xref: /llvm-project/clang/lib/Frontend/CompilerInstance.cpp (revision 6d9bc278eff5aea217afcaa0c58a4ab74e592804)
1 //===--- CompilerInstance.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Frontend/CompilerInstance.h"
11 #include "clang/AST/ASTConsumer.h"
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/Basic/CharInfo.h"
15 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/MemoryBufferCache.h"
18 #include "clang/Basic/SourceManager.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Basic/Version.h"
21 #include "clang/Config/config.h"
22 #include "clang/Frontend/ChainedDiagnosticConsumer.h"
23 #include "clang/Frontend/FrontendAction.h"
24 #include "clang/Frontend/FrontendActions.h"
25 #include "clang/Frontend/FrontendDiagnostic.h"
26 #include "clang/Frontend/LogDiagnosticPrinter.h"
27 #include "clang/Frontend/SerializedDiagnosticPrinter.h"
28 #include "clang/Frontend/TextDiagnosticPrinter.h"
29 #include "clang/Frontend/Utils.h"
30 #include "clang/Frontend/VerifyDiagnosticConsumer.h"
31 #include "clang/Lex/HeaderSearch.h"
32 #include "clang/Lex/PTHManager.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Lex/PreprocessorOptions.h"
35 #include "clang/Sema/CodeCompleteConsumer.h"
36 #include "clang/Sema/Sema.h"
37 #include "clang/Serialization/ASTReader.h"
38 #include "clang/Serialization/GlobalModuleIndex.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/Support/CrashRecoveryContext.h"
41 #include "llvm/Support/Errc.h"
42 #include "llvm/Support/FileSystem.h"
43 #include "llvm/Support/Host.h"
44 #include "llvm/Support/LockFileManager.h"
45 #include "llvm/Support/MemoryBuffer.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/Program.h"
48 #include "llvm/Support/Signals.h"
49 #include "llvm/Support/Timer.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <sys/stat.h>
52 #include <system_error>
53 #include <time.h>
54 #include <utility>
55 
56 using namespace clang;
57 
58 CompilerInstance::CompilerInstance(
59     std::shared_ptr<PCHContainerOperations> PCHContainerOps,
60     MemoryBufferCache *SharedPCMCache)
61     : ModuleLoader(/* BuildingModule = */ SharedPCMCache),
62       Invocation(new CompilerInvocation()),
63       PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache),
64       ThePCHContainerOperations(std::move(PCHContainerOps)) {
65   // Don't allow this to invalidate buffers in use by others.
66   if (SharedPCMCache)
67     getPCMCache().finalizeCurrentBuffers();
68 }
69 
70 CompilerInstance::~CompilerInstance() {
71   assert(OutputFiles.empty() && "Still output files in flight?");
72 }
73 
74 void CompilerInstance::setInvocation(
75     std::shared_ptr<CompilerInvocation> Value) {
76   Invocation = std::move(Value);
77 }
78 
79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
80   return (BuildGlobalModuleIndex ||
81           (ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
82            getFrontendOpts().GenerateGlobalModuleIndex)) &&
83          !ModuleBuildFailed;
84 }
85 
86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
87   Diagnostics = Value;
88 }
89 
90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; }
91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; }
92 
93 void CompilerInstance::setFileManager(FileManager *Value) {
94   FileMgr = Value;
95   if (Value)
96     VirtualFileSystem = Value->getVirtualFileSystem();
97   else
98     VirtualFileSystem.reset();
99 }
100 
101 void CompilerInstance::setSourceManager(SourceManager *Value) {
102   SourceMgr = Value;
103 }
104 
105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) {
106   PP = std::move(Value);
107 }
108 
109 void CompilerInstance::setASTContext(ASTContext *Value) {
110   Context = Value;
111 
112   if (Context && Consumer)
113     getASTConsumer().Initialize(getASTContext());
114 }
115 
116 void CompilerInstance::setSema(Sema *S) {
117   TheSema.reset(S);
118 }
119 
120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
121   Consumer = std::move(Value);
122 
123   if (Context && Consumer)
124     getASTConsumer().Initialize(getASTContext());
125 }
126 
127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
128   CompletionConsumer.reset(Value);
129 }
130 
131 std::unique_ptr<Sema> CompilerInstance::takeSema() {
132   return std::move(TheSema);
133 }
134 
135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
136   return ModuleManager;
137 }
138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
139   assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() &&
140          "Expected ASTReader to use the same PCM cache");
141   ModuleManager = std::move(Reader);
142 }
143 
144 std::shared_ptr<ModuleDependencyCollector>
145 CompilerInstance::getModuleDepCollector() const {
146   return ModuleDepCollector;
147 }
148 
149 void CompilerInstance::setModuleDepCollector(
150     std::shared_ptr<ModuleDependencyCollector> Collector) {
151   ModuleDepCollector = std::move(Collector);
152 }
153 
154 static void collectHeaderMaps(const HeaderSearch &HS,
155                               std::shared_ptr<ModuleDependencyCollector> MDC) {
156   SmallVector<std::string, 4> HeaderMapFileNames;
157   HS.getHeaderMapFileNames(HeaderMapFileNames);
158   for (auto &Name : HeaderMapFileNames)
159     MDC->addFile(Name);
160 }
161 
162 static void collectIncludePCH(CompilerInstance &CI,
163                               std::shared_ptr<ModuleDependencyCollector> MDC) {
164   const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
165   if (PPOpts.ImplicitPCHInclude.empty())
166     return;
167 
168   StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
169   FileManager &FileMgr = CI.getFileManager();
170   const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude);
171   if (!PCHDir) {
172     MDC->addFile(PCHInclude);
173     return;
174   }
175 
176   std::error_code EC;
177   SmallString<128> DirNative;
178   llvm::sys::path::native(PCHDir->getName(), DirNative);
179   vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem();
180   SimpleASTReaderListener Validator(CI.getPreprocessor());
181   for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd;
182        Dir != DirEnd && !EC; Dir.increment(EC)) {
183     // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not
184     // used here since we're not interested in validating the PCH at this time,
185     // but only to check whether this is a file containing an AST.
186     if (!ASTReader::readASTFileControlBlock(
187             Dir->getName(), FileMgr, CI.getPCHContainerReader(),
188             /*FindModuleFileExtensions=*/false, Validator,
189             /*ValidateDiagnosticOptions=*/false))
190       MDC->addFile(Dir->getName());
191   }
192 }
193 
194 static void collectVFSEntries(CompilerInstance &CI,
195                               std::shared_ptr<ModuleDependencyCollector> MDC) {
196   if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
197     return;
198 
199   // Collect all VFS found.
200   SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries;
201   for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) {
202     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
203         llvm::MemoryBuffer::getFile(VFSFile);
204     if (!Buffer)
205       return;
206     vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr,
207                             VFSFile, VFSEntries);
208   }
209 
210   for (auto &E : VFSEntries)
211     MDC->addFile(E.VPath, E.RPath);
212 }
213 
214 // Diagnostics
215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
216                                const CodeGenOptions *CodeGenOpts,
217                                DiagnosticsEngine &Diags) {
218   std::error_code EC;
219   std::unique_ptr<raw_ostream> StreamOwner;
220   raw_ostream *OS = &llvm::errs();
221   if (DiagOpts->DiagnosticLogFile != "-") {
222     // Create the output stream.
223     auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
224         DiagOpts->DiagnosticLogFile, EC,
225         llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
226     if (EC) {
227       Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
228           << DiagOpts->DiagnosticLogFile << EC.message();
229     } else {
230       FileOS->SetUnbuffered();
231       OS = FileOS.get();
232       StreamOwner = std::move(FileOS);
233     }
234   }
235 
236   // Chain in the diagnostic client which will log the diagnostics.
237   auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
238                                                         std::move(StreamOwner));
239   if (CodeGenOpts)
240     Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
241   assert(Diags.ownsClient());
242   Diags.setClient(
243       new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
244 }
245 
246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
247                                        DiagnosticsEngine &Diags,
248                                        StringRef OutputFile) {
249   auto SerializedConsumer =
250       clang::serialized_diags::create(OutputFile, DiagOpts);
251 
252   if (Diags.ownsClient()) {
253     Diags.setClient(new ChainedDiagnosticConsumer(
254         Diags.takeClient(), std::move(SerializedConsumer)));
255   } else {
256     Diags.setClient(new ChainedDiagnosticConsumer(
257         Diags.getClient(), std::move(SerializedConsumer)));
258   }
259 }
260 
261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
262                                          bool ShouldOwnClient) {
263   Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
264                                   ShouldOwnClient, &getCodeGenOpts());
265 }
266 
267 IntrusiveRefCntPtr<DiagnosticsEngine>
268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
269                                     DiagnosticConsumer *Client,
270                                     bool ShouldOwnClient,
271                                     const CodeGenOptions *CodeGenOpts) {
272   IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
273   IntrusiveRefCntPtr<DiagnosticsEngine>
274       Diags(new DiagnosticsEngine(DiagID, Opts));
275 
276   // Create the diagnostic client for reporting errors or for
277   // implementing -verify.
278   if (Client) {
279     Diags->setClient(Client, ShouldOwnClient);
280   } else
281     Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
282 
283   // Chain in -verify checker, if requested.
284   if (Opts->VerifyDiagnostics)
285     Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
286 
287   // Chain in -diagnostic-log-file dumper, if requested.
288   if (!Opts->DiagnosticLogFile.empty())
289     SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
290 
291   if (!Opts->DiagnosticSerializationFile.empty())
292     SetupSerializedDiagnostics(Opts, *Diags,
293                                Opts->DiagnosticSerializationFile);
294 
295   // Configure our handling of diagnostics.
296   ProcessWarningOptions(*Diags, *Opts);
297 
298   return Diags;
299 }
300 
301 // File Manager
302 
303 void CompilerInstance::createFileManager() {
304   if (!hasVirtualFileSystem()) {
305     // TODO: choose the virtual file system based on the CompilerInvocation.
306     setVirtualFileSystem(vfs::getRealFileSystem());
307   }
308   FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
309 }
310 
311 // Source Manager
312 
313 void CompilerInstance::createSourceManager(FileManager &FileMgr) {
314   SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
315 }
316 
317 // Initialize the remapping of files to alternative contents, e.g.,
318 // those specified through other files.
319 static void InitializeFileRemapping(DiagnosticsEngine &Diags,
320                                     SourceManager &SourceMgr,
321                                     FileManager &FileMgr,
322                                     const PreprocessorOptions &InitOpts) {
323   // Remap files in the source manager (with buffers).
324   for (const auto &RB : InitOpts.RemappedFileBuffers) {
325     // Create the file entry for the file that we're mapping from.
326     const FileEntry *FromFile =
327         FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
328     if (!FromFile) {
329       Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
330       if (!InitOpts.RetainRemappedFileBuffers)
331         delete RB.second;
332       continue;
333     }
334 
335     // Override the contents of the "from" file with the contents of
336     // the "to" file.
337     SourceMgr.overrideFileContents(FromFile, RB.second,
338                                    InitOpts.RetainRemappedFileBuffers);
339   }
340 
341   // Remap files in the source manager (with other files).
342   for (const auto &RF : InitOpts.RemappedFiles) {
343     // Find the file that we're mapping to.
344     const FileEntry *ToFile = FileMgr.getFile(RF.second);
345     if (!ToFile) {
346       Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
347       continue;
348     }
349 
350     // Create the file entry for the file that we're mapping from.
351     const FileEntry *FromFile =
352         FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
353     if (!FromFile) {
354       Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
355       continue;
356     }
357 
358     // Override the contents of the "from" file with the contents of
359     // the "to" file.
360     SourceMgr.overrideFileContents(FromFile, ToFile);
361   }
362 
363   SourceMgr.setOverridenFilesKeepOriginalName(
364       InitOpts.RemappedFilesKeepOriginalName);
365 }
366 
367 // Preprocessor
368 
369 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
370   const PreprocessorOptions &PPOpts = getPreprocessorOpts();
371 
372   // Create a PTH manager if we are using some form of a token cache.
373   PTHManager *PTHMgr = nullptr;
374   if (!PPOpts.TokenCache.empty())
375     PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
376 
377   // Create the Preprocessor.
378   HeaderSearch *HeaderInfo =
379       new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(),
380                        getDiagnostics(), getLangOpts(), &getTarget());
381   PP = std::make_shared<Preprocessor>(
382       Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(),
383       getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr,
384       /*OwnsHeaderSearch=*/true, TUKind);
385   PP->Initialize(getTarget(), getAuxTarget());
386 
387   // Note that this is different then passing PTHMgr to Preprocessor's ctor.
388   // That argument is used as the IdentifierInfoLookup argument to
389   // IdentifierTable's ctor.
390   if (PTHMgr) {
391     PTHMgr->setPreprocessor(&*PP);
392     PP->setPTHManager(PTHMgr);
393   }
394 
395   if (PPOpts.DetailedRecord)
396     PP->createPreprocessingRecord();
397 
398   // Apply remappings to the source manager.
399   InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
400                           PP->getFileManager(), PPOpts);
401 
402   // Predefine macros and configure the preprocessor.
403   InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(),
404                          getFrontendOpts());
405 
406   // Initialize the header search object.  In CUDA compilations, we use the aux
407   // triple (the host triple) to initialize our header search, since we need to
408   // find the host headers in order to compile the CUDA code.
409   const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple();
410   if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA &&
411       PP->getAuxTargetInfo())
412     HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple();
413 
414   ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
415                            PP->getLangOpts(), *HeaderSearchTriple);
416 
417   PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
418 
419   if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules)
420     PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
421 
422   // Handle generating dependencies, if requested.
423   const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
424   if (!DepOpts.OutputFile.empty())
425     TheDependencyFileGenerator.reset(
426         DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
427   if (!DepOpts.DOTOutputFile.empty())
428     AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
429                              getHeaderSearchOpts().Sysroot);
430 
431   // If we don't have a collector, but we are collecting module dependencies,
432   // then we're the top level compiler instance and need to create one.
433   if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) {
434     ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
435         DepOpts.ModuleDependencyOutputDir);
436   }
437 
438   // If there is a module dep collector, register with other dep collectors
439   // and also (a) collect header maps and (b) TODO: input vfs overlay files.
440   if (ModuleDepCollector) {
441     addDependencyCollector(ModuleDepCollector);
442     collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector);
443     collectIncludePCH(*this, ModuleDepCollector);
444     collectVFSEntries(*this, ModuleDepCollector);
445   }
446 
447   for (auto &Listener : DependencyCollectors)
448     Listener->attachToPreprocessor(*PP);
449 
450   // Handle generating header include information, if requested.
451   if (DepOpts.ShowHeaderIncludes)
452     AttachHeaderIncludeGen(*PP, DepOpts);
453   if (!DepOpts.HeaderIncludeOutputFile.empty()) {
454     StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
455     if (OutputPath == "-")
456       OutputPath = "";
457     AttachHeaderIncludeGen(*PP, DepOpts,
458                            /*ShowAllHeaders=*/true, OutputPath,
459                            /*ShowDepth=*/false);
460   }
461 
462   if (DepOpts.PrintShowIncludes) {
463     AttachHeaderIncludeGen(*PP, DepOpts,
464                            /*ShowAllHeaders=*/true, /*OutputPath=*/"",
465                            /*ShowDepth=*/true, /*MSStyle=*/true);
466   }
467 }
468 
469 std::string CompilerInstance::getSpecificModuleCachePath() {
470   // Set up the module path, including the hash for the
471   // module-creation options.
472   SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath);
473   if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash)
474     llvm::sys::path::append(SpecificModuleCache,
475                             getInvocation().getModuleHash());
476   return SpecificModuleCache.str();
477 }
478 
479 // ASTContext
480 
481 void CompilerInstance::createASTContext() {
482   Preprocessor &PP = getPreprocessor();
483   auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
484                                  PP.getIdentifierTable(), PP.getSelectorTable(),
485                                  PP.getBuiltinInfo());
486   Context->InitBuiltinTypes(getTarget(), getAuxTarget());
487   setASTContext(Context);
488 }
489 
490 // ExternalASTSource
491 
492 void CompilerInstance::createPCHExternalASTSource(
493     StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
494     void *DeserializationListener, bool OwnDeserializationListener) {
495   bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
496   ModuleManager = createPCHExternalASTSource(
497       Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
498       AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
499       getPCHContainerReader(),
500       getFrontendOpts().ModuleFileExtensions,
501       TheDependencyFileGenerator.get(),
502       DependencyCollectors,
503       DeserializationListener,
504       OwnDeserializationListener, Preamble,
505       getFrontendOpts().UseGlobalModuleIndex);
506 }
507 
508 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
509     StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
510     bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
511     const PCHContainerReader &PCHContainerRdr,
512     ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
513     DependencyFileGenerator *DependencyFile,
514     ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors,
515     void *DeserializationListener, bool OwnDeserializationListener,
516     bool Preamble, bool UseGlobalModuleIndex) {
517   HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
518 
519   IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader(
520       PP, &Context, PCHContainerRdr, Extensions,
521       Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation,
522       AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false,
523       HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
524 
525   // We need the external source to be set up before we read the AST, because
526   // eagerly-deserialized declarations may use it.
527   Context.setExternalSource(Reader.get());
528 
529   Reader->setDeserializationListener(
530       static_cast<ASTDeserializationListener *>(DeserializationListener),
531       /*TakeOwnership=*/OwnDeserializationListener);
532 
533   if (DependencyFile)
534     DependencyFile->AttachToASTReader(*Reader);
535   for (auto &Listener : DependencyCollectors)
536     Listener->attachToASTReader(*Reader);
537 
538   switch (Reader->ReadAST(Path,
539                           Preamble ? serialization::MK_Preamble
540                                    : serialization::MK_PCH,
541                           SourceLocation(),
542                           ASTReader::ARR_None)) {
543   case ASTReader::Success:
544     // Set the predefines buffer as suggested by the PCH reader. Typically, the
545     // predefines buffer will be empty.
546     PP.setPredefines(Reader->getSuggestedPredefines());
547     return Reader;
548 
549   case ASTReader::Failure:
550     // Unrecoverable failure: don't even try to process the input file.
551     break;
552 
553   case ASTReader::Missing:
554   case ASTReader::OutOfDate:
555   case ASTReader::VersionMismatch:
556   case ASTReader::ConfigurationMismatch:
557   case ASTReader::HadErrors:
558     // No suitable PCH file could be found. Return an error.
559     break;
560   }
561 
562   Context.setExternalSource(nullptr);
563   return nullptr;
564 }
565 
566 // Code Completion
567 
568 static bool EnableCodeCompletion(Preprocessor &PP,
569                                  StringRef Filename,
570                                  unsigned Line,
571                                  unsigned Column) {
572   // Tell the source manager to chop off the given file at a specific
573   // line and column.
574   const FileEntry *Entry = PP.getFileManager().getFile(Filename);
575   if (!Entry) {
576     PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
577       << Filename;
578     return true;
579   }
580 
581   // Truncate the named file at the given line/column.
582   PP.SetCodeCompletionPoint(Entry, Line, Column);
583   return false;
584 }
585 
586 void CompilerInstance::createCodeCompletionConsumer() {
587   const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
588   if (!CompletionConsumer) {
589     setCodeCompletionConsumer(
590       createCodeCompletionConsumer(getPreprocessor(),
591                                    Loc.FileName, Loc.Line, Loc.Column,
592                                    getFrontendOpts().CodeCompleteOpts,
593                                    llvm::outs()));
594     if (!CompletionConsumer)
595       return;
596   } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
597                                   Loc.Line, Loc.Column)) {
598     setCodeCompletionConsumer(nullptr);
599     return;
600   }
601 
602   if (CompletionConsumer->isOutputBinary() &&
603       llvm::sys::ChangeStdoutToBinary()) {
604     getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
605     setCodeCompletionConsumer(nullptr);
606   }
607 }
608 
609 void CompilerInstance::createFrontendTimer() {
610   FrontendTimerGroup.reset(
611       new llvm::TimerGroup("frontend", "Clang front-end time report"));
612   FrontendTimer.reset(
613       new llvm::Timer("frontend", "Clang front-end timer",
614                       *FrontendTimerGroup));
615 }
616 
617 CodeCompleteConsumer *
618 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
619                                                StringRef Filename,
620                                                unsigned Line,
621                                                unsigned Column,
622                                                const CodeCompleteOptions &Opts,
623                                                raw_ostream &OS) {
624   if (EnableCodeCompletion(PP, Filename, Line, Column))
625     return nullptr;
626 
627   // Set up the creation routine for code-completion.
628   return new PrintingCodeCompleteConsumer(Opts, OS);
629 }
630 
631 void CompilerInstance::createSema(TranslationUnitKind TUKind,
632                                   CodeCompleteConsumer *CompletionConsumer) {
633   TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
634                          TUKind, CompletionConsumer));
635   // Attach the external sema source if there is any.
636   if (ExternalSemaSrc) {
637     TheSema->addExternalSource(ExternalSemaSrc.get());
638     ExternalSemaSrc->InitializeSema(*TheSema);
639   }
640 }
641 
642 // Output Files
643 
644 void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
645   OutputFiles.push_back(std::move(OutFile));
646 }
647 
648 void CompilerInstance::clearOutputFiles(bool EraseFiles) {
649   for (OutputFile &OF : OutputFiles) {
650     if (!OF.TempFilename.empty()) {
651       if (EraseFiles) {
652         llvm::sys::fs::remove(OF.TempFilename);
653       } else {
654         SmallString<128> NewOutFile(OF.Filename);
655 
656         // If '-working-directory' was passed, the output filename should be
657         // relative to that.
658         FileMgr->FixupRelativePath(NewOutFile);
659         if (std::error_code ec =
660                 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
661           getDiagnostics().Report(diag::err_unable_to_rename_temp)
662             << OF.TempFilename << OF.Filename << ec.message();
663 
664           llvm::sys::fs::remove(OF.TempFilename);
665         }
666       }
667     } else if (!OF.Filename.empty() && EraseFiles)
668       llvm::sys::fs::remove(OF.Filename);
669   }
670   OutputFiles.clear();
671   if (DeleteBuiltModules) {
672     for (auto &Module : BuiltModules)
673       llvm::sys::fs::remove(Module.second);
674     BuiltModules.clear();
675   }
676   NonSeekStream.reset();
677 }
678 
679 std::unique_ptr<raw_pwrite_stream>
680 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
681                                           StringRef Extension) {
682   return createOutputFile(getFrontendOpts().OutputFile, Binary,
683                           /*RemoveFileOnSignal=*/true, InFile, Extension,
684                           /*UseTemporary=*/true);
685 }
686 
687 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() {
688   return llvm::make_unique<llvm::raw_null_ostream>();
689 }
690 
691 std::unique_ptr<raw_pwrite_stream>
692 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
693                                    bool RemoveFileOnSignal, StringRef InFile,
694                                    StringRef Extension, bool UseTemporary,
695                                    bool CreateMissingDirectories) {
696   std::string OutputPathName, TempPathName;
697   std::error_code EC;
698   std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
699       OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
700       UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
701   if (!OS) {
702     getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
703                                                                 << EC.message();
704     return nullptr;
705   }
706 
707   // Add the output file -- but don't try to remove "-", since this means we are
708   // using stdin.
709   addOutputFile(
710       OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName));
711 
712   return OS;
713 }
714 
715 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
716     StringRef OutputPath, std::error_code &Error, bool Binary,
717     bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
718     bool UseTemporary, bool CreateMissingDirectories,
719     std::string *ResultPathName, std::string *TempPathName) {
720   assert((!CreateMissingDirectories || UseTemporary) &&
721          "CreateMissingDirectories is only allowed when using temporary files");
722 
723   std::string OutFile, TempFile;
724   if (!OutputPath.empty()) {
725     OutFile = OutputPath;
726   } else if (InFile == "-") {
727     OutFile = "-";
728   } else if (!Extension.empty()) {
729     SmallString<128> Path(InFile);
730     llvm::sys::path::replace_extension(Path, Extension);
731     OutFile = Path.str();
732   } else {
733     OutFile = "-";
734   }
735 
736   std::unique_ptr<llvm::raw_fd_ostream> OS;
737   std::string OSFile;
738 
739   if (UseTemporary) {
740     if (OutFile == "-")
741       UseTemporary = false;
742     else {
743       llvm::sys::fs::file_status Status;
744       llvm::sys::fs::status(OutputPath, Status);
745       if (llvm::sys::fs::exists(Status)) {
746         // Fail early if we can't write to the final destination.
747         if (!llvm::sys::fs::can_write(OutputPath)) {
748           Error = make_error_code(llvm::errc::operation_not_permitted);
749           return nullptr;
750         }
751 
752         // Don't use a temporary if the output is a special file. This handles
753         // things like '-o /dev/null'
754         if (!llvm::sys::fs::is_regular_file(Status))
755           UseTemporary = false;
756       }
757     }
758   }
759 
760   if (UseTemporary) {
761     // Create a temporary file.
762     // Insert -%%%%%%%% before the extension (if any), and because some tools
763     // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build
764     // artifacts, also append .tmp.
765     StringRef OutputExtension = llvm::sys::path::extension(OutFile);
766     SmallString<128> TempPath =
767         StringRef(OutFile).drop_back(OutputExtension.size());
768     TempPath += "-%%%%%%%%";
769     TempPath += OutputExtension;
770     TempPath += ".tmp";
771     int fd;
772     std::error_code EC =
773         llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
774 
775     if (CreateMissingDirectories &&
776         EC == llvm::errc::no_such_file_or_directory) {
777       StringRef Parent = llvm::sys::path::parent_path(OutputPath);
778       EC = llvm::sys::fs::create_directories(Parent);
779       if (!EC) {
780         EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
781       }
782     }
783 
784     if (!EC) {
785       OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
786       OSFile = TempFile = TempPath.str();
787     }
788     // If we failed to create the temporary, fallback to writing to the file
789     // directly. This handles the corner case where we cannot write to the
790     // directory, but can write to the file.
791   }
792 
793   if (!OS) {
794     OSFile = OutFile;
795     OS.reset(new llvm::raw_fd_ostream(
796         OSFile, Error,
797         (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
798     if (Error)
799       return nullptr;
800   }
801 
802   // Make sure the out stream file gets removed if we crash.
803   if (RemoveFileOnSignal)
804     llvm::sys::RemoveFileOnSignal(OSFile);
805 
806   if (ResultPathName)
807     *ResultPathName = OutFile;
808   if (TempPathName)
809     *TempPathName = TempFile;
810 
811   if (!Binary || OS->supportsSeeking())
812     return std::move(OS);
813 
814   auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
815   assert(!NonSeekStream);
816   NonSeekStream = std::move(OS);
817   return std::move(B);
818 }
819 
820 // Initialization Utilities
821 
822 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
823   return InitializeSourceManager(
824       Input, getDiagnostics(), getFileManager(), getSourceManager(),
825       hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr,
826       getDependencyOutputOpts(), getFrontendOpts());
827 }
828 
829 // static
830 bool CompilerInstance::InitializeSourceManager(
831     const FrontendInputFile &Input, DiagnosticsEngine &Diags,
832     FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS,
833     DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) {
834   SrcMgr::CharacteristicKind Kind =
835       Input.getKind().getFormat() == InputKind::ModuleMap
836           ? Input.isSystem() ? SrcMgr::C_System_ModuleMap
837                              : SrcMgr::C_User_ModuleMap
838           : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
839 
840   if (Input.isBuffer()) {
841     SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned,
842                                                    Input.getBuffer(), Kind));
843     assert(SourceMgr.getMainFileID().isValid() &&
844            "Couldn't establish MainFileID!");
845     return true;
846   }
847 
848   StringRef InputFile = Input.getFile();
849 
850   // Figure out where to get and map in the main file.
851   if (InputFile != "-") {
852     const FileEntry *File;
853     if (Opts.FindPchSource.empty()) {
854       File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
855     } else {
856       // When building a pch file in clang-cl mode, the .h file is built as if
857       // it was included by a cc file.  Since the driver doesn't know about
858       // all include search directories, the frontend must search the input
859       // file through HeaderSearch here, as if it had been included by the
860       // cc file at Opts.FindPchSource.
861       const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource);
862       if (!FindFile) {
863         Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource;
864         return false;
865       }
866       const DirectoryLookup *UnusedCurDir;
867       SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16>
868           Includers;
869       Includers.push_back(std::make_pair(FindFile, FindFile->getDir()));
870       File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false,
871                             /*FromDir=*/nullptr,
872                             /*CurDir=*/UnusedCurDir, Includers,
873                             /*SearchPath=*/nullptr,
874                             /*RelativePath=*/nullptr,
875                             /*RequestingModule=*/nullptr,
876                             /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
877                             /*SkipCache=*/true);
878       // Also add the header to /showIncludes output.
879       if (File)
880         DepOpts.ShowIncludesPretendHeader = File->getName();
881     }
882     if (!File) {
883       Diags.Report(diag::err_fe_error_reading) << InputFile;
884       return false;
885     }
886 
887     // The natural SourceManager infrastructure can't currently handle named
888     // pipes, but we would at least like to accept them for the main
889     // file. Detect them here, read them with the volatile flag so FileMgr will
890     // pick up the correct size, and simply override their contents as we do for
891     // STDIN.
892     if (File->isNamedPipe()) {
893       auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
894       if (MB) {
895         // Create a new virtual file that will have the correct size.
896         File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
897         SourceMgr.overrideFileContents(File, std::move(*MB));
898       } else {
899         Diags.Report(diag::err_cannot_open_file) << InputFile
900                                                  << MB.getError().message();
901         return false;
902       }
903     }
904 
905     SourceMgr.setMainFileID(
906         SourceMgr.createFileID(File, SourceLocation(), Kind));
907   } else {
908     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
909         llvm::MemoryBuffer::getSTDIN();
910     if (std::error_code EC = SBOrErr.getError()) {
911       Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
912       return false;
913     }
914     std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
915 
916     const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
917                                                    SB->getBufferSize(), 0);
918     SourceMgr.setMainFileID(
919         SourceMgr.createFileID(File, SourceLocation(), Kind));
920     SourceMgr.overrideFileContents(File, std::move(SB));
921   }
922 
923   assert(SourceMgr.getMainFileID().isValid() &&
924          "Couldn't establish MainFileID!");
925   return true;
926 }
927 
928 // High-Level Operations
929 
930 bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
931   assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
932   assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
933   assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
934 
935   // FIXME: Take this as an argument, once all the APIs we used have moved to
936   // taking it as an input instead of hard-coding llvm::errs.
937   raw_ostream &OS = llvm::errs();
938 
939   // Create the target instance.
940   setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
941                                          getInvocation().TargetOpts));
942   if (!hasTarget())
943     return false;
944 
945   // Create TargetInfo for the other side of CUDA and OpenMP compilation.
946   if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) &&
947       !getFrontendOpts().AuxTriple.empty()) {
948     auto TO = std::make_shared<TargetOptions>();
949     TO->Triple = getFrontendOpts().AuxTriple;
950     TO->HostTriple = getTarget().getTriple().str();
951     setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO));
952   }
953 
954   // Inform the target of the language options.
955   //
956   // FIXME: We shouldn't need to do this, the target should be immutable once
957   // created. This complexity should be lifted elsewhere.
958   getTarget().adjust(getLangOpts());
959 
960   // Adjust target options based on codegen options.
961   getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts());
962 
963   // rewriter project will change target built-in bool type from its default.
964   if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
965     getTarget().noSignedCharForObjCBool();
966 
967   // Validate/process some options.
968   if (getHeaderSearchOpts().Verbose)
969     OS << "clang -cc1 version " CLANG_VERSION_STRING
970        << " based upon " << BACKEND_PACKAGE_STRING
971        << " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
972 
973   if (getFrontendOpts().ShowTimers)
974     createFrontendTimer();
975 
976   if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty())
977     llvm::EnableStatistics(false);
978 
979   for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) {
980     // Reset the ID tables if we are reusing the SourceManager and parsing
981     // regular files.
982     if (hasSourceManager() && !Act.isModelParsingAction())
983       getSourceManager().clearIDTables();
984 
985     if (Act.BeginSourceFile(*this, FIF)) {
986       Act.Execute();
987       Act.EndSourceFile();
988     }
989   }
990 
991   // Notify the diagnostic client that all files were processed.
992   getDiagnostics().getClient()->finish();
993 
994   if (getDiagnosticOpts().ShowCarets) {
995     // We can have multiple diagnostics sharing one diagnostic client.
996     // Get the total number of warnings/errors from the client.
997     unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
998     unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
999 
1000     if (NumWarnings)
1001       OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
1002     if (NumWarnings && NumErrors)
1003       OS << " and ";
1004     if (NumErrors)
1005       OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
1006     if (NumWarnings || NumErrors) {
1007       OS << " generated";
1008       if (getLangOpts().CUDA) {
1009         if (!getLangOpts().CUDAIsDevice) {
1010           OS << " when compiling for host";
1011         } else {
1012           OS << " when compiling for " << getTargetOpts().CPU;
1013         }
1014       }
1015       OS << ".\n";
1016     }
1017   }
1018 
1019   if (getFrontendOpts().ShowStats) {
1020     if (hasFileManager()) {
1021       getFileManager().PrintStats();
1022       OS << '\n';
1023     }
1024     llvm::PrintStatistics(OS);
1025   }
1026   StringRef StatsFile = getFrontendOpts().StatsFile;
1027   if (!StatsFile.empty()) {
1028     std::error_code EC;
1029     auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC,
1030                                                          llvm::sys::fs::F_Text);
1031     if (EC) {
1032       getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file)
1033           << StatsFile << EC.message();
1034     } else {
1035       llvm::PrintStatisticsJSON(*StatS);
1036     }
1037   }
1038 
1039   return !getDiagnostics().getClient()->getNumErrors();
1040 }
1041 
1042 /// \brief Determine the appropriate source input kind based on language
1043 /// options.
1044 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) {
1045   if (LangOpts.OpenCL)
1046     return InputKind::OpenCL;
1047   if (LangOpts.CUDA)
1048     return InputKind::CUDA;
1049   if (LangOpts.ObjC1)
1050     return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC;
1051   return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C;
1052 }
1053 
1054 /// \brief Compile a module file for the given module, using the options
1055 /// provided by the importing compiler instance. Returns true if the module
1056 /// was built without errors.
1057 static bool
1058 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc,
1059                   StringRef ModuleName, FrontendInputFile Input,
1060                   StringRef OriginalModuleMapFile, StringRef ModuleFileName,
1061                   llvm::function_ref<void(CompilerInstance &)> PreBuildStep =
1062                       [](CompilerInstance &) {},
1063                   llvm::function_ref<void(CompilerInstance &)> PostBuildStep =
1064                       [](CompilerInstance &) {}) {
1065   // Construct a compiler invocation for creating this module.
1066   auto Invocation =
1067       std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation());
1068 
1069   PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
1070 
1071   // For any options that aren't intended to affect how a module is built,
1072   // reset them to their default values.
1073   Invocation->getLangOpts()->resetNonModularOptions();
1074   PPOpts.resetNonModularOptions();
1075 
1076   // Remove any macro definitions that are explicitly ignored by the module.
1077   // They aren't supposed to affect how the module is built anyway.
1078   HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
1079   PPOpts.Macros.erase(
1080       std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
1081                      [&HSOpts](const std::pair<std::string, bool> &def) {
1082         StringRef MacroDef = def.first;
1083         return HSOpts.ModulesIgnoreMacros.count(
1084                    llvm::CachedHashString(MacroDef.split('=').first)) > 0;
1085       }),
1086       PPOpts.Macros.end());
1087 
1088   // Note the name of the module we're building.
1089   Invocation->getLangOpts()->CurrentModule = ModuleName;
1090 
1091   // Make sure that the failed-module structure has been allocated in
1092   // the importing instance, and propagate the pointer to the newly-created
1093   // instance.
1094   PreprocessorOptions &ImportingPPOpts
1095     = ImportingInstance.getInvocation().getPreprocessorOpts();
1096   if (!ImportingPPOpts.FailedModules)
1097     ImportingPPOpts.FailedModules =
1098         std::make_shared<PreprocessorOptions::FailedModulesSet>();
1099   PPOpts.FailedModules = ImportingPPOpts.FailedModules;
1100 
1101   // If there is a module map file, build the module using the module map.
1102   // Set up the inputs/outputs so that we build the module from its umbrella
1103   // header.
1104   FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
1105   FrontendOpts.OutputFile = ModuleFileName.str();
1106   FrontendOpts.DisableFree = false;
1107   FrontendOpts.GenerateGlobalModuleIndex = false;
1108   FrontendOpts.BuildingImplicitModule = true;
1109   FrontendOpts.OriginalModuleMap = OriginalModuleMapFile;
1110   // Force implicitly-built modules to hash the content of the module file.
1111   HSOpts.ModulesHashContent = true;
1112   FrontendOpts.Inputs = {Input};
1113 
1114   // Don't free the remapped file buffers; they are owned by our caller.
1115   PPOpts.RetainRemappedFileBuffers = true;
1116 
1117   Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
1118   assert(ImportingInstance.getInvocation().getModuleHash() ==
1119          Invocation->getModuleHash() && "Module hash mismatch!");
1120 
1121   // Construct a compiler instance that will be used to actually create the
1122   // module.  Since we're sharing a PCMCache,
1123   // CompilerInstance::CompilerInstance is responsible for finalizing the
1124   // buffers to prevent use-after-frees.
1125   CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(),
1126                             &ImportingInstance.getPreprocessor().getPCMCache());
1127   auto &Inv = *Invocation;
1128   Instance.setInvocation(std::move(Invocation));
1129 
1130   Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
1131                                    ImportingInstance.getDiagnosticClient()),
1132                              /*ShouldOwnClient=*/true);
1133 
1134   Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
1135 
1136   // Note that this module is part of the module build stack, so that we
1137   // can detect cycles in the module graph.
1138   Instance.setFileManager(&ImportingInstance.getFileManager());
1139   Instance.createSourceManager(Instance.getFileManager());
1140   SourceManager &SourceMgr = Instance.getSourceManager();
1141   SourceMgr.setModuleBuildStack(
1142     ImportingInstance.getSourceManager().getModuleBuildStack());
1143   SourceMgr.pushModuleBuildStack(ModuleName,
1144     FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
1145 
1146   // If we're collecting module dependencies, we need to share a collector
1147   // between all of the module CompilerInstances. Other than that, we don't
1148   // want to produce any dependency output from the module build.
1149   Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
1150   Inv.getDependencyOutputOpts() = DependencyOutputOptions();
1151 
1152   ImportingInstance.getDiagnostics().Report(ImportLoc,
1153                                             diag::remark_module_build)
1154     << ModuleName << ModuleFileName;
1155 
1156   PreBuildStep(Instance);
1157 
1158   // Execute the action to actually build the module in-place. Use a separate
1159   // thread so that we get a stack large enough.
1160   const unsigned ThreadStackSize = 8 << 20;
1161   llvm::CrashRecoveryContext CRC;
1162   CRC.RunSafelyOnThread(
1163       [&]() {
1164         GenerateModuleFromModuleMapAction Action;
1165         Instance.ExecuteAction(Action);
1166       },
1167       ThreadStackSize);
1168 
1169   PostBuildStep(Instance);
1170 
1171   ImportingInstance.getDiagnostics().Report(ImportLoc,
1172                                             diag::remark_module_build_done)
1173     << ModuleName;
1174 
1175   // Delete the temporary module map file.
1176   // FIXME: Even though we're executing under crash protection, it would still
1177   // be nice to do this with RemoveFileOnSignal when we can. However, that
1178   // doesn't make sense for all clients, so clean this up manually.
1179   Instance.clearOutputFiles(/*EraseFiles=*/true);
1180 
1181   return !Instance.getDiagnostics().hasErrorOccurred();
1182 }
1183 
1184 /// \brief Compile a module file for the given module, using the options
1185 /// provided by the importing compiler instance. Returns true if the module
1186 /// was built without errors.
1187 static bool compileModuleImpl(CompilerInstance &ImportingInstance,
1188                               SourceLocation ImportLoc,
1189                               Module *Module,
1190                               StringRef ModuleFileName) {
1191   InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()),
1192                InputKind::ModuleMap);
1193 
1194   // Get or create the module map that we'll use to build this module.
1195   ModuleMap &ModMap
1196     = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
1197   bool Result;
1198   if (const FileEntry *ModuleMapFile =
1199           ModMap.getContainingModuleMapFile(Module)) {
1200     // Use the module map where this module resides.
1201     Result = compileModuleImpl(
1202         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1203         FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem),
1204         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1205         ModuleFileName);
1206   } else {
1207     // FIXME: We only need to fake up an input file here as a way of
1208     // transporting the module's directory to the module map parser. We should
1209     // be able to do that more directly, and parse from a memory buffer without
1210     // inventing this file.
1211     SmallString<128> FakeModuleMapFile(Module->Directory->getName());
1212     llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
1213 
1214     std::string InferredModuleMapContent;
1215     llvm::raw_string_ostream OS(InferredModuleMapContent);
1216     Module->print(OS);
1217     OS.flush();
1218 
1219     Result = compileModuleImpl(
1220         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1221         FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem),
1222         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1223         ModuleFileName,
1224         [&](CompilerInstance &Instance) {
1225       std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
1226           llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
1227       ModuleMapFile = Instance.getFileManager().getVirtualFile(
1228           FakeModuleMapFile, InferredModuleMapContent.size(), 0);
1229       Instance.getSourceManager().overrideFileContents(
1230           ModuleMapFile, std::move(ModuleMapBuffer));
1231     });
1232   }
1233 
1234   // We've rebuilt a module. If we're allowed to generate or update the global
1235   // module index, record that fact in the importing compiler instance.
1236   if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
1237     ImportingInstance.setBuildGlobalModuleIndex(true);
1238   }
1239 
1240   return Result;
1241 }
1242 
1243 static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
1244                                  SourceLocation ImportLoc,
1245                                  SourceLocation ModuleNameLoc, Module *Module,
1246                                  StringRef ModuleFileName) {
1247   DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
1248 
1249   auto diagnoseBuildFailure = [&] {
1250     Diags.Report(ModuleNameLoc, diag::err_module_not_built)
1251         << Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
1252   };
1253 
1254   // FIXME: have LockFileManager return an error_code so that we can
1255   // avoid the mkdir when the directory already exists.
1256   StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
1257   llvm::sys::fs::create_directories(Dir);
1258 
1259   while (1) {
1260     unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
1261     llvm::LockFileManager Locked(ModuleFileName);
1262     switch (Locked) {
1263     case llvm::LockFileManager::LFS_Error:
1264       // PCMCache takes care of correctness and locks are only necessary for
1265       // performance. Fallback to building the module in case of any lock
1266       // related errors.
1267       Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure)
1268           << Module->Name << Locked.getErrorMessage();
1269       // Clear out any potential leftover.
1270       Locked.unsafeRemoveLockFile();
1271       // FALLTHROUGH
1272     case llvm::LockFileManager::LFS_Owned:
1273       // We're responsible for building the module ourselves.
1274       if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
1275                              ModuleFileName)) {
1276         diagnoseBuildFailure();
1277         return false;
1278       }
1279       break;
1280 
1281     case llvm::LockFileManager::LFS_Shared:
1282       // Someone else is responsible for building the module. Wait for them to
1283       // finish.
1284       switch (Locked.waitForUnlock()) {
1285       case llvm::LockFileManager::Res_Success:
1286         ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
1287         break;
1288       case llvm::LockFileManager::Res_OwnerDied:
1289         continue; // try again to get the lock.
1290       case llvm::LockFileManager::Res_Timeout:
1291         // Since PCMCache takes care of correctness, we try waiting for another
1292         // process to complete the build so clang does not do it done twice. If
1293         // case of timeout, build it ourselves.
1294         Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout)
1295             << Module->Name;
1296         // Clear the lock file so that future invokations can make progress.
1297         Locked.unsafeRemoveLockFile();
1298         continue;
1299       }
1300       break;
1301     }
1302 
1303     // Try to read the module file, now that we've compiled it.
1304     ASTReader::ASTReadResult ReadResult =
1305         ImportingInstance.getModuleManager()->ReadAST(
1306             ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
1307             ModuleLoadCapabilities);
1308 
1309     if (ReadResult == ASTReader::OutOfDate &&
1310         Locked == llvm::LockFileManager::LFS_Shared) {
1311       // The module may be out of date in the presence of file system races,
1312       // or if one of its imports depends on header search paths that are not
1313       // consistent with this ImportingInstance.  Try again...
1314       continue;
1315     } else if (ReadResult == ASTReader::Missing) {
1316       diagnoseBuildFailure();
1317     } else if (ReadResult != ASTReader::Success &&
1318                !Diags.hasErrorOccurred()) {
1319       // The ASTReader didn't diagnose the error, so conservatively report it.
1320       diagnoseBuildFailure();
1321     }
1322     return ReadResult == ASTReader::Success;
1323   }
1324 }
1325 
1326 /// \brief Diagnose differences between the current definition of the given
1327 /// configuration macro and the definition provided on the command line.
1328 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
1329                              Module *Mod, SourceLocation ImportLoc) {
1330   IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
1331   SourceManager &SourceMgr = PP.getSourceManager();
1332 
1333   // If this identifier has never had a macro definition, then it could
1334   // not have changed.
1335   if (!Id->hadMacroDefinition())
1336     return;
1337   auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
1338 
1339   // Find the macro definition from the command line.
1340   MacroInfo *CmdLineDefinition = nullptr;
1341   for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
1342     // We only care about the predefines buffer.
1343     FileID FID = SourceMgr.getFileID(MD->getLocation());
1344     if (FID.isInvalid() || FID != PP.getPredefinesFileID())
1345       continue;
1346     if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
1347       CmdLineDefinition = DMD->getMacroInfo();
1348     break;
1349   }
1350 
1351   auto *CurrentDefinition = PP.getMacroInfo(Id);
1352   if (CurrentDefinition == CmdLineDefinition) {
1353     // Macro matches. Nothing to do.
1354   } else if (!CurrentDefinition) {
1355     // This macro was defined on the command line, then #undef'd later.
1356     // Complain.
1357     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1358       << true << ConfigMacro << Mod->getFullModuleName();
1359     auto LatestDef = LatestLocalMD->getDefinition();
1360     assert(LatestDef.isUndefined() &&
1361            "predefined macro went away with no #undef?");
1362     PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
1363       << true;
1364     return;
1365   } else if (!CmdLineDefinition) {
1366     // There was no definition for this macro in the predefines buffer,
1367     // but there was a local definition. Complain.
1368     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1369       << false << ConfigMacro << Mod->getFullModuleName();
1370     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1371             diag::note_module_def_undef_here)
1372       << false;
1373   } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
1374                                                /*Syntactically=*/true)) {
1375     // The macro definitions differ.
1376     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1377       << false << ConfigMacro << Mod->getFullModuleName();
1378     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1379             diag::note_module_def_undef_here)
1380       << false;
1381   }
1382 }
1383 
1384 /// \brief Write a new timestamp file with the given path.
1385 static void writeTimestampFile(StringRef TimestampFile) {
1386   std::error_code EC;
1387   llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
1388 }
1389 
1390 /// \brief Prune the module cache of modules that haven't been accessed in
1391 /// a long time.
1392 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
1393   struct stat StatBuf;
1394   llvm::SmallString<128> TimestampFile;
1395   TimestampFile = HSOpts.ModuleCachePath;
1396   assert(!TimestampFile.empty());
1397   llvm::sys::path::append(TimestampFile, "modules.timestamp");
1398 
1399   // Try to stat() the timestamp file.
1400   if (::stat(TimestampFile.c_str(), &StatBuf)) {
1401     // If the timestamp file wasn't there, create one now.
1402     if (errno == ENOENT) {
1403       writeTimestampFile(TimestampFile);
1404     }
1405     return;
1406   }
1407 
1408   // Check whether the time stamp is older than our pruning interval.
1409   // If not, do nothing.
1410   time_t TimeStampModTime = StatBuf.st_mtime;
1411   time_t CurrentTime = time(nullptr);
1412   if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
1413     return;
1414 
1415   // Write a new timestamp file so that nobody else attempts to prune.
1416   // There is a benign race condition here, if two Clang instances happen to
1417   // notice at the same time that the timestamp is out-of-date.
1418   writeTimestampFile(TimestampFile);
1419 
1420   // Walk the entire module cache, looking for unused module files and module
1421   // indices.
1422   std::error_code EC;
1423   SmallString<128> ModuleCachePathNative;
1424   llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
1425   for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
1426        Dir != DirEnd && !EC; Dir.increment(EC)) {
1427     // If we don't have a directory, there's nothing to look into.
1428     if (!llvm::sys::fs::is_directory(Dir->path()))
1429       continue;
1430 
1431     // Walk all of the files within this directory.
1432     for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
1433          File != FileEnd && !EC; File.increment(EC)) {
1434       // We only care about module and global module index files.
1435       StringRef Extension = llvm::sys::path::extension(File->path());
1436       if (Extension != ".pcm" && Extension != ".timestamp" &&
1437           llvm::sys::path::filename(File->path()) != "modules.idx")
1438         continue;
1439 
1440       // Look at this file. If we can't stat it, there's nothing interesting
1441       // there.
1442       if (::stat(File->path().c_str(), &StatBuf))
1443         continue;
1444 
1445       // If the file has been used recently enough, leave it there.
1446       time_t FileAccessTime = StatBuf.st_atime;
1447       if (CurrentTime - FileAccessTime <=
1448               time_t(HSOpts.ModuleCachePruneAfter)) {
1449         continue;
1450       }
1451 
1452       // Remove the file.
1453       llvm::sys::fs::remove(File->path());
1454 
1455       // Remove the timestamp file.
1456       std::string TimpestampFilename = File->path() + ".timestamp";
1457       llvm::sys::fs::remove(TimpestampFilename);
1458     }
1459 
1460     // If we removed all of the files in the directory, remove the directory
1461     // itself.
1462     if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
1463             llvm::sys::fs::directory_iterator() && !EC)
1464       llvm::sys::fs::remove(Dir->path());
1465   }
1466 }
1467 
1468 void CompilerInstance::createModuleManager() {
1469   if (!ModuleManager) {
1470     if (!hasASTContext())
1471       createASTContext();
1472 
1473     // If we're implicitly building modules but not currently recursively
1474     // building a module, check whether we need to prune the module cache.
1475     if (getSourceManager().getModuleBuildStack().empty() &&
1476         !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() &&
1477         getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
1478         getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
1479       pruneModuleCache(getHeaderSearchOpts());
1480     }
1481 
1482     HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
1483     std::string Sysroot = HSOpts.Sysroot;
1484     const PreprocessorOptions &PPOpts = getPreprocessorOpts();
1485     std::unique_ptr<llvm::Timer> ReadTimer;
1486     if (FrontendTimerGroup)
1487       ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules",
1488                                                  "Reading modules",
1489                                                  *FrontendTimerGroup);
1490     ModuleManager = new ASTReader(
1491         getPreprocessor(), &getASTContext(), getPCHContainerReader(),
1492         getFrontendOpts().ModuleFileExtensions,
1493         Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation,
1494         /*AllowASTWithCompilerErrors=*/false,
1495         /*AllowConfigurationMismatch=*/false,
1496         HSOpts.ModulesValidateSystemHeaders,
1497         getFrontendOpts().UseGlobalModuleIndex,
1498         std::move(ReadTimer));
1499     if (hasASTConsumer()) {
1500       ModuleManager->setDeserializationListener(
1501         getASTConsumer().GetASTDeserializationListener());
1502       getASTContext().setASTMutationListener(
1503         getASTConsumer().GetASTMutationListener());
1504     }
1505     getASTContext().setExternalSource(ModuleManager);
1506     if (hasSema())
1507       ModuleManager->InitializeSema(getSema());
1508     if (hasASTConsumer())
1509       ModuleManager->StartTranslationUnit(&getASTConsumer());
1510 
1511     if (TheDependencyFileGenerator)
1512       TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
1513     for (auto &Listener : DependencyCollectors)
1514       Listener->attachToASTReader(*ModuleManager);
1515   }
1516 }
1517 
1518 bool CompilerInstance::loadModuleFile(StringRef FileName) {
1519   llvm::Timer Timer;
1520   if (FrontendTimerGroup)
1521     Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(),
1522                *FrontendTimerGroup);
1523   llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1524 
1525   // Helper to recursively read the module names for all modules we're adding.
1526   // We mark these as known and redirect any attempt to load that module to
1527   // the files we were handed.
1528   struct ReadModuleNames : ASTReaderListener {
1529     CompilerInstance &CI;
1530     llvm::SmallVector<IdentifierInfo*, 8> LoadedModules;
1531 
1532     ReadModuleNames(CompilerInstance &CI) : CI(CI) {}
1533 
1534     void ReadModuleName(StringRef ModuleName) override {
1535       LoadedModules.push_back(
1536           CI.getPreprocessor().getIdentifierInfo(ModuleName));
1537     }
1538 
1539     void registerAll() {
1540       for (auto *II : LoadedModules) {
1541         CI.KnownModules[II] = CI.getPreprocessor()
1542                                   .getHeaderSearchInfo()
1543                                   .getModuleMap()
1544                                   .findModule(II->getName());
1545       }
1546       LoadedModules.clear();
1547     }
1548 
1549     void markAllUnavailable() {
1550       for (auto *II : LoadedModules) {
1551         if (Module *M = CI.getPreprocessor()
1552                             .getHeaderSearchInfo()
1553                             .getModuleMap()
1554                             .findModule(II->getName())) {
1555           M->HasIncompatibleModuleFile = true;
1556 
1557           // Mark module as available if the only reason it was unavailable
1558           // was missing headers.
1559           SmallVector<Module *, 2> Stack;
1560           Stack.push_back(M);
1561           while (!Stack.empty()) {
1562             Module *Current = Stack.pop_back_val();
1563             if (Current->IsMissingRequirement) continue;
1564             Current->IsAvailable = true;
1565             Stack.insert(Stack.end(),
1566                          Current->submodule_begin(), Current->submodule_end());
1567           }
1568         }
1569       }
1570       LoadedModules.clear();
1571     }
1572   };
1573 
1574   // If we don't already have an ASTReader, create one now.
1575   if (!ModuleManager)
1576     createModuleManager();
1577 
1578   auto Listener = llvm::make_unique<ReadModuleNames>(*this);
1579   auto &ListenerRef = *Listener;
1580   ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager,
1581                                                    std::move(Listener));
1582 
1583   // Try to load the module file.
1584   switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule,
1585                                  SourceLocation(),
1586                                  ASTReader::ARR_ConfigurationMismatch)) {
1587   case ASTReader::Success:
1588     // We successfully loaded the module file; remember the set of provided
1589     // modules so that we don't try to load implicit modules for them.
1590     ListenerRef.registerAll();
1591     return true;
1592 
1593   case ASTReader::ConfigurationMismatch:
1594     // Ignore unusable module files.
1595     getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch)
1596         << FileName;
1597     // All modules provided by any files we tried and failed to load are now
1598     // unavailable; includes of those modules should now be handled textually.
1599     ListenerRef.markAllUnavailable();
1600     return true;
1601 
1602   default:
1603     return false;
1604   }
1605 }
1606 
1607 ModuleLoadResult
1608 CompilerInstance::loadModule(SourceLocation ImportLoc,
1609                              ModuleIdPath Path,
1610                              Module::NameVisibilityKind Visibility,
1611                              bool IsInclusionDirective) {
1612   // Determine what file we're searching from.
1613   // FIXME: Should we be deciding whether this is a submodule (here and
1614   // below) based on -fmodules-ts or should we pass a flag and make the
1615   // caller decide?
1616   std::string ModuleName;
1617   if (getLangOpts().ModulesTS) {
1618     // FIXME: Same code as Sema::ActOnModuleDecl() so there is probably a
1619     // better place/way to do this.
1620     for (auto &Piece : Path) {
1621       if (!ModuleName.empty())
1622         ModuleName += ".";
1623       ModuleName += Piece.first->getName();
1624     }
1625   }
1626   else
1627     ModuleName = Path[0].first->getName();
1628 
1629   SourceLocation ModuleNameLoc = Path[0].second;
1630 
1631   // If we've already handled this import, just return the cached result.
1632   // This one-element cache is important to eliminate redundant diagnostics
1633   // when both the preprocessor and parser see the same import declaration.
1634   if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) {
1635     // Make the named module visible.
1636     if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule)
1637       ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
1638                                        ImportLoc);
1639     return LastModuleImportResult;
1640   }
1641 
1642   clang::Module *Module = nullptr;
1643 
1644   // If we don't already have information on this module, load the module now.
1645   llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
1646     = KnownModules.find(Path[0].first);
1647   if (Known != KnownModules.end()) {
1648     // Retrieve the cached top-level module.
1649     Module = Known->second;
1650   } else if (ModuleName == getLangOpts().CurrentModule) {
1651     // This is the module we're building.
1652     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1653     /// FIXME: perhaps we should (a) look for a module using the module name
1654     //  to file map (PrebuiltModuleFiles) and (b) diagnose if still not found?
1655     //if (Module == nullptr) {
1656     //  getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1657     //    << ModuleName;
1658     //  ModuleBuildFailed = true;
1659     //  return ModuleLoadResult();
1660     //}
1661     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1662   } else {
1663     // Search for a module with the given name.
1664     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1665     HeaderSearchOptions &HSOpts =
1666         PP->getHeaderSearchInfo().getHeaderSearchOpts();
1667 
1668     std::string ModuleFileName;
1669     enum ModuleSource {
1670       ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma
1671     } Source = ModuleNotFound;
1672 
1673     // Check to see if the module has been built as part of this compilation
1674     // via a module build pragma.
1675     auto BuiltModuleIt = BuiltModules.find(ModuleName);
1676     if (BuiltModuleIt != BuiltModules.end()) {
1677       ModuleFileName = BuiltModuleIt->second;
1678       Source = ModuleBuildPragma;
1679     }
1680 
1681     // Try to load the module from the prebuilt module path.
1682     if (Source == ModuleNotFound && (!HSOpts.PrebuiltModuleFiles.empty() ||
1683                                      !HSOpts.PrebuiltModulePaths.empty())) {
1684       ModuleFileName =
1685         PP->getHeaderSearchInfo().getPrebuiltModuleFileName(ModuleName);
1686       if (!ModuleFileName.empty())
1687         Source = PrebuiltModulePath;
1688     }
1689 
1690     // Try to load the module from the module cache.
1691     if (Source == ModuleNotFound && Module) {
1692       ModuleFileName = PP->getHeaderSearchInfo().getCachedModuleFileName(Module);
1693       Source = ModuleCache;
1694     }
1695 
1696     if (Source == ModuleNotFound) {
1697       // We can't find a module, error out here.
1698       getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1699           << ModuleName << SourceRange(ImportLoc, ModuleNameLoc);
1700       ModuleBuildFailed = true;
1701       return ModuleLoadResult();
1702     }
1703 
1704     if (ModuleFileName.empty()) {
1705       if (Module && Module->HasIncompatibleModuleFile) {
1706         // We tried and failed to load a module file for this module. Fall
1707         // back to textual inclusion for its headers.
1708         return ModuleLoadResult::ConfigMismatch;
1709       }
1710 
1711       getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
1712           << ModuleName;
1713       ModuleBuildFailed = true;
1714       return ModuleLoadResult();
1715     }
1716 
1717     // If we don't already have an ASTReader, create one now.
1718     if (!ModuleManager)
1719       createModuleManager();
1720 
1721     llvm::Timer Timer;
1722     if (FrontendTimerGroup)
1723       Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName,
1724                  *FrontendTimerGroup);
1725     llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1726 
1727     // Try to load the module file. If we are not trying to load from the
1728     // module cache, we don't know how to rebuild modules.
1729     unsigned ARRFlags = Source == ModuleCache ?
1730                         ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing :
1731                         ASTReader::ARR_ConfigurationMismatch;
1732     switch (ModuleManager->ReadAST(ModuleFileName,
1733                                    Source == PrebuiltModulePath
1734                                        ? serialization::MK_PrebuiltModule
1735                                        : Source == ModuleBuildPragma
1736                                              ? serialization::MK_ExplicitModule
1737                                              : serialization::MK_ImplicitModule,
1738                                    ImportLoc, ARRFlags)) {
1739     case ASTReader::Success: {
1740       if (Source != ModuleCache && !Module) {
1741         Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1742         if (!Module || !Module->getASTFile() ||
1743             FileMgr->getFile(ModuleFileName) != Module->getASTFile()) {
1744           // Error out if Module does not refer to the file in the prebuilt
1745           // module path.
1746           getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt)
1747               << ModuleName;
1748           ModuleBuildFailed = true;
1749           KnownModules[Path[0].first] = nullptr;
1750           return ModuleLoadResult();
1751         }
1752       }
1753       break;
1754     }
1755 
1756     case ASTReader::OutOfDate:
1757     case ASTReader::Missing: {
1758       if (Source != ModuleCache) {
1759         // We don't know the desired configuration for this module and don't
1760         // necessarily even have a module map. Since ReadAST already produces
1761         // diagnostics for these two cases, we simply error out here.
1762         ModuleBuildFailed = true;
1763         KnownModules[Path[0].first] = nullptr;
1764         return ModuleLoadResult();
1765       }
1766 
1767       // The module file is missing or out-of-date. Build it.
1768       assert(Module && "missing module file");
1769       // Check whether there is a cycle in the module graph.
1770       ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
1771       ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
1772       for (; Pos != PosEnd; ++Pos) {
1773         if (Pos->first == ModuleName)
1774           break;
1775       }
1776 
1777       if (Pos != PosEnd) {
1778         SmallString<256> CyclePath;
1779         for (; Pos != PosEnd; ++Pos) {
1780           CyclePath += Pos->first;
1781           CyclePath += " -> ";
1782         }
1783         CyclePath += ModuleName;
1784 
1785         getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
1786           << ModuleName << CyclePath;
1787         return ModuleLoadResult();
1788       }
1789 
1790       // Check whether we have already attempted to build this module (but
1791       // failed).
1792       if (getPreprocessorOpts().FailedModules &&
1793           getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
1794         getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
1795           << ModuleName
1796           << SourceRange(ImportLoc, ModuleNameLoc);
1797         ModuleBuildFailed = true;
1798         return ModuleLoadResult();
1799       }
1800 
1801       // Try to compile and then load the module.
1802       if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
1803                                 ModuleFileName)) {
1804         assert(getDiagnostics().hasErrorOccurred() &&
1805                "undiagnosed error in compileAndLoadModule");
1806         if (getPreprocessorOpts().FailedModules)
1807           getPreprocessorOpts().FailedModules->addFailed(ModuleName);
1808         KnownModules[Path[0].first] = nullptr;
1809         ModuleBuildFailed = true;
1810         return ModuleLoadResult();
1811       }
1812 
1813       // Okay, we've rebuilt and now loaded the module.
1814       break;
1815     }
1816 
1817     case ASTReader::ConfigurationMismatch:
1818       if (Source == PrebuiltModulePath)
1819         // FIXME: We shouldn't be setting HadFatalFailure below if we only
1820         // produce a warning here!
1821         getDiagnostics().Report(SourceLocation(),
1822                                 diag::warn_module_config_mismatch)
1823             << ModuleFileName;
1824       // Fall through to error out.
1825       LLVM_FALLTHROUGH;
1826     case ASTReader::VersionMismatch:
1827     case ASTReader::HadErrors:
1828       ModuleLoader::HadFatalFailure = true;
1829       // FIXME: The ASTReader will already have complained, but can we shoehorn
1830       // that diagnostic information into a more useful form?
1831       KnownModules[Path[0].first] = nullptr;
1832       return ModuleLoadResult();
1833 
1834     case ASTReader::Failure:
1835       ModuleLoader::HadFatalFailure = true;
1836       // Already complained, but note now that we failed.
1837       KnownModules[Path[0].first] = nullptr;
1838       ModuleBuildFailed = true;
1839       return ModuleLoadResult();
1840     }
1841 
1842     // Cache the result of this top-level module lookup for later.
1843     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1844   }
1845 
1846   // If we never found the module, fail.
1847   if (!Module)
1848     return ModuleLoadResult();
1849 
1850   // Verify that the rest of the module path actually corresponds to
1851   // a submodule.
1852   if (!getLangOpts().ModulesTS && Path.size() > 1) {
1853     for (unsigned I = 1, N = Path.size(); I != N; ++I) {
1854       StringRef Name = Path[I].first->getName();
1855       clang::Module *Sub = Module->findSubmodule(Name);
1856 
1857       if (!Sub) {
1858         // Attempt to perform typo correction to find a module name that works.
1859         SmallVector<StringRef, 2> Best;
1860         unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
1861 
1862         for (clang::Module::submodule_iterator J = Module->submodule_begin(),
1863                                             JEnd = Module->submodule_end();
1864              J != JEnd; ++J) {
1865           unsigned ED = Name.edit_distance((*J)->Name,
1866                                            /*AllowReplacements=*/true,
1867                                            BestEditDistance);
1868           if (ED <= BestEditDistance) {
1869             if (ED < BestEditDistance) {
1870               Best.clear();
1871               BestEditDistance = ED;
1872             }
1873 
1874             Best.push_back((*J)->Name);
1875           }
1876         }
1877 
1878         // If there was a clear winner, user it.
1879         if (Best.size() == 1) {
1880           getDiagnostics().Report(Path[I].second,
1881                                   diag::err_no_submodule_suggest)
1882             << Path[I].first << Module->getFullModuleName() << Best[0]
1883             << SourceRange(Path[0].second, Path[I-1].second)
1884             << FixItHint::CreateReplacement(SourceRange(Path[I].second),
1885                                             Best[0]);
1886 
1887           Sub = Module->findSubmodule(Best[0]);
1888         }
1889       }
1890 
1891       if (!Sub) {
1892         // No submodule by this name. Complain, and don't look for further
1893         // submodules.
1894         getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
1895           << Path[I].first << Module->getFullModuleName()
1896           << SourceRange(Path[0].second, Path[I-1].second);
1897         break;
1898       }
1899 
1900       Module = Sub;
1901     }
1902   }
1903 
1904   // Make the named module visible, if it's not already part of the module
1905   // we are parsing.
1906   if (ModuleName != getLangOpts().CurrentModule) {
1907     if (!Module->IsFromModuleFile) {
1908       // We have an umbrella header or directory that doesn't actually include
1909       // all of the headers within the directory it covers. Complain about
1910       // this missing submodule and recover by forgetting that we ever saw
1911       // this submodule.
1912       // FIXME: Should we detect this at module load time? It seems fairly
1913       // expensive (and rare).
1914       getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
1915         << Module->getFullModuleName()
1916         << SourceRange(Path.front().second, Path.back().second);
1917 
1918       return ModuleLoadResult::MissingExpected;
1919     }
1920 
1921     // Check whether this module is available.
1922     if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(),
1923                                              getDiagnostics(), Module)) {
1924       getDiagnostics().Report(ImportLoc, diag::note_module_import_here)
1925         << SourceRange(Path.front().second, Path.back().second);
1926       LastModuleImportLoc = ImportLoc;
1927       LastModuleImportResult = ModuleLoadResult();
1928       return ModuleLoadResult();
1929     }
1930 
1931     ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
1932   }
1933 
1934   // Check for any configuration macros that have changed.
1935   clang::Module *TopModule = Module->getTopLevelModule();
1936   for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
1937     checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
1938                      Module, ImportLoc);
1939   }
1940 
1941   LastModuleImportLoc = ImportLoc;
1942   LastModuleImportResult = ModuleLoadResult(Module);
1943   return LastModuleImportResult;
1944 }
1945 
1946 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc,
1947                                             StringRef ModuleName,
1948                                             StringRef Source) {
1949   // Avoid creating filenames with special characters.
1950   SmallString<128> CleanModuleName(ModuleName);
1951   for (auto &C : CleanModuleName)
1952     if (!isAlphanumeric(C))
1953       C = '_';
1954 
1955   // FIXME: Using a randomized filename here means that our intermediate .pcm
1956   // output is nondeterministic (as .pcm files refer to each other by name).
1957   // Can this affect the output in any way?
1958   SmallString<128> ModuleFileName;
1959   if (std::error_code EC = llvm::sys::fs::createTemporaryFile(
1960           CleanModuleName, "pcm", ModuleFileName)) {
1961     getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output)
1962         << ModuleFileName << EC.message();
1963     return;
1964   }
1965   std::string ModuleMapFileName = (CleanModuleName + ".map").str();
1966 
1967   FrontendInputFile Input(
1968       ModuleMapFileName,
1969       InputKind(getLanguageFromOptions(*Invocation->getLangOpts()),
1970                 InputKind::ModuleMap, /*Preprocessed*/true));
1971 
1972   std::string NullTerminatedSource(Source.str());
1973 
1974   auto PreBuildStep = [&](CompilerInstance &Other) {
1975     // Create a virtual file containing our desired source.
1976     // FIXME: We shouldn't need to do this.
1977     const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile(
1978         ModuleMapFileName, NullTerminatedSource.size(), 0);
1979     Other.getSourceManager().overrideFileContents(
1980         ModuleMapFile,
1981         llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str()));
1982 
1983     Other.BuiltModules = std::move(BuiltModules);
1984     Other.DeleteBuiltModules = false;
1985   };
1986 
1987   auto PostBuildStep = [this](CompilerInstance &Other) {
1988     BuiltModules = std::move(Other.BuiltModules);
1989   };
1990 
1991   // Build the module, inheriting any modules that we've built locally.
1992   if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(),
1993                         ModuleFileName, PreBuildStep, PostBuildStep)) {
1994     BuiltModules[ModuleName] = ModuleFileName.str();
1995     llvm::sys::RemoveFileOnSignal(ModuleFileName);
1996   }
1997 }
1998 
1999 void CompilerInstance::makeModuleVisible(Module *Mod,
2000                                          Module::NameVisibilityKind Visibility,
2001                                          SourceLocation ImportLoc) {
2002   if (!ModuleManager)
2003     createModuleManager();
2004   if (!ModuleManager)
2005     return;
2006 
2007   ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
2008 }
2009 
2010 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
2011     SourceLocation TriggerLoc) {
2012   if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty())
2013     return nullptr;
2014   if (!ModuleManager)
2015     createModuleManager();
2016   // Can't do anything if we don't have the module manager.
2017   if (!ModuleManager)
2018     return nullptr;
2019   // Get an existing global index.  This loads it if not already
2020   // loaded.
2021   ModuleManager->loadGlobalIndex();
2022   GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
2023   // If the global index doesn't exist, create it.
2024   if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
2025       hasPreprocessor()) {
2026     llvm::sys::fs::create_directories(
2027       getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2028     GlobalModuleIndex::writeIndex(
2029         getFileManager(), getPCHContainerReader(),
2030         getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2031     ModuleManager->resetForReload();
2032     ModuleManager->loadGlobalIndex();
2033     GlobalIndex = ModuleManager->getGlobalIndex();
2034   }
2035   // For finding modules needing to be imported for fixit messages,
2036   // we need to make the global index cover all modules, so we do that here.
2037   if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
2038     ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
2039     bool RecreateIndex = false;
2040     for (ModuleMap::module_iterator I = MMap.module_begin(),
2041         E = MMap.module_end(); I != E; ++I) {
2042       Module *TheModule = I->second;
2043       const FileEntry *Entry = TheModule->getASTFile();
2044       if (!Entry) {
2045         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
2046         Path.push_back(std::make_pair(
2047             getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
2048         std::reverse(Path.begin(), Path.end());
2049         // Load a module as hidden.  This also adds it to the global index.
2050         loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false);
2051         RecreateIndex = true;
2052       }
2053     }
2054     if (RecreateIndex) {
2055       GlobalModuleIndex::writeIndex(
2056           getFileManager(), getPCHContainerReader(),
2057           getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2058       ModuleManager->resetForReload();
2059       ModuleManager->loadGlobalIndex();
2060       GlobalIndex = ModuleManager->getGlobalIndex();
2061     }
2062     HaveFullGlobalModuleIndex = true;
2063   }
2064   return GlobalIndex;
2065 }
2066 
2067 // Check global module index for missing imports.
2068 bool
2069 CompilerInstance::lookupMissingImports(StringRef Name,
2070                                        SourceLocation TriggerLoc) {
2071   // Look for the symbol in non-imported modules, but only if an error
2072   // actually occurred.
2073   if (!buildingModule()) {
2074     // Load global module index, or retrieve a previously loaded one.
2075     GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
2076       TriggerLoc);
2077 
2078     // Only if we have a global index.
2079     if (GlobalIndex) {
2080       GlobalModuleIndex::HitSet FoundModules;
2081 
2082       // Find the modules that reference the identifier.
2083       // Note that this only finds top-level modules.
2084       // We'll let diagnoseTypo find the actual declaration module.
2085       if (GlobalIndex->lookupIdentifier(Name, FoundModules))
2086         return true;
2087     }
2088   }
2089 
2090   return false;
2091 }
2092 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }
2093 
2094 void CompilerInstance::setExternalSemaSource(
2095     IntrusiveRefCntPtr<ExternalSemaSource> ESS) {
2096   ExternalSemaSrc = std::move(ESS);
2097 }
2098