1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/MemoryBufferCache.h" 17 #include "clang/Basic/SourceManager.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Basic/Version.h" 20 #include "clang/Config/config.h" 21 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 22 #include "clang/Frontend/FrontendAction.h" 23 #include "clang/Frontend/FrontendActions.h" 24 #include "clang/Frontend/FrontendDiagnostic.h" 25 #include "clang/Frontend/LogDiagnosticPrinter.h" 26 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 27 #include "clang/Frontend/TextDiagnosticPrinter.h" 28 #include "clang/Frontend/Utils.h" 29 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 30 #include "clang/Lex/HeaderSearch.h" 31 #include "clang/Lex/PTHManager.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorOptions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Serialization/ASTReader.h" 37 #include "clang/Serialization/GlobalModuleIndex.h" 38 #include "llvm/ADT/Statistic.h" 39 #include "llvm/Support/CrashRecoveryContext.h" 40 #include "llvm/Support/Errc.h" 41 #include "llvm/Support/FileSystem.h" 42 #include "llvm/Support/Host.h" 43 #include "llvm/Support/LockFileManager.h" 44 #include "llvm/Support/MemoryBuffer.h" 45 #include "llvm/Support/Path.h" 46 #include "llvm/Support/Program.h" 47 #include "llvm/Support/Signals.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <sys/stat.h> 51 #include <system_error> 52 #include <time.h> 53 #include <utility> 54 55 using namespace clang; 56 57 CompilerInstance::CompilerInstance( 58 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 59 MemoryBufferCache *SharedPCMCache) 60 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 61 Invocation(new CompilerInvocation()), 62 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 63 ThePCHContainerOperations(std::move(PCHContainerOps)) { 64 // Don't allow this to invalidate buffers in use by others. 65 if (SharedPCMCache) 66 getPCMCache().finalizeCurrentBuffers(); 67 } 68 69 CompilerInstance::~CompilerInstance() { 70 assert(OutputFiles.empty() && "Still output files in flight?"); 71 } 72 73 void CompilerInstance::setInvocation( 74 std::shared_ptr<CompilerInvocation> Value) { 75 Invocation = std::move(Value); 76 } 77 78 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 79 return (BuildGlobalModuleIndex || 80 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 81 getFrontendOpts().GenerateGlobalModuleIndex)) && 82 !ModuleBuildFailed; 83 } 84 85 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 86 Diagnostics = Value; 87 } 88 89 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 90 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 91 92 void CompilerInstance::setFileManager(FileManager *Value) { 93 FileMgr = Value; 94 if (Value) 95 VirtualFileSystem = Value->getVirtualFileSystem(); 96 else 97 VirtualFileSystem.reset(); 98 } 99 100 void CompilerInstance::setSourceManager(SourceManager *Value) { 101 SourceMgr = Value; 102 } 103 104 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 105 PP = std::move(Value); 106 } 107 108 void CompilerInstance::setASTContext(ASTContext *Value) { 109 Context = Value; 110 111 if (Context && Consumer) 112 getASTConsumer().Initialize(getASTContext()); 113 } 114 115 void CompilerInstance::setSema(Sema *S) { 116 TheSema.reset(S); 117 } 118 119 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 120 Consumer = std::move(Value); 121 122 if (Context && Consumer) 123 getASTConsumer().Initialize(getASTContext()); 124 } 125 126 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 127 CompletionConsumer.reset(Value); 128 } 129 130 std::unique_ptr<Sema> CompilerInstance::takeSema() { 131 return std::move(TheSema); 132 } 133 134 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 135 return ModuleManager; 136 } 137 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 138 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 139 "Expected ASTReader to use the same PCM cache"); 140 ModuleManager = std::move(Reader); 141 } 142 143 std::shared_ptr<ModuleDependencyCollector> 144 CompilerInstance::getModuleDepCollector() const { 145 return ModuleDepCollector; 146 } 147 148 void CompilerInstance::setModuleDepCollector( 149 std::shared_ptr<ModuleDependencyCollector> Collector) { 150 ModuleDepCollector = std::move(Collector); 151 } 152 153 static void collectHeaderMaps(const HeaderSearch &HS, 154 std::shared_ptr<ModuleDependencyCollector> MDC) { 155 SmallVector<std::string, 4> HeaderMapFileNames; 156 HS.getHeaderMapFileNames(HeaderMapFileNames); 157 for (auto &Name : HeaderMapFileNames) 158 MDC->addFile(Name); 159 } 160 161 static void collectIncludePCH(CompilerInstance &CI, 162 std::shared_ptr<ModuleDependencyCollector> MDC) { 163 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 164 if (PPOpts.ImplicitPCHInclude.empty()) 165 return; 166 167 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 168 FileManager &FileMgr = CI.getFileManager(); 169 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 170 if (!PCHDir) { 171 MDC->addFile(PCHInclude); 172 return; 173 } 174 175 std::error_code EC; 176 SmallString<128> DirNative; 177 llvm::sys::path::native(PCHDir->getName(), DirNative); 178 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 179 SimpleASTReaderListener Validator(CI.getPreprocessor()); 180 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 181 Dir != DirEnd && !EC; Dir.increment(EC)) { 182 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 183 // used here since we're not interested in validating the PCH at this time, 184 // but only to check whether this is a file containing an AST. 185 if (!ASTReader::readASTFileControlBlock( 186 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 187 /*FindModuleFileExtensions=*/false, Validator, 188 /*ValidateDiagnosticOptions=*/false)) 189 MDC->addFile(Dir->getName()); 190 } 191 } 192 193 static void collectVFSEntries(CompilerInstance &CI, 194 std::shared_ptr<ModuleDependencyCollector> MDC) { 195 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 196 return; 197 198 // Collect all VFS found. 199 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 200 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 201 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 202 llvm::MemoryBuffer::getFile(VFSFile); 203 if (!Buffer) 204 return; 205 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 206 VFSFile, VFSEntries); 207 } 208 209 for (auto &E : VFSEntries) 210 MDC->addFile(E.VPath, E.RPath); 211 } 212 213 // Diagnostics 214 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 215 const CodeGenOptions *CodeGenOpts, 216 DiagnosticsEngine &Diags) { 217 std::error_code EC; 218 std::unique_ptr<raw_ostream> StreamOwner; 219 raw_ostream *OS = &llvm::errs(); 220 if (DiagOpts->DiagnosticLogFile != "-") { 221 // Create the output stream. 222 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 223 DiagOpts->DiagnosticLogFile, EC, 224 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 225 if (EC) { 226 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 227 << DiagOpts->DiagnosticLogFile << EC.message(); 228 } else { 229 FileOS->SetUnbuffered(); 230 OS = FileOS.get(); 231 StreamOwner = std::move(FileOS); 232 } 233 } 234 235 // Chain in the diagnostic client which will log the diagnostics. 236 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 237 std::move(StreamOwner)); 238 if (CodeGenOpts) 239 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 240 assert(Diags.ownsClient()); 241 Diags.setClient( 242 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 243 } 244 245 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 246 DiagnosticsEngine &Diags, 247 StringRef OutputFile) { 248 auto SerializedConsumer = 249 clang::serialized_diags::create(OutputFile, DiagOpts); 250 251 if (Diags.ownsClient()) { 252 Diags.setClient(new ChainedDiagnosticConsumer( 253 Diags.takeClient(), std::move(SerializedConsumer))); 254 } else { 255 Diags.setClient(new ChainedDiagnosticConsumer( 256 Diags.getClient(), std::move(SerializedConsumer))); 257 } 258 } 259 260 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 261 bool ShouldOwnClient) { 262 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 263 ShouldOwnClient, &getCodeGenOpts()); 264 } 265 266 IntrusiveRefCntPtr<DiagnosticsEngine> 267 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 268 DiagnosticConsumer *Client, 269 bool ShouldOwnClient, 270 const CodeGenOptions *CodeGenOpts) { 271 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 272 IntrusiveRefCntPtr<DiagnosticsEngine> 273 Diags(new DiagnosticsEngine(DiagID, Opts)); 274 275 // Create the diagnostic client for reporting errors or for 276 // implementing -verify. 277 if (Client) { 278 Diags->setClient(Client, ShouldOwnClient); 279 } else 280 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 281 282 // Chain in -verify checker, if requested. 283 if (Opts->VerifyDiagnostics) 284 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 285 286 // Chain in -diagnostic-log-file dumper, if requested. 287 if (!Opts->DiagnosticLogFile.empty()) 288 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 289 290 if (!Opts->DiagnosticSerializationFile.empty()) 291 SetupSerializedDiagnostics(Opts, *Diags, 292 Opts->DiagnosticSerializationFile); 293 294 // Configure our handling of diagnostics. 295 ProcessWarningOptions(*Diags, *Opts); 296 297 return Diags; 298 } 299 300 // File Manager 301 302 void CompilerInstance::createFileManager() { 303 if (!hasVirtualFileSystem()) { 304 // TODO: choose the virtual file system based on the CompilerInvocation. 305 setVirtualFileSystem(vfs::getRealFileSystem()); 306 } 307 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 308 } 309 310 // Source Manager 311 312 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 313 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 314 } 315 316 // Initialize the remapping of files to alternative contents, e.g., 317 // those specified through other files. 318 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 319 SourceManager &SourceMgr, 320 FileManager &FileMgr, 321 const PreprocessorOptions &InitOpts) { 322 // Remap files in the source manager (with buffers). 323 for (const auto &RB : InitOpts.RemappedFileBuffers) { 324 // Create the file entry for the file that we're mapping from. 325 const FileEntry *FromFile = 326 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 327 if (!FromFile) { 328 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 329 if (!InitOpts.RetainRemappedFileBuffers) 330 delete RB.second; 331 continue; 332 } 333 334 // Override the contents of the "from" file with the contents of 335 // the "to" file. 336 SourceMgr.overrideFileContents(FromFile, RB.second, 337 InitOpts.RetainRemappedFileBuffers); 338 } 339 340 // Remap files in the source manager (with other files). 341 for (const auto &RF : InitOpts.RemappedFiles) { 342 // Find the file that we're mapping to. 343 const FileEntry *ToFile = FileMgr.getFile(RF.second); 344 if (!ToFile) { 345 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 346 continue; 347 } 348 349 // Create the file entry for the file that we're mapping from. 350 const FileEntry *FromFile = 351 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 352 if (!FromFile) { 353 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 354 continue; 355 } 356 357 // Override the contents of the "from" file with the contents of 358 // the "to" file. 359 SourceMgr.overrideFileContents(FromFile, ToFile); 360 } 361 362 SourceMgr.setOverridenFilesKeepOriginalName( 363 InitOpts.RemappedFilesKeepOriginalName); 364 } 365 366 // Preprocessor 367 368 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 369 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 370 371 // Create a PTH manager if we are using some form of a token cache. 372 PTHManager *PTHMgr = nullptr; 373 if (!PPOpts.TokenCache.empty()) 374 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 375 376 // Create the Preprocessor. 377 HeaderSearch *HeaderInfo = 378 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 379 getDiagnostics(), getLangOpts(), &getTarget()); 380 PP = std::make_shared<Preprocessor>( 381 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 382 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 383 /*OwnsHeaderSearch=*/true, TUKind); 384 PP->Initialize(getTarget(), getAuxTarget()); 385 386 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 387 // That argument is used as the IdentifierInfoLookup argument to 388 // IdentifierTable's ctor. 389 if (PTHMgr) { 390 PTHMgr->setPreprocessor(&*PP); 391 PP->setPTHManager(PTHMgr); 392 } 393 394 if (PPOpts.DetailedRecord) 395 PP->createPreprocessingRecord(); 396 397 // Apply remappings to the source manager. 398 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 399 PP->getFileManager(), PPOpts); 400 401 // Predefine macros and configure the preprocessor. 402 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 403 getFrontendOpts()); 404 405 // Initialize the header search object. In CUDA compilations, we use the aux 406 // triple (the host triple) to initialize our header search, since we need to 407 // find the host headers in order to compile the CUDA code. 408 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 409 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 410 PP->getAuxTargetInfo()) 411 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 412 413 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 414 PP->getLangOpts(), *HeaderSearchTriple); 415 416 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 417 418 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 419 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 420 421 // Handle generating dependencies, if requested. 422 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 423 if (!DepOpts.OutputFile.empty()) 424 TheDependencyFileGenerator.reset( 425 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 426 if (!DepOpts.DOTOutputFile.empty()) 427 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 428 getHeaderSearchOpts().Sysroot); 429 430 // If we don't have a collector, but we are collecting module dependencies, 431 // then we're the top level compiler instance and need to create one. 432 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 433 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 434 DepOpts.ModuleDependencyOutputDir); 435 } 436 437 // If there is a module dep collector, register with other dep collectors 438 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 439 if (ModuleDepCollector) { 440 addDependencyCollector(ModuleDepCollector); 441 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 442 collectIncludePCH(*this, ModuleDepCollector); 443 collectVFSEntries(*this, ModuleDepCollector); 444 } 445 446 for (auto &Listener : DependencyCollectors) 447 Listener->attachToPreprocessor(*PP); 448 449 // Handle generating header include information, if requested. 450 if (DepOpts.ShowHeaderIncludes) 451 AttachHeaderIncludeGen(*PP, DepOpts); 452 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 453 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 454 if (OutputPath == "-") 455 OutputPath = ""; 456 AttachHeaderIncludeGen(*PP, DepOpts, 457 /*ShowAllHeaders=*/true, OutputPath, 458 /*ShowDepth=*/false); 459 } 460 461 if (DepOpts.PrintShowIncludes) { 462 AttachHeaderIncludeGen(*PP, DepOpts, 463 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 464 /*ShowDepth=*/true, /*MSStyle=*/true); 465 } 466 } 467 468 std::string CompilerInstance::getSpecificModuleCachePath() { 469 // Set up the module path, including the hash for the 470 // module-creation options. 471 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 472 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 473 llvm::sys::path::append(SpecificModuleCache, 474 getInvocation().getModuleHash()); 475 return SpecificModuleCache.str(); 476 } 477 478 // ASTContext 479 480 void CompilerInstance::createASTContext() { 481 Preprocessor &PP = getPreprocessor(); 482 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 483 PP.getIdentifierTable(), PP.getSelectorTable(), 484 PP.getBuiltinInfo()); 485 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 486 setASTContext(Context); 487 } 488 489 // ExternalASTSource 490 491 void CompilerInstance::createPCHExternalASTSource( 492 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 493 void *DeserializationListener, bool OwnDeserializationListener) { 494 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 495 ModuleManager = createPCHExternalASTSource( 496 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 497 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 498 getPCHContainerReader(), 499 getFrontendOpts().ModuleFileExtensions, 500 TheDependencyFileGenerator.get(), 501 DependencyCollectors, 502 DeserializationListener, 503 OwnDeserializationListener, Preamble, 504 getFrontendOpts().UseGlobalModuleIndex); 505 } 506 507 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 508 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 509 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 510 const PCHContainerReader &PCHContainerRdr, 511 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 512 DependencyFileGenerator *DependencyFile, 513 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 514 void *DeserializationListener, bool OwnDeserializationListener, 515 bool Preamble, bool UseGlobalModuleIndex) { 516 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 517 518 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 519 PP, Context, PCHContainerRdr, Extensions, 520 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 521 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 522 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 523 524 // We need the external source to be set up before we read the AST, because 525 // eagerly-deserialized declarations may use it. 526 Context.setExternalSource(Reader.get()); 527 528 Reader->setDeserializationListener( 529 static_cast<ASTDeserializationListener *>(DeserializationListener), 530 /*TakeOwnership=*/OwnDeserializationListener); 531 532 if (DependencyFile) 533 DependencyFile->AttachToASTReader(*Reader); 534 for (auto &Listener : DependencyCollectors) 535 Listener->attachToASTReader(*Reader); 536 537 switch (Reader->ReadAST(Path, 538 Preamble ? serialization::MK_Preamble 539 : serialization::MK_PCH, 540 SourceLocation(), 541 ASTReader::ARR_None)) { 542 case ASTReader::Success: 543 // Set the predefines buffer as suggested by the PCH reader. Typically, the 544 // predefines buffer will be empty. 545 PP.setPredefines(Reader->getSuggestedPredefines()); 546 return Reader; 547 548 case ASTReader::Failure: 549 // Unrecoverable failure: don't even try to process the input file. 550 break; 551 552 case ASTReader::Missing: 553 case ASTReader::OutOfDate: 554 case ASTReader::VersionMismatch: 555 case ASTReader::ConfigurationMismatch: 556 case ASTReader::HadErrors: 557 // No suitable PCH file could be found. Return an error. 558 break; 559 } 560 561 Context.setExternalSource(nullptr); 562 return nullptr; 563 } 564 565 // Code Completion 566 567 static bool EnableCodeCompletion(Preprocessor &PP, 568 StringRef Filename, 569 unsigned Line, 570 unsigned Column) { 571 // Tell the source manager to chop off the given file at a specific 572 // line and column. 573 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 574 if (!Entry) { 575 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 576 << Filename; 577 return true; 578 } 579 580 // Truncate the named file at the given line/column. 581 PP.SetCodeCompletionPoint(Entry, Line, Column); 582 return false; 583 } 584 585 void CompilerInstance::createCodeCompletionConsumer() { 586 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 587 if (!CompletionConsumer) { 588 setCodeCompletionConsumer( 589 createCodeCompletionConsumer(getPreprocessor(), 590 Loc.FileName, Loc.Line, Loc.Column, 591 getFrontendOpts().CodeCompleteOpts, 592 llvm::outs())); 593 if (!CompletionConsumer) 594 return; 595 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 596 Loc.Line, Loc.Column)) { 597 setCodeCompletionConsumer(nullptr); 598 return; 599 } 600 601 if (CompletionConsumer->isOutputBinary() && 602 llvm::sys::ChangeStdoutToBinary()) { 603 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 604 setCodeCompletionConsumer(nullptr); 605 } 606 } 607 608 void CompilerInstance::createFrontendTimer() { 609 FrontendTimerGroup.reset( 610 new llvm::TimerGroup("frontend", "Clang front-end time report")); 611 FrontendTimer.reset( 612 new llvm::Timer("frontend", "Clang front-end timer", 613 *FrontendTimerGroup)); 614 } 615 616 CodeCompleteConsumer * 617 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 618 StringRef Filename, 619 unsigned Line, 620 unsigned Column, 621 const CodeCompleteOptions &Opts, 622 raw_ostream &OS) { 623 if (EnableCodeCompletion(PP, Filename, Line, Column)) 624 return nullptr; 625 626 // Set up the creation routine for code-completion. 627 return new PrintingCodeCompleteConsumer(Opts, OS); 628 } 629 630 void CompilerInstance::createSema(TranslationUnitKind TUKind, 631 CodeCompleteConsumer *CompletionConsumer) { 632 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 633 TUKind, CompletionConsumer)); 634 // Attach the external sema source if there is any. 635 if (ExternalSemaSrc) { 636 TheSema->addExternalSource(ExternalSemaSrc.get()); 637 ExternalSemaSrc->InitializeSema(*TheSema); 638 } 639 } 640 641 // Output Files 642 643 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 644 OutputFiles.push_back(std::move(OutFile)); 645 } 646 647 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 648 for (OutputFile &OF : OutputFiles) { 649 if (!OF.TempFilename.empty()) { 650 if (EraseFiles) { 651 llvm::sys::fs::remove(OF.TempFilename); 652 } else { 653 SmallString<128> NewOutFile(OF.Filename); 654 655 // If '-working-directory' was passed, the output filename should be 656 // relative to that. 657 FileMgr->FixupRelativePath(NewOutFile); 658 if (std::error_code ec = 659 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 660 getDiagnostics().Report(diag::err_unable_to_rename_temp) 661 << OF.TempFilename << OF.Filename << ec.message(); 662 663 llvm::sys::fs::remove(OF.TempFilename); 664 } 665 } 666 } else if (!OF.Filename.empty() && EraseFiles) 667 llvm::sys::fs::remove(OF.Filename); 668 } 669 OutputFiles.clear(); 670 for (auto &Module : BuiltModules) 671 llvm::sys::fs::remove(Module.second); 672 NonSeekStream.reset(); 673 } 674 675 std::unique_ptr<raw_pwrite_stream> 676 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 677 StringRef Extension) { 678 return createOutputFile(getFrontendOpts().OutputFile, Binary, 679 /*RemoveFileOnSignal=*/true, InFile, Extension, 680 /*UseTemporary=*/true); 681 } 682 683 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 684 return llvm::make_unique<llvm::raw_null_ostream>(); 685 } 686 687 std::unique_ptr<raw_pwrite_stream> 688 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 689 bool RemoveFileOnSignal, StringRef InFile, 690 StringRef Extension, bool UseTemporary, 691 bool CreateMissingDirectories) { 692 std::string OutputPathName, TempPathName; 693 std::error_code EC; 694 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 695 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 696 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 697 if (!OS) { 698 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 699 << EC.message(); 700 return nullptr; 701 } 702 703 // Add the output file -- but don't try to remove "-", since this means we are 704 // using stdin. 705 addOutputFile( 706 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 707 708 return OS; 709 } 710 711 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 712 StringRef OutputPath, std::error_code &Error, bool Binary, 713 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 714 bool UseTemporary, bool CreateMissingDirectories, 715 std::string *ResultPathName, std::string *TempPathName) { 716 assert((!CreateMissingDirectories || UseTemporary) && 717 "CreateMissingDirectories is only allowed when using temporary files"); 718 719 std::string OutFile, TempFile; 720 if (!OutputPath.empty()) { 721 OutFile = OutputPath; 722 } else if (InFile == "-") { 723 OutFile = "-"; 724 } else if (!Extension.empty()) { 725 SmallString<128> Path(InFile); 726 llvm::sys::path::replace_extension(Path, Extension); 727 OutFile = Path.str(); 728 } else { 729 OutFile = "-"; 730 } 731 732 std::unique_ptr<llvm::raw_fd_ostream> OS; 733 std::string OSFile; 734 735 if (UseTemporary) { 736 if (OutFile == "-") 737 UseTemporary = false; 738 else { 739 llvm::sys::fs::file_status Status; 740 llvm::sys::fs::status(OutputPath, Status); 741 if (llvm::sys::fs::exists(Status)) { 742 // Fail early if we can't write to the final destination. 743 if (!llvm::sys::fs::can_write(OutputPath)) { 744 Error = make_error_code(llvm::errc::operation_not_permitted); 745 return nullptr; 746 } 747 748 // Don't use a temporary if the output is a special file. This handles 749 // things like '-o /dev/null' 750 if (!llvm::sys::fs::is_regular_file(Status)) 751 UseTemporary = false; 752 } 753 } 754 } 755 756 if (UseTemporary) { 757 // Create a temporary file. 758 SmallString<128> TempPath; 759 TempPath = OutFile; 760 TempPath += "-%%%%%%%%"; 761 int fd; 762 std::error_code EC = 763 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 764 765 if (CreateMissingDirectories && 766 EC == llvm::errc::no_such_file_or_directory) { 767 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 768 EC = llvm::sys::fs::create_directories(Parent); 769 if (!EC) { 770 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 771 } 772 } 773 774 if (!EC) { 775 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 776 OSFile = TempFile = TempPath.str(); 777 } 778 // If we failed to create the temporary, fallback to writing to the file 779 // directly. This handles the corner case where we cannot write to the 780 // directory, but can write to the file. 781 } 782 783 if (!OS) { 784 OSFile = OutFile; 785 OS.reset(new llvm::raw_fd_ostream( 786 OSFile, Error, 787 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 788 if (Error) 789 return nullptr; 790 } 791 792 // Make sure the out stream file gets removed if we crash. 793 if (RemoveFileOnSignal) 794 llvm::sys::RemoveFileOnSignal(OSFile); 795 796 if (ResultPathName) 797 *ResultPathName = OutFile; 798 if (TempPathName) 799 *TempPathName = TempFile; 800 801 if (!Binary || OS->supportsSeeking()) 802 return std::move(OS); 803 804 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 805 assert(!NonSeekStream); 806 NonSeekStream = std::move(OS); 807 return std::move(B); 808 } 809 810 // Initialization Utilities 811 812 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 813 return InitializeSourceManager( 814 Input, getDiagnostics(), getFileManager(), getSourceManager(), 815 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 816 getDependencyOutputOpts(), getFrontendOpts()); 817 } 818 819 // static 820 bool CompilerInstance::InitializeSourceManager( 821 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 822 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 823 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 824 SrcMgr::CharacteristicKind 825 Kind = Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 826 827 if (Input.isBuffer()) { 828 SourceMgr.setMainFileID(SourceMgr.createFileID( 829 std::unique_ptr<llvm::MemoryBuffer>(Input.getBuffer()), Kind)); 830 assert(SourceMgr.getMainFileID().isValid() && 831 "Couldn't establish MainFileID!"); 832 return true; 833 } 834 835 StringRef InputFile = Input.getFile(); 836 837 // Figure out where to get and map in the main file. 838 if (InputFile != "-") { 839 const FileEntry *File; 840 if (Opts.FindPchSource.empty()) { 841 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 842 } else { 843 // When building a pch file in clang-cl mode, the .h file is built as if 844 // it was included by a cc file. Since the driver doesn't know about 845 // all include search directories, the frontend must search the input 846 // file through HeaderSearch here, as if it had been included by the 847 // cc file at Opts.FindPchSource. 848 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 849 if (!FindFile) { 850 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 851 return false; 852 } 853 const DirectoryLookup *UnusedCurDir; 854 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 855 Includers; 856 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 857 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 858 /*FromDir=*/nullptr, 859 /*CurDir=*/UnusedCurDir, Includers, 860 /*SearchPath=*/nullptr, 861 /*RelativePath=*/nullptr, 862 /*RequestingModule=*/nullptr, 863 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 864 /*SkipCache=*/true); 865 // Also add the header to /showIncludes output. 866 if (File) 867 DepOpts.ShowIncludesPretendHeader = File->getName(); 868 } 869 if (!File) { 870 Diags.Report(diag::err_fe_error_reading) << InputFile; 871 return false; 872 } 873 874 // The natural SourceManager infrastructure can't currently handle named 875 // pipes, but we would at least like to accept them for the main 876 // file. Detect them here, read them with the volatile flag so FileMgr will 877 // pick up the correct size, and simply override their contents as we do for 878 // STDIN. 879 if (File->isNamedPipe()) { 880 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 881 if (MB) { 882 // Create a new virtual file that will have the correct size. 883 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 884 SourceMgr.overrideFileContents(File, std::move(*MB)); 885 } else { 886 Diags.Report(diag::err_cannot_open_file) << InputFile 887 << MB.getError().message(); 888 return false; 889 } 890 } 891 892 SourceMgr.setMainFileID( 893 SourceMgr.createFileID(File, SourceLocation(), Kind)); 894 } else { 895 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 896 llvm::MemoryBuffer::getSTDIN(); 897 if (std::error_code EC = SBOrErr.getError()) { 898 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 899 return false; 900 } 901 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 902 903 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 904 SB->getBufferSize(), 0); 905 SourceMgr.setMainFileID( 906 SourceMgr.createFileID(File, SourceLocation(), Kind)); 907 SourceMgr.overrideFileContents(File, std::move(SB)); 908 } 909 910 assert(SourceMgr.getMainFileID().isValid() && 911 "Couldn't establish MainFileID!"); 912 return true; 913 } 914 915 // High-Level Operations 916 917 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 918 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 919 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 920 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 921 922 // FIXME: Take this as an argument, once all the APIs we used have moved to 923 // taking it as an input instead of hard-coding llvm::errs. 924 raw_ostream &OS = llvm::errs(); 925 926 // Create the target instance. 927 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 928 getInvocation().TargetOpts)); 929 if (!hasTarget()) 930 return false; 931 932 // Create TargetInfo for the other side of CUDA compilation. 933 if (getLangOpts().CUDA && !getFrontendOpts().AuxTriple.empty()) { 934 auto TO = std::make_shared<TargetOptions>(); 935 TO->Triple = getFrontendOpts().AuxTriple; 936 TO->HostTriple = getTarget().getTriple().str(); 937 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 938 } 939 940 // Inform the target of the language options. 941 // 942 // FIXME: We shouldn't need to do this, the target should be immutable once 943 // created. This complexity should be lifted elsewhere. 944 getTarget().adjust(getLangOpts()); 945 946 // Adjust target options based on codegen options. 947 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 948 949 // rewriter project will change target built-in bool type from its default. 950 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 951 getTarget().noSignedCharForObjCBool(); 952 953 // Validate/process some options. 954 if (getHeaderSearchOpts().Verbose) 955 OS << "clang -cc1 version " CLANG_VERSION_STRING 956 << " based upon " << BACKEND_PACKAGE_STRING 957 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 958 959 if (getFrontendOpts().ShowTimers) 960 createFrontendTimer(); 961 962 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 963 llvm::EnableStatistics(false); 964 965 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 966 // Reset the ID tables if we are reusing the SourceManager and parsing 967 // regular files. 968 if (hasSourceManager() && !Act.isModelParsingAction()) 969 getSourceManager().clearIDTables(); 970 971 if (Act.BeginSourceFile(*this, FIF)) { 972 Act.Execute(); 973 Act.EndSourceFile(); 974 } 975 } 976 977 // Notify the diagnostic client that all files were processed. 978 getDiagnostics().getClient()->finish(); 979 980 if (getDiagnosticOpts().ShowCarets) { 981 // We can have multiple diagnostics sharing one diagnostic client. 982 // Get the total number of warnings/errors from the client. 983 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 984 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 985 986 if (NumWarnings) 987 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 988 if (NumWarnings && NumErrors) 989 OS << " and "; 990 if (NumErrors) 991 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 992 if (NumWarnings || NumErrors) 993 OS << " generated.\n"; 994 } 995 996 if (getFrontendOpts().ShowStats) { 997 if (hasFileManager()) { 998 getFileManager().PrintStats(); 999 OS << '\n'; 1000 } 1001 llvm::PrintStatistics(OS); 1002 } 1003 StringRef StatsFile = getFrontendOpts().StatsFile; 1004 if (!StatsFile.empty()) { 1005 std::error_code EC; 1006 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1007 llvm::sys::fs::F_Text); 1008 if (EC) { 1009 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1010 << StatsFile << EC.message(); 1011 } else { 1012 llvm::PrintStatisticsJSON(*StatS); 1013 } 1014 } 1015 1016 return !getDiagnostics().getClient()->getNumErrors(); 1017 } 1018 1019 /// \brief Determine the appropriate source input kind based on language 1020 /// options. 1021 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { 1022 if (LangOpts.OpenCL) 1023 return InputKind::OpenCL; 1024 if (LangOpts.CUDA) 1025 return InputKind::CUDA; 1026 if (LangOpts.ObjC1) 1027 return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; 1028 return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; 1029 } 1030 1031 /// \brief Compile a module file for the given module, using the options 1032 /// provided by the importing compiler instance. Returns true if the module 1033 /// was built without errors. 1034 static bool 1035 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1036 StringRef ModuleName, FrontendInputFile Input, 1037 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1038 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1039 [](CompilerInstance &) {}, 1040 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1041 [](CompilerInstance &) {}) { 1042 // Construct a compiler invocation for creating this module. 1043 auto Invocation = 1044 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1045 1046 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1047 1048 // For any options that aren't intended to affect how a module is built, 1049 // reset them to their default values. 1050 Invocation->getLangOpts()->resetNonModularOptions(); 1051 PPOpts.resetNonModularOptions(); 1052 1053 // Remove any macro definitions that are explicitly ignored by the module. 1054 // They aren't supposed to affect how the module is built anyway. 1055 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1056 PPOpts.Macros.erase( 1057 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1058 [&HSOpts](const std::pair<std::string, bool> &def) { 1059 StringRef MacroDef = def.first; 1060 return HSOpts.ModulesIgnoreMacros.count( 1061 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1062 }), 1063 PPOpts.Macros.end()); 1064 1065 // Note the name of the module we're building. 1066 Invocation->getLangOpts()->CurrentModule = ModuleName; 1067 1068 // Make sure that the failed-module structure has been allocated in 1069 // the importing instance, and propagate the pointer to the newly-created 1070 // instance. 1071 PreprocessorOptions &ImportingPPOpts 1072 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1073 if (!ImportingPPOpts.FailedModules) 1074 ImportingPPOpts.FailedModules = 1075 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1076 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1077 1078 // If there is a module map file, build the module using the module map. 1079 // Set up the inputs/outputs so that we build the module from its umbrella 1080 // header. 1081 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1082 FrontendOpts.OutputFile = ModuleFileName.str(); 1083 FrontendOpts.DisableFree = false; 1084 FrontendOpts.GenerateGlobalModuleIndex = false; 1085 FrontendOpts.BuildingImplicitModule = true; 1086 FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; 1087 // Force implicitly-built modules to hash the content of the module file. 1088 HSOpts.ModulesHashContent = true; 1089 FrontendOpts.Inputs = {Input}; 1090 1091 // Don't free the remapped file buffers; they are owned by our caller. 1092 PPOpts.RetainRemappedFileBuffers = true; 1093 1094 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1095 assert(ImportingInstance.getInvocation().getModuleHash() == 1096 Invocation->getModuleHash() && "Module hash mismatch!"); 1097 1098 // Construct a compiler instance that will be used to actually create the 1099 // module. Since we're sharing a PCMCache, 1100 // CompilerInstance::CompilerInstance is responsible for finalizing the 1101 // buffers to prevent use-after-frees. 1102 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1103 &ImportingInstance.getPreprocessor().getPCMCache()); 1104 auto &Inv = *Invocation; 1105 Instance.setInvocation(std::move(Invocation)); 1106 1107 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1108 ImportingInstance.getDiagnosticClient()), 1109 /*ShouldOwnClient=*/true); 1110 1111 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1112 1113 // Note that this module is part of the module build stack, so that we 1114 // can detect cycles in the module graph. 1115 Instance.setFileManager(&ImportingInstance.getFileManager()); 1116 Instance.createSourceManager(Instance.getFileManager()); 1117 SourceManager &SourceMgr = Instance.getSourceManager(); 1118 SourceMgr.setModuleBuildStack( 1119 ImportingInstance.getSourceManager().getModuleBuildStack()); 1120 SourceMgr.pushModuleBuildStack(ModuleName, 1121 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1122 1123 // If we're collecting module dependencies, we need to share a collector 1124 // between all of the module CompilerInstances. Other than that, we don't 1125 // want to produce any dependency output from the module build. 1126 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1127 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1128 1129 ImportingInstance.getDiagnostics().Report(ImportLoc, 1130 diag::remark_module_build) 1131 << ModuleName << ModuleFileName; 1132 1133 PreBuildStep(Instance); 1134 1135 // Execute the action to actually build the module in-place. Use a separate 1136 // thread so that we get a stack large enough. 1137 const unsigned ThreadStackSize = 8 << 20; 1138 llvm::CrashRecoveryContext CRC; 1139 CRC.RunSafelyOnThread( 1140 [&]() { 1141 GenerateModuleFromModuleMapAction Action; 1142 Instance.ExecuteAction(Action); 1143 }, 1144 ThreadStackSize); 1145 1146 PostBuildStep(Instance); 1147 1148 ImportingInstance.getDiagnostics().Report(ImportLoc, 1149 diag::remark_module_build_done) 1150 << ModuleName; 1151 1152 // Delete the temporary module map file. 1153 // FIXME: Even though we're executing under crash protection, it would still 1154 // be nice to do this with RemoveFileOnSignal when we can. However, that 1155 // doesn't make sense for all clients, so clean this up manually. 1156 Instance.clearOutputFiles(/*EraseFiles=*/true); 1157 1158 return !Instance.getDiagnostics().hasErrorOccurred(); 1159 } 1160 1161 /// \brief Compile a module file for the given module, using the options 1162 /// provided by the importing compiler instance. Returns true if the module 1163 /// was built without errors. 1164 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1165 SourceLocation ImportLoc, 1166 Module *Module, 1167 StringRef ModuleFileName) { 1168 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1169 InputKind::ModuleMap); 1170 1171 // Get or create the module map that we'll use to build this module. 1172 ModuleMap &ModMap 1173 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1174 bool Result; 1175 if (const FileEntry *ModuleMapFile = 1176 ModMap.getContainingModuleMapFile(Module)) { 1177 // Use the module map where this module resides. 1178 Result = compileModuleImpl( 1179 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1180 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1181 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1182 ModuleFileName); 1183 } else { 1184 // FIXME: We only need to fake up an input file here as a way of 1185 // transporting the module's directory to the module map parser. We should 1186 // be able to do that more directly, and parse from a memory buffer without 1187 // inventing this file. 1188 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1189 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1190 1191 std::string InferredModuleMapContent; 1192 llvm::raw_string_ostream OS(InferredModuleMapContent); 1193 Module->print(OS); 1194 OS.flush(); 1195 1196 Result = compileModuleImpl( 1197 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1198 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1199 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1200 ModuleFileName, 1201 [&](CompilerInstance &Instance) { 1202 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1203 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1204 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1205 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1206 Instance.getSourceManager().overrideFileContents( 1207 ModuleMapFile, std::move(ModuleMapBuffer)); 1208 }); 1209 } 1210 1211 // We've rebuilt a module. If we're allowed to generate or update the global 1212 // module index, record that fact in the importing compiler instance. 1213 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1214 ImportingInstance.setBuildGlobalModuleIndex(true); 1215 } 1216 1217 return Result; 1218 } 1219 1220 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1221 SourceLocation ImportLoc, 1222 SourceLocation ModuleNameLoc, Module *Module, 1223 StringRef ModuleFileName) { 1224 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1225 1226 auto diagnoseBuildFailure = [&] { 1227 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1228 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1229 }; 1230 1231 // FIXME: have LockFileManager return an error_code so that we can 1232 // avoid the mkdir when the directory already exists. 1233 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1234 llvm::sys::fs::create_directories(Dir); 1235 1236 while (1) { 1237 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1238 llvm::LockFileManager Locked(ModuleFileName); 1239 switch (Locked) { 1240 case llvm::LockFileManager::LFS_Error: 1241 // PCMCache takes care of correctness and locks are only necessary for 1242 // performance. Fallback to building the module in case of any lock 1243 // related errors. 1244 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1245 << Module->Name << Locked.getErrorMessage(); 1246 // Clear out any potential leftover. 1247 Locked.unsafeRemoveLockFile(); 1248 // FALLTHROUGH 1249 case llvm::LockFileManager::LFS_Owned: 1250 // We're responsible for building the module ourselves. 1251 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1252 ModuleFileName)) { 1253 diagnoseBuildFailure(); 1254 return false; 1255 } 1256 break; 1257 1258 case llvm::LockFileManager::LFS_Shared: 1259 // Someone else is responsible for building the module. Wait for them to 1260 // finish. 1261 switch (Locked.waitForUnlock()) { 1262 case llvm::LockFileManager::Res_Success: 1263 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1264 break; 1265 case llvm::LockFileManager::Res_OwnerDied: 1266 continue; // try again to get the lock. 1267 case llvm::LockFileManager::Res_Timeout: 1268 // Since PCMCache takes care of correctness, we try waiting for another 1269 // process to complete the build so clang does not do it done twice. If 1270 // case of timeout, build it ourselves. 1271 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1272 << Module->Name; 1273 // Clear the lock file so that future invokations can make progress. 1274 Locked.unsafeRemoveLockFile(); 1275 continue; 1276 } 1277 break; 1278 } 1279 1280 // Try to read the module file, now that we've compiled it. 1281 ASTReader::ASTReadResult ReadResult = 1282 ImportingInstance.getModuleManager()->ReadAST( 1283 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1284 ModuleLoadCapabilities); 1285 1286 if (ReadResult == ASTReader::OutOfDate && 1287 Locked == llvm::LockFileManager::LFS_Shared) { 1288 // The module may be out of date in the presence of file system races, 1289 // or if one of its imports depends on header search paths that are not 1290 // consistent with this ImportingInstance. Try again... 1291 continue; 1292 } else if (ReadResult == ASTReader::Missing) { 1293 diagnoseBuildFailure(); 1294 } else if (ReadResult != ASTReader::Success && 1295 !Diags.hasErrorOccurred()) { 1296 // The ASTReader didn't diagnose the error, so conservatively report it. 1297 diagnoseBuildFailure(); 1298 } 1299 return ReadResult == ASTReader::Success; 1300 } 1301 } 1302 1303 /// \brief Diagnose differences between the current definition of the given 1304 /// configuration macro and the definition provided on the command line. 1305 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1306 Module *Mod, SourceLocation ImportLoc) { 1307 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1308 SourceManager &SourceMgr = PP.getSourceManager(); 1309 1310 // If this identifier has never had a macro definition, then it could 1311 // not have changed. 1312 if (!Id->hadMacroDefinition()) 1313 return; 1314 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1315 1316 // Find the macro definition from the command line. 1317 MacroInfo *CmdLineDefinition = nullptr; 1318 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1319 // We only care about the predefines buffer. 1320 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1321 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1322 continue; 1323 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1324 CmdLineDefinition = DMD->getMacroInfo(); 1325 break; 1326 } 1327 1328 auto *CurrentDefinition = PP.getMacroInfo(Id); 1329 if (CurrentDefinition == CmdLineDefinition) { 1330 // Macro matches. Nothing to do. 1331 } else if (!CurrentDefinition) { 1332 // This macro was defined on the command line, then #undef'd later. 1333 // Complain. 1334 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1335 << true << ConfigMacro << Mod->getFullModuleName(); 1336 auto LatestDef = LatestLocalMD->getDefinition(); 1337 assert(LatestDef.isUndefined() && 1338 "predefined macro went away with no #undef?"); 1339 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1340 << true; 1341 return; 1342 } else if (!CmdLineDefinition) { 1343 // There was no definition for this macro in the predefines buffer, 1344 // but there was a local definition. Complain. 1345 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1346 << false << ConfigMacro << Mod->getFullModuleName(); 1347 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1348 diag::note_module_def_undef_here) 1349 << false; 1350 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1351 /*Syntactically=*/true)) { 1352 // The macro definitions differ. 1353 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1354 << false << ConfigMacro << Mod->getFullModuleName(); 1355 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1356 diag::note_module_def_undef_here) 1357 << false; 1358 } 1359 } 1360 1361 /// \brief Write a new timestamp file with the given path. 1362 static void writeTimestampFile(StringRef TimestampFile) { 1363 std::error_code EC; 1364 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1365 } 1366 1367 /// \brief Prune the module cache of modules that haven't been accessed in 1368 /// a long time. 1369 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1370 struct stat StatBuf; 1371 llvm::SmallString<128> TimestampFile; 1372 TimestampFile = HSOpts.ModuleCachePath; 1373 assert(!TimestampFile.empty()); 1374 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1375 1376 // Try to stat() the timestamp file. 1377 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1378 // If the timestamp file wasn't there, create one now. 1379 if (errno == ENOENT) { 1380 writeTimestampFile(TimestampFile); 1381 } 1382 return; 1383 } 1384 1385 // Check whether the time stamp is older than our pruning interval. 1386 // If not, do nothing. 1387 time_t TimeStampModTime = StatBuf.st_mtime; 1388 time_t CurrentTime = time(nullptr); 1389 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1390 return; 1391 1392 // Write a new timestamp file so that nobody else attempts to prune. 1393 // There is a benign race condition here, if two Clang instances happen to 1394 // notice at the same time that the timestamp is out-of-date. 1395 writeTimestampFile(TimestampFile); 1396 1397 // Walk the entire module cache, looking for unused module files and module 1398 // indices. 1399 std::error_code EC; 1400 SmallString<128> ModuleCachePathNative; 1401 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1402 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1403 Dir != DirEnd && !EC; Dir.increment(EC)) { 1404 // If we don't have a directory, there's nothing to look into. 1405 if (!llvm::sys::fs::is_directory(Dir->path())) 1406 continue; 1407 1408 // Walk all of the files within this directory. 1409 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1410 File != FileEnd && !EC; File.increment(EC)) { 1411 // We only care about module and global module index files. 1412 StringRef Extension = llvm::sys::path::extension(File->path()); 1413 if (Extension != ".pcm" && Extension != ".timestamp" && 1414 llvm::sys::path::filename(File->path()) != "modules.idx") 1415 continue; 1416 1417 // Look at this file. If we can't stat it, there's nothing interesting 1418 // there. 1419 if (::stat(File->path().c_str(), &StatBuf)) 1420 continue; 1421 1422 // If the file has been used recently enough, leave it there. 1423 time_t FileAccessTime = StatBuf.st_atime; 1424 if (CurrentTime - FileAccessTime <= 1425 time_t(HSOpts.ModuleCachePruneAfter)) { 1426 continue; 1427 } 1428 1429 // Remove the file. 1430 llvm::sys::fs::remove(File->path()); 1431 1432 // Remove the timestamp file. 1433 std::string TimpestampFilename = File->path() + ".timestamp"; 1434 llvm::sys::fs::remove(TimpestampFilename); 1435 } 1436 1437 // If we removed all of the files in the directory, remove the directory 1438 // itself. 1439 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1440 llvm::sys::fs::directory_iterator() && !EC) 1441 llvm::sys::fs::remove(Dir->path()); 1442 } 1443 } 1444 1445 void CompilerInstance::createModuleManager() { 1446 if (!ModuleManager) { 1447 if (!hasASTContext()) 1448 createASTContext(); 1449 1450 // If we're implicitly building modules but not currently recursively 1451 // building a module, check whether we need to prune the module cache. 1452 if (getSourceManager().getModuleBuildStack().empty() && 1453 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1454 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1455 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1456 pruneModuleCache(getHeaderSearchOpts()); 1457 } 1458 1459 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1460 std::string Sysroot = HSOpts.Sysroot; 1461 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1462 std::unique_ptr<llvm::Timer> ReadTimer; 1463 if (FrontendTimerGroup) 1464 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1465 "Reading modules", 1466 *FrontendTimerGroup); 1467 ModuleManager = new ASTReader( 1468 getPreprocessor(), getASTContext(), getPCHContainerReader(), 1469 getFrontendOpts().ModuleFileExtensions, 1470 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1471 /*AllowASTWithCompilerErrors=*/false, 1472 /*AllowConfigurationMismatch=*/false, 1473 HSOpts.ModulesValidateSystemHeaders, 1474 getFrontendOpts().UseGlobalModuleIndex, 1475 std::move(ReadTimer)); 1476 if (hasASTConsumer()) { 1477 ModuleManager->setDeserializationListener( 1478 getASTConsumer().GetASTDeserializationListener()); 1479 getASTContext().setASTMutationListener( 1480 getASTConsumer().GetASTMutationListener()); 1481 } 1482 getASTContext().setExternalSource(ModuleManager); 1483 if (hasSema()) 1484 ModuleManager->InitializeSema(getSema()); 1485 if (hasASTConsumer()) 1486 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1487 1488 if (TheDependencyFileGenerator) 1489 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1490 for (auto &Listener : DependencyCollectors) 1491 Listener->attachToASTReader(*ModuleManager); 1492 } 1493 } 1494 1495 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1496 llvm::Timer Timer; 1497 if (FrontendTimerGroup) 1498 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1499 *FrontendTimerGroup); 1500 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1501 1502 // Helper to recursively read the module names for all modules we're adding. 1503 // We mark these as known and redirect any attempt to load that module to 1504 // the files we were handed. 1505 struct ReadModuleNames : ASTReaderListener { 1506 CompilerInstance &CI; 1507 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1508 1509 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1510 1511 void ReadModuleName(StringRef ModuleName) override { 1512 LoadedModules.push_back( 1513 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1514 } 1515 1516 void registerAll() { 1517 for (auto *II : LoadedModules) { 1518 CI.KnownModules[II] = CI.getPreprocessor() 1519 .getHeaderSearchInfo() 1520 .getModuleMap() 1521 .findModule(II->getName()); 1522 } 1523 LoadedModules.clear(); 1524 } 1525 1526 void markAllUnavailable() { 1527 for (auto *II : LoadedModules) { 1528 if (Module *M = CI.getPreprocessor() 1529 .getHeaderSearchInfo() 1530 .getModuleMap() 1531 .findModule(II->getName())) { 1532 M->HasIncompatibleModuleFile = true; 1533 1534 // Mark module as available if the only reason it was unavailable 1535 // was missing headers. 1536 SmallVector<Module *, 2> Stack; 1537 Stack.push_back(M); 1538 while (!Stack.empty()) { 1539 Module *Current = Stack.pop_back_val(); 1540 if (Current->IsMissingRequirement) continue; 1541 Current->IsAvailable = true; 1542 Stack.insert(Stack.end(), 1543 Current->submodule_begin(), Current->submodule_end()); 1544 } 1545 } 1546 } 1547 LoadedModules.clear(); 1548 } 1549 }; 1550 1551 // If we don't already have an ASTReader, create one now. 1552 if (!ModuleManager) 1553 createModuleManager(); 1554 1555 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1556 auto &ListenerRef = *Listener; 1557 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1558 std::move(Listener)); 1559 1560 // Try to load the module file. 1561 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1562 SourceLocation(), 1563 ASTReader::ARR_ConfigurationMismatch)) { 1564 case ASTReader::Success: 1565 // We successfully loaded the module file; remember the set of provided 1566 // modules so that we don't try to load implicit modules for them. 1567 ListenerRef.registerAll(); 1568 return true; 1569 1570 case ASTReader::ConfigurationMismatch: 1571 // Ignore unusable module files. 1572 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1573 << FileName; 1574 // All modules provided by any files we tried and failed to load are now 1575 // unavailable; includes of those modules should now be handled textually. 1576 ListenerRef.markAllUnavailable(); 1577 return true; 1578 1579 default: 1580 return false; 1581 } 1582 } 1583 1584 ModuleLoadResult 1585 CompilerInstance::loadModule(SourceLocation ImportLoc, 1586 ModuleIdPath Path, 1587 Module::NameVisibilityKind Visibility, 1588 bool IsInclusionDirective) { 1589 // Determine what file we're searching from. 1590 StringRef ModuleName = Path[0].first->getName(); 1591 SourceLocation ModuleNameLoc = Path[0].second; 1592 1593 // If we've already handled this import, just return the cached result. 1594 // This one-element cache is important to eliminate redundant diagnostics 1595 // when both the preprocessor and parser see the same import declaration. 1596 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1597 // Make the named module visible. 1598 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1599 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1600 ImportLoc); 1601 return LastModuleImportResult; 1602 } 1603 1604 clang::Module *Module = nullptr; 1605 1606 // If we don't already have information on this module, load the module now. 1607 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1608 = KnownModules.find(Path[0].first); 1609 if (Known != KnownModules.end()) { 1610 // Retrieve the cached top-level module. 1611 Module = Known->second; 1612 } else if (ModuleName == getLangOpts().CurrentModule) { 1613 // This is the module we're building. 1614 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1615 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1616 } else { 1617 // Search for a module with the given name. 1618 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1619 HeaderSearchOptions &HSOpts = 1620 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1621 1622 std::string ModuleFileName; 1623 enum ModuleSource { 1624 ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma 1625 } Source = ModuleNotFound; 1626 1627 // Check to see if the module has been built as part of this compilation 1628 // via a module build pragma. 1629 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1630 if (BuiltModuleIt != BuiltModules.end()) { 1631 ModuleFileName = BuiltModuleIt->second; 1632 Source = ModuleBuildPragma; 1633 } 1634 1635 // Try to load the module from the prebuilt module path. 1636 if (Source == ModuleNotFound && !HSOpts.PrebuiltModulePaths.empty()) { 1637 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName( 1638 ModuleName, "", /*UsePrebuiltPath*/ true); 1639 if (!ModuleFileName.empty()) 1640 Source = PrebuiltModulePath; 1641 } 1642 1643 // Try to load the module from the module cache. 1644 if (Source == ModuleNotFound && Module) { 1645 ModuleFileName = PP->getHeaderSearchInfo().getModuleFileName(Module); 1646 Source = ModuleCache; 1647 } 1648 1649 if (Source == ModuleNotFound) { 1650 // We can't find a module, error out here. 1651 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1652 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1653 ModuleBuildFailed = true; 1654 return ModuleLoadResult(); 1655 } 1656 1657 if (ModuleFileName.empty()) { 1658 if (Module && Module->HasIncompatibleModuleFile) { 1659 // We tried and failed to load a module file for this module. Fall 1660 // back to textual inclusion for its headers. 1661 return ModuleLoadResult::ConfigMismatch; 1662 } 1663 1664 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1665 << ModuleName; 1666 ModuleBuildFailed = true; 1667 return ModuleLoadResult(); 1668 } 1669 1670 // If we don't already have an ASTReader, create one now. 1671 if (!ModuleManager) 1672 createModuleManager(); 1673 1674 llvm::Timer Timer; 1675 if (FrontendTimerGroup) 1676 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1677 *FrontendTimerGroup); 1678 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1679 1680 // Try to load the module file. If we are not trying to load from the 1681 // module cache, we don't know how to rebuild modules. 1682 unsigned ARRFlags = Source == ModuleCache ? 1683 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : 1684 ASTReader::ARR_ConfigurationMismatch; 1685 switch (ModuleManager->ReadAST(ModuleFileName, 1686 Source == PrebuiltModulePath 1687 ? serialization::MK_PrebuiltModule 1688 : Source == ModuleBuildPragma 1689 ? serialization::MK_ExplicitModule 1690 : serialization::MK_ImplicitModule, 1691 ImportLoc, ARRFlags)) { 1692 case ASTReader::Success: { 1693 if (Source != ModuleCache && !Module) { 1694 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1695 if (!Module || !Module->getASTFile() || 1696 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1697 // Error out if Module does not refer to the file in the prebuilt 1698 // module path. 1699 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1700 << ModuleName; 1701 ModuleBuildFailed = true; 1702 KnownModules[Path[0].first] = nullptr; 1703 return ModuleLoadResult(); 1704 } 1705 } 1706 break; 1707 } 1708 1709 case ASTReader::OutOfDate: 1710 case ASTReader::Missing: { 1711 if (Source != ModuleCache) { 1712 // We don't know the desired configuration for this module and don't 1713 // necessarily even have a module map. Since ReadAST already produces 1714 // diagnostics for these two cases, we simply error out here. 1715 ModuleBuildFailed = true; 1716 KnownModules[Path[0].first] = nullptr; 1717 return ModuleLoadResult(); 1718 } 1719 1720 // The module file is missing or out-of-date. Build it. 1721 assert(Module && "missing module file"); 1722 // Check whether there is a cycle in the module graph. 1723 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1724 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1725 for (; Pos != PosEnd; ++Pos) { 1726 if (Pos->first == ModuleName) 1727 break; 1728 } 1729 1730 if (Pos != PosEnd) { 1731 SmallString<256> CyclePath; 1732 for (; Pos != PosEnd; ++Pos) { 1733 CyclePath += Pos->first; 1734 CyclePath += " -> "; 1735 } 1736 CyclePath += ModuleName; 1737 1738 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1739 << ModuleName << CyclePath; 1740 return ModuleLoadResult(); 1741 } 1742 1743 // Check whether we have already attempted to build this module (but 1744 // failed). 1745 if (getPreprocessorOpts().FailedModules && 1746 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1747 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1748 << ModuleName 1749 << SourceRange(ImportLoc, ModuleNameLoc); 1750 ModuleBuildFailed = true; 1751 return ModuleLoadResult(); 1752 } 1753 1754 // Try to compile and then load the module. 1755 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1756 ModuleFileName)) { 1757 assert(getDiagnostics().hasErrorOccurred() && 1758 "undiagnosed error in compileAndLoadModule"); 1759 if (getPreprocessorOpts().FailedModules) 1760 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1761 KnownModules[Path[0].first] = nullptr; 1762 ModuleBuildFailed = true; 1763 return ModuleLoadResult(); 1764 } 1765 1766 // Okay, we've rebuilt and now loaded the module. 1767 break; 1768 } 1769 1770 case ASTReader::ConfigurationMismatch: 1771 if (Source == PrebuiltModulePath) 1772 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1773 // produce a warning here! 1774 getDiagnostics().Report(SourceLocation(), 1775 diag::warn_module_config_mismatch) 1776 << ModuleFileName; 1777 // Fall through to error out. 1778 LLVM_FALLTHROUGH; 1779 case ASTReader::VersionMismatch: 1780 case ASTReader::HadErrors: 1781 ModuleLoader::HadFatalFailure = true; 1782 // FIXME: The ASTReader will already have complained, but can we shoehorn 1783 // that diagnostic information into a more useful form? 1784 KnownModules[Path[0].first] = nullptr; 1785 return ModuleLoadResult(); 1786 1787 case ASTReader::Failure: 1788 ModuleLoader::HadFatalFailure = true; 1789 // Already complained, but note now that we failed. 1790 KnownModules[Path[0].first] = nullptr; 1791 ModuleBuildFailed = true; 1792 return ModuleLoadResult(); 1793 } 1794 1795 // Cache the result of this top-level module lookup for later. 1796 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1797 } 1798 1799 // If we never found the module, fail. 1800 if (!Module) 1801 return ModuleLoadResult(); 1802 1803 // Verify that the rest of the module path actually corresponds to 1804 // a submodule. 1805 if (Path.size() > 1) { 1806 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1807 StringRef Name = Path[I].first->getName(); 1808 clang::Module *Sub = Module->findSubmodule(Name); 1809 1810 if (!Sub) { 1811 // Attempt to perform typo correction to find a module name that works. 1812 SmallVector<StringRef, 2> Best; 1813 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1814 1815 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1816 JEnd = Module->submodule_end(); 1817 J != JEnd; ++J) { 1818 unsigned ED = Name.edit_distance((*J)->Name, 1819 /*AllowReplacements=*/true, 1820 BestEditDistance); 1821 if (ED <= BestEditDistance) { 1822 if (ED < BestEditDistance) { 1823 Best.clear(); 1824 BestEditDistance = ED; 1825 } 1826 1827 Best.push_back((*J)->Name); 1828 } 1829 } 1830 1831 // If there was a clear winner, user it. 1832 if (Best.size() == 1) { 1833 getDiagnostics().Report(Path[I].second, 1834 diag::err_no_submodule_suggest) 1835 << Path[I].first << Module->getFullModuleName() << Best[0] 1836 << SourceRange(Path[0].second, Path[I-1].second) 1837 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1838 Best[0]); 1839 1840 Sub = Module->findSubmodule(Best[0]); 1841 } 1842 } 1843 1844 if (!Sub) { 1845 // No submodule by this name. Complain, and don't look for further 1846 // submodules. 1847 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1848 << Path[I].first << Module->getFullModuleName() 1849 << SourceRange(Path[0].second, Path[I-1].second); 1850 break; 1851 } 1852 1853 Module = Sub; 1854 } 1855 } 1856 1857 // Make the named module visible, if it's not already part of the module 1858 // we are parsing. 1859 if (ModuleName != getLangOpts().CurrentModule) { 1860 if (!Module->IsFromModuleFile) { 1861 // We have an umbrella header or directory that doesn't actually include 1862 // all of the headers within the directory it covers. Complain about 1863 // this missing submodule and recover by forgetting that we ever saw 1864 // this submodule. 1865 // FIXME: Should we detect this at module load time? It seems fairly 1866 // expensive (and rare). 1867 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1868 << Module->getFullModuleName() 1869 << SourceRange(Path.front().second, Path.back().second); 1870 1871 return ModuleLoadResult::MissingExpected; 1872 } 1873 1874 // Check whether this module is available. 1875 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 1876 getDiagnostics(), Module)) { 1877 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 1878 << SourceRange(Path.front().second, Path.back().second); 1879 LastModuleImportLoc = ImportLoc; 1880 LastModuleImportResult = ModuleLoadResult(); 1881 return ModuleLoadResult(); 1882 } 1883 1884 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1885 } 1886 1887 // Check for any configuration macros that have changed. 1888 clang::Module *TopModule = Module->getTopLevelModule(); 1889 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1890 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1891 Module, ImportLoc); 1892 } 1893 1894 LastModuleImportLoc = ImportLoc; 1895 LastModuleImportResult = ModuleLoadResult(Module); 1896 return LastModuleImportResult; 1897 } 1898 1899 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, 1900 StringRef ModuleName, 1901 StringRef Source) { 1902 // FIXME: Using a randomized filename here means that our intermediate .pcm 1903 // output is nondeterministic (as .pcm files refer to each other by name). 1904 // Can this affect the output in any way? 1905 SmallString<128> ModuleFileName; 1906 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 1907 ModuleName, "pcm", ModuleFileName)) { 1908 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 1909 << ModuleFileName << EC.message(); 1910 return; 1911 } 1912 std::string ModuleMapFileName = (ModuleName + ".map").str(); 1913 1914 FrontendInputFile Input( 1915 ModuleMapFileName, 1916 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 1917 InputKind::ModuleMap, /*Preprocessed*/true)); 1918 1919 std::string NullTerminatedSource(Source.str()); 1920 1921 auto PreBuildStep = [&](CompilerInstance &Other) { 1922 // Create a virtual file containing our desired source. 1923 // FIXME: We shouldn't need to do this. 1924 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 1925 ModuleMapFileName, NullTerminatedSource.size(), 0); 1926 Other.getSourceManager().overrideFileContents( 1927 ModuleMapFile, 1928 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 1929 1930 Other.BuiltModules = std::move(BuiltModules); 1931 }; 1932 1933 auto PostBuildStep = [this](CompilerInstance &Other) { 1934 BuiltModules = std::move(Other.BuiltModules); 1935 // Make sure the child build action doesn't delete the .pcms. 1936 Other.BuiltModules.clear(); 1937 }; 1938 1939 // Build the module, inheriting any modules that we've built locally. 1940 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 1941 ModuleFileName, PreBuildStep, PostBuildStep)) { 1942 BuiltModules[ModuleName] = ModuleFileName.str(); 1943 llvm::sys::RemoveFileOnSignal(ModuleFileName); 1944 } 1945 } 1946 1947 void CompilerInstance::makeModuleVisible(Module *Mod, 1948 Module::NameVisibilityKind Visibility, 1949 SourceLocation ImportLoc) { 1950 if (!ModuleManager) 1951 createModuleManager(); 1952 if (!ModuleManager) 1953 return; 1954 1955 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 1956 } 1957 1958 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 1959 SourceLocation TriggerLoc) { 1960 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 1961 return nullptr; 1962 if (!ModuleManager) 1963 createModuleManager(); 1964 // Can't do anything if we don't have the module manager. 1965 if (!ModuleManager) 1966 return nullptr; 1967 // Get an existing global index. This loads it if not already 1968 // loaded. 1969 ModuleManager->loadGlobalIndex(); 1970 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 1971 // If the global index doesn't exist, create it. 1972 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 1973 hasPreprocessor()) { 1974 llvm::sys::fs::create_directories( 1975 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1976 GlobalModuleIndex::writeIndex( 1977 getFileManager(), getPCHContainerReader(), 1978 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 1979 ModuleManager->resetForReload(); 1980 ModuleManager->loadGlobalIndex(); 1981 GlobalIndex = ModuleManager->getGlobalIndex(); 1982 } 1983 // For finding modules needing to be imported for fixit messages, 1984 // we need to make the global index cover all modules, so we do that here. 1985 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 1986 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1987 bool RecreateIndex = false; 1988 for (ModuleMap::module_iterator I = MMap.module_begin(), 1989 E = MMap.module_end(); I != E; ++I) { 1990 Module *TheModule = I->second; 1991 const FileEntry *Entry = TheModule->getASTFile(); 1992 if (!Entry) { 1993 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 1994 Path.push_back(std::make_pair( 1995 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 1996 std::reverse(Path.begin(), Path.end()); 1997 // Load a module as hidden. This also adds it to the global index. 1998 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 1999 RecreateIndex = true; 2000 } 2001 } 2002 if (RecreateIndex) { 2003 GlobalModuleIndex::writeIndex( 2004 getFileManager(), getPCHContainerReader(), 2005 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2006 ModuleManager->resetForReload(); 2007 ModuleManager->loadGlobalIndex(); 2008 GlobalIndex = ModuleManager->getGlobalIndex(); 2009 } 2010 HaveFullGlobalModuleIndex = true; 2011 } 2012 return GlobalIndex; 2013 } 2014 2015 // Check global module index for missing imports. 2016 bool 2017 CompilerInstance::lookupMissingImports(StringRef Name, 2018 SourceLocation TriggerLoc) { 2019 // Look for the symbol in non-imported modules, but only if an error 2020 // actually occurred. 2021 if (!buildingModule()) { 2022 // Load global module index, or retrieve a previously loaded one. 2023 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2024 TriggerLoc); 2025 2026 // Only if we have a global index. 2027 if (GlobalIndex) { 2028 GlobalModuleIndex::HitSet FoundModules; 2029 2030 // Find the modules that reference the identifier. 2031 // Note that this only finds top-level modules. 2032 // We'll let diagnoseTypo find the actual declaration module. 2033 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2034 return true; 2035 } 2036 } 2037 2038 return false; 2039 } 2040 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 2041 2042 void CompilerInstance::setExternalSemaSource( 2043 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2044 ExternalSemaSrc = std::move(ESS); 2045 } 2046