xref: /llvm-project/clang/lib/Frontend/CompilerInstance.cpp (revision 5d2ed489870cb4b093ec8f52ab4a4ef81428d6fe)
1 //===--- CompilerInstance.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Frontend/CompilerInstance.h"
11 #include "clang/AST/ASTConsumer.h"
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/Basic/Diagnostic.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/MemoryBufferCache.h"
17 #include "clang/Basic/SourceManager.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Basic/Version.h"
20 #include "clang/Config/config.h"
21 #include "clang/Frontend/ChainedDiagnosticConsumer.h"
22 #include "clang/Frontend/FrontendAction.h"
23 #include "clang/Frontend/FrontendActions.h"
24 #include "clang/Frontend/FrontendDiagnostic.h"
25 #include "clang/Frontend/LogDiagnosticPrinter.h"
26 #include "clang/Frontend/SerializedDiagnosticPrinter.h"
27 #include "clang/Frontend/TextDiagnosticPrinter.h"
28 #include "clang/Frontend/Utils.h"
29 #include "clang/Frontend/VerifyDiagnosticConsumer.h"
30 #include "clang/Lex/HeaderSearch.h"
31 #include "clang/Lex/PTHManager.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Lex/PreprocessorOptions.h"
34 #include "clang/Sema/CodeCompleteConsumer.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Serialization/ASTReader.h"
37 #include "clang/Serialization/GlobalModuleIndex.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Support/CrashRecoveryContext.h"
40 #include "llvm/Support/Errc.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/Host.h"
43 #include "llvm/Support/LockFileManager.h"
44 #include "llvm/Support/MemoryBuffer.h"
45 #include "llvm/Support/Path.h"
46 #include "llvm/Support/Program.h"
47 #include "llvm/Support/Signals.h"
48 #include "llvm/Support/Timer.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <sys/stat.h>
51 #include <system_error>
52 #include <time.h>
53 #include <utility>
54 
55 using namespace clang;
56 
57 CompilerInstance::CompilerInstance(
58     std::shared_ptr<PCHContainerOperations> PCHContainerOps,
59     MemoryBufferCache *SharedPCMCache)
60     : ModuleLoader(/* BuildingModule = */ SharedPCMCache),
61       Invocation(new CompilerInvocation()),
62       PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache),
63       ThePCHContainerOperations(std::move(PCHContainerOps)) {
64   // Don't allow this to invalidate buffers in use by others.
65   if (SharedPCMCache)
66     getPCMCache().finalizeCurrentBuffers();
67 }
68 
69 CompilerInstance::~CompilerInstance() {
70   assert(OutputFiles.empty() && "Still output files in flight?");
71 }
72 
73 void CompilerInstance::setInvocation(
74     std::shared_ptr<CompilerInvocation> Value) {
75   Invocation = std::move(Value);
76 }
77 
78 bool CompilerInstance::shouldBuildGlobalModuleIndex() const {
79   return (BuildGlobalModuleIndex ||
80           (ModuleManager && ModuleManager->isGlobalIndexUnavailable() &&
81            getFrontendOpts().GenerateGlobalModuleIndex)) &&
82          !ModuleBuildFailed;
83 }
84 
85 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) {
86   Diagnostics = Value;
87 }
88 
89 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; }
90 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; }
91 
92 void CompilerInstance::setFileManager(FileManager *Value) {
93   FileMgr = Value;
94   if (Value)
95     VirtualFileSystem = Value->getVirtualFileSystem();
96   else
97     VirtualFileSystem.reset();
98 }
99 
100 void CompilerInstance::setSourceManager(SourceManager *Value) {
101   SourceMgr = Value;
102 }
103 
104 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) {
105   PP = std::move(Value);
106 }
107 
108 void CompilerInstance::setASTContext(ASTContext *Value) {
109   Context = Value;
110 
111   if (Context && Consumer)
112     getASTConsumer().Initialize(getASTContext());
113 }
114 
115 void CompilerInstance::setSema(Sema *S) {
116   TheSema.reset(S);
117 }
118 
119 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) {
120   Consumer = std::move(Value);
121 
122   if (Context && Consumer)
123     getASTConsumer().Initialize(getASTContext());
124 }
125 
126 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) {
127   CompletionConsumer.reset(Value);
128 }
129 
130 std::unique_ptr<Sema> CompilerInstance::takeSema() {
131   return std::move(TheSema);
132 }
133 
134 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const {
135   return ModuleManager;
136 }
137 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) {
138   assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() &&
139          "Expected ASTReader to use the same PCM cache");
140   ModuleManager = std::move(Reader);
141 }
142 
143 std::shared_ptr<ModuleDependencyCollector>
144 CompilerInstance::getModuleDepCollector() const {
145   return ModuleDepCollector;
146 }
147 
148 void CompilerInstance::setModuleDepCollector(
149     std::shared_ptr<ModuleDependencyCollector> Collector) {
150   ModuleDepCollector = std::move(Collector);
151 }
152 
153 static void collectHeaderMaps(const HeaderSearch &HS,
154                               std::shared_ptr<ModuleDependencyCollector> MDC) {
155   SmallVector<std::string, 4> HeaderMapFileNames;
156   HS.getHeaderMapFileNames(HeaderMapFileNames);
157   for (auto &Name : HeaderMapFileNames)
158     MDC->addFile(Name);
159 }
160 
161 static void collectIncludePCH(CompilerInstance &CI,
162                               std::shared_ptr<ModuleDependencyCollector> MDC) {
163   const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts();
164   if (PPOpts.ImplicitPCHInclude.empty())
165     return;
166 
167   StringRef PCHInclude = PPOpts.ImplicitPCHInclude;
168   FileManager &FileMgr = CI.getFileManager();
169   const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude);
170   if (!PCHDir) {
171     MDC->addFile(PCHInclude);
172     return;
173   }
174 
175   std::error_code EC;
176   SmallString<128> DirNative;
177   llvm::sys::path::native(PCHDir->getName(), DirNative);
178   vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem();
179   SimpleASTReaderListener Validator(CI.getPreprocessor());
180   for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd;
181        Dir != DirEnd && !EC; Dir.increment(EC)) {
182     // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not
183     // used here since we're not interested in validating the PCH at this time,
184     // but only to check whether this is a file containing an AST.
185     if (!ASTReader::readASTFileControlBlock(
186             Dir->getName(), FileMgr, CI.getPCHContainerReader(),
187             /*FindModuleFileExtensions=*/false, Validator,
188             /*ValidateDiagnosticOptions=*/false))
189       MDC->addFile(Dir->getName());
190   }
191 }
192 
193 static void collectVFSEntries(CompilerInstance &CI,
194                               std::shared_ptr<ModuleDependencyCollector> MDC) {
195   if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
196     return;
197 
198   // Collect all VFS found.
199   SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries;
200   for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) {
201     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
202         llvm::MemoryBuffer::getFile(VFSFile);
203     if (!Buffer)
204       return;
205     vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr,
206                             VFSFile, VFSEntries);
207   }
208 
209   for (auto &E : VFSEntries)
210     MDC->addFile(E.VPath, E.RPath);
211 }
212 
213 // Diagnostics
214 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts,
215                                const CodeGenOptions *CodeGenOpts,
216                                DiagnosticsEngine &Diags) {
217   std::error_code EC;
218   std::unique_ptr<raw_ostream> StreamOwner;
219   raw_ostream *OS = &llvm::errs();
220   if (DiagOpts->DiagnosticLogFile != "-") {
221     // Create the output stream.
222     auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>(
223         DiagOpts->DiagnosticLogFile, EC,
224         llvm::sys::fs::F_Append | llvm::sys::fs::F_Text);
225     if (EC) {
226       Diags.Report(diag::warn_fe_cc_log_diagnostics_failure)
227           << DiagOpts->DiagnosticLogFile << EC.message();
228     } else {
229       FileOS->SetUnbuffered();
230       OS = FileOS.get();
231       StreamOwner = std::move(FileOS);
232     }
233   }
234 
235   // Chain in the diagnostic client which will log the diagnostics.
236   auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts,
237                                                         std::move(StreamOwner));
238   if (CodeGenOpts)
239     Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags);
240   assert(Diags.ownsClient());
241   Diags.setClient(
242       new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger)));
243 }
244 
245 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts,
246                                        DiagnosticsEngine &Diags,
247                                        StringRef OutputFile) {
248   auto SerializedConsumer =
249       clang::serialized_diags::create(OutputFile, DiagOpts);
250 
251   if (Diags.ownsClient()) {
252     Diags.setClient(new ChainedDiagnosticConsumer(
253         Diags.takeClient(), std::move(SerializedConsumer)));
254   } else {
255     Diags.setClient(new ChainedDiagnosticConsumer(
256         Diags.getClient(), std::move(SerializedConsumer)));
257   }
258 }
259 
260 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client,
261                                          bool ShouldOwnClient) {
262   Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client,
263                                   ShouldOwnClient, &getCodeGenOpts());
264 }
265 
266 IntrusiveRefCntPtr<DiagnosticsEngine>
267 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts,
268                                     DiagnosticConsumer *Client,
269                                     bool ShouldOwnClient,
270                                     const CodeGenOptions *CodeGenOpts) {
271   IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
272   IntrusiveRefCntPtr<DiagnosticsEngine>
273       Diags(new DiagnosticsEngine(DiagID, Opts));
274 
275   // Create the diagnostic client for reporting errors or for
276   // implementing -verify.
277   if (Client) {
278     Diags->setClient(Client, ShouldOwnClient);
279   } else
280     Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts));
281 
282   // Chain in -verify checker, if requested.
283   if (Opts->VerifyDiagnostics)
284     Diags->setClient(new VerifyDiagnosticConsumer(*Diags));
285 
286   // Chain in -diagnostic-log-file dumper, if requested.
287   if (!Opts->DiagnosticLogFile.empty())
288     SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags);
289 
290   if (!Opts->DiagnosticSerializationFile.empty())
291     SetupSerializedDiagnostics(Opts, *Diags,
292                                Opts->DiagnosticSerializationFile);
293 
294   // Configure our handling of diagnostics.
295   ProcessWarningOptions(*Diags, *Opts);
296 
297   return Diags;
298 }
299 
300 // File Manager
301 
302 void CompilerInstance::createFileManager() {
303   if (!hasVirtualFileSystem()) {
304     // TODO: choose the virtual file system based on the CompilerInvocation.
305     setVirtualFileSystem(vfs::getRealFileSystem());
306   }
307   FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem);
308 }
309 
310 // Source Manager
311 
312 void CompilerInstance::createSourceManager(FileManager &FileMgr) {
313   SourceMgr = new SourceManager(getDiagnostics(), FileMgr);
314 }
315 
316 // Initialize the remapping of files to alternative contents, e.g.,
317 // those specified through other files.
318 static void InitializeFileRemapping(DiagnosticsEngine &Diags,
319                                     SourceManager &SourceMgr,
320                                     FileManager &FileMgr,
321                                     const PreprocessorOptions &InitOpts) {
322   // Remap files in the source manager (with buffers).
323   for (const auto &RB : InitOpts.RemappedFileBuffers) {
324     // Create the file entry for the file that we're mapping from.
325     const FileEntry *FromFile =
326         FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0);
327     if (!FromFile) {
328       Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first;
329       if (!InitOpts.RetainRemappedFileBuffers)
330         delete RB.second;
331       continue;
332     }
333 
334     // Override the contents of the "from" file with the contents of
335     // the "to" file.
336     SourceMgr.overrideFileContents(FromFile, RB.second,
337                                    InitOpts.RetainRemappedFileBuffers);
338   }
339 
340   // Remap files in the source manager (with other files).
341   for (const auto &RF : InitOpts.RemappedFiles) {
342     // Find the file that we're mapping to.
343     const FileEntry *ToFile = FileMgr.getFile(RF.second);
344     if (!ToFile) {
345       Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second;
346       continue;
347     }
348 
349     // Create the file entry for the file that we're mapping from.
350     const FileEntry *FromFile =
351         FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0);
352     if (!FromFile) {
353       Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first;
354       continue;
355     }
356 
357     // Override the contents of the "from" file with the contents of
358     // the "to" file.
359     SourceMgr.overrideFileContents(FromFile, ToFile);
360   }
361 
362   SourceMgr.setOverridenFilesKeepOriginalName(
363       InitOpts.RemappedFilesKeepOriginalName);
364 }
365 
366 // Preprocessor
367 
368 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) {
369   const PreprocessorOptions &PPOpts = getPreprocessorOpts();
370 
371   // Create a PTH manager if we are using some form of a token cache.
372   PTHManager *PTHMgr = nullptr;
373   if (!PPOpts.TokenCache.empty())
374     PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics());
375 
376   // Create the Preprocessor.
377   HeaderSearch *HeaderInfo =
378       new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(),
379                        getDiagnostics(), getLangOpts(), &getTarget());
380   PP = std::make_shared<Preprocessor>(
381       Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(),
382       getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr,
383       /*OwnsHeaderSearch=*/true, TUKind);
384   PP->Initialize(getTarget(), getAuxTarget());
385 
386   // Note that this is different then passing PTHMgr to Preprocessor's ctor.
387   // That argument is used as the IdentifierInfoLookup argument to
388   // IdentifierTable's ctor.
389   if (PTHMgr) {
390     PTHMgr->setPreprocessor(&*PP);
391     PP->setPTHManager(PTHMgr);
392   }
393 
394   if (PPOpts.DetailedRecord)
395     PP->createPreprocessingRecord();
396 
397   // Apply remappings to the source manager.
398   InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(),
399                           PP->getFileManager(), PPOpts);
400 
401   // Predefine macros and configure the preprocessor.
402   InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(),
403                          getFrontendOpts());
404 
405   // Initialize the header search object.  In CUDA compilations, we use the aux
406   // triple (the host triple) to initialize our header search, since we need to
407   // find the host headers in order to compile the CUDA code.
408   const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple();
409   if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA &&
410       PP->getAuxTargetInfo())
411     HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple();
412 
413   ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(),
414                            PP->getLangOpts(), *HeaderSearchTriple);
415 
416   PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP);
417 
418   if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules)
419     PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath());
420 
421   // Handle generating dependencies, if requested.
422   const DependencyOutputOptions &DepOpts = getDependencyOutputOpts();
423   if (!DepOpts.OutputFile.empty())
424     TheDependencyFileGenerator.reset(
425         DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts));
426   if (!DepOpts.DOTOutputFile.empty())
427     AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile,
428                              getHeaderSearchOpts().Sysroot);
429 
430   // If we don't have a collector, but we are collecting module dependencies,
431   // then we're the top level compiler instance and need to create one.
432   if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) {
433     ModuleDepCollector = std::make_shared<ModuleDependencyCollector>(
434         DepOpts.ModuleDependencyOutputDir);
435   }
436 
437   // If there is a module dep collector, register with other dep collectors
438   // and also (a) collect header maps and (b) TODO: input vfs overlay files.
439   if (ModuleDepCollector) {
440     addDependencyCollector(ModuleDepCollector);
441     collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector);
442     collectIncludePCH(*this, ModuleDepCollector);
443     collectVFSEntries(*this, ModuleDepCollector);
444   }
445 
446   for (auto &Listener : DependencyCollectors)
447     Listener->attachToPreprocessor(*PP);
448 
449   // Handle generating header include information, if requested.
450   if (DepOpts.ShowHeaderIncludes)
451     AttachHeaderIncludeGen(*PP, DepOpts);
452   if (!DepOpts.HeaderIncludeOutputFile.empty()) {
453     StringRef OutputPath = DepOpts.HeaderIncludeOutputFile;
454     if (OutputPath == "-")
455       OutputPath = "";
456     AttachHeaderIncludeGen(*PP, DepOpts,
457                            /*ShowAllHeaders=*/true, OutputPath,
458                            /*ShowDepth=*/false);
459   }
460 
461   if (DepOpts.PrintShowIncludes) {
462     AttachHeaderIncludeGen(*PP, DepOpts,
463                            /*ShowAllHeaders=*/true, /*OutputPath=*/"",
464                            /*ShowDepth=*/true, /*MSStyle=*/true);
465   }
466 }
467 
468 std::string CompilerInstance::getSpecificModuleCachePath() {
469   // Set up the module path, including the hash for the
470   // module-creation options.
471   SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath);
472   if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash)
473     llvm::sys::path::append(SpecificModuleCache,
474                             getInvocation().getModuleHash());
475   return SpecificModuleCache.str();
476 }
477 
478 // ASTContext
479 
480 void CompilerInstance::createASTContext() {
481   Preprocessor &PP = getPreprocessor();
482   auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(),
483                                  PP.getIdentifierTable(), PP.getSelectorTable(),
484                                  PP.getBuiltinInfo());
485   Context->InitBuiltinTypes(getTarget(), getAuxTarget());
486   setASTContext(Context);
487 }
488 
489 // ExternalASTSource
490 
491 void CompilerInstance::createPCHExternalASTSource(
492     StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors,
493     void *DeserializationListener, bool OwnDeserializationListener) {
494   bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0;
495   ModuleManager = createPCHExternalASTSource(
496       Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation,
497       AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(),
498       getPCHContainerReader(),
499       getFrontendOpts().ModuleFileExtensions,
500       TheDependencyFileGenerator.get(),
501       DependencyCollectors,
502       DeserializationListener,
503       OwnDeserializationListener, Preamble,
504       getFrontendOpts().UseGlobalModuleIndex);
505 }
506 
507 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource(
508     StringRef Path, StringRef Sysroot, bool DisablePCHValidation,
509     bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context,
510     const PCHContainerReader &PCHContainerRdr,
511     ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions,
512     DependencyFileGenerator *DependencyFile,
513     ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors,
514     void *DeserializationListener, bool OwnDeserializationListener,
515     bool Preamble, bool UseGlobalModuleIndex) {
516   HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts();
517 
518   IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader(
519       PP, Context, PCHContainerRdr, Extensions,
520       Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation,
521       AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false,
522       HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex));
523 
524   // We need the external source to be set up before we read the AST, because
525   // eagerly-deserialized declarations may use it.
526   Context.setExternalSource(Reader.get());
527 
528   Reader->setDeserializationListener(
529       static_cast<ASTDeserializationListener *>(DeserializationListener),
530       /*TakeOwnership=*/OwnDeserializationListener);
531 
532   if (DependencyFile)
533     DependencyFile->AttachToASTReader(*Reader);
534   for (auto &Listener : DependencyCollectors)
535     Listener->attachToASTReader(*Reader);
536 
537   switch (Reader->ReadAST(Path,
538                           Preamble ? serialization::MK_Preamble
539                                    : serialization::MK_PCH,
540                           SourceLocation(),
541                           ASTReader::ARR_None)) {
542   case ASTReader::Success:
543     // Set the predefines buffer as suggested by the PCH reader. Typically, the
544     // predefines buffer will be empty.
545     PP.setPredefines(Reader->getSuggestedPredefines());
546     return Reader;
547 
548   case ASTReader::Failure:
549     // Unrecoverable failure: don't even try to process the input file.
550     break;
551 
552   case ASTReader::Missing:
553   case ASTReader::OutOfDate:
554   case ASTReader::VersionMismatch:
555   case ASTReader::ConfigurationMismatch:
556   case ASTReader::HadErrors:
557     // No suitable PCH file could be found. Return an error.
558     break;
559   }
560 
561   Context.setExternalSource(nullptr);
562   return nullptr;
563 }
564 
565 // Code Completion
566 
567 static bool EnableCodeCompletion(Preprocessor &PP,
568                                  StringRef Filename,
569                                  unsigned Line,
570                                  unsigned Column) {
571   // Tell the source manager to chop off the given file at a specific
572   // line and column.
573   const FileEntry *Entry = PP.getFileManager().getFile(Filename);
574   if (!Entry) {
575     PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file)
576       << Filename;
577     return true;
578   }
579 
580   // Truncate the named file at the given line/column.
581   PP.SetCodeCompletionPoint(Entry, Line, Column);
582   return false;
583 }
584 
585 void CompilerInstance::createCodeCompletionConsumer() {
586   const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt;
587   if (!CompletionConsumer) {
588     setCodeCompletionConsumer(
589       createCodeCompletionConsumer(getPreprocessor(),
590                                    Loc.FileName, Loc.Line, Loc.Column,
591                                    getFrontendOpts().CodeCompleteOpts,
592                                    llvm::outs()));
593     if (!CompletionConsumer)
594       return;
595   } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName,
596                                   Loc.Line, Loc.Column)) {
597     setCodeCompletionConsumer(nullptr);
598     return;
599   }
600 
601   if (CompletionConsumer->isOutputBinary() &&
602       llvm::sys::ChangeStdoutToBinary()) {
603     getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary);
604     setCodeCompletionConsumer(nullptr);
605   }
606 }
607 
608 void CompilerInstance::createFrontendTimer() {
609   FrontendTimerGroup.reset(
610       new llvm::TimerGroup("frontend", "Clang front-end time report"));
611   FrontendTimer.reset(
612       new llvm::Timer("frontend", "Clang front-end timer",
613                       *FrontendTimerGroup));
614 }
615 
616 CodeCompleteConsumer *
617 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP,
618                                                StringRef Filename,
619                                                unsigned Line,
620                                                unsigned Column,
621                                                const CodeCompleteOptions &Opts,
622                                                raw_ostream &OS) {
623   if (EnableCodeCompletion(PP, Filename, Line, Column))
624     return nullptr;
625 
626   // Set up the creation routine for code-completion.
627   return new PrintingCodeCompleteConsumer(Opts, OS);
628 }
629 
630 void CompilerInstance::createSema(TranslationUnitKind TUKind,
631                                   CodeCompleteConsumer *CompletionConsumer) {
632   TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(),
633                          TUKind, CompletionConsumer));
634   // Attach the external sema source if there is any.
635   if (ExternalSemaSrc) {
636     TheSema->addExternalSource(ExternalSemaSrc.get());
637     ExternalSemaSrc->InitializeSema(*TheSema);
638   }
639 }
640 
641 // Output Files
642 
643 void CompilerInstance::addOutputFile(OutputFile &&OutFile) {
644   OutputFiles.push_back(std::move(OutFile));
645 }
646 
647 void CompilerInstance::clearOutputFiles(bool EraseFiles) {
648   for (OutputFile &OF : OutputFiles) {
649     if (!OF.TempFilename.empty()) {
650       if (EraseFiles) {
651         llvm::sys::fs::remove(OF.TempFilename);
652       } else {
653         SmallString<128> NewOutFile(OF.Filename);
654 
655         // If '-working-directory' was passed, the output filename should be
656         // relative to that.
657         FileMgr->FixupRelativePath(NewOutFile);
658         if (std::error_code ec =
659                 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) {
660           getDiagnostics().Report(diag::err_unable_to_rename_temp)
661             << OF.TempFilename << OF.Filename << ec.message();
662 
663           llvm::sys::fs::remove(OF.TempFilename);
664         }
665       }
666     } else if (!OF.Filename.empty() && EraseFiles)
667       llvm::sys::fs::remove(OF.Filename);
668   }
669   OutputFiles.clear();
670   for (auto &Module : BuiltModules)
671     llvm::sys::fs::remove(Module.second);
672   NonSeekStream.reset();
673 }
674 
675 std::unique_ptr<raw_pwrite_stream>
676 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile,
677                                           StringRef Extension) {
678   return createOutputFile(getFrontendOpts().OutputFile, Binary,
679                           /*RemoveFileOnSignal=*/true, InFile, Extension,
680                           /*UseTemporary=*/true);
681 }
682 
683 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() {
684   return llvm::make_unique<llvm::raw_null_ostream>();
685 }
686 
687 std::unique_ptr<raw_pwrite_stream>
688 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary,
689                                    bool RemoveFileOnSignal, StringRef InFile,
690                                    StringRef Extension, bool UseTemporary,
691                                    bool CreateMissingDirectories) {
692   std::string OutputPathName, TempPathName;
693   std::error_code EC;
694   std::unique_ptr<raw_pwrite_stream> OS = createOutputFile(
695       OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension,
696       UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName);
697   if (!OS) {
698     getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath
699                                                                 << EC.message();
700     return nullptr;
701   }
702 
703   // Add the output file -- but don't try to remove "-", since this means we are
704   // using stdin.
705   addOutputFile(
706       OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName));
707 
708   return OS;
709 }
710 
711 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile(
712     StringRef OutputPath, std::error_code &Error, bool Binary,
713     bool RemoveFileOnSignal, StringRef InFile, StringRef Extension,
714     bool UseTemporary, bool CreateMissingDirectories,
715     std::string *ResultPathName, std::string *TempPathName) {
716   assert((!CreateMissingDirectories || UseTemporary) &&
717          "CreateMissingDirectories is only allowed when using temporary files");
718 
719   std::string OutFile, TempFile;
720   if (!OutputPath.empty()) {
721     OutFile = OutputPath;
722   } else if (InFile == "-") {
723     OutFile = "-";
724   } else if (!Extension.empty()) {
725     SmallString<128> Path(InFile);
726     llvm::sys::path::replace_extension(Path, Extension);
727     OutFile = Path.str();
728   } else {
729     OutFile = "-";
730   }
731 
732   std::unique_ptr<llvm::raw_fd_ostream> OS;
733   std::string OSFile;
734 
735   if (UseTemporary) {
736     if (OutFile == "-")
737       UseTemporary = false;
738     else {
739       llvm::sys::fs::file_status Status;
740       llvm::sys::fs::status(OutputPath, Status);
741       if (llvm::sys::fs::exists(Status)) {
742         // Fail early if we can't write to the final destination.
743         if (!llvm::sys::fs::can_write(OutputPath)) {
744           Error = make_error_code(llvm::errc::operation_not_permitted);
745           return nullptr;
746         }
747 
748         // Don't use a temporary if the output is a special file. This handles
749         // things like '-o /dev/null'
750         if (!llvm::sys::fs::is_regular_file(Status))
751           UseTemporary = false;
752       }
753     }
754   }
755 
756   if (UseTemporary) {
757     // Create a temporary file.
758     SmallString<128> TempPath;
759     TempPath = OutFile;
760     TempPath += "-%%%%%%%%";
761     int fd;
762     std::error_code EC =
763         llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
764 
765     if (CreateMissingDirectories &&
766         EC == llvm::errc::no_such_file_or_directory) {
767       StringRef Parent = llvm::sys::path::parent_path(OutputPath);
768       EC = llvm::sys::fs::create_directories(Parent);
769       if (!EC) {
770         EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath);
771       }
772     }
773 
774     if (!EC) {
775       OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true));
776       OSFile = TempFile = TempPath.str();
777     }
778     // If we failed to create the temporary, fallback to writing to the file
779     // directly. This handles the corner case where we cannot write to the
780     // directory, but can write to the file.
781   }
782 
783   if (!OS) {
784     OSFile = OutFile;
785     OS.reset(new llvm::raw_fd_ostream(
786         OSFile, Error,
787         (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text)));
788     if (Error)
789       return nullptr;
790   }
791 
792   // Make sure the out stream file gets removed if we crash.
793   if (RemoveFileOnSignal)
794     llvm::sys::RemoveFileOnSignal(OSFile);
795 
796   if (ResultPathName)
797     *ResultPathName = OutFile;
798   if (TempPathName)
799     *TempPathName = TempFile;
800 
801   if (!Binary || OS->supportsSeeking())
802     return std::move(OS);
803 
804   auto B = llvm::make_unique<llvm::buffer_ostream>(*OS);
805   assert(!NonSeekStream);
806   NonSeekStream = std::move(OS);
807   return std::move(B);
808 }
809 
810 // Initialization Utilities
811 
812 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){
813   return InitializeSourceManager(
814       Input, getDiagnostics(), getFileManager(), getSourceManager(),
815       hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr,
816       getDependencyOutputOpts(), getFrontendOpts());
817 }
818 
819 // static
820 bool CompilerInstance::InitializeSourceManager(
821     const FrontendInputFile &Input, DiagnosticsEngine &Diags,
822     FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS,
823     DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) {
824   SrcMgr::CharacteristicKind
825     Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User;
826 
827   if (Input.isBuffer()) {
828     SourceMgr.setMainFileID(SourceMgr.createFileID(
829         std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind));
830     assert(SourceMgr.getMainFileID().isValid() &&
831            "Couldn't establish MainFileID!");
832     return true;
833   }
834 
835   StringRef InputFile = Input.getFile();
836 
837   // Figure out where to get and map in the main file.
838   if (InputFile != "-") {
839     const FileEntry *File;
840     if (Opts.FindPchSource.empty()) {
841       File = FileMgr.getFile(InputFile, /*OpenFile=*/true);
842     } else {
843       // When building a pch file in clang-cl mode, the .h file is built as if
844       // it was included by a cc file.  Since the driver doesn't know about
845       // all include search directories, the frontend must search the input
846       // file through HeaderSearch here, as if it had been included by the
847       // cc file at Opts.FindPchSource.
848       const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource);
849       if (!FindFile) {
850         Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource;
851         return false;
852       }
853       const DirectoryLookup *UnusedCurDir;
854       SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16>
855           Includers;
856       Includers.push_back(std::make_pair(FindFile, FindFile->getDir()));
857       File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false,
858                             /*FromDir=*/nullptr,
859                             /*CurDir=*/UnusedCurDir, Includers,
860                             /*SearchPath=*/nullptr,
861                             /*RelativePath=*/nullptr,
862                             /*RequestingModule=*/nullptr,
863                             /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr,
864                             /*SkipCache=*/true);
865       // Also add the header to /showIncludes output.
866       if (File)
867         DepOpts.ShowIncludesPretendHeader = File->getName();
868     }
869     if (!File) {
870       Diags.Report(diag::err_fe_error_reading) << InputFile;
871       return false;
872     }
873 
874     // The natural SourceManager infrastructure can't currently handle named
875     // pipes, but we would at least like to accept them for the main
876     // file. Detect them here, read them with the volatile flag so FileMgr will
877     // pick up the correct size, and simply override their contents as we do for
878     // STDIN.
879     if (File->isNamedPipe()) {
880       auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true);
881       if (MB) {
882         // Create a new virtual file that will have the correct size.
883         File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0);
884         SourceMgr.overrideFileContents(File, std::move(*MB));
885       } else {
886         Diags.Report(diag::err_cannot_open_file) << InputFile
887                                                  << MB.getError().message();
888         return false;
889       }
890     }
891 
892     SourceMgr.setMainFileID(
893         SourceMgr.createFileID(File, SourceLocation(), Kind));
894   } else {
895     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr =
896         llvm::MemoryBuffer::getSTDIN();
897     if (std::error_code EC = SBOrErr.getError()) {
898       Diags.Report(diag::err_fe_error_reading_stdin) << EC.message();
899       return false;
900     }
901     std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get());
902 
903     const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(),
904                                                    SB->getBufferSize(), 0);
905     SourceMgr.setMainFileID(
906         SourceMgr.createFileID(File, SourceLocation(), Kind));
907     SourceMgr.overrideFileContents(File, std::move(SB));
908   }
909 
910   assert(SourceMgr.getMainFileID().isValid() &&
911          "Couldn't establish MainFileID!");
912   return true;
913 }
914 
915 // High-Level Operations
916 
917 bool CompilerInstance::ExecuteAction(FrontendAction &Act) {
918   assert(hasDiagnostics() && "Diagnostics engine is not initialized!");
919   assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!");
920   assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!");
921 
922   // FIXME: Take this as an argument, once all the APIs we used have moved to
923   // taking it as an input instead of hard-coding llvm::errs.
924   raw_ostream &OS = llvm::errs();
925 
926   // Create the target instance.
927   setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(),
928                                          getInvocation().TargetOpts));
929   if (!hasTarget())
930     return false;
931 
932   // Create TargetInfo for the other side of CUDA compilation.
933   if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) {
934     auto TO = std::make_shared<TargetOptions>();
935     TO->Triple = getFrontendOpts().AuxTriple;
936     TO->HostTriple = getTarget().getTriple().str();
937     setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO));
938   }
939 
940   // Inform the target of the language options.
941   //
942   // FIXME: We shouldn't need to do this, the target should be immutable once
943   // created. This complexity should be lifted elsewhere.
944   getTarget().adjust(getLangOpts());
945 
946   // Adjust target options based on codegen options.
947   getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts());
948 
949   // rewriter project will change target built-in bool type from its default.
950   if (getFrontendOpts().ProgramAction == frontend::RewriteObjC)
951     getTarget().noSignedCharForObjCBool();
952 
953   // Validate/process some options.
954   if (getHeaderSearchOpts().Verbose)
955     OS << "clang -cc1 version " CLANG_VERSION_STRING
956        << " based upon " << BACKEND_PACKAGE_STRING
957        << " default target " << llvm::sys::getDefaultTargetTriple() << "\n";
958 
959   if (getFrontendOpts().ShowTimers)
960     createFrontendTimer();
961 
962   if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty())
963     llvm::EnableStatistics(false);
964 
965   for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) {
966     // Reset the ID tables if we are reusing the SourceManager and parsing
967     // regular files.
968     if (hasSourceManager() && !Act.isModelParsingAction())
969       getSourceManager().clearIDTables();
970 
971     if (Act.BeginSourceFile(*this, FIF)) {
972       Act.Execute();
973       Act.EndSourceFile();
974     }
975   }
976 
977   // Notify the diagnostic client that all files were processed.
978   getDiagnostics().getClient()->finish();
979 
980   if (getDiagnosticOpts().ShowCarets) {
981     // We can have multiple diagnostics sharing one diagnostic client.
982     // Get the total number of warnings/errors from the client.
983     unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings();
984     unsigned NumErrors = getDiagnostics().getClient()->getNumErrors();
985 
986     if (NumWarnings)
987       OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s");
988     if (NumWarnings && NumErrors)
989       OS << " and ";
990     if (NumErrors)
991       OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s");
992     if (NumWarnings || NumErrors)
993       OS << " generated.\n";
994   }
995 
996   if (getFrontendOpts().ShowStats) {
997     if (hasFileManager()) {
998       getFileManager().PrintStats();
999       OS << '\n';
1000     }
1001     llvm::PrintStatistics(OS);
1002   }
1003   StringRef StatsFile = getFrontendOpts().StatsFile;
1004   if (!StatsFile.empty()) {
1005     std::error_code EC;
1006     auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC,
1007                                                          llvm::sys::fs::F_Text);
1008     if (EC) {
1009       getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file)
1010           << StatsFile << EC.message();
1011     } else {
1012       llvm::PrintStatisticsJSON(*StatS);
1013     }
1014   }
1015 
1016   return !getDiagnostics().getClient()->getNumErrors();
1017 }
1018 
1019 /// \brief Determine the appropriate source input kind based on language
1020 /// options.
1021 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) {
1022   if (LangOpts.OpenCL)
1023     return InputKind::OpenCL;
1024   if (LangOpts.CUDA)
1025     return InputKind::CUDA;
1026   if (LangOpts.ObjC1)
1027     return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC;
1028   return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C;
1029 }
1030 
1031 /// \brief Compile a module file for the given module, using the options
1032 /// provided by the importing compiler instance. Returns true if the module
1033 /// was built without errors.
1034 static bool
1035 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc,
1036                   StringRef ModuleName, FrontendInputFile Input,
1037                   StringRef OriginalModuleMapFile, StringRef ModuleFileName,
1038                   llvm::function_ref<void(CompilerInstance &)> PreBuildStep =
1039                       [](CompilerInstance &) {},
1040                   llvm::function_ref<void(CompilerInstance &)> PostBuildStep =
1041                       [](CompilerInstance &) {}) {
1042   // Construct a compiler invocation for creating this module.
1043   auto Invocation =
1044       std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation());
1045 
1046   PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
1047 
1048   // For any options that aren't intended to affect how a module is built,
1049   // reset them to their default values.
1050   Invocation->getLangOpts()->resetNonModularOptions();
1051   PPOpts.resetNonModularOptions();
1052 
1053   // Remove any macro definitions that are explicitly ignored by the module.
1054   // They aren't supposed to affect how the module is built anyway.
1055   HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts();
1056   PPOpts.Macros.erase(
1057       std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(),
1058                      [&HSOpts](const std::pair<std::string, bool> &def) {
1059         StringRef MacroDef = def.first;
1060         return HSOpts.ModulesIgnoreMacros.count(
1061                    llvm::CachedHashString(MacroDef.split('=').first)) > 0;
1062       }),
1063       PPOpts.Macros.end());
1064 
1065   // Note the name of the module we're building.
1066   Invocation->getLangOpts()->CurrentModule = ModuleName;
1067 
1068   // Make sure that the failed-module structure has been allocated in
1069   // the importing instance, and propagate the pointer to the newly-created
1070   // instance.
1071   PreprocessorOptions &ImportingPPOpts
1072     = ImportingInstance.getInvocation().getPreprocessorOpts();
1073   if (!ImportingPPOpts.FailedModules)
1074     ImportingPPOpts.FailedModules =
1075         std::make_shared<PreprocessorOptions::FailedModulesSet>();
1076   PPOpts.FailedModules = ImportingPPOpts.FailedModules;
1077 
1078   // If there is a module map file, build the module using the module map.
1079   // Set up the inputs/outputs so that we build the module from its umbrella
1080   // header.
1081   FrontendOptions &FrontendOpts = Invocation->getFrontendOpts();
1082   FrontendOpts.OutputFile = ModuleFileName.str();
1083   FrontendOpts.DisableFree = false;
1084   FrontendOpts.GenerateGlobalModuleIndex = false;
1085   FrontendOpts.BuildingImplicitModule = true;
1086   FrontendOpts.OriginalModuleMap = OriginalModuleMapFile;
1087   // Force implicitly-built modules to hash the content of the module file.
1088   HSOpts.ModulesHashContent = true;
1089   FrontendOpts.Inputs = {Input};
1090 
1091   // Don't free the remapped file buffers; they are owned by our caller.
1092   PPOpts.RetainRemappedFileBuffers = true;
1093 
1094   Invocation->getDiagnosticOpts().VerifyDiagnostics = 0;
1095   assert(ImportingInstance.getInvocation().getModuleHash() ==
1096          Invocation->getModuleHash() && "Module hash mismatch!");
1097 
1098   // Construct a compiler instance that will be used to actually create the
1099   // module.  Since we're sharing a PCMCache,
1100   // CompilerInstance::CompilerInstance is responsible for finalizing the
1101   // buffers to prevent use-after-frees.
1102   CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(),
1103                             &ImportingInstance.getPreprocessor().getPCMCache());
1104   auto &Inv = *Invocation;
1105   Instance.setInvocation(std::move(Invocation));
1106 
1107   Instance.createDiagnostics(new ForwardingDiagnosticConsumer(
1108                                    ImportingInstance.getDiagnosticClient()),
1109                              /*ShouldOwnClient=*/true);
1110 
1111   Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem());
1112 
1113   // Note that this module is part of the module build stack, so that we
1114   // can detect cycles in the module graph.
1115   Instance.setFileManager(&ImportingInstance.getFileManager());
1116   Instance.createSourceManager(Instance.getFileManager());
1117   SourceManager &SourceMgr = Instance.getSourceManager();
1118   SourceMgr.setModuleBuildStack(
1119     ImportingInstance.getSourceManager().getModuleBuildStack());
1120   SourceMgr.pushModuleBuildStack(ModuleName,
1121     FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager()));
1122 
1123   // If we're collecting module dependencies, we need to share a collector
1124   // between all of the module CompilerInstances. Other than that, we don't
1125   // want to produce any dependency output from the module build.
1126   Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector());
1127   Inv.getDependencyOutputOpts() = DependencyOutputOptions();
1128 
1129   ImportingInstance.getDiagnostics().Report(ImportLoc,
1130                                             diag::remark_module_build)
1131     << ModuleName << ModuleFileName;
1132 
1133   PreBuildStep(Instance);
1134 
1135   // Execute the action to actually build the module in-place. Use a separate
1136   // thread so that we get a stack large enough.
1137   const unsigned ThreadStackSize = 8 << 20;
1138   llvm::CrashRecoveryContext CRC;
1139   CRC.RunSafelyOnThread(
1140       [&]() {
1141         GenerateModuleFromModuleMapAction Action;
1142         Instance.ExecuteAction(Action);
1143       },
1144       ThreadStackSize);
1145 
1146   PostBuildStep(Instance);
1147 
1148   ImportingInstance.getDiagnostics().Report(ImportLoc,
1149                                             diag::remark_module_build_done)
1150     << ModuleName;
1151 
1152   // Delete the temporary module map file.
1153   // FIXME: Even though we're executing under crash protection, it would still
1154   // be nice to do this with RemoveFileOnSignal when we can. However, that
1155   // doesn't make sense for all clients, so clean this up manually.
1156   Instance.clearOutputFiles(/*EraseFiles=*/true);
1157 
1158   return !Instance.getDiagnostics().hasErrorOccurred();
1159 }
1160 
1161 /// \brief Compile a module file for the given module, using the options
1162 /// provided by the importing compiler instance. Returns true if the module
1163 /// was built without errors.
1164 static bool compileModuleImpl(CompilerInstance &ImportingInstance,
1165                               SourceLocation ImportLoc,
1166                               Module *Module,
1167                               StringRef ModuleFileName) {
1168   InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()),
1169                InputKind::ModuleMap);
1170 
1171   // Get or create the module map that we'll use to build this module.
1172   ModuleMap &ModMap
1173     = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap();
1174   bool Result;
1175   if (const FileEntry *ModuleMapFile =
1176           ModMap.getContainingModuleMapFile(Module)) {
1177     // Use the module map where this module resides.
1178     Result = compileModuleImpl(
1179         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1180         FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem),
1181         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1182         ModuleFileName);
1183   } else {
1184     // FIXME: We only need to fake up an input file here as a way of
1185     // transporting the module's directory to the module map parser. We should
1186     // be able to do that more directly, and parse from a memory buffer without
1187     // inventing this file.
1188     SmallString<128> FakeModuleMapFile(Module->Directory->getName());
1189     llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map");
1190 
1191     std::string InferredModuleMapContent;
1192     llvm::raw_string_ostream OS(InferredModuleMapContent);
1193     Module->print(OS);
1194     OS.flush();
1195 
1196     Result = compileModuleImpl(
1197         ImportingInstance, ImportLoc, Module->getTopLevelModuleName(),
1198         FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem),
1199         ModMap.getModuleMapFileForUniquing(Module)->getName(),
1200         ModuleFileName,
1201         [&](CompilerInstance &Instance) {
1202       std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer =
1203           llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent);
1204       ModuleMapFile = Instance.getFileManager().getVirtualFile(
1205           FakeModuleMapFile, InferredModuleMapContent.size(), 0);
1206       Instance.getSourceManager().overrideFileContents(
1207           ModuleMapFile, std::move(ModuleMapBuffer));
1208     });
1209   }
1210 
1211   // We've rebuilt a module. If we're allowed to generate or update the global
1212   // module index, record that fact in the importing compiler instance.
1213   if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) {
1214     ImportingInstance.setBuildGlobalModuleIndex(true);
1215   }
1216 
1217   return Result;
1218 }
1219 
1220 static bool compileAndLoadModule(CompilerInstance &ImportingInstance,
1221                                  SourceLocation ImportLoc,
1222                                  SourceLocation ModuleNameLoc, Module *Module,
1223                                  StringRef ModuleFileName) {
1224   DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics();
1225 
1226   auto diagnoseBuildFailure = [&] {
1227     Diags.Report(ModuleNameLoc, diag::err_module_not_built)
1228         << Module->Name << SourceRange(ImportLoc, ModuleNameLoc);
1229   };
1230 
1231   // FIXME: have LockFileManager return an error_code so that we can
1232   // avoid the mkdir when the directory already exists.
1233   StringRef Dir = llvm::sys::path::parent_path(ModuleFileName);
1234   llvm::sys::fs::create_directories(Dir);
1235 
1236   while (1) {
1237     unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing;
1238     llvm::LockFileManager Locked(ModuleFileName);
1239     switch (Locked) {
1240     case llvm::LockFileManager::LFS_Error:
1241       // PCMCache takes care of correctness and locks are only necessary for
1242       // performance. Fallback to building the module in case of any lock
1243       // related errors.
1244       Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure)
1245           << Module->Name << Locked.getErrorMessage();
1246       // Clear out any potential leftover.
1247       Locked.unsafeRemoveLockFile();
1248       // FALLTHROUGH
1249     case llvm::LockFileManager::LFS_Owned:
1250       // We're responsible for building the module ourselves.
1251       if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module,
1252                              ModuleFileName)) {
1253         diagnoseBuildFailure();
1254         return false;
1255       }
1256       break;
1257 
1258     case llvm::LockFileManager::LFS_Shared:
1259       // Someone else is responsible for building the module. Wait for them to
1260       // finish.
1261       switch (Locked.waitForUnlock()) {
1262       case llvm::LockFileManager::Res_Success:
1263         ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate;
1264         break;
1265       case llvm::LockFileManager::Res_OwnerDied:
1266         continue; // try again to get the lock.
1267       case llvm::LockFileManager::Res_Timeout:
1268         // Since PCMCache takes care of correctness, we try waiting for another
1269         // process to complete the build so clang does not do it done twice. If
1270         // case of timeout, build it ourselves.
1271         Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout)
1272             << Module->Name;
1273         // Clear the lock file so that future invokations can make progress.
1274         Locked.unsafeRemoveLockFile();
1275         continue;
1276       }
1277       break;
1278     }
1279 
1280     // Try to read the module file, now that we've compiled it.
1281     ASTReader::ASTReadResult ReadResult =
1282         ImportingInstance.getModuleManager()->ReadAST(
1283             ModuleFileName, serialization::MK_ImplicitModule, ImportLoc,
1284             ModuleLoadCapabilities);
1285 
1286     if (ReadResult == ASTReader::OutOfDate &&
1287         Locked == llvm::LockFileManager::LFS_Shared) {
1288       // The module may be out of date in the presence of file system races,
1289       // or if one of its imports depends on header search paths that are not
1290       // consistent with this ImportingInstance.  Try again...
1291       continue;
1292     } else if (ReadResult == ASTReader::Missing) {
1293       diagnoseBuildFailure();
1294     } else if (ReadResult != ASTReader::Success &&
1295                !Diags.hasErrorOccurred()) {
1296       // The ASTReader didn't diagnose the error, so conservatively report it.
1297       diagnoseBuildFailure();
1298     }
1299     return ReadResult == ASTReader::Success;
1300   }
1301 }
1302 
1303 /// \brief Diagnose differences between the current definition of the given
1304 /// configuration macro and the definition provided on the command line.
1305 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro,
1306                              Module *Mod, SourceLocation ImportLoc) {
1307   IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro);
1308   SourceManager &SourceMgr = PP.getSourceManager();
1309 
1310   // If this identifier has never had a macro definition, then it could
1311   // not have changed.
1312   if (!Id->hadMacroDefinition())
1313     return;
1314   auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id);
1315 
1316   // Find the macro definition from the command line.
1317   MacroInfo *CmdLineDefinition = nullptr;
1318   for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) {
1319     // We only care about the predefines buffer.
1320     FileID FID = SourceMgr.getFileID(MD->getLocation());
1321     if (FID.isInvalid() || FID != PP.getPredefinesFileID())
1322       continue;
1323     if (auto *DMD = dyn_cast<DefMacroDirective>(MD))
1324       CmdLineDefinition = DMD->getMacroInfo();
1325     break;
1326   }
1327 
1328   auto *CurrentDefinition = PP.getMacroInfo(Id);
1329   if (CurrentDefinition == CmdLineDefinition) {
1330     // Macro matches. Nothing to do.
1331   } else if (!CurrentDefinition) {
1332     // This macro was defined on the command line, then #undef'd later.
1333     // Complain.
1334     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1335       << true << ConfigMacro << Mod->getFullModuleName();
1336     auto LatestDef = LatestLocalMD->getDefinition();
1337     assert(LatestDef.isUndefined() &&
1338            "predefined macro went away with no #undef?");
1339     PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here)
1340       << true;
1341     return;
1342   } else if (!CmdLineDefinition) {
1343     // There was no definition for this macro in the predefines buffer,
1344     // but there was a local definition. Complain.
1345     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1346       << false << ConfigMacro << Mod->getFullModuleName();
1347     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1348             diag::note_module_def_undef_here)
1349       << false;
1350   } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP,
1351                                                /*Syntactically=*/true)) {
1352     // The macro definitions differ.
1353     PP.Diag(ImportLoc, diag::warn_module_config_macro_undef)
1354       << false << ConfigMacro << Mod->getFullModuleName();
1355     PP.Diag(CurrentDefinition->getDefinitionLoc(),
1356             diag::note_module_def_undef_here)
1357       << false;
1358   }
1359 }
1360 
1361 /// \brief Write a new timestamp file with the given path.
1362 static void writeTimestampFile(StringRef TimestampFile) {
1363   std::error_code EC;
1364   llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None);
1365 }
1366 
1367 /// \brief Prune the module cache of modules that haven't been accessed in
1368 /// a long time.
1369 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) {
1370   struct stat StatBuf;
1371   llvm::SmallString<128> TimestampFile;
1372   TimestampFile = HSOpts.ModuleCachePath;
1373   assert(!TimestampFile.empty());
1374   llvm::sys::path::append(TimestampFile, "modules.timestamp");
1375 
1376   // Try to stat() the timestamp file.
1377   if (::stat(TimestampFile.c_str(), &StatBuf)) {
1378     // If the timestamp file wasn't there, create one now.
1379     if (errno == ENOENT) {
1380       writeTimestampFile(TimestampFile);
1381     }
1382     return;
1383   }
1384 
1385   // Check whether the time stamp is older than our pruning interval.
1386   // If not, do nothing.
1387   time_t TimeStampModTime = StatBuf.st_mtime;
1388   time_t CurrentTime = time(nullptr);
1389   if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval))
1390     return;
1391 
1392   // Write a new timestamp file so that nobody else attempts to prune.
1393   // There is a benign race condition here, if two Clang instances happen to
1394   // notice at the same time that the timestamp is out-of-date.
1395   writeTimestampFile(TimestampFile);
1396 
1397   // Walk the entire module cache, looking for unused module files and module
1398   // indices.
1399   std::error_code EC;
1400   SmallString<128> ModuleCachePathNative;
1401   llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative);
1402   for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd;
1403        Dir != DirEnd && !EC; Dir.increment(EC)) {
1404     // If we don't have a directory, there's nothing to look into.
1405     if (!llvm::sys::fs::is_directory(Dir->path()))
1406       continue;
1407 
1408     // Walk all of the files within this directory.
1409     for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd;
1410          File != FileEnd && !EC; File.increment(EC)) {
1411       // We only care about module and global module index files.
1412       StringRef Extension = llvm::sys::path::extension(File->path());
1413       if (Extension != ".pcm" && Extension != ".timestamp" &&
1414           llvm::sys::path::filename(File->path()) != "modules.idx")
1415         continue;
1416 
1417       // Look at this file. If we can't stat it, there's nothing interesting
1418       // there.
1419       if (::stat(File->path().c_str(), &StatBuf))
1420         continue;
1421 
1422       // If the file has been used recently enough, leave it there.
1423       time_t FileAccessTime = StatBuf.st_atime;
1424       if (CurrentTime - FileAccessTime <=
1425               time_t(HSOpts.ModuleCachePruneAfter)) {
1426         continue;
1427       }
1428 
1429       // Remove the file.
1430       llvm::sys::fs::remove(File->path());
1431 
1432       // Remove the timestamp file.
1433       std::string TimpestampFilename = File->path() + ".timestamp";
1434       llvm::sys::fs::remove(TimpestampFilename);
1435     }
1436 
1437     // If we removed all of the files in the directory, remove the directory
1438     // itself.
1439     if (llvm::sys::fs::directory_iterator(Dir->path(), EC) ==
1440             llvm::sys::fs::directory_iterator() && !EC)
1441       llvm::sys::fs::remove(Dir->path());
1442   }
1443 }
1444 
1445 void CompilerInstance::createModuleManager() {
1446   if (!ModuleManager) {
1447     if (!hasASTContext())
1448       createASTContext();
1449 
1450     // If we're implicitly building modules but not currently recursively
1451     // building a module, check whether we need to prune the module cache.
1452     if (getSourceManager().getModuleBuildStack().empty() &&
1453         !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() &&
1454         getHeaderSearchOpts().ModuleCachePruneInterval > 0 &&
1455         getHeaderSearchOpts().ModuleCachePruneAfter > 0) {
1456       pruneModuleCache(getHeaderSearchOpts());
1457     }
1458 
1459     HeaderSearchOptions &HSOpts = getHeaderSearchOpts();
1460     std::string Sysroot = HSOpts.Sysroot;
1461     const PreprocessorOptions &PPOpts = getPreprocessorOpts();
1462     std::unique_ptr<llvm::Timer> ReadTimer;
1463     if (FrontendTimerGroup)
1464       ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules",
1465                                                  "Reading modules",
1466                                                  *FrontendTimerGroup);
1467     ModuleManager = new ASTReader(
1468         getPreprocessor(), getASTContext(), getPCHContainerReader(),
1469         getFrontendOpts().ModuleFileExtensions,
1470         Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation,
1471         /*AllowASTWithCompilerErrors=*/false,
1472         /*AllowConfigurationMismatch=*/false,
1473         HSOpts.ModulesValidateSystemHeaders,
1474         getFrontendOpts().UseGlobalModuleIndex,
1475         std::move(ReadTimer));
1476     if (hasASTConsumer()) {
1477       ModuleManager->setDeserializationListener(
1478         getASTConsumer().GetASTDeserializationListener());
1479       getASTContext().setASTMutationListener(
1480         getASTConsumer().GetASTMutationListener());
1481     }
1482     getASTContext().setExternalSource(ModuleManager);
1483     if (hasSema())
1484       ModuleManager->InitializeSema(getSema());
1485     if (hasASTConsumer())
1486       ModuleManager->StartTranslationUnit(&getASTConsumer());
1487 
1488     if (TheDependencyFileGenerator)
1489       TheDependencyFileGenerator->AttachToASTReader(*ModuleManager);
1490     for (auto &Listener : DependencyCollectors)
1491       Listener->attachToASTReader(*ModuleManager);
1492   }
1493 }
1494 
1495 bool CompilerInstance::loadModuleFile(StringRef FileName) {
1496   llvm::Timer Timer;
1497   if (FrontendTimerGroup)
1498     Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(),
1499                *FrontendTimerGroup);
1500   llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1501 
1502   // Helper to recursively read the module names for all modules we're adding.
1503   // We mark these as known and redirect any attempt to load that module to
1504   // the files we were handed.
1505   struct ReadModuleNames : ASTReaderListener {
1506     CompilerInstance &CI;
1507     llvm::SmallVector<IdentifierInfo*, 8> LoadedModules;
1508 
1509     ReadModuleNames(CompilerInstance &CI) : CI(CI) {}
1510 
1511     void ReadModuleName(StringRef ModuleName) override {
1512       LoadedModules.push_back(
1513           CI.getPreprocessor().getIdentifierInfo(ModuleName));
1514     }
1515 
1516     void registerAll() {
1517       for (auto *II : LoadedModules) {
1518         CI.KnownModules[II] = CI.getPreprocessor()
1519                                   .getHeaderSearchInfo()
1520                                   .getModuleMap()
1521                                   .findModule(II->getName());
1522       }
1523       LoadedModules.clear();
1524     }
1525 
1526     void markAllUnavailable() {
1527       for (auto *II : LoadedModules) {
1528         if (Module *M = CI.getPreprocessor()
1529                             .getHeaderSearchInfo()
1530                             .getModuleMap()
1531                             .findModule(II->getName())) {
1532           M->HasIncompatibleModuleFile = true;
1533 
1534           // Mark module as available if the only reason it was unavailable
1535           // was missing headers.
1536           SmallVector<Module *, 2> Stack;
1537           Stack.push_back(M);
1538           while (!Stack.empty()) {
1539             Module *Current = Stack.pop_back_val();
1540             if (Current->IsMissingRequirement) continue;
1541             Current->IsAvailable = true;
1542             Stack.insert(Stack.end(),
1543                          Current->submodule_begin(), Current->submodule_end());
1544           }
1545         }
1546       }
1547       LoadedModules.clear();
1548     }
1549   };
1550 
1551   // If we don't already have an ASTReader, create one now.
1552   if (!ModuleManager)
1553     createModuleManager();
1554 
1555   auto Listener = llvm::make_unique<ReadModuleNames>(*this);
1556   auto &ListenerRef = *Listener;
1557   ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager,
1558                                                    std::move(Listener));
1559 
1560   // Try to load the module file.
1561   switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule,
1562                                  SourceLocation(),
1563                                  ASTReader::ARR_ConfigurationMismatch)) {
1564   case ASTReader::Success:
1565     // We successfully loaded the module file; remember the set of provided
1566     // modules so that we don't try to load implicit modules for them.
1567     ListenerRef.registerAll();
1568     return true;
1569 
1570   case ASTReader::ConfigurationMismatch:
1571     // Ignore unusable module files.
1572     getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch)
1573         << FileName;
1574     // All modules provided by any files we tried and failed to load are now
1575     // unavailable; includes of those modules should now be handled textually.
1576     ListenerRef.markAllUnavailable();
1577     return true;
1578 
1579   default:
1580     return false;
1581   }
1582 }
1583 
1584 ModuleLoadResult
1585 CompilerInstance::loadModule(SourceLocation ImportLoc,
1586                              ModuleIdPath Path,
1587                              Module::NameVisibilityKind Visibility,
1588                              bool IsInclusionDirective) {
1589   // Determine what file we're searching from.
1590   StringRef ModuleName = Path[0].first->getName();
1591   SourceLocation ModuleNameLoc = Path[0].second;
1592 
1593   // If we've already handled this import, just return the cached result.
1594   // This one-element cache is important to eliminate redundant diagnostics
1595   // when both the preprocessor and parser see the same import declaration.
1596   if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) {
1597     // Make the named module visible.
1598     if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule)
1599       ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility,
1600                                        ImportLoc);
1601     return LastModuleImportResult;
1602   }
1603 
1604   clang::Module *Module = nullptr;
1605 
1606   // If we don't already have information on this module, load the module now.
1607   llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known
1608     = KnownModules.find(Path[0].first);
1609   if (Known != KnownModules.end()) {
1610     // Retrieve the cached top-level module.
1611     Module = Known->second;
1612   } else if (ModuleName == getLangOpts().CurrentModule) {
1613     // This is the module we're building.
1614     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1615     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1616   } else {
1617     // Search for a module with the given name.
1618     Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1619     HeaderSearchOptions &HSOpts =
1620         PP->getHeaderSearchInfo().getHeaderSearchOpts();
1621 
1622     std::string ModuleFileName;
1623     enum ModuleSource {
1624       ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma
1625     } Source = ModuleNotFound;
1626 
1627     // Check to see if the module has been built as part of this compilation
1628     // via a module build pragma.
1629     auto BuiltModuleIt = BuiltModules.find(ModuleName);
1630     if (BuiltModuleIt != BuiltModules.end()) {
1631       ModuleFileName = BuiltModuleIt->second;
1632       Source = ModuleBuildPragma;
1633     }
1634 
1635     // Try to load the module from the prebuilt module path.
1636     if (Source == ModuleNotFound && !HSOpts.PrebuiltModulePaths.empty()) {
1637       ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(
1638           ModuleName, "", /*UsePrebuiltPath*/ true);
1639       if (!ModuleFileName.empty())
1640         Source = PrebuiltModulePath;
1641     }
1642 
1643     // Try to load the module from the module cache.
1644     if (Source == ModuleNotFound && Module) {
1645       ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module);
1646       Source = ModuleCache;
1647     }
1648 
1649     if (Source == ModuleNotFound) {
1650       // We can't find a module, error out here.
1651       getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found)
1652           << ModuleName << SourceRange(ImportLoc, ModuleNameLoc);
1653       ModuleBuildFailed = true;
1654       return ModuleLoadResult();
1655     }
1656 
1657     if (ModuleFileName.empty()) {
1658       if (Module && Module->HasIncompatibleModuleFile) {
1659         // We tried and failed to load a module file for this module. Fall
1660         // back to textual inclusion for its headers.
1661         return ModuleLoadResult::ConfigMismatch;
1662       }
1663 
1664       getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled)
1665           << ModuleName;
1666       ModuleBuildFailed = true;
1667       return ModuleLoadResult();
1668     }
1669 
1670     // If we don't already have an ASTReader, create one now.
1671     if (!ModuleManager)
1672       createModuleManager();
1673 
1674     llvm::Timer Timer;
1675     if (FrontendTimerGroup)
1676       Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName,
1677                  *FrontendTimerGroup);
1678     llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr);
1679 
1680     // Try to load the module file. If we are not trying to load from the
1681     // module cache, we don't know how to rebuild modules.
1682     unsigned ARRFlags = Source == ModuleCache ?
1683                         ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing :
1684                         ASTReader::ARR_ConfigurationMismatch;
1685     switch (ModuleManager->ReadAST(ModuleFileName,
1686                                    Source == PrebuiltModulePath
1687                                        ? serialization::MK_PrebuiltModule
1688                                        : Source == ModuleBuildPragma
1689                                              ? serialization::MK_ExplicitModule
1690                                              : serialization::MK_ImplicitModule,
1691                                    ImportLoc, ARRFlags)) {
1692     case ASTReader::Success: {
1693       if (Source != ModuleCache && !Module) {
1694         Module = PP->getHeaderSearchInfo().lookupModule(ModuleName);
1695         if (!Module || !Module->getASTFile() ||
1696             FileMgr->getFile(ModuleFileName) != Module->getASTFile()) {
1697           // Error out if Module does not refer to the file in the prebuilt
1698           // module path.
1699           getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt)
1700               << ModuleName;
1701           ModuleBuildFailed = true;
1702           KnownModules[Path[0].first] = nullptr;
1703           return ModuleLoadResult();
1704         }
1705       }
1706       break;
1707     }
1708 
1709     case ASTReader::OutOfDate:
1710     case ASTReader::Missing: {
1711       if (Source != ModuleCache) {
1712         // We don't know the desired configuration for this module and don't
1713         // necessarily even have a module map. Since ReadAST already produces
1714         // diagnostics for these two cases, we simply error out here.
1715         ModuleBuildFailed = true;
1716         KnownModules[Path[0].first] = nullptr;
1717         return ModuleLoadResult();
1718       }
1719 
1720       // The module file is missing or out-of-date. Build it.
1721       assert(Module && "missing module file");
1722       // Check whether there is a cycle in the module graph.
1723       ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack();
1724       ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end();
1725       for (; Pos != PosEnd; ++Pos) {
1726         if (Pos->first == ModuleName)
1727           break;
1728       }
1729 
1730       if (Pos != PosEnd) {
1731         SmallString<256> CyclePath;
1732         for (; Pos != PosEnd; ++Pos) {
1733           CyclePath += Pos->first;
1734           CyclePath += " -> ";
1735         }
1736         CyclePath += ModuleName;
1737 
1738         getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle)
1739           << ModuleName << CyclePath;
1740         return ModuleLoadResult();
1741       }
1742 
1743       // Check whether we have already attempted to build this module (but
1744       // failed).
1745       if (getPreprocessorOpts().FailedModules &&
1746           getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) {
1747         getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built)
1748           << ModuleName
1749           << SourceRange(ImportLoc, ModuleNameLoc);
1750         ModuleBuildFailed = true;
1751         return ModuleLoadResult();
1752       }
1753 
1754       // Try to compile and then load the module.
1755       if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module,
1756                                 ModuleFileName)) {
1757         assert(getDiagnostics().hasErrorOccurred() &&
1758                "undiagnosed error in compileAndLoadModule");
1759         if (getPreprocessorOpts().FailedModules)
1760           getPreprocessorOpts().FailedModules->addFailed(ModuleName);
1761         KnownModules[Path[0].first] = nullptr;
1762         ModuleBuildFailed = true;
1763         return ModuleLoadResult();
1764       }
1765 
1766       // Okay, we've rebuilt and now loaded the module.
1767       break;
1768     }
1769 
1770     case ASTReader::ConfigurationMismatch:
1771       if (Source == PrebuiltModulePath)
1772         // FIXME: We shouldn't be setting HadFatalFailure below if we only
1773         // produce a warning here!
1774         getDiagnostics().Report(SourceLocation(),
1775                                 diag::warn_module_config_mismatch)
1776             << ModuleFileName;
1777       // Fall through to error out.
1778       LLVM_FALLTHROUGH;
1779     case ASTReader::VersionMismatch:
1780     case ASTReader::HadErrors:
1781       ModuleLoader::HadFatalFailure = true;
1782       // FIXME: The ASTReader will already have complained, but can we shoehorn
1783       // that diagnostic information into a more useful form?
1784       KnownModules[Path[0].first] = nullptr;
1785       return ModuleLoadResult();
1786 
1787     case ASTReader::Failure:
1788       ModuleLoader::HadFatalFailure = true;
1789       // Already complained, but note now that we failed.
1790       KnownModules[Path[0].first] = nullptr;
1791       ModuleBuildFailed = true;
1792       return ModuleLoadResult();
1793     }
1794 
1795     // Cache the result of this top-level module lookup for later.
1796     Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first;
1797   }
1798 
1799   // If we never found the module, fail.
1800   if (!Module)
1801     return ModuleLoadResult();
1802 
1803   // Verify that the rest of the module path actually corresponds to
1804   // a submodule.
1805   if (Path.size() > 1) {
1806     for (unsigned I = 1, N = Path.size(); I != N; ++I) {
1807       StringRef Name = Path[I].first->getName();
1808       clang::Module *Sub = Module->findSubmodule(Name);
1809 
1810       if (!Sub) {
1811         // Attempt to perform typo correction to find a module name that works.
1812         SmallVector<StringRef, 2> Best;
1813         unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)();
1814 
1815         for (clang::Module::submodule_iterator J = Module->submodule_begin(),
1816                                             JEnd = Module->submodule_end();
1817              J != JEnd; ++J) {
1818           unsigned ED = Name.edit_distance((*J)->Name,
1819                                            /*AllowReplacements=*/true,
1820                                            BestEditDistance);
1821           if (ED <= BestEditDistance) {
1822             if (ED < BestEditDistance) {
1823               Best.clear();
1824               BestEditDistance = ED;
1825             }
1826 
1827             Best.push_back((*J)->Name);
1828           }
1829         }
1830 
1831         // If there was a clear winner, user it.
1832         if (Best.size() == 1) {
1833           getDiagnostics().Report(Path[I].second,
1834                                   diag::err_no_submodule_suggest)
1835             << Path[I].first << Module->getFullModuleName() << Best[0]
1836             << SourceRange(Path[0].second, Path[I-1].second)
1837             << FixItHint::CreateReplacement(SourceRange(Path[I].second),
1838                                             Best[0]);
1839 
1840           Sub = Module->findSubmodule(Best[0]);
1841         }
1842       }
1843 
1844       if (!Sub) {
1845         // No submodule by this name. Complain, and don't look for further
1846         // submodules.
1847         getDiagnostics().Report(Path[I].second, diag::err_no_submodule)
1848           << Path[I].first << Module->getFullModuleName()
1849           << SourceRange(Path[0].second, Path[I-1].second);
1850         break;
1851       }
1852 
1853       Module = Sub;
1854     }
1855   }
1856 
1857   // Make the named module visible, if it's not already part of the module
1858   // we are parsing.
1859   if (ModuleName != getLangOpts().CurrentModule) {
1860     if (!Module->IsFromModuleFile) {
1861       // We have an umbrella header or directory that doesn't actually include
1862       // all of the headers within the directory it covers. Complain about
1863       // this missing submodule and recover by forgetting that we ever saw
1864       // this submodule.
1865       // FIXME: Should we detect this at module load time? It seems fairly
1866       // expensive (and rare).
1867       getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule)
1868         << Module->getFullModuleName()
1869         << SourceRange(Path.front().second, Path.back().second);
1870 
1871       return ModuleLoadResult::MissingExpected;
1872     }
1873 
1874     // Check whether this module is available.
1875     if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(),
1876                                              getDiagnostics(), Module)) {
1877       getDiagnostics().Report(ImportLoc, diag::note_module_import_here)
1878         << SourceRange(Path.front().second, Path.back().second);
1879       LastModuleImportLoc = ImportLoc;
1880       LastModuleImportResult = ModuleLoadResult();
1881       return ModuleLoadResult();
1882     }
1883 
1884     ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc);
1885   }
1886 
1887   // Check for any configuration macros that have changed.
1888   clang::Module *TopModule = Module->getTopLevelModule();
1889   for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) {
1890     checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I],
1891                      Module, ImportLoc);
1892   }
1893 
1894   LastModuleImportLoc = ImportLoc;
1895   LastModuleImportResult = ModuleLoadResult(Module);
1896   return LastModuleImportResult;
1897 }
1898 
1899 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc,
1900                                             StringRef ModuleName,
1901                                             StringRef Source) {
1902   // FIXME: Using a randomized filename here means that our intermediate .pcm
1903   // output is nondeterministic (as .pcm files refer to each other by name).
1904   // Can this affect the output in any way?
1905   SmallString<128> ModuleFileName;
1906   if (std::error_code EC = llvm::sys::fs::createTemporaryFile(
1907           ModuleName, "pcm", ModuleFileName)) {
1908     getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output)
1909         << ModuleFileName << EC.message();
1910     return;
1911   }
1912   std::string ModuleMapFileName = (ModuleName + ".map").str();
1913 
1914   FrontendInputFile Input(
1915       ModuleMapFileName,
1916       InputKind(getLanguageFromOptions(*Invocation->getLangOpts()),
1917                 InputKind::ModuleMap, /*Preprocessed*/true));
1918 
1919   std::string NullTerminatedSource(Source.str());
1920 
1921   auto PreBuildStep = [&](CompilerInstance &Other) {
1922     // Create a virtual file containing our desired source.
1923     // FIXME: We shouldn't need to do this.
1924     const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile(
1925         ModuleMapFileName, NullTerminatedSource.size(), 0);
1926     Other.getSourceManager().overrideFileContents(
1927         ModuleMapFile,
1928         llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str()));
1929 
1930     Other.BuiltModules = std::move(BuiltModules);
1931   };
1932 
1933   auto PostBuildStep = [this](CompilerInstance &Other) {
1934     BuiltModules = std::move(Other.BuiltModules);
1935     // Make sure the child build action doesn't delete the .pcms.
1936     Other.BuiltModules.clear();
1937   };
1938 
1939   // Build the module, inheriting any modules that we've built locally.
1940   if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(),
1941                         ModuleFileName, PreBuildStep, PostBuildStep)) {
1942     BuiltModules[ModuleName] = ModuleFileName.str();
1943     llvm::sys::RemoveFileOnSignal(ModuleFileName);
1944   }
1945 }
1946 
1947 void CompilerInstance::makeModuleVisible(Module *Mod,
1948                                          Module::NameVisibilityKind Visibility,
1949                                          SourceLocation ImportLoc) {
1950   if (!ModuleManager)
1951     createModuleManager();
1952   if (!ModuleManager)
1953     return;
1954 
1955   ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc);
1956 }
1957 
1958 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex(
1959     SourceLocation TriggerLoc) {
1960   if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty())
1961     return nullptr;
1962   if (!ModuleManager)
1963     createModuleManager();
1964   // Can't do anything if we don't have the module manager.
1965   if (!ModuleManager)
1966     return nullptr;
1967   // Get an existing global index.  This loads it if not already
1968   // loaded.
1969   ModuleManager->loadGlobalIndex();
1970   GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex();
1971   // If the global index doesn't exist, create it.
1972   if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() &&
1973       hasPreprocessor()) {
1974     llvm::sys::fs::create_directories(
1975       getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
1976     GlobalModuleIndex::writeIndex(
1977         getFileManager(), getPCHContainerReader(),
1978         getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
1979     ModuleManager->resetForReload();
1980     ModuleManager->loadGlobalIndex();
1981     GlobalIndex = ModuleManager->getGlobalIndex();
1982   }
1983   // For finding modules needing to be imported for fixit messages,
1984   // we need to make the global index cover all modules, so we do that here.
1985   if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) {
1986     ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap();
1987     bool RecreateIndex = false;
1988     for (ModuleMap::module_iterator I = MMap.module_begin(),
1989         E = MMap.module_end(); I != E; ++I) {
1990       Module *TheModule = I->second;
1991       const FileEntry *Entry = TheModule->getASTFile();
1992       if (!Entry) {
1993         SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path;
1994         Path.push_back(std::make_pair(
1995             getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc));
1996         std::reverse(Path.begin(), Path.end());
1997         // Load a module as hidden.  This also adds it to the global index.
1998         loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false);
1999         RecreateIndex = true;
2000       }
2001     }
2002     if (RecreateIndex) {
2003       GlobalModuleIndex::writeIndex(
2004           getFileManager(), getPCHContainerReader(),
2005           getPreprocessor().getHeaderSearchInfo().getModuleCachePath());
2006       ModuleManager->resetForReload();
2007       ModuleManager->loadGlobalIndex();
2008       GlobalIndex = ModuleManager->getGlobalIndex();
2009     }
2010     HaveFullGlobalModuleIndex = true;
2011   }
2012   return GlobalIndex;
2013 }
2014 
2015 // Check global module index for missing imports.
2016 bool
2017 CompilerInstance::lookupMissingImports(StringRef Name,
2018                                        SourceLocation TriggerLoc) {
2019   // Look for the symbol in non-imported modules, but only if an error
2020   // actually occurred.
2021   if (!buildingModule()) {
2022     // Load global module index, or retrieve a previously loaded one.
2023     GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex(
2024       TriggerLoc);
2025 
2026     // Only if we have a global index.
2027     if (GlobalIndex) {
2028       GlobalModuleIndex::HitSet FoundModules;
2029 
2030       // Find the modules that reference the identifier.
2031       // Note that this only finds top-level modules.
2032       // We'll let diagnoseTypo find the actual declaration module.
2033       if (GlobalIndex->lookupIdentifier(Name, FoundModules))
2034         return true;
2035     }
2036   }
2037 
2038   return false;
2039 }
2040 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); }
2041 
2042 void CompilerInstance::setExternalSemaSource(
2043     IntrusiveRefCntPtr<ExternalSemaSource> ESS) {
2044   ExternalSemaSrc = std::move(ESS);
2045 }
2046