1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/MemoryBufferCache.h" 17 #include "clang/Basic/SourceManager.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Basic/Version.h" 20 #include "clang/Config/config.h" 21 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 22 #include "clang/Frontend/FrontendAction.h" 23 #include "clang/Frontend/FrontendActions.h" 24 #include "clang/Frontend/FrontendDiagnostic.h" 25 #include "clang/Frontend/LogDiagnosticPrinter.h" 26 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 27 #include "clang/Frontend/TextDiagnosticPrinter.h" 28 #include "clang/Frontend/Utils.h" 29 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 30 #include "clang/Lex/HeaderSearch.h" 31 #include "clang/Lex/PTHManager.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorOptions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Serialization/ASTReader.h" 37 #include "clang/Serialization/GlobalModuleIndex.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Errc.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/Host.h" 43 #include "llvm/Support/LockFileManager.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/Path.h" 46 #include "llvm/Support/Program.h" 47 #include "llvm/Support/Signals.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <sys/stat.h> 51 #include <system_error> 52 #include <time.h> 53 #include <utility> 54 55 using namespace clang; 56 57 CompilerInstance::CompilerInstance( 58 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 59 MemoryBufferCache *SharedPCMCache) 60 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 61 Invocation(new CompilerInvocation()), 62 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 63 ThePCHContainerOperations(std::move(PCHContainerOps)) { 64 // Don't allow this to invalidate buffers in use by others. 65 if (SharedPCMCache) 66 getPCMCache().finalizeCurrentBuffers(); 67 } 68 69 CompilerInstance::~CompilerInstance() { 70 assert(OutputFiles.empty() && "Still output files in flight?"); 71 } 72 73 void CompilerInstance::setInvocation( 74 std::shared_ptr<CompilerInvocation> Value) { 75 Invocation = std::move(Value); 76 } 77 78 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 79 return (BuildGlobalModuleIndex || 80 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 81 getFrontendOpts().GenerateGlobalModuleIndex)) && 82 !ModuleBuildFailed; 83 } 84 85 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 86 Diagnostics = Value; 87 } 88 89 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 90 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 91 92 void CompilerInstance::setFileManager(FileManager *Value) { 93 FileMgr = Value; 94 if (Value) 95 VirtualFileSystem = Value->getVirtualFileSystem(); 96 else 97 VirtualFileSystem.reset(); 98 } 99 100 void CompilerInstance::setSourceManager(SourceManager *Value) { 101 SourceMgr = Value; 102 } 103 104 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 105 PP = std::move(Value); 106 } 107 108 void CompilerInstance::setASTContext(ASTContext *Value) { 109 Context = Value; 110 111 if (Context && Consumer) 112 getASTConsumer().Initialize(getASTContext()); 113 } 114 115 void CompilerInstance::setSema(Sema *S) { 116 TheSema.reset(S); 117 } 118 119 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 120 Consumer = std::move(Value); 121 122 if (Context && Consumer) 123 getASTConsumer().Initialize(getASTContext()); 124 } 125 126 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 127 CompletionConsumer.reset(Value); 128 } 129 130 std::unique_ptr<Sema> CompilerInstance::takeSema() { 131 return std::move(TheSema); 132 } 133 134 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 135 return ModuleManager; 136 } 137 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 138 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 139 "Expected ASTReader to use the same PCM cache"); 140 ModuleManager = std::move(Reader); 141 } 142 143 std::shared_ptr<ModuleDependencyCollector> 144 CompilerInstance::getModuleDepCollector() const { 145 return ModuleDepCollector; 146 } 147 148 void CompilerInstance::setModuleDepCollector( 149 std::shared_ptr<ModuleDependencyCollector> Collector) { 150 ModuleDepCollector = std::move(Collector); 151 } 152 153 static void collectHeaderMaps(const HeaderSearch &HS, 154 std::shared_ptr<ModuleDependencyCollector> MDC) { 155 SmallVector<std::string, 4> HeaderMapFileNames; 156 HS.getHeaderMapFileNames(HeaderMapFileNames); 157 for (auto &Name : HeaderMapFileNames) 158 MDC->addFile(Name); 159 } 160 161 static void collectIncludePCH(CompilerInstance &CI, 162 std::shared_ptr<ModuleDependencyCollector> MDC) { 163 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 164 if (PPOpts.ImplicitPCHInclude.empty()) 165 return; 166 167 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 168 FileManager &FileMgr = CI.getFileManager(); 169 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 170 if (!PCHDir) { 171 MDC->addFile(PCHInclude); 172 return; 173 } 174 175 std::error_code EC; 176 SmallString<128> DirNative; 177 llvm::sys::path::native(PCHDir->getName(), DirNative); 178 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 179 SimpleASTReaderListener Validator(CI.getPreprocessor()); 180 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 181 Dir != DirEnd && !EC; Dir.increment(EC)) { 182 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 183 // used here since we're not interested in validating the PCH at this time, 184 // but only to check whether this is a file containing an AST. 185 if (!ASTReader::readASTFileControlBlock( 186 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 187 /*FindModuleFileExtensions=*/false, Validator, 188 /*ValidateDiagnosticOptions=*/false)) 189 MDC->addFile(Dir->getName()); 190 } 191 } 192 193 static void collectVFSEntries(CompilerInstance &CI, 194 std::shared_ptr<ModuleDependencyCollector> MDC) { 195 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 196 return; 197 198 // Collect all VFS found. 199 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 200 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 201 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 202 llvm::MemoryBuffer::getFile(VFSFile); 203 if (!Buffer) 204 return; 205 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 206 VFSFile, VFSEntries); 207 } 208 209 for (auto &E : VFSEntries) 210 MDC->addFile(E.VPath, E.RPath); 211 } 212 213 // Diagnostics 214 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 215 const CodeGenOptions *CodeGenOpts, 216 DiagnosticsEngine &Diags) { 217 std::error_code EC; 218 std::unique_ptr<raw_ostream> StreamOwner; 219 raw_ostream *OS = &llvm::errs(); 220 if (DiagOpts->DiagnosticLogFile != "-") { 221 // Create the output stream. 222 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 223 DiagOpts->DiagnosticLogFile, EC, 224 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 225 if (EC) { 226 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 227 << DiagOpts->DiagnosticLogFile << EC.message(); 228 } else { 229 FileOS->SetUnbuffered(); 230 OS = FileOS.get(); 231 StreamOwner = std::move(FileOS); 232 } 233 } 234 235 // Chain in the diagnostic client which will log the diagnostics. 236 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 237 std::move(StreamOwner)); 238 if (CodeGenOpts) 239 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 240 assert(Diags.ownsClient()); 241 Diags.setClient( 242 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 243 } 244 245 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 246 DiagnosticsEngine &Diags, 247 StringRef OutputFile) { 248 auto SerializedConsumer = 249 clang::serialized_diags::create(OutputFile, DiagOpts); 250 251 if (Diags.ownsClient()) { 252 Diags.setClient(new ChainedDiagnosticConsumer( 253 Diags.takeClient(), std::move(SerializedConsumer))); 254 } else { 255 Diags.setClient(new ChainedDiagnosticConsumer( 256 Diags.getClient(), std::move(SerializedConsumer))); 257 } 258 } 259 260 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 261 bool ShouldOwnClient) { 262 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 263 ShouldOwnClient, &getCodeGenOpts()); 264 } 265 266 IntrusiveRefCntPtr<DiagnosticsEngine> 267 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 268 DiagnosticConsumer *Client, 269 bool ShouldOwnClient, 270 const CodeGenOptions *CodeGenOpts) { 271 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 272 IntrusiveRefCntPtr<DiagnosticsEngine> 273 Diags(new DiagnosticsEngine(DiagID, Opts)); 274 275 // Create the diagnostic client for reporting errors or for 276 // implementing -verify. 277 if (Client) { 278 Diags->setClient(Client, ShouldOwnClient); 279 } else 280 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 281 282 // Chain in -verify checker, if requested. 283 if (Opts->VerifyDiagnostics) 284 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 285 286 // Chain in -diagnostic-log-file dumper, if requested. 287 if (!Opts->DiagnosticLogFile.empty()) 288 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 289 290 if (!Opts->DiagnosticSerializationFile.empty()) 291 SetupSerializedDiagnostics(Opts, *Diags, 292 Opts->DiagnosticSerializationFile); 293 294 // Configure our handling of diagnostics. 295 ProcessWarningOptions(*Diags, *Opts); 296 297 return Diags; 298 } 299 300 // File Manager 301 302 void CompilerInstance::createFileManager() { 303 if (!hasVirtualFileSystem()) { 304 // TODO: choose the virtual file system based on the CompilerInvocation. 305 setVirtualFileSystem(vfs::getRealFileSystem()); 306 } 307 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 308 } 309 310 // Source Manager 311 312 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 313 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 314 } 315 316 // Initialize the remapping of files to alternative contents, e.g., 317 // those specified through other files. 318 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 319 SourceManager &SourceMgr, 320 FileManager &FileMgr, 321 const PreprocessorOptions &InitOpts) { 322 // Remap files in the source manager (with buffers). 323 for (const auto &RB : InitOpts.RemappedFileBuffers) { 324 // Create the file entry for the file that we're mapping from. 325 const FileEntry *FromFile = 326 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 327 if (!FromFile) { 328 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 329 if (!InitOpts.RetainRemappedFileBuffers) 330 delete RB.second; 331 continue; 332 } 333 334 // Override the contents of the "from" file with the contents of 335 // the "to" file. 336 SourceMgr.overrideFileContents(FromFile, RB.second, 337 InitOpts.RetainRemappedFileBuffers); 338 } 339 340 // Remap files in the source manager (with other files). 341 for (const auto &RF : InitOpts.RemappedFiles) { 342 // Find the file that we're mapping to. 343 const FileEntry *ToFile = FileMgr.getFile(RF.second); 344 if (!ToFile) { 345 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 346 continue; 347 } 348 349 // Create the file entry for the file that we're mapping from. 350 const FileEntry *FromFile = 351 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 352 if (!FromFile) { 353 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 354 continue; 355 } 356 357 // Override the contents of the "from" file with the contents of 358 // the "to" file. 359 SourceMgr.overrideFileContents(FromFile, ToFile); 360 } 361 362 SourceMgr.setOverridenFilesKeepOriginalName( 363 InitOpts.RemappedFilesKeepOriginalName); 364 } 365 366 // Preprocessor 367 368 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 369 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 370 371 // Create a PTH manager if we are using some form of a token cache. 372 PTHManager *PTHMgr = nullptr; 373 if (!PPOpts.TokenCache.empty()) 374 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 375 376 // Create the Preprocessor. 377 HeaderSearch *HeaderInfo = 378 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 379 getDiagnostics(), getLangOpts(), &getTarget()); 380 PP = std::make_shared<Preprocessor>( 381 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 382 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 383 /*OwnsHeaderSearch=*/true, TUKind); 384 PP->Initialize(getTarget(), getAuxTarget()); 385 386 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 387 // That argument is used as the IdentifierInfoLookup argument to 388 // IdentifierTable's ctor. 389 if (PTHMgr) { 390 PTHMgr->setPreprocessor(&*PP); 391 PP->setPTHManager(PTHMgr); 392 } 393 394 if (PPOpts.DetailedRecord) 395 PP->createPreprocessingRecord(); 396 397 // Apply remappings to the source manager. 398 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 399 PP->getFileManager(), PPOpts); 400 401 // Predefine macros and configure the preprocessor. 402 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 403 getFrontendOpts()); 404 405 // Initialize the header search object. In CUDA compilations, we use the aux 406 // triple (the host triple) to initialize our header search, since we need to 407 // find the host headers in order to compile the CUDA code. 408 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 409 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 410 PP->getAuxTargetInfo()) 411 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 412 413 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 414 PP->getLangOpts(), *HeaderSearchTriple); 415 416 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 417 418 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 419 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 420 421 // Handle generating dependencies, if requested. 422 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 423 if (!DepOpts.OutputFile.empty()) 424 TheDependencyFileGenerator.reset( 425 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 426 if (!DepOpts.DOTOutputFile.empty()) 427 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 428 getHeaderSearchOpts().Sysroot); 429 430 // If we don't have a collector, but we are collecting module dependencies, 431 // then we're the top level compiler instance and need to create one. 432 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 433 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 434 DepOpts.ModuleDependencyOutputDir); 435 } 436 437 // If there is a module dep collector, register with other dep collectors 438 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 439 if (ModuleDepCollector) { 440 addDependencyCollector(ModuleDepCollector); 441 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 442 collectIncludePCH(*this, ModuleDepCollector); 443 collectVFSEntries(*this, ModuleDepCollector); 444 } 445 446 for (auto &Listener : DependencyCollectors) 447 Listener->attachToPreprocessor(*PP); 448 449 // Handle generating header include information, if requested. 450 if (DepOpts.ShowHeaderIncludes) 451 AttachHeaderIncludeGen(*PP, DepOpts); 452 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 453 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 454 if (OutputPath == "-") 455 OutputPath = ""; 456 AttachHeaderIncludeGen(*PP, DepOpts, 457 /*ShowAllHeaders=*/true, OutputPath, 458 /*ShowDepth=*/false); 459 } 460 461 if (DepOpts.PrintShowIncludes) { 462 AttachHeaderIncludeGen(*PP, DepOpts, 463 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 464 /*ShowDepth=*/true, /*MSStyle=*/true); 465 } 466 } 467 468 std::string CompilerInstance::getSpecificModuleCachePath() { 469 // Set up the module path, including the hash for the 470 // module-creation options. 471 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 472 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 473 llvm::sys::path::append(SpecificModuleCache, 474 getInvocation().getModuleHash()); 475 return SpecificModuleCache.str(); 476 } 477 478 // ASTContext 479 480 void CompilerInstance::createASTContext() { 481 Preprocessor &PP = getPreprocessor(); 482 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 483 PP.getIdentifierTable(), PP.getSelectorTable(), 484 PP.getBuiltinInfo()); 485 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 486 setASTContext(Context); 487 } 488 489 // ExternalASTSource 490 491 void CompilerInstance::createPCHExternalASTSource( 492 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 493 void *DeserializationListener, bool OwnDeserializationListener) { 494 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 495 ModuleManager = createPCHExternalASTSource( 496 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 497 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 498 getPCHContainerReader(), 499 getFrontendOpts().ModuleFileExtensions, 500 DeserializationListener, 501 OwnDeserializationListener, Preamble, 502 getFrontendOpts().UseGlobalModuleIndex); 503 } 504 505 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 506 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 507 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 508 const PCHContainerReader &PCHContainerRdr, 509 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 510 void *DeserializationListener, bool OwnDeserializationListener, 511 bool Preamble, bool UseGlobalModuleIndex) { 512 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 513 514 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 515 PP, Context, PCHContainerRdr, Extensions, 516 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 517 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 518 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 519 520 // We need the external source to be set up before we read the AST, because 521 // eagerly-deserialized declarations may use it. 522 Context.setExternalSource(Reader.get()); 523 524 Reader->setDeserializationListener( 525 static_cast<ASTDeserializationListener *>(DeserializationListener), 526 /*TakeOwnership=*/OwnDeserializationListener); 527 switch (Reader->ReadAST(Path, 528 Preamble ? serialization::MK_Preamble 529 : serialization::MK_PCH, 530 SourceLocation(), 531 ASTReader::ARR_None)) { 532 case ASTReader::Success: 533 // Set the predefines buffer as suggested by the PCH reader. Typically, the 534 // predefines buffer will be empty. 535 PP.setPredefines(Reader->getSuggestedPredefines()); 536 return Reader; 537 538 case ASTReader::Failure: 539 // Unrecoverable failure: don't even try to process the input file. 540 break; 541 542 case ASTReader::Missing: 543 case ASTReader::OutOfDate: 544 case ASTReader::VersionMismatch: 545 case ASTReader::ConfigurationMismatch: 546 case ASTReader::HadErrors: 547 // No suitable PCH file could be found. Return an error. 548 break; 549 } 550 551 Context.setExternalSource(nullptr); 552 return nullptr; 553 } 554 555 // Code Completion 556 557 static bool EnableCodeCompletion(Preprocessor &PP, 558 StringRef Filename, 559 unsigned Line, 560 unsigned Column) { 561 // Tell the source manager to chop off the given file at a specific 562 // line and column. 563 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 564 if (!Entry) { 565 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 566 << Filename; 567 return true; 568 } 569 570 // Truncate the named file at the given line/column. 571 PP.SetCodeCompletionPoint(Entry, Line, Column); 572 return false; 573 } 574 575 void CompilerInstance::createCodeCompletionConsumer() { 576 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 577 if (!CompletionConsumer) { 578 setCodeCompletionConsumer( 579 createCodeCompletionConsumer(getPreprocessor(), 580 Loc.FileName, Loc.Line, Loc.Column, 581 getFrontendOpts().CodeCompleteOpts, 582 llvm::outs())); 583 if (!CompletionConsumer) 584 return; 585 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 586 Loc.Line, Loc.Column)) { 587 setCodeCompletionConsumer(nullptr); 588 return; 589 } 590 591 if (CompletionConsumer->isOutputBinary() && 592 llvm::sys::ChangeStdoutToBinary()) { 593 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 594 setCodeCompletionConsumer(nullptr); 595 } 596 } 597 598 void CompilerInstance::createFrontendTimer() { 599 FrontendTimerGroup.reset( 600 new llvm::TimerGroup("frontend", "Clang front-end time report")); 601 FrontendTimer.reset( 602 new llvm::Timer("frontend", "Clang front-end timer", 603 *FrontendTimerGroup)); 604 } 605 606 CodeCompleteConsumer * 607 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 608 StringRef Filename, 609 unsigned Line, 610 unsigned Column, 611 const CodeCompleteOptions &Opts, 612 raw_ostream &OS) { 613 if (EnableCodeCompletion(PP, Filename, Line, Column)) 614 return nullptr; 615 616 // Set up the creation routine for code-completion. 617 return new PrintingCodeCompleteConsumer(Opts, OS); 618 } 619 620 void CompilerInstance::createSema(TranslationUnitKind TUKind, 621 CodeCompleteConsumer *CompletionConsumer) { 622 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 623 TUKind, CompletionConsumer)); 624 // Attach the external sema source if there is any. 625 if (ExternalSemaSrc) { 626 TheSema->addExternalSource(ExternalSemaSrc.get()); 627 ExternalSemaSrc->InitializeSema(*TheSema); 628 } 629 } 630 631 // Output Files 632 633 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 634 OutputFiles.push_back(std::move(OutFile)); 635 } 636 637 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 638 for (OutputFile &OF : OutputFiles) { 639 if (!OF.TempFilename.empty()) { 640 if (EraseFiles) { 641 llvm::sys::fs::remove(OF.TempFilename); 642 } else { 643 SmallString<128> NewOutFile(OF.Filename); 644 645 // If '-working-directory' was passed, the output filename should be 646 // relative to that. 647 FileMgr->FixupRelativePath(NewOutFile); 648 if (std::error_code ec = 649 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 650 getDiagnostics().Report(diag::err_unable_to_rename_temp) 651 << OF.TempFilename << OF.Filename << ec.message(); 652 653 llvm::sys::fs::remove(OF.TempFilename); 654 } 655 } 656 } else if (!OF.Filename.empty() && EraseFiles) 657 llvm::sys::fs::remove(OF.Filename); 658 } 659 OutputFiles.clear(); 660 NonSeekStream.reset(); 661 } 662 663 std::unique_ptr<raw_pwrite_stream> 664 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 665 StringRef Extension) { 666 return createOutputFile(getFrontendOpts().OutputFile, Binary, 667 /*RemoveFileOnSignal=*/true, InFile, Extension, 668 /*UseTemporary=*/true); 669 } 670 671 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 672 return llvm::make_unique<llvm::raw_null_ostream>(); 673 } 674 675 std::unique_ptr<raw_pwrite_stream> 676 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 677 bool RemoveFileOnSignal, StringRef InFile, 678 StringRef Extension, bool UseTemporary, 679 bool CreateMissingDirectories) { 680 std::string OutputPathName, TempPathName; 681 std::error_code EC; 682 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 683 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 684 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 685 if (!OS) { 686 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 687 << EC.message(); 688 return nullptr; 689 } 690 691 // Add the output file -- but don't try to remove "-", since this means we are 692 // using stdin. 693 addOutputFile( 694 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 695 696 return OS; 697 } 698 699 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 700 StringRef OutputPath, std::error_code &Error, bool Binary, 701 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 702 bool UseTemporary, bool CreateMissingDirectories, 703 std::string *ResultPathName, std::string *TempPathName) { 704 assert((!CreateMissingDirectories || UseTemporary) && 705 "CreateMissingDirectories is only allowed when using temporary files"); 706 707 std::string OutFile, TempFile; 708 if (!OutputPath.empty()) { 709 OutFile = OutputPath; 710 } else if (InFile == "-") { 711 OutFile = "-"; 712 } else if (!Extension.empty()) { 713 SmallString<128> Path(InFile); 714 llvm::sys::path::replace_extension(Path, Extension); 715 OutFile = Path.str(); 716 } else { 717 OutFile = "-"; 718 } 719 720 std::unique_ptr<llvm::raw_fd_ostream> OS; 721 std::string OSFile; 722 723 if (UseTemporary) { 724 if (OutFile == "-") 725 UseTemporary = false; 726 else { 727 llvm::sys::fs::file_status Status; 728 llvm::sys::fs::status(OutputPath, Status); 729 if (llvm::sys::fs::exists(Status)) { 730 // Fail early if we can't write to the final destination. 731 if (!llvm::sys::fs::can_write(OutputPath)) { 732 Error = make_error_code(llvm::errc::operation_not_permitted); 733 return nullptr; 734 } 735 736 // Don't use a temporary if the output is a special file. This handles 737 // things like '-o /dev/null' 738 if (!llvm::sys::fs::is_regular_file(Status)) 739 UseTemporary = false; 740 } 741 } 742 } 743 744 if (UseTemporary) { 745 // Create a temporary file. 746 SmallString<128> TempPath; 747 TempPath = OutFile; 748 TempPath += "-%%%%%%%%"; 749 int fd; 750 std::error_code EC = 751 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 752 753 if (CreateMissingDirectories && 754 EC == llvm::errc::no_such_file_or_directory) { 755 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 756 EC = llvm::sys::fs::create_directories(Parent); 757 if (!EC) { 758 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 759 } 760 } 761 762 if (!EC) { 763 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 764 OSFile = TempFile = TempPath.str(); 765 } 766 // If we failed to create the temporary, fallback to writing to the file 767 // directly. This handles the corner case where we cannot write to the 768 // directory, but can write to the file. 769 } 770 771 if (!OS) { 772 OSFile = OutFile; 773 OS.reset(new llvm::raw_fd_ostream( 774 OSFile, Error, 775 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 776 if (Error) 777 return nullptr; 778 } 779 780 // Make sure the out stream file gets removed if we crash. 781 if (RemoveFileOnSignal) 782 llvm::sys::RemoveFileOnSignal(OSFile); 783 784 if (ResultPathName) 785 *ResultPathName = OutFile; 786 if (TempPathName) 787 *TempPathName = TempFile; 788 789 if (!Binary || OS->supportsSeeking()) 790 return std::move(OS); 791 792 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 793 assert(!NonSeekStream); 794 NonSeekStream = std::move(OS); 795 return std::move(B); 796 } 797 798 // Initialization Utilities 799 800 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 801 return InitializeSourceManager( 802 Input, getDiagnostics(), getFileManager(), getSourceManager(), 803 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 804 getDependencyOutputOpts(), getFrontendOpts()); 805 } 806 807 // static 808 bool CompilerInstance::InitializeSourceManager( 809 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 810 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 811 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 812 SrcMgr::CharacteristicKind 813 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 814 815 if (Input.isBuffer()) { 816 SourceMgr.setMainFileID(SourceMgr.createFileID( 817 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 818 assert(SourceMgr.getMainFileID().isValid() && 819 "Couldn't establish MainFileID!"); 820 return true; 821 } 822 823 StringRef InputFile = Input.getFile(); 824 825 // Figure out where to get and map in the main file. 826 if (InputFile != "-") { 827 const FileEntry *File; 828 if (Opts.FindPchSource.empty()) { 829 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 830 } else { 831 // When building a pch file in clang-cl mode, the .h file is built as if 832 // it was included by a cc file. Since the driver doesn't know about 833 // all include search directories, the frontend must search the input 834 // file through HeaderSearch here, as if it had been included by the 835 // cc file at Opts.FindPchSource. 836 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 837 if (!FindFile) { 838 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 839 return false; 840 } 841 const DirectoryLookup *UnusedCurDir; 842 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 843 Includers; 844 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 845 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 846 /*FromDir=*/nullptr, 847 /*CurDir=*/UnusedCurDir, Includers, 848 /*SearchPath=*/nullptr, 849 /*RelativePath=*/nullptr, 850 /*RequestingModule=*/nullptr, 851 /*SuggestedModule=*/nullptr, /*SkipCache=*/true); 852 // Also add the header to /showIncludes output. 853 if (File) 854 DepOpts.ShowIncludesPretendHeader = File->getName(); 855 } 856 if (!File) { 857 Diags.Report(diag::err_fe_error_reading) << InputFile; 858 return false; 859 } 860 861 // The natural SourceManager infrastructure can't currently handle named 862 // pipes, but we would at least like to accept them for the main 863 // file. Detect them here, read them with the volatile flag so FileMgr will 864 // pick up the correct size, and simply override their contents as we do for 865 // STDIN. 866 if (File->isNamedPipe()) { 867 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 868 if (MB) { 869 // Create a new virtual file that will have the correct size. 870 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 871 SourceMgr.overrideFileContents(File, std::move(*MB)); 872 } else { 873 Diags.Report(diag::err_cannot_open_file) << InputFile 874 << MB.getError().message(); 875 return false; 876 } 877 } 878 879 SourceMgr.setMainFileID( 880 SourceMgr.createFileID(File, SourceLocation(), Kind)); 881 } else { 882 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 883 llvm::MemoryBuffer::getSTDIN(); 884 if (std::error_code EC = SBOrErr.getError()) { 885 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 886 return false; 887 } 888 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 889 890 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 891 SB->getBufferSize(), 0); 892 SourceMgr.setMainFileID( 893 SourceMgr.createFileID(File, SourceLocation(), Kind)); 894 SourceMgr.overrideFileContents(File, std::move(SB)); 895 } 896 897 assert(SourceMgr.getMainFileID().isValid() && 898 "Couldn't establish MainFileID!"); 899 return true; 900 } 901 902 // High-Level Operations 903 904 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 905 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 906 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 907 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 908 909 // FIXME: Take this as an argument, once all the APIs we used have moved to 910 // taking it as an input instead of hard-coding llvm::errs. 911 raw_ostream &OS = llvm::errs(); 912 913 // Create the target instance. 914 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 915 getInvocation().TargetOpts)); 916 if (!hasTarget()) 917 return false; 918 919 // FIXME: Setting this here is less than ideal, but it is set based on a 920 // target option for compatibility and this is immediately after we construct 921 // a target. 922 if (getTarget().hasFeature("altivec")) 923 getLangOpts().AltiVec = 1; 924 925 // Create TargetInfo for the other side of CUDA compilation. 926 if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) { 927 auto TO = std::make_shared<TargetOptions>(); 928 TO->Triple = getFrontendOpts().AuxTriple; 929 TO->HostTriple = getTarget().getTriple().str(); 930 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 931 } 932 933 // Inform the target of the language options. 934 // 935 // FIXME: We shouldn't need to do this, the target should be immutable once 936 // created. This complexity should be lifted elsewhere. 937 getTarget().adjust(getLangOpts()); 938 939 // Adjust target options based on codegen options. 940 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 941 942 // rewriter project will change target built-in bool type from its default. 943 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 944 getTarget().noSignedCharForObjCBool(); 945 946 // Validate/process some options. 947 if (getHeaderSearchOpts().Verbose) 948 OS << "clang -cc1 version " CLANG_VERSION_STRING 949 << " based upon " << BACKEND_PACKAGE_STRING 950 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 951 952 if (getFrontendOpts().ShowTimers) 953 createFrontendTimer(); 954 955 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 956 llvm::EnableStatistics(false); 957 958 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 959 // Reset the ID tables if we are reusing the SourceManager and parsing 960 // regular files. 961 if (hasSourceManager() && !Act.isModelParsingAction()) 962 getSourceManager().clearIDTables(); 963 964 if (Act.BeginSourceFile(*this, FIF)) { 965 Act.Execute(); 966 Act.EndSourceFile(); 967 } 968 } 969 970 // Notify the diagnostic client that all files were processed. 971 getDiagnostics().getClient()->finish(); 972 973 if (getDiagnosticOpts().ShowCarets) { 974 // We can have multiple diagnostics sharing one diagnostic client. 975 // Get the total number of warnings/errors from the client. 976 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 977 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 978 979 if (NumWarnings) 980 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 981 if (NumWarnings && NumErrors) 982 OS << " and "; 983 if (NumErrors) 984 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 985 if (NumWarnings || NumErrors) 986 OS << " generated.\n"; 987 } 988 989 if (getFrontendOpts().ShowStats) { 990 if (hasFileManager()) { 991 getFileManager().PrintStats(); 992 OS << '\n'; 993 } 994 llvm::PrintStatistics(OS); 995 } 996 StringRef StatsFile = getFrontendOpts().StatsFile; 997 if (!StatsFile.empty()) { 998 std::error_code EC; 999 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1000 llvm::sys::fs::F_Text); 1001 if (EC) { 1002 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1003 << StatsFile << EC.message(); 1004 } else { 1005 llvm::PrintStatisticsJSON(*StatS); 1006 } 1007 } 1008 1009 return !getDiagnostics().getClient()->getNumErrors(); 1010 } 1011 1012 /// \brief Determine the appropriate source input kind based on language 1013 /// options. 1014 static InputKind getSourceInputKindFromOptions(const LangOptions &LangOpts) { 1015 if (LangOpts.OpenCL) 1016 return IK_OpenCL; 1017 if (LangOpts.CUDA) 1018 return IK_CUDA; 1019 if (LangOpts.ObjC1) 1020 return LangOpts.CPlusPlus? IK_ObjCXX : IK_ObjC; 1021 return LangOpts.CPlusPlus? IK_CXX : IK_C; 1022 } 1023 1024 /// \brief Compile a module file for the given module, using the options 1025 /// provided by the importing compiler instance. Returns true if the module 1026 /// was built without errors. 1027 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1028 SourceLocation ImportLoc, 1029 Module *Module, 1030 StringRef ModuleFileName) { 1031 ModuleMap &ModMap 1032 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1033 1034 // Construct a compiler invocation for creating this module. 1035 auto Invocation = 1036 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1037 1038 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1039 1040 // For any options that aren't intended to affect how a module is built, 1041 // reset them to their default values. 1042 Invocation->getLangOpts()->resetNonModularOptions(); 1043 PPOpts.resetNonModularOptions(); 1044 1045 // Remove any macro definitions that are explicitly ignored by the module. 1046 // They aren't supposed to affect how the module is built anyway. 1047 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1048 PPOpts.Macros.erase( 1049 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1050 [&HSOpts](const std::pair<std::string, bool> &def) { 1051 StringRef MacroDef = def.first; 1052 return HSOpts.ModulesIgnoreMacros.count( 1053 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1054 }), 1055 PPOpts.Macros.end()); 1056 1057 // Note the name of the module we're building. 1058 Invocation->getLangOpts()->CurrentModule = Module->getTopLevelModuleName(); 1059 1060 // Make sure that the failed-module structure has been allocated in 1061 // the importing instance, and propagate the pointer to the newly-created 1062 // instance. 1063 PreprocessorOptions &ImportingPPOpts 1064 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1065 if (!ImportingPPOpts.FailedModules) 1066 ImportingPPOpts.FailedModules = 1067 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1068 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1069 1070 // If there is a module map file, build the module using the module map. 1071 // Set up the inputs/outputs so that we build the module from its umbrella 1072 // header. 1073 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1074 FrontendOpts.OutputFile = ModuleFileName.str(); 1075 FrontendOpts.DisableFree = false; 1076 FrontendOpts.GenerateGlobalModuleIndex = false; 1077 FrontendOpts.BuildingImplicitModule = true; 1078 // Force implicitly-built modules to hash the content of the module file. 1079 HSOpts.ModulesHashContent = true; 1080 FrontendOpts.Inputs.clear(); 1081 InputKind IK = getSourceInputKindFromOptions(*Invocation->getLangOpts()); 1082 1083 // Don't free the remapped file buffers; they are owned by our caller. 1084 PPOpts.RetainRemappedFileBuffers = true; 1085 1086 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1087 assert(ImportingInstance.getInvocation().getModuleHash() == 1088 Invocation->getModuleHash() && "Module hash mismatch!"); 1089 1090 // Construct a compiler instance that will be used to actually create the 1091 // module. Since we're sharing a PCMCache, 1092 // CompilerInstance::CompilerInstance is responsible for finalizing the 1093 // buffers to prevent use-after-frees. 1094 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1095 &ImportingInstance.getPreprocessor().getPCMCache()); 1096 auto &Inv = *Invocation; 1097 Instance.setInvocation(std::move(Invocation)); 1098 1099 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1100 ImportingInstance.getDiagnosticClient()), 1101 /*ShouldOwnClient=*/true); 1102 1103 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1104 1105 // Note that this module is part of the module build stack, so that we 1106 // can detect cycles in the module graph. 1107 Instance.setFileManager(&ImportingInstance.getFileManager()); 1108 Instance.createSourceManager(Instance.getFileManager()); 1109 SourceManager &SourceMgr = Instance.getSourceManager(); 1110 SourceMgr.setModuleBuildStack( 1111 ImportingInstance.getSourceManager().getModuleBuildStack()); 1112 SourceMgr.pushModuleBuildStack(Module->getTopLevelModuleName(), 1113 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1114 1115 // If we're collecting module dependencies, we need to share a collector 1116 // between all of the module CompilerInstances. Other than that, we don't 1117 // want to produce any dependency output from the module build. 1118 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1119 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1120 1121 // Get or create the module map that we'll use to build this module. 1122 std::string InferredModuleMapContent; 1123 if (const FileEntry *ModuleMapFile = 1124 ModMap.getContainingModuleMapFile(Module)) { 1125 // Use the module map where this module resides. 1126 FrontendOpts.Inputs.emplace_back(ModuleMapFile->getName(), IK); 1127 } else { 1128 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1129 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1130 FrontendOpts.Inputs.emplace_back(FakeModuleMapFile, IK); 1131 1132 llvm::raw_string_ostream OS(InferredModuleMapContent); 1133 Module->print(OS); 1134 OS.flush(); 1135 1136 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1137 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1138 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1139 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1140 SourceMgr.overrideFileContents(ModuleMapFile, std::move(ModuleMapBuffer)); 1141 } 1142 1143 // Construct a module-generating action. Passing through the module map is 1144 // safe because the FileManager is shared between the compiler instances. 1145 GenerateModuleFromModuleMapAction CreateModuleAction( 1146 ModMap.getModuleMapFileForUniquing(Module), Module->IsSystem); 1147 1148 ImportingInstance.getDiagnostics().Report(ImportLoc, 1149 diag::remark_module_build) 1150 << Module->Name << ModuleFileName; 1151 1152 // Execute the action to actually build the module in-place. Use a separate 1153 // thread so that we get a stack large enough. 1154 const unsigned ThreadStackSize = 8 << 20; 1155 llvm::CrashRecoveryContext CRC; 1156 CRC.RunSafelyOnThread([&]() { Instance.ExecuteAction(CreateModuleAction); }, 1157 ThreadStackSize); 1158 1159 ImportingInstance.getDiagnostics().Report(ImportLoc, 1160 diag::remark_module_build_done) 1161 << Module->Name; 1162 1163 // Delete the temporary module map file. 1164 // FIXME: Even though we're executing under crash protection, it would still 1165 // be nice to do this with RemoveFileOnSignal when we can. However, that 1166 // doesn't make sense for all clients, so clean this up manually. 1167 Instance.clearOutputFiles(/*EraseFiles=*/true); 1168 1169 // We've rebuilt a module. If we're allowed to generate or update the global 1170 // module index, record that fact in the importing compiler instance. 1171 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1172 ImportingInstance.setBuildGlobalModuleIndex(true); 1173 } 1174 1175 return !Instance.getDiagnostics().hasErrorOccurred(); 1176 } 1177 1178 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1179 SourceLocation ImportLoc, 1180 SourceLocation ModuleNameLoc, Module *Module, 1181 StringRef ModuleFileName) { 1182 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1183 1184 auto diagnoseBuildFailure = [&] { 1185 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1186 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1187 }; 1188 1189 // FIXME: have LockFileManager return an error_code so that we can 1190 // avoid the mkdir when the directory already exists. 1191 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1192 llvm::sys::fs::create_directories(Dir); 1193 1194 while (1) { 1195 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1196 llvm::LockFileManager Locked(ModuleFileName); 1197 switch (Locked) { 1198 case llvm::LockFileManager::LFS_Error: 1199 // PCMCache takes care of correctness and locks are only necessary for 1200 // performance. Fallback to building the module in case of any lock 1201 // related errors. 1202 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1203 << Module->Name << Locked.getErrorMessage(); 1204 // Clear out any potential leftover. 1205 Locked.unsafeRemoveLockFile(); 1206 // FALLTHROUGH 1207 case llvm::LockFileManager::LFS_Owned: 1208 // We're responsible for building the module ourselves. 1209 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1210 ModuleFileName)) { 1211 diagnoseBuildFailure(); 1212 return false; 1213 } 1214 break; 1215 1216 case llvm::LockFileManager::LFS_Shared: 1217 // Someone else is responsible for building the module. Wait for them to 1218 // finish. 1219 switch (Locked.waitForUnlock()) { 1220 case llvm::LockFileManager::Res_Success: 1221 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1222 break; 1223 case llvm::LockFileManager::Res_OwnerDied: 1224 continue; // try again to get the lock. 1225 case llvm::LockFileManager::Res_Timeout: 1226 // Since PCMCache takes care of correctness, we try waiting for another 1227 // process to complete the build so clang does not do it done twice. If 1228 // case of timeout, build it ourselves. 1229 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1230 << Module->Name; 1231 // Clear the lock file so that future invokations can make progress. 1232 Locked.unsafeRemoveLockFile(); 1233 continue; 1234 } 1235 break; 1236 } 1237 1238 // Try to read the module file, now that we've compiled it. 1239 ASTReader::ASTReadResult ReadResult = 1240 ImportingInstance.getModuleManager()->ReadAST( 1241 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1242 ModuleLoadCapabilities); 1243 1244 if (ReadResult == ASTReader::OutOfDate && 1245 Locked == llvm::LockFileManager::LFS_Shared) { 1246 // The module may be out of date in the presence of file system races, 1247 // or if one of its imports depends on header search paths that are not 1248 // consistent with this ImportingInstance. Try again... 1249 continue; 1250 } else if (ReadResult == ASTReader::Missing) { 1251 diagnoseBuildFailure(); 1252 } else if (ReadResult != ASTReader::Success && 1253 !Diags.hasErrorOccurred()) { 1254 // The ASTReader didn't diagnose the error, so conservatively report it. 1255 diagnoseBuildFailure(); 1256 } 1257 return ReadResult == ASTReader::Success; 1258 } 1259 } 1260 1261 /// \brief Diagnose differences between the current definition of the given 1262 /// configuration macro and the definition provided on the command line. 1263 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1264 Module *Mod, SourceLocation ImportLoc) { 1265 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1266 SourceManager &SourceMgr = PP.getSourceManager(); 1267 1268 // If this identifier has never had a macro definition, then it could 1269 // not have changed. 1270 if (!Id->hadMacroDefinition()) 1271 return; 1272 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1273 1274 // Find the macro definition from the command line. 1275 MacroInfo *CmdLineDefinition = nullptr; 1276 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1277 // We only care about the predefines buffer. 1278 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1279 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1280 continue; 1281 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1282 CmdLineDefinition = DMD->getMacroInfo(); 1283 break; 1284 } 1285 1286 auto *CurrentDefinition = PP.getMacroInfo(Id); 1287 if (CurrentDefinition == CmdLineDefinition) { 1288 // Macro matches. Nothing to do. 1289 } else if (!CurrentDefinition) { 1290 // This macro was defined on the command line, then #undef'd later. 1291 // Complain. 1292 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1293 << true << ConfigMacro << Mod->getFullModuleName(); 1294 auto LatestDef = LatestLocalMD->getDefinition(); 1295 assert(LatestDef.isUndefined() && 1296 "predefined macro went away with no #undef?"); 1297 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1298 << true; 1299 return; 1300 } else if (!CmdLineDefinition) { 1301 // There was no definition for this macro in the predefines buffer, 1302 // but there was a local definition. Complain. 1303 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1304 << false << ConfigMacro << Mod->getFullModuleName(); 1305 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1306 diag::note_module_def_undef_here) 1307 << false; 1308 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1309 /*Syntactically=*/true)) { 1310 // The macro definitions differ. 1311 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1312 << false << ConfigMacro << Mod->getFullModuleName(); 1313 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1314 diag::note_module_def_undef_here) 1315 << false; 1316 } 1317 } 1318 1319 /// \brief Write a new timestamp file with the given path. 1320 static void writeTimestampFile(StringRef TimestampFile) { 1321 std::error_code EC; 1322 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1323 } 1324 1325 /// \brief Prune the module cache of modules that haven't been accessed in 1326 /// a long time. 1327 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1328 struct stat StatBuf; 1329 llvm::SmallString<128> TimestampFile; 1330 TimestampFile = HSOpts.ModuleCachePath; 1331 assert(!TimestampFile.empty()); 1332 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1333 1334 // Try to stat() the timestamp file. 1335 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1336 // If the timestamp file wasn't there, create one now. 1337 if (errno == ENOENT) { 1338 writeTimestampFile(TimestampFile); 1339 } 1340 return; 1341 } 1342 1343 // Check whether the time stamp is older than our pruning interval. 1344 // If not, do nothing. 1345 time_t TimeStampModTime = StatBuf.st_mtime; 1346 time_t CurrentTime = time(nullptr); 1347 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1348 return; 1349 1350 // Write a new timestamp file so that nobody else attempts to prune. 1351 // There is a benign race condition here, if two Clang instances happen to 1352 // notice at the same time that the timestamp is out-of-date. 1353 writeTimestampFile(TimestampFile); 1354 1355 // Walk the entire module cache, looking for unused module files and module 1356 // indices. 1357 std::error_code EC; 1358 SmallString<128> ModuleCachePathNative; 1359 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1360 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1361 Dir != DirEnd && !EC; Dir.increment(EC)) { 1362 // If we don't have a directory, there's nothing to look into. 1363 if (!llvm::sys::fs::is_directory(Dir->path())) 1364 continue; 1365 1366 // Walk all of the files within this directory. 1367 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1368 File != FileEnd && !EC; File.increment(EC)) { 1369 // We only care about module and global module index files. 1370 StringRef Extension = llvm::sys::path::extension(File->path()); 1371 if (Extension != ".pcm" && Extension != ".timestamp" && 1372 llvm::sys::path::filename(File->path()) != "modules.idx") 1373 continue; 1374 1375 // Look at this file. If we can't stat it, there's nothing interesting 1376 // there. 1377 if (::stat(File->path().c_str(), &StatBuf)) 1378 continue; 1379 1380 // If the file has been used recently enough, leave it there. 1381 time_t FileAccessTime = StatBuf.st_atime; 1382 if (CurrentTime - FileAccessTime <= 1383 time_t(HSOpts.ModuleCachePruneAfter)) { 1384 continue; 1385 } 1386 1387 // Remove the file. 1388 llvm::sys::fs::remove(File->path()); 1389 1390 // Remove the timestamp file. 1391 std::string TimpestampFilename = File->path() + ".timestamp"; 1392 llvm::sys::fs::remove(TimpestampFilename); 1393 } 1394 1395 // If we removed all of the files in the directory, remove the directory 1396 // itself. 1397 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1398 llvm::sys::fs::directory_iterator() && !EC) 1399 llvm::sys::fs::remove(Dir->path()); 1400 } 1401 } 1402 1403 void CompilerInstance::createModuleManager() { 1404 if (!ModuleManager) { 1405 if (!hasASTContext()) 1406 createASTContext(); 1407 1408 // If we're implicitly building modules but not currently recursively 1409 // building a module, check whether we need to prune the module cache. 1410 if (getSourceManager().getModuleBuildStack().empty() && 1411 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1412 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1413 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1414 pruneModuleCache(getHeaderSearchOpts()); 1415 } 1416 1417 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1418 std::string Sysroot = HSOpts.Sysroot; 1419 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1420 std::unique_ptr<llvm::Timer> ReadTimer; 1421 if (FrontendTimerGroup) 1422 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1423 "Reading modules", 1424 *FrontendTimerGroup); 1425 ModuleManager = new ASTReader( 1426 getPreprocessor(), getASTContext(), getPCHContainerReader(), 1427 getFrontendOpts().ModuleFileExtensions, 1428 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1429 /*AllowASTWithCompilerErrors=*/false, 1430 /*AllowConfigurationMismatch=*/false, 1431 HSOpts.ModulesValidateSystemHeaders, 1432 getFrontendOpts().UseGlobalModuleIndex, 1433 std::move(ReadTimer)); 1434 if (hasASTConsumer()) { 1435 ModuleManager->setDeserializationListener( 1436 getASTConsumer().GetASTDeserializationListener()); 1437 getASTContext().setASTMutationListener( 1438 getASTConsumer().GetASTMutationListener()); 1439 } 1440 getASTContext().setExternalSource(ModuleManager); 1441 if (hasSema()) 1442 ModuleManager->InitializeSema(getSema()); 1443 if (hasASTConsumer()) 1444 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1445 1446 if (TheDependencyFileGenerator) 1447 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1448 for (auto &Listener : DependencyCollectors) 1449 Listener->attachToASTReader(*ModuleManager); 1450 } 1451 } 1452 1453 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1454 llvm::Timer Timer; 1455 if (FrontendTimerGroup) 1456 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1457 *FrontendTimerGroup); 1458 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1459 1460 // Helper to recursively read the module names for all modules we're adding. 1461 // We mark these as known and redirect any attempt to load that module to 1462 // the files we were handed. 1463 struct ReadModuleNames : ASTReaderListener { 1464 CompilerInstance &CI; 1465 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1466 1467 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1468 1469 void ReadModuleName(StringRef ModuleName) override { 1470 LoadedModules.push_back( 1471 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1472 } 1473 1474 void registerAll() { 1475 for (auto *II : LoadedModules) { 1476 CI.KnownModules[II] = CI.getPreprocessor() 1477 .getHeaderSearchInfo() 1478 .getModuleMap() 1479 .findModule(II->getName()); 1480 } 1481 LoadedModules.clear(); 1482 } 1483 1484 void markAllUnavailable() { 1485 for (auto *II : LoadedModules) { 1486 if (Module *M = CI.getPreprocessor() 1487 .getHeaderSearchInfo() 1488 .getModuleMap() 1489 .findModule(II->getName())) { 1490 M->HasIncompatibleModuleFile = true; 1491 1492 // Mark module as available if the only reason it was unavailable 1493 // was missing headers. 1494 SmallVector<Module *, 2> Stack; 1495 Stack.push_back(M); 1496 while (!Stack.empty()) { 1497 Module *Current = Stack.pop_back_val(); 1498 if (Current->IsMissingRequirement) continue; 1499 Current->IsAvailable = true; 1500 Stack.insert(Stack.end(), 1501 Current->submodule_begin(), Current->submodule_end()); 1502 } 1503 } 1504 } 1505 LoadedModules.clear(); 1506 } 1507 }; 1508 1509 // If we don't already have an ASTReader, create one now. 1510 if (!ModuleManager) 1511 createModuleManager(); 1512 1513 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1514 auto &ListenerRef = *Listener; 1515 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1516 std::move(Listener)); 1517 1518 // Try to load the module file. 1519 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1520 SourceLocation(), 1521 ASTReader::ARR_ConfigurationMismatch)) { 1522 case ASTReader::Success: 1523 // We successfully loaded the module file; remember the set of provided 1524 // modules so that we don't try to load implicit modules for them. 1525 ListenerRef.registerAll(); 1526 return true; 1527 1528 case ASTReader::ConfigurationMismatch: 1529 // Ignore unusable module files. 1530 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1531 << FileName; 1532 // All modules provided by any files we tried and failed to load are now 1533 // unavailable; includes of those modules should now be handled textually. 1534 ListenerRef.markAllUnavailable(); 1535 return true; 1536 1537 default: 1538 return false; 1539 } 1540 } 1541 1542 ModuleLoadResult 1543 CompilerInstance::loadModule(SourceLocation ImportLoc, 1544 ModuleIdPath Path, 1545 Module::NameVisibilityKind Visibility, 1546 bool IsInclusionDirective) { 1547 // Determine what file we're searching from. 1548 StringRef ModuleName = Path[0].first->getName(); 1549 SourceLocation ModuleNameLoc = Path[0].second; 1550 1551 // If we've already handled this import, just return the cached result. 1552 // This one-element cache is important to eliminate redundant diagnostics 1553 // when both the preprocessor and parser see the same import declaration. 1554 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1555 // Make the named module visible. 1556 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1557 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1558 ImportLoc); 1559 return LastModuleImportResult; 1560 } 1561 1562 clang::Module *Module = nullptr; 1563 1564 // If we don't already have information on this module, load the module now. 1565 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1566 = KnownModules.find(Path[0].first); 1567 if (Known != KnownModules.end()) { 1568 // Retrieve the cached top-level module. 1569 Module = Known->second; 1570 } else if (ModuleName == getLangOpts().CurrentModule) { 1571 // This is the module we're building. 1572 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1573 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1574 } else { 1575 // Search for a module with the given name. 1576 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1577 HeaderSearchOptions &HSOpts = 1578 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1579 1580 std::string ModuleFileName; 1581 bool LoadFromPrebuiltModulePath = false; 1582 // We try to load the module from the prebuilt module paths. If not 1583 // successful, we then try to find it in the module cache. 1584 if (!HSOpts.PrebuiltModulePaths.empty()) { 1585 // Load the module from the prebuilt module path. 1586 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( 1587 ModuleName, "", /*UsePrebuiltPath*/ true); 1588 if (!ModuleFileName.empty()) 1589 LoadFromPrebuiltModulePath = true; 1590 } 1591 if (!LoadFromPrebuiltModulePath && Module) { 1592 // Load the module from the module cache. 1593 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); 1594 } else if (!LoadFromPrebuiltModulePath) { 1595 // We can't find a module, error out here. 1596 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1597 << ModuleName 1598 << SourceRange(ImportLoc, ModuleNameLoc); 1599 ModuleBuildFailed = true; 1600 return ModuleLoadResult(); 1601 } 1602 1603 if (ModuleFileName.empty()) { 1604 if (Module && Module->HasIncompatibleModuleFile) { 1605 // We tried and failed to load a module file for this module. Fall 1606 // back to textual inclusion for its headers. 1607 return ModuleLoadResult::ConfigMismatch; 1608 } 1609 1610 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1611 << ModuleName; 1612 ModuleBuildFailed = true; 1613 return ModuleLoadResult(); 1614 } 1615 1616 // If we don't already have an ASTReader, create one now. 1617 if (!ModuleManager) 1618 createModuleManager(); 1619 1620 llvm::Timer Timer; 1621 if (FrontendTimerGroup) 1622 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1623 *FrontendTimerGroup); 1624 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1625 1626 // Try to load the module file. If we are trying to load from the prebuilt 1627 // module path, we don't have the module map files and don't know how to 1628 // rebuild modules. 1629 unsigned ARRFlags = LoadFromPrebuiltModulePath ? 1630 ASTReader::ARR_ConfigurationMismatch : 1631 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing; 1632 switch (ModuleManager->ReadAST(ModuleFileName, 1633 LoadFromPrebuiltModulePath ? 1634 serialization::MK_PrebuiltModule : 1635 serialization::MK_ImplicitModule, 1636 ImportLoc, 1637 ARRFlags)) { 1638 case ASTReader::Success: { 1639 if (LoadFromPrebuiltModulePath && !Module) { 1640 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1641 if (!Module || !Module->getASTFile() || 1642 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1643 // Error out if Module does not refer to the file in the prebuilt 1644 // module path. 1645 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1646 << ModuleName; 1647 ModuleBuildFailed = true; 1648 KnownModules[Path[0].first] = nullptr; 1649 return ModuleLoadResult(); 1650 } 1651 } 1652 break; 1653 } 1654 1655 case ASTReader::OutOfDate: 1656 case ASTReader::Missing: { 1657 if (LoadFromPrebuiltModulePath) { 1658 // We can't rebuild the module without a module map. Since ReadAST 1659 // already produces diagnostics for these two cases, we simply 1660 // error out here. 1661 ModuleBuildFailed = true; 1662 KnownModules[Path[0].first] = nullptr; 1663 return ModuleLoadResult(); 1664 } 1665 1666 // The module file is missing or out-of-date. Build it. 1667 assert(Module && "missing module file"); 1668 // Check whether there is a cycle in the module graph. 1669 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1670 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1671 for (; Pos != PosEnd; ++Pos) { 1672 if (Pos->first == ModuleName) 1673 break; 1674 } 1675 1676 if (Pos != PosEnd) { 1677 SmallString<256> CyclePath; 1678 for (; Pos != PosEnd; ++Pos) { 1679 CyclePath += Pos->first; 1680 CyclePath += " -> "; 1681 } 1682 CyclePath += ModuleName; 1683 1684 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1685 << ModuleName << CyclePath; 1686 return ModuleLoadResult(); 1687 } 1688 1689 // Check whether we have already attempted to build this module (but 1690 // failed). 1691 if (getPreprocessorOpts().FailedModules && 1692 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1693 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1694 << ModuleName 1695 << SourceRange(ImportLoc, ModuleNameLoc); 1696 ModuleBuildFailed = true; 1697 return ModuleLoadResult(); 1698 } 1699 1700 // Try to compile and then load the module. 1701 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1702 ModuleFileName)) { 1703 assert(getDiagnostics().hasErrorOccurred() && 1704 "undiagnosed error in compileAndLoadModule"); 1705 if (getPreprocessorOpts().FailedModules) 1706 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1707 KnownModules[Path[0].first] = nullptr; 1708 ModuleBuildFailed = true; 1709 return ModuleLoadResult(); 1710 } 1711 1712 // Okay, we've rebuilt and now loaded the module. 1713 break; 1714 } 1715 1716 case ASTReader::ConfigurationMismatch: 1717 if (LoadFromPrebuiltModulePath) 1718 getDiagnostics().Report(SourceLocation(), 1719 diag::warn_module_config_mismatch) 1720 << ModuleFileName; 1721 // Fall through to error out. 1722 case ASTReader::VersionMismatch: 1723 case ASTReader::HadErrors: 1724 ModuleLoader::HadFatalFailure = true; 1725 // FIXME: The ASTReader will already have complained, but can we shoehorn 1726 // that diagnostic information into a more useful form? 1727 KnownModules[Path[0].first] = nullptr; 1728 return ModuleLoadResult(); 1729 1730 case ASTReader::Failure: 1731 ModuleLoader::HadFatalFailure = true; 1732 // Already complained, but note now that we failed. 1733 KnownModules[Path[0].first] = nullptr; 1734 ModuleBuildFailed = true; 1735 return ModuleLoadResult(); 1736 } 1737 1738 // Cache the result of this top-level module lookup for later. 1739 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1740 } 1741 1742 // If we never found the module, fail. 1743 if (!Module) 1744 return ModuleLoadResult(); 1745 1746 // Verify that the rest of the module path actually corresponds to 1747 // a submodule. 1748 if (Path.size() > 1) { 1749 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1750 StringRef Name = Path[I].first->getName(); 1751 clang::Module *Sub = Module->findSubmodule(Name); 1752 1753 if (!Sub) { 1754 // Attempt to perform typo correction to find a module name that works. 1755 SmallVector<StringRef, 2> Best; 1756 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1757 1758 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1759 JEnd = Module->submodule_end(); 1760 J != JEnd; ++J) { 1761 unsigned ED = Name.edit_distance((*J)->Name, 1762 /*AllowReplacements=*/true, 1763 BestEditDistance); 1764 if (ED <= BestEditDistance) { 1765 if (ED < BestEditDistance) { 1766 Best.clear(); 1767 BestEditDistance = ED; 1768 } 1769 1770 Best.push_back((*J)->Name); 1771 } 1772 } 1773 1774 // If there was a clear winner, user it. 1775 if (Best.size() == 1) { 1776 getDiagnostics().Report(Path[I].second, 1777 diag::err_no_submodule_suggest) 1778 << Path[I].first << Module->getFullModuleName() << Best[0] 1779 << SourceRange(Path[0].second, Path[I-1].second) 1780 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1781 Best[0]); 1782 1783 Sub = Module->findSubmodule(Best[0]); 1784 } 1785 } 1786 1787 if (!Sub) { 1788 // No submodule by this name. Complain, and don't look for further 1789 // submodules. 1790 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1791 << Path[I].first << Module->getFullModuleName() 1792 << SourceRange(Path[0].second, Path[I-1].second); 1793 break; 1794 } 1795 1796 Module = Sub; 1797 } 1798 } 1799 1800 // Make the named module visible, if it's not already part of the module 1801 // we are parsing. 1802 if (ModuleName != getLangOpts().CurrentModule) { 1803 if (!Module->IsFromModuleFile) { 1804 // We have an umbrella header or directory that doesn't actually include 1805 // all of the headers within the directory it covers. Complain about 1806 // this missing submodule and recover by forgetting that we ever saw 1807 // this submodule. 1808 // FIXME: Should we detect this at module load time? It seems fairly 1809 // expensive (and rare). 1810 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1811 << Module->getFullModuleName() 1812 << SourceRange(Path.front().second, Path.back().second); 1813 1814 return ModuleLoadResult::MissingExpected; 1815 } 1816 1817 // Check whether this module is available. 1818 clang::Module::Requirement Requirement; 1819 clang::Module::UnresolvedHeaderDirective MissingHeader; 1820 if (!Module->isAvailable(getLangOpts(), getTarget(), Requirement, 1821 MissingHeader)) { 1822 if (MissingHeader.FileNameLoc.isValid()) { 1823 getDiagnostics().Report(MissingHeader.FileNameLoc, 1824 diag::err_module_header_missing) 1825 << MissingHeader.IsUmbrella << MissingHeader.FileName; 1826 } else { 1827 getDiagnostics().Report(ImportLoc, diag::err_module_unavailable) 1828 << Module->getFullModuleName() 1829 << Requirement.second << Requirement.first 1830 << SourceRange(Path.front().second, Path.back().second); 1831 } 1832 LastModuleImportLoc = ImportLoc; 1833 LastModuleImportResult = ModuleLoadResult(); 1834 return ModuleLoadResult(); 1835 } 1836 1837 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1838 } 1839 1840 // Check for any configuration macros that have changed. 1841 clang::Module *TopModule = Module->getTopLevelModule(); 1842 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1843 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1844 Module, ImportLoc); 1845 } 1846 1847 LastModuleImportLoc = ImportLoc; 1848 LastModuleImportResult = ModuleLoadResult(Module); 1849 return LastModuleImportResult; 1850 } 1851 1852 void CompilerInstance::makeModuleVisible(Module *Mod, 1853 Module::NameVisibilityKind Visibility, 1854 SourceLocation ImportLoc) { 1855 if (!ModuleManager) 1856 createModuleManager(); 1857 if (!ModuleManager) 1858 return; 1859 1860 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 1861 } 1862 1863 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1864 SourceLocation TriggerLoc) { 1865 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 1866 return nullptr; 1867 if (!ModuleManager) 1868 createModuleManager(); 1869 // Can't do anything if we don't have the module manager. 1870 if (!ModuleManager) 1871 return nullptr; 1872 // Get an existing global index. This loads it if not already 1873 // loaded. 1874 ModuleManager->loadGlobalIndex(); 1875 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1876 // If the global index doesn't exist, create it. 1877 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1878 hasPreprocessor()) { 1879 llvm::sys::fs::create_directories( 1880 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1881 GlobalModuleIndex::writeIndex( 1882 getFileManager(), getPCHContainerReader(), 1883 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1884 ModuleManager->resetForReload(); 1885 ModuleManager->loadGlobalIndex(); 1886 GlobalIndex = ModuleManager->getGlobalIndex(); 1887 } 1888 // For finding modules needing to be imported for fixit messages, 1889 // we need to make the global index cover all modules, so we do that here. 1890 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1891 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1892 bool RecreateIndex = false; 1893 for (ModuleMap::module_iterator I = MMap.module_begin(), 1894 E = MMap.module_end(); I != E; ++I) { 1895 Module *TheModule = I->second; 1896 const FileEntry *Entry = TheModule->getASTFile(); 1897 if (!Entry) { 1898 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 1899 Path.push_back(std::make_pair( 1900 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 1901 std::reverse(Path.begin(), Path.end()); 1902 // Load a module as hidden. This also adds it to the global index. 1903 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 1904 RecreateIndex = true; 1905 } 1906 } 1907 if (RecreateIndex) { 1908 GlobalModuleIndex::writeIndex( 1909 getFileManager(), getPCHContainerReader(), 1910 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1911 ModuleManager->resetForReload(); 1912 ModuleManager->loadGlobalIndex(); 1913 GlobalIndex = ModuleManager->getGlobalIndex(); 1914 } 1915 HaveFullGlobalModuleIndex = true; 1916 } 1917 return GlobalIndex; 1918 } 1919 1920 // Check global module index for missing imports. 1921 bool 1922 CompilerInstance::lookupMissingImports(StringRef Name, 1923 SourceLocation TriggerLoc) { 1924 // Look for the symbol in non-imported modules, but only if an error 1925 // actually occurred. 1926 if (!buildingModule()) { 1927 // Load global module index, or retrieve a previously loaded one. 1928 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 1929 TriggerLoc); 1930 1931 // Only if we have a global index. 1932 if (GlobalIndex) { 1933 GlobalModuleIndex::HitSet FoundModules; 1934 1935 // Find the modules that reference the identifier. 1936 // Note that this only finds top-level modules. 1937 // We'll let diagnoseTypo find the actual declaration module. 1938 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 1939 return true; 1940 } 1941 } 1942 1943 return false; 1944 } 1945 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 1946 1947 void CompilerInstance::setExternalSemaSource( 1948 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 1949 ExternalSemaSrc = std::move(ESS); 1950 } 1951