// provided by the importing compiler instance. Returns true if the module 1167 /// was built without errors. 1168 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1169 SourceLocation ImportLoc, 1170 Module *Module, 1171 StringRef ModuleFileName) { 1172 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1173 InputKind::ModuleMap); 1174 1175 // Get or create the module map that we'll use to build this module. 1176 ModuleMap &ModMap 1177 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1178 bool Result; 1179 if (const FileEntry *ModuleMapFile = 1180 ModMap.getContainingModuleMapFile(Module)) { 1181 // Use the module map where this module resides. 1182 Result = compileModuleImpl( 1183 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1184 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1185 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1186 ModuleFileName); 1187 } else { 1188 // FIXME: We only need to fake up an input file here as a way of 1189 // transporting the module's directory to the module map parser. We should 1190 // be able to do that more directly, and parse from a memory buffer without 1191 // inventing this file. 1192 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1193 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1194 1195 std::string InferredModuleMapContent; 1196 llvm::raw_string_ostream OS(InferredModuleMapContent); 1197 Module->print(OS); 1198 OS.flush(); 1199 1200 Result = compileModuleImpl( 1201 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1202 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1203 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1204 ModuleFileName, 1205 [&](CompilerInstance &Instance) { 1206 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1207 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1208 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1209 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1210 Instance.getSourceManager().overrideFileContents( 1211 ModuleMapFile, std::move(ModuleMapBuffer)); 1212 }); 1213 } 1214 1215 // We've rebuilt a module. If we're allowed to generate or update the global 1216 // module index, record that fact in the importing compiler instance. 1217 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1218 ImportingInstance.setBuildGlobalModuleIndex(true); 1219 } 1220 1221 return Result; 1222 } 1223 1224 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1225 SourceLocation ImportLoc, 1226 SourceLocation ModuleNameLoc, Module *Module, 1227 StringRef ModuleFileName) { 1228 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1229 1230 auto diagnoseBuildFailure = [&] { 1231 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1232 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1233 }; 1234 1235 // FIXME: have LockFileManager return an error_code so that we can 1236 // avoid the mkdir when the directory already exists. 1237 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1238 llvm::sys::fs::create_directories(Dir); 1239 1240 while (1) { 1241 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1242 llvm::LockFileManager Locked(ModuleFileName); 1243 switch (Locked) { 1244 case llvm::LockFileManager::LFS_Error: 1245 // PCMCache takes care of correctness and locks are only necessary for 1246 // performance. Fallback to building the module in case of any lock 1247 // related errors. 1248 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1249 << Module->Name << Locked.getErrorMessage(); 1250 // Clear out any potential leftover. 1251 Locked.unsafeRemoveLockFile(); 1252 // FALLTHROUGH 1253 case llvm::LockFileManager::LFS_Owned: 1254 // We're responsible for building the module ourselves. 1255 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1256 ModuleFileName)) { 1257 diagnoseBuildFailure(); 1258 return false; 1259 } 1260 break; 1261 1262 case llvm::LockFileManager::LFS_Shared: 1263 // Someone else is responsible for building the module. Wait for them to 1264 // finish. 1265 switch (Locked.waitForUnlock()) { 1266 case llvm::LockFileManager::Res_Success: 1267 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1268 break; 1269 case llvm::LockFileManager::Res_OwnerDied: 1270 continue; // try again to get the lock. 1271 case llvm::LockFileManager::Res_Timeout: 1272 // Since PCMCache takes care of correctness, we try waiting for another 1273 // process to complete the build so clang does not do it done twice. If 1274 // case of timeout, build it ourselves. 1275 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1276 << Module->Name; 1277 // Clear the lock file so that future invokations can make progress. 1278 Locked.unsafeRemoveLockFile(); 1279 continue; 1280 } 1281 break; 1282 } 1283 1284 // Try to read the module file, now that we've compiled it. 1285 ASTReader::ASTReadResult ReadResult = 1286 ImportingInstance.getModuleManager()->ReadAST( 1287 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1288 ModuleLoadCapabilities); 1289 1290 if (ReadResult == ASTReader::OutOfDate && 1291 Locked == llvm::LockFileManager::LFS_Shared) { 1292 // The module may be out of date in the presence of file system races, 1293 // or if one of its imports depends on header search paths that are not 1294 // consistent with this ImportingInstance. Try again... 1295 continue; 1296 } else if (ReadResult == ASTReader::Missing) { 1297 diagnoseBuildFailure(); 1298 } else if (ReadResult != ASTReader::Success && 1299 !Diags.hasErrorOccurred()) { 1300 // The ASTReader didn't diagnose the error, so conservatively report it. 1301 diagnoseBuildFailure(); 1302 } 1303 return ReadResult == ASTReader::Success; 1304 } 1305 } 1306 1307 /// \brief Diagnose differences between the current definition of the given 1308 /// configuration macro and the definition provided on the command line. 1309 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1310 Module *Mod, SourceLocation ImportLoc) { 1311 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1312 SourceManager &SourceMgr = PP.getSourceManager(); 1313 1314 // If this identifier has never had a macro definition, then it could 1315 // not have changed. 1316 if (!Id->hadMacroDefinition()) 1317 return; 1318 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1319 1320 // Find the macro definition from the command line. 1321 MacroInfo *CmdLineDefinition = nullptr; 1322 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1323 // We only care about the predefines buffer. 1324 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1325 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1326 continue; 1327 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1328 CmdLineDefinition = DMD->getMacroInfo(); 1329 break; 1330 } 1331 1332 auto *CurrentDefinition = PP.getMacroInfo(Id); 1333 if (CurrentDefinition == CmdLineDefinition) { 1334 // Macro matches. Nothing to do. 1335 } else if (!CurrentDefinition) { 1336 // This macro was defined on the command line, then #undef'd later. 1337 // Complain. 1338 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1339 << true << ConfigMacro << Mod->getFullModuleName(); 1340 auto LatestDef = LatestLocalMD->getDefinition(); 1341 assert(LatestDef.isUndefined() && 1342 "predefined macro went away with no #undef?"); 1343 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1344 << true; 1345 return; 1346 } else if (!CmdLineDefinition) { 1347 // There was no definition for this macro in the predefines buffer, 1348 // but there was a local definition. Complain. 1349 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1350 << false << ConfigMacro << Mod->getFullModuleName(); 1351 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1352 diag::note_module_def_undef_here) 1353 << false; 1354 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1355 /*Syntactically=*/true)) { 1356 // The macro definitions differ. 1357 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1358 << false << ConfigMacro << Mod->getFullModuleName(); 1359 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1360 diag::note_module_def_undef_here) 1361 << false; 1362 } 1363 } 1364 1365 /// \brief Write a new timestamp file with the given path. 1366 static void writeTimestampFile(StringRef TimestampFile) { 1367 std::error_code EC; 1368 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1369 } 1370 1371 /// \brief Prune the module cache of modules that haven't been accessed in 1372 /// a long time. 1373 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1374 struct stat StatBuf; 1375 llvm::SmallString<128> TimestampFile; 1376 TimestampFile = HSOpts.ModuleCachePath; 1377 assert(!TimestampFile.empty()); 1378 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1379 1380 // Try to stat() the timestamp file. 1381 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1382 // If the timestamp file wasn't there, create one now. 1383 if (errno == ENOENT) { 1384 writeTimestampFile(TimestampFile); 1385 } 1386 return; 1387 } 1388 1389 // Check whether the time stamp is older than our pruning interval. 1390 // If not, do nothing. 1391 time_t TimeStampModTime = StatBuf.st_mtime; 1392 time_t CurrentTime = time(nullptr); 1393 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1394 return; 1395 1396 // Write a new timestamp file so that nobody else attempts to prune. 1397 // There is a benign race condition here, if two Clang instances happen to 1398 // notice at the same time that the timestamp is out-of-date. 1399 writeTimestampFile(TimestampFile); 1400 1401 // Walk the entire module cache, looking for unused module files and module 1402 // indices. 1403 std::error_code EC; 1404 SmallString<128> ModuleCachePathNative; 1405 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1406 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1407 Dir != DirEnd && !EC; Dir.increment(EC)) { 1408 // If we don't have a directory, there's nothing to look into. 1409 if (!llvm::sys::fs::is_directory(Dir->path())) 1410 continue; 1411 1412 // Walk all of the files within this directory. 1413 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1414 File != FileEnd && !EC; File.increment(EC)) { 1415 // We only care about module and global module index files. 1416 StringRef Extension = llvm::sys::path::extension(File->path()); 1417 if (Extension != ".pcm" && Extension != ".timestamp" && 1418 llvm::sys::path::filename(File->path()) != "modules.idx") 1419 continue; 1420 1421 // Look at this file. If we can't stat it, there's nothing interesting 1422 // there. 1423 if (::stat(File->path().c_str(), &StatBuf)) 1424 continue; 1425 1426 // If the file has been used recently enough, leave it there. 1427 time_t FileAccessTime = StatBuf.st_atime; 1428 if (CurrentTime - FileAccessTime <= 1429 time_t(HSOpts.ModuleCachePruneAfter)) { 1430 continue; 1431 } 1432 1433 // Remove the file. 1434 llvm::sys::fs::remove(File->path()); 1435 1436 // Remove the timestamp file. 1437 std::string TimpestampFilename = File->path() + ".timestamp"; 1438 llvm::sys::fs::remove(TimpestampFilename); 1439 } 1440 1441 // If we removed all of the files in the directory, remove the directory 1442 // itself. 1443 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1444 llvm::sys::fs::directory_iterator() && !EC) 1445 llvm::sys::fs::remove(Dir->path()); 1446 } 1447 } 1448 1449 void CompilerInstance::createModuleManager() { 1450 if (!ModuleManager) { 1451 if (!hasASTContext()) 1452 createASTContext(); 1453 1454 // If we're implicitly building modules but not currently recursively 1455 // building a module, check whether we need to prune the module cache. 1456 if (getSourceManager().getModuleBuildStack().empty() && 1457 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1458 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1459 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1460 pruneModuleCache(getHeaderSearchOpts()); 1461 } 1462 1463 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1464 std::string Sysroot = HSOpts.Sysroot; 1465 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1466 std::unique_ptr<llvm::Timer> ReadTimer; 1467 if (FrontendTimerGroup) 1468 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1469 "Reading modules", 1470 *FrontendTimerGroup); 1471 ModuleManager = new ASTReader( 1472 getPreprocessor(), getASTContext(), getPCHContainerReader(), 1473 getFrontendOpts().ModuleFileExtensions, 1474 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1475 /*AllowASTWithCompilerErrors=*/false, 1476 /*AllowConfigurationMismatch=*/false, 1477 HSOpts.ModulesValidateSystemHeaders, 1478 getFrontendOpts().UseGlobalModuleIndex, 1479 std::move(ReadTimer)); 1480 if (hasASTConsumer()) { 1481 ModuleManager->setDeserializationListener( 1482 getASTConsumer().GetASTDeserializationListener()); 1483 getASTContext().setASTMutationListener( 1484 getASTConsumer().GetASTMutationListener()); 1485 } 1486 getASTContext().setExternalSource(ModuleManager); 1487 if (hasSema()) 1488 ModuleManager->InitializeSema(getSema()); 1489 if (hasASTConsumer()) 1490 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1491 1492 if (TheDependencyFileGenerator) 1493 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1494 for (auto &Listener : DependencyCollectors) 1495 Listener->attachToASTReader(*ModuleManager); 1496 } 1497 } 1498 1499 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1500 llvm::Timer Timer; 1501 if (FrontendTimerGroup) 1502 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1503 *FrontendTimerGroup); 1504 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1505 1506 // Helper to recursively read the module names for all modules we're adding. 1507 // We mark these as known and redirect any attempt to load that module to 1508 // the files we were handed. 1509 struct ReadModuleNames : ASTReaderListener { 1510 CompilerInstance &CI; 1511 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1512 1513 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1514 1515 void ReadModuleName(StringRef ModuleName) override { 1516 LoadedModules.push_back( 1517 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1518 } 1519 1520 void registerAll() { 1521 for (auto *II : LoadedModules) { 1522 CI.KnownModules[II] = CI.getPreprocessor() 1523 .getHeaderSearchInfo() 1524 .getModuleMap() 1525 .findModule(II->getName()); 1526 } 1527 LoadedModules.clear(); 1528 } 1529 1530 void markAllUnavailable() { 1531 for (auto *II : LoadedModules) { 1532 if (Module *M = CI.getPreprocessor() 1533 .getHeaderSearchInfo() 1534 .getModuleMap() 1535 .findModule(II->getName())) { 1536 M->HasIncompatibleModuleFile = true; 1537 1538 // Mark module as available if the only reason it was unavailable 1539 // was missing headers. 1540 SmallVector<Module *, 2> Stack; 1541 Stack.push_back(M); 1542 while (!Stack.empty()) { 1543 Module *Current = Stack.pop_back_val(); 1544 if (Current->IsMissingRequirement) continue; 1545 Current->IsAvailable = true; 1546 Stack.insert(Stack.end(), 1547 Current->submodule_begin(), Current->submodule_end()); 1548 } 1549 } 1550 } 1551 LoadedModules.clear(); 1552 } 1553 }; 1554 1555 // If we don't already have an ASTReader, create one now. 1556 if (!ModuleManager) 1557 createModuleManager(); 1558 1559 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1560 auto &ListenerRef = *Listener; 1561 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1562 std::move(Listener)); 1563 1564 // Try to load the module file. 1565 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1566 SourceLocation(), 1567 ASTReader::ARR_ConfigurationMismatch)) { 1568 case ASTReader::Success: 1569 // We successfully loaded the module file; remember the set of provided 1570 // modules so that we don't try to load implicit modules for them. 1571 ListenerRef.registerAll(); 1572 return true; 1573 1574 case ASTReader::ConfigurationMismatch: 1575 // Ignore unusable module files. 1576 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1577 << FileName; 1578 // All modules provided by any files we tried and failed to load are now 1579 // unavailable; includes of those modules should now be handled textually. 1580 ListenerRef.markAllUnavailable(); 1581 return true; 1582 1583 default: 1584 return false; 1585 } 1586 } 1587 1588 ModuleLoadResult 1589 CompilerInstance::loadModule(SourceLocation ImportLoc, 1590 ModuleIdPath Path, 1591 Module::NameVisibilityKind Visibility, 1592 bool IsInclusionDirective) { 1593 // Determine what file we're searching from. 1594 StringRef ModuleName = Path[0].first->getName(); 1595 SourceLocation ModuleNameLoc = Path[0].second; 1596 1597 // If we've already handled this import, just return the cached result. 1598 // This one-element cache is important to eliminate redundant diagnostics 1599 // when both the preprocessor and parser see the same import declaration. 1600 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1601 // Make the named module visible. 1602 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1603 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1604 ImportLoc); 1605 return LastModuleImportResult; 1606 } 1607 1608 clang::Module *Module = nullptr; 1609 1610 // If we don't already have information on this module, load the module now. 1611 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1612 = KnownModules.find(Path[0].first); 1613 if (Known != KnownModules.end()) { 1614 // Retrieve the cached top-level module. 1615 Module = Known->second; 1616 } else if (ModuleName == getLangOpts().CurrentModule) { 1617 // This is the module we're building. 1618 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1619 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1620 } else { 1621 // Search for a module with the given name. 1622 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1623 HeaderSearchOptions &HSOpts = 1624 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1625 1626 std::string ModuleFileName; 1627 enum ModuleSource { 1628 ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma 1629 } Source = ModuleNotFound; 1630 1631 // Check to see if the module has been built as part of this compilation 1632 // via a module build pragma. 1633 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1634 if (BuiltModuleIt != BuiltModules.end()) { 1635 ModuleFileName = BuiltModuleIt->second; 1636 Source = ModuleBuildPragma; 1637 } 1638 1639 // Try to load the module from the prebuilt module path. 1640 if (Source == ModuleNotFound && !HSOpts.PrebuiltModulePaths.empty()) { 1641 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( 1642 ModuleName, "", /*UsePrebuiltPath*/ true); 1643 if (!ModuleFileName.empty()) 1644 Source = PrebuiltModulePath; 1645 } 1646 1647 // Try to load the module from the module cache. 1648 if (Source == ModuleNotFound && Module) { 1649 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); 1650 Source = ModuleCache; 1651 } 1652 1653 if (Source == ModuleNotFound) { 1654 // We can't find a module, error out here. 1655 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1656 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1657 ModuleBuildFailed = true; 1658 return ModuleLoadResult(); 1659 } 1660 1661 if (ModuleFileName.empty()) { 1662 if (Module && Module->HasIncompatibleModuleFile) { 1663 // We tried and failed to load a module file for this module. Fall 1664 // back to textual inclusion for its headers. 1665 return ModuleLoadResult::ConfigMismatch; 1666 } 1667 1668 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1669 << ModuleName; 1670 ModuleBuildFailed = true; 1671 return ModuleLoadResult(); 1672 } 1673 1674 // If we don't already have an ASTReader, create one now. 1675 if (!ModuleManager) 1676 createModuleManager(); 1677 1678 llvm::Timer Timer; 1679 if (FrontendTimerGroup) 1680 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1681 *FrontendTimerGroup); 1682 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1683 1684 // Try to load the module file. If we are not trying to load from the 1685 // module cache, we don't know how to rebuild modules. 1686 unsigned ARRFlags = Source == ModuleCache ? 1687 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : 1688 ASTReader::ARR_ConfigurationMismatch; 1689 switch (ModuleManager->ReadAST(ModuleFileName, 1690 Source == PrebuiltModulePath 1691 ? serialization::MK_PrebuiltModule 1692 : Source == ModuleBuildPragma 1693 ? serialization::MK_ExplicitModule 1694 : serialization::MK_ImplicitModule, 1695 ImportLoc, ARRFlags)) { 1696 case ASTReader::Success: { 1697 if (Source != ModuleCache && !Module) { 1698 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1699 if (!Module || !Module->getASTFile() || 1700 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1701 // Error out if Module does not refer to the file in the prebuilt 1702 // module path. 1703 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1704 << ModuleName; 1705 ModuleBuildFailed = true; 1706 KnownModules[Path[0].first] = nullptr; 1707 return ModuleLoadResult(); 1708 } 1709 } 1710 break; 1711 } 1712 1713 case ASTReader::OutOfDate: 1714 case ASTReader::Missing: { 1715 if (Source != ModuleCache) { 1716 // We don't know the desired configuration for this module and don't 1717 // necessarily even have a module map. Since ReadAST already produces 1718 // diagnostics for these two cases, we simply error out here. 1719 ModuleBuildFailed = true; 1720 KnownModules[Path[0].first] = nullptr; 1721 return ModuleLoadResult(); 1722 } 1723 1724 // The module file is missing or out-of-date. Build it. 1725 assert(Module && "missing module file"); 1726 // Check whether there is a cycle in the module graph. 1727 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1728 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1729 for (; Pos != PosEnd; ++Pos) { 1730 if (Pos->first == ModuleName) 1731 break; 1732 } 1733 1734 if (Pos != PosEnd) { 1735 SmallString<256> CyclePath; 1736 for (; Pos != PosEnd; ++Pos) { 1737 CyclePath += Pos->first; 1738 CyclePath += " -> "; 1739 } 1740 CyclePath += ModuleName; 1741 1742 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1743 << ModuleName << CyclePath; 1744 return ModuleLoadResult(); 1745 } 1746 1747 // Check whether we have already attempted to build this module (but 1748 // failed). 1749 if (getPreprocessorOpts().FailedModules && 1750 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1751 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1752 << ModuleName 1753 << SourceRange(ImportLoc, ModuleNameLoc); 1754 ModuleBuildFailed = true; 1755 return ModuleLoadResult(); 1756 } 1757 1758 // Try to compile and then load the module. 1759 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1760 ModuleFileName)) { 1761 assert(getDiagnostics().hasErrorOccurred() && 1762 "undiagnosed error in compileAndLoadModule"); 1763 if (getPreprocessorOpts().FailedModules) 1764 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1765 KnownModules[Path[0].first] = nullptr; 1766 ModuleBuildFailed = true; 1767 return ModuleLoadResult(); 1768 } 1769 1770 // Okay, we've rebuilt and now loaded the module. 1771 break; 1772 } 1773 1774 case ASTReader::ConfigurationMismatch: 1775 if (Source == PrebuiltModulePath) 1776 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1777 // produce a warning here! 1778 getDiagnostics().Report(SourceLocation(), 1779 diag::warn_module_config_mismatch) 1780 << ModuleFileName; 1781 // Fall through to error out. 1782 LLVM_FALLTHROUGH; 1783 case ASTReader::VersionMismatch: 1784 case ASTReader::HadErrors: 1785 ModuleLoader::HadFatalFailure = true; 1786 // FIXME: The ASTReader will already have complained, but can we shoehorn 1787 // that diagnostic information into a more useful form? 1788 KnownModules[Path[0].first] = nullptr; 1789 return ModuleLoadResult(); 1790 1791 case ASTReader::Failure: 1792 ModuleLoader::HadFatalFailure = true; 1793 // Already complained, but note now that we failed. 1794 KnownModules[Path[0].first] = nullptr; 1795 ModuleBuildFailed = true; 1796 return ModuleLoadResult(); 1797 } 1798 1799 // Cache the result of this top-level module lookup for later. 1800 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1801 } 1802 1803 // If we never found the module, fail. 1804 if (!Module) 1805 return ModuleLoadResult(); 1806 1807 // Verify that the rest of the module path actually corresponds to 1808 // a submodule. 1809 if (Path.size() > 1) { 1810 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1811 StringRef Name = Path[I].first->getName(); 1812 clang::Module *Sub = Module->findSubmodule(Name); 1813 1814 if (!Sub) { 1815 // Attempt to perform typo correction to find a module name that works. 1816 SmallVector<StringRef, 2> Best; 1817 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1818 1819 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1820 JEnd = Module->submodule_end(); 1821 J != JEnd; ++J) { 1822 unsigned ED = Name.edit_distance((*J)->Name, 1823 /*AllowReplacements=*/true, 1824 BestEditDistance); 1825 if (ED <= BestEditDistance) { 1826 if (ED < BestEditDistance) { 1827 Best.clear(); 1828 BestEditDistance = ED; 1829 } 1830 1831 Best.push_back((*J)->Name); 1832 } 1833 } 1834 1835 // If there was a clear winner, user it. 1836 if (Best.size() == 1) { 1837 getDiagnostics().Report(Path[I].second, 1838 diag::err_no_submodule_suggest) 1839 << Path[I].first << Module->getFullModuleName() << Best[0] 1840 << SourceRange(Path[0].second, Path[I-1].second) 1841 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1842 Best[0]); 1843 1844 Sub = Module->findSubmodule(Best[0]); 1845 } 1846 } 1847 1848 if (!Sub) { 1849 // No submodule by this name. Complain, and don't look for further 1850 // submodules. 1851 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1852 << Path[I].first << Module->getFullModuleName() 1853 << SourceRange(Path[0].second, Path[I-1].second); 1854 break; 1855 } 1856 1857 Module = Sub; 1858 } 1859 } 1860 1861 // Make the named module visible, if it's not already part of the module 1862 // we are parsing. 1863 if (ModuleName != getLangOpts().CurrentModule) { 1864 if (!Module->IsFromModuleFile) { 1865 // We have an umbrella header or directory that doesn't actually include 1866 // all of the headers within the directory it covers. Complain about 1867 // this missing submodule and recover by forgetting that we ever saw 1868 // this submodule. 1869 // FIXME: Should we detect this at module load time? It seems fairly 1870 // expensive (and rare). 1871 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1872 << Module->getFullModuleName() 1873 << SourceRange(Path.front().second, Path.back().second); 1874 1875 return ModuleLoadResult::MissingExpected; 1876 } 1877 1878 // Check whether this module is available. 1879 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 1880 getDiagnostics(), Module)) { 1881 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 1882 << SourceRange(Path.front().second, Path.back().second); 1883 LastModuleImportLoc = ImportLoc; 1884 LastModuleImportResult = ModuleLoadResult(); 1885 return ModuleLoadResult(); 1886 } 1887 1888 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1889 } 1890 1891 // Check for any configuration macros that have changed. 1892 clang::Module *TopModule = Module->getTopLevelModule(); 1893 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1894 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1895 Module, ImportLoc); 1896 } 1897 1898 LastModuleImportLoc = ImportLoc; 1899 LastModuleImportResult = ModuleLoadResult(Module); 1900 return LastModuleImportResult; 1901 } 1902 1903 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, 1904 StringRef ModuleName, 1905 StringRef Source) { 1906 // Avoid creating filenames with special characters. 1907 SmallString<128> CleanModuleName(ModuleName); 1908 for (auto &C : CleanModuleName) 1909 if (!isAlphanumeric(C)) 1910 C = '_'; 1911 1912 // FIXME: Using a randomized filename here means that our intermediate .pcm 1913 // output is nondeterministic (as .pcm files refer to each other by name). 1914 // Can this affect the output in any way? 1915 SmallString<128> ModuleFileName; 1916 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 1917 CleanModuleName, "pcm", ModuleFileName)) { 1918 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 1919 << ModuleFileName << EC.message(); 1920 return; 1921 } 1922 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 1923 1924 FrontendInputFile Input( 1925 ModuleMapFileName, 1926 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 1927 InputKind::ModuleMap, /*Preprocessed*/true)); 1928 1929 std::string NullTerminatedSource(Source.str()); 1930 1931 auto PreBuildStep = [&](CompilerInstance &Other) { 1932 // Create a virtual file containing our desired source. 1933 // FIXME: We shouldn't need to do this. 1934 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 1935 ModuleMapFileName, NullTerminatedSource.size(), 0); 1936 Other.getSourceManager().overrideFileContents( 1937 ModuleMapFile, 1938 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 1939 1940 Other.BuiltModules = std::move(BuiltModules); 1941 Other.DeleteBuiltModules = false; 1942 }; 1943 1944 auto PostBuildStep = [this](CompilerInstance &Other) { 1945 BuiltModules = std::move(Other.BuiltModules); 1946 }; 1947 1948 // Build the module, inheriting any modules that we've built locally. 1949 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 1950 ModuleFileName, PreBuildStep, PostBuildStep)) { 1951 BuiltModules[ModuleName] = ModuleFileName.str(); 1952 llvm::sys::RemoveFileOnSignal(ModuleFileName); 1953 } 1954 } 1955 1956 void CompilerInstance::makeModuleVisible(Module *Mod, 1957 Module::NameVisibilityKind Visibility, 1958 SourceLocation ImportLoc) { 1959 if (!ModuleManager) 1960 createModuleManager(); 1961 if (!ModuleManager) 1962 return; 1963 1964 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 1965 } 1966 1967 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1968 SourceLocation TriggerLoc) { 1969 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 1970 return nullptr; 1971 if (!ModuleManager) 1972 createModuleManager(); 1973 // Can't do anything if we don't have the module manager. 1974 if (!ModuleManager) 1975 return nullptr; 1976 // Get an existing global index. This loads it if not already 1977 // loaded. 1978 ModuleManager->loadGlobalIndex(); 1979 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1980 // If the global index doesn't exist, create it. 1981 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1982 hasPreprocessor()) { 1983 llvm::sys::fs::create_directories( 1984 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1985 GlobalModuleIndex::writeIndex( 1986 getFileManager(), getPCHContainerReader(), 1987 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1988 ModuleManager->resetForReload(); 1989 ModuleManager->loadGlobalIndex(); 1990 GlobalIndex = ModuleManager->getGlobalIndex(); 1991 } 1992 // For finding modules needing to be imported for fixit messages, 1993 // we need to make the global index cover all modules, so we do that here. 1994 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1995 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1996 bool RecreateIndex = false; 1997 for (ModuleMap::module_iterator I = MMap.module_begin(), 1998 E = MMap.module_end(); I != E; ++I) { 1999 Module *TheModule = I->second; 2000 const FileEntry *Entry = TheModule->getASTFile(); 2001 if (!Entry) { 2002 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2003 Path.push_back(std::make_pair( 2004 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2005 std::reverse(Path.begin(), Path.end()); 2006 // Load a module as hidden. This also adds it to the global index. 2007 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2008 RecreateIndex = true; 2009 } 2010 } 2011 if (RecreateIndex) { 2012 GlobalModuleIndex::writeIndex( 2013 getFileManager(), getPCHContainerReader(), 2014 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2015 ModuleManager->resetForReload(); 2016 ModuleManager->loadGlobalIndex(); 2017 GlobalIndex = ModuleManager->getGlobalIndex(); 2018 } 2019 HaveFullGlobalModuleIndex = true; 2020 } 2021 return GlobalIndex; 2022 } 2023 2024 // Check global module index for missing imports. 2025 bool 2026 CompilerInstance::lookupMissingImports(StringRef Name, 2027 SourceLocation TriggerLoc) { 2028 // Look for the symbol in non-imported modules, but only if an error 2029 // actually occurred. 2030 if (!buildingModule()) { 2031 // Load global module index, or retrieve a previously loaded one. 2032 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2033 TriggerLoc); 2034 2035 // Only if we have a global index. 2036 if (GlobalIndex) { 2037 GlobalModuleIndex::HitSet FoundModules; 2038 2039 // Find the modules that reference the identifier. 2040 // Note that this only finds top-level modules. 2041 // We'll let diagnoseTypo find the actual declaration module. 2042 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2043 return true; 2044 } 2045 } 2046 2047 return false; 2048 } 2049 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 2050 2051 void CompilerInstance::setExternalSemaSource( 2052 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2053 ExternalSemaSrc = std::move(ESS); 2054 } 2055