1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/MemoryBufferCache.h" 17 #include "clang/Basic/SourceManager.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Basic/Version.h" 20 #include "clang/Config/config.h" 21 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 22 #include "clang/Frontend/FrontendAction.h" 23 #include "clang/Frontend/FrontendActions.h" 24 #include "clang/Frontend/FrontendDiagnostic.h" 25 #include "clang/Frontend/LogDiagnosticPrinter.h" 26 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 27 #include "clang/Frontend/TextDiagnosticPrinter.h" 28 #include "clang/Frontend/Utils.h" 29 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 30 #include "clang/Lex/HeaderSearch.h" 31 #include "clang/Lex/PTHManager.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorOptions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Serialization/ASTReader.h" 37 #include "clang/Serialization/GlobalModuleIndex.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Errc.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/Host.h" 43 #include "llvm/Support/LockFileManager.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/Path.h" 46 #include "llvm/Support/Program.h" 47 #include "llvm/Support/Signals.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <sys/stat.h> 51 #include <system_error> 52 #include <time.h> 53 #include <utility> 54 55 using namespace clang; 56 57 CompilerInstance::CompilerInstance( 58 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 59 MemoryBufferCache *SharedPCMCache) 60 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 61 Invocation(new CompilerInvocation()), 62 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 63 ThePCHContainerOperations(std::move(PCHContainerOps)) { 64 // Don't allow this to invalidate buffers in use by others. 65 if (SharedPCMCache) 66 getPCMCache().finalizeCurrentBuffers(); 67 } 68 69 CompilerInstance::~CompilerInstance() { 70 assert(OutputFiles.empty() && "Still output files in flight?"); 71 } 72 73 void CompilerInstance::setInvocation( 74 std::shared_ptr<CompilerInvocation> Value) { 75 Invocation = std::move(Value); 76 } 77 78 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 79 return (BuildGlobalModuleIndex || 80 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 81 getFrontendOpts().GenerateGlobalModuleIndex)) && 82 !ModuleBuildFailed; 83 } 84 85 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 86 Diagnostics = Value; 87 } 88 89 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 90 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 91 92 void CompilerInstance::setFileManager(FileManager *Value) { 93 FileMgr = Value; 94 if (Value) 95 VirtualFileSystem = Value->getVirtualFileSystem(); 96 else 97 VirtualFileSystem.reset(); 98 } 99 100 void CompilerInstance::setSourceManager(SourceManager *Value) { 101 SourceMgr = Value; 102 } 103 104 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 105 PP = std::move(Value); 106 } 107 108 void CompilerInstance::setASTContext(ASTContext *Value) { 109 Context = Value; 110 111 if (Context && Consumer) 112 getASTConsumer().Initialize(getASTContext()); 113 } 114 115 void CompilerInstance::setSema(Sema *S) { 116 TheSema.reset(S); 117 } 118 119 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 120 Consumer = std::move(Value); 121 122 if (Context && Consumer) 123 getASTConsumer().Initialize(getASTContext()); 124 } 125 126 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 127 CompletionConsumer.reset(Value); 128 } 129 130 std::unique_ptr<Sema> CompilerInstance::takeSema() { 131 return std::move(TheSema); 132 } 133 134 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 135 return ModuleManager; 136 } 137 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 138 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 139 "Expected ASTReader to use the same PCM cache"); 140 ModuleManager = std::move(Reader); 141 } 142 143 std::shared_ptr<ModuleDependencyCollector> 144 CompilerInstance::getModuleDepCollector() const { 145 return ModuleDepCollector; 146 } 147 148 void CompilerInstance::setModuleDepCollector( 149 std::shared_ptr<ModuleDependencyCollector> Collector) { 150 ModuleDepCollector = std::move(Collector); 151 } 152 153 static void collectHeaderMaps(const HeaderSearch &HS, 154 std::shared_ptr<ModuleDependencyCollector> MDC) { 155 SmallVector<std::string, 4> HeaderMapFileNames; 156 HS.getHeaderMapFileNames(HeaderMapFileNames); 157 for (auto &Name : HeaderMapFileNames) 158 MDC->addFile(Name); 159 } 160 161 static void collectIncludePCH(CompilerInstance &CI, 162 std::shared_ptr<ModuleDependencyCollector> MDC) { 163 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 164 if (PPOpts.ImplicitPCHInclude.empty()) 165 return; 166 167 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 168 FileManager &FileMgr = CI.getFileManager(); 169 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 170 if (!PCHDir) { 171 MDC->addFile(PCHInclude); 172 return; 173 } 174 175 std::error_code EC; 176 SmallString<128> DirNative; 177 llvm::sys::path::native(PCHDir->getName(), DirNative); 178 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 179 SimpleASTReaderListener Validator(CI.getPreprocessor()); 180 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 181 Dir != DirEnd && !EC; Dir.increment(EC)) { 182 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 183 // used here since we're not interested in validating the PCH at this time, 184 // but only to check whether this is a file containing an AST. 185 if (!ASTReader::readASTFileControlBlock( 186 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 187 /*FindModuleFileExtensions=*/false, Validator, 188 /*ValidateDiagnosticOptions=*/false)) 189 MDC->addFile(Dir->getName()); 190 } 191 } 192 193 static void collectVFSEntries(CompilerInstance &CI, 194 std::shared_ptr<ModuleDependencyCollector> MDC) { 195 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 196 return; 197 198 // Collect all VFS found. 199 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 200 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 201 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 202 llvm::MemoryBuffer::getFile(VFSFile); 203 if (!Buffer) 204 return; 205 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 206 VFSFile, VFSEntries); 207 } 208 209 for (auto &E : VFSEntries) 210 MDC->addFile(E.VPath, E.RPath); 211 } 212 213 // Diagnostics 214 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 215 const CodeGenOptions *CodeGenOpts, 216 DiagnosticsEngine &Diags) { 217 std::error_code EC; 218 std::unique_ptr<raw_ostream> StreamOwner; 219 raw_ostream *OS = &llvm::errs(); 220 if (DiagOpts->DiagnosticLogFile != "-") { 221 // Create the output stream. 222 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 223 DiagOpts->DiagnosticLogFile, EC, 224 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 225 if (EC) { 226 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 227 << DiagOpts->DiagnosticLogFile << EC.message(); 228 } else { 229 FileOS->SetUnbuffered(); 230 OS = FileOS.get(); 231 StreamOwner = std::move(FileOS); 232 } 233 } 234 235 // Chain in the diagnostic client which will log the diagnostics. 236 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 237 std::move(StreamOwner)); 238 if (CodeGenOpts) 239 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 240 assert(Diags.ownsClient()); 241 Diags.setClient( 242 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 243 } 244 245 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 246 DiagnosticsEngine &Diags, 247 StringRef OutputFile) { 248 auto SerializedConsumer = 249 clang::serialized_diags::create(OutputFile, DiagOpts); 250 251 if (Diags.ownsClient()) { 252 Diags.setClient(new ChainedDiagnosticConsumer( 253 Diags.takeClient(), std::move(SerializedConsumer))); 254 } else { 255 Diags.setClient(new ChainedDiagnosticConsumer( 256 Diags.getClient(), std::move(SerializedConsumer))); 257 } 258 } 259 260 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 261 bool ShouldOwnClient) { 262 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 263 ShouldOwnClient, &getCodeGenOpts()); 264 } 265 266 IntrusiveRefCntPtr<DiagnosticsEngine> 267 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 268 DiagnosticConsumer *Client, 269 bool ShouldOwnClient, 270 const CodeGenOptions *CodeGenOpts) { 271 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 272 IntrusiveRefCntPtr<DiagnosticsEngine> 273 Diags(new DiagnosticsEngine(DiagID, Opts)); 274 275 // Create the diagnostic client for reporting errors or for 276 // implementing -verify. 277 if (Client) { 278 Diags->setClient(Client, ShouldOwnClient); 279 } else 280 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 281 282 // Chain in -verify checker, if requested. 283 if (Opts->VerifyDiagnostics) 284 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 285 286 // Chain in -diagnostic-log-file dumper, if requested. 287 if (!Opts->DiagnosticLogFile.empty()) 288 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 289 290 if (!Opts->DiagnosticSerializationFile.empty()) 291 SetupSerializedDiagnostics(Opts, *Diags, 292 Opts->DiagnosticSerializationFile); 293 294 // Configure our handling of diagnostics. 295 ProcessWarningOptions(*Diags, *Opts); 296 297 return Diags; 298 } 299 300 // File Manager 301 302 void CompilerInstance::createFileManager() { 303 if (!hasVirtualFileSystem()) { 304 // TODO: choose the virtual file system based on the CompilerInvocation. 305 setVirtualFileSystem(vfs::getRealFileSystem()); 306 } 307 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 308 } 309 310 // Source Manager 311 312 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 313 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 314 } 315 316 // Initialize the remapping of files to alternative contents, e.g., 317 // those specified through other files. 318 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 319 SourceManager &SourceMgr, 320 FileManager &FileMgr, 321 const PreprocessorOptions &InitOpts) { 322 // Remap files in the source manager (with buffers). 323 for (const auto &RB : InitOpts.RemappedFileBuffers) { 324 // Create the file entry for the file that we're mapping from. 325 const FileEntry *FromFile = 326 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 327 if (!FromFile) { 328 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 329 if (!InitOpts.RetainRemappedFileBuffers) 330 delete RB.second; 331 continue; 332 } 333 334 // Override the contents of the "from" file with the contents of 335 // the "to" file. 336 SourceMgr.overrideFileContents(FromFile, RB.second, 337 InitOpts.RetainRemappedFileBuffers); 338 } 339 340 // Remap files in the source manager (with other files). 341 for (const auto &RF : InitOpts.RemappedFiles) { 342 // Find the file that we're mapping to. 343 const FileEntry *ToFile = FileMgr.getFile(RF.second); 344 if (!ToFile) { 345 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 346 continue; 347 } 348 349 // Create the file entry for the file that we're mapping from. 350 const FileEntry *FromFile = 351 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 352 if (!FromFile) { 353 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 354 continue; 355 } 356 357 // Override the contents of the "from" file with the contents of 358 // the "to" file. 359 SourceMgr.overrideFileContents(FromFile, ToFile); 360 } 361 362 SourceMgr.setOverridenFilesKeepOriginalName( 363 InitOpts.RemappedFilesKeepOriginalName); 364 } 365 366 // Preprocessor 367 368 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 369 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 370 371 // Create a PTH manager if we are using some form of a token cache. 372 PTHManager *PTHMgr = nullptr; 373 if (!PPOpts.TokenCache.empty()) 374 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 375 376 // Create the Preprocessor. 377 HeaderSearch *HeaderInfo = 378 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 379 getDiagnostics(), getLangOpts(), &getTarget()); 380 PP = std::make_shared<Preprocessor>( 381 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 382 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 383 /*OwnsHeaderSearch=*/true, TUKind); 384 PP->Initialize(getTarget(), getAuxTarget()); 385 386 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 387 // That argument is used as the IdentifierInfoLookup argument to 388 // IdentifierTable's ctor. 389 if (PTHMgr) { 390 PTHMgr->setPreprocessor(&*PP); 391 PP->setPTHManager(PTHMgr); 392 } 393 394 if (PPOpts.DetailedRecord) 395 PP->createPreprocessingRecord(); 396 397 // Apply remappings to the source manager. 398 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 399 PP->getFileManager(), PPOpts); 400 401 // Predefine macros and configure the preprocessor. 402 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 403 getFrontendOpts()); 404 405 // Initialize the header search object. In CUDA compilations, we use the aux 406 // triple (the host triple) to initialize our header search, since we need to 407 // find the host headers in order to compile the CUDA code. 408 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 409 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 410 PP->getAuxTargetInfo()) 411 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 412 413 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 414 PP->getLangOpts(), *HeaderSearchTriple); 415 416 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 417 418 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 419 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 420 421 // Handle generating dependencies, if requested. 422 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 423 if (!DepOpts.OutputFile.empty()) 424 TheDependencyFileGenerator.reset( 425 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 426 if (!DepOpts.DOTOutputFile.empty()) 427 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 428 getHeaderSearchOpts().Sysroot); 429 430 // If we don't have a collector, but we are collecting module dependencies, 431 // then we're the top level compiler instance and need to create one. 432 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 433 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 434 DepOpts.ModuleDependencyOutputDir); 435 } 436 437 // If there is a module dep collector, register with other dep collectors 438 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 439 if (ModuleDepCollector) { 440 addDependencyCollector(ModuleDepCollector); 441 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 442 collectIncludePCH(*this, ModuleDepCollector); 443 collectVFSEntries(*this, ModuleDepCollector); 444 } 445 446 for (auto &Listener : DependencyCollectors) 447 Listener->attachToPreprocessor(*PP); 448 449 // Handle generating header include information, if requested. 450 if (DepOpts.ShowHeaderIncludes) 451 AttachHeaderIncludeGen(*PP, DepOpts); 452 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 453 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 454 if (OutputPath == "-") 455 OutputPath = ""; 456 AttachHeaderIncludeGen(*PP, DepOpts, 457 /*ShowAllHeaders=*/true, OutputPath, 458 /*ShowDepth=*/false); 459 } 460 461 if (DepOpts.PrintShowIncludes) { 462 AttachHeaderIncludeGen(*PP, DepOpts, 463 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 464 /*ShowDepth=*/true, /*MSStyle=*/true); 465 } 466 } 467 468 std::string CompilerInstance::getSpecificModuleCachePath() { 469 // Set up the module path, including the hash for the 470 // module-creation options. 471 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 472 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 473 llvm::sys::path::append(SpecificModuleCache, 474 getInvocation().getModuleHash()); 475 return SpecificModuleCache.str(); 476 } 477 478 // ASTContext 479 480 void CompilerInstance::createASTContext() { 481 Preprocessor &PP = getPreprocessor(); 482 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 483 PP.getIdentifierTable(), PP.getSelectorTable(), 484 PP.getBuiltinInfo()); 485 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 486 setASTContext(Context); 487 } 488 489 // ExternalASTSource 490 491 void CompilerInstance::createPCHExternalASTSource( 492 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 493 void *DeserializationListener, bool OwnDeserializationListener) { 494 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 495 ModuleManager = createPCHExternalASTSource( 496 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 497 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 498 getPCHContainerReader(), 499 getFrontendOpts().ModuleFileExtensions, 500 TheDependencyFileGenerator.get(), 501 DependencyCollectors, 502 DeserializationListener, 503 OwnDeserializationListener, Preamble, 504 getFrontendOpts().UseGlobalModuleIndex); 505 } 506 507 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 508 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 509 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 510 const PCHContainerReader &PCHContainerRdr, 511 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 512 DependencyFileGenerator *DependencyFile, 513 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 514 void *DeserializationListener, bool OwnDeserializationListener, 515 bool Preamble, bool UseGlobalModuleIndex) { 516 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 517 518 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 519 PP, Context, PCHContainerRdr, Extensions, 520 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 521 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 522 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 523 524 // We need the external source to be set up before we read the AST, because 525 // eagerly-deserialized declarations may use it. 526 Context.setExternalSource(Reader.get()); 527 528 Reader->setDeserializationListener( 529 static_cast<ASTDeserializationListener *>(DeserializationListener), 530 /*TakeOwnership=*/OwnDeserializationListener); 531 532 if (DependencyFile) 533 DependencyFile->AttachToASTReader(*Reader); 534 for (auto &Listener : DependencyCollectors) 535 Listener->attachToASTReader(*Reader); 536 537 switch (Reader->ReadAST(Path, 538 Preamble ? serialization::MK_Preamble 539 : serialization::MK_PCH, 540 SourceLocation(), 541 ASTReader::ARR_None)) { 542 case ASTReader::Success: 543 // Set the predefines buffer as suggested by the PCH reader. Typically, the 544 // predefines buffer will be empty. 545 PP.setPredefines(Reader->getSuggestedPredefines()); 546 return Reader; 547 548 case ASTReader::Failure: 549 // Unrecoverable failure: don't even try to process the input file. 550 break; 551 552 case ASTReader::Missing: 553 case ASTReader::OutOfDate: 554 case ASTReader::VersionMismatch: 555 case ASTReader::ConfigurationMismatch: 556 case ASTReader::HadErrors: 557 // No suitable PCH file could be found. Return an error. 558 break; 559 } 560 561 Context.setExternalSource(nullptr); 562 return nullptr; 563 } 564 565 // Code Completion 566 567 static bool EnableCodeCompletion(Preprocessor &PP, 568 StringRef Filename, 569 unsigned Line, 570 unsigned Column) { 571 // Tell the source manager to chop off the given file at a specific 572 // line and column. 573 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 574 if (!Entry) { 575 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 576 << Filename; 577 return true; 578 } 579 580 // Truncate the named file at the given line/column. 581 PP.SetCodeCompletionPoint(Entry, Line, Column); 582 return false; 583 } 584 585 void CompilerInstance::createCodeCompletionConsumer() { 586 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 587 if (!CompletionConsumer) { 588 setCodeCompletionConsumer( 589 createCodeCompletionConsumer(getPreprocessor(), 590 Loc.FileName, Loc.Line, Loc.Column, 591 getFrontendOpts().CodeCompleteOpts, 592 llvm::outs())); 593 if (!CompletionConsumer) 594 return; 595 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 596 Loc.Line, Loc.Column)) { 597 setCodeCompletionConsumer(nullptr); 598 return; 599 } 600 601 if (CompletionConsumer->isOutputBinary() && 602 llvm::sys::ChangeStdoutToBinary()) { 603 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 604 setCodeCompletionConsumer(nullptr); 605 } 606 } 607 608 void CompilerInstance::createFrontendTimer() { 609 FrontendTimerGroup.reset( 610 new llvm::TimerGroup("frontend", "Clang front-end time report")); 611 FrontendTimer.reset( 612 new llvm::Timer("frontend", "Clang front-end timer", 613 *FrontendTimerGroup)); 614 } 615 616 CodeCompleteConsumer * 617 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 618 StringRef Filename, 619 unsigned Line, 620 unsigned Column, 621 const CodeCompleteOptions &Opts, 622 raw_ostream &OS) { 623 if (EnableCodeCompletion(PP, Filename, Line, Column)) 624 return nullptr; 625 626 // Set up the creation routine for code-completion. 627 return new PrintingCodeCompleteConsumer(Opts, OS); 628 } 629 630 void CompilerInstance::createSema(TranslationUnitKind TUKind, 631 CodeCompleteConsumer *CompletionConsumer) { 632 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 633 TUKind, CompletionConsumer)); 634 // Attach the external sema source if there is any. 635 if (ExternalSemaSrc) { 636 TheSema->addExternalSource(ExternalSemaSrc.get()); 637 ExternalSemaSrc->InitializeSema(*TheSema); 638 } 639 } 640 641 // Output Files 642 643 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 644 OutputFiles.push_back(std::move(OutFile)); 645 } 646 647 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 648 for (OutputFile &OF : OutputFiles) { 649 if (!OF.TempFilename.empty()) { 650 if (EraseFiles) { 651 llvm::sys::fs::remove(OF.TempFilename); 652 } else { 653 SmallString<128> NewOutFile(OF.Filename); 654 655 // If '-working-directory' was passed, the output filename should be 656 // relative to that. 657 FileMgr->FixupRelativePath(NewOutFile); 658 if (std::error_code ec = 659 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 660 getDiagnostics().Report(diag::err_unable_to_rename_temp) 661 << OF.TempFilename << OF.Filename << ec.message(); 662 663 llvm::sys::fs::remove(OF.TempFilename); 664 } 665 } 666 } else if (!OF.Filename.empty() && EraseFiles) 667 llvm::sys::fs::remove(OF.Filename); 668 } 669 OutputFiles.clear(); 670 if (DeleteBuiltModules) { 671 for (auto &Module : BuiltModules) 672 llvm::sys::fs::remove(Module.second); 673 BuiltModules.clear(); 674 } 675 NonSeekStream.reset(); 676 } 677 678 std::unique_ptr<raw_pwrite_stream> 679 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 680 StringRef Extension) { 681 return createOutputFile(getFrontendOpts().OutputFile, Binary, 682 /*RemoveFileOnSignal=*/true, InFile, Extension, 683 /*UseTemporary=*/true); 684 } 685 686 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 687 return llvm::make_unique<llvm::raw_null_ostream>(); 688 } 689 690 std::unique_ptr<raw_pwrite_stream> 691 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 692 bool RemoveFileOnSignal, StringRef InFile, 693 StringRef Extension, bool UseTemporary, 694 bool CreateMissingDirectories) { 695 std::string OutputPathName, TempPathName; 696 std::error_code EC; 697 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 698 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 699 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 700 if (!OS) { 701 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 702 << EC.message(); 703 return nullptr; 704 } 705 706 // Add the output file -- but don't try to remove "-", since this means we are 707 // using stdin. 708 addOutputFile( 709 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 710 711 return OS; 712 } 713 714 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 715 StringRef OutputPath, std::error_code &Error, bool Binary, 716 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 717 bool UseTemporary, bool CreateMissingDirectories, 718 std::string *ResultPathName, std::string *TempPathName) { 719 assert((!CreateMissingDirectories || UseTemporary) && 720 "CreateMissingDirectories is only allowed when using temporary files"); 721 722 std::string OutFile, TempFile; 723 if (!OutputPath.empty()) { 724 OutFile = OutputPath; 725 } else if (InFile == "-") { 726 OutFile = "-"; 727 } else if (!Extension.empty()) { 728 SmallString<128> Path(InFile); 729 llvm::sys::path::replace_extension(Path, Extension); 730 OutFile = Path.str(); 731 } else { 732 OutFile = "-"; 733 } 734 735 std::unique_ptr<llvm::raw_fd_ostream> OS; 736 std::string OSFile; 737 738 if (UseTemporary) { 739 if (OutFile == "-") 740 UseTemporary = false; 741 else { 742 llvm::sys::fs::file_status Status; 743 llvm::sys::fs::status(OutputPath, Status); 744 if (llvm::sys::fs::exists(Status)) { 745 // Fail early if we can't write to the final destination. 746 if (!llvm::sys::fs::can_write(OutputPath)) { 747 Error = make_error_code(llvm::errc::operation_not_permitted); 748 return nullptr; 749 } 750 751 // Don't use a temporary if the output is a special file. This handles 752 // things like '-o /dev/null' 753 if (!llvm::sys::fs::is_regular_file(Status)) 754 UseTemporary = false; 755 } 756 } 757 } 758 759 if (UseTemporary) { 760 // Create a temporary file. 761 SmallString<128> TempPath; 762 TempPath = OutFile; 763 TempPath += "-%%%%%%%%"; 764 int fd; 765 std::error_code EC = 766 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 767 768 if (CreateMissingDirectories && 769 EC == llvm::errc::no_such_file_or_directory) { 770 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 771 EC = llvm::sys::fs::create_directories(Parent); 772 if (!EC) { 773 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 774 } 775 } 776 777 if (!EC) { 778 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 779 OSFile = TempFile = TempPath.str(); 780 } 781 // If we failed to create the temporary, fallback to writing to the file 782 // directly. This handles the corner case where we cannot write to the 783 // directory, but can write to the file. 784 } 785 786 if (!OS) { 787 OSFile = OutFile; 788 OS.reset(new llvm::raw_fd_ostream( 789 OSFile, Error, 790 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 791 if (Error) 792 return nullptr; 793 } 794 795 // Make sure the out stream file gets removed if we crash. 796 if (RemoveFileOnSignal) 797 llvm::sys::RemoveFileOnSignal(OSFile); 798 799 if (ResultPathName) 800 *ResultPathName = OutFile; 801 if (TempPathName) 802 *TempPathName = TempFile; 803 804 if (!Binary || OS->supportsSeeking()) 805 return std::move(OS); 806 807 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 808 assert(!NonSeekStream); 809 NonSeekStream = std::move(OS); 810 return std::move(B); 811 } 812 813 // Initialization Utilities 814 815 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 816 return InitializeSourceManager( 817 Input, getDiagnostics(), getFileManager(), getSourceManager(), 818 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 819 getDependencyOutputOpts(), getFrontendOpts()); 820 } 821 822 // static 823 bool CompilerInstance::InitializeSourceManager( 824 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 825 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 826 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 827 SrcMgr::CharacteristicKind 828 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 829 830 if (Input.isBuffer()) { 831 SourceMgr.setMainFileID(SourceMgr.createFileID( 832 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 833 assert(SourceMgr.getMainFileID().isValid() && 834 "Couldn't establish MainFileID!"); 835 return true; 836 } 837 838 StringRef InputFile = Input.getFile(); 839 840 // Figure out where to get and map in the main file. 841 if (InputFile != "-") { 842 const FileEntry *File; 843 if (Opts.FindPchSource.empty()) { 844 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 845 } else { 846 // When building a pch file in clang-cl mode, the .h file is built as if 847 // it was included by a cc file. Since the driver doesn't know about 848 // all include search directories, the frontend must search the input 849 // file through HeaderSearch here, as if it had been included by the 850 // cc file at Opts.FindPchSource. 851 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 852 if (!FindFile) { 853 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 854 return false; 855 } 856 const DirectoryLookup *UnusedCurDir; 857 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 858 Includers; 859 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 860 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 861 /*FromDir=*/nullptr, 862 /*CurDir=*/UnusedCurDir, Includers, 863 /*SearchPath=*/nullptr, 864 /*RelativePath=*/nullptr, 865 /*RequestingModule=*/nullptr, 866 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 867 /*SkipCache=*/true); 868 // Also add the header to /showIncludes output. 869 if (File) 870 DepOpts.ShowIncludesPretendHeader = File->getName(); 871 } 872 if (!File) { 873 Diags.Report(diag::err_fe_error_reading) << InputFile; 874 return false; 875 } 876 877 // The natural SourceManager infrastructure can't currently handle named 878 // pipes, but we would at least like to accept them for the main 879 // file. Detect them here, read them with the volatile flag so FileMgr will 880 // pick up the correct size, and simply override their contents as we do for 881 // STDIN. 882 if (File->isNamedPipe()) { 883 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 884 if (MB) { 885 // Create a new virtual file that will have the correct size. 886 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 887 SourceMgr.overrideFileContents(File, std::move(*MB)); 888 } else { 889 Diags.Report(diag::err_cannot_open_file) << InputFile 890 << MB.getError().message(); 891 return false; 892 } 893 } 894 895 SourceMgr.setMainFileID( 896 SourceMgr.createFileID(File, SourceLocation(), Kind)); 897 } else { 898 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 899 llvm::MemoryBuffer::getSTDIN(); 900 if (std::error_code EC = SBOrErr.getError()) { 901 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 902 return false; 903 } 904 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 905 906 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 907 SB->getBufferSize(), 0); 908 SourceMgr.setMainFileID( 909 SourceMgr.createFileID(File, SourceLocation(), Kind)); 910 SourceMgr.overrideFileContents(File, std::move(SB)); 911 } 912 913 assert(SourceMgr.getMainFileID().isValid() && 914 "Couldn't establish MainFileID!"); 915 return true; 916 } 917 918 // High-Level Operations 919 920 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 921 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 922 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 923 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 924 925 // FIXME: Take this as an argument, once all the APIs we used have moved to 926 // taking it as an input instead of hard-coding llvm::errs. 927 raw_ostream &OS = llvm::errs(); 928 929 // Create the target instance. 930 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 931 getInvocation().TargetOpts)); 932 if (!hasTarget()) 933 return false; 934 935 // Create TargetInfo for the other side of CUDA compilation. 936 if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) { 937 auto TO = std::make_shared<TargetOptions>(); 938 TO->Triple = getFrontendOpts().AuxTriple; 939 TO->HostTriple = getTarget().getTriple().str(); 940 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 941 } 942 943 // Inform the target of the language options. 944 // 945 // FIXME: We shouldn't need to do this, the target should be immutable once 946 // created. This complexity should be lifted elsewhere. 947 getTarget().adjust(getLangOpts()); 948 949 // Adjust target options based on codegen options. 950 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 951 952 // rewriter project will change target built-in bool type from its default. 953 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 954 getTarget().noSignedCharForObjCBool(); 955 956 // Validate/process some options. 957 if (getHeaderSearchOpts().Verbose) 958 OS << "clang -cc1 version " CLANG_VERSION_STRING 959 << " based upon " << BACKEND_PACKAGE_STRING 960 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 961 962 if (getFrontendOpts().ShowTimers) 963 createFrontendTimer(); 964 965 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 966 llvm::EnableStatistics(false); 967 968 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 969 // Reset the ID tables if we are reusing the SourceManager and parsing 970 // regular files. 971 if (hasSourceManager() && !Act.isModelParsingAction()) 972 getSourceManager().clearIDTables(); 973 974 if (Act.BeginSourceFile(*this, FIF)) { 975 Act.Execute(); 976 Act.EndSourceFile(); 977 } 978 } 979 980 // Notify the diagnostic client that all files were processed. 981 getDiagnostics().getClient()->finish(); 982 983 if (getDiagnosticOpts().ShowCarets) { 984 // We can have multiple diagnostics sharing one diagnostic client. 985 // Get the total number of warnings/errors from the client. 986 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 987 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 988 989 if (NumWarnings) 990 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 991 if (NumWarnings && NumErrors) 992 OS << " and "; 993 if (NumErrors) 994 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 995 if (NumWarnings || NumErrors) 996 OS << " generated.\n"; 997 } 998 999 if (getFrontendOpts().ShowStats) { 1000 if (hasFileManager()) { 1001 getFileManager().PrintStats(); 1002 OS << '\n'; 1003 } 1004 llvm::PrintStatistics(OS); 1005 } 1006 StringRef StatsFile = getFrontendOpts().StatsFile; 1007 if (!StatsFile.empty()) { 1008 std::error_code EC; 1009 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1010 llvm::sys::fs::F_Text); 1011 if (EC) { 1012 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1013 << StatsFile << EC.message(); 1014 } else { 1015 llvm::PrintStatisticsJSON(*StatS); 1016 } 1017 } 1018 1019 return !getDiagnostics().getClient()->getNumErrors(); 1020 } 1021 1022 /// \brief Determine the appropriate source input kind based on language 1023 /// options. 1024 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { 1025 if (LangOpts.OpenCL) 1026 return InputKind::OpenCL; 1027 if (LangOpts.CUDA) 1028 return InputKind::CUDA; 1029 if (LangOpts.ObjC1) 1030 return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; 1031 return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; 1032 } 1033 1034 /// \brief Compile a module file for the given module, using the options 1035 /// provided by the importing compiler instance. Returns true if the module 1036 /// was built without errors. 1037 static bool 1038 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1039 StringRef ModuleName, FrontendInputFile Input, 1040 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1041 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1042 [](CompilerInstance &) {}, 1043 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1044 [](CompilerInstance &) {}) { 1045 // Construct a compiler invocation for creating this module. 1046 auto Invocation = 1047 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1048 1049 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1050 1051 // For any options that aren't intended to affect how a module is built, 1052 // reset them to their default values. 1053 Invocation->getLangOpts()->resetNonModularOptions(); 1054 PPOpts.resetNonModularOptions(); 1055 1056 // Remove any macro definitions that are explicitly ignored by the module. 1057 // They aren't supposed to affect how the module is built anyway. 1058 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1059 PPOpts.Macros.erase( 1060 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1061 [&HSOpts](const std::pair<std::string, bool> &def) { 1062 StringRef MacroDef = def.first; 1063 return HSOpts.ModulesIgnoreMacros.count( 1064 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1065 }), 1066 PPOpts.Macros.end()); 1067 1068 // Note the name of the module we're building. 1069 Invocation->getLangOpts()->CurrentModule = ModuleName; 1070 1071 // Make sure that the failed-module structure has been allocated in 1072 // the importing instance, and propagate the pointer to the newly-created 1073 // instance. 1074 PreprocessorOptions &ImportingPPOpts 1075 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1076 if (!ImportingPPOpts.FailedModules) 1077 ImportingPPOpts.FailedModules = 1078 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1079 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1080 1081 // If there is a module map file, build the module using the module map. 1082 // Set up the inputs/outputs so that we build the module from its umbrella 1083 // header. 1084 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1085 FrontendOpts.OutputFile = ModuleFileName.str(); 1086 FrontendOpts.DisableFree = false; 1087 FrontendOpts.GenerateGlobalModuleIndex = false; 1088 FrontendOpts.BuildingImplicitModule = true; 1089 FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; 1090 // Force implicitly-built modules to hash the content of the module file. 1091 HSOpts.ModulesHashContent = true; 1092 FrontendOpts.Inputs = {Input}; 1093 1094 // Don't free the remapped file buffers; they are owned by our caller. 1095 PPOpts.RetainRemappedFileBuffers = true; 1096 1097 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1098 assert(ImportingInstance.getInvocation().getModuleHash() == 1099 Invocation->getModuleHash() && "Module hash mismatch!"); 1100 1101 // Construct a compiler instance that will be used to actually create the 1102 // module. Since we're sharing a PCMCache, 1103 // CompilerInstance::CompilerInstance is responsible for finalizing the 1104 // buffers to prevent use-after-frees. 1105 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1106 &ImportingInstance.getPreprocessor().getPCMCache()); 1107 auto &Inv = *Invocation; 1108 Instance.setInvocation(std::move(Invocation)); 1109 1110 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1111 ImportingInstance.getDiagnosticClient()), 1112 /*ShouldOwnClient=*/true); 1113 1114 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1115 1116 // Note that this module is part of the module build stack, so that we 1117 // can detect cycles in the module graph. 1118 Instance.setFileManager(&ImportingInstance.getFileManager()); 1119 Instance.createSourceManager(Instance.getFileManager()); 1120 SourceManager &SourceMgr = Instance.getSourceManager(); 1121 SourceMgr.setModuleBuildStack( 1122 ImportingInstance.getSourceManager().getModuleBuildStack()); 1123 SourceMgr.pushModuleBuildStack(ModuleName, 1124 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1125 1126 // If we're collecting module dependencies, we need to share a collector 1127 // between all of the module CompilerInstances. Other than that, we don't 1128 // want to produce any dependency output from the module build. 1129 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1130 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1131 1132 ImportingInstance.getDiagnostics().Report(ImportLoc, 1133 diag::remark_module_build) 1134 << ModuleName << ModuleFileName; 1135 1136 PreBuildStep(Instance); 1137 1138 // Execute the action to actually build the module in-place. Use a separate 1139 // thread so that we get a stack large enough. 1140 const unsigned ThreadStackSize = 8 << 20; 1141 llvm::CrashRecoveryContext CRC; 1142 CRC.RunSafelyOnThread( 1143 [&]() { 1144 GenerateModuleFromModuleMapAction Action; 1145 Instance.ExecuteAction(Action); 1146 }, 1147 ThreadStackSize); 1148 1149 PostBuildStep(Instance); 1150 1151 ImportingInstance.getDiagnostics().Report(ImportLoc, 1152 diag::remark_module_build_done) 1153 << ModuleName; 1154 1155 // Delete the temporary module map file. 1156 // FIXME: Even though we're executing under crash protection, it would still 1157 // be nice to do this with RemoveFileOnSignal when we can. However, that 1158 // doesn't make sense for all clients, so clean this up manually. 1159 Instance.clearOutputFiles(/*EraseFiles=*/true); 1160 1161 return !Instance.getDiagnostics().hasErrorOccurred(); 1162 } 1163 1164 /// \brief Compile a module file for the given module, using the options 1165 /// provided by the importing compiler instance. Returns true if the module 1166 /// was built without errors. 1167 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1168 SourceLocation ImportLoc, 1169 Module *Module, 1170 StringRef ModuleFileName) { 1171 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1172 InputKind::ModuleMap); 1173 1174 // Get or create the module map that we'll use to build this module. 1175 ModuleMap &ModMap 1176 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1177 bool Result; 1178 if (const FileEntry *ModuleMapFile = 1179 ModMap.getContainingModuleMapFile(Module)) { 1180 // Use the module map where this module resides. 1181 Result = compileModuleImpl( 1182 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1183 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1184 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1185 ModuleFileName); 1186 } else { 1187 // FIXME: We only need to fake up an input file here as a way of 1188 // transporting the module's directory to the module map parser. We should 1189 // be able to do that more directly, and parse from a memory buffer without 1190 // inventing this file. 1191 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1192 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1193 1194 std::string InferredModuleMapContent; 1195 llvm::raw_string_ostream OS(InferredModuleMapContent); 1196 Module->print(OS); 1197 OS.flush(); 1198 1199 Result = compileModuleImpl( 1200 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1201 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1202 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1203 ModuleFileName, 1204 [&](CompilerInstance &Instance) { 1205 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1206 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1207 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1208 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1209 Instance.getSourceManager().overrideFileContents( 1210 ModuleMapFile, std::move(ModuleMapBuffer)); 1211 }); 1212 } 1213 1214 // We've rebuilt a module. If we're allowed to generate or update the global 1215 // module index, record that fact in the importing compiler instance. 1216 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1217 ImportingInstance.setBuildGlobalModuleIndex(true); 1218 } 1219 1220 return Result; 1221 } 1222 1223 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1224 SourceLocation ImportLoc, 1225 SourceLocation ModuleNameLoc, Module *Module, 1226 StringRef ModuleFileName) { 1227 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1228 1229 auto diagnoseBuildFailure = [&] { 1230 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1231 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1232 }; 1233 1234 // FIXME: have LockFileManager return an error_code so that we can 1235 // avoid the mkdir when the directory already exists. 1236 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1237 llvm::sys::fs::create_directories(Dir); 1238 1239 while (1) { 1240 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1241 llvm::LockFileManager Locked(ModuleFileName); 1242 switch (Locked) { 1243 case llvm::LockFileManager::LFS_Error: 1244 // PCMCache takes care of correctness and locks are only necessary for 1245 // performance. Fallback to building the module in case of any lock 1246 // related errors. 1247 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1248 << Module->Name << Locked.getErrorMessage(); 1249 // Clear out any potential leftover. 1250 Locked.unsafeRemoveLockFile(); 1251 // FALLTHROUGH 1252 case llvm::LockFileManager::LFS_Owned: 1253 // We're responsible for building the module ourselves. 1254 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1255 ModuleFileName)) { 1256 diagnoseBuildFailure(); 1257 return false; 1258 } 1259 break; 1260 1261 case llvm::LockFileManager::LFS_Shared: 1262 // Someone else is responsible for building the module. Wait for them to 1263 // finish. 1264 switch (Locked.waitForUnlock()) { 1265 case llvm::LockFileManager::Res_Success: 1266 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1267 break; 1268 case llvm::LockFileManager::Res_OwnerDied: 1269 continue; // try again to get the lock. 1270 case llvm::LockFileManager::Res_Timeout: 1271 // Since PCMCache takes care of correctness, we try waiting for another 1272 // process to complete the build so clang does not do it done twice. If 1273 // case of timeout, build it ourselves. 1274 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1275 << Module->Name; 1276 // Clear the lock file so that future invokations can make progress. 1277 Locked.unsafeRemoveLockFile(); 1278 continue; 1279 } 1280 break; 1281 } 1282 1283 // Try to read the module file, now that we've compiled it. 1284 ASTReader::ASTReadResult ReadResult = 1285 ImportingInstance.getModuleManager()->ReadAST( 1286 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1287 ModuleLoadCapabilities); 1288 1289 if (ReadResult == ASTReader::OutOfDate && 1290 Locked == llvm::LockFileManager::LFS_Shared) { 1291 // The module may be out of date in the presence of file system races, 1292 // or if one of its imports depends on header search paths that are not 1293 // consistent with this ImportingInstance. Try again... 1294 continue; 1295 } else if (ReadResult == ASTReader::Missing) { 1296 diagnoseBuildFailure(); 1297 } else if (ReadResult != ASTReader::Success && 1298 !Diags.hasErrorOccurred()) { 1299 // The ASTReader didn't diagnose the error, so conservatively report it. 1300 diagnoseBuildFailure(); 1301 } 1302 return ReadResult == ASTReader::Success; 1303 } 1304 } 1305 1306 /// \brief Diagnose differences between the current definition of the given 1307 /// configuration macro and the definition provided on the command line. 1308 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1309 Module *Mod, SourceLocation ImportLoc) { 1310 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1311 SourceManager &SourceMgr = PP.getSourceManager(); 1312 1313 // If this identifier has never had a macro definition, then it could 1314 // not have changed. 1315 if (!Id->hadMacroDefinition()) 1316 return; 1317 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1318 1319 // Find the macro definition from the command line. 1320 MacroInfo *CmdLineDefinition = nullptr; 1321 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1322 // We only care about the predefines buffer. 1323 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1324 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1325 continue; 1326 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1327 CmdLineDefinition = DMD->getMacroInfo(); 1328 break; 1329 } 1330 1331 auto *CurrentDefinition = PP.getMacroInfo(Id); 1332 if (CurrentDefinition == CmdLineDefinition) { 1333 // Macro matches. Nothing to do. 1334 } else if (!CurrentDefinition) { 1335 // This macro was defined on the command line, then #undef'd later. 1336 // Complain. 1337 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1338 << true << ConfigMacro << Mod->getFullModuleName(); 1339 auto LatestDef = LatestLocalMD->getDefinition(); 1340 assert(LatestDef.isUndefined() && 1341 "predefined macro went away with no #undef?"); 1342 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1343 << true; 1344 return; 1345 } else if (!CmdLineDefinition) { 1346 // There was no definition for this macro in the predefines buffer, 1347 // but there was a local definition. Complain. 1348 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1349 << false << ConfigMacro << Mod->getFullModuleName(); 1350 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1351 diag::note_module_def_undef_here) 1352 << false; 1353 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1354 /*Syntactically=*/true)) { 1355 // The macro definitions differ. 1356 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1357 << false << ConfigMacro << Mod->getFullModuleName(); 1358 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1359 diag::note_module_def_undef_here) 1360 << false; 1361 } 1362 } 1363 1364 /// \brief Write a new timestamp file with the given path. 1365 static void writeTimestampFile(StringRef TimestampFile) { 1366 std::error_code EC; 1367 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1368 } 1369 1370 /// \brief Prune the module cache of modules that haven't been accessed in 1371 /// a long time. 1372 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1373 struct stat StatBuf; 1374 llvm::SmallString<128> TimestampFile; 1375 TimestampFile = HSOpts.ModuleCachePath; 1376 assert(!TimestampFile.empty()); 1377 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1378 1379 // Try to stat() the timestamp file. 1380 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1381 // If the timestamp file wasn't there, create one now. 1382 if (errno == ENOENT) { 1383 writeTimestampFile(TimestampFile); 1384 } 1385 return; 1386 } 1387 1388 // Check whether the time stamp is older than our pruning interval. 1389 // If not, do nothing. 1390 time_t TimeStampModTime = StatBuf.st_mtime; 1391 time_t CurrentTime = time(nullptr); 1392 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1393 return; 1394 1395 // Write a new timestamp file so that nobody else attempts to prune. 1396 // There is a benign race condition here, if two Clang instances happen to 1397 // notice at the same time that the timestamp is out-of-date. 1398 writeTimestampFile(TimestampFile); 1399 1400 // Walk the entire module cache, looking for unused module files and module 1401 // indices. 1402 std::error_code EC; 1403 SmallString<128> ModuleCachePathNative; 1404 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1405 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1406 Dir != DirEnd && !EC; Dir.increment(EC)) { 1407 // If we don't have a directory, there's nothing to look into. 1408 if (!llvm::sys::fs::is_directory(Dir->path())) 1409 continue; 1410 1411 // Walk all of the files within this directory. 1412 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1413 File != FileEnd && !EC; File.increment(EC)) { 1414 // We only care about module and global module index files. 1415 StringRef Extension = llvm::sys::path::extension(File->path()); 1416 if (Extension != ".pcm" && Extension != ".timestamp" && 1417 llvm::sys::path::filename(File->path()) != "modules.idx") 1418 continue; 1419 1420 // Look at this file. If we can't stat it, there's nothing interesting 1421 // there. 1422 if (::stat(File->path().c_str(), &StatBuf)) 1423 continue; 1424 1425 // If the file has been used recently enough, leave it there. 1426 time_t FileAccessTime = StatBuf.st_atime; 1427 if (CurrentTime - FileAccessTime <= 1428 time_t(HSOpts.ModuleCachePruneAfter)) { 1429 continue; 1430 } 1431 1432 // Remove the file. 1433 llvm::sys::fs::remove(File->path()); 1434 1435 // Remove the timestamp file. 1436 std::string TimpestampFilename = File->path() + ".timestamp"; 1437 llvm::sys::fs::remove(TimpestampFilename); 1438 } 1439 1440 // If we removed all of the files in the directory, remove the directory 1441 // itself. 1442 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1443 llvm::sys::fs::directory_iterator() && !EC) 1444 llvm::sys::fs::remove(Dir->path()); 1445 } 1446 } 1447 1448 void CompilerInstance::createModuleManager() { 1449 if (!ModuleManager) { 1450 if (!hasASTContext()) 1451 createASTContext(); 1452 1453 // If we're implicitly building modules but not currently recursively 1454 // building a module, check whether we need to prune the module cache. 1455 if (getSourceManager().getModuleBuildStack().empty() && 1456 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1457 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1458 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1459 pruneModuleCache(getHeaderSearchOpts()); 1460 } 1461 1462 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1463 std::string Sysroot = HSOpts.Sysroot; 1464 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1465 std::unique_ptr<llvm::Timer> ReadTimer; 1466 if (FrontendTimerGroup) 1467 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1468 "Reading modules", 1469 *FrontendTimerGroup); 1470 ModuleManager = new ASTReader( 1471 getPreprocessor(), getASTContext(), getPCHContainerReader(), 1472 getFrontendOpts().ModuleFileExtensions, 1473 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1474 /*AllowASTWithCompilerErrors=*/false, 1475 /*AllowConfigurationMismatch=*/false, 1476 HSOpts.ModulesValidateSystemHeaders, 1477 getFrontendOpts().UseGlobalModuleIndex, 1478 std::move(ReadTimer)); 1479 if (hasASTConsumer()) { 1480 ModuleManager->setDeserializationListener( 1481 getASTConsumer().GetASTDeserializationListener()); 1482 getASTContext().setASTMutationListener( 1483 getASTConsumer().GetASTMutationListener()); 1484 } 1485 getASTContext().setExternalSource(ModuleManager); 1486 if (hasSema()) 1487 ModuleManager->InitializeSema(getSema()); 1488 if (hasASTConsumer()) 1489 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1490 1491 if (TheDependencyFileGenerator) 1492 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1493 for (auto &Listener : DependencyCollectors) 1494 Listener->attachToASTReader(*ModuleManager); 1495 } 1496 } 1497 1498 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1499 llvm::Timer Timer; 1500 if (FrontendTimerGroup) 1501 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1502 *FrontendTimerGroup); 1503 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1504 1505 // Helper to recursively read the module names for all modules we're adding. 1506 // We mark these as known and redirect any attempt to load that module to 1507 // the files we were handed. 1508 struct ReadModuleNames : ASTReaderListener { 1509 CompilerInstance &CI; 1510 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1511 1512 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1513 1514 void ReadModuleName(StringRef ModuleName) override { 1515 LoadedModules.push_back( 1516 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1517 } 1518 1519 void registerAll() { 1520 for (auto *II : LoadedModules) { 1521 CI.KnownModules[II] = CI.getPreprocessor() 1522 .getHeaderSearchInfo() 1523 .getModuleMap() 1524 .findModule(II->getName()); 1525 } 1526 LoadedModules.clear(); 1527 } 1528 1529 void markAllUnavailable() { 1530 for (auto *II : LoadedModules) { 1531 if (Module *M = CI.getPreprocessor() 1532 .getHeaderSearchInfo() 1533 .getModuleMap() 1534 .findModule(II->getName())) { 1535 M->HasIncompatibleModuleFile = true; 1536 1537 // Mark module as available if the only reason it was unavailable 1538 // was missing headers. 1539 SmallVector<Module *, 2> Stack; 1540 Stack.push_back(M); 1541 while (!Stack.empty()) { 1542 Module *Current = Stack.pop_back_val(); 1543 if (Current->IsMissingRequirement) continue; 1544 Current->IsAvailable = true; 1545 Stack.insert(Stack.end(), 1546 Current->submodule_begin(), Current->submodule_end()); 1547 } 1548 } 1549 } 1550 LoadedModules.clear(); 1551 } 1552 }; 1553 1554 // If we don't already have an ASTReader, create one now. 1555 if (!ModuleManager) 1556 createModuleManager(); 1557 1558 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1559 auto &ListenerRef = *Listener; 1560 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1561 std::move(Listener)); 1562 1563 // Try to load the module file. 1564 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1565 SourceLocation(), 1566 ASTReader::ARR_ConfigurationMismatch)) { 1567 case ASTReader::Success: 1568 // We successfully loaded the module file; remember the set of provided 1569 // modules so that we don't try to load implicit modules for them. 1570 ListenerRef.registerAll(); 1571 return true; 1572 1573 case ASTReader::ConfigurationMismatch: 1574 // Ignore unusable module files. 1575 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1576 << FileName; 1577 // All modules provided by any files we tried and failed to load are now 1578 // unavailable; includes of those modules should now be handled textually. 1579 ListenerRef.markAllUnavailable(); 1580 return true; 1581 1582 default: 1583 return false; 1584 } 1585 } 1586 1587 ModuleLoadResult 1588 CompilerInstance::loadModule(SourceLocation ImportLoc, 1589 ModuleIdPath Path, 1590 Module::NameVisibilityKind Visibility, 1591 bool IsInclusionDirective) { 1592 // Determine what file we're searching from. 1593 StringRef ModuleName = Path[0].first->getName(); 1594 SourceLocation ModuleNameLoc = Path[0].second; 1595 1596 // If we've already handled this import, just return the cached result. 1597 // This one-element cache is important to eliminate redundant diagnostics 1598 // when both the preprocessor and parser see the same import declaration. 1599 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1600 // Make the named module visible. 1601 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1602 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1603 ImportLoc); 1604 return LastModuleImportResult; 1605 } 1606 1607 clang::Module *Module = nullptr; 1608 1609 // If we don't already have information on this module, load the module now. 1610 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1611 = KnownModules.find(Path[0].first); 1612 if (Known != KnownModules.end()) { 1613 // Retrieve the cached top-level module. 1614 Module = Known->second; 1615 } else if (ModuleName == getLangOpts().CurrentModule) { 1616 // This is the module we're building. 1617 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1618 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1619 } else { 1620 // Search for a module with the given name. 1621 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1622 HeaderSearchOptions &HSOpts = 1623 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1624 1625 std::string ModuleFileName; 1626 enum ModuleSource { 1627 ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma 1628 } Source = ModuleNotFound; 1629 1630 // Check to see if the module has been built as part of this compilation 1631 // via a module build pragma. 1632 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1633 if (BuiltModuleIt != BuiltModules.end()) { 1634 ModuleFileName = BuiltModuleIt->second; 1635 Source = ModuleBuildPragma; 1636 } 1637 1638 // Try to load the module from the prebuilt module path. 1639 if (Source == ModuleNotFound && !HSOpts.PrebuiltModulePaths.empty()) { 1640 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( 1641 ModuleName, "", /*UsePrebuiltPath*/ true); 1642 if (!ModuleFileName.empty()) 1643 Source = PrebuiltModulePath; 1644 } 1645 1646 // Try to load the module from the module cache. 1647 if (Source == ModuleNotFound && Module) { 1648 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); 1649 Source = ModuleCache; 1650 } 1651 1652 if (Source == ModuleNotFound) { 1653 // We can't find a module, error out here. 1654 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1655 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1656 ModuleBuildFailed = true; 1657 return ModuleLoadResult(); 1658 } 1659 1660 if (ModuleFileName.empty()) { 1661 if (Module && Module->HasIncompatibleModuleFile) { 1662 // We tried and failed to load a module file for this module. Fall 1663 // back to textual inclusion for its headers. 1664 return ModuleLoadResult::ConfigMismatch; 1665 } 1666 1667 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1668 << ModuleName; 1669 ModuleBuildFailed = true; 1670 return ModuleLoadResult(); 1671 } 1672 1673 // If we don't already have an ASTReader, create one now. 1674 if (!ModuleManager) 1675 createModuleManager(); 1676 1677 llvm::Timer Timer; 1678 if (FrontendTimerGroup) 1679 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1680 *FrontendTimerGroup); 1681 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1682 1683 // Try to load the module file. If we are not trying to load from the 1684 // module cache, we don't know how to rebuild modules. 1685 unsigned ARRFlags = Source == ModuleCache ? 1686 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : 1687 ASTReader::ARR_ConfigurationMismatch; 1688 switch (ModuleManager->ReadAST(ModuleFileName, 1689 Source == PrebuiltModulePath 1690 ? serialization::MK_PrebuiltModule 1691 : Source == ModuleBuildPragma 1692 ? serialization::MK_ExplicitModule 1693 : serialization::MK_ImplicitModule, 1694 ImportLoc, ARRFlags)) { 1695 case ASTReader::Success: { 1696 if (Source != ModuleCache && !Module) { 1697 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1698 if (!Module || !Module->getASTFile() || 1699 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1700 // Error out if Module does not refer to the file in the prebuilt 1701 // module path. 1702 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1703 << ModuleName; 1704 ModuleBuildFailed = true; 1705 KnownModules[Path[0].first] = nullptr; 1706 return ModuleLoadResult(); 1707 } 1708 } 1709 break; 1710 } 1711 1712 case ASTReader::OutOfDate: 1713 case ASTReader::Missing: { 1714 if (Source != ModuleCache) { 1715 // We don't know the desired configuration for this module and don't 1716 // necessarily even have a module map. Since ReadAST already produces 1717 // diagnostics for these two cases, we simply error out here. 1718 ModuleBuildFailed = true; 1719 KnownModules[Path[0].first] = nullptr; 1720 return ModuleLoadResult(); 1721 } 1722 1723 // The module file is missing or out-of-date. Build it. 1724 assert(Module && "missing module file"); 1725 // Check whether there is a cycle in the module graph. 1726 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1727 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1728 for (; Pos != PosEnd; ++Pos) { 1729 if (Pos->first == ModuleName) 1730 break; 1731 } 1732 1733 if (Pos != PosEnd) { 1734 SmallString<256> CyclePath; 1735 for (; Pos != PosEnd; ++Pos) { 1736 CyclePath += Pos->first; 1737 CyclePath += " -> "; 1738 } 1739 CyclePath += ModuleName; 1740 1741 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1742 << ModuleName << CyclePath; 1743 return ModuleLoadResult(); 1744 } 1745 1746 // Check whether we have already attempted to build this module (but 1747 // failed). 1748 if (getPreprocessorOpts().FailedModules && 1749 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1750 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1751 << ModuleName 1752 << SourceRange(ImportLoc, ModuleNameLoc); 1753 ModuleBuildFailed = true; 1754 return ModuleLoadResult(); 1755 } 1756 1757 // Try to compile and then load the module. 1758 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1759 ModuleFileName)) { 1760 assert(getDiagnostics().hasErrorOccurred() && 1761 "undiagnosed error in compileAndLoadModule"); 1762 if (getPreprocessorOpts().FailedModules) 1763 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1764 KnownModules[Path[0].first] = nullptr; 1765 ModuleBuildFailed = true; 1766 return ModuleLoadResult(); 1767 } 1768 1769 // Okay, we've rebuilt and now loaded the module. 1770 break; 1771 } 1772 1773 case ASTReader::ConfigurationMismatch: 1774 if (Source == PrebuiltModulePath) 1775 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1776 // produce a warning here! 1777 getDiagnostics().Report(SourceLocation(), 1778 diag::warn_module_config_mismatch) 1779 << ModuleFileName; 1780 // Fall through to error out. 1781 LLVM_FALLTHROUGH; 1782 case ASTReader::VersionMismatch: 1783 case ASTReader::HadErrors: 1784 ModuleLoader::HadFatalFailure = true; 1785 // FIXME: The ASTReader will already have complained, but can we shoehorn 1786 // that diagnostic information into a more useful form? 1787 KnownModules[Path[0].first] = nullptr; 1788 return ModuleLoadResult(); 1789 1790 case ASTReader::Failure: 1791 ModuleLoader::HadFatalFailure = true; 1792 // Already complained, but note now that we failed. 1793 KnownModules[Path[0].first] = nullptr; 1794 ModuleBuildFailed = true; 1795 return ModuleLoadResult(); 1796 } 1797 1798 // Cache the result of this top-level module lookup for later. 1799 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1800 } 1801 1802 // If we never found the module, fail. 1803 if (!Module) 1804 return ModuleLoadResult(); 1805 1806 // Verify that the rest of the module path actually corresponds to 1807 // a submodule. 1808 if (Path.size() > 1) { 1809 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1810 StringRef Name = Path[I].first->getName(); 1811 clang::Module *Sub = Module->findSubmodule(Name); 1812 1813 if (!Sub) { 1814 // Attempt to perform typo correction to find a module name that works. 1815 SmallVector<StringRef, 2> Best; 1816 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1817 1818 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1819 JEnd = Module->submodule_end(); 1820 J != JEnd; ++J) { 1821 unsigned ED = Name.edit_distance((*J)->Name, 1822 /*AllowReplacements=*/true, 1823 BestEditDistance); 1824 if (ED <= BestEditDistance) { 1825 if (ED < BestEditDistance) { 1826 Best.clear(); 1827 BestEditDistance = ED; 1828 } 1829 1830 Best.push_back((*J)->Name); 1831 } 1832 } 1833 1834 // If there was a clear winner, user it. 1835 if (Best.size() == 1) { 1836 getDiagnostics().Report(Path[I].second, 1837 diag::err_no_submodule_suggest) 1838 << Path[I].first << Module->getFullModuleName() << Best[0] 1839 << SourceRange(Path[0].second, Path[I-1].second) 1840 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1841 Best[0]); 1842 1843 Sub = Module->findSubmodule(Best[0]); 1844 } 1845 } 1846 1847 if (!Sub) { 1848 // No submodule by this name. Complain, and don't look for further 1849 // submodules. 1850 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1851 << Path[I].first << Module->getFullModuleName() 1852 << SourceRange(Path[0].second, Path[I-1].second); 1853 break; 1854 } 1855 1856 Module = Sub; 1857 } 1858 } 1859 1860 // Make the named module visible, if it's not already part of the module 1861 // we are parsing. 1862 if (ModuleName != getLangOpts().CurrentModule) { 1863 if (!Module->IsFromModuleFile) { 1864 // We have an umbrella header or directory that doesn't actually include 1865 // all of the headers within the directory it covers. Complain about 1866 // this missing submodule and recover by forgetting that we ever saw 1867 // this submodule. 1868 // FIXME: Should we detect this at module load time? It seems fairly 1869 // expensive (and rare). 1870 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1871 << Module->getFullModuleName() 1872 << SourceRange(Path.front().second, Path.back().second); 1873 1874 return ModuleLoadResult::MissingExpected; 1875 } 1876 1877 // Check whether this module is available. 1878 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 1879 getDiagnostics(), Module)) { 1880 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 1881 << SourceRange(Path.front().second, Path.back().second); 1882 LastModuleImportLoc = ImportLoc; 1883 LastModuleImportResult = ModuleLoadResult(); 1884 return ModuleLoadResult(); 1885 } 1886 1887 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1888 } 1889 1890 // Check for any configuration macros that have changed. 1891 clang::Module *TopModule = Module->getTopLevelModule(); 1892 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1893 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1894 Module, ImportLoc); 1895 } 1896 1897 LastModuleImportLoc = ImportLoc; 1898 LastModuleImportResult = ModuleLoadResult(Module); 1899 return LastModuleImportResult; 1900 } 1901 1902 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, 1903 StringRef ModuleName, 1904 StringRef Source) { 1905 // FIXME: Using a randomized filename here means that our intermediate .pcm 1906 // output is nondeterministic (as .pcm files refer to each other by name). 1907 // Can this affect the output in any way? 1908 SmallString<128> ModuleFileName; 1909 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 1910 ModuleName, "pcm", ModuleFileName)) { 1911 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 1912 << ModuleFileName << EC.message(); 1913 return; 1914 } 1915 std::string ModuleMapFileName = (ModuleName + ".map").str(); 1916 1917 FrontendInputFile Input( 1918 ModuleMapFileName, 1919 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 1920 InputKind::ModuleMap, /*Preprocessed*/true)); 1921 1922 std::string NullTerminatedSource(Source.str()); 1923 1924 auto PreBuildStep = [&](CompilerInstance &Other) { 1925 // Create a virtual file containing our desired source. 1926 // FIXME: We shouldn't need to do this. 1927 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 1928 ModuleMapFileName, NullTerminatedSource.size(), 0); 1929 Other.getSourceManager().overrideFileContents( 1930 ModuleMapFile, 1931 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 1932 1933 Other.BuiltModules = std::move(BuiltModules); 1934 Other.DeleteBuiltModules = false; 1935 }; 1936 1937 auto PostBuildStep = [this](CompilerInstance &Other) { 1938 BuiltModules = std::move(Other.BuiltModules); 1939 }; 1940 1941 // Build the module, inheriting any modules that we've built locally. 1942 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 1943 ModuleFileName, PreBuildStep, PostBuildStep)) { 1944 BuiltModules[ModuleName] = ModuleFileName.str(); 1945 llvm::sys::RemoveFileOnSignal(ModuleFileName); 1946 } 1947 } 1948 1949 void CompilerInstance::makeModuleVisible(Module *Mod, 1950 Module::NameVisibilityKind Visibility, 1951 SourceLocation ImportLoc) { 1952 if (!ModuleManager) 1953 createModuleManager(); 1954 if (!ModuleManager) 1955 return; 1956 1957 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 1958 } 1959 1960 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1961 SourceLocation TriggerLoc) { 1962 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 1963 return nullptr; 1964 if (!ModuleManager) 1965 createModuleManager(); 1966 // Can't do anything if we don't have the module manager. 1967 if (!ModuleManager) 1968 return nullptr; 1969 // Get an existing global index. This loads it if not already 1970 // loaded. 1971 ModuleManager->loadGlobalIndex(); 1972 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1973 // If the global index doesn't exist, create it. 1974 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1975 hasPreprocessor()) { 1976 llvm::sys::fs::create_directories( 1977 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1978 GlobalModuleIndex::writeIndex( 1979 getFileManager(), getPCHContainerReader(), 1980 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1981 ModuleManager->resetForReload(); 1982 ModuleManager->loadGlobalIndex(); 1983 GlobalIndex = ModuleManager->getGlobalIndex(); 1984 } 1985 // For finding modules needing to be imported for fixit messages, 1986 // we need to make the global index cover all modules, so we do that here. 1987 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1988 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1989 bool RecreateIndex = false; 1990 for (ModuleMap::module_iterator I = MMap.module_begin(), 1991 E = MMap.module_end(); I != E; ++I) { 1992 Module *TheModule = I->second; 1993 const FileEntry *Entry = TheModule->getASTFile(); 1994 if (!Entry) { 1995 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 1996 Path.push_back(std::make_pair( 1997 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 1998 std::reverse(Path.begin(), Path.end()); 1999 // Load a module as hidden. This also adds it to the global index. 2000 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2001 RecreateIndex = true; 2002 } 2003 } 2004 if (RecreateIndex) { 2005 GlobalModuleIndex::writeIndex( 2006 getFileManager(), getPCHContainerReader(), 2007 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2008 ModuleManager->resetForReload(); 2009 ModuleManager->loadGlobalIndex(); 2010 GlobalIndex = ModuleManager->getGlobalIndex(); 2011 } 2012 HaveFullGlobalModuleIndex = true; 2013 } 2014 return GlobalIndex; 2015 } 2016 2017 // Check global module index for missing imports. 2018 bool 2019 CompilerInstance::lookupMissingImports(StringRef Name, 2020 SourceLocation TriggerLoc) { 2021 // Look for the symbol in non-imported modules, but only if an error 2022 // actually occurred. 2023 if (!buildingModule()) { 2024 // Load global module index, or retrieve a previously loaded one. 2025 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2026 TriggerLoc); 2027 2028 // Only if we have a global index. 2029 if (GlobalIndex) { 2030 GlobalModuleIndex::HitSet FoundModules; 2031 2032 // Find the modules that reference the identifier. 2033 // Note that this only finds top-level modules. 2034 // We'll let diagnoseTypo find the actual declaration module. 2035 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2036 return true; 2037 } 2038 } 2039 2040 return false; 2041 } 2042 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 2043 2044 void CompilerInstance::setExternalSemaSource( 2045 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2046 ExternalSemaSrc = std::move(ESS); 2047 } 2048