1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/CharInfo.h" 15 #include "clang/Basic/Diagnostic.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/MemoryBufferCache.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Basic/Version.h" 21 #include "clang/Config/config.h" 22 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 23 #include "clang/Frontend/FrontendAction.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/LogDiagnosticPrinter.h" 27 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Frontend/Utils.h" 30 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/PTHManager.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Sema/CodeCompleteConsumer.h" 36 #include "clang/Sema/Sema.h" 37 #include "clang/Serialization/ASTReader.h" 38 #include "clang/Serialization/GlobalModuleIndex.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Host.h" 44 #include "llvm/Support/LockFileManager.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/Program.h" 48 #include "llvm/Support/Signals.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <sys/stat.h> 52 #include <system_error> 53 #include <time.h> 54 #include <utility> 55 56 using namespace clang; 57 58 CompilerInstance::CompilerInstance( 59 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 60 MemoryBufferCache *SharedPCMCache) 61 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 62 Invocation(new CompilerInvocation()), 63 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 64 ThePCHContainerOperations(std::move(PCHContainerOps)) { 65 // Don't allow this to invalidate buffers in use by others. 66 if (SharedPCMCache) 67 getPCMCache().finalizeCurrentBuffers(); 68 } 69 70 CompilerInstance::~CompilerInstance() { 71 assert(OutputFiles.empty() && "Still output files in flight?"); 72 } 73 74 void CompilerInstance::setInvocation( 75 std::shared_ptr<CompilerInvocation> Value) { 76 Invocation = std::move(Value); 77 } 78 79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 80 return (BuildGlobalModuleIndex || 81 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 82 getFrontendOpts().GenerateGlobalModuleIndex)) && 83 !ModuleBuildFailed; 84 } 85 86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 87 Diagnostics = Value; 88 } 89 90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 92 93 void CompilerInstance::setFileManager(FileManager *Value) { 94 FileMgr = Value; 95 if (Value) 96 VirtualFileSystem = Value->getVirtualFileSystem(); 97 else 98 VirtualFileSystem.reset(); 99 } 100 101 void CompilerInstance::setSourceManager(SourceManager *Value) { 102 SourceMgr = Value; 103 } 104 105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 106 PP = std::move(Value); 107 } 108 109 void CompilerInstance::setASTContext(ASTContext *Value) { 110 Context = Value; 111 112 if (Context && Consumer) 113 getASTConsumer().Initialize(getASTContext()); 114 } 115 116 void CompilerInstance::setSema(Sema *S) { 117 TheSema.reset(S); 118 } 119 120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 121 Consumer = std::move(Value); 122 123 if (Context && Consumer) 124 getASTConsumer().Initialize(getASTContext()); 125 } 126 127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 128 CompletionConsumer.reset(Value); 129 } 130 131 std::unique_ptr<Sema> CompilerInstance::takeSema() { 132 return std::move(TheSema); 133 } 134 135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 136 return ModuleManager; 137 } 138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 139 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 140 "Expected ASTReader to use the same PCM cache"); 141 ModuleManager = std::move(Reader); 142 } 143 144 std::shared_ptr<ModuleDependencyCollector> 145 CompilerInstance::getModuleDepCollector() const { 146 return ModuleDepCollector; 147 } 148 149 void CompilerInstance::setModuleDepCollector( 150 std::shared_ptr<ModuleDependencyCollector> Collector) { 151 ModuleDepCollector = std::move(Collector); 152 } 153 154 static void collectHeaderMaps(const HeaderSearch &HS, 155 std::shared_ptr<ModuleDependencyCollector> MDC) { 156 SmallVector<std::string, 4> HeaderMapFileNames; 157 HS.getHeaderMapFileNames(HeaderMapFileNames); 158 for (auto &Name : HeaderMapFileNames) 159 MDC->addFile(Name); 160 } 161 162 static void collectIncludePCH(CompilerInstance &CI, 163 std::shared_ptr<ModuleDependencyCollector> MDC) { 164 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 165 if (PPOpts.ImplicitPCHInclude.empty()) 166 return; 167 168 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 169 FileManager &FileMgr = CI.getFileManager(); 170 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 171 if (!PCHDir) { 172 MDC->addFile(PCHInclude); 173 return; 174 } 175 176 std::error_code EC; 177 SmallString<128> DirNative; 178 llvm::sys::path::native(PCHDir->getName(), DirNative); 179 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 180 SimpleASTReaderListener Validator(CI.getPreprocessor()); 181 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 182 Dir != DirEnd && !EC; Dir.increment(EC)) { 183 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 184 // used here since we're not interested in validating the PCH at this time, 185 // but only to check whether this is a file containing an AST. 186 if (!ASTReader::readASTFileControlBlock( 187 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 188 /*FindModuleFileExtensions=*/false, Validator, 189 /*ValidateDiagnosticOptions=*/false)) 190 MDC->addFile(Dir->getName()); 191 } 192 } 193 194 static void collectVFSEntries(CompilerInstance &CI, 195 std::shared_ptr<ModuleDependencyCollector> MDC) { 196 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 197 return; 198 199 // Collect all VFS found. 200 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 201 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 202 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 203 llvm::MemoryBuffer::getFile(VFSFile); 204 if (!Buffer) 205 return; 206 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 207 VFSFile, VFSEntries); 208 } 209 210 for (auto &E : VFSEntries) 211 MDC->addFile(E.VPath, E.RPath); 212 } 213 214 // Diagnostics 215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 216 const CodeGenOptions *CodeGenOpts, 217 DiagnosticsEngine &Diags) { 218 std::error_code EC; 219 std::unique_ptr<raw_ostream> StreamOwner; 220 raw_ostream *OS = &llvm::errs(); 221 if (DiagOpts->DiagnosticLogFile != "-") { 222 // Create the output stream. 223 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 224 DiagOpts->DiagnosticLogFile, EC, 225 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 226 if (EC) { 227 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 228 << DiagOpts->DiagnosticLogFile << EC.message(); 229 } else { 230 FileOS->SetUnbuffered(); 231 OS = FileOS.get(); 232 StreamOwner = std::move(FileOS); 233 } 234 } 235 236 // Chain in the diagnostic client which will log the diagnostics. 237 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 238 std::move(StreamOwner)); 239 if (CodeGenOpts) 240 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 241 assert(Diags.ownsClient()); 242 Diags.setClient( 243 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 244 } 245 246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 247 DiagnosticsEngine &Diags, 248 StringRef OutputFile) { 249 auto SerializedConsumer = 250 clang::serialized_diags::create(OutputFile, DiagOpts); 251 252 if (Diags.ownsClient()) { 253 Diags.setClient(new ChainedDiagnosticConsumer( 254 Diags.takeClient(), std::move(SerializedConsumer))); 255 } else { 256 Diags.setClient(new ChainedDiagnosticConsumer( 257 Diags.getClient(), std::move(SerializedConsumer))); 258 } 259 } 260 261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 262 bool ShouldOwnClient) { 263 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 264 ShouldOwnClient, &getCodeGenOpts()); 265 } 266 267 IntrusiveRefCntPtr<DiagnosticsEngine> 268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 269 DiagnosticConsumer *Client, 270 bool ShouldOwnClient, 271 const CodeGenOptions *CodeGenOpts) { 272 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 273 IntrusiveRefCntPtr<DiagnosticsEngine> 274 Diags(new DiagnosticsEngine(DiagID, Opts)); 275 276 // Create the diagnostic client for reporting errors or for 277 // implementing -verify. 278 if (Client) { 279 Diags->setClient(Client, ShouldOwnClient); 280 } else 281 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 282 283 // Chain in -verify checker, if requested. 284 if (Opts->VerifyDiagnostics) 285 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 286 287 // Chain in -diagnostic-log-file dumper, if requested. 288 if (!Opts->DiagnosticLogFile.empty()) 289 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 290 291 if (!Opts->DiagnosticSerializationFile.empty()) 292 SetupSerializedDiagnostics(Opts, *Diags, 293 Opts->DiagnosticSerializationFile); 294 295 // Configure our handling of diagnostics. 296 ProcessWarningOptions(*Diags, *Opts); 297 298 return Diags; 299 } 300 301 // File Manager 302 303 void CompilerInstance::createFileManager() { 304 if (!hasVirtualFileSystem()) { 305 // TODO: choose the virtual file system based on the CompilerInvocation. 306 setVirtualFileSystem(vfs::getRealFileSystem()); 307 } 308 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 309 } 310 311 // Source Manager 312 313 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 314 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 315 } 316 317 // Initialize the remapping of files to alternative contents, e.g., 318 // those specified through other files. 319 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 320 SourceManager &SourceMgr, 321 FileManager &FileMgr, 322 const PreprocessorOptions &InitOpts) { 323 // Remap files in the source manager (with buffers). 324 for (const auto &RB : InitOpts.RemappedFileBuffers) { 325 // Create the file entry for the file that we're mapping from. 326 const FileEntry *FromFile = 327 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 328 if (!FromFile) { 329 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 330 if (!InitOpts.RetainRemappedFileBuffers) 331 delete RB.second; 332 continue; 333 } 334 335 // Override the contents of the "from" file with the contents of 336 // the "to" file. 337 SourceMgr.overrideFileContents(FromFile, RB.second, 338 InitOpts.RetainRemappedFileBuffers); 339 } 340 341 // Remap files in the source manager (with other files). 342 for (const auto &RF : InitOpts.RemappedFiles) { 343 // Find the file that we're mapping to. 344 const FileEntry *ToFile = FileMgr.getFile(RF.second); 345 if (!ToFile) { 346 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 347 continue; 348 } 349 350 // Create the file entry for the file that we're mapping from. 351 const FileEntry *FromFile = 352 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 353 if (!FromFile) { 354 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 355 continue; 356 } 357 358 // Override the contents of the "from" file with the contents of 359 // the "to" file. 360 SourceMgr.overrideFileContents(FromFile, ToFile); 361 } 362 363 SourceMgr.setOverridenFilesKeepOriginalName( 364 InitOpts.RemappedFilesKeepOriginalName); 365 } 366 367 // Preprocessor 368 369 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 370 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 371 372 // Create a PTH manager if we are using some form of a token cache. 373 PTHManager *PTHMgr = nullptr; 374 if (!PPOpts.TokenCache.empty()) 375 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 376 377 // Create the Preprocessor. 378 HeaderSearch *HeaderInfo = 379 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 380 getDiagnostics(), getLangOpts(), &getTarget()); 381 PP = std::make_shared<Preprocessor>( 382 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 383 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 384 /*OwnsHeaderSearch=*/true, TUKind); 385 PP->Initialize(getTarget(), getAuxTarget()); 386 387 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 388 // That argument is used as the IdentifierInfoLookup argument to 389 // IdentifierTable's ctor. 390 if (PTHMgr) { 391 PTHMgr->setPreprocessor(&*PP); 392 PP->setPTHManager(PTHMgr); 393 } 394 395 if (PPOpts.DetailedRecord) 396 PP->createPreprocessingRecord(); 397 398 // Apply remappings to the source manager. 399 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 400 PP->getFileManager(), PPOpts); 401 402 // Predefine macros and configure the preprocessor. 403 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 404 getFrontendOpts()); 405 406 // Initialize the header search object. In CUDA compilations, we use the aux 407 // triple (the host triple) to initialize our header search, since we need to 408 // find the host headers in order to compile the CUDA code. 409 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 410 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 411 PP->getAuxTargetInfo()) 412 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 413 414 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 415 PP->getLangOpts(), *HeaderSearchTriple); 416 417 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 418 419 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 420 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 421 422 // Handle generating dependencies, if requested. 423 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 424 if (!DepOpts.OutputFile.empty()) 425 TheDependencyFileGenerator.reset( 426 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 427 if (!DepOpts.DOTOutputFile.empty()) 428 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 429 getHeaderSearchOpts().Sysroot); 430 431 // If we don't have a collector, but we are collecting module dependencies, 432 // then we're the top level compiler instance and need to create one. 433 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 434 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 435 DepOpts.ModuleDependencyOutputDir); 436 } 437 438 // If there is a module dep collector, register with other dep collectors 439 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 440 if (ModuleDepCollector) { 441 addDependencyCollector(ModuleDepCollector); 442 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 443 collectIncludePCH(*this, ModuleDepCollector); 444 collectVFSEntries(*this, ModuleDepCollector); 445 } 446 447 for (auto &Listener : DependencyCollectors) 448 Listener->attachToPreprocessor(*PP); 449 450 // Handle generating header include information, if requested. 451 if (DepOpts.ShowHeaderIncludes) 452 AttachHeaderIncludeGen(*PP, DepOpts); 453 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 454 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 455 if (OutputPath == "-") 456 OutputPath = ""; 457 AttachHeaderIncludeGen(*PP, DepOpts, 458 /*ShowAllHeaders=*/true, OutputPath, 459 /*ShowDepth=*/false); 460 } 461 462 if (DepOpts.PrintShowIncludes) { 463 AttachHeaderIncludeGen(*PP, DepOpts, 464 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 465 /*ShowDepth=*/true, /*MSStyle=*/true); 466 } 467 } 468 469 std::string CompilerInstance::getSpecificModuleCachePath() { 470 // Set up the module path, including the hash for the 471 // module-creation options. 472 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 473 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 474 llvm::sys::path::append(SpecificModuleCache, 475 getInvocation().getModuleHash()); 476 return SpecificModuleCache.str(); 477 } 478 479 // ASTContext 480 481 void CompilerInstance::createASTContext() { 482 Preprocessor &PP = getPreprocessor(); 483 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 484 PP.getIdentifierTable(), PP.getSelectorTable(), 485 PP.getBuiltinInfo()); 486 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 487 setASTContext(Context); 488 } 489 490 // ExternalASTSource 491 492 void CompilerInstance::createPCHExternalASTSource( 493 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 494 void *DeserializationListener, bool OwnDeserializationListener) { 495 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 496 ModuleManager = createPCHExternalASTSource( 497 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 498 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 499 getPCHContainerReader(), 500 getFrontendOpts().ModuleFileExtensions, 501 TheDependencyFileGenerator.get(), 502 DependencyCollectors, 503 DeserializationListener, 504 OwnDeserializationListener, Preamble, 505 getFrontendOpts().UseGlobalModuleIndex); 506 } 507 508 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 509 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 510 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 511 const PCHContainerReader &PCHContainerRdr, 512 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 513 DependencyFileGenerator *DependencyFile, 514 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 515 void *DeserializationListener, bool OwnDeserializationListener, 516 bool Preamble, bool UseGlobalModuleIndex) { 517 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 518 519 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 520 PP, &Context, PCHContainerRdr, Extensions, 521 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 522 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 523 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 524 525 // We need the external source to be set up before we read the AST, because 526 // eagerly-deserialized declarations may use it. 527 Context.setExternalSource(Reader.get()); 528 529 Reader->setDeserializationListener( 530 static_cast<ASTDeserializationListener *>(DeserializationListener), 531 /*TakeOwnership=*/OwnDeserializationListener); 532 533 if (DependencyFile) 534 DependencyFile->AttachToASTReader(*Reader); 535 for (auto &Listener : DependencyCollectors) 536 Listener->attachToASTReader(*Reader); 537 538 switch (Reader->ReadAST(Path, 539 Preamble ? serialization::MK_Preamble 540 : serialization::MK_PCH, 541 SourceLocation(), 542 ASTReader::ARR_None)) { 543 case ASTReader::Success: 544 // Set the predefines buffer as suggested by the PCH reader. Typically, the 545 // predefines buffer will be empty. 546 PP.setPredefines(Reader->getSuggestedPredefines()); 547 return Reader; 548 549 case ASTReader::Failure: 550 // Unrecoverable failure: don't even try to process the input file. 551 break; 552 553 case ASTReader::Missing: 554 case ASTReader::OutOfDate: 555 case ASTReader::VersionMismatch: 556 case ASTReader::ConfigurationMismatch: 557 case ASTReader::HadErrors: 558 // No suitable PCH file could be found. Return an error. 559 break; 560 } 561 562 Context.setExternalSource(nullptr); 563 return nullptr; 564 } 565 566 // Code Completion 567 568 static bool EnableCodeCompletion(Preprocessor &PP, 569 StringRef Filename, 570 unsigned Line, 571 unsigned Column) { 572 // Tell the source manager to chop off the given file at a specific 573 // line and column. 574 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 575 if (!Entry) { 576 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 577 << Filename; 578 return true; 579 } 580 581 // Truncate the named file at the given line/column. 582 PP.SetCodeCompletionPoint(Entry, Line, Column); 583 return false; 584 } 585 586 void CompilerInstance::createCodeCompletionConsumer() { 587 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 588 if (!CompletionConsumer) { 589 setCodeCompletionConsumer( 590 createCodeCompletionConsumer(getPreprocessor(), 591 Loc.FileName, Loc.Line, Loc.Column, 592 getFrontendOpts().CodeCompleteOpts, 593 llvm::outs())); 594 if (!CompletionConsumer) 595 return; 596 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 597 Loc.Line, Loc.Column)) { 598 setCodeCompletionConsumer(nullptr); 599 return; 600 } 601 602 if (CompletionConsumer->isOutputBinary() && 603 llvm::sys::ChangeStdoutToBinary()) { 604 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 605 setCodeCompletionConsumer(nullptr); 606 } 607 } 608 609 void CompilerInstance::createFrontendTimer() { 610 FrontendTimerGroup.reset( 611 new llvm::TimerGroup("frontend", "Clang front-end time report")); 612 FrontendTimer.reset( 613 new llvm::Timer("frontend", "Clang front-end timer", 614 *FrontendTimerGroup)); 615 } 616 617 CodeCompleteConsumer * 618 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 619 StringRef Filename, 620 unsigned Line, 621 unsigned Column, 622 const CodeCompleteOptions &Opts, 623 raw_ostream &OS) { 624 if (EnableCodeCompletion(PP, Filename, Line, Column)) 625 return nullptr; 626 627 // Set up the creation routine for code-completion. 628 return new PrintingCodeCompleteConsumer(Opts, OS); 629 } 630 631 void CompilerInstance::createSema(TranslationUnitKind TUKind, 632 CodeCompleteConsumer *CompletionConsumer) { 633 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 634 TUKind, CompletionConsumer)); 635 // Attach the external sema source if there is any. 636 if (ExternalSemaSrc) { 637 TheSema->addExternalSource(ExternalSemaSrc.get()); 638 ExternalSemaSrc->InitializeSema(*TheSema); 639 } 640 } 641 642 // Output Files 643 644 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 645 OutputFiles.push_back(std::move(OutFile)); 646 } 647 648 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 649 for (OutputFile &OF : OutputFiles) { 650 if (!OF.TempFilename.empty()) { 651 if (EraseFiles) { 652 llvm::sys::fs::remove(OF.TempFilename); 653 } else { 654 SmallString<128> NewOutFile(OF.Filename); 655 656 // If '-working-directory' was passed, the output filename should be 657 // relative to that. 658 FileMgr->FixupRelativePath(NewOutFile); 659 if (std::error_code ec = 660 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 661 getDiagnostics().Report(diag::err_unable_to_rename_temp) 662 << OF.TempFilename << OF.Filename << ec.message(); 663 664 llvm::sys::fs::remove(OF.TempFilename); 665 } 666 } 667 } else if (!OF.Filename.empty() && EraseFiles) 668 llvm::sys::fs::remove(OF.Filename); 669 } 670 OutputFiles.clear(); 671 if (DeleteBuiltModules) { 672 for (auto &Module : BuiltModules) 673 llvm::sys::fs::remove(Module.second); 674 BuiltModules.clear(); 675 } 676 NonSeekStream.reset(); 677 } 678 679 std::unique_ptr<raw_pwrite_stream> 680 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 681 StringRef Extension) { 682 return createOutputFile(getFrontendOpts().OutputFile, Binary, 683 /*RemoveFileOnSignal=*/true, InFile, Extension, 684 /*UseTemporary=*/true); 685 } 686 687 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 688 return llvm::make_unique<llvm::raw_null_ostream>(); 689 } 690 691 std::unique_ptr<raw_pwrite_stream> 692 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 693 bool RemoveFileOnSignal, StringRef InFile, 694 StringRef Extension, bool UseTemporary, 695 bool CreateMissingDirectories) { 696 std::string OutputPathName, TempPathName; 697 std::error_code EC; 698 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 699 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 700 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 701 if (!OS) { 702 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 703 << EC.message(); 704 return nullptr; 705 } 706 707 // Add the output file -- but don't try to remove "-", since this means we are 708 // using stdin. 709 addOutputFile( 710 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 711 712 return OS; 713 } 714 715 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 716 StringRef OutputPath, std::error_code &Error, bool Binary, 717 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 718 bool UseTemporary, bool CreateMissingDirectories, 719 std::string *ResultPathName, std::string *TempPathName) { 720 assert((!CreateMissingDirectories || UseTemporary) && 721 "CreateMissingDirectories is only allowed when using temporary files"); 722 723 std::string OutFile, TempFile; 724 if (!OutputPath.empty()) { 725 OutFile = OutputPath; 726 } else if (InFile == "-") { 727 OutFile = "-"; 728 } else if (!Extension.empty()) { 729 SmallString<128> Path(InFile); 730 llvm::sys::path::replace_extension(Path, Extension); 731 OutFile = Path.str(); 732 } else { 733 OutFile = "-"; 734 } 735 736 std::unique_ptr<llvm::raw_fd_ostream> OS; 737 std::string OSFile; 738 739 if (UseTemporary) { 740 if (OutFile == "-") 741 UseTemporary = false; 742 else { 743 llvm::sys::fs::file_status Status; 744 llvm::sys::fs::status(OutputPath, Status); 745 if (llvm::sys::fs::exists(Status)) { 746 // Fail early if we can't write to the final destination. 747 if (!llvm::sys::fs::can_write(OutputPath)) { 748 Error = make_error_code(llvm::errc::operation_not_permitted); 749 return nullptr; 750 } 751 752 // Don't use a temporary if the output is a special file. This handles 753 // things like '-o /dev/null' 754 if (!llvm::sys::fs::is_regular_file(Status)) 755 UseTemporary = false; 756 } 757 } 758 } 759 760 if (UseTemporary) { 761 // Create a temporary file. 762 // Insert -%%%%%%%% before the extension (if any), and because some tools 763 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 764 // artifacts, also append .tmp. 765 StringRef OutputExtension = llvm::sys::path::extension(OutFile); 766 SmallString<128> TempPath = 767 StringRef(OutFile).drop_back(OutputExtension.size()); 768 TempPath += "-%%%%%%%%"; 769 TempPath += OutputExtension; 770 TempPath += ".tmp"; 771 int fd; 772 std::error_code EC = 773 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 774 775 if (CreateMissingDirectories && 776 EC == llvm::errc::no_such_file_or_directory) { 777 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 778 EC = llvm::sys::fs::create_directories(Parent); 779 if (!EC) { 780 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 781 } 782 } 783 784 if (!EC) { 785 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 786 OSFile = TempFile = TempPath.str(); 787 } 788 // If we failed to create the temporary, fallback to writing to the file 789 // directly. This handles the corner case where we cannot write to the 790 // directory, but can write to the file. 791 } 792 793 if (!OS) { 794 OSFile = OutFile; 795 OS.reset(new llvm::raw_fd_ostream( 796 OSFile, Error, 797 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 798 if (Error) 799 return nullptr; 800 } 801 802 // Make sure the out stream file gets removed if we crash. 803 if (RemoveFileOnSignal) 804 llvm::sys::RemoveFileOnSignal(OSFile); 805 806 if (ResultPathName) 807 *ResultPathName = OutFile; 808 if (TempPathName) 809 *TempPathName = TempFile; 810 811 if (!Binary || OS->supportsSeeking()) 812 return std::move(OS); 813 814 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 815 assert(!NonSeekStream); 816 NonSeekStream = std::move(OS); 817 return std::move(B); 818 } 819 820 // Initialization Utilities 821 822 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 823 return InitializeSourceManager( 824 Input, getDiagnostics(), getFileManager(), getSourceManager(), 825 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 826 getDependencyOutputOpts(), getFrontendOpts()); 827 } 828 829 // static 830 bool CompilerInstance::InitializeSourceManager( 831 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 832 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 833 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 834 SrcMgr::CharacteristicKind Kind = 835 Input.getKind().getFormat() == InputKind::ModuleMap 836 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 837 : SrcMgr::C_User_ModuleMap 838 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 839 840 if (Input.isBuffer()) { 841 SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned, 842 Input.getBuffer(), Kind)); 843 assert(SourceMgr.getMainFileID().isValid() && 844 "Couldn't establish MainFileID!"); 845 return true; 846 } 847 848 StringRef InputFile = Input.getFile(); 849 850 // Figure out where to get and map in the main file. 851 if (InputFile != "-") { 852 const FileEntry *File; 853 if (Opts.FindPchSource.empty()) { 854 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 855 } else { 856 // When building a pch file in clang-cl mode, the .h file is built as if 857 // it was included by a cc file. Since the driver doesn't know about 858 // all include search directories, the frontend must search the input 859 // file through HeaderSearch here, as if it had been included by the 860 // cc file at Opts.FindPchSource. 861 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 862 if (!FindFile) { 863 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 864 return false; 865 } 866 const DirectoryLookup *UnusedCurDir; 867 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 868 Includers; 869 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 870 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 871 /*FromDir=*/nullptr, 872 /*CurDir=*/UnusedCurDir, Includers, 873 /*SearchPath=*/nullptr, 874 /*RelativePath=*/nullptr, 875 /*RequestingModule=*/nullptr, 876 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 877 /*SkipCache=*/true); 878 // Also add the header to /showIncludes output. 879 if (File) 880 DepOpts.ShowIncludesPretendHeader = File->getName(); 881 } 882 if (!File) { 883 Diags.Report(diag::err_fe_error_reading) << InputFile; 884 return false; 885 } 886 887 // The natural SourceManager infrastructure can't currently handle named 888 // pipes, but we would at least like to accept them for the main 889 // file. Detect them here, read them with the volatile flag so FileMgr will 890 // pick up the correct size, and simply override their contents as we do for 891 // STDIN. 892 if (File->isNamedPipe()) { 893 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 894 if (MB) { 895 // Create a new virtual file that will have the correct size. 896 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 897 SourceMgr.overrideFileContents(File, std::move(*MB)); 898 } else { 899 Diags.Report(diag::err_cannot_open_file) << InputFile 900 << MB.getError().message(); 901 return false; 902 } 903 } 904 905 SourceMgr.setMainFileID( 906 SourceMgr.createFileID(File, SourceLocation(), Kind)); 907 } else { 908 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 909 llvm::MemoryBuffer::getSTDIN(); 910 if (std::error_code EC = SBOrErr.getError()) { 911 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 912 return false; 913 } 914 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 915 916 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 917 SB->getBufferSize(), 0); 918 SourceMgr.setMainFileID( 919 SourceMgr.createFileID(File, SourceLocation(), Kind)); 920 SourceMgr.overrideFileContents(File, std::move(SB)); 921 } 922 923 assert(SourceMgr.getMainFileID().isValid() && 924 "Couldn't establish MainFileID!"); 925 return true; 926 } 927 928 // High-Level Operations 929 930 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 931 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 932 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 933 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 934 935 // FIXME: Take this as an argument, once all the APIs we used have moved to 936 // taking it as an input instead of hard-coding llvm::errs. 937 raw_ostream &OS = llvm::errs(); 938 939 // Create the target instance. 940 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 941 getInvocation().TargetOpts)); 942 if (!hasTarget()) 943 return false; 944 945 // Create TargetInfo for the other side of CUDA and OpenMP compilation. 946 if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) && 947 !getFrontendOpts().AuxTriple.empty()) { 948 auto TO = std::make_shared<TargetOptions>(); 949 TO->Triple = getFrontendOpts().AuxTriple; 950 TO->HostTriple = getTarget().getTriple().str(); 951 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 952 } 953 954 // Inform the target of the language options. 955 // 956 // FIXME: We shouldn't need to do this, the target should be immutable once 957 // created. This complexity should be lifted elsewhere. 958 getTarget().adjust(getLangOpts()); 959 960 // Adjust target options based on codegen options. 961 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 962 963 // rewriter project will change target built-in bool type from its default. 964 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 965 getTarget().noSignedCharForObjCBool(); 966 967 // Validate/process some options. 968 if (getHeaderSearchOpts().Verbose) 969 OS << "clang -cc1 version " CLANG_VERSION_STRING 970 << " based upon " << BACKEND_PACKAGE_STRING 971 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 972 973 if (getFrontendOpts().ShowTimers) 974 createFrontendTimer(); 975 976 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 977 llvm::EnableStatistics(false); 978 979 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 980 // Reset the ID tables if we are reusing the SourceManager and parsing 981 // regular files. 982 if (hasSourceManager() && !Act.isModelParsingAction()) 983 getSourceManager().clearIDTables(); 984 985 if (Act.BeginSourceFile(*this, FIF)) { 986 Act.Execute(); 987 Act.EndSourceFile(); 988 } 989 } 990 991 // Notify the diagnostic client that all files were processed. 992 getDiagnostics().getClient()->finish(); 993 994 if (getDiagnosticOpts().ShowCarets) { 995 // We can have multiple diagnostics sharing one diagnostic client. 996 // Get the total number of warnings/errors from the client. 997 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 998 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 999 1000 if (NumWarnings) 1001 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 1002 if (NumWarnings && NumErrors) 1003 OS << " and "; 1004 if (NumErrors) 1005 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 1006 if (NumWarnings || NumErrors) { 1007 OS << " generated"; 1008 if (getLangOpts().CUDA) { 1009 if (!getLangOpts().CUDAIsDevice) { 1010 OS << " when compiling for host"; 1011 } else { 1012 OS << " when compiling for " << getTargetOpts().CPU; 1013 } 1014 } 1015 OS << ".\n"; 1016 } 1017 } 1018 1019 if (getFrontendOpts().ShowStats) { 1020 if (hasFileManager()) { 1021 getFileManager().PrintStats(); 1022 OS << '\n'; 1023 } 1024 llvm::PrintStatistics(OS); 1025 } 1026 StringRef StatsFile = getFrontendOpts().StatsFile; 1027 if (!StatsFile.empty()) { 1028 std::error_code EC; 1029 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1030 llvm::sys::fs::F_Text); 1031 if (EC) { 1032 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1033 << StatsFile << EC.message(); 1034 } else { 1035 llvm::PrintStatisticsJSON(*StatS); 1036 } 1037 } 1038 1039 return !getDiagnostics().getClient()->getNumErrors(); 1040 } 1041 1042 /// \brief Determine the appropriate source input kind based on language 1043 /// options. 1044 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { 1045 if (LangOpts.OpenCL) 1046 return InputKind::OpenCL; 1047 if (LangOpts.CUDA) 1048 return InputKind::CUDA; 1049 if (LangOpts.ObjC1) 1050 return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; 1051 return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; 1052 } 1053 1054 /// \brief Compile a module file for the given module, using the options 1055 /// provided by the importing compiler instance. Returns true if the module 1056 /// was built without errors. 1057 static bool 1058 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1059 StringRef ModuleName, FrontendInputFile Input, 1060 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1061 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1062 [](CompilerInstance &) {}, 1063 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1064 [](CompilerInstance &) {}) { 1065 // Construct a compiler invocation for creating this module. 1066 auto Invocation = 1067 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1068 1069 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1070 1071 // For any options that aren't intended to affect how a module is built, 1072 // reset them to their default values. 1073 Invocation->getLangOpts()->resetNonModularOptions(); 1074 PPOpts.resetNonModularOptions(); 1075 1076 // Remove any macro definitions that are explicitly ignored by the module. 1077 // They aren't supposed to affect how the module is built anyway. 1078 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1079 PPOpts.Macros.erase( 1080 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1081 [&HSOpts](const std::pair<std::string, bool> &def) { 1082 StringRef MacroDef = def.first; 1083 return HSOpts.ModulesIgnoreMacros.count( 1084 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1085 }), 1086 PPOpts.Macros.end()); 1087 1088 // Note the name of the module we're building. 1089 Invocation->getLangOpts()->CurrentModule = ModuleName; 1090 1091 // Make sure that the failed-module structure has been allocated in 1092 // the importing instance, and propagate the pointer to the newly-created 1093 // instance. 1094 PreprocessorOptions &ImportingPPOpts 1095 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1096 if (!ImportingPPOpts.FailedModules) 1097 ImportingPPOpts.FailedModules = 1098 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1099 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1100 1101 // If there is a module map file, build the module using the module map. 1102 // Set up the inputs/outputs so that we build the module from its umbrella 1103 // header. 1104 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1105 FrontendOpts.OutputFile = ModuleFileName.str(); 1106 FrontendOpts.DisableFree = false; 1107 FrontendOpts.GenerateGlobalModuleIndex = false; 1108 FrontendOpts.BuildingImplicitModule = true; 1109 FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; 1110 // Force implicitly-built modules to hash the content of the module file. 1111 HSOpts.ModulesHashContent = true; 1112 FrontendOpts.Inputs = {Input}; 1113 1114 // Don't free the remapped file buffers; they are owned by our caller. 1115 PPOpts.RetainRemappedFileBuffers = true; 1116 1117 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1118 assert(ImportingInstance.getInvocation().getModuleHash() == 1119 Invocation->getModuleHash() && "Module hash mismatch!"); 1120 1121 // Construct a compiler instance that will be used to actually create the 1122 // module. Since we're sharing a PCMCache, 1123 // CompilerInstance::CompilerInstance is responsible for finalizing the 1124 // buffers to prevent use-after-frees. 1125 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1126 &ImportingInstance.getPreprocessor().getPCMCache()); 1127 auto &Inv = *Invocation; 1128 Instance.setInvocation(std::move(Invocation)); 1129 1130 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1131 ImportingInstance.getDiagnosticClient()), 1132 /*ShouldOwnClient=*/true); 1133 1134 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1135 1136 // Note that this module is part of the module build stack, so that we 1137 // can detect cycles in the module graph. 1138 Instance.setFileManager(&ImportingInstance.getFileManager()); 1139 Instance.createSourceManager(Instance.getFileManager()); 1140 SourceManager &SourceMgr = Instance.getSourceManager(); 1141 SourceMgr.setModuleBuildStack( 1142 ImportingInstance.getSourceManager().getModuleBuildStack()); 1143 SourceMgr.pushModuleBuildStack(ModuleName, 1144 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1145 1146 // If we're collecting module dependencies, we need to share a collector 1147 // between all of the module CompilerInstances. Other than that, we don't 1148 // want to produce any dependency output from the module build. 1149 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1150 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1151 1152 ImportingInstance.getDiagnostics().Report(ImportLoc, 1153 diag::remark_module_build) 1154 << ModuleName << ModuleFileName; 1155 1156 PreBuildStep(Instance); 1157 1158 // Execute the action to actually build the module in-place. Use a separate 1159 // thread so that we get a stack large enough. 1160 const unsigned ThreadStackSize = 8 << 20; 1161 llvm::CrashRecoveryContext CRC; 1162 CRC.RunSafelyOnThread( 1163 [&]() { 1164 GenerateModuleFromModuleMapAction Action; 1165 Instance.ExecuteAction(Action); 1166 }, 1167 ThreadStackSize); 1168 1169 PostBuildStep(Instance); 1170 1171 ImportingInstance.getDiagnostics().Report(ImportLoc, 1172 diag::remark_module_build_done) 1173 << ModuleName; 1174 1175 // Delete the temporary module map file. 1176 // FIXME: Even though we're executing under crash protection, it would still 1177 // be nice to do this with RemoveFileOnSignal when we can. However, that 1178 // doesn't make sense for all clients, so clean this up manually. 1179 Instance.clearOutputFiles(/*EraseFiles=*/true); 1180 1181 return !Instance.getDiagnostics().hasErrorOccurred(); 1182 } 1183 1184 /// \brief Compile a module file for the given module, using the options 1185 /// provided by the importing compiler instance. Returns true if the module 1186 /// was built without errors. 1187 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1188 SourceLocation ImportLoc, 1189 Module *Module, 1190 StringRef ModuleFileName) { 1191 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1192 InputKind::ModuleMap); 1193 1194 // Get or create the module map that we'll use to build this module. 1195 ModuleMap &ModMap 1196 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1197 bool Result; 1198 if (const FileEntry *ModuleMapFile = 1199 ModMap.getContainingModuleMapFile(Module)) { 1200 // Use the module map where this module resides. 1201 Result = compileModuleImpl( 1202 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1203 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1204 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1205 ModuleFileName); 1206 } else { 1207 // FIXME: We only need to fake up an input file here as a way of 1208 // transporting the module's directory to the module map parser. We should 1209 // be able to do that more directly, and parse from a memory buffer without 1210 // inventing this file. 1211 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1212 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1213 1214 std::string InferredModuleMapContent; 1215 llvm::raw_string_ostream OS(InferredModuleMapContent); 1216 Module->print(OS); 1217 OS.flush(); 1218 1219 Result = compileModuleImpl( 1220 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1221 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1222 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1223 ModuleFileName, 1224 [&](CompilerInstance &Instance) { 1225 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1226 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1227 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1228 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1229 Instance.getSourceManager().overrideFileContents( 1230 ModuleMapFile, std::move(ModuleMapBuffer)); 1231 }); 1232 } 1233 1234 // We've rebuilt a module. If we're allowed to generate or update the global 1235 // module index, record that fact in the importing compiler instance. 1236 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1237 ImportingInstance.setBuildGlobalModuleIndex(true); 1238 } 1239 1240 return Result; 1241 } 1242 1243 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1244 SourceLocation ImportLoc, 1245 SourceLocation ModuleNameLoc, Module *Module, 1246 StringRef ModuleFileName) { 1247 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1248 1249 auto diagnoseBuildFailure = [&] { 1250 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1251 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1252 }; 1253 1254 // FIXME: have LockFileManager return an error_code so that we can 1255 // avoid the mkdir when the directory already exists. 1256 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1257 llvm::sys::fs::create_directories(Dir); 1258 1259 while (1) { 1260 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1261 llvm::LockFileManager Locked(ModuleFileName); 1262 switch (Locked) { 1263 case llvm::LockFileManager::LFS_Error: 1264 // PCMCache takes care of correctness and locks are only necessary for 1265 // performance. Fallback to building the module in case of any lock 1266 // related errors. 1267 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1268 << Module->Name << Locked.getErrorMessage(); 1269 // Clear out any potential leftover. 1270 Locked.unsafeRemoveLockFile(); 1271 // FALLTHROUGH 1272 case llvm::LockFileManager::LFS_Owned: 1273 // We're responsible for building the module ourselves. 1274 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1275 ModuleFileName)) { 1276 diagnoseBuildFailure(); 1277 return false; 1278 } 1279 break; 1280 1281 case llvm::LockFileManager::LFS_Shared: 1282 // Someone else is responsible for building the module. Wait for them to 1283 // finish. 1284 switch (Locked.waitForUnlock()) { 1285 case llvm::LockFileManager::Res_Success: 1286 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1287 break; 1288 case llvm::LockFileManager::Res_OwnerDied: 1289 continue; // try again to get the lock. 1290 case llvm::LockFileManager::Res_Timeout: 1291 // Since PCMCache takes care of correctness, we try waiting for another 1292 // process to complete the build so clang does not do it done twice. If 1293 // case of timeout, build it ourselves. 1294 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1295 << Module->Name; 1296 // Clear the lock file so that future invokations can make progress. 1297 Locked.unsafeRemoveLockFile(); 1298 continue; 1299 } 1300 break; 1301 } 1302 1303 // Try to read the module file, now that we've compiled it. 1304 ASTReader::ASTReadResult ReadResult = 1305 ImportingInstance.getModuleManager()->ReadAST( 1306 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1307 ModuleLoadCapabilities); 1308 1309 if (ReadResult == ASTReader::OutOfDate && 1310 Locked == llvm::LockFileManager::LFS_Shared) { 1311 // The module may be out of date in the presence of file system races, 1312 // or if one of its imports depends on header search paths that are not 1313 // consistent with this ImportingInstance. Try again... 1314 continue; 1315 } else if (ReadResult == ASTReader::Missing) { 1316 diagnoseBuildFailure(); 1317 } else if (ReadResult != ASTReader::Success && 1318 !Diags.hasErrorOccurred()) { 1319 // The ASTReader didn't diagnose the error, so conservatively report it. 1320 diagnoseBuildFailure(); 1321 } 1322 return ReadResult == ASTReader::Success; 1323 } 1324 } 1325 1326 /// \brief Diagnose differences between the current definition of the given 1327 /// configuration macro and the definition provided on the command line. 1328 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1329 Module *Mod, SourceLocation ImportLoc) { 1330 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1331 SourceManager &SourceMgr = PP.getSourceManager(); 1332 1333 // If this identifier has never had a macro definition, then it could 1334 // not have changed. 1335 if (!Id->hadMacroDefinition()) 1336 return; 1337 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1338 1339 // Find the macro definition from the command line. 1340 MacroInfo *CmdLineDefinition = nullptr; 1341 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1342 // We only care about the predefines buffer. 1343 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1344 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1345 continue; 1346 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1347 CmdLineDefinition = DMD->getMacroInfo(); 1348 break; 1349 } 1350 1351 auto *CurrentDefinition = PP.getMacroInfo(Id); 1352 if (CurrentDefinition == CmdLineDefinition) { 1353 // Macro matches. Nothing to do. 1354 } else if (!CurrentDefinition) { 1355 // This macro was defined on the command line, then #undef'd later. 1356 // Complain. 1357 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1358 << true << ConfigMacro << Mod->getFullModuleName(); 1359 auto LatestDef = LatestLocalMD->getDefinition(); 1360 assert(LatestDef.isUndefined() && 1361 "predefined macro went away with no #undef?"); 1362 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1363 << true; 1364 return; 1365 } else if (!CmdLineDefinition) { 1366 // There was no definition for this macro in the predefines buffer, 1367 // but there was a local definition. Complain. 1368 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1369 << false << ConfigMacro << Mod->getFullModuleName(); 1370 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1371 diag::note_module_def_undef_here) 1372 << false; 1373 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1374 /*Syntactically=*/true)) { 1375 // The macro definitions differ. 1376 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1377 << false << ConfigMacro << Mod->getFullModuleName(); 1378 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1379 diag::note_module_def_undef_here) 1380 << false; 1381 } 1382 } 1383 1384 /// \brief Write a new timestamp file with the given path. 1385 static void writeTimestampFile(StringRef TimestampFile) { 1386 std::error_code EC; 1387 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1388 } 1389 1390 /// \brief Prune the module cache of modules that haven't been accessed in 1391 /// a long time. 1392 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1393 struct stat StatBuf; 1394 llvm::SmallString<128> TimestampFile; 1395 TimestampFile = HSOpts.ModuleCachePath; 1396 assert(!TimestampFile.empty()); 1397 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1398 1399 // Try to stat() the timestamp file. 1400 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1401 // If the timestamp file wasn't there, create one now. 1402 if (errno == ENOENT) { 1403 writeTimestampFile(TimestampFile); 1404 } 1405 return; 1406 } 1407 1408 // Check whether the time stamp is older than our pruning interval. 1409 // If not, do nothing. 1410 time_t TimeStampModTime = StatBuf.st_mtime; 1411 time_t CurrentTime = time(nullptr); 1412 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1413 return; 1414 1415 // Write a new timestamp file so that nobody else attempts to prune. 1416 // There is a benign race condition here, if two Clang instances happen to 1417 // notice at the same time that the timestamp is out-of-date. 1418 writeTimestampFile(TimestampFile); 1419 1420 // Walk the entire module cache, looking for unused module files and module 1421 // indices. 1422 std::error_code EC; 1423 SmallString<128> ModuleCachePathNative; 1424 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1425 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1426 Dir != DirEnd && !EC; Dir.increment(EC)) { 1427 // If we don't have a directory, there's nothing to look into. 1428 if (!llvm::sys::fs::is_directory(Dir->path())) 1429 continue; 1430 1431 // Walk all of the files within this directory. 1432 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1433 File != FileEnd && !EC; File.increment(EC)) { 1434 // We only care about module and global module index files. 1435 StringRef Extension = llvm::sys::path::extension(File->path()); 1436 if (Extension != ".pcm" && Extension != ".timestamp" && 1437 llvm::sys::path::filename(File->path()) != "modules.idx") 1438 continue; 1439 1440 // Look at this file. If we can't stat it, there's nothing interesting 1441 // there. 1442 if (::stat(File->path().c_str(), &StatBuf)) 1443 continue; 1444 1445 // If the file has been used recently enough, leave it there. 1446 time_t FileAccessTime = StatBuf.st_atime; 1447 if (CurrentTime - FileAccessTime <= 1448 time_t(HSOpts.ModuleCachePruneAfter)) { 1449 continue; 1450 } 1451 1452 // Remove the file. 1453 llvm::sys::fs::remove(File->path()); 1454 1455 // Remove the timestamp file. 1456 std::string TimpestampFilename = File->path() + ".timestamp"; 1457 llvm::sys::fs::remove(TimpestampFilename); 1458 } 1459 1460 // If we removed all of the files in the directory, remove the directory 1461 // itself. 1462 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1463 llvm::sys::fs::directory_iterator() && !EC) 1464 llvm::sys::fs::remove(Dir->path()); 1465 } 1466 } 1467 1468 void CompilerInstance::createModuleManager() { 1469 if (!ModuleManager) { 1470 if (!hasASTContext()) 1471 createASTContext(); 1472 1473 // If we're implicitly building modules but not currently recursively 1474 // building a module, check whether we need to prune the module cache. 1475 if (getSourceManager().getModuleBuildStack().empty() && 1476 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1477 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1478 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1479 pruneModuleCache(getHeaderSearchOpts()); 1480 } 1481 1482 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1483 std::string Sysroot = HSOpts.Sysroot; 1484 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1485 std::unique_ptr<llvm::Timer> ReadTimer; 1486 if (FrontendTimerGroup) 1487 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1488 "Reading modules", 1489 *FrontendTimerGroup); 1490 ModuleManager = new ASTReader( 1491 getPreprocessor(), &getASTContext(), getPCHContainerReader(), 1492 getFrontendOpts().ModuleFileExtensions, 1493 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1494 /*AllowASTWithCompilerErrors=*/false, 1495 /*AllowConfigurationMismatch=*/false, 1496 HSOpts.ModulesValidateSystemHeaders, 1497 getFrontendOpts().UseGlobalModuleIndex, 1498 std::move(ReadTimer)); 1499 if (hasASTConsumer()) { 1500 ModuleManager->setDeserializationListener( 1501 getASTConsumer().GetASTDeserializationListener()); 1502 getASTContext().setASTMutationListener( 1503 getASTConsumer().GetASTMutationListener()); 1504 } 1505 getASTContext().setExternalSource(ModuleManager); 1506 if (hasSema()) 1507 ModuleManager->InitializeSema(getSema()); 1508 if (hasASTConsumer()) 1509 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1510 1511 if (TheDependencyFileGenerator) 1512 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1513 for (auto &Listener : DependencyCollectors) 1514 Listener->attachToASTReader(*ModuleManager); 1515 } 1516 } 1517 1518 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1519 llvm::Timer Timer; 1520 if (FrontendTimerGroup) 1521 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1522 *FrontendTimerGroup); 1523 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1524 1525 // Helper to recursively read the module names for all modules we're adding. 1526 // We mark these as known and redirect any attempt to load that module to 1527 // the files we were handed. 1528 struct ReadModuleNames : ASTReaderListener { 1529 CompilerInstance &CI; 1530 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1531 1532 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1533 1534 void ReadModuleName(StringRef ModuleName) override { 1535 LoadedModules.push_back( 1536 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1537 } 1538 1539 void registerAll() { 1540 for (auto *II : LoadedModules) { 1541 CI.KnownModules[II] = CI.getPreprocessor() 1542 .getHeaderSearchInfo() 1543 .getModuleMap() 1544 .findModule(II->getName()); 1545 } 1546 LoadedModules.clear(); 1547 } 1548 1549 void markAllUnavailable() { 1550 for (auto *II : LoadedModules) { 1551 if (Module *M = CI.getPreprocessor() 1552 .getHeaderSearchInfo() 1553 .getModuleMap() 1554 .findModule(II->getName())) { 1555 M->HasIncompatibleModuleFile = true; 1556 1557 // Mark module as available if the only reason it was unavailable 1558 // was missing headers. 1559 SmallVector<Module *, 2> Stack; 1560 Stack.push_back(M); 1561 while (!Stack.empty()) { 1562 Module *Current = Stack.pop_back_val(); 1563 if (Current->IsMissingRequirement) continue; 1564 Current->IsAvailable = true; 1565 Stack.insert(Stack.end(), 1566 Current->submodule_begin(), Current->submodule_end()); 1567 } 1568 } 1569 } 1570 LoadedModules.clear(); 1571 } 1572 }; 1573 1574 // If we don't already have an ASTReader, create one now. 1575 if (!ModuleManager) 1576 createModuleManager(); 1577 1578 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1579 auto &ListenerRef = *Listener; 1580 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1581 std::move(Listener)); 1582 1583 // Try to load the module file. 1584 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1585 SourceLocation(), 1586 ASTReader::ARR_ConfigurationMismatch)) { 1587 case ASTReader::Success: 1588 // We successfully loaded the module file; remember the set of provided 1589 // modules so that we don't try to load implicit modules for them. 1590 ListenerRef.registerAll(); 1591 return true; 1592 1593 case ASTReader::ConfigurationMismatch: 1594 // Ignore unusable module files. 1595 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1596 << FileName; 1597 // All modules provided by any files we tried and failed to load are now 1598 // unavailable; includes of those modules should now be handled textually. 1599 ListenerRef.markAllUnavailable(); 1600 return true; 1601 1602 default: 1603 return false; 1604 } 1605 } 1606 1607 ModuleLoadResult 1608 CompilerInstance::loadModule(SourceLocation ImportLoc, 1609 ModuleIdPath Path, 1610 Module::NameVisibilityKind Visibility, 1611 bool IsInclusionDirective) { 1612 // Determine what file we're searching from. 1613 // FIXME: Should we be deciding whether this is a submodule (here and 1614 // below) based on -fmodules-ts or should we pass a flag and make the 1615 // caller decide? 1616 std::string ModuleName; 1617 if (getLangOpts().ModulesTS) { 1618 // FIXME: Same code as Sema::ActOnModuleDecl() so there is probably a 1619 // better place/way to do this. 1620 for (auto &Piece : Path) { 1621 if (!ModuleName.empty()) 1622 ModuleName += "."; 1623 ModuleName += Piece.first->getName(); 1624 } 1625 } 1626 else 1627 ModuleName = Path[0].first->getName(); 1628 1629 SourceLocation ModuleNameLoc = Path[0].second; 1630 1631 // If we've already handled this import, just return the cached result. 1632 // This one-element cache is important to eliminate redundant diagnostics 1633 // when both the preprocessor and parser see the same import declaration. 1634 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1635 // Make the named module visible. 1636 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1637 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1638 ImportLoc); 1639 return LastModuleImportResult; 1640 } 1641 1642 clang::Module *Module = nullptr; 1643 1644 // If we don't already have information on this module, load the module now. 1645 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1646 = KnownModules.find(Path[0].first); 1647 if (Known != KnownModules.end()) { 1648 // Retrieve the cached top-level module. 1649 Module = Known->second; 1650 } else if (ModuleName == getLangOpts().CurrentModule) { 1651 // This is the module we're building. 1652 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1653 /// FIXME: perhaps we should (a) look for a module using the module name 1654 // to file map (PrebuiltModuleFiles) and (b) diagnose if still not found? 1655 //if (Module == nullptr) { 1656 // getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1657 // << ModuleName; 1658 // ModuleBuildFailed = true; 1659 // return ModuleLoadResult(); 1660 //} 1661 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1662 } else { 1663 // Search for a module with the given name. 1664 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1665 HeaderSearchOptions &HSOpts = 1666 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1667 1668 std::string ModuleFileName; 1669 enum ModuleSource { 1670 ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma 1671 } Source = ModuleNotFound; 1672 1673 // Check to see if the module has been built as part of this compilation 1674 // via a module build pragma. 1675 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1676 if (BuiltModuleIt != BuiltModules.end()) { 1677 ModuleFileName = BuiltModuleIt->second; 1678 Source = ModuleBuildPragma; 1679 } 1680 1681 // Try to load the module from the prebuilt module path. 1682 if (Source == ModuleNotFound && (!HSOpts.PrebuiltModuleFiles.empty() || 1683 !HSOpts.PrebuiltModulePaths.empty())) { 1684 ModuleFileName = 1685 PP->getHeaderSearchInfo().getPrebuiltModuleFileName(ModuleName); 1686 if (!ModuleFileName.empty()) 1687 Source = PrebuiltModulePath; 1688 } 1689 1690 // Try to load the module from the module cache. 1691 if (Source == ModuleNotFound && Module) { 1692 ModuleFileName = PP->getHeaderSearchInfo().getCachedModuleFileName(Module); 1693 Source = ModuleCache; 1694 } 1695 1696 if (Source == ModuleNotFound) { 1697 // We can't find a module, error out here. 1698 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1699 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1700 ModuleBuildFailed = true; 1701 return ModuleLoadResult(); 1702 } 1703 1704 if (ModuleFileName.empty()) { 1705 if (Module && Module->HasIncompatibleModuleFile) { 1706 // We tried and failed to load a module file for this module. Fall 1707 // back to textual inclusion for its headers. 1708 return ModuleLoadResult::ConfigMismatch; 1709 } 1710 1711 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1712 << ModuleName; 1713 ModuleBuildFailed = true; 1714 return ModuleLoadResult(); 1715 } 1716 1717 // If we don't already have an ASTReader, create one now. 1718 if (!ModuleManager) 1719 createModuleManager(); 1720 1721 llvm::Timer Timer; 1722 if (FrontendTimerGroup) 1723 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1724 *FrontendTimerGroup); 1725 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1726 1727 // Try to load the module file. If we are not trying to load from the 1728 // module cache, we don't know how to rebuild modules. 1729 unsigned ARRFlags = Source == ModuleCache ? 1730 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : 1731 ASTReader::ARR_ConfigurationMismatch; 1732 switch (ModuleManager->ReadAST(ModuleFileName, 1733 Source == PrebuiltModulePath 1734 ? serialization::MK_PrebuiltModule 1735 : Source == ModuleBuildPragma 1736 ? serialization::MK_ExplicitModule 1737 : serialization::MK_ImplicitModule, 1738 ImportLoc, ARRFlags)) { 1739 case ASTReader::Success: { 1740 if (Source != ModuleCache && !Module) { 1741 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1742 if (!Module || !Module->getASTFile() || 1743 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1744 // Error out if Module does not refer to the file in the prebuilt 1745 // module path. 1746 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1747 << ModuleName; 1748 ModuleBuildFailed = true; 1749 KnownModules[Path[0].first] = nullptr; 1750 return ModuleLoadResult(); 1751 } 1752 } 1753 break; 1754 } 1755 1756 case ASTReader::OutOfDate: 1757 case ASTReader::Missing: { 1758 if (Source != ModuleCache) { 1759 // We don't know the desired configuration for this module and don't 1760 // necessarily even have a module map. Since ReadAST already produces 1761 // diagnostics for these two cases, we simply error out here. 1762 ModuleBuildFailed = true; 1763 KnownModules[Path[0].first] = nullptr; 1764 return ModuleLoadResult(); 1765 } 1766 1767 // The module file is missing or out-of-date. Build it. 1768 assert(Module && "missing module file"); 1769 // Check whether there is a cycle in the module graph. 1770 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1771 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1772 for (; Pos != PosEnd; ++Pos) { 1773 if (Pos->first == ModuleName) 1774 break; 1775 } 1776 1777 if (Pos != PosEnd) { 1778 SmallString<256> CyclePath; 1779 for (; Pos != PosEnd; ++Pos) { 1780 CyclePath += Pos->first; 1781 CyclePath += " -> "; 1782 } 1783 CyclePath += ModuleName; 1784 1785 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1786 << ModuleName << CyclePath; 1787 return ModuleLoadResult(); 1788 } 1789 1790 // Check whether we have already attempted to build this module (but 1791 // failed). 1792 if (getPreprocessorOpts().FailedModules && 1793 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1794 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1795 << ModuleName 1796 << SourceRange(ImportLoc, ModuleNameLoc); 1797 ModuleBuildFailed = true; 1798 return ModuleLoadResult(); 1799 } 1800 1801 // Try to compile and then load the module. 1802 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1803 ModuleFileName)) { 1804 assert(getDiagnostics().hasErrorOccurred() && 1805 "undiagnosed error in compileAndLoadModule"); 1806 if (getPreprocessorOpts().FailedModules) 1807 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1808 KnownModules[Path[0].first] = nullptr; 1809 ModuleBuildFailed = true; 1810 return ModuleLoadResult(); 1811 } 1812 1813 // Okay, we've rebuilt and now loaded the module. 1814 break; 1815 } 1816 1817 case ASTReader::ConfigurationMismatch: 1818 if (Source == PrebuiltModulePath) 1819 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1820 // produce a warning here! 1821 getDiagnostics().Report(SourceLocation(), 1822 diag::warn_module_config_mismatch) 1823 << ModuleFileName; 1824 // Fall through to error out. 1825 LLVM_FALLTHROUGH; 1826 case ASTReader::VersionMismatch: 1827 case ASTReader::HadErrors: 1828 ModuleLoader::HadFatalFailure = true; 1829 // FIXME: The ASTReader will already have complained, but can we shoehorn 1830 // that diagnostic information into a more useful form? 1831 KnownModules[Path[0].first] = nullptr; 1832 return ModuleLoadResult(); 1833 1834 case ASTReader::Failure: 1835 ModuleLoader::HadFatalFailure = true; 1836 // Already complained, but note now that we failed. 1837 KnownModules[Path[0].first] = nullptr; 1838 ModuleBuildFailed = true; 1839 return ModuleLoadResult(); 1840 } 1841 1842 // Cache the result of this top-level module lookup for later. 1843 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1844 } 1845 1846 // If we never found the module, fail. 1847 if (!Module) 1848 return ModuleLoadResult(); 1849 1850 // Verify that the rest of the module path actually corresponds to 1851 // a submodule. 1852 if (!getLangOpts().ModulesTS && Path.size() > 1) { 1853 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1854 StringRef Name = Path[I].first->getName(); 1855 clang::Module *Sub = Module->findSubmodule(Name); 1856 1857 if (!Sub) { 1858 // Attempt to perform typo correction to find a module name that works. 1859 SmallVector<StringRef, 2> Best; 1860 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1861 1862 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1863 JEnd = Module->submodule_end(); 1864 J != JEnd; ++J) { 1865 unsigned ED = Name.edit_distance((*J)->Name, 1866 /*AllowReplacements=*/true, 1867 BestEditDistance); 1868 if (ED <= BestEditDistance) { 1869 if (ED < BestEditDistance) { 1870 Best.clear(); 1871 BestEditDistance = ED; 1872 } 1873 1874 Best.push_back((*J)->Name); 1875 } 1876 } 1877 1878 // If there was a clear winner, user it. 1879 if (Best.size() == 1) { 1880 getDiagnostics().Report(Path[I].second, 1881 diag::err_no_submodule_suggest) 1882 << Path[I].first << Module->getFullModuleName() << Best[0] 1883 << SourceRange(Path[0].second, Path[I-1].second) 1884 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1885 Best[0]); 1886 1887 Sub = Module->findSubmodule(Best[0]); 1888 } 1889 } 1890 1891 if (!Sub) { 1892 // No submodule by this name. Complain, and don't look for further 1893 // submodules. 1894 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1895 << Path[I].first << Module->getFullModuleName() 1896 << SourceRange(Path[0].second, Path[I-1].second); 1897 break; 1898 } 1899 1900 Module = Sub; 1901 } 1902 } 1903 1904 // Make the named module visible, if it's not already part of the module 1905 // we are parsing. 1906 if (ModuleName != getLangOpts().CurrentModule) { 1907 if (!Module->IsFromModuleFile) { 1908 // We have an umbrella header or directory that doesn't actually include 1909 // all of the headers within the directory it covers. Complain about 1910 // this missing submodule and recover by forgetting that we ever saw 1911 // this submodule. 1912 // FIXME: Should we detect this at module load time? It seems fairly 1913 // expensive (and rare). 1914 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1915 << Module->getFullModuleName() 1916 << SourceRange(Path.front().second, Path.back().second); 1917 1918 return ModuleLoadResult::MissingExpected; 1919 } 1920 1921 // Check whether this module is available. 1922 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 1923 getDiagnostics(), Module)) { 1924 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 1925 << SourceRange(Path.front().second, Path.back().second); 1926 LastModuleImportLoc = ImportLoc; 1927 LastModuleImportResult = ModuleLoadResult(); 1928 return ModuleLoadResult(); 1929 } 1930 1931 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1932 } 1933 1934 // Check for any configuration macros that have changed. 1935 clang::Module *TopModule = Module->getTopLevelModule(); 1936 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1937 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1938 Module, ImportLoc); 1939 } 1940 1941 LastModuleImportLoc = ImportLoc; 1942 LastModuleImportResult = ModuleLoadResult(Module); 1943 return LastModuleImportResult; 1944 } 1945 1946 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, 1947 StringRef ModuleName, 1948 StringRef Source) { 1949 // Avoid creating filenames with special characters. 1950 SmallString<128> CleanModuleName(ModuleName); 1951 for (auto &C : CleanModuleName) 1952 if (!isAlphanumeric(C)) 1953 C = '_'; 1954 1955 // FIXME: Using a randomized filename here means that our intermediate .pcm 1956 // output is nondeterministic (as .pcm files refer to each other by name). 1957 // Can this affect the output in any way? 1958 SmallString<128> ModuleFileName; 1959 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 1960 CleanModuleName, "pcm", ModuleFileName)) { 1961 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 1962 << ModuleFileName << EC.message(); 1963 return; 1964 } 1965 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 1966 1967 FrontendInputFile Input( 1968 ModuleMapFileName, 1969 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 1970 InputKind::ModuleMap, /*Preprocessed*/true)); 1971 1972 std::string NullTerminatedSource(Source.str()); 1973 1974 auto PreBuildStep = [&](CompilerInstance &Other) { 1975 // Create a virtual file containing our desired source. 1976 // FIXME: We shouldn't need to do this. 1977 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 1978 ModuleMapFileName, NullTerminatedSource.size(), 0); 1979 Other.getSourceManager().overrideFileContents( 1980 ModuleMapFile, 1981 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 1982 1983 Other.BuiltModules = std::move(BuiltModules); 1984 Other.DeleteBuiltModules = false; 1985 }; 1986 1987 auto PostBuildStep = [this](CompilerInstance &Other) { 1988 BuiltModules = std::move(Other.BuiltModules); 1989 }; 1990 1991 // Build the module, inheriting any modules that we've built locally. 1992 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 1993 ModuleFileName, PreBuildStep, PostBuildStep)) { 1994 BuiltModules[ModuleName] = ModuleFileName.str(); 1995 llvm::sys::RemoveFileOnSignal(ModuleFileName); 1996 } 1997 } 1998 1999 void CompilerInstance::makeModuleVisible(Module *Mod, 2000 Module::NameVisibilityKind Visibility, 2001 SourceLocation ImportLoc) { 2002 if (!ModuleManager) 2003 createModuleManager(); 2004 if (!ModuleManager) 2005 return; 2006 2007 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 2008 } 2009 2010 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2011 SourceLocation TriggerLoc) { 2012 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2013 return nullptr; 2014 if (!ModuleManager) 2015 createModuleManager(); 2016 // Can't do anything if we don't have the module manager. 2017 if (!ModuleManager) 2018 return nullptr; 2019 // Get an existing global index. This loads it if not already 2020 // loaded. 2021 ModuleManager->loadGlobalIndex(); 2022 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 2023 // If the global index doesn't exist, create it. 2024 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2025 hasPreprocessor()) { 2026 llvm::sys::fs::create_directories( 2027 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2028 GlobalModuleIndex::writeIndex( 2029 getFileManager(), getPCHContainerReader(), 2030 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2031 ModuleManager->resetForReload(); 2032 ModuleManager->loadGlobalIndex(); 2033 GlobalIndex = ModuleManager->getGlobalIndex(); 2034 } 2035 // For finding modules needing to be imported for fixit messages, 2036 // we need to make the global index cover all modules, so we do that here. 2037 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2038 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2039 bool RecreateIndex = false; 2040 for (ModuleMap::module_iterator I = MMap.module_begin(), 2041 E = MMap.module_end(); I != E; ++I) { 2042 Module *TheModule = I->second; 2043 const FileEntry *Entry = TheModule->getASTFile(); 2044 if (!Entry) { 2045 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2046 Path.push_back(std::make_pair( 2047 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2048 std::reverse(Path.begin(), Path.end()); 2049 // Load a module as hidden. This also adds it to the global index. 2050 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2051 RecreateIndex = true; 2052 } 2053 } 2054 if (RecreateIndex) { 2055 GlobalModuleIndex::writeIndex( 2056 getFileManager(), getPCHContainerReader(), 2057 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2058 ModuleManager->resetForReload(); 2059 ModuleManager->loadGlobalIndex(); 2060 GlobalIndex = ModuleManager->getGlobalIndex(); 2061 } 2062 HaveFullGlobalModuleIndex = true; 2063 } 2064 return GlobalIndex; 2065 } 2066 2067 // Check global module index for missing imports. 2068 bool 2069 CompilerInstance::lookupMissingImports(StringRef Name, 2070 SourceLocation TriggerLoc) { 2071 // Look for the symbol in non-imported modules, but only if an error 2072 // actually occurred. 2073 if (!buildingModule()) { 2074 // Load global module index, or retrieve a previously loaded one. 2075 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2076 TriggerLoc); 2077 2078 // Only if we have a global index. 2079 if (GlobalIndex) { 2080 GlobalModuleIndex::HitSet FoundModules; 2081 2082 // Find the modules that reference the identifier. 2083 // Note that this only finds top-level modules. 2084 // We'll let diagnoseTypo find the actual declaration module. 2085 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2086 return true; 2087 } 2088 } 2089 2090 return false; 2091 } 2092 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 2093 2094 void CompilerInstance::setExternalSemaSource( 2095 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2096 ExternalSemaSrc = std::move(ESS); 2097 } 2098